一种吲哚并[1,5-a]嘧啶衍生物及其抗肿瘤用途

本发明涉及一种具有通式1的吲哚并[1,5-a]嘧啶衍生物及其药学上可用盐。

本文则还涉及式1化合物在制备抗肿瘤药物中的应用。
1. 一种吡唑并 [1, 5-a] 噻啶衍生物及其药学上可接受的盐或前药，其特征在于，所述吡唑并 [1, 5-a] 噻啶衍生物具有通式 1 所示的结构：

![结构式]

其中，
R₁ 为氢、烷基羰基、烷氧基羰基、烷基硫代羰基；
R₂ 为氢、烷基、卤代烷基；
R₃ 为氢、卤素、三氟甲基。

2. 根据权利要求 1 所述的吡唑并 [1, 5-a] 噻啶衍生物及其药学上可接受的盐，其特征在于：所述的卤代烷基为一氟甲基或三氟乙基。

3. 根据权利要求 1 所述的吡唑并 [1, 5-a] 噻啶衍生物及其药学上可接受的盐，其特征在于：所述的烷氧羰基为甲氧羰基、乙氧羰基或叔丁氧羰基。

4. 根据权利要求 1 所述的吡唑并 [1, 5-a] 噻啶衍生物及其药学上可接受的盐，其特征在于：所述的烷基羰基为甲酰基、乙酰基、丙酰基或异丁酰基。

5. 根据权利要求 1 所述的吡唑并 [1, 5-a] 噻啶衍生物及其药学上可接受的盐，其特征在于：所述的卤素为氟、氯或溴。

6. 权利要求 1 所述的吡唑并 [1, 5-a] 噻啶衍生物及其药学上可接受的盐在制备抗肿瘤药物上的应用。
一种吡唑并[1,5-a]嘧啶衍生物及其抗肿瘤用途

技术领域
[0001] 本发明属于有机合成领域，涉及一种抗肿瘤药物吡唑并[1,5-a]嘧啶衍生物及其用途。

背景技术
[0002] 随着人类寿命的延长，癌症跃升为近年的主要死亡原因。《2012 中国肿瘤登记年报》显示，中国每年新发癌症病例约 350 万，因癌症死亡的人数约 250 万。全国恶性肿瘤发病第一位的是肺癌，其次为胃癌、结直肠癌、肝癌和食管癌。癌症已成为我国人口死亡的首要原因。

[0003] 关于癌症的治疗，科学家们展开了大量的研究工作。新的抗癌药品不断发现。目前已有 20 多种抗癌药物可达到 30% 以上。而药物作用机理的亚细胞水平及分子水平的研究，大大开拓了抗癌药物在应用方面的研究。细胞动力学、药物作用动力学及免疫学方面研究的快速发展，也使得药物的筛选、剂量的调整，给药途径的确定日趋完善。现已联合用药、大剂量间歇用药、辅助化疗以及配合中药的治疗，使恶性肿瘤治疗取得了很好的疗效。当今，对恶性肿瘤治疗以手术、放射治疗、化学药物治疗、中医中药的治疗及免疫治疗等手段为主。对抗癌药物的选择、毒性作用及抗药性等方面也起着影响其疗效，因为抗癌药物在杀死肿瘤细胞的同时，对正常组织的细胞有杀伤，尤其是增殖旺盛的骨髓造血细胞及胃肠细胞，这样会抑制抗癌药的加工，并且使患者免疫功能降低，甚至患者难以忍受胃肠反应，而被迫中断治疗，使治疗失败。抗癌药物能杀死癌细胞，但由于其细胞毒性，所以要找到一种既能治疗癌症同时又对人体造成伤害或不损伤较小的药物一直是科学家们奋斗的目标。最近，作为瞬时受体电位通道亚族组成之一的 TRPC6 蛋白与胞内钙浓度的改变、肿瘤的发生发展、肿瘤细胞周期改变的相序研究有新的进展，有望成为肿瘤治疗新的靶点。

