

(12)

Oversættelse af
europæisk patentskriftPatent- og
Varemærkestyrelsen

(51) Int.Cl.: **C 07 D 471/04 (2006.01)** **A 61 K 31/437 (2006.01)** **A 61 P 29/00 (2006.01)**
A 61 P 35/00 (2006.01)

(45) Oversættelsen bekendtgjort den: **2018-09-17**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2018-06-06**

(86) Europæisk ansøgning nr.: **12832784.8**

(86) Europæisk indleveringsdag: **2012-12-12**

(87) Den europæiske ansøgnings publiceringsdag: **2014-10-22**

(86) International ansøgning nr.: **IB2012003012**

(87) Internationalt publikationsnr.: **WO2013088256**

(30) Prioritet: **2011-12-12 IN 4329CH2011**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Dr. Reddy's Laboratories Ltd., 8-2-337, Road No. 3 , Banjara Hills, Hyderabad 500 034, Indien**

(72) Opfinder: **TEHIM, Ashok, 246 N. Walnut St., Ridgewood, NJ 07450, USA**
SASMAL, Pradip Kumar, Block 2B/Flat 706, SMR Vinay City, Miyapur, Hyderabad 500 049, Andhra Pradesh, Indien
AHMED, Shahadat, House No. Q1002, Purva Fountain Square, Marathalli, Bangalore 560 037, Karnataka, Indien
PARADKAR, Vidyadhar, 3 Pine Ridge Drive, Somerville, NJ 08876, USA
DATTATREYA, Prasanna M., Flat 101, 100 H.I.G., Mayuri Enclave, Mayuri Nagar, Miyapur, Hyderabad 500 049, Andhra Pradesh, Indien
MAVINAHALLI, Nanjegowda Jagadeesh, No.1742, 12th Main, 31st Cross, Banashankari 2nd Stage, Bangalore 560 070, Karnataka, Indien

(74) Fuldmægtig i Danmark: **AWA Denmark A/S, Strandgade 56, 1401 København K, Danmark**

(54) Benævnelse: **Substituerede pyrazol[1,5-a]pyridiner som tropomyosinreceptorkinase(TRK)-inhibitorer.**

(56) Fremdragne publikationer:
WO-A1-2012/116217
WO-A2-2007/065664
US-A1- 2011 195 948

DK/EP 2791138 T3

DESCRIPTION

TECHNICAL FIELD

[0001] The present application relates to a series of substituted pyrazolo[1,5-a]pyridine compounds. The present application is further directed to use such compounds as tropomyosin receptor kinase (Trk) family protein kinase inhibitors. The present application also describes method of making such compounds and pharmaceutical compositions comprising such compounds.

BACKGROUND

[0002] TrkA, TrkB and TrkC, which make up the the Trk receptor family, are high affinity receptor tyrosine kinases activated by a group of soluble growth factors called neurotrophins (NT) (Curr Opin Neurobiol, 2001, 11, 272-280).

[0003] Inhibitors of the Trk/neurotrophin pathway have been demonstrated to be effective in numerous animal models of pain. For example, sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain (Bone, 2011, 48(2), 389-398). Administration ofNGF receptor (TrkA) inhibitor K252a showed significant suppression of mechanical hyperalgesia (relevant to the pathogenesis of myofascial pain syndrome (MPS)) in animal models (J. Pain, Article in Press, 2011, 12(10), 1059-1068). Antagonistic NGF and TrkA antibodies have been shown to be efficacious in inflammatory and neuropathic pain animal models (Neuroscience, 1994, 62,327-331; J. Pain, 2004, 5, 157-163; Nat. Med., 1995, 1, 774-780; Pain, 2005, 116, 8-16; Pain, 2003, 105, 489-497) and neuropathic pain animal models (Eur. J. Neurosci., 1999, 11, 837-846; Pain, 1999, 79, 265-274 ; Pain, 1999, 81, 245-255; Neurosci. Lett., 2003, 336, 117-120).

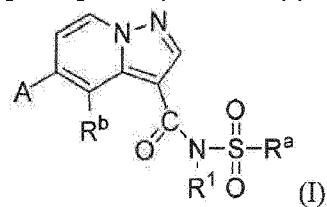
[0004] NGF secreted by tumor cells and tumor invading macrophages has been shown to directly stimulate TrkA located on peripheral pain fibers. It has also been demonstrated in various tumor models in both mice and rats that neutralizing NGF with a monoclonal antibody inhibits cancer related pain. Further, activation of the BDNF/TrkB pathway has been implicated in numerous studies as a modulator of various types of pain including inflammatory pain (J. Physiol. 2005, 569:685-95), neuropathic pain (Proc. Natl. Acad. Sci. USA 1999, 96:7714-18) and surgical pain (Molecular Pain, 2008, 4(28), 1-11). Since TrkA kinase has been demonstrated to serve as a mediator of NGF driven biological responses, inhibitors of TrkA and/or other Trk kinases may provide an effective treatment for various pain conditions.

[0005] Inhibition of the neurotrophin/Trk pathway with NGF antibodies or non-selective small molecule inhibitors of Trk A, B and C has been shown to be effective in treatment of pre-clinical models of inflammatory diseases such as asthma (Pharmacol. Therapeut., 2008, 117(1), 52-

76), interstitial cystitis (J. Urology, 2005, 173(3), 1016-21), inflammatory bowel diseases including ulcerative colitis and Crohn's disease (Gut, 2000, 46(5), 670-678) and inflammatory skin diseases such as atopic dermatitis (Arc Dermatol Res., 2006, 298(1), 31-37), eczema and psoriasis (J. Investig Dermatol., 2004, 122(3), 812-819).

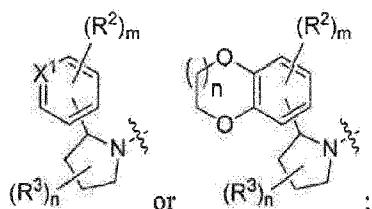
[0006] The current treatment regimes for pain conditions utilize several classes of compounds. The opiates apart from being potentially addictive have several adverse effects such as emesis, constipation, dose-related respiratory depression. Nonsteroidal anti-inflammatory analgesics (NSAID) also have drawbacks such as gastric ulceration, dyspepsia and insufficient efficacy in treating severe pain. Accordingly, there is a continuing need for new and more effective treatments for the relief of pain, especially chronic pain. Several classes of small molecule inhibitors of Trk kinases said to be useful for treating pain or cancer are known (Expert Opin. Ther. Patents, 2009, 19(3), 305-319).

[0007] U.S. Publication No. 20110195948 describes substituted pyrazolo[1,5-a]pyrimidine compounds as Trk kinase inhibitors.


[0008] JP Publication No. 2003231687 describes a series of pyrazolyl condensed cyclic compounds as Trk inhibitors.

[0009] PCT Publication No. 200505427 describes compounds containing a 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole bicyclic scaffold as TrkA inhibitors.

[0010] PCT Publication No. 2004011461 describes a series of isothiazole derivatives as Trk inhibitors.


SUMMARY

[0011] The present applications relates to pyrazolo[1,5-a]pyridine compounds of formula (I),

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein

A is

X_1 is CH or N;

R^1 represents hydrogen or $-(C_1-C_6)alkyl$;

R^2 is independently selected from hydrogen, halogen, cyano, $-(C_1-C_6)alkyl$, $halo(C_1-C_6)alkyl$ -, $halo(C_1-C_6)alkoxy$ -, phenyl optionally substituted with 1 to 3 halogens or an optionally substituted $-O$ -heterocyclyl wherein the optional substituent is selected from alkyl, $-OR^i$ or $C(O)N(R^i)_2$;

when X^1 is CH, optionally two R^2 s present on any two adjacent carbon atoms combine to form a 5 to 7 membered heterocyclic ring;

R^3 is independently selected from halogen, cyano, $-OR^i$, $-C(O)N(R^i)_2$ or two R^3 s together with the carbon atom they are attached form a $(C_3-C_7)cycloalkyl$ group spiro attached to pyrrolidine; or two R^3 when they are attached to adjacent carbon atoms form a $(C_3-C_7)cycloalkyl$ ring fused to the pyrrolidine;

R^a is selected from

1. (i) a group selected from optionally substituted $-(C_1-C_6)alkyl$, $hydroxy(C_1-C_6)alkyl$ - or $-(C_1-C_6)alkyl-(C_1-C_6)alkoxy$ wherein the optional susbstituent is selected from cyano, halogen or $-(C_6-C_{12})aryl$,
2. (ii) an optionally substituted $-(C_3-C_{10})cycloalkyl$ wherein the optional substituent is selected from cyano, $-(C_1-C_6)alkyl$, hydroxyl, halogen or $-R^s$,
3. (iii) an optionally susbsituted $-(C_6-C_{12})aryl$ wherein the optional substituent is selected from cyano, hydroxyl, halogen, $-(C_1-C_6)alkyl$ or $-R^r$
4. (iv) an optionally substituted 5 to 10 membered heterocyclyl whrein the optional substituent is selected from cyano, hydroxyl, halogen or $-(C_1-C_6)alkyl$,
5. (v) an optionally substituted 5 to 10 membered heteroaryl wherein the optional substituent is selected from cyano, oxo ($=O$), hydroxyl, halogen, $-(C_1-C_6)alkyl$, $-(C_1-C_6)alkoxy$, $-NR^cR^d$ or $-R^r$,
6. (vi) $-NR^4R^5$,
7. (vii) $-(C_1-C_6)alkyl-(C_6-C_{12})aryl$;

R^b represents hydrogen or halogen;

R^4 is selected from hydrogen, $-(C_1-C_6)alkyl$, $-(C_3-C_{10})cycloalkyl$, $hydroxy(C_1-C_6)alkyl$ -, $alkoxy(C_1-C_6)alkyl$ -, $halo(C_1-C_6)alkyl$ - or $-(C_1-C_6)alkyl-(C_3-C_{10})cycloalkyl$;

R^5 is selected from from hydrogen or $-(C_1-C_6)alkyl$ or $-(C_1-C_6)alkyl-(C_3-C_{10})cycloalkyl$;

Alternatively R⁴ and R⁵ together with the nitrogen atom to which they are attached may form an optionally substituted 5 to 10 membered heterocyclic ring optionally containing 1-2 additional heteroatoms or groups selected from -O-, -S-, -N-, -C(=O)-, -S(=O)- or -S(=O)₂-, wherein the optional substituent is selected from hydroxyl, -(C₁-C₆)alkyl, -C(=O)-(C₁-C₆)alkyl, mesyl or COOR^e;

R^c and R^d are independently selected from hydrogen or -(C₁-C₆)alkyl;

R^e is selected from hydrogen or alkyl;

Rⁱ is hydrogen, -(C₁-C₆)alkyl, halo(C₁-C₆)alkyl-, -(C₁-C₆)alkyl-(C₁-C₆)alkoxy, -(C₃-C₁₀)cycloalkyl, optionally substituted -(C₁-C₆)alkyl-(C₃-C₁₀)cycloalkyl wherein the optional substituent is halogen or -(C₁-C₆)alkyl substituted with 1 to 3 hydroxy groups,;

R^r is independently selected from a 5 to 10 membered heterocycll or a 5 to 10 membered heteroaryl, wherein optional substituent is selected from hydroxyl, halogen, -(C₁-C₆)alkyl or -(C₁-C₆)alkoxy;

R^s is an optionally susbtituted -(C₁-C₆)alkyl-(C₆-C₁₀)aryl, wherein the optional substituent is halogen;

m is independently represents 0, 1, 2, 3 or 4; and

n is independently represents 0, 1, 2, or 3.

[0012] The present application further relates to methods of treating or preventing conditions, diseases and/or disorders associated with abnormal or deregulated Trk kinase activity by administereing effective amount of a compound of formula (I), to a patient in need thereof (not claimed). One aspect of the present application provides methods of treating or preventing conditions, diseases and/or disorders associated with abnormal or deregulated TrkA kinase activity by administereing effective amount of a compound of formula (I), to a patient in need thereof (not claimed). One aspect of the present application provides conditions, diseases and/or disorders treatable or preventable by inhibition of Trk kinase activity, such as pain, inflammation, cancer, restenosis, atherosclerosis, psoriasis, thrombosis, psoriatic arthritis, rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, fibrosis, neurodegenerative disease or a disease, disorder or injury relating to dysmyelination or demyelination by administering a therapeutically effective amount of compound of formula (I), to a patient in need thereof.

[0013] The present application also relates to pharmaceutical compositions comprising effective amount of a compound of formula (I), and a pharmaceutically acceptable carrier or diluent, and the use of such compositions in the treatment and/or prevention of diseases

associated with inhibiting TrkA in a patient in need thereof, such as pain, inflammation, cancer, restenosis, atherosclerosis, psoriasis, thrombosis, psoriatic arthritis, rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, fibrosis, neurodegenerative disease, a disease, disorder, or injury relating to dysmyelination or demyelination or certain infectious diseases such as *Trypanosoma cruzi* infection

DETAILED DESCRIPTION

[0014] As used herein, 'halogen or halo' group refers to fluorine, chlorine, bromine or iodine.

[0015] As used herein, '(C₁-C₆)alkyl' refers to linear or branched alkyl group with 1 to 6 carbon atoms. Exemplary (C₁-C₆)alkyl group includes, but is not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-pentyl, iso-pentyl and the like. (C₁-C₃)alkyl refers to linear or branched alkyl group having one to three carbon atoms such as methyl, ethyl propyl or iso-propyl.

[0016] As used herein, 'hydroxy(C₁-C₆)alkyl' refers to a group wherein at least one hydrogen atom of an (C₁-C₆)alkyl group is replaced by a hydroxyl group. (C₁-C₆)alkyl group is as defined above. Representative examples of hydroxy(C₁-C₆)alkyl groups include one or more of, but are not limited to hydroxymethyl, hydroxyethyl and the like. Unless otherwise specified, a hydroxy(C₁-C₆)alkyl group is having 1 to 6 carbon atoms. As used herein, 'halo(C₁-C₆)alkyl', in each occurrence, independently means at least one hydrogen atom of an (C₁-C₆)alkyl group is replaced by a halogen group. Halogen and (C₁-C₆)alkyl group are as defined above. Representative examples of halo(C₁-C₆)alkyl groups include one or more of, but are not limited to fluoromethyl, difluoromethyl, fluoroethyl, difluoroethyl, trifluoroethyl, fluoropropyl, difluoropropyl, trifluoropropyl and the like.

[0017] As used herein '(C₃-C₁₀)cycloalkyl' refers to a cyclic alkyl group which may be mono, bicyclic, polycyclic, or a fused/bridged ring system having 3 to 10 carbon atoms. Exemplary cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like. Typical bridged cycloalkyls include, but are not limited to adamantlyl, noradamantlyl, bicyclo[1.1.0]butanyl, norbornyl(bicyclo[2.2.1]heptanyl), and the like.

[0018] As used herein, two R³s when they are attached two adjacent carbon atoms form (C₃-C₇)cycloalkyl spiro attached to pyrrolidine are selected from cyclopropyl, cyclobutyl and the like.

[0019] As used herein, '(C₁-C₆)alkyl-(C₃-C₁₀)cycloalkyl' refers to a group wherein (C₁-C₆)alkyl group is optionally substituted with atleast one (C₃-C₁₀)cycloalkyl, wherein (C₁-C₆)alkyl and (C₃-C₁₀)cycloalkyl are as defined above. Exemplary (C₁-C₆)alkyl-(C₃-C₁₀)cycloalkyl groups

include methyl-cyclobutyl, ethyl-cyclobutyl and the like.

[0020] As used herein, '(C₁-C₆)alkoxy' refers to an -O-(C₁-C₆)alkyl group, wherein (C₁-C₆)alkyl group is as defined above. Exemplary (C₁-C₆)alkoxy groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, t-butoxy, and the like. (C₁-C₃)alkoxy refers to an alkoxy group having one to three carbon atoms, such as methoxy, ethoxy, propoxy or isopropoxy.

[0021] As used herein, 'halo(C₁-C₆)alkoxy' refers to a group wherein atleast one hydrogen atom of an (C₁-C₆)alkoxy group is replaced by a halogen group. Halogen and (C₁-C₆)alkoxy group are as defined above. Representative examples of halo(C₁-C₆)alkoxy groups include one or more of, but are not limited to fluoromethoxy, difluoromethoxy, fluroethoxy, difluoroethoxy, trifluoroethoxy, fluoropropoxy, difluoropropoxy, trifluoropropoxy and the like.

[0022] As used herein, '(C₆-C₁₂)aryl' refers to a monocyclic or polycyclic aromatic ring system having 6 to 12 carbon atoms. Exemplary aryl groups include, but are not limited to, phenyl, naphthyl, and the like.

[0023] As used herein, 'aralkyl' refers to an (C₁-C₆)alkyl group substituted with atleast one (C₆-C₁₂)aryl group, wherein (C₁-C₆)alkyl and (C₆-C₁₂)aryl groups are as defined above. Exemplary aralkyl groups include, but are not limited to, benzyl, ethyl-phenyl and the like. (C₁-C₃)alkyl-(C₆-C₁₂)aryl groups refers to an (C₁-C₃)alkyl group substituted with atleast one (C₆-C₁₂)aryl group, wherein (C₁-C₃) represents an alkyl group having 1 to 3 carbon atoms and (C₆-C₁₂)aryl group is as defined above. Exemplary (C₁-C₃)alkyl-(C₆-C₁₂)aryl groups include methyl-phenyl, ethyl-phenyl and the like.

[0024] As used herein, '5 to 10 membered heterocycl' or '5 to 10 membered heterocyclic ring' refers to a monocyclic or polycyclic ring system, having at least one heteroatom or heterogroup selected from O, N, S, SO, SO₂, or CO. Exemplary heterocycl or heterocyclic ring groups include, but not limited to, azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, tetrahydrofuranyl, tetrahydro-2H-pyran, morpholinyl, thiomorpholinyl, thiomorpholine-1,1-dioxide, tetrahydro-2H-thiopyran, thiazolidinyl, 1,3-dioxolanyl, 1,4-dioxanyl, 1-oxidotetrahydro-2H-thiopyran, 1,1-dioxidotetrahydro-2H-thiopyran, hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl, 2,5-diazabicyclo[2.2.1]heptan-2-yl, azepanyl and the like.

[0025] As used herein, '5 to 7 membered heterocycl' or '5 to 7 membered heterocyclic ring' refers to a monocyclic ring system, having at least one heteroatom or heterogroup selected from O, N, S, SO, SO₂, or CO. Exemplary heterocycl or heterocyclic ring groups include, but not limited to, 1,4-dioxane, 1,4-dioxepane and the like.

