This invention relates to novel filaments and fabrics and is particularly concerned with the production of fabrics composed of polyester filaments having increased resistance to pilling.

The term "pilling" signifies the tendency of a fabric composed of staple fibers which may be entirely synthetic or which may be combined with natural fibers such as wool, to develop this defect on its surface small balls of fibers which form as a result of frictional action on the surface of the fiber.

Fabrics composed in whole or in part of polyester staple fibers possess many highly desired characteristics such as high strength, high durability, resistance to deformation and good hand, drape and feel. However, such fabrics have the disadvantage of being subject to considerable pilling which substantially limits the use of such fabrics in suitings and the like. Considerable effort has been made in the art to find ways and means of overcoming this pilling tendency.

It is an object of this invention to provide novel filaments, fibers and fabrics composed in whole or in part of polyesters. It is a further object of the invention to provide fibers and filaments which, when used in fabrics, exhibit an improved resistance to pilling. A further object is concerned with hollow filaments possessing the property of acquiring a tight and lasting crimp upon relaxation in a suitable shrinking medium such as hot water. Other objects will appear hereinafter.

The objects of the invention can be attained by spinning hollow polyester filaments which may, if desired, have varying wall thickness or to induce inherent crimpability. Such hollow filaments have a wide utility in fabric production, but are especially valuable in the form of staple fibers, particularly when admixed with wool fibers, which are woven or knitted into fabrics having highly improved resistance to pilling. In the drawings, which illustrate spinning equipment suitable for the production of the filaments of this invention:

FIGURE 1 is a top plan view of the upper plate or filter pack of a spinneret used in the practice of this invention;

FIGURE 1(a) is an elevation view in cross-section of the upper plate or filter pack taken along the lines 1a—1a of FIGURE 1. The right-hand half of FIGURE 1(a) is an elevation in cross-section along the plane of the right-hand half of line 1a—1a of FIGURE 1 and the left-hand half of FIGURE 1(a) is an elevation in cross-section along the plane of the left-hand half of line 1a—1a of FIGURE 1. It will be noted that the two portions of line 1a—1a of FIGURE 1 form an angle at the center of the figure. The two halves of FIGURE 1(a) have been assembled in this fashion in order to show the shape and direction of the different holes and cavities even though they may not fall along the central plane of the spinneret;

FIGURE 2 is a bottom plan view of the apparatus of FIGURE 1 taken at a somewhat different angle than FIGURE 1, line 1a—1a of FIGURE 2 likewise showing the dual plane cut of FIGURE 1(a);

FIGURE 3 is a top plan view of the bottom plate of a spinneret used in the practice of this invention;

FIGURE 4 is an elevation view in cross-section of the bottom spinneret plate shown in FIGURE 3 with the right-hand half shown in the plane of the right-hand half of line 4—4 of FIGURE 3 (drawn to the center) and with the left-hand half of FIGURE 4 being cut on the plane of the vertical portion (from the center downwardly) of line 4—4 of FIGURE 3; As in the case of FIGURE 1(a), FIGURE 4 is assembled in the manner indicated to show the shape and direction of the holes and other elements of the bottom spinneret plate although, as is evident from FIGURE 3, these elements are not, in fact, aligned as shown in FIGURE 4;

FIGURE 5 is an elevation view, generally in cross-section, of the upper and lower plates of FIGURES 1, 1(a), 2, 3, and 4, in assembled position utilizing the showing of FIGURE 4 for the lower plate and the showing of co-acting parts of FIGURES 1, 1(a) and 2 for the upper plate or filter pack. FIGURE 5 shows the assembled spinneret with a full showing of the various elements, with the upper plate being shown, as assembled, in the position corresponding to that of the lower plate;

FIGURE 6 is an elevation (magnified and partly in section) of the extrusion pin shown in FIGURE 5;

FIGURE 7 is a cross-section taken on 7—7 of FIGURE 6;

FIGURE 8 is a cross-section taken on line 8—8 of FIGURE 6;

FIGURE 9 is a cross-section taken on 9—9 of FIGURE 6;

FIGURE 10 is a view in cross-section showing the details of the lower portion of the pin shown in FIGURE 6 while in operative position in the lower plate of FIGURES 3 and 4;

FIGURE 11 shows a modified form of extrusion pin;

FIGURE 11(a) is a view in cross-section along line 11(a)—11(a) of FIGURE 11;

FIGURE 12 shows an additional form of modified extrusion pin;

FIGURE 12(a) is a view in cross-section along line 12(a)—12(a) of FIGURE 12;

FIGURE 13 is a magnified cross-sectional view of a filament of the invention having a wall of uniform thickness and

FIGURE 14 is a magnified cross-sectional view of a filament of the invention of non-uniform wall thickness and having definite crimp characteristics.