[0004] 瞬时受体电位（transient receptor potential，TRP）是广泛存在于细胞膜上的一种非选择性阳离子通道蛋白家族，具有介导感觉传导、参与细胞信号转导及调节发育等重要作用，是目前离子通道领域研究的热点之一。TRPC 通道蛋白是一个庞大的家族，广泛表达于多种生物、组织及细胞中。仅哺乳动物 TRP 通道而言，这个家族就包括 7 个相互关联的亚家族：TRPC、TRPV、TRPM、TRPN、TRPA、TRPP 和 TRPML，其中每一个亚家族又包括众多家族成员。TRP 离子通道的生理功能在工作上多局限于神经系统，近年来研究发现，TRP 通道不仅在机体内参与细胞信号转导、介导伤害性感受等方面的发挥着重要的功能，而且在肿瘤的发生、发展中起着重要的作用。该家族对细胞起着稳定和调控作用，其表达升高有利于恶性肿瘤的生长。

[0005] TRPC 即传统型 TRP 通道，它是第一个被研究分离出的 TRP 通道蛋白。TRPC 共 7 个亚型，TRPC1～7，其中 TRPC3 和 TRPC6 在结构和功能上非常接近，氨基酸一致性高达 70%～80%，在药理学性质和信号转导功能方面也较相似，在 TRPC 亚家族中比较有代表性，也是目前国际研究中很受关注的 2 个亚型。而 TRPC6 被认为是选择性最强的通道蛋白。人 TRPC6 定位于染色体 11q212q22，共 132287 个碱基（基因库：NC0000011），含 13 个外显子。
TRPC6 的转录产物 mRNA 含 4564 个碱基，其中第 1 - 427 位为 5' 未翻译区，第 428-3223 位为编码区，第 3224-4564 位为 3' 未翻译区（基因库：NM004621）。TRPC6 可特异性的被磷脂酶 C（PLC）激活，通过 G- 蛋白偶联受体（GPCR）介导的信号传导通路使配体与膜受体结合，激活磷脂酶 C 生成 1, 4, 5- 三磷酸肌醇，后者与受体结合促使内质网释放 Ca^{2+}。TRPC6 是一种非选择性的阳离子通，钙离子可以通过，未多组织中都有表达。它能直接被第二信使甘油二酯酶激活，通过特定的酶氨酸/丝氨酸磷酸化调节胞内钙流。细胞内游离 Ca^{2+} 升高，激活一些蛋白磷酸酶，使底物蛋白磷酸化，将外界信号级联放大，进入核内，影响 DNA 复制，导致细胞增变及肿瘤细胞的增殖分化。细胞内 Ca^{2+} 直接参与调控肿瘤的生长，侵袭，转移和分化。所以，TRPC6 抑制剂有望成为治疗癌症的新药物。但是关于 TRPC6 抑制剂的报道甚少。

近年来，关于 TRPC6 与人类肿瘤的关系，科学家们进行了一系列的研究。结果证明，TRPC6 与发病率较高的胃癌，肝癌，食管癌等都有着重要的联系。David G. W. 在 2013 年报道了 TRPC3 和 TRPC6 的抑制剂，他们合成的化合物对 hTRPC3 和 hTRPC6 的 IC_{50} 值可以达到纳米摩尔级别，但是在进行动物实验的时候，发现该系列药物口服利用度低，体内清除率过高，虽然经过一系列的结构改造，但是仍然无法找到一个平衡点，使活性和口服利用率均处于较好的水平。

经过大量的筛选，我们发现，化合物 1 具有优异的 TRPC6 抑制作用，是潜在的抗肿瘤药物。

发明内容

本发明旨在提供一种吡唑并[1, 5-a]嘧啶衍生物。本发明还提供上述化合物的细胞水平及靶点水平的活性筛选结果及其抗肿瘤应用。

本发明涉及的一种吡唑并[1, 5-a]嘧啶衍生物，具有通式 1 所示的结构：

![化学结构式](image)

