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TITLE: BRANCH SELECTORS ASSOCIATED WITH BYTE RANGES WITHIN AN
INSTRUCTION CACHE FOR RAPIDLY IDENTIFYING BRANCH PREDICTIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention is related to the field of microprocessors and, more particularly, to branch prediction

mechanisms within microprocessors.

2. Description of the Related Art

Superscalar microprocessors achieve high performance by executing multiple instructions per clock
cycle and by choosing the shortest possible clock cycle consistent with the design. As used herein, the term
"clock cycle" refers to an interval of time accorded to various stages of an instruction processing pipeline
within the microprocessor. Storage devices (e.g. registers and arrays) capture their values according to the
clock cycle. For example, a storage device may capture a value according to a rising or falling edge of a clock
signal defining the clock cycle. The storage device then stores the value until the subsequent rising or falling
edge of the clock signal, respectively. The term "instruction processing pipeline” is used herein to refer to the
logic circuits employed to process instructions in a pipelined fashion. Although the pipeline may be divided
into any number of stages at which portions of instruction processing are performed, instruction processing
generally comprises fetching the instruction, decoding the instruction, executing the instruction, and storing
the execution results in the destination identified by the instruction.

An important feature of a superscalar microprocessor (and a superpipelined microprocessor as well)
Is its branch prediction mechanism. The branch prediction mechanism indicates a predicted direction (taken
or not-taken) for a branch instruction, allowing subsequent instruction fetching to continue within the
predicted instruction stream indicated by the branch prediction. A branch instruction is an instruction which
causes subsequent instructions to be fetched from one of at least two addresses: a sequential address
identifying an instruction stream beginning with instructions which directly follow the branch instruction; and
a target address identifying an instruction stream beginning at an arbitrary location in memory. Unconditional
branch instructions always branch to the target address, while conditional branch instructions may select either
the sequential or the target address based on the outcome of a prior instruction. Instructions from the
predicted instruction stream may be speculatively executed prior to execution of the branch instruction, and in
any case are placed into the instruction processing pipeline prior to execution of the branch instruction. If the
predicted instruction stream is correct, then the number of instructions executed per clock cycle is
advantageously increased. However, if the predicted instruction stream is incorrect (i.e. one or more branch
instructions are predicted incorrectly), then the instructions from the incorrectly predicted instruction stream

are discarded from the instruction processing pipeline and the number of instructions executed per clock cycle

1
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is decreased.

In order to be effective, the branch prediction mechanism must be highly accurate such that the
predicted instruction stream is correct as often as possible. Typically, increasing the accuracy of the branch
prediction mechanism is achieved by increasing the complexity of the branch prediction mechanism. For
example, a cache-line based branch prediction scheme may be employed in which branch predictions are
stored corresponding to a particular cache line of instruction bytes in an instruction cache. A cache lineisa
number of contiguous bytes which are treated as a unit for allocation and deallocation of storage space within
a cache. When the instruction cache line is fetched, the corresponding branch predictions are also fetched.
Furthermore, when the particular cache line is discarded, the corresponding branch predictions are discarded
as well. The cache line is aligned in memory. A cache-line based branch prediction scheme may be made
more accurate by storing a larger number of branch predictions for each cache line. A given cache line may
include multiple branch instructions, each of which is represented by a different branch prediction. Therefore,
more branch predictions allocated to a cache line allows for more branch instructions to be represented and
predicted by the branch prediction mechanism. A branch instruction which cannot be represented within the
branch prediction mechanism is not predicted, and subsequently a "misprediction” may be detected if the
branch is found to be taken. However, complexity of the branch prediction mechanism is increased by the
need to select between additional branch predictions. As used herein, a "branch prediction" is a value which
may be interpreted by the branch prediction mechanism as a prediction of whether or not a branch instruction
is taken or not taken. Furthermore, a branch prediction may include the target address. For cache-line based
branch prediction mechanisms, a prediction of a sequential line to the cache line being fetched is a branch
prediction when no branch instructions are within the instructions being fetched from the cache line.

A problem related to increasing the complexity of the branch prediction mechanism is that the
increased complexity generally requires an increased amount of time to form the branch prediction. For
example, selecting among multiple branch predictions may require a substantial amount of time. The offset of
the fetch address identifies the first byte being fetched within the cache line: a branch prediction for a branch
instruction prior to the offset should not be selected. The offset of the fetch address within the cache line may
need to be compared to the offset of the branch instructions represented by the branch predictions stored for
the cache line in order to determine which branch prediction to use. The branch prediction corresponding to a
branch instruction subsequent to the fetch address offset and nearer to the fetch address offset than other
branch instructions which are subsequent to the fetch address offset should be selected. As the number of
branch predictions is increased, the complexity (and time required) for the selection logic increases. When the
amount of time needed to form a branch prediction for a fetch address exceeds the clock cycle time of the
microprocessor, performance of the microprocessor may be decreased. Because the branch prediction cannot
be formed in a single clock cycle, "bubbles" are introduced into the instruction processing pipeline during
clock cycles that instructions cannot be fetched due to a lack of a branch prediction corresponding to a
previous fetch address. The bubble occupies various stages in the instruction processing pipeline during
subsequent clock cycles, and no work occurs at the stage including the bubble because no instructions are

included in the bubble. Performance of the microprocessor may thereby be decreased.
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SUMMARY OF THE INVENTION

The problems outlined above are in large part solved by a branch prediction unit in accordance with
the present invention. The branch prediction unit stores a set of branch selectors corresponding to each of a
group of contiguous instruction bytes stored in an instruction cache. Each branch selector identifies the
branch prediction to be selected if a fetch address corresponding to that branch selector is presented.
Advantageously, time-consuming comparisons of fetch address offsets to branch instruction offsets may be
eliminated. A more complex branch prediction mechanism may thereby be supported at a higher frequency
than may have been previously achievable.

In order to minimize the number of branch selectors stored for a group of contiguous instruction
bytes, the group is divided into multiple byte ranges. The largest byte range may include a number of bytes
comprising the shortest branch instruction in the instruction set (exclusive of the return instruction). For
example, the shortest branch instruction may be two bytes in one embodiment. Therefore, the largest byte
range is two bytes in the example. Since the branch selectors as a group change value (i.e. indicate a different
branch instruction) only at the end byte of a predicted-taken branch instruction, fewer branch selectors may be
stored than the number of bytes within the group. Advantageously, the size of the branch prediction storage
may be smaller than if a branch selector were stored for each byte. The smaller branch prediction storage may
exhibit a faster access time, improving the clock cycle time achievable using the branch prediction
mechanism. Additionally, cost may be reduced due to the reduced substrate area occupied by the branch
prediction storage.

Broadly speaking, the present invention contemplates a branch prediction mechanism comprising a
branch prediction storage and a selection device. Coupled to receive a fetch address corresponding to a group
of contiguous instruction bytes being fetched from an instruction cache, the branch prediction storage is
configured to store a plurality of branch selectors. The group of contiguous instruction bytes comprises a
plurality of byte ranges, and each one of the plurality of branch selectors corresponds to a different one of the
plurality of byte ranges. Furthermore, each one of the plurality of branch selectors identifies a branch
prediction. The selection device 1s configured to select a selected one of the plurality of branch selectors. The
selected one of the plurality of branch selectors corresponds to a selected one of the plurality of byte ranges.
The selected one of the plurality of byte ranges includes a byte identified by the fetch address.

The present invention further contemplates a method for performing branch prediction. A plurality
of branch selectors corresponding to a group of contiguous instruction bytes are stored. Each of the plurality
of branch selectors corresponds to a different byte range within the group of contiguous instruction bytes and
identifies a branch prediction to be selected if a byte within that byte range is fetched. One or more of the
group of contiguous instruction bytes are fetched from an instruction cache using a fetch address. In response
to the fetch address, one of the plurality of branch selectors is selected. Subsequently, the branch prediction
identified by the one of the plurality of branch selectors is selected.

Moreover, the present invention contemplates a microprocessor comprising an instruction cache and

a branch prediction unit. The instruction cache is coupled to receive a fetch address and to provide a group of
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contiguous instruction bytes in response to the fetch address. Coupled to receive the fetch address
concurrently with the instruction cache, the branch prediction unit is configured to store a plurality of branch
selectors. The plurality of branch selectors corresponds to the group of contiguous instruction bytes.
Furthermore, each of the plurality of branch selectors corresponds to a corresponding one of a plurality of
byte ranges within the group of contiguous instruction bytes. The branch prediction unit is configured to
select one of the plurality of branch selectors in response to the fetch address and is further configured to
predict a subsequent fetch address using a branch prediction identified by the one of the plurality of branch

selectors.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent upon reading the following

detailed description and upon reference to the accompanying drawings in which:

Fig. 1 is a block diagram of one embodiment of a superscalar microprocessor.

Fig. 2 is a block diagram of one embodiment of a pair of decode units shown in Fig. 1.

Fig. 3 is a block diagram of a group of contiguous instruction bytes and a corresponding set of
branch selectors, according to one embodiment of a branch prediction mechanism for the microprocessor
shown in Fig. 1.

Fig. 4 is a block diagram of a group of contiguous instruction bytes and a corresponding set of
branch selectors, according to another embodiment of a branch prediction mechanism for the microprocessor

shown in Fig. 1.

Fig. 5 is a table illustrating one embodiment of byte ranges within a set of contiguous instruction

bytes.
Fig. 6 is a first example of branch selectors for a first exemplary set of instructions.
Fig. 7 is a second example of branch selectors for a second exemplary set of instructions.
Fig. 8 is a third example of branch selectors for a third exemplary set of instructions.
Fig. 9 is a fourth example of branch selectors for a fourth exempiary set of instructions.

Fig. 10 is a block diagram of one embodiment of a branch prediction unit shown in Fig. 1.
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Fig. 11 is a block diagram of one embodiment of a branch prediction storage entry corresponding to a

group of contiguous instruction bytes.

Fig. 12 is a table illustrating an exemplary branch selector encoding for one embodiment of the

branch prediction unit shown in Fig. 1.

Fig. 13 is a flowchart illustrating mask generation according to one embodiment of the

microprocessor shown in Fig. 1.

Fig. 14 is a flowchart illustrating one embodiment of branch selector update.

Fig. 15 is a block diagram of a group of contiguous instruction bytes and a corresponding set of
branch selectors, according to yet another embodiment of a branch prediction mechanism for the

microprocessor shown in Fig. 1.