[0026] As used herein, '5 to 10 membered heteroaryl group' refers to a monocyclic or polycyclic ring system, unsaturated, aromatic or non-aromatic; having at least one heteroatom

or heterogroup selected from -O-, -N- , -S- , -S(=O)-, -S(=O)₂, or-C(=O)-. Exemplary heteroaryl ring groups, aromatic or non-aromatic rings, include, but not limited to, furanyl, oxazolyl, isoxazole, imidazolyl, triazolyl, thiophenyl, thiazolyl, pyridinyl, thiazinyl, pyrazinyl, pyrazolyl, tetrazolyl, imidazothiazolyl, furanyl, oxazolyl, isoxazole, imidazolyl, oxadiazolyl, triazolyl, thiazolyl, pyridinyl, thiazinyl, pyrazinyl, pyrazolyl, tetrazolyl, imidazothiazolyl, indolizidinyl, indolinyl, oxoindolinyl, indolyl, oxoindolyl, quinolinyl, 3,4-dihydroisoquinolin-2(1H)-yl, quinoxalinyl, benzoxazolyl, benzo[d]isoxazolyl, benzo[d]thiazolyl, benzo[d][1,3]dioxolyl, 1H-benzo[d][1,2,3]triazolyl, 2H-indazolyl, 1H-indazolyl, quinoxalin-2-yl, 1H-benzo[d]imidazolyl, pyrazolo[1,5-a]pyridinyl, dihydrobenzo[b][1,4]dioxinyl, (5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-7-yl), 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazinyl, 5,6-dihydroimidazo[1,2-a]pyrazin-7(8H)-yl), 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazinyl, Hexahydropyrrolo [1, 2-a] pyrazin-2(1H)-yl, 5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazinyl, pyrazolo[1,5a]pyridinyl and the like.

[0027] The Trk's are made up of three family members TrkA, TrkB and TrkC that bind to and mediate the the signal transduction derived from the Neurotrophins. Inhibitors of the Trk/neurotrophin pathway have been demonstrated to be highly effective in numerous pre-clinical animal models of pain. The compounds of the invention are modulators of the Trk receptors, particularly TrkA.

[0028] As used herein, the term TrkA refers to one of Trk's high affinity binding protein kinase receptors that are activated by Neurotrophins (NT), a group of soluble growth factors Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Neurotrophin 3-5 (NT 3-5).

[0029] 'Optionally substituted' means that the substitution is optional and therefore it is possible for the designated atom or group to be unsubstituted. In the event a substitution is desired, then such substitution means that any number of hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the normal valence of the designated atom is not exceeded, and that the substitution results in a stable compound. For example, in formula (I) when a substituent is oxo (i.e., =O), then two hydrogens on the atom are replaced and when the substitution is fluoro, then one hydrogen on the atom is replaced and the like. When more than one substituent is present on an atom or group, the chosen substituents are independent of each other (i.e same or different).

[0030] As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly indicates otherwise.

[0031] As used herein, the term 'subject' or 'patient' means mammals, such as humans and other animals, including horses, dogs, cats, rats, mice, sheep, pigs, monkeys, chimpanzees or other apes or primates. In exemplary embodiments, the subject may include subjects for which treatment and/or prevention of the conditions described herein would be beneficial (not claimed). For ease of reference, in this application it will be described in terms of administration to human subjects. It will be understood, however, that such descriptions are not limited to administration to humans, but will also include administration to other animals unless explicitly

stated otherwise.

[0032] A 'therapeutically effective amount' is the amount of compound of the present application that is effective in generating biological or medical response of a subject, for example, reduction or inhibition of an enzyme or a protein activity, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease.

[0033] In one embodiment, the term 'a therapeutically effective amount' refers to the amount of the compound of the present application that, when administered to a subject, is effective in (i) at least partially alleviating, inhibiting, preventing and/or ameliorating a condition, or a disorder or a disease mediated by TrkA, TrkB and/or TrkC, associated with TrkA, TrkB and/or TrkC activity or characterized by activity (normal or abnormal) of TrkA, TrkB and/or TrkC; (ii) reducing or inhibiting the activity of TrkA, TrkB and/or TrkC; or (iii) reducing or inhibiting the expression of TrkA, TrkB and/or TrkC.

[0034] In another embodiment, the term "a therapeutically effective amount" refers to the amount of the compound of the present invention that, when administered to a cell, or a tissue, or a non-cellular biological material, or a medium, is effective to at least partially reducing or inhibiting the activity of TrkA, TrkB and/or TrkC; or at least partially reducing or inhibiting the expression of TrkA, TrkB and/or TrkC.

[0035] The compounds described herein are typically administered in admixture with one or more pharmaceutically acceptable excipients or carriers in the form of a pharmaceutical composition. A 'composition' may contain one compound or a mixture of compounds. A 'pharmaceutical composition' is any composition useful in producing at least one physiological response in a subject to which such pharmaceutical composition is administered.

[0036] The term 'substantially pure' means that the isolated material is at least 80% pure, preferably 90% pure, more preferably 95% pure, and even more preferably 99% pure as measured by a suitable analytical techniques known in the art.

[0037] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art.

[0038] One or more compounds of formula (I) can be supplied in the form of a therapeutic composition that is within the scope of the present application.

[0039] The term 'Pharmaceutically acceptable salts' refers to any acid or base salt, pharmaceutically acceptable solvates, or any complex of the compound that, when administered to a recipient, is capable of providing (directly or indirectly) a compound as described herein. It should be appreciated, however, that salts that are not pharmaceutically acceptable also lie within the scope of the application. The preparation of salts can be carried out using known methods.

[0040] For example, pharmaceutically acceptable salts of compound of formula (I) contemplated refers to salts prepared from acids or bases including inorganic or organic acids and inorganic or organic bases by conventional chemical methods using a compound of formula (I). Generally, such salts may be prepared, for example, by making free base of the compounds and reacting with a stoichiometric quantity of the appropriate acid and *vice-versa* in water or in an organic solvent, or in a mixture of the two. The compounds of the present applications may form mono, di or tris salts.

[0041] When the compound of formula (I) is basic, salts may be prepared from acids, including inorganic or organic acids (acid addition salts). Examples of such acids include, but not limited to formic, acetic, trifluoroacetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, stearic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), nitric, hydrochloride, hydrobromide, isoethionic, hydroiodide, phosphoric, sulfuric, succinic, tartaric, methanesulfonic, ethanesulfonic, benzenesulfonic, benzoic, mucic, pantothenic, p-toluenesulfonic, camphorsulfonic, 2-hydroxyethanesulfonic, sulfanilic, cyclohexylaminosulfonic, algenic, β -hydroxybutyric, galactaric, and galacturonic acid, and the like.

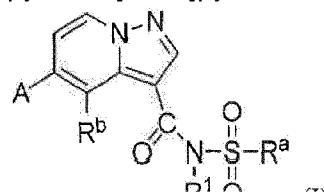
[0042] Salts formed from inorganic bases include sodium, potassium, lithium, calcium, copper, magnesium, manganic salts, manganous, zinc, aluminum, ammonium, ferric, ferrous and the like.

[0043] Salts derived from organic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperide, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.

[0044] 'Pharmaceutically acceptable salts' in the solid form may exist in more than one crystal structure, and may also be in the form of hydrates.

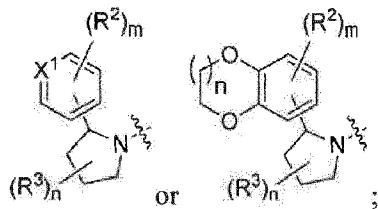
[0045] The term 'stereoisomers' is a general term used for all isomers of an individual molecule that differ only in the orientation of their atoms in space. Where the compounds according to the present application possess one or more asymmetric centers and compounds with asymmetric centers give rise to enantiomers, diastereomers or both as pure or partially purified compounds. It is to be understood that all stereoisomeric forms of the compounds of the invention, including but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as forms, are included in the scope of the present application. Preparation of such stereoisomeric forms of compound of formula (I), may be achieved by appropriate modification of the methodology known in the art. Their absolute stereochemistry

may be determined by the suitable methods. If required, racemic mixtures of the compound of formula (I) may be separated to isolate individual enantiomers or diastereomers. Such separation can be carried out by methods known in the art, such as the coupling of a racemic mixture of compound of formula (I) to an enantiomerically pure compound to form a diastereomeric mixture, followed by separation of the individual diastereomers by standard methods, such as fractional crystallization or chromatography. The coupling reaction is often the formation of salts using an enantiomerically pure acid or base. The diastereomeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue. The racemic mixture of the compounds can also be separated directly by chromatographic methods using chiral stationary phases, which methods are well known in the art. Alternatively, any enantiomer or diastereomer of a compound may be obtained by stereoselective synthesis using optically pure starting materials or known reagents.


[0046] For any particular compound disclosed herein, wherein the stereochemistry of any particular chiral atom is not specified, then all stereoisomers are contemplated and included as the compounds of the application. Where stereochemistry is specified by a solid wedge or a dashed wedge bond or dashed line representing a particular configuration then that stereoisomer is so specified and defined. Following the standard chemical literature description practice and as used herein, a full wedge bond means above the ring plane, and a dashed wedge bond or dashed line means below the ring plane.

[0047] Pharmaceutically acceptable solvates of compound of formula (I) may be hydrates or comprising other solvents of crystallization such as alcohols. Pharmaceutically acceptable solvates of compound of formula (I) may be prepared by conventional methods such as dissolving the compounds of formula (I) in solvents such as water, methanol, ethanol etc., preferably water and recrystallizing by using different crystallization techniques.

[0048] In the formulae depicted herein, a bond to a substituent and/or a bond that links a molecular fragment to the remainder of a compound may be shown as intersecting one or more bonds in a ring structure. This indicates that the bond may be attached to any one of the atoms that constitutes the ring structure, so long as a hydrogen atom could otherwise be present at that atom. Where no particular substituent(s) is identified for a particular position in a structure, then hydrogen(s) is present at that position.


[0049] Reference will now be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, and not by way of limitation of the invention.

[0050] Thus in accordance of this application there is provided a series of substituted pyrazolo[1,5-a]pyridine derivatives having the general formula (I),

(1)

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein

X_1 is CH or N;

R^1 represents hydrogen or $-(C_1-C_6)$ alkyl;

R^2 is independently selected from hydrogen, halogen, cyano, $-(C_1-C_6)$ alkyl, halo(C_1-C_6)alkyl-, halo(C_1-C_6)alkoxy-, phenyl optionally substituted with 1 to 3 halogens or an optionally substituted $-O$ -heterocyclyl wherein the optional substituent is selected from alkyl, $-OR^i$ or $C(O)N(R^i)_2$;

when X^1 is CH, optionally two R^2 s present on any two adjacent carbon atoms combine to form a 5 to 7 membered heterocyclic ring;

R^3 is independently selected from halogen, cyano, $-OR^i$, $-C(O)N(R^i)_2$ or two R^3 s together with the carbon atom they are attached form a (C_3-C_7)cycloalkyl group spiro attached to pyrrolidine; or two R^3 when they are attached to adjacent carbon atoms form a (C_3-C_7)cycloalkyl ring fused to the pyrrolidine;

R^a is selected from

1. (i) a group selected from optionally substituted $-(C_1-C_6)$ alkyl, hydroxy(C_1-C_6)alkyl- or $-(C_1-C_6)$ alkyl- (C_1-C_6) alkoxy wherein the optional substituent is selected from cyano, halogen or $-(C_6-C_{12})$ aryl,
2. (ii) an optionally substituted $-(C_3-C_{10})$ cycloalkyl wherein the optional substituent is selected from cyano, $-(C_1-C_6)$ alkyl, hydroxyl, halogen or $-R^s$,
3. (iii) an optionally substituted $-(C_6-C_{12})$ aryl wherein the optional substituent is selected from cyano, hydroxyl, halogen, $-(C_1-C_6)$ alkyl or $-R^r$
4. (iv) an optionally substituted 5 to 10 membered heterocyclyl wherein the optional substituent is selected from cyano, hydroxyl, halogen or $-(C_1-C_6)$ alkyl,
5. (v) an optionally substituted 5 to 10 membered heteroaryl wherein the optional substituent is selected from cyano, oxo ($=O$), hydroxyl, halogen, $-(C_1-C_6)$ alkyl, $-(C_1-C_6)$ alkoxy, $-NR^cR^d$ or $-R^r$,
6. (vi) $-NR^4R^5$,

7. (vii) -(C₁-C₆)alkyl-(C₆-C₁₂)aryl;

R^b represents hydrogen or halogen;

R⁴ is selected from hydrogen, -(C₁-C₆)alkyl, -(C₃-C₁₀)cycloalkyl, hydroxy(C₁-C₆)alkyl-, -alkoxy(C₁-C₆)alkyl, halo(C₁-C₆)alkyl- or -(C₁-C₆)alkyl-(C₃-C₁₀)cycloalkyl;

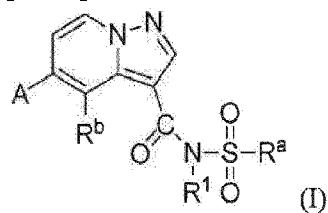
R⁵ is selected from from hydrogen or -(C₁-C₆)alkyl or -(C₁-C₆)alkyl-(C₃-C₁₀)cycloalkyl;

Alternatively R⁴ and R⁵ together with the nitrogen atom to which they are attached may form an optionally substituted 5 to 10 membered heterocyclic ring optionally containing 1-2 additional heteroatoms or groups selected from -O-, -S-, -N-, -C(=O)-, -S(=O)- or -S(=O)₂-, wherein the optional substituent is selected from hydroxyl, -(C₁-C₆)alkyl, -C(=O)-(C₁-C₆)alkyl, mesyl or COOR^e;

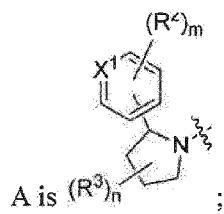
R^c and R^d are independently selected from hydrogen or -(C₁-C₆)alkyl;

R^e is selected from hydrogen or alkyl;

Rⁱ is hydrogen, -(C₁-C₆)alkyl, -halo(C₁-C₆)alkyl, -(C₁-C₆)alkyl-(C₁-C₆)alkoxy, -(C₃-C₁₀)cycloalkyl, optionally substituted -(C₁-C₆)alkyl-(C₃-C₁₀)cycloalkyl wherein the optional substituent is halogen or -(C₁-C₆)alkyl substituted with 1 to 3 hydroxy groups,;


R^r is independently selected from a 5 to 10 membered heterocycll or a 5 to 10 membered heteroaryl, wherein optional substituent is selected from hydroxyl, halogen, -(C₁-C₆)alkyl or -(C₁-C₆)alkoxy;

R^s is an optionally susbtituted -(C₁-C₆)alkyl-(C₆-C₁₀)aryl, wherein the optional substituent is halogen;


m is independently represents 0, 1, 2, 3 or 4; and

n is independently represents 0, 1, 2, or 3.

[0051] In one embodiment, there is provided a compound of formula (I),

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein

X_1 is CH or N;

R^1 represents hydrogen or $-(C_1-C_6)$ alkyl;

R^2 is independently selected from hydrogen, halogen, cyano, $-(C_1-C_6)$ alkyl, halo(C_1-C_6)alkyl-, halo(C_1-C_6)alkoxy-, phenyl optionally substituted with 1 to 3 halogens or an optionally substituted -O-heterocyclyl wherein the optional substituent is selected from alkyl, $-OR^i$ or $C(O)N(R^i)_2$;

when X^1 is CH, optionally two R^2 's present on any two adjacent carbon atoms combine to form a 5 to 7 membered heterocyclic ring;

R^3 is independently selected from halogen, cyano, $-OR^i$, $-C(O)N(R^i)_2$ or two R^3 's together with the carbon atom they are attached form a (C_3-C_7)cycloalkyl group spiro attached to pyrrolidine; or two R^3 when they are attached to adjacent carbon atoms form a (C_3-C_7)cycloalkyl ring fused to the pyrrolidine;

R^a is selected from

1. (i) a group selected from optionally substituted $-(C_1-C_6)$ alkyl, hydroxy(C_1-C_6)alkyl- or $-(C_1-C_6)$ alkyl- (C_1-C_6) alkoxy wherein the optional substituent is selected from cyano, halogen or $-(C_6-C_{12})$ aryl,
2. (ii) an optionally substituted $-(C_3-C_{10})$ cycloalkyl wherein the optional substituent is selected from cyano, $-(C_1-C_6)$ alkyl, hydroxyl, halogen or $-R^s$,
3. (iii) an optionally substituted $-(C_6-C_{12})$ aryl wherein the optional substituent is selected from cyano, hydroxyl, halogen, $-(C_1-C_6)$ alkyl or $-R^r$
4. (iv) an optionally substituted 5 to 10 membered heterocyclyl wherein the optional substituent is selected from cyano, hydroxyl, halogen or $-(C_1-C_6)$ alkyl,
5. (v) an optionally substituted 5 to 10 membered heteroaryl wherein the optional substituent is selected from cyano, oxo (=O), hydroxyl, halogen, $-(C_1-C_6)$ alkyl, $-(C_1-C_6)$ alkoxy, $-NR^cR^d$ or $-R^r$,
6. (vi) $-NR^4R^5$,
7. (vii) $-(C_1-C_6)$ alkyl- (C_6-C_{12}) aryl;

R^b represents hydrogen or halogen;

R^4 is selected from hydrogen, $-(C_1-C_6)alkyl$, $-(C_3-C_{10})cycloalkyl$, $-hydroxy(C_1-C_6)alkyl$, $alkoxy(C_1-C_6)alkyl$ -, halo $(C_1-C_6)alkyl$ - or $-(C_1-C_6)alkyl-(C_3-C_{10})cycloalkyl$;

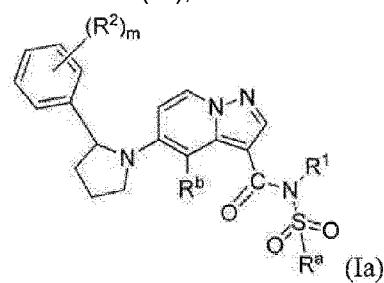
R^5 is selected from from hydrogen or $-(C_1-C_6)alkyl$ or $-(C_1-C_6)alkyl-(C_3-C_{10})cycloalkyl$;

Alternatively R^4 and R^5 together with the nitrogen atom to which they are attached may form an optionally substituted 5 to 10 membered heterocyclic ring optionally containing 1-2 additional heteroatoms or groups selected from $-O-$, $-S-$, $-N-$, $-C(=O)-$, $-S(=O)-$ or $-S(=O)_2-$, wherein the optional substituent is selected from hydroxyl, $-(C_1-C_6)alkyl$, $-C(=O)-(C_1-C_6)alkyl$, mesyl or $COOR^e$;

R^c and R^d are independently selected from hydrogen or $-(C_1-C_6)alkyl$;

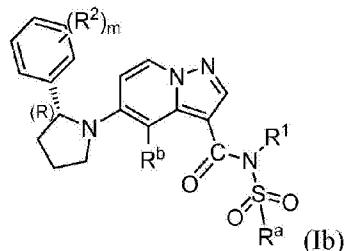
R^e is selected from hydrogen or alkyl;

R^i is hydrogen, $-(C_1-C_6)alkyl$, -halo $(C_1-C_6)alkyl$, $-(C_1-C_6)alkyl-(C_1-C_6)alkoxy$, $-(C_3-C_{10})cycloalkyl$, optionally substituted $-(C_1-C_6)alkyl-(C_3-C_{10})cycloalkyl$ wherein the optional substituent is halogen or $-(C_1-C_6)alkyl$ substituted with 1 to 3 hydroxy groups,;

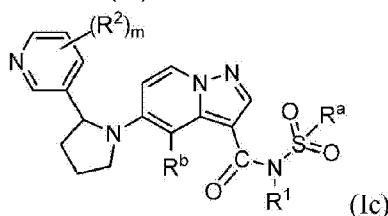

R^r is independently selected from a 5 to 10 membered heterocycll or a 5 to 10 membered heteroaryl, wherein optional substituent is selected from hydroxyl, halogen, $-(C_1-C_6)alkyl$ or $-(C_1-C_6)alkoxy$;

R^s is an optionally susbtituted $-(C_1-C_6)alkyl-(C_6-C_{10})aryl$, wherein the optional substituent is halogen;

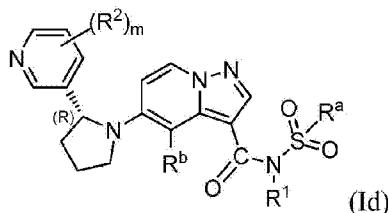
m is independently represents 0, 1, 2, 3 or 4; and


n is independently represents 0, 1, 2, or 3.