其中：

R_{1} 为氢、烷基羰基、烷氧基羰基、烷基硫代羰基；

R_{2} 为氢、烷基、卤代烷基；

R_{3} 为氢、卤素、三氟甲基；

所述的烷基为 C_{1}-C_{6} 直链、支链或环状烷基，如甲基，乙基，正丙基，异丙基，正丁基，环己基等；

所述的卤代烷基为 1-5 个卤原子取代的卤代烷基，如一氯甲基，三氟乙基等；

所述的烷氧羰基为 C_{1}-C_{6} 烷氧基羰基，如甲氧羰基，乙氧羰基，叔丁氧羰基等。
所述的烷基羧基为 C1-C8 烷基羧基，如甲酰基，乙酰基，丙酰基，异丁酰基等；
所述的卤素为氯，氟，溴。
本发明提供式 1 所示化合物或其药学上可接受的盐。
本发明中所采用的述语“药学上可接受的盐”是指在可靠的医药评价范围内，化合物的盐类及与可与低等动物的组织相接触而无不适的毒性，刺激及过敏反应等，具有相当合理的收益 / 风险比例，通常是水或油的或可分散的，并可有效的用于其预期的用途。包括药学上可接受的酸加成盐和药学上可接受的碱加成盐，在这里是可用的并与式 1 化合物的化学性质相容的。
本发明还提供式 1 所示的吡啶并 [1, 5-a] 噁啶衍生物的制备方法。
1）当 R2 = H 时，按如下路线制备：

1. 向化合物 2 中滴加 5M NaOH，在 30-60 摄氏度条件下搅拌 12-48 小时，然后向溶液中滴加 1M-3M HCl 至 pH3，用乙酸乙酯萃取，无水硫酸钠干燥，过滤，旋干，得黄色油状液体 4。
2. 将化合物 4, N, N'- 羟基二嗪嘧啶溶于四氢呋喃，室温搅拌 3-5 小时；将化合物丙二酸单乙酯钾盐，无水氯化镁和四氢呋喃溶于乙腈和四氢呋喃，室温搅拌 4-8 小时；上述两种混合液反应好后，降低到 0 摄氏度，将上述第一种溶液与三乙胺同时加到上述第
二种溶液中，室温搅拌过夜。反应完成后，旋干溶剂，用水稀释，乙酸乙酯萃取，无水硫酸钠干燥，过滤旋干，得黄色油状液体 5。

[0027] (3) 中间体 6 的制备：将化合物 61, 62 溶于少量二氯甲烷后在 100 °C 下回流反应 8 - 24 小时，冷却至室温后，再将此反应液加入到溶于 50% EtOH 的盐酸肼溶液中，80 °C 回流过夜，反应结束后冷却至室温，用饱和 NaClO3 碱化，乙酸乙酯萃取，饱和食盐水洗，无水硫酸钠干燥，过滤旋干，用石油醚和乙酸乙酯重结晶得白色至浅黄色固体 6。

[0028] (4) 将化合物 5 与化合物 6 溶于无水乙醇，再加入三氯乙酸，80 摄氏度加热，反应 8-24 小时后停止加热，冷却至室温后旋干溶剂。用水稀释，1M NaOH 调 pH8，乙酸乙酯萃取，无水硫酸钠干燥，过滤，旋干，过硅胶柱，分离得到化合物 7。

[0029] (5) 将化合物 7 溶于二氯甲烷，0 摄氏度条件下加入三氟乙酸，在该温度下反应 2 - 5 小时，旋干溶剂，用饱和碳酸氢钠溶液调 pH10，过滤，滤渣用水洗，少量乙酸乙酯洗，真空干燥箱干燥，得白色固体 8。

[0030] (6) 将化合物 8 与相应的酸或酰氯或者烷基卤代烃，1-羟基苯并三唑，苯并三氮唑-N, N’, N”-四甲基脲六氟磷酸盐溶于 DMF，室温搅拌，加入二异丙基乙基胺，反应 12 小时后，用乙酸乙酯溶解，水洗，饱和食盐水洗，无水硫酸钠干燥，过滤，旋干，过硅胶柱，得白色固体为 1。

[0031] 2) 当 R2 ≠ H 时，按如下路线制备：
[0033] (1) 将圆底烧瓶无水无氧, 在氯气氛围下加入二异丙基胺, 四氢呋喃, 0 摄氏度搅拌, 在该温度下慢慢滴加1.6M 反丁基锂, 滴加完毕后, 0℃搅拌15-30 分钟, 然后置于 -78 摄氏度环境下, 将溶于四氢呋喃的化合物 2 慢慢滴加到上述溶液中, 搅拌 1h 后, 将溶于四氢呋喃的碘甲烷滴加到上述溶液中, 让其缓慢升至室温。反应完毕后, 用饱和氯化铵溶液淬灭, 旋干溶剂, 用水稀释, 乙酸乙酯萃取, 无水硫酸钠干燥, 过滤, 旋干, 得棕色油状液体 3。

