发明名称
集中式测试控制方法及系统

摘要
本发明公开了一种集中式测试控制方法及系统，其中该方法包括：A. 根据用户需求设置测试流程，选择相应的测试用例，并配置测试所需无线环境参数；B. 根据所述测试流程、测试用例及所述无线环境参数生成测试指令发送到相应的受控对象，控制所述受控对象进行测试。本发明的集中式测试控制方法及系统，通过对测试过程的测试环境和各个受控对象进行集中控制，无线网络测试的自动化程度及测试执行力，实现对测试环境的可控可靠。
1. 一种集中式测试控制方法，其特征在于，包括：
 A. 根据用户需求设置测试流程，选择相应的测试用例，并配置测试所需无线环境参数；
 B. 根据所述测试流程、测试用例及所述无线环境参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。

2. 根据权利要求1所述的集中式测试控制方法，其特征在于，所述步骤A还包括：
 配置所述受控对象的运行参数；
 所述步骤B，根据所述测试流程、测试用例、所述无线环境参数及所述受控对象的运行参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。

3. 根据权利要求1或2所述的集中式测试控制方法，其特征在于，还包括：
 监测无线环境配置状态、受控对象的配置状态和/或受控对象的实时状态，并在状态异常时进行告警。

4. 根据权利要求1或2所述的集中式测试控制方法，其特征在于，还包括：
 根据测试过程中发生的事件，控制整个测试过程的进行。

5. 根据权利要求1或2所述的集中式测试控制方法，其特征在于，所述步骤B中将所述测试指令下发到相应受控对象的操作还包括：
 对发送给受控对象的指令进行解析，根据指令对象将解析出的指令内容发送至相应的受控对象；
 根据反馈对象对所述受控对象的测试结果进行解析，生成相应的反馈信息发送至所述反馈对象。

6. 根据权利要求1所述的集中式测试控制方法，其特征在于，所述步骤A中选择相应的测试用例的操作包括：
 根据测试类型从测试用例数据库中选择相应的测试用例。

7. 根据权利要求1所述的集中式测试控制方法，其特征在于，所述无线环境参数包括：
 不同制式的基站布局和间距、基站发送功率，不同制式配套的天线样式、位置和高度、天线倾角及受控对象型号。

8. 一种集中式测试控制系统，其特征在于，包括：
 人机交互单元，用于根据用户需求设置测试流程，并选择相应的测试用例，并配置测试所需无线环境参数；
 工作流单元，用于根据所述测试流程、测试用例及所述无线环境参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。

9. 根据权利要求8所述的集中式测试控制系统，其特征在于，所述人机交互单元包括：
 流程配置装置，用于根据用户需求设置测试流程；
 测试用例数据库，用于存储不同的测试用例；
 选择装置，用于从所述测试用例数据库中选择测试用例；
 无线环境参数配置装置，用于配置测试所需无线环境参数。

10. 根据权利要求9所述的集中式测试控制系统，其特征在于，所述工作流单元包括：
 指令生成装置，用于根据所述测试流程、测试用例及所述无线环境参数生成测试指令并下发到相应的受控对象。
11. 根据权利要求 10 所述的集中式测试控制系统，其特征在于，所述工作流单元还包括：

业务数据流生成装置，用于生成测试数据流和业务流并下发到相应的受控对象；
和 / 或时钟流生成装置，用于生成全环境同步时钟流并下发到相应的受控对象。

12. 根据权利要求 10 所述的集中式测试控制系统，其特征在于，所述人机交互单元还包括：

运行参数配置装置，还用于配置所述受控对象的运行参数并下发到所述受控对象；
所述指令生成装置，用于根据所述测试流程、测试用例、所述无线环境参数及所述受控对象的运行参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。

