发明名称
医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法

摘要
医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，属于金属表面改性技术领域。本发明与其他钛表面生物活性涂层技术相比较，本方法在医用钛基体表面原位制备出羟基磷灰石和多孔二氧化钛复合涂层，显著提高了钛基体植入体内与骨组织的结合能力。本发明包括如下步骤：一、将纯钛或钛合金置于含有碱性电解液的不锈钢槽体中，采用双极脉冲电源，通过对微弧氧化电参数和微弧氧化时间的控制，靠钛表面的击穿放电使钛表面形成一层多孔二氧化钛涂层；二、采用水热法将上述涂层置入装有液体的反应釜中，在多孔二氧化钛涂层表面原位生长出羟基磷灰石。本发明操作简单，可控性强，成本低，无有害物质引入到涂层中。
1. 医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述方法包括如下步骤：

一. 微弧氧化：将纯钛或钛合金置于含有碱性电解液的不绣钢槽体中，采用双极脉冲电源，通过对微弧氧化电压和微弧氧化时间的控制，靠钛表面的电光放电使钛表面形成一层多孔二氧化钛涂层，所述微弧氧化的脉冲电压为 200 ～ 500V，频率为 400 ～ 800Hz，占空比为 4 ～ 20%，溶液温度为 0 ～ 50°C，氧化时间为 5 ～ 30min；

二. 水热处理：采用水热法将微弧氧化后多孔二氧化钛涂层置入装有处理液的反应釜中，通过控制反应釜处理液种类、外部温度和处理时间，使多孔二氧化钛涂层表面形态发生改变。在多孔二氧化钛涂层表面原位生长羟基磷灰石，所述反应釜外部温度为 150 ～ 250°C，处理时间为 12 ～ 48h，处理液为去离子水或氢氧化钠溶液。

2. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述纯钛或钛合金的基体形状为任意形状。

3. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述碱性电解液为磷酸盐和乙酸钙的混合物。

4. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述碱性电解液为 EDTA-2Na、NaOH、Ca(OH)₂·H₂O 和 Ca(CH₃COO)₂·H₂O 以去离子水为溶剂配制的电解液，其浓度分别为 15 克/升、15 克/升、6.3 克/升和 13.2 克/升。

5. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述多孔二氧化钛涂层的孔径尺寸为微米级。

6. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述多孔二氧化钛涂层的厚度为 3 ～ 20 微米。

7. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述反应釜应为密闭反应釜。

8. 根据权利要求 1 所述的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法，其特征在于所述处理液为 0.001mol/LNaOH。
医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法

技术领域
[0001] 本发明属于金属表面改性技术领域，具体涉及一种医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法。

背景技术
[0002] 医用钛金属作为重要的生物医用材料，具有高机械强度、高韧性和优良的抗疲劳性能，广泛应用于人体的关节、牙、骨等硬组织的替换。然而，将其植入到人体中普遍存在生物活性差、生物相容性差、愈合时间长等问题。为了提高医用钛金属的生物活性，促进其与人体骨组织的结合，近年来对医用钛金属表面改性处理，制备具有生物活性的钛表面涂层成为研究热点。羟基磷灰石具有优良的生物相容性，并可作为一种骨缺或牙齿的诱导因子，诱导骨生长，但是医用钛及钛合金表面涂覆羟基磷灰石难度很大，常用的方法是等离子喷涂法，但这种方法羟基磷灰石涂层与基体界面结合强度低，容易开裂，大大影响了其使用效果，因此研发一种新的羟基磷灰石在医用钛表面涂层技术，具有非常重要的意义。

发明内容
[0003] 本发明的目的是提供一种纳米晶粒高生物活性二氧化钛涂层的制备方法，与其他钛表面生物活性涂层涂覆技术相比较，本方法在医用钛基体表面原位制备出羟基磷灰石和多孔二氧化钛复合涂层，显著提高了钛基体替换物植入体内与骨组织的结合能力。
[0004] 本发明的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法包括如下步骤：
一、微弧氧化：将纯钛或钛合金浸入含有碱性电解液的不锈钢槽体中，采用双极脉冲电源，通过对微弧氧化电解和微弧氧化时间的控制，靠钛表面的击穿放电使钛表面形成一层多孔二氧化钛涂层，所述微弧氧化的脉冲电压为200～500V，频率为400～800Hz，占空比为4～20%，溶液温度为0～50℃，氧化时间为5～30min，碱性电解液为磷酸钠盐和乙酸钙的混合物；
二、水热处理：采用水热法将微弧氧化后的多孔二氧化钛涂层层入装有处理液的反应釜中，通过控制反应釜处理液种类、外部温度和处理时间，使多孔二氧化钛涂层表面形貌发生改变，在多孔二氧化钛涂层表面原位生长出羟基磷灰石，所述反应釜外部温度为150～250℃，处理时间为12～48h，处理液为去离子水或氢氧化钠溶液。
[0005] 本发明具有如下优点：
1、本发明能够在医用钛基体表面原位制备羟基磷灰石和多孔二氧化钛复合涂层，该涂层显著提高了钛或钛合金基体替换物植入体内与骨组织的结合能力，扩展了钛或钛合金作为最理想的骨替代物的应用范围。
2、本发明处理后的涂层在模拟体液浸泡12h以后用扫描电子显微镜和X射线衍射仪观察在涂层表面即有新的羟基磷灰石沉淀，浸波48h肉眼就可看到表面形成的羟基磷灰
石，后续观察随浸泡时间增加羟基磷灰石形成数量也增多，浸泡72h磷灰石形成数量达到饱和。实验表明，按本发明方法制备的羟基磷灰石和多孔二氧化钛复合涂层，可以显著提高钛及钛合金材料的生物活性。

