PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 00/23889
GOGF 9/45 Al _ o .

(43) International Publication Date: 27 April 2000 (27.04.00)

(21) International Application Number: PCT/US99/24090 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GD,

(22) International Filing Date: 15 October 1999 (15.10.99) GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,

KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,

MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,

(30) Priority Data: SI, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZW,

09/174,527 16 October 1998 (16.10.98) Us ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ,

UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,

(71)(72) Applicant and Inventor: KLEIN, Peter, A. [US/US]; 29 ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
Forty-Eighth Street, Weehawken, NJ 07087 (US). patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

(74) Agent: OSTROW, Seth, H.; Brown Raysman Millstein Felder
& Steiner, LLP, 120 West Forty-Fifth Street, New York,

NY 10036 (US). Published
With international search report.

(54) Title: METHOD AND SYSTEM FOR COMPILING SOURCE CODE CONTAINING NATURAL LANGUAGE INSTRUCTIONS

(57) Abstract

A system and method for compiling source code comprising natural language declarations, natural language method calls, and natural
language control structures into computer—executable object code is disclosed. The system and method allow the compilation of source
code (10) containing both natural language (20) and computer language into computer—executable object code (100). The system and
method use a component database (30), containing components (40) and associated natural language instructions, to select one or more
components having an instruction declaration (50) associated with the natural language instruction. A solution manager (80) is used to
resolve ambiguities inherent in the use of natural language instructions in the source code.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T
™
TR
TT
UA
UG
uUs
UzZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/23889 PCT/US99/24090

METHOD AND SYSTEM FOR COMPILING SOURCE CODE CONTAINING
NATURAL LANGUAGE INSTRUCTIONS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The invention disclosed herein relates generally to computer language
compilers. More particularly, the present invention relates to a method and system for
compiling natural language instructions in a source code file into computer-executable code.

Most computer programmers prefer to write software programs in high-level
languages, such as BASIC, Pascal, C, C++, Java, etc. These languages offer the ability to use
instructions which are more flexible, easier to understand, and more intuitive than the limited
machine level instructions directly executable by a processor. The source code files written
in high-level languages are converted to machine level, object code files by compilers.

Despite the flexibility offered by high-level languages over machine language,
modern computer languages are still relatively constraining when compared with non-
computer, or natural, languages. Compilers require programmers to limit their programs to
the constraints of the available computer languages and to adhere to the strict lexical and
syntactical rules of the language. Any mistakes in lexicon or syntax result in errors and an
ultimate failure of compilation.

It is therefore desirable to allow programmers to write programs in natural

language. However, systems which have attempted to provide this ability usually require

10

15

20

WO 00/23889 PCT/US99/24090

2
substantial processing and storage requirements and involve sophisticated and complex

technical solutions such as artificial intelligence to translate natural language into program
code. Moreover, while there are many types of problems that can be solved with natural
language programming, there are other problems that are better solved with instructions or
programs written in existing computer languages. For example, such computer tasks as
memory management and processor scheduling are better solved with formal computer
languages. In addition to this, existing formal languages already have extensive runtime
environments that can be leveraged.

It is thus preferred to have programming languages that are hybrids of natural
language and formal programming language. There is thus a need for a compiler which
recognizes and processes such a hybrid language and allows programmers to make
advantageous use of certain natural language instructions when writing a program, all without
the substantial overhead incurred by prior attempts to translate natural language instructions
into executable code.

BRIEF SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method of compiling
natural language source code instructions into computer-executable object code.

It is another object of the present invention to provide a method of compiling a
source code file containing both natural language instructions and computer language (e.g.,
C-++, Java) instructions into computer-executable object code.

It is an another object of the present invention to provide a computer program
compiler which compiles natural language source code into computer-executable object code.

It is another object of the present invention to provide a computer programmer

the ability to program a computer using natural language.

10

15

20

WO 00/23889 PCT/US99/24090
3 .

It is another object of the present invention to provide a computer program
compiler which compiles source code containing both natufal language and computer
language (e.g., C++, Java) content.