13. 根据权利要求 8 至 12 中任意一项所述的集中式测试控制系统，其特征在于，还包括：受控对象管理单元，其中，所述受控对象管理单元包括：

指令解析装置，用于将发送给受控对象的指令进行解析，根据指令对象将解析出的指令内容发送至相应的受控对象；
反馈解析装置，用于根据反馈对象对所述受控对象的测试结果进行解析，生成相应的反馈信令发送至所述反馈对象。

14. 根据权利要求 8 至 12 中任意一项所述的集中式测试控制系统，其特征在于，还包括：调度单元，其中，所述调度单元包括：

监测装置，用于监测无线环境配置状态、测试设备的配置状态和 / 或受控对象的实时状态；告警装置，用于在监测装置监测到状态异常时进行告警；
和 / 或调度控制装置，用于根据测试过程中发生的事件，控制所述系统中各个单元的工作。
集中式测试控制方法及系统

技术领域
[0001] 本发明涉及一种无线技术领域，尤其涉及一种集中式测试控制方法及系统。

背景技术
[0002] 通信网络测试，例如无线外场终端测试、网络设备一致性性能测试、互操作性测试等都是网络建设、规划与优化工作中的重要环节。
[0003] 当前的无线外场测试主要依靠人工方式，在多个点进行多次数据的处理环节，需要将路测软件记录下来的数据导出，再人工筛选出有用的部分，用其他的统计软件进行绘图和分析。网络设备一致性、互操作性测试，一般都需要针对特定的目的搭建专门的软硬件环境，人工配置测试过程中的参数，人为干预度大，自动化程度低。
[0004] 无线外场测试等需要运营商和设备生产商投入大量的人力物力，测试中选取搭平的各个无线环境，核心网环境等不可控，使出现的问题定位困难导致测试周期长，测试数据统计分析环节效率低且不能直观反映用户体验。总体来说，当前的通信网络测试，如无线外场测试普遍具有可控性差、执行成本低、测试结果不直观等缺点。
[0005] 现有技术主要存在以下问题：
[0101] (1) 无线电综合自动测试场的部署和配置
[0102] (2) 外场测试中存在多地点重复测试，多制式协调的问题；
[0103] (2) 测试车，车载设备控制
[0104] 目前的外场测试和少数专门的无线电测试场仍依靠人工方式进行测试，测试车和车载测试设备无法实现自动配置和运行；
[0105] (3) 与被测终端的交互和控制
[0106] 目前外场测试中对终端缺乏可控制、可视的交互操作，一般由车载测试设备完成终端的自动拨测，并由路测软件记录到的测试数据，但工程技术人员无法实时与被测终端进行测试中的实时交互，不能看到被测终端的实时状态；
[0112] (4) 测试结果的记录和分析
[0113] 目前的测试数据需要人工进行导出、筛选、分析，而且，测试数据只能反映数值结果，不能建立直观的用户体验。