It can be seen from the drawings that top plate 1 of the spinneret adapted to receive the filter pack (not shown), has a central chamber 2 and an annular chamber 3 separated from each other by wall 4. In the bottom of chamber 2 are a plurality of holes 5 passing downwardly through plate 1 and diverging outwardly from each other. Holes 5 lead into shallow annular groove 6 formed in the top surface of lower plate 7 which, in assembling the spinneret, is fastened to plate 1 as described below. Holes 8 lead from the bottom of annular chamber 3 vertically downward through plate 1 and terminate at groove 6 of the lower plate 7. Pins 9, provided with longitudinal passages 10 therethrough are positioned in holes 8 with a press fit (and may be further fastened in place by a spline or other means for insuring a tight fit, if desired) with the upper ends of pins 9 extending above the bottom of annular chamber 3 as shown. The press fit of pins 9 may be supplemented by the action of circular serrations 11 provided at the top of pins 9 to grip the inside of holes 8.

Pins 9 are circular in cross-section in the portion 12 in contact with holes 8, as shown in FIGURE 7, having a diameter sufficient to give a press fit in holes 8, pins 9 in the major portion 13 passing through plate 7, having a cross-section which is partly arcuate (as shown at 13') but which has, as by cutting the pin to form chords in the cross-section of the pins, the general shape of a mutilated triangle as shown in FIGURE 8. Pin 9 then tapers at 14 near its lower part to a smaller, partially arcuate
3

(as shown at 14') but generally mutilated triangular cross-section as shown in FIGURE 9, the next lower portion of pins 9 being necked down at 15 (to form an annular groove) and terminating in a short annular cylindrical section 16 somewhat larger in diameter than neck portion 15 as shown in FIGURES 6 and 10, with the holes of pins 9 being flush with the outer face of plate 7 and with holes terminating in orifices 17. Plate 7 is formed with holes passing through plate 7, holes 18, which are tapered at their lower ends, having a circular cross-section throughout equal in diameter to the arcuate portions of the tips of pins 13 and 14 of pins 9 to insure a tight fit between the contacting surfaces.

It will be noted that annular orifice 19 is formed at the outer surface of plate 7 by the clearance between orifice 18 of the plate 7 and the outer and smaller cylindrical portion 16 of pin 9. The total area of the outer end of orifice 18 (inclusive of orifice 17 and the annular cylindrical portion 16 of pin 9) is collectively referred to as the extrusion orifice designated as 20 in the drawings.

Plates 1 and 7 are fastened with threaded bolts 21 passing through holes 22 in plate 7 with the bolt heads being received in countersore 23 and butting at their inner surface the shoulder of countersore 23, bolts 21 being fastened into corresponding threaded holes 24 in plate 1. After the plates 1 and 7 are assembled and fastened in place by bolts 21, proper alignment is assured by insertion of tapered pins 25 of round cross-section having a dia-fit into tapered hole 26 and registering tapered holes 27 of the plate 1, the ends of pins 25 being drawn into position above and clear of the outer surface of plate 7.

Gaskets 28 and 29 are inserted in plate 7 prior to assembling the spinneret and are pressed in place as shown respectively into circular grooves 30 and 31 (gasket 28 being additionally pressed into a corresponding circular groove 32 in plate 1) when plates 1 and 7 are fastened together, so as to prevent leakage of the polymer fluid, metal or gas, between the plates.

The apparatus is connected with suitable piping and filter packs (not shown) as required to supply a molten polymer and a gas to the spinneret.

In the melt-spinning processes preferred in the practice of this invention, a gas, preferably a gas which is inert toward the fiber-forming polymer, flows from annular chamber 3 through orifices 18 of pins 9 and out of the spinneret to form the center of the filament. Molten polymer flows from central chamber 2 through holes 5 into annular groove 6 (through which pins 9 pass) downwardly through the passages in plate 7 formed by the clearance between the pin (at its non-arcuate periphery) and hole 18 of plate 7 (shown clearly in FIGURE 10 which represents pin 9 in plate 7 turned from its position in FIGURE 6 in order to show the clearance between pin 9 and plate 7), then along the groove formed at neck 15 and outwardly as a sheath through annulus 19.