Fig. 16 is a table illustrating another embodiment of byte ranges within a set of contiguous

instruction bytes.

Fig. 17 is a block diagram of one embodiment of a computer system including the microprocessor

shown in Fig. 1.

While the invention is susceptible to various modifications and alternative forms, specific
embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It
should be understood, however, that the drawings and detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications,
equivalents and alternatives falling within the spirit and scope of the present invention as defined by the

appended claims.

DETAILED DESCRIPTION OF THE INVENTION

Turning now to Fig. 1, a block diagram of one embodiment of a microprocessor 10 is shown.
Microprocessor 10 includes a prefetch/predecode unit 12, a branch prediction unit 14, an instruction cache 16,
an instruction alignment unit 18, a plurality of decode units 20A-20C, a plurality of reservation stations 22A-
22C, a plurality of functional units 24A-24C, a load/store unit 26, a data cache 28, a register file 30, a reorder
buffer 32, and an MROM unit 34. Elements referred to herein with a particular reference number followed by
a letter will be collectively referred to by the reference number alone. For example, decode units 20A-20C

will be collectively referred to as decode units 20.
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Prefetch/predecode unit 12 is coupled to receive instructions from a main memory subsystem (not
shown), and is further coupled to instruction cache 16 and branch prediction unit 14. Similarly, branch
prediction unit 14 is coupled to instruction cache 16. Still further, branch prediction unit 14 is coupled to
decode units 20 and functional units 24. Instruction cache 16 is further coupled to MROM unit 34 and
instruction alignment unit 18. Instruction alignment unit 18 is in turn coupled to decode units 20. Each
decode unit 20A-20C is coupled to load/store unit 26 and to respective reservation stations 22A-22C.
Reservation stations 22A-22C are further coupled to respective functional units 24A-24C. Additionally,
decode units 20 and reservation stations 22 are coupled to register file 30 and reorder buffer 32. Functional
units 24 are coupled to load/store unit 26, register file 30, and reorder buffer 32 as well. Data cache 28 is
coupled to load/store unit 26 and to the main memory subsystem. Finally, MROM unit 34 is coupled to
decode units 20.

Generally speaking, branch prediction unit 14 employs a cache-line based branch prediction
mechanism for predicting branch instructions. Multiple branch predictions may be stored for each cache line.
Additionally, the cache line is divided into multiple byte ranges and a branch selector is stored for each byte
range within the cache line. The branch selector for a particular byte range indicates which of the branch
predictions which may be stored with respect to the cache line is the branch prediction appropriate for an
instruction fetch address which fetches any byte within the particular byte range. As used herein, a byte range
is one or more contiguous bytes within a cache line (or portion thereof, if less than a full cache line is
provided at the output of instruction cache 16 as described below). The appropriate branch prediction is the
branch prediction for the first predicted-taken branch instruction encountered within the cache line subsequent
to the particular byte. As used herein, the terms "subsequent" and "prior to" refer to an ordering of bytes
within the cache line. A byte stored at a memory address which is numerically smaller than the memory
address at which a second byte is stored is prior to the second byte. Conversely, a byte stored at a memory
address which is numerically larger than the memory address of a second byte is subsequent to the second
byte. Similarly, a first instruction is prior to a second instruction in program order if the first instruction is
encountered before the second instruction when stepping one at a time through the sequence of instructions
forming the program.

In one embodiment, microprocessor 10 employs a microprocessor architecture in which the
instruction set is a variable byte length instruction set (e.g. the x86 microprocessor architecture). When a
variable byte length instruction set is employed, any byte within the cache line may be identified as the first
byte to be fetched by a given fetch address. For example, a branch instruction may have a target address at
byte position two within a cache line. In such a case, the bytes at byte positions zero and one are not being
fetched during the current cache access. Additionally, bytes subsequent to a predicted-taken branch which is
subsequent to the first byte are not fetched during the current cache access. The branch prediction for the
predicted taken branch can be located by selecting the branch selector corresponding to the byte range
including the first byte to be fetched from the cache line. The branch selector is used to select the appropriate
branch prediction, which is then provided to the instruction fetch logic in instruction cache 16. During the

succeeding clock cycle, the branch prediction is used as the fetch address. Advantageously, the process of
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comparing the byte position of the first byte being fetched to the byte positions of the predicted-taken branch
instructions is eliminated from the generation of a branch prediction in response to a fetch address. The
amount of time required to form a branch prediction may be reduced accordingly, allowing the branch
prediction mechanism to operate at higher clock frequencies (i.e. shorter clock cycles) while still providing a
single cycle branch prediction.

It is noted that, although the term "cache line" has been used in the preceding discussion, some
embodiments of instruction cache 16 may not provide an entire cache line at its output during a given clock
cycle. For example, in one embodiment instruction cache 16 is configured with 32 byte cache lines.
However, only 16 bytes are fetched in a given clock cycle (either the upper half or the lower half of the cache
line). The branch prediction storage locations and branch selectors are allocated to the portion of the cache
line being fetched. As used herein, the term "group of contiguous instruction bytes" is used to refer to the
instruction bytes which are provided by the instruction cache in a particular clock cycle in response to a fetch
address. A group of contiguous instruction bytes may be a portion of a cache line or an entire cache line,
according to various embodiments. When a group of contiguous instruction bytes is a portion of a cache line,
it is still an aligned portion of a cache line. For example, if a group of contiguous instruction bytes is half a
cache line, it is either the upper half of the cache line or the lower half of the cache line. A number of branch
prediction storage locations are allocated to each group of contiguous instruction bytes, and branch selectors
indicate one of the branch prediction storage locations associated with that group. Furthermore, branch
selectors may indicate a return stack address from a return stack structure or a sequential address if no branch
instructions are encountered between the corresponding byte and the last byte in the group of contiguous
instruction bytes.

Instruction cache 16 is a high speed cache memory provided to store instructions. Instructions are
fetched from instruction cache 16 and dispatched to decode units 20. In one embodiment, instruction cache
16 is configured to store up to 64 kilobytes of instructions in a 4 way set associative structure having 32 byte
lines (a byte comprises 8 binary bits). Alternatively, 2 way set associativity may be employed as well as any
other desired associativity. Instruction cache 16 may additionally employ a way prediction scheme in order to
speed access times to the instruction cache. Instead of accessing tags identifying each line of instructions and
comparing the tags to the fetch address to select a way, instruction cache 16 predicts the way that is accessed.
In this manner, the way is selected prior to accessing the instruction storage. The access time of instruction
cache 16 may be similar to a direct-mapped cache. A tag comparison is performed and, if the way prediction
is incorrect, the correct instructions are fetched and the incorrect instructions are discarded. It is noted that
instruction cache 16 may be implemented as a fully associative, set associative, or direct mapped
configuration.

Instructions are fetched from main memory and stored into instruction cache 16 by
prefetch/predecode unit 12. Instructions may be prefetched prior to the request thereof from instruction cache
16 in accordance with a prefetch scheme. A variety of prefetch schemes may be employed by
prefetch/predecode unit 12. As prefetch/predecode unit 12 transfers instructions from main memory to

instruction cache 16, prefetch/predecode unit 12 generates three predecode bits for each byte of the
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instructions: a start bit, an end bit, and a functional bit. The predecode bits form tags indicative of the
boundaries of each instruction. The predecode tags may also convey additional information such as whether a
given instruction can be decoded directly by decode units 20 or whether the instruction is executed by
invoking a microcode procedure controlled by MROM unit 34, as will be described in greater detail below.
Still further, prefetch/predecode unit 12 may be configured to detect branch instructions and to store branch
prediction information corresponding to the branch instructions into branch prediction unit 14.

One encoding of the predecode tags for an embodiment of microprocessor 10 employing a variable
byte length instruction set will next be described. A variable byte length instruction set is an instruction set in
which different instructions may occupy differing numbers of bytes. An exemplary variable byte length
instruction set employed by one embodiment of microprocessor 10 is the x86 instruction set.

In the exemplary encoding, if a given byte is the first byte of an instruction, the start bit for that byte
is set. If the byte is the last byte of an instruction, the end bit for that byte is set. Instructions which may be
directly decoded by decode units 20 are referred to as "fast path" instructions. The remaining x86 instructions
are referred to as MROM instructions, according to one embodiment. For fast path instructions, the functional
bit is set for each prefix byte included in the instruction, and cleared for other bytes. Alternatively, for
MROM instructions, the functional bit is cleared for each prefix byte and set for other bytes. The type of
instruction may be determined by examining the functional bit corresponding to the end byte. If that
functional bit is clear, the instruction is a fast path instruction. Conversely, if that functional bit is set, the
instruction is an MROM instruction. The opcode of an instruction may thereby be located within an
Instruction which may be directly decoded by decode units 20 as the byte associated with the first clear
functional bit in the instruction. For example, a fast path instruction including two prefix bytes, a Mod R/M

byte, and an immediate byte would have start, end, and functional bits as follows:

Start bits 10000
End bits 00001
Functional bits 11000

According to one particular embodiment, early identification of an instruction that includes a scale-
index-base (SIB) byte is advantageous for MROM unit 34. For such an embodiment, if an instruction
includes at least two bytes after the opcode byte, the functional bit for the Mod R/M byte indicates the
presence of an SIB byte. If the functional bit for the Mod R/M byte is set, then an SIB byte is present.
Alternatively, if the functional bit for the Mod R/M byte is clear, then an SIB byte is not present.

MROM instructions are instructions which are determined to be too complex for decode by decode
units 20. MROM instructions are executed by invoking MROM unit 34. More specifically, when an MROM
instruction is encountered, MROM unit 34 parses and issues the instruction into a subset of defined fast path
instructions to effectuate the desired operation. MROM unit 34 dispatches the subset of fast path instructions
to decode units 20. A listing of exemplary x86 instructions categorized as fast path instructions will be
provided further below.