发明内容
[0014] 本发明的目的在于，提供一种集中式测试控制方法及系统，提高无线外场测试的自动化程度及测试执行力，实现对测试环境的可控可靠。
[0015] 为实现上述目的，根据本发明的一个方面，提供一种集中式测试控制方法，包括：
[0016] A. 根据用户需求设置测试流程，选择相应的测试用例，并配置测试所需无线环境参数；
[0017] B. 根据所述测试流程，测试用例及所述无线环境参数生成测试指令下发到相应的
受控对象，控制所述受控对象进行测试。
[0018] 其中，步骤A还包括：配置所述受控对象的运行参数；步骤B，根据所述测试流程、测试用例，所述无线环境参数及所述受控对象的运行参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。
[0019] 优选地，该方法还包括：监测无线环境配置状态，受控对象的配置状态和/或受控对象的实时状态，并在状态异常时进行告警。
[0020] 优选地，该方法还包括：根据测试过程中发生的事件，控制整个测试过程的进行。
[0021] 另外，步骤B中将所述测试指令下发到相应受控对象的操作还包括：
[0022] 对发送给受控对象的指令进行解析，根据指令对象将解析出的指令内容发送至相应的受控对象；
[0023] 根据反馈对象对所述受控对象的测试结果进行解析，生成相应的反馈指令发送至所述反馈对象。
[0024] 具体地，步骤A中选择相应的测试用例的操作包括：
[0025] 根据测试类型从测试用例数据库中选择相应的测试用例。
[0026] 其中，无线环境参数包括：不同制式的基站布局和间距、基站发送功率，不同制式配套的天线样式、位置和高度、天线倾角及受控对象型号。
[0027] 为实现上述目的，根据本发明的另一个方面，提供一种集中式测试控制系统，包括：
[0028] 人机交互单元，用于根据用户要求设置测试流程，并选择相应的测试用例，并配置测试所需无线环境参数；
[0029] 工作流程单元，用于根据所述测试流程、测试用例及所述无线环境参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。
[0030] 其中，人机交互单元包括：
[0031] 流程配置装置，用于根据用户要求设置测试流程；
[0032] 测试用例数据库，用于存储不同的测试用例；
[0033] 选择填装，用于从所述测试用例数据库中选择测试用例；
[0034] 无线环境参数配置装置，用于配置测试所需无线环境参数。
[0035] 其中，工作流程单元包括：指令生成装置，用于根据所述测试流程、测试用例及所述无线环境参数生成测试指令并下发到相应的受控对象。
[0036] 另外，工作流程单元还包括：
[0037] 业务数据流程装置，用于生成测试数据流和业务流程并下发到相应的受控对象；
[0038] 和/或时钟流生成装置，用于生成全环境同步时钟并下发到相应的受控对象。
[0039] 优选地，人机交互单元还包括：
[0040] 运行参数配置装置，还用于配置所述受控对象的运行参数并下发到所述受控对象；
[0041] 所述指令生成装置，用于根据所述测试流程、测试用例、所述无线环境参数及所述受控对象的运行参数生成测试指令下发到相应的受控对象，控制所述受控对象进行测试。
[0042] 优选地，该系统还包括：受控对象管理单元，其中，所述受控对象管理单元包括：
[0043] 指令解析装置，用于将发送给受控对象的指令进行解析，根据指令对象将解析出
的指令内容发送至相应的受控对象；

【0044】反馈解析装置，用于根据反馈对象对所述受控对象的测试结果进行解析，生成相应的反馈指令发送至所述反馈对象。

【0045】优选地，该系统还包括：数据单元，其中，所述数据单元包括：

【0046】监测装置，用于监测无线环境配置状态，测试设备的配置状态和 / 或受控对象的实时状态；告警装置，用于在监测装置监测到状态异常时进行告警；

【0047】和 / 或调度控制装置，用于根据测试过程中发生的事件，控制所述系统中各个单元的工作。

【0048】本发明的集中式测试控制方法及系统，通过对测试过程的测试环境和各个受控对象进行集中控制，无线外场测试的自动化程度及测试执行力，实现对测试环境的可控可靠。

附图说明

【0049】图 1 是本发明集中式测试控制方法实施例的流程图；

【0050】图 2 是本发明集中式测试控制方法另一实施例的流程图；

【0051】图 3 是本发明集中式测试控制系统实施例的结构图；

【0052】图 4 是本发明集中式测试控制系统中另一实施例的结构图；

【0053】图 5 是本发明集中式测试控制系统再一实施例的结构图。

具体实施方式

【0054】以下结合附对本发明进行详细说明。

【0055】方法实施例

【0056】如图 1 所示，本发明集中式测试控制方法实施例包括以下步骤：

【0057】步骤 102，根据用户需求设置测试流程，选择相应的测试用例，并配置测试所需的无线环境参数；

【0058】步骤 104，根据所述测试流程、测试用例及所述无线环境参数生成测试指示下发到相应的受控对象，控制所述受控对象进行测试。

【0059】将测试执行指令下发到相应的受控对象的操作具体包括：对所述测试执行指令进行解析，根据指令对象将解析出的指令内容发送至相应的受控对象，根据反馈对象对所述受控对象的测试结果进行解析，生成相应的反馈指令发送至所述反馈对象。