(0007) 3. 本发明操作简单，可控性强，成本低，无毒害物质引入到涂层中。

附图说明

(0008) 图1为具体实施方式六中微弧氧化后二氧化钛涂层的扫描电镜照片；
图2是具体实施方式六中微弧氧化后二氧化钛涂层的X射线衍射图谱；
图3是具体实施方式六中水热处理后羟基磷灰石和二氧化钛复合涂层的扫描电镜照片；
图4是具体实施方式六中水热处理后羟基磷灰石和二氧化钛复合涂层的X射线衍射图谱；
附图5是具体实施方式七中水热处理后羟基磷灰石和二氧化钛复合涂层的扫描电镜照片；
附图6是具体实施方式七中水热处理后羟基磷灰石和二氧化钛复合涂层的X射线衍射图谱；
附图7是具体实施方式八中水热处理后羟基磷灰石和二氧化钛复合涂层的扫描电镜照片；
附图8是具体实施方式八中水热处理后羟基磷灰石和二氧化钛复合涂层的X射线衍射图谱。

具体实施方式

(0009) 具体实施方式一：本实施方式的医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层制备方法包括如下两个步骤：
步骤一：做微弧氧化，将纯钛或钛合金置于含有碱性电解液的不锈钢槽体中，以纯钛或钛合金做阳极，不锈钢槽体为阴极，氧化过程中通过冷却系统控制槽液温度＜50℃，采用用双极脉冲电源，通过对微弧氧化电参数和微弧氧化时间的控制，靠钛表面的击穿放电使钛表面形成一层孔径尺寸为微米级的多孔二氧化钛涂层。
步骤二：采用水热法将微弧氧化后的多孔二氧化钛涂层置于装有液体的密闭反应釜中，通过控制反应釜内温度和处理时间，使多孔二氧化钛涂层表面形貌发生改变，在二氧化钛涂层表面原位生长出一定规格和尺寸的羟基磷灰石。

(0010) 本实施方式中，所述的微弧氧化的脉冲电压为200～500V，微弧氧化的频率400～800Hz，微弧氧化的占空为4～20%，微弧氧化的溶液温为0～50℃，微弧氧化时间为5～30min。
(0011) 本实施方式中，所述的多孔二氧化钛涂层的厚度为3～20微米。
(0012) 本实施方式中，所述的碱性电解液为磷酸盐和乙酸钙混合物。
(0013) 本实施方式中，所述的磷酸盐氧化制备涂层中引入磷P、钙Ca等微量元素。
(0014) 本实施方式中，采用的处理液为去离子水或不同浓度（0.001mol/L ～ 0.01mol/L）的氢氧化钠溶液，设备为密闭的反应釜，反应釜内温度为150 ～ 250℃，处理时间为12 ～
[0015] 本实施方式中所述的水热处理微弧氧化二氧化钛涂层采用的处理液体不同，制备的羟基磷灰石和二氧化钛复合涂层表面形态不同。
[0016] 本实施方式中所述医用电钛金属基体零件为任意形状。
[0017] 具体实施方式二：本实施方式与具体实施方式一不同的是，所述的微弧氧化过程的能量由可调控高压高频双极脉冲电源提供，脉冲电压为 200 〜 500V、频率 400 〜 800Hz、占空比 4 〜 20%、使脉冲温度 0 〜 50℃。在上述选定的微弧氧化参数内，微弧氧化 5 分钟，涂层的厚度可达到 3 〜 4 微米。其它步骤与具体实施方式一相同。
[0018] 具体实施方式三：本实施方式与具体实施方式二不同的是，所述的微弧氧化时间为 10 分钟，涂层的厚度可达到 5 〜 6 微米。其它步骤与具体实施方式二相同。
[0019] 具体实施方式四：本实施方式与具体实施方式二不同的是，所述的微弧氧化时间为 15 分钟，涂层的厚度可达到 7 〜 8 微米。其它步骤与具体实施方式二相同。
[0020] 具体实施方式五：本实施方式与具体实施方式二不同的是，所述的微弧氧化时间为 30 分钟，涂层的厚度可达到 10 〜 12 微米。其它步骤与具体实施方式二相同。
[0021] 具体实施方式六：本实施方式按照如下步骤制备含纳米晶粒高生物活性二氧化钛涂层。

一、微弧氧化：将钛金属表面置于含有 EDTA-2Na、NaOH、Ca(H₂PO₄)₂・H₂O 和 Ca(CH₂C₂O)₂・H₂O（浓度分别定为 15 克/升、15 克/升、6.3 克/升和 13.2 克/升）以去离子水为溶剂配制成电解液的不锈钢槽中，调节电源的电压为 400V，占空比为 8%，频率为 600Hz，氧化时间为 5min，使医用钛金属表面形成微弧氧化涂层（图 1 和图 2），厚度为 3 〜 4 微米。
[0022] 二、水热处理：采用水热法将微弧氧化后的多孔二氧化钛涂层置于装有离子水的密闭反应釜中，控制反应釜外温度为 200℃，水热处理时间为 24h，使多孔二氧化钛涂层表面形貌发生改变，在涂层表面原位生长出羟基磷灰石（图 3 和图 4）。
[0023] 具体实施方式七：本实施方式与具体实施方式六不同的是，处理液为浓度 0.001mol/L 的 NaOH，所制备的羟基磷灰石与二氧化钛复合涂层形貌（图 5 和图 6）与具体实施方式六不同。
[0024] 具体实施方式八：本实施方式与具体实施方式六不同的是，处理液为浓度 0.1mol/L 的 NaOH，所制备的羟基磷灰石与二氧化钛复合涂层形貌（图 7 和图 8）与具体实施方式六不同。
图8