Microprocessor 10 employs branch prediction in order to speculatively fetch instructions subsequent
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to conditional branch instructions. Branch prediction unit 14 is included to perform branch prediction
operations. In one embodiment, up to two branch target addresses are stored with respect to each 16 byte
portion of each cache line in instruction cache 16. Prefetch/predecode unit 12 determines initial branch targets
when a particular line is predecoded. Subsequent updates to the branch targets corresponding to a cache line
may occur due to the execution of instructions within the cache line. Instruction cache 16 provides an
indication of the instruction address being fetched, so that branch prediction unit 14 may determine which
branch target addresses to select for forming a branch prediction. Decode units 20 and functional units 24
provide update information to branch prediction unit 14. Because branch prediction unit 14 stores two targets
per 16 byte portion of the cache line, some branch instructions within the line may not be stored in branch
prediction unit 14. Decode units 20 detect branch instructions which were not predicted by branch prediction
unit 14. Functional units 24 execute the branch instructions and determine if the predicted branch direction is
incorrect. The branch direction may be "taken", in which subsequent instructions are fetched from the target
address of the branch instruction. Conversely, the branch direction may be "not taken", in which subsequent
instructions are fetched from memory locations consecutive to the branch instruction. When a mispredicted
branch instruction is detected, instructions subsequent to the mispredicted branch are discarded from the
various units of microprocessor 10. A variety of suitable branch prediction algorithms may be employed by
branch prediction unit 14,

Instructions fetched from instruction cache 16 are conveyed to instruction alignment unit 18. As
instructions are fetched from instruction cache 16, the corresponding predecode data is scanned to provide
information to instruction alignment unit 18 (and to MROM unit 34) regarding the instructions being fetched.
Instruction alignment unit 18 utilizes the scanning data to align an instruction to each of decode units 20. In
one embodiment, instruction alignment unit 18 aligns instructions from three sets of eight instruction bytes to
decode units 20. Instructions are selected independently from each set of eight instruction bytes into
preliminary issue positions. The preliminary issue positions are then merged to a set of aligned issue positions
corresponding to decode units 20, such that the aligned issue positions contain the three instructions which are
prior to other instructions within the preliminary issue positions in program order. Decode unit 20A receives
an instruction which is prior to instructions concurrently received by decode units 20B and 20C (in program
order). Similarly, decode unit 20B receives an instruction which is prior to the instruction concurrently
received by decode unit 20C in program order.

Decode units 20 are configured to decode instructions received from instruction alignment unit 18,
Register operand information is detected and routed to register file 30 and reorder buffer 32. Additionally, if
the instructions require one or more memory operations to be performed, decode units 20 dispatch the
memory operations to load/store unit 26. Each instruction is decoded into a set of control values for
functional units 24, and these control values are dispatched to reservation stations 22 along with operand
address information and displacement or immediate data which may be included with the instruction.

Microprocessor 10 supports out of order execution, and thus employs reorder buffer 32 to keep track
of the original program sequence for register read and write operations, to implement register renaming, to

allow for speculative instruction execution and branch misprediction recovery, and to facilitate precise
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exceptions. A temporary storage location within reorder buffer 32 is reserved upon decode of an instruction
that involves the update of a register to thereby store speculative register states. If a branch prediction is
incorrect, the results of speculatively-executed instructions along the mispredicted path can be invalidated in
the buffer before they are written to register file 30. Similarly, if a particular instruction causes an exception,
instructions subsequent to the particular instruction may be discarded. In this manner, exceptions are
"precise” (i.e. instructions subsequent to the particular instruction causing the exception are not completed
prior to the exception). It is noted that a particular instruction is speculatively executed if it is executed prior
to instructions which precede the particular instruction in program order. Preceding instructions may be a
branch instruction or an exception-causing instruction, in which case the speculative results may be discarded
by reorder buffer 32.

The instruction control values and immediate or displacement data provided at the outputs of decode
units 20 are routed directly to respective reservation stations 22. In one embodiment, each reservation station
22 is capable of holding instruction information (i.e., instruction control values as well as operand values,
operand tags and/or immediate data) for up to three pending instructions awaiting issue to the corresponding
functional unit. It is noted that for the embodiment of Fig. 1, each reservation station 22 is associated with a
dedicated functional unit 24. Accordingly, three dedicated "issue positions" are formed by reservation stations
22 and functional units 24. In other words, issue position 0 is formed by reservation station 22A and
functional unit 24A. Instructions aligned and dispatched to reservation station 22A are executed by functional
unit 24A. Similarly, issue position 1 is formed by reservation station 22B and functional unit 24B; and issue
position 2 is formed by reservation station 22C and functional unit 24C.

Upon decode of a particular instruction, if a required operand is a register location, register address
information is routed to reorder buffer 32 and register file 30 simultaneously. Those of skill in the art will
appreciate that the x86 register file includes eight 32 bit real registers (i.e., typically referred to as EAX, EBX,
ECX, EDX, EBP, ESI, EDI and ESP). In embodiments of microprocessor 10 which employ the x86
microprocessor architecture, register file 30 comprises storage locations for each of the 32 bit real registers.
Additional storage locations may be included within register file 30 for use by MROM unit 34. Reorder
buffer 32 contains temporary storage locations for results which change the contents of these registers to
thereby allow out of order execution. A temporary storage location of reorder buffer 32 is reserved for each
instruction which, upon decode, is determined to modify the contents of one of the real registers. Therefore,
at various points during execution of a particular program, reorder buffer 32 may have one or more locations
which contain the speculatively executed contents of a given register. If following decode of a given
instruction it is determined that reorder buffer 32 has a previous location or locations assigned to a register
used as an operand in the given instruction, the reorder buffer 32 forwards to the corresponding reservation
station either: 1) the value in the most recently assigned location, or 2) a tag for the most recently assigned
location if the value has not yet been produced by the functional unit that will eventually execute the previous
instruction. If reorder buffer 32 has a location reserved for a given register, the operand value (or reorder
buffer tag) is provided from reorder buffer 32 rather than from register file 30. If there is no location reserved

for a required register in reorder buffer 32, the value is taken directly from register file 30. If the operand
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corresponds to a memory location, the operand value is provided to the reservation station through load/store
unit 26.

In one particular embodiment, reorder buffer 32 is configured to store and manipulate concurrently
decoded instructions as a unit. This configuration will be referred to herein as "line-oriented”". By
manipulating several instructions together, the hardware employed within reorder buffer 32 may be
simplified. For example, a line-oriented reorder buffer included in the present embodiment allocates storage
sufficient for instruction information pertaining to three instructions (one from each decode unit 20) whenever
one or more instructions are dispatched by decode units 20. By contrast, a variable amount of storage is
allocated in conventional reorder buffers, dependent upon the number of instructions actually dispatched. A
comparatively larger number of logic gates may be required to allocate the variable amount of storage. When
each of the concurrently decoded instructions has executed, the instruction results are stored into register file
30 simultaneously. The storage is then free for allocation to another set of concurrently decoded instructions.
Additionally, the amount of control logic circuitry employed per instruction is reduced because the control
logic is amortized over several concurrently decoded instructions. A reorder buffer tag identifying a particular
instruction may be divided into two fields: a line tag and an offset tag. The line tag identifies the set of
concurrently decoded instructions including the particular instruction, and the offset tag identifies which
instruction within the set corresponds to the particular instruction. It is noted that storing instruction results
into register file 30 and freeing the corresponding storage is referred to as "retiring" the instructions. It is
further noted that any reorder buffer configuration may be employed in various embodiments of
microprocessor 10.

As noted earlier, reservation stations 22 store instructions until the instructions are executed by the
corresponding functional unit 24. An instruction is selected for execution if: (i) the operands of the
instruction have been provided; and (ii) the operands have not yet been provided for instructions which are
within the same reservation station 22A-22C and which are prior to the instruction in program order. It is
noted that when an instruction is executed by one of the functional units 24, the result of that instruction is
passed directly to any reservation stations 22 that are waiting for that result at the same time the result is
passed to update reorder buffer 32 (this technique is commonly referred to as "result forwarding"). An
instruction may be selected for execution and passed to a functional unit 24A-24C during the clock cycle that
the associated result is forwarded. Reservation stations 22 route the forwarded result to the functional unit 24
in this case.

In one embodiment, each of the functional units 24 is configured to perform integer arithmetic
operations of addition and subtraction, as well as shifts, rotates, logical operations, and branch operations.
The operations are performed in response to the control values decoded for a particular instruction by decode
units 20. It is noted that a floating point unit (not shown) may also be employed to accommodate floating
point operations. The floating point unit may be operated as a coprocessor, receiving instructions from
MROM unit 34 and subsequently communicating with reorder buffer 32 to complete the instructions.
Additionally, functional units 24 may be configured to perform address generation for load and store memory

operations performed by load/store unit 26.
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Each of the functional units 24 also provides information regarding the execution of conditional
branch instructions to the branch prediction unit 14. If a branch prediction was incorrect, branch prediction
unit 14 flushes instructions subsequent to the mispredicted branch that have entered the instruction processing
pipeline, and causes fetch of the required instructions from instruction cache 16 or main memory. It is noted
that in such situations, results of instructions in the original program sequence which occur after the
mispredicted branch instruction are discarded, including those which were speculatively executed and
temporarily stored in load/store unit 26 and reorder buffer 32.

Results produced by functional units 24 are sent to reorder buffer 32 if a register value is being
updated, and to load/store unit 26 if the contents of a memory location are changed. If the result is to be
stored in a register, reorder buffer 32 stores the result in the location reserved for the value of the register
when the instruction was decoded. A plurality of result buses 38 are included for forwarding of results from
functional units 24 and load/store unit 26. Result buses 38 convey the result generated, as well as the reorder
buffer tag identifying the instruction being executed.

Load/store unit 26 provides an interface between functional units 24 and data cache 28. In one
embodiment, load/store unit 26 is configured with a load/store buffer having eight storage locations for data
and address information for pending loads or stores. Decode units 20 arbitrate for access to the load/store unit
26. When the buffer is full, a decode unit must wait until load/store unit 26 has room for the pending load or
store request information. Load/store unit 26 also performs dependency checking for load memory operations
against pending store memory operations to ensure that data coherency is maintained. A memory operation is
a transfer of data between microprocessor 10 and the main memory subsystem. Memory operations may be
the result of an instruction which utilizes an operand stored in memory, or may be the result of a load/store
instruction which causes the data transfer but no other operation. Additionally, load/store unit 26 may include
a special register storage for special registers such as the segment registers and other registers related to the
address translation mechanism defined by the x86 microprocessor architecture.