【0060】另外，步骤 102 中还包括：配置所述受控对象的运行参数；在无线环境配置成功后，还进一步配置受控对象的运行参数；步骤 104 中，根据所述测试流程、测试用例、所述无线环境参数及所述受控对象的运行参数生成测试指示下发到相应的受控对象，控制所述受控对象进行测试。

【0061】在上述步骤执行的同时，监测无线环境配置状态、测试设备的配置状态和 / 或受控对象的实时状态，并在状态异常时进行告警。另外，还根据测试过程中发生的事件，控制整个测试过程的进行。

【0062】本发明可以将整个测试流程通过计算机上的人机交互主控界面呈现给工程技术人员，同时可以根据测试内容的不同，加载不同的测试流程及测试受控对象，显示在计算机上的界面。根据测试内容的加载可以预先设定，也可以根据测试实际需要人工设定。
[0063] 本实施例中，受控对象可以为无线网络与核心网设备、业务平台、终端、周边环境、
动力设备、安全设备、仪器仪表、监测工具、数据库或工作站等等需要在测试过程中受控制
的对象。由于受控对象承载方式及通信协议的不同，在指令下发和反馈时，需要将各种指令
根据指令对象转换为相应的内容。这样，使得本实施例的系统可以进行多种类型的测试，可
控制不同种类的受控对象进行测试，提高了系统的兼容性、集成度及可扩展性。
[0064] 附图 2 所示，本发明集中式测试控制方法另一实施例具体包括：
[0065] 一，建立人机交互主控界面，并建立起各部分的同步和交通信号连接；
[0066] 人机交互主控界面以软件形式安装在测试场的主控机房中，并与工程技术人员的
操作形成立体。此主控界面起到以下作用：
[0067] 1）呈现测试执行流程和测试进度，引导工程技术人员按照流程提示完成测试工
程；
[0068] 2）完成各分立模块的配置，指令集下达；
[0069] 3）实时呈现无线电测试场景中各个组成部分的运行状态，如参数配置与指令执行状
态，测试车运行状态（所处位置和实时速度）、周边安全传感器信息、运行轨迹周边视频监控
录像、各基站运行状态、动力系统以及测试车库监控等；
[0070] 4）实时统计显示测试结果，包括测试过程中记录的实时数据，以及各种形式的数
学统计结果，并建立用户感知评估体系，以直观的方式呈现测试结果。
[0071] 人机交互主控界面作为一个平台，使得测试能力在线集成管理，测试资源在线集
成调度，测试活动实时在线掌握。
[0072] 二、设置测试流程及加载测试用例
[0073] 首先调用测试用例数据库，从测试用例库中选择加载测试用例，挑选所要进行的
不同类别（包括终端测试、网络性能测试、安全性测试、互操作测试等）的不同业务
（FTP/视频通话/WWW 等业务）/场景（郊区、市区、隧道等场景）的测试用例；明确测试所
需无线场景、测试终端目标速度、测试终端实际速度等参数配置；
[0074] 测试例选择提交之后，控制系统将此测试例中的参数与测试脚本相关的数据通过
test 例管理服务器下传至其他分立的功能模块，如高速仿真器、基站、索道、测试车及车载
test 设备，数据记录统计单元等处；
[0075] 测试例加载完毕后，在人机交互主控界面提示进入下一个测试步骤阶段。
[0076] 三、配置无线环境以及反馈监控信息
[0077] 配置测试所需无线环境参数包括对不同场景的无线传播环境进行配置；
[0078] 各测试场景下的无线环境参数包括：不同制式的基站布局和间距（由某个基站的
开闭进行调整）、基站发送功率，不同制式配套的天线样式、位置和高度、天线倾角等。此外，
还包括受控对象的型号等附加信息；
[0079] 从主控界面上对以上参数进行选择后，其选择结果将提交到控制系统，并将配置
参数发送到各个目标受控单元，包括基站、天线、遮挡物、车载测试设备以及负载软件。
[0080] 对无线环境配置状态的监测包括：对于所有的基站、天线、测试车、索道动力装置、
高速仿真器以及其他单元等受控对象，在测试指令下达的同时，监控各个受控目标处的执