It is, of course, understood that the design of apparatus is capable of considerable variation. Thus, pins 9, instead of being non-circular in cross-section within plate 7, may be circular in cross-section with sufficient clearance being provided between the pins 9 and holes 18 to permit passage of the polymer to a sheath 9 as a sheath. Such a form of pin is shown in FIGURES 11 and 11(a). This modified pin has a taper of 45-inch per foot, is approximately 3/8 of an inch long in the taper beginning at the bottom of back plate 1 and extending to the spinning orifice. A further form of pin is illustrated in FIGURES 12 and 12(a) in which the pin is essentially circular in cross-section diminishing in its lower end as in FIGURES 6 and 10, except that the section of the pin from the bottom of back plate 1 to the groove 15 is cut on a chord so as to provide clearance between the pin and spinneret plate 7 thereby permitting fiber-forming polymer to pass from annular groove 6 to the spinneret orifice; this is adapted to give an eccentric feed of polymer so that the hollow filament will be uneven in cross-section for the production of inherently crimitable filaments.

In the examples, the relative viscosity (n_r) i.e., the viscosity of a solution of polymer relative to that of the solvent is used as the measure of the molecular weight. The polymer solutions contain 2.15 g. of the polymer in 20 ml. of a 7/10 mixture by weight of toluene/phenol and the viscosity was measured at 25° C.

The following examples in which parts, proportions and percentages are by weight unless otherwise indicated, are intended to illustrate this invention and in no manner to limit it.

Example 1

A spinneret similar to that shown in FIGURES 1 to 10 having 5 spinning orifices, was made having orifices (20) of 0.063 inch in diameter in which the pin 9 had an opening 10 of 0.020 inch and had an outside diameter of 0.057 inch at the lower edge of the spinneret plate.

Molten poly(ethylene terephthalate) with a relative viscosity of 32 containing 0.3% TiCl₄ (as a defoamer) was spun at 280° C. into air at room temperature and the orifice was wound up at 950 y.p.m. (yards per minute). The pressure on the chamber 2 was controlled by means of a suitable bleed-off system and reducing valves (not shown) from a tank of nitrogen so as to have a gauge pressure of about 13.5 mm. of water. The hollow as-spun filaments had an inside diameter/outside diameter ratio of 0.70 which corresponds to about 50% by volume of void and were of uniform cross-section throughout their length as shown in FIGURE 13. The yarn was drawn 200% to 3 times undrawn length) on a drawing pin maintained at 93° C. The drawn yarn had a denier per filament of 3.3, a tenacity of 3.6 grams per denier, a dry elongation of 34% at the break and an initial modulus of elasticity of 65 grams per denier. Two worsted fabrics of similar construction were woven respectively from yarn made from staple fibers cut from these hollow poly(ethylene terephthalate) continuous filaments and yarn made from staple fibers cut from solid continuous poly(ethylene terephthalate) filaments of the same denier. The fabrics were mounted flat on a board and submitted to the abrasion action of a cellulose sponge that revolved in contact with the fabric at a selected, uniform speed on an axis perpendicular to the line of force of the sponge. Each fabric was weighed before and after sponging, the fabric containing hollow filaments showed only 6.4 per cent as compared to 33 per cent for the control fabric. By "pills" is meant the small balls of fibers that collect on the surface of a well-woven fabric. The superior resistance to pilling of a fabric made from the hollow filaments was quite surprising.

In a second spin, using the same equipment and polymers as before, but with the nitrogen pressure reduced to a gauge pressure of 6 mm. of water, continuous filaments having an inside diameter/outside diameter ratio of 0.5 (which corresponds to a hollow space of about 25% of the filament volume), were made and subsequently drawn 220% on a draw pin maintained at 83° C. as before, to obtain a strong, yet bulky, yarn. By increasing the gas pressure above 13.5 mm. of water (gauge), satisfactory spinning was obtained and yarns made having an inside diameter/outside diameter ratio of 0.86 (about 75% hollow space).