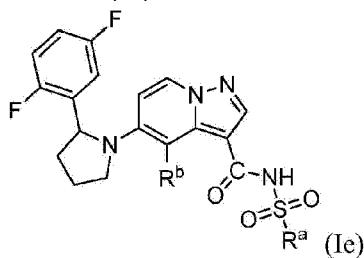
[0052] In another embodiment, the compounds of formula (I) are represented as compounds of formula (Ia),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

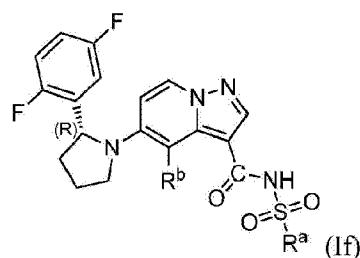
[0053] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ib),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

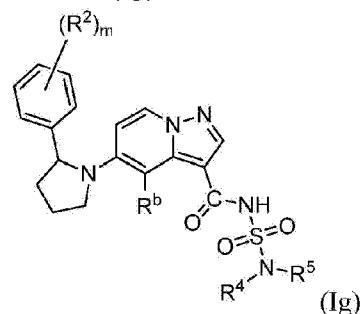
[0054] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ic),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

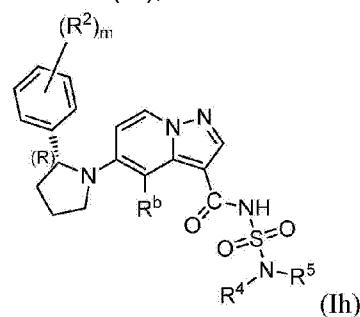
[0055] In another embodiment, compounds of formula (I) are represented as compounds of formula (Id),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

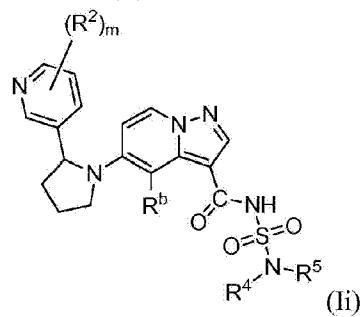
[0056] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ie),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

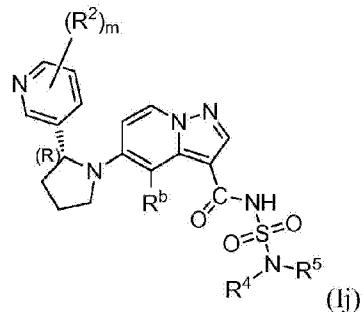
[0057] In another embodiment, compounds of formula (I) are represented as compounds of formula (If),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

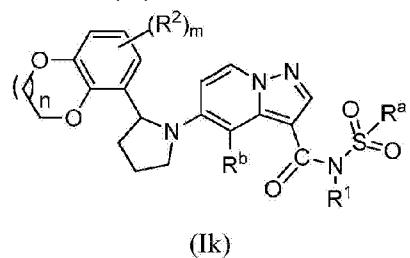
[0058] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ig),


wherein the values of all the variables are as described for compound of formula (I).

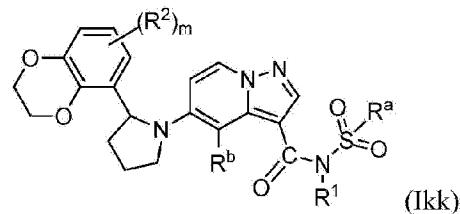
[0059] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ih),


wherein the values of all the variables are as described for compound of formula (I).

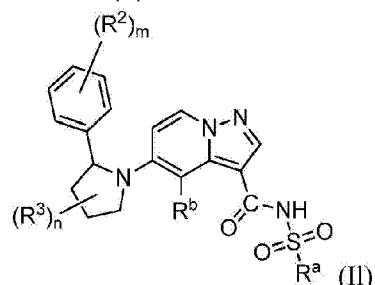
[0060] In another embodiment, compounds of formula (I) are represented as compounds of formula (ii),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

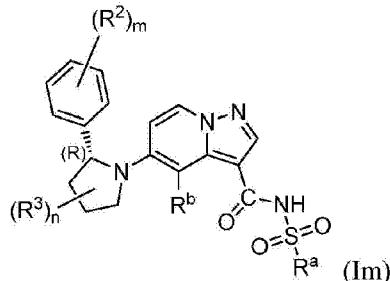
[0061] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ij),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

[0062] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ik),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein wherein the values of all the variables are as described for compound of formula (I).

[0063] In another embodiment, compounds of formula (I) are represented as compounds of formula (Ikk),


their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein wherein the values of all the variables are as described for compound of formula (I).

[0064] In another embodiment, compounds of formula (I) are represented as compounds of formula (II),

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein R^3 is fluorine, n is 1 or 2, and the values of all other variables are as described for compound of formula (I).

[0065] In another embodiment, compounds of formula (I) are represented as compounds of formula (Im),

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof, wherein R^3 is fluorine, n is 1 or 2, and the values of all other variables are as described for compound of formula (I).

[0066] In one embodiment of formula (Ia), R¹ is hydrogen, R^a is -(C₁-C₆)alkyl or an optionally substituted -(C₃-C₁₀)cycloalkyl group, wherein the optional substituent independently selected from cyano, -(C₁-C₆)alkyl, hydroxyl, halogen or -R^s.

[0067] In one embodiment of formula (Ia), R¹ is hydrogen, R^a is an optionally substituted -(C₆-C₁₂)aryl, wherein the optional substituent is selected from cyano, hydroxyl, halogen, -(C₁-C₆)alkyl or -R^r.

[0068] In one embodiment of formula (Ia), R¹ is hydrogen, R^a is an optionally substituted 5 to 10 membered heterocyclyl optionally substituted with 1 to 3 substituents independently selected from cyano, hydroxyl, halogen or -(C₁-C₆)alkyl.

[0069] In one embodiment of formula (Ia), R¹ is hydrogen, R^a is -NR⁴R⁵.

[0070] In one embodiment of formula (Ia), R^a is an optionally substituted 5 to 10 membered heteroaryl, wherein the optional substituent is selected from cyano, oxo (=O), hydroxyl, halogen, -(C₁-C₆)alkyl, -(C₁-C₆)alkoxy, -NR^cR^d or -R^t.

[0071] In another embodiment, the compound of formula (Ia) of the above embodiments is defined as compound of formula (Ib).

[0072] In certain embodiments of formula (Ib), as defined above, R^2 , in each occurrence, independently represents halogen, cyano or haloalkyl; m is 1 or 2.

[0073] In certain embodiments of formula (Ib), as defined above, R¹ is hydrogen.

[0074] In certain embodiment of formula (Ib), R⁴ and R⁵, independently represents methyl, ethyl or propyl.

[0075] In certain embodiment of formula (Ib), R^a, independently represents methyl, ethyl, propyl, isopropyl, butyl or tert-butyl.

[0076] In one embodiment of formula (Ic), R¹ is hydrogen, R^a is -(C₁-C₆)alkyl or optionally substituted -(C₃-C₁₀)cycloalkyl, wherein the optional substituent is independently selected from selected from cyano, -(C₁-C₆)alkyl, hydroxyl, halogen or -R^s.

[0077] In one embodiment of formula (Ic), R¹ is hydrogen, R^a is optionally substituted -(C₆-C₁₂)aryl, wherein the optional substituent is selected from cyano, hydroxyl, halogen, -(C₁-C₆)alkyl or -R^t.

[0078] In one embodiment of formula (Ic), R¹ is hydrogen, R^a is an optionally substituted 5 to 10 membered heterocycll, wherein the optional substituent is selected from cyano, hydroxyl, halogen or -(C₁-C₆)alkyl.

[0079] In one embodiment of formula (Ic), R¹ is hydrogen, R^a is -NR⁴R⁵.

[0080] In one embodiment of formula (Ic), R^a is an optionally substituted 5 to 10 membered heteroaryl, wherein the optional substituent is seleced from cyano, oxo (=O), hydroxyl, halogen, -(C₁-C₆)alkyl, -(C₁-C₆)alkoxy, -NR^cR^d or -R^t.

[0081] In another embodiment, the compound of formula (Ic) of the above embodiments is defined as compound of formula (Id).

[0082] In certain embodiments of formula (Id), as defined above, R², in each occurrence, independently represents halogen, cyano or haloalkyl; m is 1 or 2.

[0083] In certain embodiments of formula (Id), as defined above, R¹ is hydrogen.

[0084] In certain embodiment of formula (Id), R⁴ and R⁵, independently represents methyl, ethyl or propyl.

[0085] In certain embodiment of formula (Id), R^a, independently represents methyl, ethyl, propyl, isopropyl, butyl or tert-butyl.

[0086] In one embodiment of formula (Ic), R¹ is hydrogen, R^a is -(C₁-C₆)alkyl or optionally substituted -(C₃-C₁₀)cycloalkyl, wherein the optional substituent is independently selected from cyano, -(C₁-C₆)alkyl, hydroxyl, halogen or -R^s.

[0087] In one embodiment of formula (Ic), R¹ is hydrogen, R^a is optionally substituted -(C₆-C₁₂)aryl, wherein the optional substituent is selected from cyano, hydroxyl, halogen, -(C₁-C₆)alkyl or -R^t.

[0088] In one embodiment of formula (Ie), R¹ is hydrogen, R^a is an optionally substituted 5 to 10 membered heterocyclyl, wherein the optional substituent is selected from cyano, hydroxyl, halogen or -(C₁-C₆)alkyl.

[0089] In one embodiment of formula (Ie), R¹ is hydrogen and R^a is -NR⁴R⁵.

[0090] In one embodiment of formula (Ie), R^a is an optionally substituted 5 to 10 membered heteroaryl, wherein the optional substituent is selected from cyano, oxo (=O), hydroxyl, halogen, -(C₁-C₆)alkyl, -(C₁-C₆)alkoxy, -NR^cR^d or -R^t.

[0091] In another embodiment, the compound of formula (Ie) of the above embodiments is defined as compound of formula (If).

[0092] In certain embodiments of formula (If), as defined above, R², in each occurrence, independently represents halogen, cyano or haloalkyl; m is 1 or 2.

[0093] In certain embodiments of formula (If), as defined above, R¹ is hydrogen.

[0094] In certain embodiment of formula (If), R⁴ and R⁵, independently represents methyl, ethyl or propyl.

[0095] In certain embodiment of formula (If), R^a, independently represents methyl, ethyl, propyl, isopropyl, butyl or tert-butyl.

[0096] In another embodiment, the compound of formula (Ig) of the above embodiment is defined as compound of formula (Ih).

[0097] In certain embodiments of formula (Ih), as defined above, R², in each occurrence, independently represents halogen, cyano or haloalkyl and m is 1 or 2.

[0098] In certain embodiments of formula (Ih), as defined above, R¹ is hydrogen.

[0099] In certain embodiment of formula (Ih), R⁴ and R⁵, independently represents methyl, ethyl or propyl.

[0100] In another embodiment, the compound of formula (li) of the above embodiments is defined as compound of formula (lj).

[0101] In certain embodiments of formula (lj), as defined above, R², in each occurrence, independently represents halogen, cyano or haloalkyl and m is 1 or 2.

[0102] In certain embodiments of formula (lj), as defined above, R¹ is hydrogen.

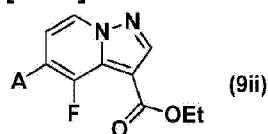
[0103] In certain embodiment of formula (lj), R⁴ and R⁵, independently represents methyl, ethyl or propyl.

[0104] In certain embodiments of formula (I), (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij) and (Ik), R^b is hydrogen.

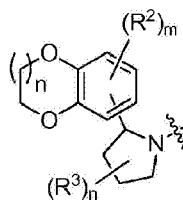
[0105] In certain embodiments of formula (I), (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij) and (Ik), R^b is fluorine.

[0106] In certain embodiments of formula (I), (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij) and (Ik), wherein R², in each occurrence, independently represents fluorine.

[0107] In certain embodiments of formula (I), (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij) and (Ik), wherein R³, in each occurrence, independently represents fluorine.

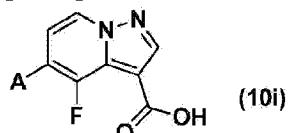

[0108] The compounds of formula (I) can also exist in the form of pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof

[0109] In another embodiment, the present application provides compounds of formula (9i),

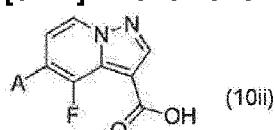


or its stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

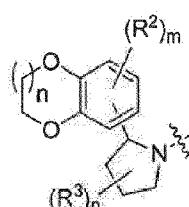
[0110] In another embodiment, the present application provides compounds of formula (9ii),



or its stereoisomers thereof, wherein A represents

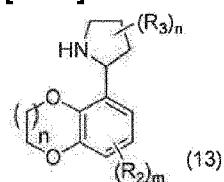

and values of all other variables are as described for compound of formula (I).

[0111] In another embodiment, the present application provides compounds of formula (10i),



or its stereoisomers thereof, wherein the values of all the variables are as described for compound of formula (I).

[0112] In another embodiment, the present application provides compounds of formula (10ii),



or its stereoisomers thereof, wherein A represents

and values of all other variables are as described for compound of formula (I).

[0113] In another embodiment, the present application provides compounds of formula (13),

or its stereoisomers thereof, wherein the values of all variables are as described for compound of formula (I).

[0114] The present application relates to the compounds of formula (I), which are inhibitors of TrkA, TrkB and/or TrkC kinase activity, for the treatment or prevention of diseases or conditions or disorders associated with TrkA, TrkB and/or TrkC kinase activity.

[0115] One embodiment of the present application provides conditions, diseases and/or disorders treatable or preventable by inhibition of Trk kinase activity, such as pain, inflammation, cancer, restenosis, atherosclerosis, psoriasis, thrombosis, psoriatic arthritis, rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, fibrosis, neurodegenerative disease; a disease, disorder or injury relating to dysmyelination or demyelination or infectious diseases such as *Trypanosoma cruzi* infection by administering a

therapeutically effective amount of compound of formula (I), to a patient in need thereof.

[0116] In another embodiment, pain includes chronic and acute pain but is not limited to, pain related to cancer, surgery, bone fracture, skeletal pain caused by tumor metastasis, osteoarthritis, psoriatic arthritis, rheumatoid arthritis, interstitial cystitis, chronic pancreatitis, visceral pain, inflammatory pain, migraine, chronic lower back pain, bladder pain syndrome and neuropathic pain.

[0117] The present application further relates to use of compound of formula (I) for treating or preventing conditions, diseases and/or disorders associated with abnormal or deregulated Trk kinase activity.

[0118] One aspect of the present application provides use of compound of formula (I) for treating or preventing conditions, diseases and/or disorders associated with abnormal or deregulated TrkA kinase activity, in a patient in need thereof.

[0119] In another embodiment, there is provided an use of the compound for formula (I) for treating or preventing pain or pain disorder in a patient in need of such a treatment, comprising the administration of a therapeutically effective amount of the compound of formula (I), to said patient.

[0120] In another embodiment of the present application, pain includes chronic and acute pain but is not limited to, pain related to cancer, surgery, bone fracture, skeletal pain caused by tumor metastasis, osteoarthritis, visceral pain, inflammatory pain and neuropathic pain.

[0121] In yet another embodiment, the compounds of the present application may be useful for the pain disorders include neuropathic pain (such as postherpetic neuralgia, nerve injury, the "dynias", e.g., vulvodynia, phantom limb pain, root avulsions, painful diabetic neuropathy, painful traumatic mononeuropathy, painful polyneuropathy); central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system); postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, stump pain); bone and joint pain (osteoarthritis), repetitive motion pain, denial pain, cancer pain, myofascial pain (muscular injury, fibromyalgia); perioperative pain (general surgery, gynecological), chronic pain, dysmenorrhea, as well as pain associated with angina, and inflammatory pain of varied origins (e.g. osteoarthritis, rheumatoid arthritis, rheumatic disease, teno- synovitis and gout), headache, migraine and cluster headache, headache, primary hyperalgesia, secondary hyperalgesia, primary allodynia, secondary allodynia, or other pain caused by central sensitization.

[0122] Another embodiment of the application provides such compositions for use in the treatment and/or prevention of diseases associated with inhibition of TrkA, such as pain, cancer, restenosis, atherosclerosis, psoriasis, thrombosis, neurodegenerative disease, a disease, disorder, or injury relating to dysmyelination or demyelination or certain infectious diseases such as *Trypanosoma crurzi* infection.

[0123] In another embodiment, the compounds of formula (I) are useful in treating or preventing neurodegenerative disease.

[0124] In one embodiment, neurodegenerative disease is Parkinson's disease or Alzheimer's disease.

[0125] In another aspect, the present application provides a method of treating or preventing neurodegenerative disease.

[0126] In one embodiment, neurodegenerative disease, as described above, is Parkinson's disease or Alzheimer's disease.

[0127] In another embodiment, certain compounds of formula (I) posseses Rat liver microsome (RLM) stability (half life in minutes) >30, specifically >60, more specifically >80, still further more specifically >90.

[0128] In another embodiment, certain compounds of formula (I) posseses Human liver microsome (HLM) stability (half life in minutes) >30, specifically >60, more specifically >80, still further more specifically >90.

[0129] In one embodiment of the present application, there is provided a pharmaceutical composition comprising a therapeutically effective amount of one or more compounds of formula (I) and pharmaceutically acceptable carrier.