行情况；检查参数是否被正确配置，对完成配置的受控目标显示正常，对参数异常的目标突
出显示报警。
【0081】 当无线环境参数全部正常完成配置后，显示无线环境配置成功，人机交互主控界面提示可进入下一个流程的操作。
【0082】 四、配置测试车以及车载设备，反馈监控信息
【0083】 在人机交互主控界面上设置与测试车和索道运行相关的参数配置，包括运行路线、测试运行时间、测试终端加载、动力系统联动启动等。
【0084】 在上述步骤一至四配置完成后，人机交互主控界面上提示测试准备工作已经做好，可以执行终端测试。测试执行指令的下发可以利用受控设备与控制系统的通信，由控制系统检测各部分已经做好测试前准备后自动启动测试；也可以为控制系统检测各部分已经做好准备后通过人机交互主控界面上提示工程技术人员手动启动测试。
【0085】 五、终端模拟器以及终端状态监控
【0086】 终端模拟器以软件形式安装在车载 PC 上，通过接口与控制系统、被测试终端进行通信连接，接收来自控制系统的指令并发送至被测终端，在测试过程中将终端屏幕反馈到控制系统的主控界面上。适用于所有类型的手机和手持终端设备，提供完整端到端的自动化测试解决方案（支持 WindowsMobile/Symbian/Linux/Brew 等开放式操作系统和专用/私有操作系统，所有硬件平台 GSM/GPRS/WCDMA/CDMA/CDMA2000/TD-SCDMA 等制式均兼容）。
【0087】 基于 UI（用户接口）/MMI（人机接口）实现终端系统实时查看终端模拟器回传的被测终端界面。可以通过控制系统的键盘、旋钮和触摸屏来模拟对被测终端的实验操作。通过抓取 LCD 屏幕显示图像进行智能 OCR 识别来模拟测试工程师的双眼辨识文字或图像信息。真正实现独立于运行环境，任何硬件平台或任何网络制式的自动测试。
【0088】 由控制系统选择加载已开发完成的测试用例将传输至终端模拟器。终端模拟器支持对测试例的改动和移动，采用全图形化的开发环境，使得用户无需编写任何代码即可完成测试用例的调整、开发、调试、运行和移植。
【0089】 控制系统确认终端模拟器与被测终端连接正常，如出现异常则需数据。
【0090】 当前所有位置正常执行后，主控界面提示测试准备工作已经做好，可以执行终端测试。此处，对 2 种执行方式进行支持：一种执行方式为利用所有系统与控制系统的通信，由控制系统检测各部分已经做好测试前准备后自动启动测试；另一种方式为控制系统检测各部分已经做好准备后提示工程技术人员手动启动测试。
【0091】 本环节针对终端的操作，其特点主要在于自动化程度高。终端拨测自动化，测试例选择、加载、二次开发和修改也完全自动化。
【0092】 所有被测试的终端都将通过终端模拟控制器连接到服务器和数据库，由控制系统统一调度和管理。
【0093】 六、测试执行以及测试数据统计分析
【0094】 在测试执行后，从三个层面上对测试数据进行自动化和智能化处理：对测试收集到的数据数值启动数据自动智能记录、统计、分析功能，对等级流程启动终端到终端监控，对业务质量启动用户感知评估体系。对测试数据的详细处理如下：
【0095】 1）对各测试指标的实时数值进行记录和显示。将数据发生的地点信息、时间戳信息汇总到控制系统进行统一同步。控制系统可以查看实时数据随时间的变化，也可以用集成的数学滤波器对一段时间内收集的数据做数学统计，得到方差、均值、CDF/PDF、柱状图、PMF 图等结果；
2) 对在 Izub, IuPS, Gn, Gi 口的信令, 记录其数据并打上发生时间戳 (需精确到 ms 量级), 对信令数据进行端到端关联, 统计时延、成功率、缓冲次数等；
3) 在 Izub, IuPS, Gn, Gi 口采集信令数据, 并还原信息面数据, 对音视频数据进行 VMOS 计算、打分、量化评估等操作, 并且在控制系统观看, 呈现各模块上采集到的用户面数据, 对比质量差异、定位问题发生的环节。