[0034] (2) 向化合物 3 中滴加 5M NaOH, 在 30-60 摄氏度条件下搅拌 12-48 小时, 然后向溶液中滴加 1M-3M HCl 至 pH3, 用乙酸乙酯萃取, 无水硫酸钠干燥, 过滤, 旋干, 得黄色油状液体 4。

[0035] (3) 将化合物 4, N,N’-羰基二咪唑溶于四氢呋喃, 室温搅拌 3-5 小时; 将化合物 4 与乙酸单乙酯钾盐, 无水氯化铵和 4- 二甲基氨基吡啶溶于乙腈和四氢呋喃, 室温搅拌 4-8 小时; 上述两种混合液反应好后, 降低到 0 摄氏度, 将上述第一种溶液与三乙胺同时加到上述第二种溶液中, 室温搅拌过夜。反应完成后, 旋干溶剂, 用水稀释, 乙酸乙酯萃取, 无水硫酸钠干燥, 过滤旋干, 得黄色油状液体 5。

[0036] (4) 中间体 6 的制备: 将化合物 61,62 溶于少量二氯甲烷后在 100℃ 下回流反应 8 - 24 小时, 冷却到室温后, 再将此反应液加入到溶于 50% EtOH 的盐酸肼溶液中, 80℃ 回流过夜, 反应结束后冷至室温, 用饱和 NaHCO3 碱化, 乙酸乙酯萃取, 乙酸乙酯重结晶得白色至浅黄色固体 6。

[0037] (5) 将化合物 5 与化合物 6 溶于无水乙醇, 再加入三氟乙酸, 80 摄氏度加热, 反应 8-24 小时后停止加热。冷却到室温后旋干溶剂。用水稀释, 1M NaOH 调 pH8, 乙酸乙酯萃取, 无水硫酸钠干燥, 过滤, 旋干, 过硅胶柱, 分离得到化合物 7。

[0038] (6) 将化合物 7 溶于二氯甲烷, 0 摄氏度条件下加入三氟乙酸, 在该温度下反应 2 - 5 小时, 旋干溶剂, 用饱和碳酸氢钠溶液调 pH10, 过滤, 滤渣用水洗, 少量乙酸乙酯洗, 真空干燥箱干燥, 得白色固体 8。

[0039] (7) 将化合物 8 与相应的酸或酰氯或者烷基卤代烷, 1- 羟基苯并三唑- N,N', N'- 四甲基脲六氟磷酸盐溶于 DMF, 室温搅拌, 加入二异丙基乙基胺, 反应 12 小时后, 用乙酸乙酯溶解, 水洗, 用饱和食盐水洗, 无水硫酸钠干燥, 过滤, 旋干, 过硅胶柱, 得白色固体 1。

[0040] 本发明中，特别优选的部分化合物对应的结构如下：
附图说明
[0042] 图 1 本发明的部分化合物激活 TRPC6 离子通道的细胞荧光膜电位实验结果。
[0043] 图 2 本发明的部分化合物激活 TRPC6 离子通道的全细胞膜片钳检测结果。
[0044] 图 3 本发明的部分化合物阻断 TRPC6 离子通道的细胞试验结果。

具体实施方式
[0045] 通过下述实施例有助于理解本发明，但是不能限制本发明的内容。
[0046] 实施例 1 : R₁ = -COCH₂Ph₂, R₂ = H, R₃ = F。
[0047] (1) 向化合物 2 (24.33g ,0.1mol) 中滴加 5M NaOH (60 mL ,0.3mol) ，在 50 摄氏度条件下搅拌 24 小时，然后向溶液中滴加 3M HCl 到 pH3，用乙酸乙酯 (3×200 mL) 萃取，无水硫酸钠干燥，过滤，旋干，得黄色油状液体 4 (19.72g ,96%)。
[0048] (2) 将化合物 4 (14.56g ,63.5mmol), N,N'-羰基二嗪唑 (24.00g ,86mmol) 溶于四氢呋喃 (100 mL), 室温搅拌 4 小时; 将化合物丙二酸单乙酯钾盐 (28.10g ,165mmol), 无水氯化镁 (18.15g ,191mmol) 和 4-二甲氨基吡啶 (800mg ,6.35mmol) 溶于乙腈 (100 mL) 和四氢呋喃 (200 mL), 室温搅拌 6 小时; 上述两种混合液反应好后，均降低到 0 摄氏度，将上述第一种溶液与三乙胺 (52 mL ,254mmol) 同时加到上述第二种溶液中，室温搅拌过夜。反应完成后，旋干溶剂，用水 (200 mL) 稀释，乙酸乙酯 (3×200 mL) 萃取，无水硫酸钠干燥，过滤旋干，得黄色油状液体 5 (18.06g ,95%)。
[0049] (3) 中间体 6 的制备: 将化合物 61 (21.6 mL), 62 (21.9 mL) 溶于二氯甲烷 (10 mL) 后在 100°C 下回流反应 24 小时，冷却到室温后，再将此反应液加入到溶于 50% EtOH (50 mL) 的盐酸肼溶液中，80°C 回流过夜，反应结束后冷却至室温，用饱和 NaHCO₃ 碱化，乙酸乙酯
(3×100mL)萃取，饱和食盐水洗，无水硫酸钠干燥，过滤旋干，用石油醚和乙酸乙酯重结晶得白色固体6(21.2g,78%)。