The above and other objects are achieved by a method of compiling a source
code file containing natural language instructions by using a component database, the
component database associating one or more instruction declarations with each of a plurality
of natural language instructions. For each of the natural language instructions contained in
the source code file, one or more components, each of which having at least one instruction
declaration associated with the natural language instruction, is selected, thus resulting in a set
of possible solutions for the compilation of the source code file. One of the resulting set of
possible solutions is selected and each of the plurality of natural language instructions is
associated with one of the components in the selected solution. If there is a natural language
instruction in the source code file for which there is not at least one component in the
component database which has an instruction declaration associated with it, the compiler will
generate a message alerting the user of the inability to compiler the source code file.

Preferably, the component database is stored in a membry, such as a
computer’s random access memory, a magnetic storage medium, or an optical memory
system. Likewise, the source code file is preferably stored in a memory such as a computer’s
random access memory, a magnetic storage medium, or an optical memory system.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the figures of the accompanying drawings which

are meant to be exemplary and not limiting, in which like references refer to like or

corresponding parts, and in which:

WO 00/23889 PCT/US99/24090

4
Fig. 1 is a block diagram of a system for compiling natural language

instructions to computer-executable object code in accordance with one preferred
embodiment of the invention;

Fig. 2 is a block diagram showing in greater detail parts of the compiler and

5 component database shown in Fig. 1;

Fig. 3 is ﬂow diagram showing a process of converting natural language
program elements into executable code in accordance with one preferred embodiment of the
invention;

Fig. 4 shows syntactic extensions for natural language method calls available

10 in one embodiment of the invention;

Fig. 5 shows the grammars for the natural language method declarations in
BNF notation;

Fig. 6 shows in BNF notation the grammars for the natural language method
calls;

15 Fig. 7 is a flow chart showing the process of managing solutions to resolve
components in accordance with preferred embodiments of the present invention;

Fig. 8 shows the grammars for the natural language method calls in BNF
notation for an exemplary application of the system and method of the present invention;

Fig. 9 shows the grammars for the natural language method declarations in

20 BNF notation for an exemplary application of the system and method of the present
invention;

Figs. 10-12 are examples of method calls and declarations for an exemplary

application of the system and method of the present invention.

10

15

20

WO 00/23889 PCT/US99/24090
: .
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to Figs. 1, 2, and 3, one preférred embodiment of the present
invention includes a source code file 10, written in whole or in part in a natural language such
as English, comprising one or more natural language instructions 20. The natural language
instructions 20 can comprise natural language method declarations 400, natural language
method calls 410, and natural language control structures 420.

A preferred embodiment of the present invention includes a compiler,
programmed in a high-level computer language such as C++ or Java, for compiling the source
code file 10 into executable code 100. The compiler includes a signature generator 60, which
uses signature templates 70 to generate signatures for each of the natural language
instructions 20 in the source code file 10, as further described below. The compiler also
includes a solution manager 80 which matches the signatures from the signature generator 60
with associated components stored in a component database 30, as further described below.
The component database associates objects 40 and declarations 50. The compiler also
includes a code generator 85 which glues the components matched by the solution manager
80 into executable code 100. The compiler generates messages 90 to inform a user of the
progress of compilation and of problems associated with the compilation of the source code
file 10.

The natural language instructions 20 are inputted to the signature generator 60
which generates signatures 460 corresponding to each of the natural language method
declarations 400 in the source code file 10. A signature 460 is an identifier that uniquely
identifies a natural language method declaration 400. Well-behaved signature schemes are
phrase order independent. Natural language method calls theoretically can have several

signatures associated with them. For example, in a preferred embodiment of the present

10

15

20

WO 00/23889 PCT/US99/24090

6
invention implemented in the Java language, certain words can be treated either as nouns or

as Java identifiers. Where there is a Java identifier specified, a lookup in a symbol dictionary
must be performed by the symbol-table manager 240 to determine whether the identifier is a
declared variable. Ifit is a declared variable, then that type of variable will be used to
generate the signature 460. Otherwise, the identifier can be treated as a noun. In the
preferred embodiment, the signature generator 60 is coupled to the source code 10 and the
solution manager 80.

The solution manager 80 is coupled to the component database 30. The
component database 30 comprises a plurality of components 40, each of the plurality of
components having one or more natural language method declarations 50 associated with it.
The components 40 can be objects, classes, modules, or similar entities. The component
database 30 provides a means to store and retrieve components, and to locate components by
signature. Additionally, the component database 30 may also provide functionality to locate
related signatures given a specified signature. The component database 30 may include a
plurality of components 40 linked to a plurality of natural language instruction declarations
50 by a plurality of pointers, such that each component 40 is linked to one or more natural
language declarations 50.