对于数据采集过程: 监测仪表将通过端口镜像方式、TAP 分路方式、分光耦合方式, 高密度接入等方法在网络公共接口接入, 且各测量点数据利用控制系统服务器进行时钟同步, 时间精度在 ms 量级。采集的信令数据从无线层到应用层, 分别对一条信令打上时间戳, 用户面数据包括 RTSP、RTP、RTCP 等, 存为二进制流, 并按照规范在每个 RTP 包打上包大小和时间戳。

对于端到端的业务和信令评估, 分析平台将各端采集的数据进行还原分析, 主要包括业务类型、信令流程、控制和各点时间戳。

对于业务文件, 在各点还原出来的业务内容文件的基础上, 使用音视频质量分析软件对各点还原的文件源文件进行统计。记录某一个监测点处评估得失出现异常的情况, 后通过比较前前后监测点的情况和该监测点对应的时间戳各参数变化来定位问题。

对于信令, 将各监测点采集的信令数据进行还原, 按照统一格式进行存储, 并打上时间戳, 包括信令层协议信令和上层信令 (如 HTTP, RTCP 等)。控制系统对信令数据时间戳进行端到端关联, 计算每组信令或者用户面数据传递的时间间隔, 并根据规范进行问题排查和定位。控制系统根据不同组/终端的测试数据进行对比, 对丢失的数据或问题产生的原因进行复原, 根据时间戳定位引起问题现象的原因。

本环节对测试数据的分析处理, 其特点主要为智能化程度高。建立三层结构下的测试数据分析体系可以将测试能力和被测对象有机结合, 实时感知被测数据的质量, 精确的定位问题和发现所处的环节。对于海量的测试结果, 根据测试目标有针对性的筛选出有用的分析。

本实施例的集中式测试控制方法, 通过对测试过程的测试环境和各个受控对象进行集中控制, 无线外场测试的自动化程度及测试执行力, 实现对测试环境的可控可靠。

本实施例中, 通过人机交互主控界面, 将测试过程中涉及到的测试用例、基站和天线设施、测试车与运行轨道、仪器仪表、被测终端以及其他周边单元形成互相通信的网络并加以配置和反馈监测。实现测试工具仪表远程的管理和操控、测试资源的异地共享等目标。

另外, 本实施例中, 通过无线环境配置状态、测试设备的配置状态和受控对象的实时状态的监测, 提高了外场测试过程中各个环节的监控力度, 使得测试场达到功能丰富、执行高效、运行自动化、测试环境可控可靠。

系统实施例

如图 3 所示, 本发明集中式测试控制系统实施例包括:

人机交互单元 20, 用于根据用户需求设置测试流程, 选择相应的测试用例, 并配置测试所需无线环境参数；

工作流单元 30, 用于根据测试流程、测试用例及无线环境参数生成测试指令下发到相应的受控对象 60, 控制所述受控对象 60 进行测试。

其中, 人机交互单元 20 包括：
流程配置装置202，用于根据用户需求设置测试流程；

测试用例数据库204，用于存储不同的测试用例；

选择装置206，用于从所述测试用例数据库中选择测试用例；

无线环境参数配置装置208，用于配置测试所需无线环境参数。

其中，工作流单元30包括：指令生成装置302，用于根据测试流程、测试用例及无线环境参数生成测试指令并下发到相应的受控对象60。

优选地，工作流单元30还包括：

业务数据流生成装置304，用于生成测试数据流和业务流并下发到相应的受控对象；

和/或时钟流生成装置306，用于生成全环境同步时钟流并下发到相应的受控对象。

另外人机交互单元20还包括：运行参数配置装置210，还用于配置所述受控对象的运行参数；指令生成装置402，用于根据所述测试流程、测试用例、所述无线环境参数及所述受控对象的运行参数生成测试指令下发到相应的受控对象60，控制受控对象进行测试。