【0050】(4)将化合物5(15g,45mmol)与化合物6(9.45g,49.5mmol)溶于无水乙醇(400mL)，再加入三氟乙酸(20mL)，80摄氏度加热，反应12小时后停止加热。冷却到室温后旋干溶剂。用水(100mL)稀释，1m NaOH调pH8，乙酸乙酯(3×200mL)萃取，无水硫酸钠干燥，过滤，旋干，用甲醇:二氯甲烷=1:20过硅胶柱，分离得到化合物7(13.82g,72%)。

【0051】(5)将化合物7(6.18g,15mmol)溶于二氯甲烷(100mL)，0摄氏度条件下加入三氟乙酸(35mL)，在该温度下反应2小时，旋干溶剂，用饱和碳酸氢钠溶液调pH10，过滤，滤渣用水洗，少量乙酸乙酯洗，真空干燥箱干燥，得到白色固体8(4.50g,92%)。

【0052】(6)将化合物8(3.27g,10mmol)，二苯基乙酸(2.55g)，1-羟基苯并三唑(4.1g,30mmol)，苯并三氮唑-N,N,N’,N’-四甲基脲六氟磷酸盐(11.4g,30mmol)溶于DMF(50mL)，室温搅拌，加入二异丙基乙胺(15.6g,90mmol)，反应12小时后，用乙酸乙酯(300mL)稀释，水(4×200mL)洗，饱和食盐水(100mL)洗，无水硫酸钠干燥，过滤，旋干，用二氯甲烷:甲醇=30:1过硅胶柱，得白色固体为M114(2.97g,57%)。1H NMR(400MHz,CD3OD) δ = 7.34-7.28(q,4H),7.25-7.22(t, J = 14.5Hz,5H),7.18-7.08(m,5H),5.47-5.45(d, J = 7.6Hz,1H),4.72-4.69(d, J = 13.2Hz,1H),4.18-4.15(d, J = 13.2Hz,1H),3.28-3.27(t, J = 3.2Hz,1H),3.00-2.94(t, J = 25Hz,1H),2.83-2.77(t, J = 24Hz,1H),2.66-2.60(t, J = 24Hz,1H),1.95-1.92(d, J = 12.4Hz,1H),1.72-1.69(d, J = 12.4Hz,1H),1.55-1.47(m,1H),1.15-1.06(m,1H)。13C NMR(101MHz,CD3OD) δ = 172.5,141.2,140.9,131.8,131.8,130.3,129.7,129.4,128.2,127.9,115.9,115.7,55.7,47.7,44.7,44.0,32.7,32.5,14.0。实施例2:R1 = -COOC2H5, R2 = -CH3, R3 = C1,步骤同实施例1,所不同的是R3由F变为Cl。所得白色固体为M121(收率69%)。1H NMR(400MHz,(CD3)2SO) δ = 7.94-7.90(m,2H),7.39-7.31(m,7H),5.44(s,1H),5.10(s,2H),4.13-4.10(d, J = 13.0Hz,2H),2.91(s,2H),2.63-2.56(m,1H),2.13(s,3H),1.85-1.82(d, J = 11.6Hz,2H),1.61-1.60(m,2H)。13C NMR(101MHz,(CD3)2SO) δ = 165.5,153.4,154.5,149.2,147.5,137.1,134.4,128.4,128.2,127.8,127.8,127.7,127.5,101.5,90.5,66.1,43.9,43.4,31.2,15.3。