The solution manager 80 locates the candidate components that, when glued
together, provide a compilation solution for the source code file 10. The solution manager 80
is needed because natural language method calls 410 do not specify which component 40 is
being referenced and more than one component may contain the same method call
declaration. That is, the solution manager 80 resolves which components 40 should be used
in order to ensure that there is one component selected for each natural language method call

410. Generically, the solution manager 80 accepts natural language method calls 410 and

10

15

20

WO 00/23889 PCT/US99/24090

7
returns the signatures 460 and components 40 that allow the source code file 10 to be

compiled successfully. If there are no matching natural lan‘guage method calls in the
component database 30, the solution manager 80 may generate messages 90 which suggest
the components that should be implemented to successfully compile the source code file 10.

With reference to Figs. 2 and 3, a preferred embodiment of the invention
parses each of the natural language method declarations 400, natural language method calls
410, and natural language control structures 420 contained in the source code file 10. Such
parsing includes lexical 200, syntactical 210, and semantic analysis 220, as is well known to
those skilled in the art.

Before making a natural language method call 410, there must be a
corresponding method declaration 400. By definition, a natural language method declaration
400 is an ordered set of words, formal parameters, and punctuation. Formal parameters can
be any passed value. In a strongly typed language like Java, the formal parameters include at
least the type and the variable name of the parameter. One possible grammar for natural
language method declarations defined in BNF-notation for Java is shown in Fig. 5.

A natural language method call 410 is an ordered set of words, formal
parameters, and punctuation. Natural language method calls 410 are the way a programmer
invokes the equivalent to a Java method in natural language. A natural language control
structure 420 is an ordered set of words, expressions, code blocks, and punctuation. A code
block contained in a natural language control structure may be comprised of natural language
instructions, computer-language instructions, or a combination of the two.

While all of the natural language parsing can be baked into the language
grammar, it can be more efficient to implement a two-stage parser in a hybrid language. A

two-stage parser is implemented by putting generic natural language productions in the base

10

15

20

WO 00/23889 PCT/US99/24090
g .

grammar. When the appropriate production is reduced, a second set of lexemes is created and
then passed to the appropriate second stage parser. Natural‘language method declarations
400, natural language method calls 410, and natural language control structures 420 each
have their own second-stage parser. An exemplary BNF-notation grammar for a preferred
second-stage parser for natural language method calls is reproduced in Fig. 8. An exemplary
BNF-notation grammar for a preferred second-stage parser for natural language method
declarations is reproduced in Fig. 9.

After parsing the natural language method declarations 400, natural language
method calls 410, and natural language control structures 420, the signature generator 60
generates signatures 460 for each of the natural language instructions 20 in the source code
file 10.

In a preferred embodiment of the invention, the signature generator 60
generates signatures 460 for each of the natural language instructions 20 in the source code
file 10 by first removing from each natural language instruction 20 all English-language
articles. The signature 460 is constructed such that the first two letters are “nl”, followed by
the total number of words left in the natural language instruction after the removal of the
articles. Next comes an underscore character (“_) followed by the number of characters in
the first (non-article) word of the natural language instruction, and the first word itself, with
no spaces between any of the elements. After the first word of the natural language
instruction, the generated signature contains an underscore character and the number of
parameters of the first word of the natural language instruction, and then an underscore
character. If the given word of the natural language instruction takes one or more parameters,

the next characters of the signature will contain a number representing the length of the word

used to denote the parameter and the name of the parameter itself, followed by an underscore

10

15

20

WO 00/23889 PCT/US99/24090

9
character. If there is more than one parameter associated with a given word in the natural

language instruction, the process will be repeated so as to include all parameters for a given
word of the natural language instruction before next generating that part of the signature
corresponding to the next non-parameter word (if bresent) in the natural language instruction.
The process is repeated such that the complete signature contains elements denoting all words
and parameters contained in the natural language instruction. A new signature is then
generated for the next natural language instruction in the source code file 10 and the process
is repeated until a signature has been generated for each natural language instruction in the
source code file.