该系统还包括：受控对象管理单元40，其中，所述受控对象管理单元40包括：

指令解析装置402，用于将发送给受控对象60的指令进行解析，根据指令对象将解析出的指令内容发送至相应的受控对象60；

反馈解析装置404，用于根据反馈对象对所述受控对象的测试结果进行解析，生成相应的反馈信令发送至所述反馈对象。

该系统还包括：调度单元50，其中，所述调度单元50包括：

监测装置502，用于监测无线环境配置状态、测试设备的配置状态和/或受控对象的实时状态；告警装置504，用于在监测装置监测到状态异常时进行告警；

和/或调度控制装置506，用于根据测试过程中发生的事件，控制所述系统中各个单元的工作。

如图4所示，对本发明集中式测试控制系统实施例中各个单具体说明如下：

一、调度单元

负责监听整个测试系统中发生的事件，事件的来源可以为操作员的操作消息、系统内部消息、以及异常差错消息。

调度单元根据事件触发现行，调度其余3个单元进行工作。

调度单元与其他三个单元保持双向的同步消息通信。

一、人机交互单元

二、人机交互单元内部包括：图形化用户界面显示部分（GUI）以及UI命令解析以及处理部分。前者作为前台，向操作员呈现直观的图形化界面、操作流程、功能选项，以及操作员希望调用的目标对象的实时状况；后者作为后台，解析操作员通过前台传递而来的操作指令含义，在整个系统运行的不同阶段，同一操作将触发不同的事件。

作为与操作员的唯一接口，人机交互单元还同时呈现系统内其他可独立加载的插件、工具的使用入口。
在一个完整的测试操作中，人机交互单元将首先完成操作员的登录操作、身份认证以及权限的鉴定；之后，进入加载测试模块，定制测试流程阶段。以上两个步骤，属于静态操作过程（发生在测试之前）。操作员通过登录鉴权，获得相应的加载测试模块、定制测试流程的权利。所选择的测试模块，测试流程设置将提交调度核心和下面一节所述的工作流单元，进一步控制和调度所有与测试相关的功能单元和受控对象。

人机交互单元还包括其他独立工具，如测试例管理工具，对测试脚本和测试参数进行开发、配置等。

三、工作流单元

负责承载动态测试操作中（包括测试参数的配置、测试执行以及实时监测），各单元间的控制指令通信、数据通信、同步时钟通信。由工作流引擎控制以下3种工作流进行工作：控制指令流和反馈指令流，测试数据流和业务流，以及全环境同步时钟流。此外，传递其他必要的系统内公共消息。

工作流单元与控制核心保持双向通信。同时，存在下述连接：

1）与人机交互单元的双向连接
接收人机交互系统传递下发的指令，包括静态过程中测试模块以及定制流程的配置，以及动态测试过程中操作员的指令，驱动相应的工作流；同时，将人机交互单元需要呈现给操作员的信息收集、传递到人机交互单元；

2）与受控对象管理单元的双向连接
将控制指令流和反馈指令流、测试数据流和业务流，以及全环境同步时钟流以及公共消息传递到受控对象，接收来自受控对象的反馈。

四、受控对象管理单元

完成对各类异构受控对象的管理，主要包括控制指令解析与反馈解析2个功能单元。需要与调度单元保持双向通信。

控制指令解析单元将解释来自工作流单元的控制指令，筛选不同受控对象应该接收的命令并且翻译为能被受控对象接受的格式；接收并传递受控对象的必要测试数据流、业务流；接收全环境内的同步时钟流，并翻译为受控对象可识别的同步信号。与工作流单元为单向连接。