【0053】实施例3:R1 = -COOEt, R2 = -CH3, R3 = -F。

【0054】(1)500mL圆底烧瓶，无水无氧，在氮气氛围下加入二异丙基胺(16.8mL,120mmol)，溶于四氢呋喃(150mL)，0摄氏度搅拌，在该温度下慢慢滴加1.6M正丁基锂(75mL,120mmol)，滴加完毕后，0℃搅拌15分钟，然后置于-78摄氏度环境下，将溶于四氢呋喃(60mL)的化合物2(24.3g)慢慢滴加到上述溶液中，搅拌1小时后，将溶于四氢呋喃(60mL)的碘甲烷(9.38mL,150mmol)滴加到上述溶液中，使其缓慢升温至室温。反应完毕后，用饱和氯化铵溶液淬灭，旋干溶剂，用水(250mL)稀释，乙酸乙酯(3×250mL)萃取，无水硫酸钠干燥，过滤，旋干，得棕色油状液体3(24.18g,94%)。

【0055】(2)向化合物3(20.58g,80mol)中滴加5m NaOH(80mL,0.4mol)，在60℃条件下搅拌24小时后，向溶液中滴加3M HC1到pH3，用乙酸乙酯(3×200mL)萃取，无水硫酸钠干燥，过滤，旋干，得黄色油状液体4(17.91g,92%)。

【0056】(3)将化合物4(12.65g,52mmol),N,N’-链基二秦唑(19.2g,69mmol)溶于四氢呋喃(80mL)，室温搅拌4小时;将化合物丙二酸单乙酯钾盐(22.48g,13.2mmol),无水氯化镁
（14.52g, 15.28mmol）和 4-二甲氨基吡啶（416mg, 0.52mmol）溶于乙腈（80mL）和四氢呋喃（150mL），室温搅拌 6 小时；上述两种混合液反应好后，将溶液降低到 0 度，将上述第一种溶液与三乙胺（41.6mL, 203mmol）同时加到上述第二种溶液中，室温搅拌过夜。反应完成时，旋干溶剂，用水（150mL）稀释，乙酸乙酯（3×150mL）萃取，无水硫酸钠干燥，滤过旋干，得黄色油状液体 5（14.99g, 93%）。

[0057] (4) 中间体 6 的制备同实施例 1(3)

[0058] (5) 将化合物 5 (12.54g, 40mmol) 与化合物 6 (8.41g, 44mmol) 溶于无水乙醇（300mL），再加入三氟乙酸（15mL），80℃加热，反应 12 小时后停止加热。冷却到室温后旋干溶剂。用水（100mL）稀释，用 1M NaOH 调 pH 8，用乙酸乙酯（3×200mL）萃取，无水硫酸钠干燥，滤过，旋干，用甲醇：二氯甲烷 = 1:20 过硅胶柱，分离得到化合物 7（12.69g, 72%）。

[0059] (6) 将化合物 7 (8.81g, 20mmol) 溶于二氯甲烷（120mL），0℃条件下加入三氟乙酸（40mL），在该温度下反应 2 小时，旋干溶剂，用饱和碳酸氢钠溶液调 pH10，过滤，滤渣用水洗，少量乙酸乙酯洗，真空干燥箱干燥，得到白色固体 8（6.18g, 91%）。

[0060] (7) 将化合物 8 (3.40g, 0mmol)，氯甲酸乙酯（1.15mL），1-羟基羰基苯并三唑（4.1g, 30mmol），苯并三氮唑-N,N,N',N'四甲基肼六氟磷酸盐（11.4g, 30mmol）溶于 DMF (50mL)，室温搅拌，加入二异丙腈基乙酸（15.6mL, 90mmol），反应 12 小时后，用乙酸乙酯（300mL）稀释，水（4×200mL）洗，饱和食盐水（100mL）洗，无水硫酸钠干燥，滤过，旋干，用二氯甲烷：甲醇 = 30:1 过硅胶柱，得白色固体 M110 (2.14g, 52%) 1H NMR (400MHz, CDCl3) δ = 9.84 (s, 1H), 7.16-7.13 (t, J = 12.4Hz, 2H), 6.93-6.88 (t, J = 16.8Hz, 2H), 5.70 (s, 1H), 4.10-4.05 (q, J = 21.2Hz, 2H), 3.60-3.58 (d, J = 8Hz, 2H), 3.47-3.43 (q, J = 16.8Hz, 2H), 2.14 (s, 5H), 1.75-1.74 (d, J = 5.2Hz, 2H), 1.45 (s, 3H), 1.25-1.21 (t, J = 14Hz)。13C NMR (101MHz, CDCl3) δ = 162.7, 160.2, 157.1, 155.4, 151.5, 153.7, 131.2, 127.0, 115.1, 114.9, 103.4, 94.1, 61.4, 40.1, 37.7, 34.7, 29.7, 25.2, 14.6, 12.8。