By way of example, the signature generating method of a preferred
embodiment will generate the signature: “nl2_7shuffle_4deck_0_ for the natural language
instruction: “Shuffle the deck.” Likewise, the signature generating method of the same
preferred embodiment of the invention will generate the signature:
“nl3_4deal 4card 2to 1 6Player” for the natural language instruction: “Deal a card to a
(Player aPlayer).” While the signature generating algorithm of a preferred embodiment has
been discussed, the present invention is not limited to using any particular type of signature
generation.

In a preferred embodiment of the invention, components have been added to
Java by creating a new class modifier component. A class with this modifier us referred to as
a component class. Component classes are stored in the component database 30. Not only
are natural language method declarations in the component class considered part of the
component, but so are natural language method declarations in the child classes that make up

the component class. The natural language method declarations in the child classes are added

10

15

20

WO 00/23889 PCT/US99/24090
10
to the component by creating stub methods in the component class having the sole purpose of
calling the appropriate natural language method in the child class.

The purpose of the solution manager 80 is to locate candidate components
such that when glued together they provide a compilation solution for the source code 10 file.
The solution manager 80 is needed because natural language method calls 410 do not specify
which component is being referenced and more than one component may contain the same
method declaration 400. In other words, the solution manager 80 resolves which components
should be used in order to ensure that there is one component for each natural language
method call 410.

Referring to Fig. 7, a component resolution process is used to solve the
problem of the inherent vagueness of natural language. The component resolution process
starts 595 by generating a signature for each natural language call 600 within scope. Scoping
rules are required for the component resolution process to accurately apply solutions to
different parts of the source code. For example, in a preferred embodiment of the invention
in the Java language, the scope may be a Java class. In another preferred embodiment of the
invention, implemented in the Visual Basic language, the scope may be a window.
Referencing the component database 30, which associates components 40 with signatures
460, the component resolution process selects all those components 40 associated with the
signature 460 generated for a given natural language call 610. If this is the first natural
language call 632, the component resolution process creates a solution for each of the selected
components 700. If this is not the first natural language call 637 and any of the selected
components are contained in an existing solution 642, the component resolution process
eliminates those solutions that do not contain one of the selected components and bans them

from future consideration 710. If none of the selected components are contained in an

10

15

20

WO 00/23889 PCT/US99/24090

1 ‘
existing solution 647, and only one component was selected 652, that component is added to
each solution 720. If more than one component was selected 657, the solutions are cloned as
needed so that each new solution is an old solution plus one of the selected components 660.

After (1) the creation of a solution for each selected component 700; (2) the
elimination of solutions that do not contain one of the selected components and the banning
of those solutions from future consideration 710; or (3) the addition of each component to
each solution 720, the component resolution process determines whether there are any more
natural language calls 670. If there are more natural language calls 672, the process is
repeated, beginning with step 600. If there are no more natural language calls 677, it is next
determined whether there is only one solution 680. If there is only one solution 687, then the
components in the solution are selected 690. If there are no solutions or if there is more than
one solution 682, an error message is generated 795. The error message may indicate that
there is one or more unresolved ambiguities in the source code file 10 and may offer
suggestions as to which components to use in order to resolve the ambiguities.

With reference to Figs. 10, 11, and 12, the contents of a source code file for a
simple program comprising natural language method declarations and natural language
method calls is shown. In this example, the scoping rules include the entirety of the source
code file 10. The source code in Fig. 10 shows the use of natural language source code to
simulate the shuffling of a deck of cards and the dealing of a card from the deck to a player.
The source code in Fig. 11 shows the natural language method declarations for initializing a
deck of cards, a (card) player, and a (card) dealer. Fig. 12 shows the signatures generated for

the natural language method calls for shuffling the deck of cards, dealing a card to a player,

dealing a card to a user, and dealing a card to the dealer.

n

1

St

in

the

na

plu

cor.

con

com

selec

matc

WO 00/23889 PCT/US99/24090

12

While the invention has been described and illustrated in connection with

preferred embodiments, many variations and modifications as will be evident to those skilled

in this art may be made without departing from the spirit and scope of the invention, and the

invention is thus not to be limited to the precise details of methodology or construction set

forth above as such variations and modification are intended to be included within the scope

of the invention.