In one embodiment, load/store unit 26 is configured to perform load memory operations
speculatively. Store memory operations are performed in program order, but may be speculatively stored into
the predicted way. If the predicted way is incorrect, the data prior to the store memory operation is
subsequently restored to the predicted way and the store memory operation is performed to the correct way.
In another embodiment, stores may be executed speculatively as well. Speculatively executed stores are
placed into a store buffer, along with a copy of the cache line prior to the update. If the speculatively
executed store is later discarded due to branch misprediction or exception, the cache line may be restored to
the value stored in the buffer. It is noted that load/store unit 26 may be configured to perform any amount of
speculative execution, including no speculative execution.

Data cache 28 is a high speed cache memory provided to temporarily store data being transferred
between load/store unit 26 and the main memory subsystem. In one embodiment, data cache 28 has a
capacity of storing up to sixteen kilobytes of data in an eight way set associative structure. Similar to
instruction cache 16, data cache 28 may employ a way prediction mechanism. It is understood that data cache

28 may be implemented in a variety of specific memory configurations, inciuding a set associative
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configuration.

In one particular embodiment of microprocessor 10 employing the x86 microprocessor architecture,
instruction cache 16 and data cache 28 are linearly addressed. The linear address is formed from the offset
specified by the instruction and the base address specified by the segment portion of the x86 address
translation mechanism. Linear addresses may optionally be translated to physical addresses for accessing a
main memory. The linear to physical translation is specified by the paging portion of the x86 address
translation mechanism. It is noted that a linear addressed cache stores linear address tags. A set of physical
tags (not shown) may be employed for mapping the linear addresses to physical addresses and for detecting
translation aliases. Additionally, the physical tag block may perform linear to physical address translation.

Tuming now to Fig. 2, a block diagram of one embodiment of decode units 20B and 20C is shown.
Each decode unit 20 receives an instruction from instruction alignment unit 18. Additionally, MROM unit 34
is coupled to each decode unit 20 for dispatching fast path instructions corresponding to a particular MROM
instruction. Decode unit 20B comprises early decode unit 40B, multiplexor 42B, and opcode decode unit
44B. Similarly, decode unit 20C includes early decode unit 40C, multiplexor 42C, and opcode decode unit
44C.

Certain instructions in the x86 instruction set are both fairly complicated and frequently used. In one
embodiment of microprocessor 10, such instructions include more complex operations than the hardware
included within a particular functional unit 24A-24C is configured to perform. Such instructions are classified
as a special type of MROM instruction referred to as a "double dispatch" instruction. These instructions are
dispatched to a pair of opcode decode units 44. It is noted that opcode decode units 44 are coupled to
respective reservation stations 22. Each of opcode decode units 44A-44C forms an issue position with the
corresponding reservation station 22A-22C and functional unit 24A-24C. Instructions are passed from an
opcode decode unit 44 to the corresponding reservation station 22 and further to the corresponding functional
unit 24.

Multiplexor 42B is included for selecting between the instructions provided by MROM unit 34 and
by early decode unit 40B. During times in which MROM unit 34 is dispatching instructions, multiplexor 42B
selects instructions provided by MROM unit 34. At other times, multiplexor 42B selects instructions provided
by early decode unit 40B. Similarly, multiplexor 42C selects between instructions provided by MROM unit
34, early decode unit 40B, and early decode unit 40C. The instruction from MROM unit 34 is selected during
times in which MROM unit 34 is dispatching instructions. During times in which the early decode unit within
decode unit 20A (not shown) detects a double dispatch instruction, the instruction from early decode unit 40B
is selected by multiplexor 42C. Otherwise, the instruction from early decode unit 40C is selected. Selecting
the instruction from early decode unit 40B into opcode decode unit 44C allows a fast path instruction decoded
by decode unit 20B to be dispatched concurrently with a double dispatch instruction decoded by decode unit
20A.

According to one embodiment employing the x86 instruction set, early decode units 40 perform the

following operations:
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(1) merge the prefix bytes of the instruction into an encoded prefix byte;
(i1) decode unconditional branch instructions (which may include the unconditional jump, the
CALL, and the RETURN) which were not detected during branch prediction,

(iii) decode source and destination flags;

(iv) decode the source and destination operands which are register operands and generate

operand size information; and

v) determine the displacement and/or immediate size so that displacement and immediate data

may be routed to the opcode decode unit.
Opcode decode units 44 are configured to decode the opcode of the instruction, producing control values for
functional unit 24. Displacement and immediate data are routed with the control values to reservation stations
22.

Since early decode units 40 detect operands, the outputs of multiplexors 42 are routed to register file
30 and reorder buffer 32. Operand values or tags may thereby be routed to reservation stations 22.
Additionally, memory operands are detected by early decode units 40. Therefore, the outputs of multiplexors
42 are routed to load/store unit 26. Memory operations corresponding to instructions having memory
operands are stored by load/store unit 26.

Turning now to Fig. 3, a diagram of an exemplary group of contiguous instruction bytes 50 and a
corresponding set of branch selectors 52 are shown. In Fig. 3, each byte within an instruction is illustrated by
a short vertical line (e.g. reference number 54). Additionally, the vertical lines separating instructions in
group 50 delimit bytes (e.g. reference number 56). The instructions shown in Fig. 3 are variable in length,
and therefore the instruction set including the instructions shown in Fig. 3 is a variable byte length instruction
set. In other words, a first instruction within the variable byte length instruction set may occupy a first
number of bytes which is different than a second number of bytes occupied by a second instruction within the
instruction set. Other instruction sets may be fixed-length, such that each instruction within the instruction set
occupies the same number of bytes as each other instruction.

As illustrated in Fig. 3, group 50 includes non-branch instructions INO-INS. Instructions INO, IN3,
IN4, and INS are two byte instructions. Instruction IN1 is a one byte instruction and instruction IN2 is a three
byte instruction. Two predicted-taken branch instructions PBO and PB1 are illustrated as well, each shown as
occupying two bytes. It is noted that both non-branch and branch instructions may occupy various numbers
of bytes.

The end byte of each predicted-taken branch PBO and PB1 provides a division of group 50 into three
regions: a first region 58, a second region 60, and a third region 62. If a fetch address identifying group 50 is
presented, and the offset of the fetch address within the group identifies a byte position within first region 58,
then the first predicted-taken branch instruction to be encountered is PBO and therefore the branch prediction
for PBO is selected by the branch prediction mechanism. Similarly, if the offset of the fetch address identifies
a byte within second region 60, the appropriate branch prediction is the branch prediction for PB1. Finally, if
the offset of the fetch address identifies a byte within third region 62, then there is no predicted-taken branch

instruction within the group of instruction bytes and subsequent to the identified byte. Therefore, the branch
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prediction for third region 62 is sequential. The sequential address identifies the group of instruction bytes
which immediately follows group 50 within main memory.

As used herein, the offset of an address comprises a number of least significant bits of the address.
The number is sufficient to provide different encodings of the bits for each byte within the group of bytes to
which the offset relates. For example, group 50 is 16 bytes. Therefore, four least significant bits of an
address within the group form the offset of the address. The remaining bits of the address identify group 50
from other groups of contiguous instruction bytes within the main memory. Additionally, a number of least
significant bits of the remaining bits form an index used by instruction cache 16 to select a row of storage
locations which are eligible for storing group 50.

Set 52 is an exemplary set of branch selectors for group 50. One branch selector is included for each
byte within group 50. The branch selectors within set 52 use the encoding shown in Fig. 12 below. In the
example, the branch prediction for PBO is stored as the second of two branch predictions associated with
group 50 (as indicated by a branch selector value of "3"). Therefore, the branch selector for each byte within
first region 58 is set to "3". Similarly, the branch prediction for PB1 is stored as the first of the branch
predictions (as indicated by a branch selector value of "2"). Therefore, the branch selector for each byte
within second region 60 is set to "2". Finally, the sequential branch prediction is indicated by the branch
selectors for bytes within third region 62 by a branch selector encoding of "0".

It is noted that, due to the variable byte length nature of the x86 instruction set, a branch instruction
may begin within one group of contiguous instruction bytes and end within a second group of contiguous
instruction bytes. In such a case, the branch prediction for the branch instruction is stored with the second
group of contiguous instruction bytes. Among other things, the bytes of the branch instruction which are
stored within the second group of contiguous instruction bytes need to be fetched and dispatched. Forming
the branch prediction in the first group of contiguous instruction bytes would cause the bytes of the branch
instruction which lie within the second group of instruction bytes not to be fetched.

Employing a set of branch selectors such as set 52 allows for a rapid determination of the predicted
fetch address (i.e. by decoding the offset portion of the fetch address and selecting the corresponding selector
from set 52). However, a large number of branch selectors are stored (i.e. one for each byte). The amount of
branch prediction storage employed for storing the branch selectors would correspondingly be large. Still
further, a relatively wide selection device (such as a mux) would be needed to select the branch selector in
response to the offset of the fetch address. The wider the selection device, in general, the greater the delay in
propagating the selected value through the selection device {e.g. the selected branch selector).

Fig. 3 illustrates that the branch selector for each byte within a region is the same, and regions are
delimited by branch instructions (more particularly, predicted-taken branch instructions). Branch instructions
would generally include at least an opcode (identifying the branch instruction within the instruction set
employed by microprocessor 10) and a displacement to be added to the address of the branch instruction (or
the address of the instruction immediately following the branch instruction) to form the branch target address.
Therefore, a branch instruction occupies at least two bytes. By taking advantage of this fact, the number of

branch selectors stored with respect to a group of contiguous instruction bytes may be reduced.
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For the remainder of this description, the x86 microprocessor architecture will be used as an
example. However, the branch selector technique described herein may be employed within any
microprocessor architecture, and such embodiments are contemplated. It is noted that, in the x86
microprocessor architecture, a subroutine return instruction is defined (e.g. the RET instruction). The
subroutine return instruction specifies that its branch target address is drawn from the top of the stack
indicated by the ESP register. Therefore, the RET instruction is a single byte (i.e. an opcode byte). Handling
of the single byte RET instruction with branch selectors taking advantage of the at least two byte per branch
instruction general rule is illustrated in more detail below.

Turning next to Fig. 4, a diagram illustrating group 50, regions 58, 60, and 62, and one embodiment
of a set of branch selectors 70 is illustrated. The branch selectors within set 70 correspond to byte ranges
defined within group 50. For the example shown in Fig. 4, nine branch selectors are used for a group of 16
contiguous instruction bytes. Set 70 therefore occupies less storage within a branch prediction storage than set
52 shown in Fig. 3 occupies, allowing the branch prediction storage to be made smaller. Still further, a
narrower selection device may be used to select a branch selector in response to a fetch address. The selected
branch selector may be provided more rapidly, and may thereby provide for a higher frequency
implementation in which predicted fetch addresses are provided each clock cycle.