[0061] 实施例 4：本发明的中间化合物（M085, M086, M091, M092）激活 TRPC6 离子通道的细胞实验

[0062] 吡喹酮对抑制其衍生物激活 TRPC6 离子通道 (图 1)。在永久性转染 TRPC6 离子通道的 HEK293 细胞中，使用 M085 作为激活剂，并检测荧光膜电位。先用 FIPR 荧光染料 (FMP) 对细胞进行染色，在第 30s 时分别加入 0.1 μM, 0.4 μM, 1.1 μM, 3.3 μM, 10 μM, 30 μM 的 M085，在 0.4 μM 30 μM 的 M085 作用下，永久性转染 TRPC6 离子通道的 HEK293 细胞中荧光增强说明膜去极化的增加 (图 1B)，而未转染 TRPC6 离子通道的 HEK293 细胞（对照）中未显示出明显的荧光变化（图 1A）。

[0063] 应用类似的荧光钙检流检测 M085 对表达小鼠 TRPC6 的 HEK293 细胞内 [Ca2+] 浓度的影响，对细胞使用 Ca2+ 指示 Fluo4 染色，在 30s 时加入 0.1 μM, 0.4 μM, 1.1 μM, 3.3 μM, 10 μM, 30 μM 的 M085，细胞内 [Ca2+] 在 3.3 μM 30 μM 的 M085 作用下有明显升高 (图 1C)。荧光钙检流检测表明，吡喹酮对抑制其衍生物对 TRPC6 离子通道存在激活作用的化合物有 M085, M086, M091 及 M092；其浓度响应曲线见图 1D。其中，对 M086 分别进行荧光钙检流检测和荧光膜电位检测结果见图 1E。

[0064] 全细胞膜片钳检测结果显示，吡喹酮对抑制其衍生物（M085, M086, M091 及 M092）对 TRPC6 通道的激活作用（以 M085 为代表，图 2A），HEK293 细胞全细胞记录模式下钳制
在 -100 ～ +100mV，不同浓度下 (0.04 μM, 0.12 μM, 0.37 μM, 1.1 μM, 3.3 μM 及 10 μM) MO85 对 TRPC6 的激活作用，其电流 - 电压关系见图 2B，其浓度响应曲线见图 2C，EC50 = 2.5 μM (n = 5-7)。

【0065】实施例 5：本发明部分化合物 (M107, M110) 阻断 TRPC6 离子通道的细胞试验，叮啶并噻啶及其衍生物 (M107, M110) 能阻断 TRPC6 离子通道 (图 3G)。永久污染 M5 毒素碱受体和 TRPC6 离子通道的 HEK293 细胞中，应用低浓度激活通道并检测荧光膜电位。细胞用 0 μM, 10 μM, 30 μM 的 M107 处理 3 分钟后，加入 10 μM 的 MO85，荧光强度的增强表示膜电位极化增加，而 M107 处理的细胞膜电位极化被抑制 (图 3A)。

【0066】全细胞膜片钳检测结果显示，叮啶并噻啶及其衍生物 (M107, M110) 对 TRPC6 通道的抑制作用，以 M107 为代表 (图 3B, C)。HEK293 细胞全细胞记录模式下钳制在 -100 ～ +100mV，用氯丙嗪胆碱 (CCh, 30 μM) 激活的 TRPC6 离子通道被 M107 (20 μM) 抑制，并给出了 20 μM 的 M107 在 -100 ～ +100mV 下对 CCh 的抑制率 60% 与 20% (n = 5)。