10

15

20

WO 00/23889 - PCT/US99/24090

13
WHAT IS CLAIMED IS:

1. A method for compiling a source code file or portion thereof comprising
natural language instructions using a component database, the components in the component
database each containing one or more instruction declarations each being associated with a
natural language instruction, the method comprising:

for each of a plurality of the natural language instructions in the source code,
selecting from the component database one or more components having at least one
instruction declaration associated with the natural Janguage instruction;

managing a set of one or more possible solutions, at least some of the possible
solutions each containing one or more components selected for a plurality of natural language
instructions;

selecting one solution from the set of possible solutions; and

associating each of the plurality of natural language instructions with one of
the components in the selected solution having an instruction declaration associated with the
natural language instruction.

2. The method of claim 1, comprising generating a signature of each of the
plurality of natural language instructions, and wherein each instruction declaration in the
components contains at least in part a natural language instruction signature.

3. The method of claim 2, wherein the step of generating the signature
comprises generating the signature in accordance with a predefined template.

4. The method of claim 2, wherein the step of selecting one or more
components from the component database for each natural language instruction comprises
selecting one or more components having an instruction declaration containing a signature

matching the generated signature for the natural language instruction.

10

15

20

WO 00/23889 . PCT/US99/24090
14

5. The method of claim 1, comprising generating a message upon discovery of
a given natural language instruction in the source code ﬁlé or portion thereof for which at
least one component having an instruction declaration associated with the given natural
language instruction is not contained in the component database.

6. The method of claim 1, wherein the step of managing the set of possible
solutions comprises, for a first natural language instruction considered when the set of
possible solutions is empty, establishing a possible solution for each of the one or more
components selected for the natural language instruction.

7. The method of claim 6, wherein the step of managing the set of possible
solutions comprises, for a second natural language instruction considered when the set of
possible solutions contains one or more possible solutions, determining whether any of the
one or more selected components for the second natural language instruction is contained in a
possible solution in the set.

8. The method of claim 7, wherein the step of managing the set of possible
solutions comprises, if at least one of the selected components for the second natural
language instruction is contained in a possible solution in the set, eliminating from the set any
possible solutions which do not contain at least one of the selected components for the second
natural language instruction.

9. The method of claim 8, wherein the step of managing the set of possible
solutions comprises determining whether any of the eliminated possible solutions contains a

component which is not contained in a possible solution remaining in the set, and labeling

such component as banned.

10

15

20

WO 00/23889 PCT/US99/24090
15

10. The method of claim 9, comprising determining whether any component
selected for a given natural language instruction has been lébeled as banned and reversing the
selection of the banned component.

11. The method of claim 7, wherein the step of managing comprising, if none
of the one or more selected components for the second natural language instruction is
contained in a possible solution in the set, adding each of the one or more selected
components to each possible solution to create a new possible solution for each possible
solution containing each of the one or more selected components for the second natural
language instruction.

12. A computerized system for mapping natural language instructions in a
source code file or portion thereof to instruction declarations contained in a plurality of
program components, the system comprising:

a component database stored in a memory containing the plurality of program
components each associated with one or more instruction declarations contained in the
program component;

a components selector for matching each of the natural language instructions
with an instruction declaration in the component database and for selecting the one or more
components associated therewith;

a solution manager for identifying a solution comprising a set of one or more
components such that each natural language instruction is associated with a component in the
set; and

a converter for converting each natural language instruction to the instruction

declaration contained in the component to which the natural language instruction is associated

in the solution.

10

15

20

WO 00/23889 PCT/US99/24090

16
13. The system of claim 12, wherein the solution manager comprises a

memory for storing a plurality of possible solutions generafed from the components selected
by the components selector.

14. The system of claim 13, wherein the solution manager comprises means
for comparing one or more first possible solutions generated from one or more first
components selected by the components selector for a first natural language instruction with
one or more second possible solutions generated from one or more second components
selected by the components selector for a second natural language instruction.

15. The system of claim 12, wherein the component database comprises
instruction declarations containing at least in part signatures of natural language instructions.

16. The system of claim 15, wherein the components selector comprises a
signature generator for generating a signature for each natural language instruction.