Generally, the largest byte range defined for a given branch selector may be made equal to the
shortest branch instruction (excluding the return instruction as described in more detail below). The majority
of the byte ranges are selected to be the largest size. However, to handle certain conditions, the embodiment
shown in Fig. 4 employs two byte ranges which are smaller than the maximum size. In particular, the initial
byte of the group 50 forms a byte range having a single byte (as explained in more detail below with respect
to Fig. 6). Since group 50 is an even number of bytes, the byte range corresponding to the initial byte
includes only the initial byte, and the largest byte range is two bytes in this example, another byte range is
defined to have a single byte as well. For set 70, the byte within group 50 which is contiguous to the initial
byte is selected to be a single byte range. This selection allows for a relatively simple decode of the offset of
the fetch address to select a branch selector, as illustrated in Fig. 5.

Since the byte ranges are selected to be no larger than the shortest branch instruction, a branch
instruction may begin in one byte range and end in a subsequent byte range. However, at most one branch
instruction ends in a particular byte range, even if branch instructions are consecutive within a particular
group of contiguous instruction bytes. For the case of a branch instruction which ends within a particular byte
range but not at the end of the byte range, the branch selector for that byte range is selected to be the branch
selector corresponding to instruction bytes subsequent to the branch instruction. For example, the branch
selector for byte range 72 (which includes bytes 3-4, where the initial byte is numbered byte 0) indicates the
branch prediction corresponding to predicted branch PB1. The above rule is used because a fetch address
within the byte range is not fetching the branch instruction (which begins in the preceding byte range).
Therefore, the correct branch prediction is the prediction for the subsequent branch.

On the other hand, if the branch instruction ends at the last byte within the byte range, the branch

selector for the byte range is the branch selector corresponding to the branch instruction (e.g. byte range 74).
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Therefore, if a fetch address specifying predicted branch PBI (i.e. the offset is within byte range 74), then the
branch prediction used for the fetch is the branch prediction corresponding to branch PB1.

Turning now to Fig. 5, a table 76 is shown corresponding to the selection of byte ranges for branch
selectors as illustrated in the example of Fig. 4. The row of table 76 labeled "Byte Position" lists the byte
positions within group 50 which correspond to each byte range (i.e. the offset portion of the address for each
byte which is within each byte range). The row labeled "Branch Selector Position" illustrates the branch
selector position within the set 70 of the branch selector corresponding to each byte range. The row labeled
"Read Addresses" lists the fetch address offsets (in binary) which are decoded to select the branch selector
within the corresponding byte range (in order to form a predicted fetch address for the subsequent clock
cycle). An "x" in the read addresses indicates a don't care position. Finally, the row labeled "Encoding
Addresses" lists the fetch address offsets (in binary) at which a branch instruction can end and still have the
branch selector for that byte range indicate the branch prediction corresponding to that branch instruction. For
example, branch selector position 2 can indicate the branch prediction for a branch instruction which ends at
either byte position 3 or 4. More particularly, a branch instruction which ends at byte position 2 is not
represented by the branch selector in branch selector position 2 (because the branch instruction begins in a
different byte range than that associated with branch selector position 2, and is therefore not being fetched if
the fetch address offset is within the byte range associated with branch selector position 2).

The "Read Addresses" row of table 76 illustrates that a relatively simple decoding of the fetch
address offset can be used to select the appropriate branch selector for that fetch address. The decoding for
branch selector positions 0 and 1 include each of the fetch address offset bits, but the decoding for the
remaining positions may exclude the least significant bit (since it is a don't care). A rapid decode and branch
selector selection may be achieved using the allocation of byte ranges illustrated in Fig. 4.

Turning now to Fig. 6, a first example 80 of branch selectors for the byte ranges shown in Figs. 4 and
5 is shown. Example 80 illustrates the use of the byte range including only byte O of a group of contiguous
instruction bytes. Example 80 shows an instruction INO ending at byte "E" of a first group of contiguous
instruction bytes, a predicted branch PB0 extended from byte "F" of the first group to byte 0 of a second
group of contiguous instruction bytes which are sequential to the first group, and an instruction IN1 beginning
at byte "1" of the second group.

Since branch instruction PB0 does not end until byte 0 of the second group, the second group needs
to be fetched from instruction cache 16. Therefore, the branch selector corresponding to bytes "E" and "F" of
the first group indicates sequential, thereby causing the second group to be fetched. The sequential fetch
address includes an offset portion set to zero (since bytes immediately subsequent to the last bytes of the first
group are being fetched). Therefore, the branch selector corresponding to byte "0" of the second group is
selected. The branch selector is coded to select the branch prediction corresponding to branch instruction
PBO.

If a bytes 0 and 1 of the second group formed a byte range similar to the other byte ranges shown in
Figs. 4 and 5, branch instruction PB0 would not be predictable. To allow for predictions of branches which

extend across groups of instruction bytes, the byte ranges are defined to include a byte range consisting of
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byte "0" in the present embodiment.

Turning now to Fig. 7, a second example 82 of branch selectors for the byte ranges shown in Figs. 4
and 5 is shown. Example 82 illustrates a situation in which a predicted branch instruction PBO is followed by
a return instruction RET. Branch instruction PBO ends at byte "4", which is within the byte range
corresponding to branch selector position 3 (i.e. byte "4" is not the last byte in the byte range). Therefore, the
branch selector at branch selector position 3 does not select the branch prediction for PB0, as noted above
regarding a branch instruction which ends within a byte range. The RET instruction does end at the last byte
of the byte range. Therefore, the branch selector for branch selector position 3 indicates the return instruction
(i.e. an encoding of "1" in example 82).

On the other hand, Fig. 8 illustrates an example 84 in which a return instruction is not predicted.
Example 84 includes a predicted branch instruction PBO, a return instruction RET, and an instruction IN1.
Branch instruction PBO ends at the last byte of the byte range corresponding to branch selector position 2, and
therefore the corresponding branch selector is encoded to select the branch prediction corresponding to branch
instruction PBO. The return instruction ends within the byte range corresponding to branch selector position
3, and therefore the corresponding branch selector does not indicate the return instruction. In this manner, if
instruction INO is indicated by the fetch address, the return instruction will not be erroneously predicted by the
branch selector at branch selector position 3. However, if the return instruction is the byte indicated by the
fetch address, an incorrect prediction results.

It is noted that the code sequence shown in example 84 may be uncommon, because often times
temporary variables are popped from the stack just prior to executing a return instruction. Therefore, a
predicted taken branch would not often immediately precede a return instruction.

Fig. 9 illustrates an example 86 of in which a return instruction may be mispredicted. In example 86,
a return instruction is followed immediately by a predicted branch instruction PB0. This code sequence may
again be infrequent, since the only way to execute branch instruction PBO is to branch directly to the
instruction from elsewhere in the code sequence. Also, the return instruction is only mispredicted in example
86 if branched to directly. If instruction INO is fetched and executed, the return instruction is correctly
predicted.

Turning now to Fig. 10, a portion of one embodiment of branch prediction unit 14 is shown. Other
embodiments of branch prediction unit 14 and the portion shown in Fig. 10 are contemplated. As shown in
Fig. 10, branch prediction unit 14 includes a branch prediction storage 90, a way multiplexor 92, a branch
selector multiplexor 94, a branch prediction multiplexor 96, a sequential/return multiplexor 98, a final
prediction multiplexor 100, an update logic block 102, and a decoder 104. Branch prediction storage 90 and
decoder 104 are coupled to a fetch address bus 106 from instruction cache 16. A fetch address concurrently
provided to instruction cache 16 is conveyed upon fetch address bus 106. Decoder block 104 provides
selection controls to branch selector multiplexor 94. Prediction controls for way multiplexor 92 are provided
via a way selection bus 108 from instruction cache 16. Way selection bus 108 provides the way of instruction
cache 16 which is storing the cache line corresponding to the fetch address provided on fetch address bus 106.

Additionally, a selection control is provided by decoder 104 based upon which portion of the cache line is
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being fetched. Way multiplexor 92 is coupled to receive the contents of each storage location within the row
of branch prediction storage 90 which is indexed by the fetch address upon fetch address bus 106. Branch
selector multiplexor 94 and branch prediction multiplexor 96 are coupled to receive portions of the output of
way multiplexor 92 as inputs. Additionally, the output of branch selector multiplexor 94 provides selection
controls for multiplexors 96, 98, and 100. Sequential/return multiplexor 98 selects between a sequential
address provided upon a sequential address bus 110 from instruction cache 16 and a return address provided
upon a return address bus 112 from a return stack. The output of multiplexors 96 and 98 is provided to final
prediction multiplexor 100, which provides a branch prediction bus 114 to instruction cache 16. Instruction
cache 16 uses the branch prediction provided upon branch prediction bus 114 as the fetch address for the
subsequent clock cycle. Update logic block 102 is coupled to branch prediction storage 90 via an update bus
116 used to update branch prediction information stored therein. Update logic block 102 provides updates in
response to a misprediction signalled via a mispredict bus 118 from functional units 24 and decode units 20.
Additionally, update logic block 102 provides updates in response to newly predecoded instruction indicated
by prefetch/predecode unit 12 upon a predecode bus 120.

In the present embodiment, branch prediction storage 90 is arranged with a number of ways equal to
the number of ways in instruction cache 16. For each way, a branch prediction entry is stored for each group
of contiguous instruction bytes existing within a cache line. In the embodiment of Fig. 10, two groups of
instruction bytes are included in each cache line. Therefore, branch prediction entry Py, is the branch
prediction entry corresponding to the first group of contiguous instruction bytes in the first way and branch
prediction entry Py, is the branch prediction entry corresponding to the second group of contiguous instruction
bytes in the first way. Similarly, branch prediction entry P,, is the branch prediction entry corresponding to
the first group of contiguous instruction bytes in the second way and branch prediction entry P), is the branch
prediction entry corresponding to the second group of contiguous instruction bytes in the second way, etc.
Each branch prediction entry Py, to P,, in the indexed row is provided as an output of branch prediction
storage 90, and hence as an input to way multiplexor 92. The indexed row is similar to indexing into a cache:
a number of bits which are not part of the offset portion of the fetch address are used to select one of the rows
of branch prediction storage 90. It is noted that branch prediction storage 90 may be configured with fewer
rows than instruction cache 16. For example, branch prediction storage 90 may include 1/4 the number of
rows of instruction cache 16. In such a case, the address bits which are index bits of instruction cache 16 but
which are not index bits of branch prediction storage 90 may be stored with the branch prediction information
and checked against the corresponding bits of the fetch address to confirm that the branch prediction
information is associated with the row of instruction cache 16 which is being accessed.