[0130] In an embodiment, specific compounds of formula (I) without any limitation are enumerated below (List-1):

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(ethylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclopropylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(methylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-

carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrolidin-1-yl)phenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-methylpyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(propylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((3,5-dimethylisoxazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclohexylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclopentylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isobutylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-4-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-imidazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,4-dimethylthiazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-2-oxoindolin-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((tetrahydro-2H-pyran-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-(dimethylamino)pyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2-methyltetrahydrofuran-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrolidin-1-yl)pyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-methoxypyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-morpholinophenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyridin-3-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((5-chlorothiophen-2-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((2,5-dichlorothiophen-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclobutylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(benzo[d][1,3]dioxol-5-ylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-ethylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(neopentylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(o-tolylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(benzylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-(4-fluorobenzyl)cyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoropyridin-3-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-cyclopropylmethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-chloro-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2,2,2-trifluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Isomer-I),

N-(tert-butylsulfonyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Isomer-II),

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluopyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Isomer-I),

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluopyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Isomer-II),

(R)-N-(tert-butylsulfonyl)-5-(2-(4,4'-difluoro-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(S)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)-4,4-difluopyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)-4,4-difluopyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-4-fluoro pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)-4-fluoropyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-fluoro-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3-fluoro-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R)-2-(3-fluoro-5-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrrolidin-1-yl)phenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrrolidin-1-yl)pyridin-3-

yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-((1-methylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-4-fluoro-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-(cyclopropylmethyl)-N-methylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(morpholinosulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyrrolidin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-methylpiperazin-1-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-methoxyphenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((S)-3-hydroxypyrrolidin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-sulfamoylpyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I), dioxepin-6-

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II), dioxepin-6-

N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),

N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II),

N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluoro-5-((S)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluoro-5-((R)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)-N-sulfamoyl pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),

N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-2);

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N-isobutyl-N-methyl sulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-dimethylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-dimethylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-(2-(5-fluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R)-2-(3-((2,2-difluorocyclopropyl)methoxy)-5-fluorophenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-bis(cyclopropylmethyl)sulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide

(Diastereomer-II), N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Racemic mixture);

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluoro-2-methoxyphenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(isopropyl sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-4-fluoro-5-(2-(5-fluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

Sodium (tert-butylsulfonyl)(5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium(R)-(tert-butylsulfonyl)(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (R)-(tert-butylsulfonyl)(5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (tert-butylsulfonyl)(5-((2R,4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(N,N-dimethylsulfamoyl)amide,

Sodium (tert-butylsulfonyl)(5-(2-(2,5-difluorophenyl)-4,4-difluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)((1-methylcyclopropyl)sulfonyl)amide,

Sodium (tert-butylsulfonyl)(5-((2R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(N,N-dimethylsulfamoyl)amide,

Sodium (tert-butylsulfonyl)(4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (R)-(N,N-dimethylsulfamoyl)(4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (N-ethyl-N-methylsulfamoyl)(5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium (R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(o-tolylsulfonyl)amide,

Sodium (4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carbonyl)(isopropylsulfonyl)amide,

Sodium (5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)((1-methylcyclopropyl)sulfonyl)amide, or

Sodium (R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(piperidin-1-ylsulfonyl)amide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0131] In one embodiment, compounds of formula (I) are represented as

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo [1,5-a]pyridine-3-carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrrolidin-1-yl) phenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-methylpyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-morpholinophenyl)sulfonyl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(o-tolylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl)pyrazolo [1,5-a]pyridine-3-carboxamide,

5-((R)-2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrrolidin-1-yl) phenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

Sodium(R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(piperidin-1-ylsulfonyl)amide, or

Sodium(R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl) (o-tolylsulfonyl)amide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0132] In one embodiment, compounds of formula (I) are represented as

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(ethylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(methylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(propylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isobutylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(neopentylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(benzylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoropyridin-3-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-cyclopropylmethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-chloro-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(4,4'-difluoro-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-4-fluoro pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)-4-fluoropyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-fluoro-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3-fluoro-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R)-2-(3-fluoro-5-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a] pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Racemic mixture);

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-

yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(tert-butylsulfonyl)-4-fluoro-5-(2-(5-fluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

Sodium(tert-butylsulfonyl)(5-((2R,4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium(tert-butylsulfonyl)(5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,

Sodium(R)-(tert-butylsulfonyl)(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide, or

Sodium(R)-(tert-butylsulfonyl)(5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0133] In one embodiment, compounds of formula (I) are represented as

(R)-N-(cyclopropylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclohexylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclopentylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(cyclobutylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-ethylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-(4-fluorobenzyl)cyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-4-fluoro-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide, or

Sodium(R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)((1-methylcyclopropyl)sulfonyl)amide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0134] In one embodiment, compounds of formula (I) are represented as

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((3,5-dimethylisoxazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-imidazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,4-dimethylthiazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-2-oxoindolin-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-(dimethylamino)pyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrolidin-1-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide, pyridin-3-yl)

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-methoxypyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide, pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrazolo[1,5-a]pyridine-3-carboxamide, pyrrolidin-1-yl)

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyridin-3-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide ;

(R)-N-((5-chlorothiophen-2-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((2,5-dichlorothiophen-3-yl) sulfonyl)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(benzo[d][1,3]dioxol-5-ylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(3,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide, or

5-((R)-2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrrolidin-1-yl) sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0135] In one embodiment, compounds of formula (I) are represented as

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-4-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((tetrahydro-2H-pyran-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2-methyltetrahydrofuran-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(morpholinosulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyrrolidin-1-ylsulfonyl) pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-methylpiperazin-1-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide, or

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((S)-3-hydroxypyrrrolidin-1-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0136] In one embodiment, compounds of formula (I) are represented as

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2,2,2-trifluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-((1-methylsulfonyl)cyclopropyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

N-(tert-butylsulfonyl)-4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

Sodium(4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(isopropylsulfonyl)amide,

Sodium(5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)((1-methylcyclopropyl)sulfonyl)amide,

Sodium(tert-butylsulfonyl)(5-((2R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-

a]pyridine-3-carbonyl)amide,

Sodium(5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(N,N-dimethylsulfamoyl)amide,

Sodium(tert-butylsulfonyl)(4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide, or

Sodium (tert-butylsulfonyl)(5-(2-(2,5-difluorophenyl)-4,4-difluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0137] In one embodiment, compounds of formula (I) are represented as

(R)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)-N-(N, N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo [1,5-a]pyridine-3-carboxamide,

(R)-N-(N-(cyclopropylmethyl)-N-methylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-methoxyphenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(3,5-difluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-sulfamoylpyrazolo[1,5-a]pyridine-3-carboxamide,

N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluoro-5-(((S)-tetrahydrofuran-3-yl)oxy)

phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-5-(2-(3,5-difluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,
N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluoro-5-((R)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)-N-sulfamoylpyrazolo[1,5-a]pyridine-3-carboxamide,
N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),
(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N-isobutyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-N-(N,N-dimethylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-N-(N,N-dimethylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-(2-(5-fluoro-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
5-((2R)-2-(3-((2,2-difluorocyclopropyl)methoxy)-5-fluorophenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide,
(R)-N-(N,N-bis(cyclopropylmethyl)sulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide,
Sodium(R)-(N,N-dimethylsulfamoyl)(4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide,
Sodium(N-ethyl-N-methylsulfamoyl)(5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)amide, or

Sodium (R)-(5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(N,N-dimethylsulfamoyl)amide;

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0138] In one embodiment, compounds of formula (I) are represented as

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II),

N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),

N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II), or

N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-2);

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof or a stereoisomer thereof.

[0139] In another embodiment, pain includes chronic and acute pain but is not limited to, pain related to cancer, surgery, bone fracture, skeletal pain caused by tumor metastasis, osteoarthritis, visceral pain, inflammatory pain and neuropathic pain.

[0140] The present application further relates to use of compound of formulation (I) for treating a patient for diseases or disorders in which the NGF receptor are involved, in particular TrkA, such as such as pain, cancer, restenosis, atherosclerosis, psoriasis, thrombosis, or a disease, disorder, or injury relating to dysmyelination or demyelination, by administering a therapeutically effective amount of compound of formula (I), as enlisted in List-1, to said patient.

[0141] In another embodiment, there is provided an use of the compound for formula (I) for treating or preventing pain or pain disorder in a patient in need of such a treatment, comprising the administration of a therapeutically effective amount of the compound of formula (I), as enlisted in List-1, to said patient.

[0142] In another embodiment, pain includes chronic and acute pain but is not limited to, pain related to cancer, surgery, bone fracture, skeletal pain caused by tumor metastasis, osteoarthritis, visceral pain, inflammatory pain and neuropathic pain.

[0143] Another embodiment of the application provides the use of such compositions in the treatment or prevention of diseases associated with inhibiting NGF receptor TrkA, such as pain, cancer, restenosis, atherosclerosis, psoriasis, thrombosis, or a disease, disorder, or injury relating to dysmyelination or demyelination.

[0144] One embodiment of the present application provides intermediates as

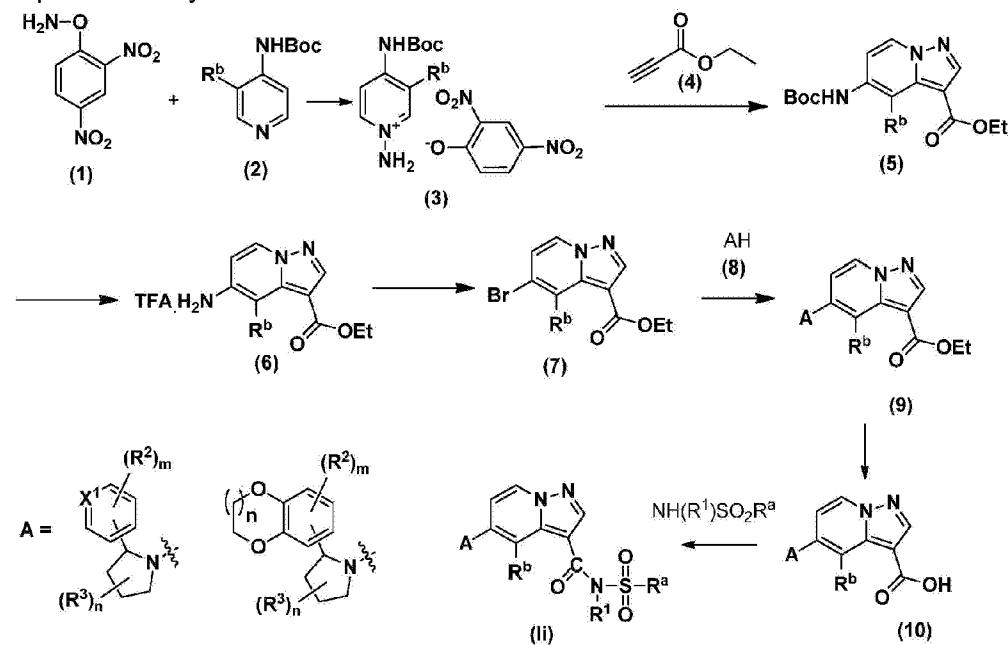
2-(7-fluoro-2,3-dihydrobenzo[b][1, 4]dioxin-5-yl)pyrrolidine,

Ethyl 5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo [1,5-a] pyridine-3-carboxylate (Isomer-1),

5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid (Isomer-I)

Ethyl 5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo [1,5-a]pyridine-3-carboxylate (Isomer-II)

5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid (Isomer-II)


[0145] An embodiment of the present invention provides the preparation of compounds of formula (I) according to the procedures of the following examples, using appropriate materials. All temperatures are in degrees Celsius (°C) unless otherwise noted.

[0146] The following acronyms, abbreviations, terms and definitions have been used throughout the reaction scheme and experimental section.

[0147] ACN (Acetonitrile), BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), CDCl₃ (Deuterated chloroform), CD₃OD (Deuterated methanol), Cs₂CO₃ (Caesium Carbonate) DCM (Dichloromethane), DIPEA [(N,N-diisopropylethylamine) (Hünig's base)], DMF (N,N-dimethylformamide), DMSO (Dimethyl sulfoxide), DMAP (Dimethyl amino pyridine), EtOH (Ethanol), EtOAc (Ethyl acetate), Et₃N (Triethylamine), EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride), HOEt (1-hydroxybenzotriazole), HCl (hydrochloric acid), HATU [O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate], MeOH (Methanol), LiHMDS (Lithium bis(trimethylsilyl)amide), LiOH (Lithium hydroxide), K₂CO₃ (Potassium Carbonate), KOBu_t (Potassium *tert*-butoxide), Pd (Palladium), Pd(OAc)₂ (Palladium (II) acetate), Pd₂(dba)₃

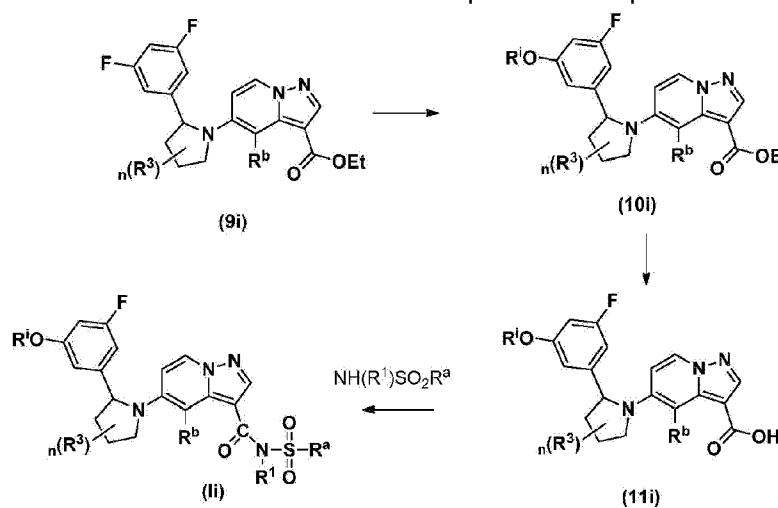
(Tris(dibenzylideneacetone)dipalladium(0)), POCl_3 (Phosphorus oxychloride), NaHCO_3 (Sodium Bicarbonate), NaOH (Sodium hydroxide), Na_2SO_4 (Sodium Sulfate), NaBH_4 (Sodium borohydride), NH_4Cl (Ammonium chloride), TFA (Trifluoroacetic acid), THF (Tetrahydrofuran), H_2O (Water).

[0148] Another embodiment of the present invention provides a process for the preparation of compounds of formulae (ii)-(ix) represent respectively a sub-group of a compound of formula (I), wherein all symbols/variables are as defined earlier unless otherwise stated. The process is represented by Scheme-1:

Scheme 1

[0149] Compound of formula (3) obtained from compound (1) (prepared according to the procedure described in *J. Org. Chem.* 2003, 68, 7119-7122) and (2) was reacted with compound (4) to obtain of formula (5) where R^b is as defined as before.

[0150] A compound of formula (6) can be obtained by reacting a compound of formula (5) with trifluoroacetic acid in dichloromethane at room temperature.

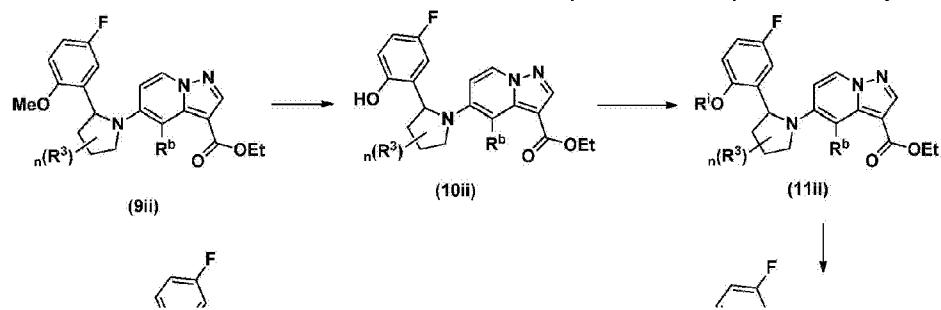

[0151] A compound of formula (7) was obtained from compound of formula (6) by standard Sandmeyer reaction protocol.

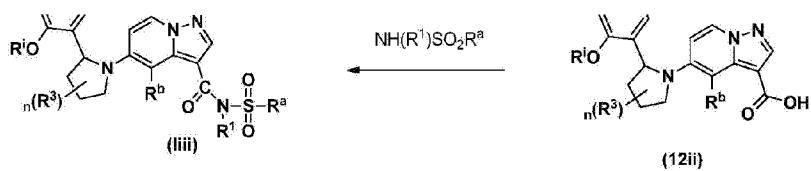
[0152] A compound of formula (9) was obtained from compound of formula (7) by reaction with compound of formula (8) in the presence of Pd_2dba_3 , BINAP, Et_3N and Cs_2CO_3 , in a solvent such as 1,4-dioxane and the like at a temperature of about 60 to about 80 °C for about 12 to about 16 h where A is as defined before

[0153] A compound of formula (9) to formula (10) can be converted using reagents such as 3M LiOH solution, 5N NaOH solution and the like in presence of a suitable solvent such as THF, THF-MeOH and the like.

[0154] A compound of formula (10) to formula (I) can be converted by using suitable reagents such as HATU, DIPEA or HATU, HOBr, DIPEA or EDCI, HOBr, DIPEA or EDCI, DMAP or EDCI, HOBr, NaH and the like in presence of a suitable solvent such as DMF, DCM and the like at a temperature of about 20 to about 65°C for about 15 to about 18 h.

[0155] Another embodiment of the present invention provides a process for the preparation of compounds of formulae (10i), (11i) and (1i), wherein all symbols/variables are as defined earlier unless otherwise stated. The process is represented by Scheme-2:

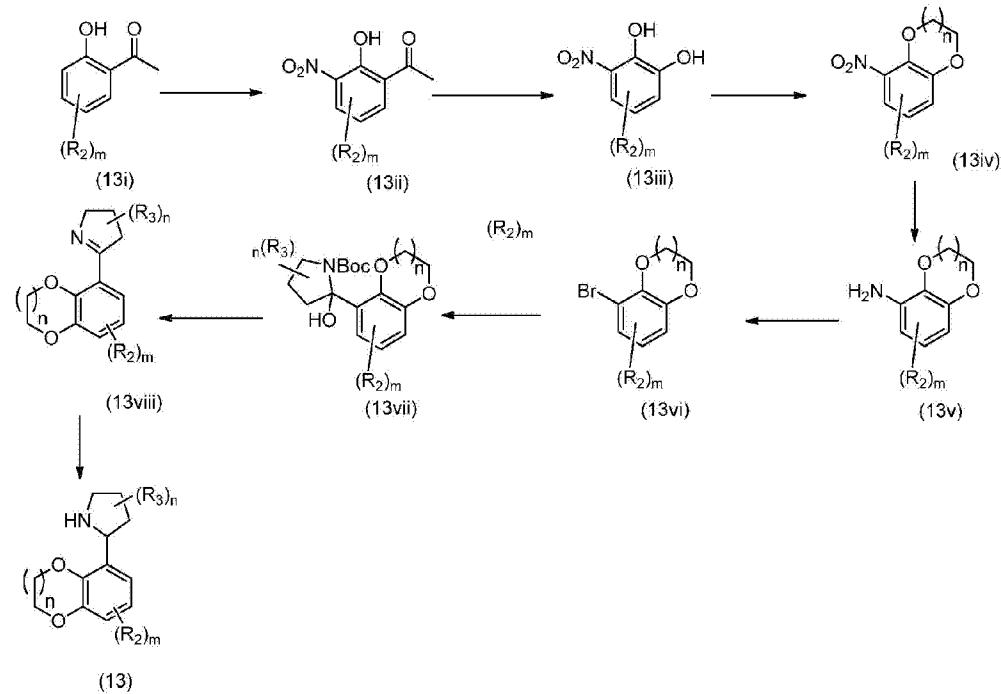



Scheme-2

[0156] A compound of formula (10i) can be obtained from compound of formula (9i) by reacting with hydroxyl containing compounds like R^iOH where R^i is defined as before under suitable conditions.