17. A system for compiling a source code file comprising natural language
instructions, or portion thereof, the system comprising:

a database stored on a computer-readable medium, the database
comprising a data structure linking components and instruction declarations;

a processing means connected to the computer-readable medium for
selecting from the database those components having at least one instruction declaration
associated with at least one of the natural language instructions;

a memory for storing a set of one or more possible solutions, at least
some of the possible solutions each containing one or more components selected for a
plurality of natural language instructions;

a processing means for selecting one solution from the set of possible

solutions; and

10

15

20

WO 00/23889 PCT/US99/24090
17 -

a processing means for associating each of the natural language
instructions with one of the components in the selected solution having an instruction
declaration associated with the natural language instruction.

18. The system of claim 17, comprising a processing means for generating a
signature for each of the natural language instructions and wherein the database comprises a
data structure linking components, instruction declarations, and signatures.

19. The system of claim 18, wherein the processing means for generating a
signature for each of the natural language instructions generates the signature in accordance
with a predefined template.

20. The system of claim 18, wherein the processing means for selecting from
the database those components having at least one instruction declaration associated with at
least one of the natural language instructions selects one or more components having an
instruction declaration containing a signature matching the generated signature for the natural
language instruction.

21. The system of claim 17, comprising a means for generating a message
upon determination that a given natural language instruction cannot be associated with at
least one component.

22. A memory for storing data for access by a program being executed on a
computer for compiling a source code file, the source code file comprising natural language
instructions, the memory comprising:

a data structure stored in the memory, the data structure including data used by
the program, including:

a plurality of components, the components comprising objects,

modules, and classes;

WO 00/23889 PCT/US99/24090
18
a plurality of natural language instruction declarations; and

a plurality of pointers linking the components and the natural language
instruction declarations such that each component is linked to one or more natural language
instruction declarations;

the data structure providing the program with the ability to select one or more
components based on the presence of a natural language instruction declaration in the source

code file.

PCT/US99/24090

WO 00/23889

1/9

opoo 8|qeINoexy

ool\

sofessop

58—

Jojereuss) 8pod

09
~—— lojeieusg) ainjeubls

0T —

8_\

AN E

Jefeueyy uonn|os |«

I

—Il*\cozo:.anc_ oBenbue; esmen |

—{ uogonnsu) efenbue; eimeN

7

08 02—
0L K <
Jejidwo) sajeidws) ainjeubls 565557758
AJ ” \
S03a ‘rao
wdmo ”_,mo
o _ “o3a 180 —

T
\\\\\\\\)J

oseqejeq jusuodwod

08 (‘\\\

WO 00/23889
PCT/US99/24090

2/9

Feo o

10
Source Program

2.00
Lexical
Analyzer
2-10
Synt
A:a':ya:er 7,_ Lc
¥
Semaantic
Analyzer
240
/

Beror rSymbol-Tablc \ Solution J Component
Handler Mansger Manager Database
) S=——___ | intermediate Code (

7-: 9 O i Generator
| —2° %0 30
Code
Optimizer _}" 260
¥
—_ 270

Code Generator

!Targct ;mgmm l‘—— l 0 O

WO 00/23889
PCT/US99/24090

3/9

Natural Language
as a programming
language
Yoo {20
N\ v o4 /
Natural Language Natural Language Natural Language
method declarations method calls control structures
430 0 $O
l /[l Yk \ o1
Natural Language Natural Language
method declaration Natural Language control structure
. method call parsing .
parsing parsing
\ /
460
Signatures /
{O . P Component vl 3 o
Solution Manager Database

S~

Executable Code / O O

WO 00/23889 PCT/US99/24090

49

NiMethodCall:
NICalll
NICall2
NICall3

NiCalll:
Verb Article ObjectPhrase .

NiCall2:
Verb Noun ObjectPhrase .

NICall3:
Verb Article Noun Preposition Atticle ObjectPhrase.