Way multiplexor 92 selects one of the sets of branch prediction information Py,-P, based upon the
way selection provided from instruction cache 16 and the group of instruction bytes referenced by the fetch
address. In the embodiment shown, for example, a 32 byte cache line is divided into two 16 byte groups.
Therefore, the fifth least significant bit of the fetch address is used to select which of the two groups contains
the fetch address. If the fifth least significant bit is zero, then the first group of contiguous instruction bytes is

selected. If the fifth least significant bit is one, then the second group of contiguous instruction bytes is
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selected. It is noted that the way selection provided upon way selection bus 108 may be a way prediction
produced by a branch prediction from the previous clock cycle, according to one embodiment. Alternatively,
the way selection may be generated via tag comparisons between the fetch address and the address tags
identifying the cache lines stored in each way of the instruction cache. It is noted that an address tag is the
portion of the address which is not an offset within the cache line nor an index into the instruction cache.

The selected branch prediction entry provided by way multipiexor 92 includes a set of branch
selectors corresponding to the group of contiguous instruction bytes, as well as branch predictions BP1 and
BP2. The branch selectors are provided to branch selector multiplexor 94, which selects one of the branch
selectors based upon selection controls provided by decoder 104. Decoder 104 decodes the offset of the fetch
address into the group of contiguous instruction bytes to select the corresponding branch selector (for
example, according to the "read address" row of table 76, in one embodiment). For example, if a group of
contiguous instruction bytes is 16 bytes, then decoder 104 decodes the four least significant bits of the fetch
address. In this manner, a branch selector is chosen.

The selected branch selector is used to provide selection controls to branch prediction multiplexor 96,
sequential/return muitiplexor 98, and final prediction multiplexor 100. In one embodiment, the encoding of
the branch selector can be used directly as the multiplexor select controls. In other embodiments, a logic
block may be inserted between branch selector multiplexor 94 and multiplexors 96, 98, and 100. For the
embodiment shown, branch selectors comprise two bits. One bit of the selected branch selector provides the
selection control for prediction multiplexor 96 and sequential/return multiplexor 98. The other bit provides a
selection control for final prediction multiplexor 100. A branch prediction is thereby selected from the
multiple branch predictions stored in branch prediction storage 90 corresponding to the group of contiguous
instruction bytes being fetched, the sequential address of the group of contiguous instruction bytes sequential
to the group of contiguous instruction bytes being fetched, and a return stack address from a return stack
structure. It is noted that multiplexors 96, 98, and 100 may be combined into a single 4 to 1 multiplexor for
which the selected branch selector provides selection controls to select between the two branch predictions
from branch prediction storage 90, the sequential address, and the return address.

The return stack structure (not shown) is used to store return addresses corresponding to subroutine
call instructions previously fetched by microprocessor 10. In one embodiment, the branch predictions stored
by branch prediction storage 90 include an indication that the branch prediction corresponds to a subroutine
call instruction. Subroutine call instructions are a subset of branch instructions which save the address of the
sequential instruction (the return address) in addition to redirecting the instruction stream to the target address
of the subroutine call instruction. For example, the in the x86 microprocessor architecture, the subroutine call
instruction (CALL) pushes the return address onto the stack indicated by the ESP register.

A subroutine return instruction is another subset of the branch instructions. The subroutine return
instruction uses the return address saved by the most recently executed subroutine call instruction as a target
address. Therefore, when a branch prediction includes an indication that the branch prediction corresponds to
a subroutine call instruction, the sequential address to the subroutine call instruction is placed at the top of the

return stack. When a subroutine return instruction is encountered (as indicted by a particular branch selector
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encoding), the address nearest the top of the return stack which has not previously been used as a prediction is
used as the prediction of the address. The address nearest the top of the return stack which has not previously
been used as a prediction is conveyed by the return stack upon return address bus 112 (along with the
predicted way of the return address, provided to the return stack similar to its provision upon way selection
bus 108. Branch prediction unit 14 informs the return stack when the return address is selected as the
prediction. Additional details regarding an exemplary return stack structure may be found in the commonly
assigned, co-pending patent application entitled: "Speculative Return Address Prediction Unit for a
Superscalar Microprocessor", Serial No. 08/550,296, filed October 30, 1995 by Mahalingaiah, et al. The
disclosure of the referenced patent application is incorporated herein by reference in its entirety.

The sequential address is provided by instruction cache 16. The sequential address identifies the next
group of contiguous instruction bytes within main memory to the group of instruction bytes indicated by the
fetch address upon fetch address bus 106. It is noted that, according to one embodiment, a way prediction is
supplied for the sequential address when the sequential address is selected. The way prediction may be
selected to be the same as the way selected for the fetch address. Alternatively, a way prediction for the
sequential address may be stored within branch prediction storage 90.

As mentioned above, update logic block 102 is configured to update a branch prediction entry upon
detection of a branch misprediction or upon detection of a branch instruction while predecoding the
corresponding group of contiguous instruction bytes in prefetch/predecode unit 12. The branch prediction
entry corresponding to each branch prediction may be stored in update logic block 102 as the prediction is
performed. A branch tag is conveyed along with the instructions being fetched (via a branch tag bus 122),
such that if a misprediction is detected or a branch instruction is detected during predecoding, the
corresponding branch prediction entry can be identified via the branch tag. In one embodiment, the branch
prediction entry as shown in Fig. 11 is stored, as well as the index of the fetch address which caused the
branch prediction entry to be fetched and the way in which the branch prediction entry is stored.

When a branch misprediction is detected, the corresponding branch tag is provided upon mispredict
bus 118 from either the functional unit 24 which executes the branch instruction or from decode units 20. If
decode units 20 provide the branch tag, then the misprediction is of the previously undetected type (e.g. there
are more branch instructions in the group than can be predicted using the corresponding branch predictions).
Decode units 20 detect mispredictions of unconditional branch instructions (i.e. branch instructions which
always select the target address). Functional units 24 may detect a misprediction due to a previously
undetected conditional branch instruction or due to an incorrect taken/not-taken prediction. Update logic 102
selects the corresponding branch prediction entry out of the aforementioned storage. In the case of a
previously undetected branch instruction, one of the branch predictions within the branch prediction entry is
assigned to the previously undetected branch instruction. According to one embodiment, the algorithm for
selecting one of the branch predictions to store the branch prediction for the previously undetected branch
instruction is as follows: If the branch instruction is a subroutine return instruction, the branch selector for the
instruction is selected to be the value indicating the return stack. Otherwise, a branch prediction which is

currently predicted not-taken is selected. If each branch prediction is currently predicted-taken, then a branch
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prediction is randomly selected.

The branch selector for the newly detected branch instruction is set to indicate the selected branch
prediction. Additionally, the branch selectors corresponding to byte ranges between the first branch
instruction prior to the newly detected branch instruction and the newly detected branch instruction are set to
the branch selector corresponding to the new prediction. Fig. 14 below describes one method for updating the
branch selectors. For a mispredicted taken prediction which causes the prediction to become predicted not-
taken, the branch selectors corresponding to the mispredicted prediction are set to the branch selector
corresponding to the byte subsequent to the mispredicted branch instruction. In this manner, a prediction for a
subsequent branch instruction will be used if the instructions are fetched again at a later clock cycle.

When prefetch/predecode unit 12 detects a branch instruction while predecoding a group of
contiguous instruction bytes, prefetch/predecode unit 12 provides the branch tag for the group of contiguous
instruction bytes if the predecoding is performed because invalid predecode information is stored in the
instruction cache for the cache line (case (i)). Alternatively, if the predecoding is being performed upon a
cache line being fetched from the main memory subsystem, prefetch/predecode unit 12 provides the address
of the group of contiguous instruction bytes being predecoded, the offset of the end byte of the branch
instruction within the group, and the way of the instruction cache selected to store the group (case (ii)). In
case (i), the update is performed similar to the branch misprediction case above. In case (ii), there is not yet a
valid branch prediction entry stored in branch prediction storage 90 for the group of instructions. For this
case, update logic block 102 initializes the branch selectors prior to the detected branch to the branch selector
selected for the detected branch. Furthermore, the branch selectors subsequent to the detected branch are
initialized to the sequential value. Alternatively, each of the branch selectors may be initialized to sequential
when the corresponding cache line in instruction cache 16 is allocated, and subsequently updated via detection
of a branch instructions during predecode in a manner similar to case (i).

Upon generation of an update, update logic block 102 conveys the updated branch prediction entry,
along with the fetch address index and corresponding way, upon update bus 116 for storage in branch
prediction storage 90. It is noted that, in order to maintain branch prediction storage 90 as a single ported
storage, branch prediction storage 90 may employ a branch holding register. The updated prediction
information is stored into the branch holding register and updated into the branch prediction storage upon an
idle cycle on fetch address bus 106. An exemplary cache holding register structure is described in the
commonly assigned, co-pending patent application entitled: "Delayed Update Register for an Array", Serial
No. 08/481,914, filed June 7, 1995, by Tran, et al., incorporated herein by reference in its entirety.

It is noted that a correctly predicted branch instruction may result in an update to the corresponding
branch prediction as well. A counter indicative of previous executions of the branch instruction (used to form
the taken/not-taken prediction of the branch instruction) may need to be incremented or decremented, for
example. Such updates are performed upon retirement of the corresponding branch prediction. Retirement is
indicated via a branch tag upon retire tag bus 124 from reorder buffer 32.

It is noted that the structure of Fig. 10 may be further accelerated through the use of a predicted

branch selector. The predicted branch selector is stored with each branch prediction entry and is set to the
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branch selector selected in a previous fetch of the corresponding group of contiguous instruction bytes. The
predicted branch selector is used to select the branch prediction, removing branch selector multiplexor 94
from the path of branch prediction generation. Branch selector multiplexor 94 is still employed, however, to
verify the selected branch selector is equal to the predicted branch selector. If the selected branch selector and
the predicted branch selector are not equal, then the selected branch selector is used to provide the correct
branch prediction during the succeeding clock cycle and the fetch of the incorrect branch prediction is
cancelled.