Example 2

A spinneret similar to that shown in FIGURES 1 to 10 but having 12 spinneret orifices, was constructed with the pin 7 having a hollow passage 10 of 0.006 inch in diameter and a lower outside diameter of 0.030 inch. The orifices 20 of the spinneret had a diameter of 0.034 inch. Poly(ethylene terephthalate) as the polymer was used. Viscosity 32 was melt-spun from this spinneret at 285° C. using a nitrogen-gas gauge pressure of 24 mm. of water and the hollow filaments were wound up at 1,000 yards per
minute. The yarn was drawn 160% over a draw pin main
tained at 90° C. The resulting filaments contained 50% by volume of hollow spaces, and had a denier per fil-
ament of 1.8. A yarn of solid filaments of the same
polyester was spun and drawn under similar condi-
tions for comparison. Physical properties of the filaments are given below:

| Item | Drawn Dentier | Tenacity, gm./Denier | Dry Elon-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>g Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow drawn, 160%</td>
<td>1.8</td>
<td>2.8</td>
<td>45</td>
</tr>
<tr>
<td>Solid drawn, 280%...</td>
<td>2.4</td>
<td>2.6</td>
<td>55</td>
</tr>
</tbody>
</table>

It was quite surprising that a lower draw ratio could be used to obtain equivalent tenacity and initial modulus with the hollow filament as compared to a solid filament of the same polyester.

The continuous hollow filaments and control solid filaments described above in this example were cut into staple length and spun into a worsted-count yarn and fabrics woven therefrom. After weaving and finishing under similar conditions, the hollow filament fabric had a greater covering power (15% more cover per unit weight of fiber) than the control fabric. The piling tendency of the fabric containing hollow filaments was about ¼ that of the fabric made from the solid filaments in this construction.

Sweaters knitted from the staple made from the hollow filaments were as described above in this example were softer, more luxurious and weighed 40% less than sweaters with the same covering power made from the staple fiber cut from the solid continuous filaments of the polyester.

The spin of this example was repeated, but the gas pressure reduced to about 10 mm. (gage) of water so as to provide a final drawn yarn having 10% gas space by volume. A worsted-type fabric was woven from yarns spun from staple cut from these continuous filaments similar to that above. The fabric from the 10% gas-
containing filaments had cover equivalent to that of a solid fabric but weighed 15.5% less. However, the fabric did not exhibit the resistance to pilling possessed by fabrics made from the 50% gas hollow filaments.

A bundle of 50% gas-containing hollow filaments made as above in this example were immersed in a 2% dispersion of the dye Artissil Direct Blue (FR 62) in acetone. After air-drying, the filaments were bleached blue and showed no tendency toward crocking in rubbing off of the dye. When solid filaments of the same polymer were treated in the dye bath, they were stained only a light blue and the dried filaments crocked badly.

In a similar manner, the hollow filaments of this example, dyed with the vat dye Indigo Violet exhibited freedom from crocking.

Example III

A skein of drawn hollow poly(ethylene terephthalate) filaments as prepared in Example I was cut into short lengths with a sharp razor blade. The staple fiber thus prepared was covered with a 5% solution of cellulose acetate in acetone. After one minute, the solution was decanted, the fiber rinsed twice with acetone and the fiber air-dried. Examination of the dried fiber under microscope revealed that the hollow ends of all the filaments were sealed by a plug of cellulose acetate, although the individual filaments were not stuck together. The product has an actual density of about 0.7 gram/centimeters³ (cubic centimeters) with an apparent density in loosely compacted form of about 0.01 gram/centimeters³ and floated on water indefinitely without losing its buoyancy. The product is thus a good substitute for kapok fiber for use in lifebelts and like articles.

A similar product was obtained by cutting a tow of continuous hollow filaments with a flying knife staple cutter that had a dull blade. The pressure of the cutting edge of the staple pin and the clamp pressure of the staple cutter were adjusted to approximately the fiber melting point and purposely kept somewhat dull. Temperatures below the melting point down to room temperature have been effective also, presumably due to the heat generated on impact.

A novel product is made by subjecting staple cut from hollow filament (about 40% voids) of poly(ethylene terephthalate) to a pressure of about 10,000 p.s.i. in a bale crimping cylinder. Partial but random collapse of the hollow spaces occurs so that the fiber bulk is decreased but the fibers display a softer hand in fabric than the uncompressed ones. The use of a stuffer box crimper affords a more regular and controlled random collapse of hollow filament structures at sufficiently high pressures.