[0157] A compound of formula (10i) can be converted to the compound of formula (11i) and subsequently to compound of formula (1i) using conditions as mentioned under Scheme-1.

[0158] Another embodiment of the present invention provides a process for the preparation of compounds of formulae (10ii), (11ii), (12i) and (1iii), wherein all symbols/variables are as defined earlier unless otherwise stated. The process is represented by Scheme-3:


Scheme-3

[0159] A compound of formula (10ii) can be obtained from compound of formula (9ii) by reacting with BBr_3 in a suitable solvent like dichloromethane.

[0160] A compound of formula (10ii) can be converted to the compound of formula (11ii) using suitable reaction conditions known in the art.

[0161] A compound of formula (11ii) can be converted to the compound of formula (12ii) and subsequently to compound of formula (1ii) using conditions as mentioned under Scheme-1.

[0162] Another embodiment of the present invention provides a process for the preparation of compounds of formula (13), wherein all symbols/variables are as defined earlier unless otherwise stated. The process is represented by Scheme-4:

Scheme-4

[0163] A compound of formula (13ii) can be obtained from compound of formula (13i) by nitration in presence of fuming nitric acid / acetic acid or a similar nitrating reagent.

[0164] Nitration of the compounds (13ii) on Dakin oxidation resulted compound of formula

(13iii), which can be cyclized to compound (13iv) by reacting with a dihalo alkyl in presence of a suitable base and solvent.

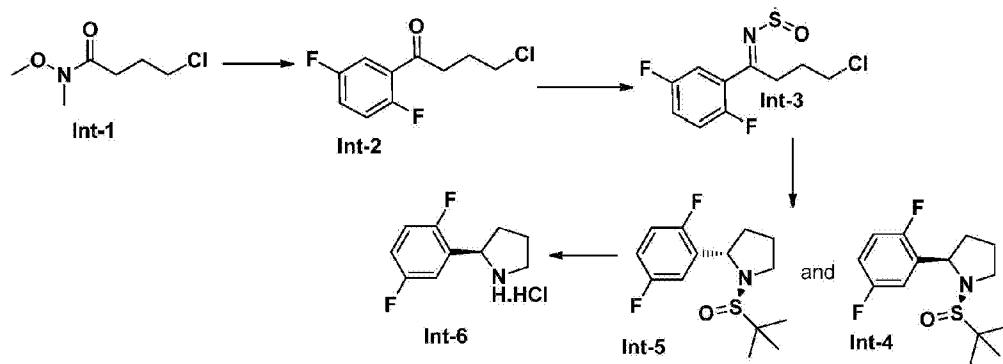
[0165] Compound of formula (13v) can be obtained by reduction of (13iv) in presence of a suitable reducing agent, which can then be converted to a compound of formula (13vi) by Sandmeyer reaction with a suitable copper halide.

[0166] Compound of formula (13vi) can be converted to a compound of formula (13vii) by magnesium metal mediated reaction with Boc protected pyrrolidin-2-one derivatives.

[0167] Compound of formula (13vii) on TFA de-protection followed by NaBH₄ or a suitable reducing agent mediated reduction afforded compound of formula (13).

[0168] As used in the examples and preparations that follow, the terms used therein shall have the meanings indicated: "g" or "gm" refers to grams, "mg" refers to milligrams, "μg" refers to micrograms, "mol" refers to moles, "mmol" refers to millimoles, "L" refers to liters, "mL" or "ml" refers to milliliters, "μL" refers to microliters, "mp" or "m.p." refers to melting point, "mm of Hg" refers to pressure in millimeters of mercury, "cm" refers to centimeters, "nm" refers to nanometers, "conc." refers to concentrated, "M" refers to molar, "mM" refers to millimolar, "μM" refers to micromolar, "nM" refers to nanomolar, "TLC" refers to thin layer chromatography, "HPLC" refers to high performance liquid chromatography, "anhyd" refers to anhydrous; "aq" refers to aqueous; "min" refers to minute; "mins" refers to minutes; "h" or "hr" refers to hour; "d" refers to day; "atm" refers to atmosphere; "sat." refers to saturated; "s" refers to singlet, "d" refers to doublet; "t" refers to triplet; "q" refers to quartet; "m" refers to multiplet; "dd" refers to "doublet of doublets"; "br" refers to broad; "bs" refers to broad singlet, "LC" refers to liquid chromatograph; "MS" refers to mass spectroscopy; "ESI" refers to electrospray ionization; "CI" refers to chemical ionization; "RT" refers to retention time; "M" refers to molecular ion; "NMR" refers to nuclear magnetic resonance spectroscopy; "MHz" refers to megahertz.

EXAMPLES


[0169] Although the invention has been illustrated by certain of the preceding examples, it is not to be construed as being limited thereby.

Synthesis of Intermediates:

Int-6: (R)-2-(2,5-difluorophenyl)pyrrolidine hydrochloride

[0170]

Int-1: 4-chloro-N-methoxy-N-methylbutanamide

[0171] Pyridine (101.28 g, 106.6mL 1281.79 mmol) was added to a solution of N,O-dimethylhydroxylamine hydrochloride (50 g, 512.72 mmol) in DCM (800mL) at 0°C and stirring was continued for 15 min. Chlorobutyrylchloride (72.29 g, 512.72 mmol) was then added to this mixture and was stirred continuously at 0°C for 2 h. The reaction mixture was diluted with DCM and the organic layer was washed with water followed by brine. The organic layer was separated; dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford 79 g of the title compound as a pale brown liquid.

MS (ESI): m/z 166.1(M+H)

Int-2: 4-chloro-1-(2,5-difluorophenyl)butan-1-one

[0172] 2-Bromo-1,4-difluorobenzene(53.6 g, 277.74 mmol) in THF cooled to -50°C was added to isopropyl magnesium chloride (2M in THF)(133mL, 266 mmol). The reaction mixture thus obtained was warmed to 0°C and stirred for 1h. The reaction mixture was cooled again to -50°C. 4-chloro-N-methoxy-N-methylbutanamide (40 g, 241.52 mmol) in THF (200mL) was added dropwise to this reaction mixture with stirring and the stirring was continued at 0°C for 1h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution, extracted with ethylacetate. The organic layer collected was washed with water (500 mL) and then with brine solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford a crude liquid residue. The residue thus obtained was purified by column chromatography (using 60-120 silica gel and 5% EtOAc in Hexane as eluent) to afford 35 g of the title compound as a colourless liquid.

¹H NMR (300MHz, CDCl₃) δ ppm 7.6-7.53(1H, m), 7.26-7.09(2H, m), 3.7(2H, t) 3.22-3.14(2H, m), 2.28-2.16(2H, m).

Int-3: (S, E)-N-(4-chloro-1-(2, 5-difluorophenyl) butylidene)-2-methylpropane-2-sulfonamide

[0173] Titanium (IV) ethoxide (54.77 g, 240.13 mmol) was added to a solution of 4-chloro-1-(2,5-difluorophenyl)butan-1-one(35 g, 160.09 mmol) and (S)-2-methylpropane-2-sulfinamide (29.1 g, 240.13 mmol) in THF(400mL) with stirring. The mixture was stirred continuously at 70°C for 16h. Reaction mixture was then cooled to a temperature of 20-35°C, quenched with saturated aqueous NH₄Cl solution, diluted with ethylacetate and filtered. The filtrate was washed with water followed by brine solution. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford 44.5 g of the title compound as a colourless liquid.

MS (ESI): m/z 322.3 (M+H)

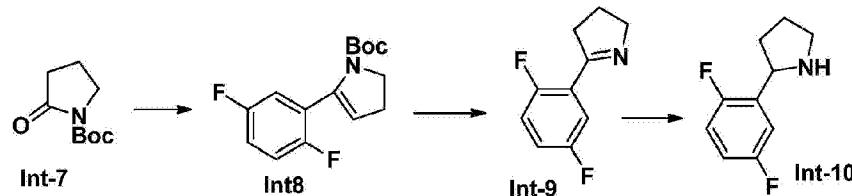
Int-4: (R)-1-((S)-tert-butylsulfinyl)-2-(2,5-difluorophenyl) pyrrolidine and Int-5: (S)-1-((S)-tert-butylsulfinyl)-2-(2,5-difluorophenyl) pyrrolidine

[0174] (S,E)-N-(4-chloro-1-(2,5-difluorophenyl)butylidene)-2-methylpropane-2-sulfinamide (44 g, 136.72 mmol) in THF(500mL) was cooled to -78°C and to which was added cold (-78°C) Lithium triethylborohydride(1M in THF) (17.38 g, 165mL, and 134.67 mmol) dropwise and stirring was continued at -78°C for 3h. LiHMDS (1M in THF) (25.26 g, 150mL, 150 mmol) was then added and stirring was continued at -78°C to 0°C for 2h. The resultant reaction mixture was quenched with saturated NH₄Cl solution, diluted with ethylacetate. The ethylacetate layer separated was washed with water followed by brine solution, dried over anhydrous sodium sulphate and concentrated under reduce pressure to afford the crude residue. The residue thus obtained was purified by column chromatography twice (using initially with 60-120 silicagel and 15%EtOAC in Hexane as eluent and again with 230-400 silicagel and 12-14% EtOAc in Hexane as eluent) to afford 14.5 g of the title compound (R)-1-((S)-tert-butylsulfinyl)-2-(2, 5-difluorophenyl) pyrrolidine as a pale brown liquid.

¹H NMR (300MHz, CDCl₃) δ ppm 7.1-6.85(3H, m), 5.0(1H, t) 3.93-3.85(1H, m), 3.02-2.94(1H, m), 2.32-2.2(1H, m), 2.0-1.72(3H, m), 1.16(9H, s)

and 4 g of the title compound (S)-1-((S)-tert-butylsulfinyl)-2-(2, 5-difluorophenyl) pyrrolidine.

¹H NMR (300MHz, CDCl₃) ¹H NMR (300MHz, CDCl₃) δ ppm 7.1-6.8(3H, m), 5.42-5.2(1H, d, J=7.5Hz), 2.3-2.05(1H, m), 2.0-1.65(4H, m), 1.1(9H, s).


Int-6: (R)-2-(2, 5-difluorophenyl) pyrrolidine hydrochloride

[0175] 4M HCl solution (in Dioxane) (75mL) was added to stirred solution of (R)-1-((S)-tert-butylsulfinyl)-2-(2, 5-difluorophenyl) pyrrolidine (15 g, 52.19 mmol) in Dioxane (25mL) and stirring was continued at 20-35°C for 4h. After which the reaction mixture was concentrated under reduced pressure to afford the crude product. The crude product was purified by washing with diethyl ether to afford 7.5 g of the title compound as a white solid.

MS (ESI): m/z 184 (M+H)

Int-10: 2-(2,5-difluorophenyl)pyrrolidine

[0176]

Int-7: tert-butyl 2-oxopyrrolidine-1-carboxylate

[0177] Di-tert-butyl dicarbonate (154 g, 154mL, 704 mmol) was added to solution of 2-Pyrrolidinone (50 g, 587 mmol) and DMAP (36 g, 293.7 mmol) in acetonitrile (500mL) at 0-5°C and stirring was continued at 20-35°C for 2 h. Reaction mixture was concentrated under reduced pressure to afford the residue, which was diluted with EtOAc, washed it with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford 73 g of the title compound.

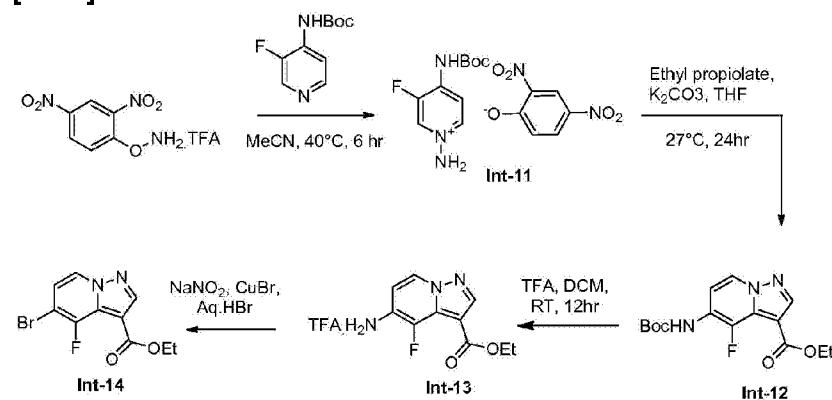
Int-8: tert-butyl 5-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate

[0178] 2.0 M Isopropyl magnesium chloride solution in THF (163mL, 324.3 mmol) was added to a solution of 2-bromo-1,4-difluorobenzene (62.5 g, 324.3 mmol) in THF (350mL) at -40°C and stirring was continued at 5°C for 1 h. *tert*-Butyl 2-oxopyrrolidine-1-carboxylate(Step-1)(73 g, 392 mmol) in THF(150mL) was added dropwise to above reaction mixture at -40°C and stirring was continued at 10°C for 2 h. Reaction mixture was quenched with saturated NH₄Cl solution, extracted with EtOAc, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford 76 g of the title compound.

Int-9: 5-(2,5-difluorophenyl)-3,4-dihydro-2H-pyrrole

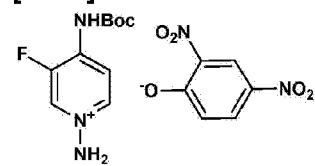
[0179] TFA (108 g, 940 mmol) was added to a solution of *tert*-butyl 5-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (53 g, 188 mmol) in DCM (300mL) at 0°C and stirring was continued at 20-35°C for 2 h. The reaction mixture was concentrated under reduced pressure to afford the crude, which was diluted with EtOAc, washed with saturated NaHCO₃ solution, dried over anhydrous sodium sulphate to afford 28.5 g of the title compound.

MS (ESI): m/z 181.9 (M+H)


Int-10: 2-(2,5-difluorophenyl)pyrrolidine

[0180] NaBH_4 (12 g, 314.9 mmol) was added to a solution of 5-(2,5-difluorophenyl)-3,4-dihydro-2H-pyrrole(28.5 g, 157.4 mmol) in a mixture of $\text{MeOH:H}_2\text{O}$ (4:1, 250mL) and stirring was continued at 25–35°C for 2 h. The reaction mixture was quenched with 1N aqueous HCl solution and basified with 2N aqueous NaOH solution, extracted with DCM , dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford 23 g of the title compound.

MS (ESI): m/z 184 ($\text{M}+\text{H}$)


Synthesis of ethyl 5-bromo-4-fluoropyrazolo[1,5-a]pyridine-3-carboxylate (Int-14)

[0181]

Int-11:
1-amino-4-((tert-butoxycarbonyl)amino)-3-fluoropyridin-1-ium-2,4-dinitrophenolate

[0182]

[0183] A solution of tert-butyl (3-fluoropyridin-4-yl)carbamate (25.0 g, 125 mmol) in MeCN (200 ml), was added O-(2, 4-dinitrophenyl) hydroxylamine (26.64 g, 125 mmol) in MeCN (200 ml), drop wise over 30 min at RT, reaction mass was stirred at 40°C for 12 hrs, reaction mass was concentrated at temperature below 40°C under reduced pressure to afford Int-11 (50 g) which was used in the next step without further purification.

Int-12: Ethyl 5-((tert-butoxycarbonyl)amino)-4-fluoropyrazolo[1,5-a]pyridine-3-

carboxylate**[0184]**

[0185] K_2CO_3 (36.96 g, 267 mmol) was added to a solution of 1-amino-4-((tert-butoxycarbonyl)amino)-3-fluoropyridin-1-ium 2,4-dinitrophenolate (50 g, 121 mmol) in THF (500 mL) at 28°C and continued stirring at same temperature for 30 min. Ethyl propiolate (14.3 g, 145 mmol) was added to above solution and stirring was continued at 28°C for 16hr. Reaction mixture was filtered to remove the salt, filtrate collected was diluted with EtOAc washed it with water followed by brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford crude. The crude obtained was purified by column purification (using 60-120 silicagel and 10%EtOAc in Hexane as eluant) to afford the title compound.

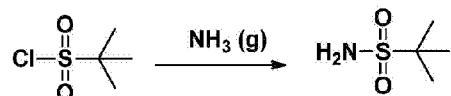
MS m/z 323.9 (M+H)

Int-13: 3-(ethoxycarbonyl)-4-fluoropyrazolo[1,5-a]pyridin-5-aminium trifluoroacetate 2,2,2-

[0186]

[0187] To a solution of ethyl 5-((tert-butoxycarbonyl)amino)-4-fluoropyrazolo[1,5-a]pyridine-3-carboxylate (7 g, 21 mmol) in DCM (60 mL), TFA (12 g, 108 mmol) was added at 0-5 °C drop wise over a period of 30 min, then stirred at room temperature for 2 hrs, reaction mass was concentrated at temperature below 40 °C under reduced pressure to afford the title compound (7 g) which was used in the next step without further purification, MS m/z 223.2 (M+)

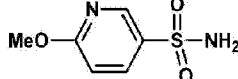
Int-14: Ethyl 5-bromo-4-fluoropyrazolo[1,5-a]pyridine-3-carboxylate


[0188]

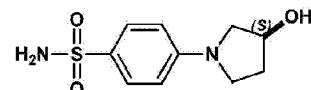
o-

[0189] NaNO_2 (2.26 g, 32.89 mmol) in water (7 mL) was added dropwise at 0°C to a solution of 3-(ethoxycarbonyl)-4-fluoropyrazolo[1,5-a]pyridin-5-aminium 2,2,2-trifluoroacetate (7 g, 97.5 mmol) in aq.47% HBr (56 mL) and continued stirring at same temperature for 30 min. CuBr (6.29 g, 44 mmol) in aq.47% HBr (56 mL) was added dropwise to above solution at 0°C and stirring was continued at 28°C for 1hr. Reaction mixture was quenched with ice water, extracted into EtOAc , washed it with water followed by brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford crude. The crude obtained was purified by column purification (using 60-120 silicagel and 5% EtOAc in Hexane as eluant) to afford ethyl 5-bromo-4-fluoropyrazolo[1,5-a]pyridine-3-carboxylate. NMR (300 MHz, DMSO-d_6) δ 9.45-9.43 (d, 1H), 8.51 (s, 1H), 8.33-8.30 (d, 1H), 4.35-4.28 (m, 2H), 1.36-1.31 (t, 3H).