ObjectPhrase:
Noun
(Expression)

Fle /

WO 00/23889

5/9

PCT/US99/24090

NiMecthodHeader NIMethodHeader

| dentsAndFormalParms

{dentsAndFormalParmsOpt
{dentsAndFormalParmsOptNull

1dentsAndFormalParmsOpt

[dentsAndFormalParmsOneldent

IdentsAndFormalParms
IdcntsAndFonnalPannsOncFormalParm IdentsAndFormalParms
ldcmsAndFonnalParmsLis(ldcnt ldentsAndFormalParms
ldcmsAndFom\alPam\sLileonnalPann IdentsAndFormalParms

NiHeaderFormalParm;

iNlHeadchonnalParm NiHeaderFormalParm

> tdentificr ldentsAndFormalParmsOpt "%

->*(* FormalParameter 9%

-> [dentsAndFormalParms;
-

-> [dentifier;

-> NiHeaderFormalParm;

-> ldentsAndFormalParms Identifier;
-> ldentsAndFormalParms

Fe. S

NiSeatence NiSentence > CallToken CallToken CallTokensOpt ‘5
CallTokenld CallToken <> Identifier;
CaliTokenLiteral CallToken -> Literal;
CallTokenExpr CallToken ->*(:* Expression 1)';
CallTokensOpt CallTokensOpt -> CallTokens;
CaliTokensOptNull CallTokensOpt ->;
CallTokensOne CaliTokens -> CallToken;

liTokensList CaliTokens -> CallTokens CallToken;

Fe 6

WO 00/23889
. PCT/US99/24090

6/9

690

ELECT
CONMPONENTS
IN SoTION

G f

610 /(ozo

(i;ncrztisfa ar:u::; f:r Select components that Remove banned
en guag contain signature components
/ A\ call
6 00 / (30
Is this the first

\ Create solution for
each sclected natural language

\ component

Are any of the

Eliminate solutions
selected

that do not contain one

of the selected
ts and ban e int
coﬁn]\pon:n o contained in an
em from future existing solution?

consideration

410 [50

Was only one
component

4

Add component to

r_é'/—_l cach solution

Clone solutions as é 6 o

nceded so that cach
new solution is an old

/ solution plus onc of
™~ \ the selected

components

WO 00/23889

7/9

i Goal > NiCall;

1Calll NiCall -> Verb ArticleOpt Noun PhrasesOpt;
|Cali2 NiCall - Verb LiteralToken Nount PhrasesOpt:

1 ArticlePhrases

rticleOpt ArticleOpt > Article;
icleOptNull ArticleOpt >,

ounPhraseSimple NounPhrase > ArticleOpt Identifier;
ounPhraseExpr NounPhrase -> Exprcssion‘l‘okcn;
ounPhraseLiteral NounPhrase > LiteralToken;

/ PhrasesOpt
hrasesOpt PhrasesOpt -> Phrases;
hrasesOptNull PhrasesOpt >3
hrasesOne Phrases -> Phrase;
hrasesList Phrases -> Phrases Phrase;
hrasePrep Phrase -> PrepPhrase;
phraseExpression Phrase > BxprcssionToken;
PhraseLiteral Phrase -> LiteralToken;
PrepPhrase PrepPhrase -> Prep NounPhrase;
[}
1 Parts of speach productions;
1.
Article Article > article;
jonToken ExpressionToken > Expression;
identifierl Identifier >14;
lidentifier2 dentifier > noun;
 iteralToken LiteralToken -> Literal;
Noun Noun = noun;
Nounl Noun - adjnounverb;
Noun2 Noun - nounverb;
Prep Prep => prep;
Vet Verb > verb;
Verbl Vetb - adjnounverb;
Verb2 Verb > nounverb;

PCT/US99/24090

68

WO 00/23889

8/9

p——

————

PCT/US99/24090

Goal

7/

Goal Goal -> NlHeader;

NIHeaderl NlHeader

> Verb ArticleOpt Noun PhrasesOpt;
NIHeader2 NiHeader

-> Verb FormalParmToken Nour PlirasesOpt;

7/,

/ ArticlePlirases
/A
ArticleOpt ArticleOpt -> Article;
ArticleOptNull ArticleOpt >3
I,I
// NounPhrase

.

NounPhraseFormalParm NounPhrase -> FormalParmToken;

//.

/7 PhrasesOpt

c/

PhrasesOpt PhrasesOp!t -> Plirases;
PlirasesOptNull PhrasesOpt >

PhrasesOne Phrases -> Phrase;

PhrasesList Phrases -> Phirases Phrase;
PhirasePrep Phrase -> PrepPitrase;
PHraseFormalParm Phrase -> FormalParmToken;
PrepPhrase PrepPhrase -> Prep NounPlirase;
l’/

/ Parts of speach productions;

7/,
(4

Article Article -> article;
FormalParmToken FormalParmToken .> FormalParameter;
Nourn Noun = noun;
Nounl Noun -> adjnounverb;
Noun2 Noun => nounverb;
rep Prep -> prep; -
Verb Verb => verb;
Verbl Verb -> adjnounverb;
Verb2 Verb > nounverb;

“e

WO 00/23889

PCT/US99/24090
9/9

class Deck

{
Shuffle the deck.
System.outprintln(“Shuﬁling the deck.™),
}

Deal a card to a (Player aPlayer).