Novel effects may be produced by pulsating the flow of gas forming the hollow core thereby varying the thickness and diameter of the filament wall so as to give filaments similar to the thick and thin solid filaments made by prior art processes. In this modification the pulsation will normally be so controlled as to maintain continuity of the gas core during spinning.

The following example illustrates the making of potential crimpable and crimped hollow filaments in accord-
ance with the present invention.

Example IV

A spinneret was made similar to Example I except that pin 9 shown with a reduced section 14 through the spinneret plate, is shaped with section 14 being reduced in diameter as compared with portion of pin 9 above the spinneret plate, and with the same reduced cross-
section down to the neck portion 15. Section 14 of pin 9 is cut throughout its length on a chord plane as shown in FIGURE 14 of the drawings, with the maxi-
mum wall thickness being about twice the wall thickness of the filament section diametrically opposite. This varying wall thickness resulted from the design of pin 9 described above which effected the feed of more polymer to one side of the spinneret orifice 20 than to the other.

On exposure to boiling water, free of tension, the yarn became tightly coiled with each filament taking a helical configuration, and (as determined by microscopic inspection) with the heavy-walled region of the filament being toward the inner side of the coils. This coiled or crimped yarn showed a high degree of stretchiness when made into woven fabrics and significant bulkiness in woven fabrics of suitable construction.

The crimped fibers of this Example IV can be sub-
jected to a pressure in the neighborhood of 10,000
2,999,296

pounds per square inch with a piston-cylinder type of press into which a mass of yarn is fed, and random partial collapse of the hollow spaces in the filaments will occur with interesting application to conversion into textile fabric having pleasing novel optical effects and fabric hand and feel. It is preferable, in this application of the invention, to have a gas-polymer ratio in the filaments such that the hollow spaces will be 40% or less of the volume of the filament (the polymer constituting 60–90% of the filament volume) so as to resist too much collapse of the filaments under the applied pressure. With higher pressures, e.g., 40,000 pounds per square inch, the collapse of the hollow filaments is almost total with the imparting of a cotton-like random ribbon-like form to the filament which is also useful to produce novel effects when processed into fabric.

While hot water has been mentioned above as a shrinking agent for developing crimp, other shrinking agents may be used to effect crimping.

The hollow extrusion pins in the spinneret of this invention may be varied in exterior and interior size as desired. For filaments of regular cross-section, the hollow pins are, by virtue of the novel spinneret design, readily centered in the spinning orifices. However, they may be positioned off-center in the spinning orifices so as to give filament walls of varying thicknesses to produce filaments which may readily be crimped on exposure to boiling water, free of tension, as in Example IV.

Although this invention has been illustrated with filaments having a round cross-section, it will be obvious to those skilled in the art that the spinneret can be modified within the realm of this invention to spin various cross-sections. Thus, by modifying the shape of the orifice (20), cruciform, square, and triangular cross-section shaped filaments may be spun. Such filaments have the advantages of round hollow filaments but confer a different hand to fabrics made therefrom.

The shape of the hollow core can be modified by changing the shape of passage 10 at the tip of pin 9. Round fibers having non-round voids such as oval, triangular, square or star-shaped may be made. The latter two modifications can be combined to give non-round filaments having non-round voids.

In making hollow filaments as above described, the gas pressure is preferably slightly above atmospheric pressure so as to prevent collapse of the filament at the spinning orifice. The gas pressure at the orifice may be suitably controlled so as to permit partial shrinkage of the spinning polymer on solidification beyond the spinneret orifice. In addition to preventing the inherent shrinkage of the polymer on solidification of the hollow filaments, the air pressure may be lessened slightly to permit partial collapse or retraction of the tubular filament. This can be done by proper control of the air pressure in chamber 2 or by suitable design of hole through pin 9. It is preferred that the air pressure in chamber 2 be not greatly in excess of atmospheric pressure, e.g., not more than about 30 mm. gage water pressure.

The hollow products described above in the practice of this invention are of great advantage in textile applications. They confer greater warmth and covering power than solid-filaments at equivalent weights and confer a different and, for some applications, a more desirable hand to fabrics made therefrom. Those filaments containing more than 10% hollow space by volume are particularly valuable in that, when made into worsted-type fabric, they have a significantly lower tendency to pill than fabrics of solid filaments.