Int-15: 2-methylpropane-2-sulfonamide

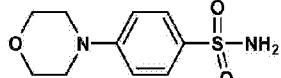
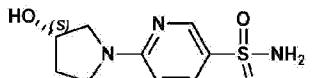
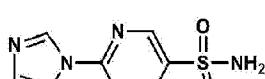

[0190]

[0191] Ammonia gas was purged into t-butylsulfonyl chloride (500 mg, 3.2 mmol) in THF (5 mL) at -50°C for 15 minutes and stirring was continued at 20-35 °C for 16 h. The solid precipitate obtained was filtered; the filtrate collected was concentrated under reduced pressure to afford 350 mg of the title compound. ^1H NMR (400 MHz, DMSO-d_6) δ ppm 6.71 (2H, bs), 1.38 (9H, s).

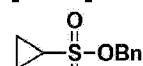

[0192] The following sulfonamides (Int-16 to Int-19) are prepared following the similar procedure as mentioned in Int-15 using the appropriate sulfonyl chloride.

Intermediate	Structure	IUPAC name	ESMS (M+H)
Int-16		1,2-dimethyl-1H-imidazole-5-sulfonamide	m/z 176
Int-17		1-methyl-1H-pyrazole-5-sulfonamide	m/z 162
Int-18		benzyl 4-sulfamoylpiperidine-1-carboxylate	m/z 299

Intermediate	Structure	IUPAC name	ESMS (M+H)
Int-19		6-methoxypyridine-3-sulfonamide	m/z 189




Int-20: 4-(3-hydroxypyrrolidin-1-yl) benzene sulfonamide

[0193]

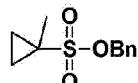

[0194] A solution of 4-fluorobenzene sulfonamide (0.39 g, 2.22 mmol) and S(-)-3-hydroxypyrrolidine (0.32 g, 2.67 mmol) in DMSO (2 mL) was heated to 100 °C for 20 h. Reaction was cooled to 25 °C and quenched with cold water. The separated solid was filtered and washed with water and dried to afford 4-(3-hydroxypyrrolidin-1-yl) benzene sulfonamide (Int-20) as a white solid. MS (ESI): m/z 243.1 (M+H).

[0195] The sulfonamides Int-21 to Int-23 are synthesized following the procedure as mentioned in Int-20 using the appropriate aryl halides and amines.

Intermediate	Structure	IUPAC name	ESMS (M+H)
Int-21		4-morpholinobenzene-sulfonamide	m/z 243
Int-22		(S)-6-(3-hydroxypyrrolidin-1-yl)pyridine-3-sulfonamide	m/z 244
Int-23		6-(1H-1,2,4-triazol-1-yl)pyridine-3-sulfonamide	m/z 226

Int-24: Benzyl cyclopropanesulfonate

[0196]



[0197] Cyclopropyl sulfonyl chloride (2 g, 14.2 mmol) was added drop-wise at 0°C to a solution of Benzyl alcohol (2.1 g, 28.4 mmol) and Pyridine (2.35 g, 29.8 mmol) in DCM (20 mL) and continued stirring at 25°C for 16 h. The reaction mixture was diluted with DCM (100 mL), washed with 1N aq.HCl solution followed by water and brine; Organic layer collected was dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the Benzyl cyclopropanesulfonate. ^1H NMR (300MHz, CD₃OD) δ ppm 4.3-4.1 (2H, t), 2.7-2.6 (1H, m), 1.8-1.6 (2H, m), 1.6-1.4 (2H, m), 1.2-1.1 (4H, m), 1.0-0.9 (3H, t).

Int-25: Benzyl 1-methylcyclopropane-1-sulfonate

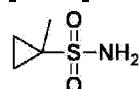
[0198]

Int-25

[0199] n-BuLi (0.78 g, 12.25 mmol) was added drop-wise at -78°C to a solution of Benzylcyclopropane sulfonate (2.0 g, 11.2 mmol) in THF (20 mL) and continued stirring at the same temperature for 10 min. CH₃I (3.98 g, 28.0 mmol) was added at - 78°C, allowed the reaction to warm to 0°C with stirring for 30 min. The reaction mixture was quenched with ice cold water, diluted with ethylacetate (100 mL), organic layer collected was dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude. The crude was purified by column chromatography (using silica gel and 4% ethyl acetate in Hexane as eluent) to afford benzyl 1-methylcyclopropane-1-sulfonate (Int-25). ^1H NMR (300MHz, CD₃OD) δ ppm 4.2-4.1 (2H, t), 1.7-1.6 (2H, m), 1.4 (3H, s), 1.5-1.3 (2H, m), 1.3-1.2 (2H, m), 1.0-0.9 (2H, m), 0.9 (3H, t).

Int-26: Potassium 1-methylcyclopropane-1-sulfonate

[0200]


Int-26

[0201] KSCN (2.48 g, 25.5 mmol) was added to a solution of Benzyl 1-methylcyclopropane-1-sulfonate (4.9 g, 25.5 mmol) in DME/H₂O (1:1, 120 mL) and continued stirring at 100°C for 16

h. Reaction mixture was concentrated under reduced pressure and the residue was washed with n-Pentane and dried to afford Potassium 1-methylcyclopropane-1-sulfonate (Int-26) which was used in the next step without further purification.

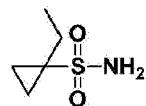
Int-27: 1-Methylcyclopropane-1-sulfonamide

[0202]

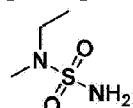


Int-27

[0203] To a solution of Potassium 1-methylcyclopropane-1-sulfonate (4.44 g, 25.5 mmol) in THF (50 mL) at 0°C was added POCl_3 (11.7 g, 76.5 mmol) with stirring maintaining the same temperature for 30 min. DIPEA (9.8 g, 76.5 mmol) was added to above mixture and continued stirring at 25°C for 2 h. Reaction mixture was quenched with ice cold water, extracted into diethyl ether (3x100 mL), dried over anhydrous sodium sulphate to afford 1-methylcyclopropane-1-sulfonylchloride in diethyl ether. The above dried ethereal solution of 1-methylcyclopropane-1-sulfonylchloride was cooled to -78°C and purged in with NH_3 gas for 30 min. and slowly allowed the reaction mixture to warm to 25°C with stirring for 16 h. Reaction mixture was filtered through celite bed and the filtrate was concentrated under reduced pressure and the crude thus obtained was washed with n-pentane to afford 1-methylcyclopropane-1-sulfonamide (Int-27) as pale brown solid. ^1H NMR (300 MHz, DMSO-d6) δ ppm 6.7 (2H, s), 1.4 (3H, s), 1.1-1.0 (2H, m) 0.7-0.6 (2H, m).


Int-28: 1-(4-Fluorobenzyl)cyclopropane-1-sulfonamide

[0204]


Int-28

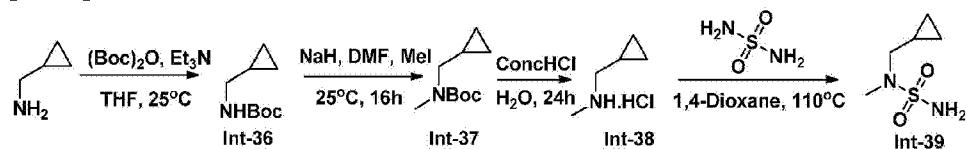
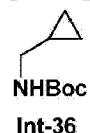
[0205] The title compound Int-28 was prepared by the similar method as mentioned in Int-27 except in Int-25, 4-Fluoro benzyl bromide was used in place of CH_3I to afford 1.1 g of Int-28 as pale brown solid. ^1H NMR (300MHz, DMSO-d6) δ ppm 7.3-7.2 (5H, m), 6.9 (2H, s), 3.3 (2H, s) 1.2-1.1 (2H, m), 0.5-0.4 (2H, m).

Int-29: 1-ethylcyclopropane-1-sulfonamide**[0206]**

Int-29

[0207] The title compound Int-29 was prepared by the similar method as mentioned in Int-27 except in Int-25, ethyl iodide was used in place of CH₃I to afford 0.9 g of Int-29 as pale brown solid.

Int-30: N-Ethyl-N-methyl sulfamide**[0208]**



Int-30

N-Ethyl-N-methyl amine (2.95 g, 50 mmol) was added to a solution of Sulfamide (4 g, 41.6 mmol) in 1,4-Dioxane (40 mL) and continued stirring at 110°C for 16 h. Reaction mass was concentrated under reduced pressure to afford the crude, which was purified by column purification (using neutral alumina and 10-70% ethyl acetate in Hexane as eluent) to afford N-Ethyl-N-methyl sulfamide (Int-30) as pale yellow oil. ¹H NMR (300 MHz, DMSO-d₆) δ ppm 6.7 (2H, s), 3.1-2.3 (2H, m), 2.6 (3H, s), 1.2-1.0 (3H, t).

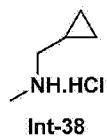
Following sulfamides Int-31 and Int-35 were made using above method except changing the amine

Intermediate	Structure	IUPAC name	MS (ESI) (M+H)
31		N,N-Diethylsulfamide	m/z 153.07
32		N,N-Dimethylsulfamide	m/z 125.03
33		Piperidine-1-sulfonamide	m/z 165.07
34		Pyrrolidine-1-sulfonamide	m/z 151.03

Intermediate	Structure	IUPAC name	MS (ESI) (M+H)
35		Morpholine-4-sulfonamide	m/z 167.03

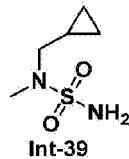
Int-39: N-Ethyl-N-cyclopropyl sulfamide**[0209]****Int-36: Tert-butyl (cyclopropylmethyl) carbamate****[0210]**

[0211] Di-tert-butyldicarbonate (6.13 g, 6.46 mL, 28.08 mmol) was added to solution of Cyclopropyl methyl amine (2 g, 28.1 mmol), Et₃N (2.84 g, 28.1 mmol) and DMAP (0.34 g, 2.8 mmol) in THF (20 mL) at 0-5°C and stirring was continued at 25 °C for 3 h. Reaction mixture was diluted with ethyl acetate and the organic layer was washed with brine, followed by water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford tert-butyl (cyclopropylmethyl) carbamate (Int-36) as pale yellow oil. ¹H NMR (300 MHz, DMSO-d6) δ ppm 7.0-6.7 (2H, bs), 2.9-2.7 (2H, t), 1.3 (9H, s), 0.9-0.8 (1H, bs), 0.4-0.3 (2H, m), 0.1-0.05 (2H, m).


Int-37: Tert-butyl (cyclopropylmethyl) (methyl) carbamate**[0212]**

[0213] A solution of tert-butyl (cyclopropylmethyl)carbamate (4 g, 23.4 mmol) in DMF (35 mL) was added to a suspension of NaH (60% suspension in mineral oil) (0.58 g, 25.7 mmol) in DMF (5 mL) at 0-5°C, to it was added Iodomethane (2.5 mL, 40 mmol) and stirring was continued at 25°C for 16 h. Reaction mixture was quenched with cold water, extracted with ethyl acetate (3x50 mL), dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude, which was purified by flash chromatography (Biotage, Column: silica gel 12 g pack size, solid load, Mobile Phase: EtOAc in n-Hexane: 0 to 5% as eluent) to afford tert-butyl (cyclopropylmethyl)(methyl)carbamate (Int-37) as pale yellow oil. ¹H NMR (300 MHz, DMSO-d6) δ ppm 3.0-2.9 (2H, d), 2.85 (3H, s), 1.4 (9H, s), 0.9-0.7 (1H, bs), 0.5-0.3 (2H, m), 0.2-0.05 (2H, m).

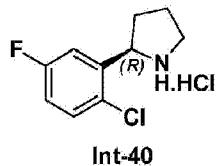
Int-38:1-Cyclopropyl-N-methylmethanamine hydrochloride


[0214]

[0215] Conc.HCl (0.6 mL) was added to a solution of tert-butyl(cyclopropylmethyl)(methyl)carbamate (2 g, 10.8 mmol) in H₂O (20 mL) at 0-5°C and stirring was continued at 25 °C for 48 h. Reaction mixture was concentrated under reduced pressure to afford 1-Cyclopropyl-N-methylmethanamine hydrochloride (Int-38) (1.24 g cr.). ¹H NMR (300 MHz, DMSO-d6) δ ppm 2.9-2.8 (2H, d), 2.7 (3H, s), 1.1-1.0 (1H, m), 0.7-0.6 (2H, m), 0.5-0.3 (2H, m), 0.4-0.3 (2H, m).

Int-39: N-Ethyl-N-cyclopropyl sulfamide

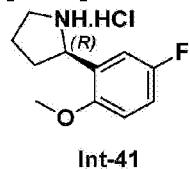
[0216]



[0217] The title compound Int-39 was synthesized by a similar method as that of Int-30 except Int-38 was used in place of N-Ethyl-N-methyl amine to afford N-Ethyl-N-cyclopropyl sulfamide

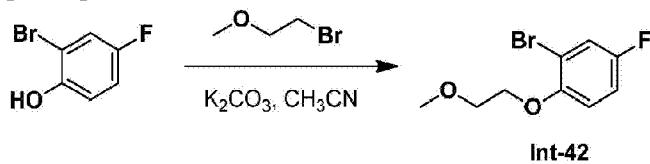
(Int-39) as pale yellow oil. ^1H NMR (300MHz, DMSO-d6) δ ppm 6.7 (2H, s), 2.8-2.7 (2H, d), 2.7 (3H, s), 1.0-0.9 (1H, m), 0.5-0.4 (2H, m), 0.2-0.1 (2H, m).

Int-40: (R)-2-(2-Chloro-5-fluorophenyl) pyrrolidine hydrochloride (Int-40)


[0218]

[0219] The title compound was prepared by the method similar to that mentioned for Int-6 using 2-chloro-5-fluoro-1-bromobenzene in place of 2,5-difluoro-1-bromobenzene to afford the title compound (Int-40) as pale pink solid. MS (ESI): m/z 200.1 (M+H).

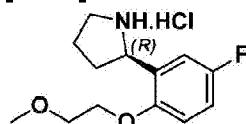
Int-41: (R)-2-(5-Fluoro-2-methoxyphenyl) pyrrolidine hydrochloride


[0220]

[0221] The title compound was prepared by the method similar to that mentioned for Int-6 using 2-Bromo-4-fluoro-anisole in place of 2,5-difluoro-1-bromobenzene to afford the title compound Int-41 as white solid. MS (ESI): m/z 195.9 (M+H).

Int-42: 2-Bromo-4-fluoro-1-(2-methoxyethoxy) benzene

[0222]



[0223] 1-bromo-2-methoxyethane (5.49 g, 39.5 mmol) was added to a mixture of 2-bromo-4-fluoro phenol (5 g, 26.18 mmol) and K_2CO_3 (11.5 g, 83.25 mmol) in CH_3CN (41.5 mL) and

continued stirring at 80°C for 16 hr. The reaction mixture was quenched with 1M aq.NaOH solution, extracted with diethyl ether (3x100 mL), dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude, which was purified by column chromatography (using silica gel and 2% ethyl acetate in hexane as eluent) to afford the desired compound (Int-42). ^1H NMR (300 MHz, CDCl_3) δ ppm 7.3 (1H, m), 6.9 (1H, m), 6.7 (1H, m), 4.1 (2H, t), 3.8 (2H, t), 3.5 (3H, s).

Int-43: (R)-2-(5-Fluoro-2-(2-methoxyethoxy) phenyl) pyrrolidine hydrochloride

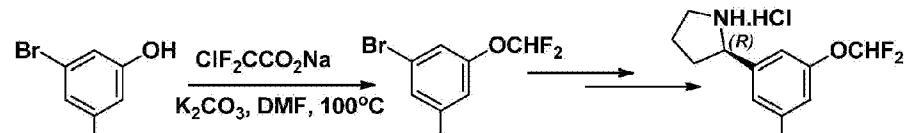
[0224]

Int-43

[0225] The title compound (Int-43) was prepared by the method similar to that mentioned for Int-6 using 2-bromo-4-fluoro-1-(2-methoxyethoxy)benzene (Int-42) in place of 2,5-difluoro-1-bromobenzene to afford the desired compound (Int-43) as a solid. MS (ESI): m/z 240.2 (M+H).

Int-44: (R)-2-(3, 5-Difluorophenyl) pyrrolidine hydrochloride

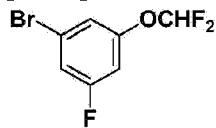
[0226]



Int-44

[0227] The title compound (Int-44) was prepared by the method similar to that mentioned for Int-6 using 3,5-difluoro-1-bromobenzene in place of 2,5-difluoro-1-bromobenzene to afford the title compound (Int-44) as white solid. MS (ESI): m/z 184 (M+H).

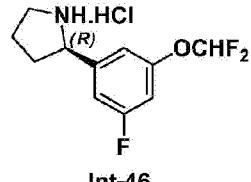
Int-46: (R)-2-(3-(difluoromethoxy)-5-fluorophenyl)pyrrolidine hydrochloride


[0228]

F

F
Int-45F
Int-46**Int-45: 1-Bromo-3-(difluoromethoxy)-5-fluorobenzene**

[0229]

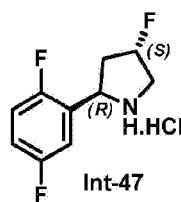


Int-45

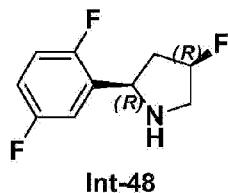
[0230] To a solution of 3-bromo-5-fluorophenol (0.5 g, 2.6 mmol) in DMF (4.5 mL) was added K_2CO_3 (0.9 g, 6.54 mmol) and stirred at 25 °C for 10 min. Water (0.5 mL) was added to the above mixture followed by addition of 2-Chloro-2,2,-difluoroacetic acid sodium salt (0.6 g, 3.93 mmol) and stirring was continued at 100 °C for 3 h. The reaction mixture was cooled to 25 °C and diluted with ethyl acetate, washed with brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude, which was purified by column chromatography (using silica gel and 2% ethyl acetate in Hexane as eluent) to afford the desired compound (Int-45). 1H NMR (400MHz, $CDCl_3$) δ ppm 7.2-6.9 (2H, m), 6.8-6.7 (1H, d), 6.7-6.2 (1H, m).