【0067】实施例 6 本发明的化合物细胞水平的细胞毒性筛选实验

【0068】将对数生长期的细胞，用 0.25% 胰酶 -EDTA 消化后，配制成一定浓度的细胞悬液，根据细胞生长速度的差异，按 1000 ～ 2000 个/孔接种于 96 孔板，每孔加入细胞悬液 100 μL。24h 后，加入含不同浓度化合物及相应溶剂对照的新鲜培养基，每孔加 100 μL (DMSO 终浓度 <0.1%)，每种受试化合物设 5 ～ 7 个剂量组，每组至少设 3 个平行孔，于 37°C 继续培养 72h 后，弃上清，每孔加入 100 μL 新鲜配制的含 0.5mg/mL MTT 的无血清培养基，继续培养 2h，弃上清后，每孔加入 200 μL DMSO 溶解 MTT 甲酶沉淀，微型振荡器振荡混匀后，酶标仪在参考波长 450nm, 检测波长 570nm 条件下测定光密度值 (OD)，以溶剂对照处理的肿瘤细胞为对照组，用以下公式计算化合物对肿瘤细胞的抑制率，并按中效方程计算 IC50：

抑制率(%) = \frac{\text{对照组平均OD值} - \text{给药组平均OD值}}{\text{对照组平均OD值}} \times 100\%

【0069】（结果列于表 1 中）

【0070】表 1. 本发明的部分化合物的体外细胞毒活性结果

【0071】
说明 书

<table>
<thead>
<tr>
<th>细胞系</th>
<th>IC₅₀ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M110</td>
<td>12.07</td>
</tr>
<tr>
<td>MCF7</td>
<td>21.85</td>
</tr>
<tr>
<td>H460</td>
<td>9.47</td>
</tr>
<tr>
<td>KB</td>
<td>4.33</td>
</tr>
<tr>
<td>Lncapeg</td>
<td>30.76</td>
</tr>
<tr>
<td>Pca3</td>
<td>>100</td>
</tr>
<tr>
<td>Du145</td>
<td>25.64</td>
</tr>
</tbody>
</table>

[0073] MCF7 为人乳腺癌细胞株；H460 为人肺癌细胞株；Lncapeg、Pca3、Du145 为人前列腺癌细胞株；KB 为人口腔上皮癌细胞株；RM-1 为小鼠前列腺癌细胞株。

[0074] 实施例 7 本发明的化合物的动物体内活性实验

选用雄性 C57/BL6 小鼠，18-22g。实验过程简述如下：取生长良好的小鼠前列腺癌 RM-1 的荷瘤小鼠，颈椎脱臼处死，无菌条件下剥取长势良好的瘤块，匀浆，用生理盐水 1:4 稀释，给每只小鼠腹腔内背部接种 0.2mL 瘤液（约 2×10⁶ 细胞），次日将动物随机分组并开始给药。化合物 M11050mg/kg 于接种 24h 后腹腔注射给药，给药体积为 0.1mL/10g；同时设多西紫杉醇对照组及溶剂对照组，多西紫杉醇组以 10mg/kg 剂量给动物腹腔注射，给药体积为 0.1mL/10g。连续给药 10 天后，颈椎脱臼处死，分别称量体重、瘤重。计算肿瘤生长抑制率（%），并将结果进行统计学处理。

抑瘤率（%） = \[\frac{\text{对照组平均瘤重} - \text{治疗组平均瘤重}}{\text{对照组平均瘤重}}\] × 100%

[0077] 表 1 本发明化合物对小鼠前列腺癌 RM-1 移植瘤瘤重和动物体重的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 (mg/kg) x d</th>
<th>动物体重 (g)</th>
<th>瘤重 (g)</th>
<th>抑制率</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>17.92±1.07</td>
<td>21.50±1.41</td>
<td>2.59±0.47</td>
<td></td>
</tr>
<tr>
<td>多西紫杉醇</td>
<td>10 x 3</td>
<td>20.00±1.07</td>
<td>18.43±2.17</td>
<td>1.77±0.61</td>
</tr>
<tr>
<td>M110</td>
<td>50 x 4</td>
<td>20.00±0.76</td>
<td>21.33±1.51</td>
<td>2.0±0.73</td>
</tr>
</tbody>
</table>

[0079] 上述实验结果表明，具有本发明通式的化合物 M110 具有体内抑制小鼠前列腺癌 RM-1 移植瘤生长的药理学活性。
图 3