Hollow fibers offer a route to many new and useful products. All manner of substances, in a solution or as a melt, can be used to fill the hollow space or coat the inner wall of the filaments by treating the filaments in a vacuum chamber and then releasing the vacuum. A non-abrasive, but delustered filament, can be made by placing a pigment in the core, e.g., by filling with a solution of BaCl₂ and then treating the filament with sulfuric acid; this product is opaque to X-rays. Novel effects are obtained by placing luminescent or fluorescent materials in the hollow core. Silver- or gold mirrors can be deposited on the walls of the hollow space. Substances such as a halomethylated phosphate as shown in U.S. 2,868,769, and like materials can be placed in the hollow core to render the filaments flameproof. In all the above-mentioned applications, the added substances are protected by the outer layers of the polymer and, hence, are retained in the filament through rough usage.

Any suitable fiber-forming polyester may be used in the practice of this invention. Generally speaking, fiber-forming polyesters will have a relative viscosity of 22 and above (preferably 27–33), connoning an average molecular weight (i.e., number average molecular weight as obtained by known end group or osmotic pressure determination) of about 10,000 and upward. Poly(ethylene terephthalate) is the preferred polymer, particularly where heat stabilization is desired, but other fiber-forming polyesters derived from dicarboxylic acids and from glycols may be used, e.g., polymers derived from glycols having two or more carbon atoms in the chain and copolymerized with terephthalic acid containing adipic acid, sebacic acid, isophthalic acid, etc.

The hollow filaments of this invention will normally be subjected to a drawing (permanent stretching) operation, the filament being preferably drawn from about two to eight times its original undrawn length. Prior to drawing, the filaments are attenuated, i.e., they are slenderized by pulling the freshly extruded filament away from the orifices at a little faster than the extrusion rate. The drawing or orientation step is in addition to attenuation but also has a slenderizing effect. The extent of drawing will depend on the properties desired in the final filaments, e.g., the drawing will impart increased tenacity to the desired extent. Furthermore, in the case of crimpable filaments, the drawing will depend somewhat upon the degree of eccentric relationship between the polymer and the hollow core.

This invention is particularly directed to filaments and yarns (i.e., bundles of filaments, whether staple filaments or staple fiber) having deniers of the magnitude used in textiles. It is preferred that the filaments of this invention have a denier (per filament) in the range of 1 to 10 (inclusive) and that the yarns of this invention have a denier of 30,000 (inclusive).

The hollow filaments of this invention may be advantageously made into woven or knitted textiles without blending with other fibers. Alternatively, they may be blended particularly as staple fibers with other synthetic or natural fibers or with natural fibers such as wool, cotton, etc., either by blending in the manufacture of the yarn, or by blending yarns composed only of the filaments and fibers of this invention with yarns of other fibers, during the weaving or knitting operations.

Any variation from the above description of the invention which conforms to the spirit of the invention is also intended to be included within the claims.

We claim:

1. A yarn containing polyester textile staple fibers, said fibers having a continuous void throughout their length, and said polyester having the ester linkages in the polymer chain.

2. The yarn of claim 1 wherein the staple fibers have a denier of from 1–10.

3. The yarn of claim 1 wherein the polyester of said staple fibers constitutes 60–90% of the volume of the staple fibers.

4. The yarn of claim 1 wherein the continuous void in said staple fibers is eccentrically located.

5. The yarn of claim 1 having a denier of 30 to 8,000.
6. A pill-resistant fabric containing polyester textile staple fibers, said fibers having a continuous void throughout their length and said polyester having the ester linkages in the polymer chain.

7. A pill-resistant fabric comprising yarns having a 5 denier of 30 to 8,000 and which contain polyester textile staple fibers, said fibers having a continuous void throughout their length, and said polyester having the ester linkages in the polymer chain.

8. The pill-resistant fabric of claim 7 wherein the continuous void in said staple fibers is eccentrically located.

References Cited in the file of this patent

UNITED STATES PATENTS
2,360,680 Holzmann ------------ Oct. 17, 1944
2,399,239 Taylor --------------- Apr. 30, 1946

FOREIGN PATENTS
514,638 Great Britain --------- Nov. 14, 1939

OTHER REFERENCES
Dietzsch et al.: German application Serial No. T8020 V11/3e, printed June 7, 1956 (K1. 3e 603).