Systcmoutpﬁntln(“Dcaling acard to the
«3aPlayer.getName(Q+" player.™);

Fie \O

Component class CardGame {
Deck OurDeck = new DeckQ;

Player User = new Player(“user™);
Player Dealer = new Dealer(“dealer™);
}

A\

class CardGame
(-

deck OurDeck = new deck(;

player User = new player("User™);
player Dealer = new player("Deater™),
void n12_7shuﬂ1c_4deck_0_0 (OurDed<.n12_7shuﬁ1e_4ded<_0_0;}
void nl3_4d@al_4axd_2to_l_6playe:_(playc: ParmO) (Ou:Deck.nB_Ad&l_m_mo_ljplaya_(Pame);}
void ni4_4deal_dcard_2to_4user 0_0 {OurDock.nB__4dcal_4wd_2to__l_Gplayer_((his.User);}
void nl4__4deal_4wd_2to__6dcaio:_0_0 (0urDed<-nl3_4dca._4mrd_2t0_

1_6player_(this.Dealer);}

e \-

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/24090

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 9/45
US CL :395/705, 707, 708, 710, 704/9, 10, 2
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/705, 707, 708, 710; 704/9, 10, 2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate. of the relevant passages Relevant to claim No.
A US 5,179,703 A (EVANS) 12 January 1993, Abstract. 1, 12, 17, 22
A UsS 5,613,120‘A (PALEY et al) 18 March 1997, Abstract 1, 12, 17, 22
A US 5,247,693 A (BRISTOL) 21 September 1993, 1,12, 17, 22

See entire document

A US 5,768,593 A (WALTERS et al) 16 June 1998, 1, 12,17, 22
See entire document

A US 5,778,231 A (VAN HOFF et al) 07 July 1998, 1, 12, 17, 22
See entire document

A US 5,794,050 A (DAHLGREN et al) 11 August 1998, 1, 12,17, 22
See entire document

Further documents are listed in the continuation of Box C. D See patent family annex.

e Special categories of cited documents: "T" later document published after the international filing date or priority
- o . date and not in conflict with the application but cited to understand
A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
o . . . - - "X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to blish the publication date of her citation or other . . i .
specisl reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"p* document published prior to the international filing date but later than »g« document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
29 DECEMBER 1999 13 JAN2000
Name and mailing address of the ISA/US Authorized officer .
Commissioner of Patents and Trademarks
Box PCT TARIQ R. HAFIZ
Washington, D.C. 20231 QR.
Pacsimile No. (703) 305-3230 Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet)(July 1992) x

INTERNATIONAL SEARCH REPORT International application No.

PCT/US99/24090

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

BRYANT, B.R. Formal Specification of Software Systems Using
Two-Level Grammar,

Proceedings of the 15th Annual Intl. on Computer Software and
Applications Conf. COMPSAC '91, 11-13 September 1991, pp.
155-160, see entire document

WANG et al, A system for Approximate Tree Matching,
IEEE Transactions on Knowledge and Data Engineering, August
1994, Vol. 6, Issue 4, pp. 559-571, see entire document

WANG et al, Active Rule Processing in The BioCompose
Database,

Proceedings of the First Int'l. Symposium on Object-Oriented Real-
time Distributed Computing ISORC '98, 20-22 April 1998, pp.
431-437, see entire document

I, 12,17, 22

1,12, 17, 22

1,12, 17, 22

Form PCT/ISA/210 (continuation of second sheet)(July 1992) *

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/24090

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

IEL Online, WEST 1.2, EAST
search terms: (compil$ or translat$ or interpret$)and(library or template or table or database); (natural
language)and(object orient$); (conver$ or match$ or select$)same(instruction or language or code)

Form PCT/ISA/210 (extra sheet)(July 1992) »

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