Int-46: (R)-2-(3-(Difluoromethoxy)-5-fluorophenyl)pyrrolidine hydrochloride

[0231]

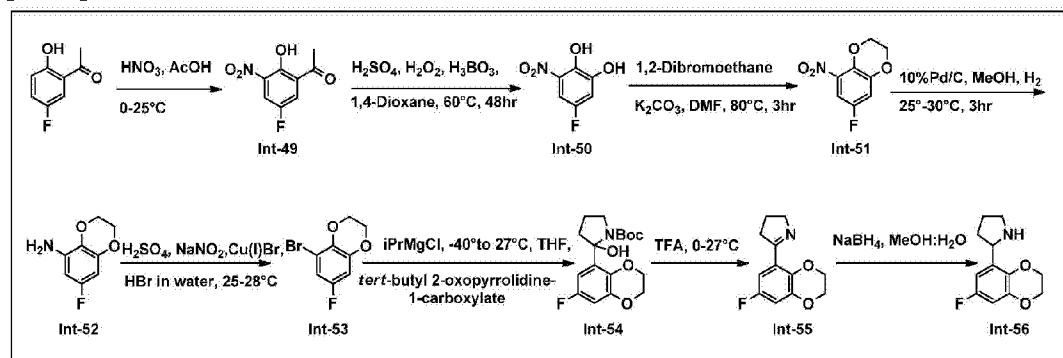


Int-46

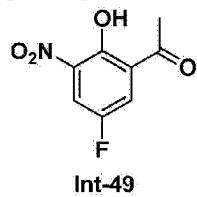

[0232] The title compound (Int-46) was prepared by the method similar to that mentioned for Int-6, using 1-bromo-3-(difluoromethoxy)-5-fluorobenzene (Int-45) in place of 2,5-difluoro-1-bromobenzene to afford the title compound (Int-46) as a thick brown liquid. MS (ESI): m/z 232.2 (M+H).

Int-47: Synthesis of (2R, 4S)-2-(2, 5-difluorophenyl)-4-fluoropyrrolidine hydrochloride

[0233]


[0234] The title compound was prepared by the method similar to that mentioned in WO2009140128 to afford Int-47 as off white solid. MS (ESI): m/z 202.1 (M+H). Int-48: Synthesis of (R)-2-(2, 5-difluorophenyl)-4, 4-difluoropyrrolidine hydrochloride

[0235] The title compound Int-48 was prepared by following the method similar to that mentioned in WO2009140128. MS (ESI): m/z 220.4 (M+H).


Int-56: Synthesis of 2-(7-fluoro-2, 3-dihydrobenzo[b] [1, 4]dioxin-5-yl)pyrrolidine

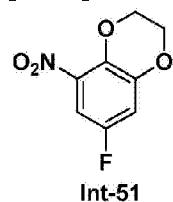
[0236]

Int-49: 1-(5-Fluoro-2-hydroxy-3-nitrophenyl) ethanone

[0237]

[0238] Conc. HNO_3 (22.49 g, 357 mmol) was added to a solution 1-(5-fluoro-2-hydroxyphenyl) ethanone (50 g, 325 mmol) in acetic acid (300 mL) at 0°C and stirring was continued at 20°C for 3 h. The reaction mixture was quenched with ice cold water. The separated solid was filtered and washed with cold water and dried to afford 1-(5-fluoro-2-hydroxy-3-nitrophenyl) ethanone (Int-49) as pale yellow solid. ^1H NMR (400 MHz, DMSO-d_6) δ ppm 12.6 (1H, s), 8.3-8.2 (1H, dd), 8.2-8.1 (1H, dd), 2.7 (3H, s).

Int-50: 5-Fluoro-3-nitrobenzene-1, 2-diol


[0239]

[0240] H_2SO_4 (50 mL) was added to a solution of H_3BO_3 (89.3 g, 1.4 mol) in 1,4-Dioxane (300 mL) at 0 °C and stirred at 28 °C for 1 h. 1-(5-fluoro-2-hydroxy-3-nitrophenyl) ethanone (50 g, 289 mmol) was added portion wise to the above solution over 1 h, maintaining the temperature at 0°C, after addition was complete, the reaction mixture was warmed to 25 °C and stirred for 16 h. Reaction mixture was quenched with cold water, solid separated was collected by filtration. The solid was suspended in diethyl ether (500 mL) and filtered to remove insoluble inorganic mass, ether layer was washed with cold water (2 to 3 times) followed by brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude sticky solid. The crude solid was triturated over n-Hexane and filtered to afford 5-fluoro-3-nitrobenzene-1,2-diol (Int-50) as pale yellow solid. MS (ESI): m/z 171.9 (M-1).

Int-51: 7-Fluoro-5-nitro-2,3-dihydrobenzo[b][1,4]dioxine

[0241]



[0242] K_2CO_3 (15.27 g, 110.6 mmol) was added to a solution of 5-fluoro-3-nitrobenzene-1,2-diol (5 g, 28.9 mmol) in DMF (35 mL) followed by the addition of 1,2-Dibromoethane (13.63 g, 6.25 mL, 72.5 mmol) and stirring was continued at 80 °C for 2 h. Reaction mixture was diluted

with ethyl acetate, washed with cold water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude, which was purified by MPLC (silica gel, Mobile Phase: ethyl acetate in n-Hexane 0 to 5% as eluant) to afford 7-fluoro-5-nitro-2,3-dihydrobenzo[b] [1,4]dioxine (Int-51) as pale yellow solid.¹H NMR (300 MHz, CDCl₃) δ ppm 7.3-7.2 (1H, dd), 6.9-6.8 (1H, dd), 4.4 (4H, s).

Int-52: 7-Fluoro-2, 3-dihydrobenzo[b] [1,4] dioxin-5-amine


[0243]

[0244] 10% Pd/C (400 mg) was added to a solution of 7-fluoro-5-nitro-2,3-dihydrobenzo[b] [1,4]dioxine (2.0 g, 10 mmol) in methanol (50 mL) and stirring was continued at 25 °C under H₂ atmosphere for 3 h. The reaction mixture was filtered over celite bed and washed with methanol. The filtrate and the washings were concentrated under reduced pressure to afford 7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-amine (Int-52) as pale brown liquid. MS (ESI): m/z 170.1 (M+H).

Int-53: 5-Bromo-7-fluoro-2, 3-dihydrobenzo[b] [1,4] dioxine

[0245]

[0246] NaNO₂ (2.69 g, 39.9 mmol) in water (20 mL) was added slowly at 0 °C to a solution of 7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-amine (4.5 g, 26 mmol) in aq. 47%HBr (20 mL) and continued stirring at same temperature for 30 min. The above diazonium salt solution was added slowly to a solution of CuBr (5.7 g, 39.9 mmol) in aq.47%HBr (25 mL) at 0 °C and stirred at 25 °C for 30 min. Reaction mixture was quenched with ice water, extracted with ethyl acetate (3x50 mL), washed it with water followed by brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford crude. The crude was purified by column purification (using silica gel and 0-5% ethyl acetate in Hexane as eluent) to afford 5-

bromo-7-fluoro-2, 3-dihydrobenzo[b][1,4]dioxine (Int-53) (5.9 g). ^1H NMR (300 MHz, CDCl_3) δ ppm 6.9-6.84 (1H, dd), 6.6-6.5 (1H, dd), 4.3-4.3 (4H, m).

Int-54: Tert-butyl-2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-2-hydroxypyrrolidine-1-carboxylate

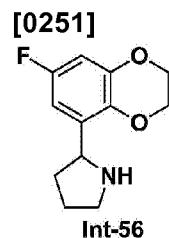
[0247]

Int-54

[0248] A solution of isopropyl magnesium chloride in THF (2M, 5.39 mL, 10.78 mmol) was added to a solution of 5-bromo-7-fluoro-2,3-dihydrobenzo[b][1,4]dioxine (Int-53) (1 g, 4.31 mmol) in THF (10 mL) at -45 °C drop-wise and then allowed it to warm up to 5 °C over a period of 1 h. The reaction mixture was cooled again to -45 °C and a solution of tert-butyl 2-oxopyrrolidine-1-carboxylate (1.6 g, 8.62 mmol) in THF (10 mL) was added drop-wise maintaining the temperature at -45 °C. The reaction mixture was warmed to 25 °C and stirred for 1 h and then quenched with saturated NH_4Cl solution (100 mL). The reaction mixture was extracted with ethyl acetate (3x30 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure and purified by column chromatography (using silica gel and 20% ethyl acetate Hexane as eluent) to afford tert-butyl 5-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-2,3-dihydro-1H-pyrrole-1-carboxylate (Int-54). MS (ESI) m/z 340 (M+1).

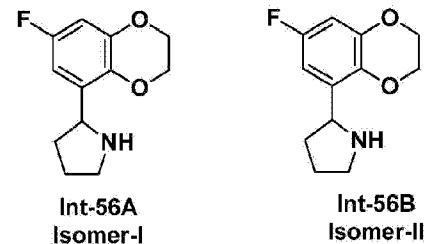
Int-55: 5-(7-Fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-3,4-dihydro-2H-pyrrole

[0249]

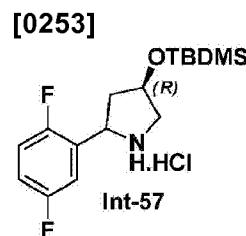


Int-55

[0250] TFA (0.09 mL, 1.18 mmol) was added to a solution of tert-butyl 5-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-2,3-dihydro-1H-pyrrole-1-carboxylate (0.04 g, 0.117 mmol) in DCM (5 mL) at 0°C and stirring was continued at 25°C for 3 h. Reaction mixture was concentrated under reduced pressure to afford the crude, which was diluted with ethyl acetate,


washed with saturated NaHCO_3 solution, dried over anhydrous sodium sulphate to afford 5-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)-3,4-dihydro-2H-pyrrole (Int-55). MS (ESI) m/z 222 (M+H)

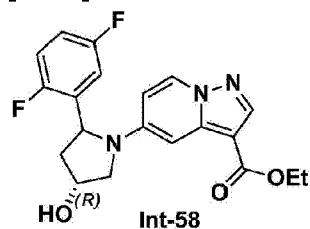
Int-56: 2-(7-Fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidine



[0252] NaBH_4 (0.25 g, 6.69 mmol) was added to a solution of 5-(7-fluoro-2,3-dihydrobenzo [b] [1,4]dioxin-5-yl)-3,4-dihydro-2H-pyrrole (Int-55) (0.8 g, 3.34 mmol) in a mixture of MeOH and H_2O (3:1, 20 mL) and was stirred at 25°C for 2 h. Reaction mixture was quenched with 1N aqueous HCl solution (50 mL) and basified with 2N aqueous NaOH solution to pH 8 and extracted with DCM (3x20 mL). The organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford 2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidine (Int-56).. MS (ESI) m/z 224.5 (M+H).

Above enantiomeric mixture was separated in a prerative chiral HPLC column (Chiral pak IC (10 mmx250mmx5u) flow: 7 mL/min; 95:5 :: Hexane:0.1% ethanolamine in EtOH (isocratic) to afford two isomer, 240 mg (Int-56A) and 233 mg (Int-56B)

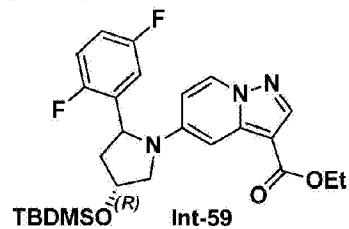
Int-57: (4R)-4-((tert-butyldimethylsilyl)oxy)-2-(2,5-difluorophenyl)pyrrolidine hydrochloride



[0254] TFA (0.27 mL, 0.414 g, 3.63 mmol) was added to a solution of (4R)-tert-butyl 4-((tert-butyldimethylsilyl) oxy)-2-(2, 5-difluorophenyl) pyrrolidine-1-carboxylate (0.5 g, 1.21 mmol) in DCM (10 mL) at 0°C and stirring was continued at 28°C for 2hr. Reaction mixture was concentrated under reduced pressure to afford (4R)-4-((tertbutyldimethylsilyl) oxy)-2-(2, 5-difluorophenyl) pyrrolidine hydrochloride (Int-57).

MS(ESI) m/z 200(M-TBDMS + 1, free base)

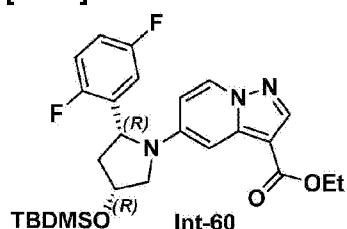
Int-58: Ethyl 5-((4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate


[0255]

[0256] The title compound (Int-58) was prepared by the method similar to that mentioned for Int-84, by using ethyl 5-bromopyrazolo [1, 5a] pyridine-3-carboxylate and (4R)-4-((tert-butyldimethylsilyl)oxy)-2-(2,5-difluorophenyl)pyrrolidine hydrochloride (Int-57) to afford (0.26 g, crude) as white solid after in situ deprotection of OTBDMS group to hydroxyl moiety. MS (ESI) m/z 388.1(M+H)

Int-59: Ethyl 5-((4R)-4-((tert-butyldimethylsilyl)oxy)-2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate

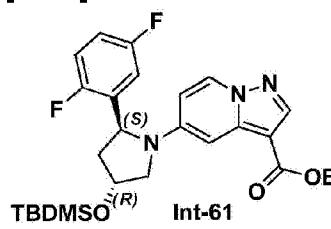
[0257]



[0258] TBDMSCl (0.093 g, 0.62 mmol) was added at 0°C to a solution of Ethyl 5-((4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Int-58) (0.2 g, 0.52 mmol) in DMF (5 mL) followed by Imidazole (0.1 g, 1.55 mmol) and continued stirring at 28°C for 1hr. The reaction mixture quenched with ice water, extracted into DCM, dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford 5-((4R)-4-((tert-

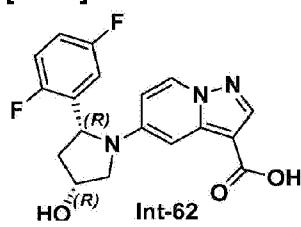
butyldimethylsilyl)oxy)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Int-59) (0.28 g, Crude) as Brown oil.

Int-60: Ethyl 5-((2R, 4R)-4-((tert-butyldimethylsilyl) oxy)-2-(2, 5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Isomer-I)


[0259]

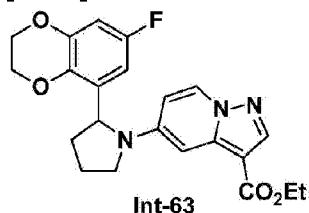
[0260] The diastereomeric mixture (Int-59) obtained was purified by Flash Chromatography (Biotage, Column: Silicagel 25g pack size, Mobile Phase: EtOAc in n-Hexane: 0 to 12% as eluant) to afford ethyl 5-((2R, 4R)-4-((tert-butyldimethylsilyl) oxy)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Isomer-I) (Int-60) as yellow solid. MS(ESI) m/z 502.2(M+H) and

Int-61: Ethyl 5-((2S, 4R)-4-((tert-butyldimethylsilyl)oxy)-2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Isomer-II)

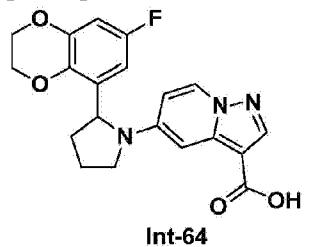

[0261]

as yellow solid. MS(ESI) m/z 502(M+H)

Int-62: 5-((2R, 4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid

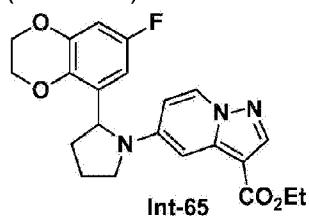

[0262]

...


[0263] 1M aq. solution of LiOH.H₂O (0.4 mL) was added to a stirred solution of ethyl 5-((2R, 4R)-4-((tert-butyldimethylsilyl)oxy)-2-(2,5-difluorophenyl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxylate (Isomer-I) (Int-60) (0.07 g, 0.14 mmol) in EtOH (5 mL) and the stirring was continued at 90°C for 8h. The reaction mixture was concentrated under reduced pressure to afford the crude product. The crude product thus obtained was diluted with cold water, acidified with citric acid solution, filtered the solid precipitated to afford 5-((2R, 4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid (Int-62) as yellow solid. MS (ESI): m/z 360(M+H).

Int-63: Ethyl 5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxylate (Isomer-I)

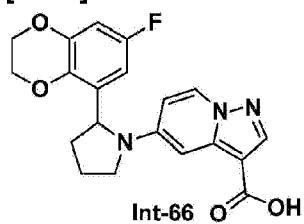
[0264]


[0265] The title compound (Int-63) was prepared by the method similar to that for Int-84 using 2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidine ((Int-56A) and Ethyl 5-bromopyrazolo[1,5-a]pyridine-3-carboxylate to afford as pale brown solid. LCMS (ESI): m/z 412.85(M+H).

Int-64: 5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxylic acid (Isomer-I)

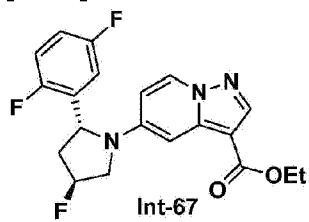
[0266]

[0267] The title compound (Int-64) was prepared by the method similar to that of Int-85 employing Int-63 to afford as white solid. LCMS (ESI): m/z 384.2(M+H). Int-65: Ethyl 5-(2-(7-


fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxylate (Isomer-II)

[0268] The title compound (Int-65) was prepared by the method similar to that of Int-84 using 2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidine (Int-56B)) and Ethyl 5-bromopyrazolo[1,5-a]pyridine-3-carboxylate to afford as pale brown solid. LCMS (ESI): m/z 412.85(M+H).

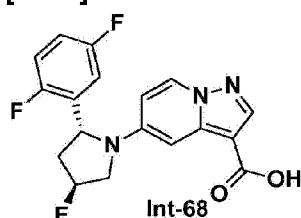
Int-66: 5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxylic acid (Isomer-II)


[0269]

[0270] The title compound (Int-66) was prepared by the method similar to that of Int-64 employing Int-65 to afford as white solid. LCMS (ESI): m/z 384.2(M+H).

Int-67: Ethyl 5-((2R, 4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1, 5-a]pyridine-3-carboxylate

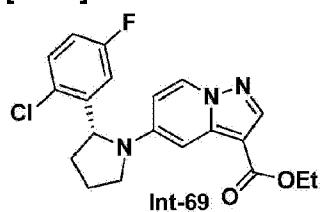
[0271]



[0272] The title compound (Int-67) was prepared by the method similar to that for Int-84 using (2R, 4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidine hydrochloride (Int-47) and Ethyl 5-

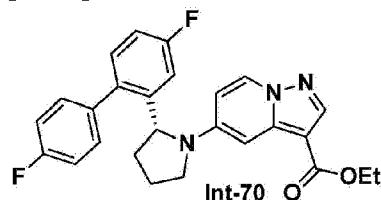
bromopyrazolo[1,5-a]pyridine-3-carboxylate to afford as yellow solid. LCMS (ESI): m/z 390.8 (M+H).

Int-68: 5-((2R, 4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxylic acid


[0273]

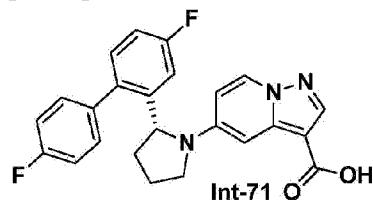
[0274] The title compound (Int-68) was prepared by the method similar to that of Int-85 employing Int-67 to afford as white solid. LCMS (ESI): m/z 362.8 (M+H).