Turning now to Fig. 11, an exemplary branch prediction entry 130 employed by one embodiment of
the branch prediction unit 14 as shown in Fig. 10 is shown. Branch prediction entry 130 includes a set of
branch selectors 136, a first branch prediction (BP1) 132, and a second branch prediction (BP2) 134. Set of
branch selectors 136 includes a branch selector for each byte range of the group of contiguous instruction
bytes corresponding to branch prediction entry 130.

First branch prediction 132 is shown in an exploded view in Fig. 11. Second branch prediction 134
may be configured similarly. First branch prediction 132 includes an index 140 for the cache line containing
instruction bytes corresponding to the target address, and a way selection 144 for the cache line as well.
According to one embodiment, index 140 includes the offset portion of the target address, as well as the
index. Index 140 is concatenated with the tag of the way indicated by way selection 144 to form the branch
target address. Alternatively, the entire branch target address may be stored in index field 140. Way
prediction may be provided in addition to the entire branch target address, or way selection may be performed
using tag comparisons against the tags in the indexed row of instruction cache 16.

Additionally, a predictor 146 is stored for each branch prediction. Predictor 146 is incremented each
time the corresponding branch instruction is executed and is taken, and is decremented each time the
corresponding branch instruction is executed and is not-taken. The most significant bit of predictor 146 is
used as the taken/not-taken prediction. If the most significant bit is set, the branch instruction is predicted
taken. Conversely, the branch instruction is predicted not-taken if the most significant bit is clear. In one
embodiment, the prediction counter is a two bit saturating counter. The counter saturates when incremented at
binary '11' and saturates when decremented at a binary '01". In another embodiment, the predictor is a single
bit which indicates a strong (a binary one) or a weak (a binary zero) taken prediction. If a strong taken
prediction is mispredicted, it becomes a weak taken prediction. If a weak taken prediction is mispredicted, the
branch becomes predicted not taken and the branch selector is updated (i.e. the case of a mispredicted branch
that becomes not-taken). Finally, a call bit 148 is included in first branch prediction 132. Call bit 148 is
indicative, when set, that the corresponding branch instruction is a subroutine call instruction. If call bit 148 is
set, the current fetch address and way are stored into the return stack structure mentioned above.

Turning next to Fig. 12, a table 138 illustrating an exemplary branch selector encoding is shown. A
binary encoding is listed (most significant bit first), followed by the branch prediction which is selected when
the branch selector is encoded with the corresponding value. As table 138 illustrates, the least significant bit
of the branch selector can be used as a selection control for branch prediction multiplexor 96 and

sequential/return multiplexor 98. If the least significant bit is clear, then the first branch prediction is selected
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by branch prediction multiplexor 96 and the sequential address is selected by sequential/return multiplexor 98.
On the other hand, the second branch prediction is selected by branch prediction multiplexor 96 and the return
address is selected by sequential/return multiplexor 98 if the least significant bit is clear. Furthermore, the
most significant bit of the branch selector can be used as a selection control for final prediction multiplexor
100. If the most significant bit is set, the output of branch prediction multiplexor 96 is selected. If the most
significant bit is clear, the output of sequential/return multiplexor 98 is selected.

Turning next to Fig. 13, a flowchart is shown illustrating the generation of a valid mask for a group
of contiguous instruction bytes fetched from instruction cache 16 according to the byte ranges defined in Figs.
4 and 5. The valid mask includes a bit for each instruction byte within the group, indicating whether or not
the byte is part of the predicted instruction stream. Valid bits within the mask are set between the byte
selected by the offset portion of the fetch address and the branch instruction being predicted by the selected
branch prediction. Those bytes comprise the instructions being fetched from the group of contiguous
instruction bytes read from instruction cache 16. Bytes prior to the offset of the fetch address are not being
fetched, and bytes subsequent to the predicted taken branch instruction are not being fetched either. The end
of the branch instruction is approximately located by the last instance of the corresponding branch selector.
However, an adjustment may be made to cover the last byte of the branch instruction in cases in which the
branch instruction ends within a byte range.

The current branch selector (i.e. the branch selector selected by branch prediction unit 14 by
decoding the fetch address) is XNOR'd with the branch selectors corresponding to the group of contiguous
instruction bytes (step 150), thereby creating a preliminary mask including one bit per byte range. Each byte
range corresponding to a branch selector equal to the current branch selector is represented by a set bit in the
preliminary mask, and byte ranges including different branch selectors than the current branch selector are
represented by a clear bit within the preliminary mask. A first mask is created from the preliminary mask by
duplicating each bit in the preliminary mask which corresponds to a byte range having more than one byte
(i.e. two bytes in the present embodiment — step 152). Generally, the bit is copied until the total number of
bits representing the byte range is equal to the number of bytes within that byte range. Additionally, a second
mask is created by right shifting the first mask (step 154).

If the predicted taken branch instruction ends within a byte range (as opposed to the end of the byte
range), then the valid mask is created by ORing the first mask and the second mask (decision block 156 and
step 158). In this manner, bytes within the byte range in which the branch instruction ends which are part of
the branch instruction are validated. On the other hand, if the branch instruction ends at the end of a byte
range then the branch selector for that byte range indicates the branch instruction. In this case, the first mask
is correct without modification using the second mask. Therefore, the first mask is selected as the valid mask
(step 160).

Turning now to Fig. 14, a flowchart depicting the steps employed to update the branch selectors of a
group of contiguous instruction bytes in response to a mispredicted branch instruction is shown. Updating
due to a branch instruction discovered during predecoding may be performed similarly. The misprediction

may be the result of detecting a branch instruction for which prediction information is not stored in branch
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prediction storage 90, or may be the result of an incorrect taken/not-taken prediction which causes the
corresponding predictor to indicate not-taken.

Upon detection of the misprediction, branch prediction unit 14 uses an "end pointer": the offset of
the end byte of the mispredicted branch instruction within the corresponding group of contiguous instruction
bytes. Additionally, the branch prediction entry is selected for update using the branch tag received in
response to the misprediction. Branch prediction unit 14 decodes the end pointer into an update mask (step
170). The update mask comprises a bit for each byte range within the group of contiguous instruction bytes.
Bits corresponding to byte ranges prior to the byte range including the branch instruction's end byte are set
(and the bit corresponding to the byte range including the branch instruction's end byte is set if the end byte is
the last byte within the byte range), and the remaining bits are clear. Therefore, the update mask identifies
each byte range prior to and including the branch instruction.

Branch prediction unit 14 identifies the current branch selector. For mispredicted taken/not-taken
predictions, the current branch selector is the branch selector corresponding to the mispredicted branch
instruction. For misprediction due to an undetected branch, the current branch selector is the branch selector
corresponding to the byte range including the end byte of the undetected branch instruction. The current
branch selector is XNOR'd with each of the branch selectors to create a branch mask (step 172). The branch
mask includes bits which are set for each byte range having a branch selector which matches the current
branch selector and bits which are clear for each byte range having a branch selector which does not match the
current branch selector.

The update mask created in step 170 and the branch mask created in step 172 are subsequently
ANDed, producing a final update mask (step 174). The final update mask includes bits which are set for each
byte range of the group of contiguous instruction bytes which is to be updated to the new branch selector. For
a mispredicted taken branch, the new branch selector is the branch selector of the byte range subsequent to the
mispredicted taken branch instruction. For an undetected branch, the new branch selector is the branch
selector indicating the branch prediction storage assigned to the previously undetected branch by update logic
block 102.

An extended mask is also generated (steps 176 and 178). The extended mask indicates which branch
selectors are to be erased because the branch prediction corresponding to the branch selector has been
reallocated to the newly discovered branch instruction or because the branch prediction now indicates not
taken. The extended mask is generated by first creating a second branch mask similar to the branch mask,
except using the new branch selector instead of the current branch selector (i.e. the mask is created by
XNORing the branch selectors corresponding to the group of contiguous instruction bytes with the new
branch selector (step 176)). The resulting mask is then ANDed with the inversion of the final update mask to
create the extended mask (step 178). Branch selectors corresponding to bits in the extended mask which are
set are updated to indicate the branch selector of the byte range immediately subsequent to the last byte range
for which a bit in the extended mask is set. In this manner, the branch prediction formerly indicated by the
branch selector is erased and replaced with the following branch selector. During a step 180, the branch

selectors are updated in response to the final update mask and the extended mask.
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Turning next to Fig. 15, a diagram illustrating instruction bytes 50, regions 58, 60, and 62, and
another embodiment of a set of branch selectors 190 is illustrated. Set 190 corresponds to a set of byte ranges
in which the initial byte range and final byte range each include a single byte, and other ranges include two
bytes. Set 190 may be used as an alternative byte range allocation to the byte ranges allocated in Fig. 4.
Many other byte range allocations are possible and contemplated in various embodiments. Fig. 16 is a table
192 similar to table 76. Table 192 illustrates byte positions, branch selector positions, read addresses and
encoding addresses for the byte ranges illustrated in Fig. 15.

Turning now to Fig. 17, a computer system 200 including microprocessor 10 is shown. Computer
system 200 further includes a bus bridge 202, a main memory 204, and a plurality of input/output (I/O)
devices 206A-206N. Plurality of I/O devices 206A-206N will be collectively referred to as I/O devices 206.
Microprocessor 10, bus bridge 202, and main memory 204 are coupled to a system bus 208. 1/O devices 206
are coupled to an I/O bus 210 for communication with bus bridge 202.

Bus bridge 202 is provided to assist in communications between I/O devices 206 and devices coupled
to system bus 208. I/O devices 206 typically require longer bus clock cycles than microprocessor 10 and
other devices coupled to system bus 208. Therefore, bus bridge 202 provides a buffer between system bus
208 and input/output bus 210. Additionally, bus bridge 202 translates transactions from one bus protocol to
another. In one embodiment, input/output bus 210 is an Enhanced Industry Standard Architecture (EISA) bus
and bus bridge 202 translates from the system bus protocol to the EISA bus protocol. In another embodiment,
input/output bus 210 is a Peripheral Component Interconnect (PCI) bus and bus bridge 202 translates from the
system bus protocol to the PCI bus protocol. It is noted that many variations of system bus protocols exist.
Microprocessor 10 may employ any suitable system bus protocol.