反馈解析单元将收集来自受控对象的控制指令反馈、测试数据和业务反馈，将差异化的反馈转化为能够被工作流单元统一识别和处理的信息流，并反馈至工作流单元。

受控对象管理单元与工作流单元的连接为单向连接。

本实施例中，受控对象可以为无线网络与核心网设备、业务平台、终端、周边环境、动力设备、安全设备、仪器仪表、监测工具、数据库或工作站等等需要在测试过程中受控制的对象。由于受控对象承载方式及通信协议的不同，在指令下发和反馈时，需要将各种指令根据指令对象转换为相应的内容。这样，使得本实施例的系统可以进行多种类型的测试，可控制不同类的受控对象进行测试，提高了系统的兼容性、集成度和可扩展性。

例如，受控对象包括：

无线网络子系统，针对无线场景参数集、网络设备、机械装置、网络仿真平台和网管系统及无线信道模拟干扰等，主要包括 Database、站台、天线、馈缆挡板、仿真软件、服务器等硬件设备进行测试；
[0152] 测试环境子系统，针对测试车与索道、动力与安全 / 视频监控等，主要对电缆绞盘、测试车、通信报警、摄像系统等进行测试；
[0153] 终端与业务接口子系统，针对测试车调试、终端模拟控制器、业务平台、仪器仪表或监测节点进行测试；
[0154] 测试结果子系统，针对数据库及统计分析工具进行测试。
[0155] 该系统还对测试数据进行分析处理，因此本实施例还包括：测试数据记录装置，用于记录测试数据及测试数据发生的地点信息和时间戳信息；信令监控装置，用于监控 Iub、IuPS、Gn、Gi 接口之间的信令，并为所述信令打上时间戳；音视频分析装置，用于从 Iub、IuPS、Gn、Gi 接口采集特定通信的音视频数据，并进行质量分析。
[0156] 本实施例的集中式测试控制系统，通过对测试过程的测试环境和各个受控对象进行集中控制，无线外场测试的自动化程度及测试执行力，实现对测试环境的可控可靠。
[0157] 另外，本实施例中，通过对无线环境配置状态、测试设备的配置状态和受控对象的实时状态的监测，提高了对测试过程中各个环节的监控力度，使得测试场达到功能丰富、执行高效、运行自动化、测试环境可控可靠。
[0158] 图 5 为本发明集中式测试控制系统另一实施例的结构图。如图 5 所示，人机交互主控界面与后台数据库、服务器、接口之间进行交互，可以将整个测试流程通过计算机上的人机交互主控界面呈现给工程技术人员。
[0159] 人机交互主控界面以软件形式安装在测试场的主控机房中，并与工程技术人员的操作形成互动。呈现测试执行流程和测试进度，诱导工程技术人员按照流程提示完成测试工程；完成各分立模块的配置，指令下达；实时呈现无线电测试场中各个组成部分的运行状态，如参数配置与指令执行状态、测试车运行状态（所处位置和实时速度）、周边传感器信息、运行轨迹周边视频监控录像、各基站运行状态、动力系统以及测试车辆监控等；实时统计显示测试结果，包括测试过程中记录的实时数值，以及各种形式的数学统计数据，并建立用户感知评估体系，以直观的方式呈现测试结果。
[0160] 本实施例中，通过人机交互主控界面，将测试过程中涉及到的测试用例、基站和天线设施、测试车与运行轨道、仪器仪表等相连体以及其他周边单元形成互联互通的网络并加以配置和反馈监测。实现测试工具仪表远程的管理和操控、测试资源的异地共享等目标。
[0161] 应说明的是：以上实施例仅用以说明本发明并非限制，本发明也并不仅限于上述举例，一切不脱离本发明的精神和范围的技术方案及其改进，均应涵盖在本发明的权利要求范围中。
图 1

图 2
图 4