/O devices 206 provide an interface between computer system 200 and other devices external to the
computer system. Exemplary I/O devices include a modem, a serial or parallel port, a sound card, etc. /O
devices 206 may also be referred to as peripheral devices. Main memory 204 stores data and instructions for
use by microprocessor 10. In one embodiment, main memory 204 includes at least one Dynamic Random
Access Memory (DRAM) and a DRAM memory controller.

It is noted that although computer system 200 as shown in Fig. 17 includes one bus bridge 202, other
embodiments of computer system 200 may include multiple bus bridges 202 for translating to multiple
dissimilar or similar I/O bus protocols. Still further, a cache memory for enhancing the performance of
computer system 200 by storing instructions and data referenced by microprocessor 10 in a faster memory
storage may be included. The cache memory may be inserted between microprocessor 10 and system bus
208, or may reside on system bus 208 in a "lookaside" configuration. It is still further noted that the functions
of bus bridge 202, main memory 204, and the cache memory may be integrated into a chipset which interfaces
to microprocessor 10.

It is still further noted that the present discussion may refer to the assertion of various signals. As
used herein, a signal is "asserted" if it conveys a value indicative of a particular condition. Conversely, a
signal is "deasserted" if it conveys a value indicative of a lack of a particular condition. A signal may be

defined to be asserted when it conveys a logical zero value or, conversely, when it conveys a logical one
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value. Additionally, various values have been described as being discarded in the above discussion. A value
may be discarded in a number of manners, but generally involves modifying the value such that it is ignored
by logic circuitry which receives the value. For example, if the value comprises a bit, the logic state of the
value may be inverted to discard the value. If the value is an n-bit value, one of the n-bit encodings may
indicate that the value is invalid. Setting the value to the invalid encoding causes the value to be discarded.
Additionally, an n-bit value may include a valid bit indicative, when set, that the n-bit value is valid.
Resetting the valid bit may comprise discarding the value. Other methods of discarding a value may be used
as well.

Table 1 below indicates fast path, double dispatch, and MROM instructions for one embodiment of

microprocessor 10 employing the x86 instruction set:

Table 1: x86 Fast Path, Double Dispatch, and MROM Instructions

X86 Instruction Instruction Category
AAA MROM
AAD MROM
AAM MROM
AAS MROM
ADC fast path
ADD fast path
AND fast path
ARPL MROM
BOUND MROM
BSF fast path
BSR fast path
BSWAP MROM
BT fast path
BTC fast path
BTR fast path
BTS fast path
CALL fast path/double dispatch
CBW fast path
CWDE fast path
CLC fast path
CLD fast path
CLI MROM
CLTS MROM
CMC fast path
CMP fast path
CMPS MROM
CMPSB MROM
CMPSW MROM
CMPSD MROM
CMPXCHG MROM
CMPXCHGSB MROM
CPUID MROM
CWD MROM
CcwWQ MROM
DDA MROM
DAS MROM
DEC fast path
DIV MROM
ENTER MROM
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HLT MROM

IDIV MROM

IMUL double dispatch
IN MROM

INC fast path

INS MROM

INSB MROM

INSW MROM

INSD MROM

INT MROM

INTO MROM

INVD MROM
INVLPG MROM

IRET MROM

IRETD MROM

Jee fast path

ICXZ double dispatch
JECXZ double dispatch
JMP fast path

LAHF fast path

LAR MROM

LDS MROM

LES MROM

LFS MROM

LGS MROM

LSS MROM

LEA fast path
LEAVE double dispatch
LGDT MROM

LIDT MROM

LLDT MROM
LMSW MROM

LODS MROM
LODSB MROM
LODSW MROM
LODSD MROM

LOOP double dispatch
LOOPcond MROM

LSL MROM

LTR MROM

MOV fast path
MOVCC fast path
MOV.CR MROM
MOV.DR MROM

MOVS MROM
MOVSB MROM
MOVSwW MROM
MOVSD MROM
MOVSX fast path
MOVZX fast path

MUL double dispatch
NEG fast path

NOP fast path

NOT fast path

OR fast path

ouT MROM

OUTS MROM
OUTSB MROM
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OUTSW MROM
OUTSD MROM
POP double dispatch
POPA MROM
POPAD MROM
POPF MROM
POPFD MROM
PUSH fast path/double dispatch
PUSHA MROM
PUSHAD MROM
PUSHF fast path
PUSHFD fast path
RCL MROM
RCR MROM
ROL fast path
ROR fast path
RDMSR MROM
REP MROM
REPE MROM
REPZ MROM
REPNE MROM
REPNZ MROM
RET double dispatch
RSM MROM
SAHF fast path
SAL fast path
SAR fast path
SHL fast path
SHR fast path
SBB fast path
SCAS double dispatch
SCASB MROM
SCASW MROM
SCASD MROM
SETcc fast path
SGDT MROM
SIDT MROM
SHLD MROM
SHRD MROM
SLDT MROM
SMSW MROM
STC fast path
STD fast path
STI MROM
STOS MROM
STOSB MROM
STOSW MROM
STOSD MROM
STR MROM
SUB fast path
TEST fast path
VERR MROM
VERW MROM
WBINVD MROM
WRMSR MROM
XADD MROM
XCHG MROM
XLAT fast path
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XLATB fast path
XOR fast path

Note: Instructions including an SIB byte are also considered double dispatch instructions.

In accordance with the above disclosure, a microprocessor has been described which uses branch.
5 selectors to select a branch prediction for use in creating a subsequent fetch address. In order to provide a
rapid selection of branch selectors, each branch selector is associated with a byte range, wherein the largest
byte range is equal to the shortest branch instruction (in one embodiment). Therefore, a relatively minimal
number of branch selectors may be provided while still providing for a highly accurate and rapid branch
prediction.
10 Numerous variations and modifications will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all

such variations and modifications.
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WHAT IS CLAIMED:
1. A branch prediction mechanism comprising:

a branch prediction storage coupled to receive a fetch address, wherein said fetch address
corresponds to a group of contiguous instruction bytes being fetched from an instruction
cache, and wherein said group of contiguous instruction bytes comprises a plurality of byte
ranges, and wherein said branch prediction storage is configured to store a plurality of
branch selectors corresponding to said group of contiguous instruction bytes, and wherein
each one of said plurality of branch selectors corresponds to a different one of said plurality

of byte ranges, and wherein each one of said plurality of branch selectors identifies a branch

prediction; and

a selection device configured to select a selected one of said plurality of branch selectors, said
selected one of said plurality of branch selectors corresponding to a selected one of said

plurality of byte ranges which includes a byte identified by said fetch address.

2. The branch prediction mechanism as recited in claim 1 wherein said byte identified by said fetch address is

a byte located by a set of least significant bits of said fetch address.

3. The branch prediction mechanism as recited in claim 1 wherein a particular one of said plurality of byte
ranges includes a largest number of said group of contiguous instruction bytes as compared to remaining ones

of said plurality of byte ranges.

4. The branch prediction mechanism as recited in claim 3 wherein said largest number comprises a number of

bytes within a shortest branch instruction exclusive of a return instruction.

5. The branch prediction mechanism as recited in claim 4 wherein said shortest branch instruction is a

member of a variable byte length instruction set.

6. The branch prediction mechanism as recited in claim 1 wherein a particular one of said plurality of byte

ranges includes an initial one of said group of contiguous instruction bytes.

7. The branch prediction mechanism as recited in claim 6 wherein said initial one of said group of contiguous
bytes is identified by the numerically smallest address of the addresses which identify bytes within said group

of contiguous instruction bytes.
8. The branch prediction mechanism as recited in claim 7 wherein said particular one of said plurality of byte
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ranges includes only said initial one of said group of instruction bytes.

9. The branch prediction mechanism as recited in claim 1 wherein said branch prediction identified by said
selected one of said plurality of branch selectors corresponds to a branch instruction within said group of

contiguous instruction bytes.

10. The branch prediction mechanism as recited in claim 9 wherein said branch instruction is subsequent to

said byte identified by said fetch address.
11. The branch prediction mechanism as recited in claim 10 wherein instructions within said group of

contiguous instruction bytes prior to said branch instruction and subsequent to said byte identified by said

fetch address exclude other predicted-taken branch instructions.
12. A method for performing branch prediction comprising:
storing a plurality of branch selectors corresponding to a group of contiguous instruction bytes, each
of said plurality of branch selectors corresponding to a different byte range within said
group of contiguous instruction bytes and identifying a branch prediction to be selected if a

byte within said different byte range is fetched;

fetching one or more of said group of contiguous instruction bytes from an instruction cache using a

fetch address;
selecting one of said plurality of branch selectors in response to said fetch address; and
selecting said branch prediction identified by said one of said plurality of branch selectors.

13. The method as recited in claim 12 wherein said selecting one of said plurality of branch selectors

comprises decoding a plurality of least significant bits of said fetch address.

14. The method as recited in claim 12 wherein a largest one of said different byte ranges includes a number of

bytes equal to a number of bytes within a shortest branch instruction exclusive of a return instruction.

15. The method as recited in claim 14 wherein each of said different byte ranges include said number of bytes
within said largest one of said different byte ranges except for an initial byte range including an initial byte of
said group of contiguous instruction bytes and a second byte range.

16. The method as recited in claim 15 wherein said initial byte range includes only said initial byte.
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17. The method as recited in claim 15 wherein said second range includes a byte contiguous to said initial

byte within said group of contiguous instruction bytes.

18. The method as recited in claim 15 wherein said second range includes a last byte within said group of

contiguous instruction bytes.

19. A microprocessor comprising:

an instruction cache coupled to receive a fetch address and to provide a group of contiguous

instruction bytes in response to said fetch address; and

a branch prediction unit coupled to receive said fetch address concurrently with said instruction
cache, wherein said branch prediction unit is configured to store a plurality of branch
selectors corresponding to said group of contiguous instruction bytes, and wherein each of
said plurality of branch selectors corresponds to a corresponding one of a plurality of byte
ranges within said group of contiguous instruction bytes, and wherein said branch prediction
unit is configured to select one of said plurality of branch selectors in response to said fetch
address and to predict a subsequent fetch address using a branch prediction identified by

said one of said plurality of branch selectors.

20. The microprocessor as recited in claim 19 wherein said branch prediction corresponds to a branch

instruction within said group of contiguous instruction bytes.
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