Int-69: (R)-Ethyl 5-(2-(2-chloro-5-fluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxylate


[0275]

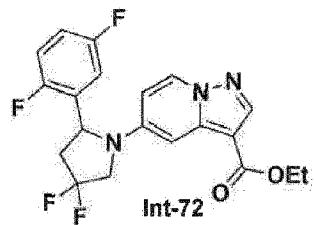
[0276] A mixture of ethyl 5-bromopyrazolo [1, 5a] pyridine-3-carboxylate (1.3 g, 4.85 mmol), (R)-2-(2-chloro-5-fluorophenyl) pyrrolidine hydrochloride (Int-40) (1.13 g, 4.85 mmol) and K₃PO₄ (3.08 g, 14.5 mmol) in 1,4-Dioxane (20 mL) was degassed with argon gas for 15 min. Pd₂(dba)₃ (0.313 g, 0.34 mmol) and BINAP (0.24 g, 0.39 mmol) were added to the above mixture and stirring was continued at 100°C for 2h. After completion of the reaction, the reaction mixture was cooled and filtered over a celite bed. The celite bed was washed with ethylacetate. The filtrate thus obtained was further washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude product, which was purified by column chromatography (using silica gel and 20% EtOAc in Hexane as eluant) to afford (R)-Ethyl 5-(2-(2-chloro-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Int-69) as a white solid. MS (ESI): m/z 388.1 (M+H).

Int-70: (R)-Ethyl 5-(2-(4,4'-difluoro-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate


[0277]

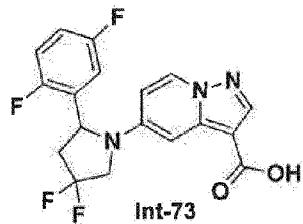
[0278] Cs_2CO_3 (0.75 g, 2.32 mmol) in 1,4-Dioxane (10 mL) was degassed with argon gas for 15 min. $\text{Pd}(\text{OAc})_2$ (0.052 g, 0.23 mmol) and X-Phos (0.22 g, 0.45 mmol) were added to the above mixture and degassed with argon gas for 15 min. (R)-Ethyl 5-(2-(2-chloro-5-fluorophenyl) pyrrolidin-1-yl) pyrazolo [1, 5-a] pyridine-3-carboxylate (Int-69) (0.3 g, 0.77 mmol) followed by 4-Fluorophenylboronic acid (0.54 g, 3.87 mmol) and again degassed with argon gas for 15 min. KI (0.025 g, 0.25 mmol) was added to the above mixture and stirring was continued at 100°C for 20h. The reaction mixture was cooled to 28°C, diluted with EtOAc, filtered through whatman filter paper filtrate collected was washed with water, dried the organic layer over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude product, which was purified by Flash Chromatography (Biotage, Column: Silicagel 12g pack size, Mobile Phase: EtOAc in n-Hexane: 0 to 15% as eluant) to afford (R)-Ethyl 5-(2-(4, 4'-difluoro-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Int-70) as off white sticky mass. MS (ESI): m/z 448.8(M+H).

Int-71: (R)-5-(2-(4,4'-difluoro-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxylic acid


[0279]

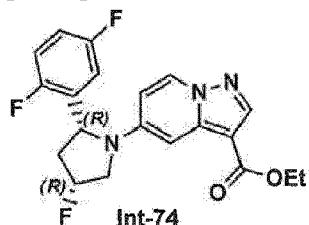
[0280] The title compound (Int-71) was prepared by the method similar that of Int-85 employing Int-70 to afford as white solid. MS (ESI): m/z 420.2 (M+H).

Int-72: Ethyl 5-(2-(2, 5-difluorophenyl)-4, 4-difluoropyrrolidin-1-yl) pyrazolo [1, 5-a] pyridine-3-carboxylate


[0281]

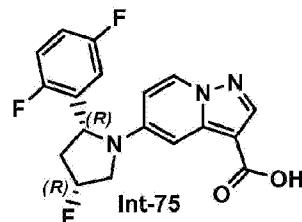
[0282] The title compound (Int-72) was prepared by the method similar to that for Int-84 using (R)-2-(2,5-difluorophenyl)-4,4-difluoropyrrolidine hydrochloride and Ethyl 5-bromopyrazolo[1,5-a]pyridine-3-carboxylate to afford as yellow solid. LCMS (ESI): m/z 408.1 (M+H).

Int-73: 5-(2-(2,5-difluorophenyl)-4,4-difluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid


[0283]

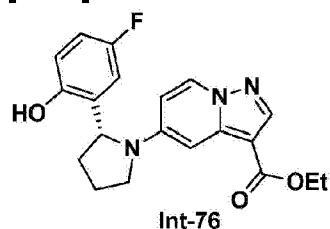
[0284] The title compound (Int-73) was prepared by the method similar to that of Int-85 employing Int-72 to afford as white solid. LCMS (ESI): m/z 379.8(M+H).

Int-74: Ethyl 5-((2R, 4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1, 5-a]pyridine-3-carboxylate


[0285]

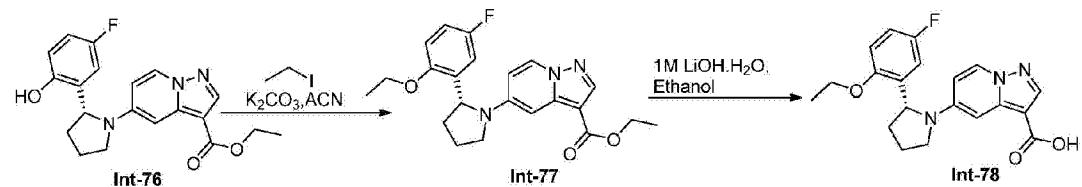
[0286] The title compound (Int-74) was prepared by the method similar to that for Int-84 using (2R, 4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidine hydrochloride (Int-48) and Ethyl 5-bromopyrazolo[1,5-a]pyridine-3-carboxylate to afford as yellow liquid. LCMS (ESI): m/z 390.2 (M+H).

Int-75: 5-((2R, 4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxylic acid


[0287]

[0288] The title compound (Int-75) was prepared by the method similar to that of Int-85 using Int-74 to afford as off white solid. LCMS (ESI): m/z 362.2 (M+H).

Int-76: (R)-ethyl 5-(2-(5-fluoro-2-hydroxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxylate


[0289]

[0290] To a stirred solution of (R)-ethyl 5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (synthesized similar to that of Int-84 using intermediate 41) (1.2 g, 3.13 mmol) in 25 mL of DCM, 1.0M Borontribromide (15.6 ml, 39.2 g, 15.65 mmol) was added at -70°C and stirred at -70°C to room temperature during 16h. Reaction mass was quenched with 5 mL of ice cooled water and stirred for 15 min. The reaction mixture was diluted with DCM (50 mL) and the organic layer was washed with water followed by brine. The organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford of the title compound (Int-76) as off white solid. MS (ESI): m/z 370.3 (M+H).

Int-78: (R)-5-(2-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid

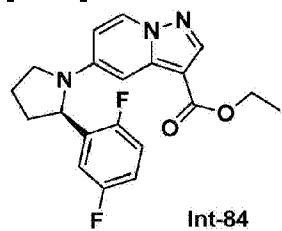
[0291]

Int-77: (R)-ethyl 5-(2-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate

[0292] Iodoethane (0.17 g, 1.08 mmol) was added to a mixture of (R)-ethyl 5-(2-(5-fluoro-2-hydroxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Int-76) (0.2 g, 0.54 mmol) and K_2CO_3 (0.23 g, 1.62 mmol) in CH_3CN (10 mL) and continued stirring at 80°C for 16 h. The reaction mixture was diluted with ethyl acetate (100 mL), washed with water and dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude, which was purified by column chromatography (using silica gel and 2% ethyl acetate in hexane as eluent) to afford the desired compound (Int-77). MS (ESI): m/z 398.1 (M+H).

Int-78: (R)-5-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid

[0293] 1M aq. solution of $LiOH \cdot H_2O$ (0.4 mL) was added to a stirred solution of (R)-ethyl 5-(2-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (Int-77) (0.12 g, 0.32 mmol) in ethanol (5 mL) and the stirring was continued at 90°C for 8h. The reaction mixture was concentrated under reduced pressure to afford the crude, which was diluted with cold water (20 mL) and acidified with 2N HCl solution to pH=2, solid precipitated out was filtered and dried to afford the desired compound (Int-78) as yellow solid. MS (ESI): m/z 370.3 (M+H).


[0294] The following intermediates (Int-79 to Int-83) were prepared by a method substantially similar to that mentioned for Int-78 except a suitable alky halides or O-mesylates was used in place of ethyl iodide in Int-77.

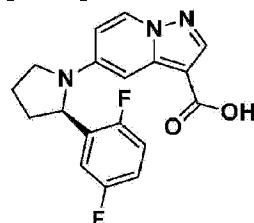
Intermediate	Structure	IUPAC name	MS (ESI) (M+H)
Int-79		(R)-5-(2-(5-fluoro-2-(2,2,2-trifluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid	m/z 424.1

Intermediate	Structure	IUPAC name	MS (ESI) (M+H)
Int-80		5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yloxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid	m/z 412.1
		acid	
Int-81		(R)-5-(2-(cyclopropylmethoxy)-5-fluoro-phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid	m/z 396.1
Int-82		(R)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid	m/z 388.1
Int-83		(R)-5-(2-(5-fluoro-2-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid	m/z 400.1

Int-84: (R)-ethyl 5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5a]pyridine-3-carboxylate

[0295]

[0296] A mixture of ethyl 5-bromopyrazolo[1,5a]pyridine-3-carboxylate (2 g, 7.49 mmol), (R)-2-(2,5-difluorophenyl)pyrrolidine hydrochloride (Int-6) (1.65 g, 7.49 mmol) and Cs₂CO₃ (7.3

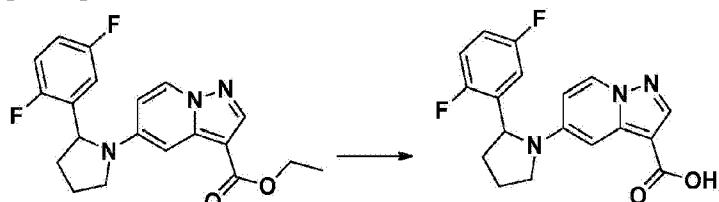

g, 22.47 mmol) in 1,4-Dioxane(35mL) was degassed with argon gas for 15min. $\text{Pd}_2(\text{dba})_3$ (480 mg, 0.52 mmol) and BINAP (380 mg, 0.59 mmol) were added to the above mixture and stirring was continued at 100°C for 2h. After completion of the reaction, the reaction mixture was cooled and filtered over a celite bed. The celite bed was washed with ethylacetate. The filtrate thus obtained was further washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude product, which was purified by column chromatography (using silica gel 60-120, and 30% EtOAc in Hexane as eluent) to afford 1.8 g of the title compound as a yellow solid.

^1H NMR (300MHz, CDCl_3) δ ppm 8.21-8.18(2H, m), 7.12-7.02(1H, m), 6.98-6.86(1H, m), 6.74-6.66(1H, m), 6.28-6.2(1H, m), 5.15(1H, d, $J=8\text{Hz}$), 6.16-6.13(1H, m), 5.11(1H, d, $J=8.1\text{Hz}$), 4.34-4.27(2H, m), 3.84(1H, t) 3.60-3.5(1H, m), 2.52-2.4(1H, m), 2.2-2.0(3H, m), 1.38-1.3(3H, m).

MS (ESI): m/z 372 (M+H).

Int-85: (R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5a]pyridine-3-carboxylic acid

[0297]



[0298] LiOH. H_2O (0.679 mg, 16.2 mmol) in water (5mL) was added to a stirred solution of Int-84 (1.8 g, 4.85 mmol) in EtOH (30mL) and the stirring was continued at reflux temperature for 12-16 h. The reaction mixture was concentrated under reduced pressure to afford the crude product. The crude product thus obtained was diluted with cold water, acidified with 2N aqueous HCl solution, filtered the solid precipitate to afford 1.2 g of the title compound as an off white solid.

MS (ESI): m/z 344(M+H).

Int 87: 5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5a]pyridine-3-carboxylic acid

[0299]

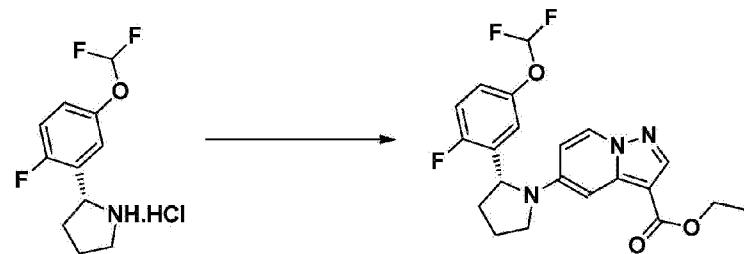
Int-86

Int-87

Int-86: Ethyl 5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate

[0300] The title compound was prepared by a procedure substantially similar as for Int-84, using Int-10 in place of Int-6 to afford the crude. The crude compound was purified by column chromatography (using silica gel 60-120, and 5% EtOAc in Hexane as eluent) to afford 135 mg of the title compound.

¹H NMR (400MHz, DMSO-d₆) δ ppm 8.52-8.50(1H, d, *J*=7.6Hz), 8.12(1H, s), 7.4-7.3(1H, m), 7.2-7.1(1H, m), 6.95-6.9(1H, m), 6.7(1H, s), 6.55(1H, bs), 5.12(1H, d, *J*=7.6Hz), 4.2-4.27(2H, m), 3.94-3.84(1H, t), 3.55-3.40(1H, m), 2.52-2.40(1H, m), 2.15-1.85(3H, m), 1.3-1.15(3H, m), MS (ESI): 372 (M+H).


Int-87: 5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5a]pyridine-3-carboxylic acid

[0301] 5N aqueous solution of NaOH (2mL) was added to stirred solution of Int-86 (50 mg, 0.134 mmol) in a mixture of MeOH(4mL) and THF(4mL) and continued stirring at 80°C for 4h. The reaction mixture was concentrated under reduced pressure to afford the crude product. The crude product thus obtained was diluted with cold water, acidified with concentrated HCl solution to obtain a solid precipitate. This solid precipitate was filtered and dried well to afford 18 mg of 5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid as off white solid.

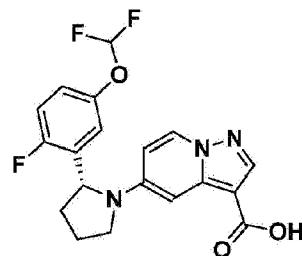
¹H NMR (400MHz, DMSO-d₆) δ ppm 11.82(1H, s), 8.46(1H, d, *J*=7.6Hz), 8.08(1H, s), 7.40-7.30(1H, m), 7.20-7.10(1H, m), 6.95-6.88(1H, m), 6.67(1H, s), 6.39(1H, s), 5.15(1H, d, *J*=8Hz), 3.80-3.70 00(1H, t, *J*=8Hz), 3.50-3.30(1H, m), 2.44(1H, m), 2.10-1.85(3H, m). MS (ESI): m/z 344.2 (M+H).

Int-89: (R)-5-(2-(5-(difluoromethoxy)-2-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid

[0302]

Int-88

Int-89


Int-88: (R)-2-(5-(difluoromethoxy)-2-fluorophenyl) pyrrolidine hydrochloride

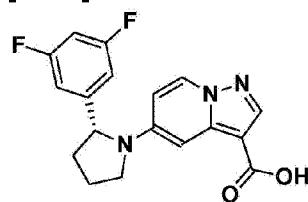
[0303] This compound was prepared by the method substantially similar to the preparation of Int-6 using 2-bromo-4-(difluoromethoxy)-1-fluorobenzene (J. Med. Chem. 2003, 46, 1016-1030).

Int-89: (R)-Ethyl 5-(2-(5-(difluoromethoxy)-2-fluorophenyl) pyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxylate

[0304] The title compound was prepared by the method substantially similar to that for Int-84, to afford the crude, which was purified by column chromatography (using silica gel 60-120, and 5% EtOAc in Hexane as eluent) to afford 140 mg of the title compound.

MS (ESI): m/z 420 (M+H).

Int-90: (R)-5-(2-(5-(difluoromethoxy)-2-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid**[0305]**

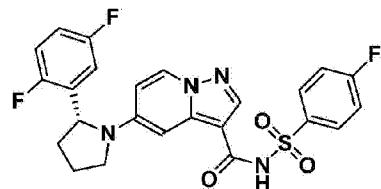

[0306] The title compound was prepared by the method substantially similar to that for Int-85, to afford 85 mg of the title compound.

¹H NMR (300MHz, DMSO-d₆) δ ppm 11.9(1H, bs,), 8.47-8.45(1H, d, J=7.5Hz), 8.08(1H, s), 7.37-7.30(1H, t), 7.20-7.10(1H, m), 6.87-6.85(1H, m), 7.33-6.87(1H, t, OCHF₂) 6.76(1H, bs), 6.45-6.35(1H, m), 5.16-5.14(1H, d, J=7.5Hz), 3.90-3.80(1H, t), 3.55-3.45(2H, m), 2.08-1.85(3H, m).

MS (ESI): m/z 392.1 (M+H).

Int-91 (R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid

[0307]

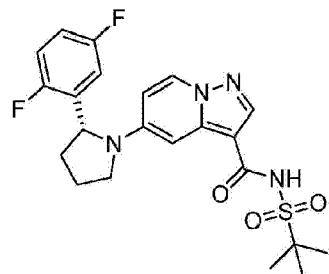


[0308] Title compound was prepared by a method substantially similar to that of Int-84 using ethyl 5-bromopyrazolo[1,5a]pyridine-3-carboxylate and (R)-2-(3, 5-Difluorophenyl) pyrrolidine hydrochloride (Int-44), followed by hydrolysis similar to that of Int-85 to afford a white solid. MS (ESI): m/z 344.2 (M+H).

Synthesis of compounds of Formula I

Example-1: (R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl) pyrazolo[1,5-a]pyridine-3-carboxamide

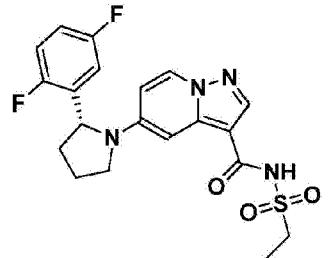
[0309]


[0310] EDCI (111 mg, 0.5 mmol) was added to a solution of (R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid (100 mg, 0.29 mmol) in DCM (4 mL) followed by DMAP (36 mg, 0.29 mmol) and 4-fluorobenzenesulfonamide (56 mg, 0.31 mmol) and stirring was continued at 20-35°C for 20h. Reaction mixture was quenched with water, extracted into EtOAc, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude. The crude compound was purified by Preparative HPLC [Column: 21.2 x 150 x 5um, Zorbax, Eclipse,C-18, Mobile phase-A: Water, B:ACN, Gradient(Time/%B): 0/30, 2/40, 10/80 and Flow rate:20mL/min] to afford 9.3 mg of the title compound.

¹H NMR (400MHz, CDCl₃) δ ppm 8.29 (1H, bs), 8.22-8.20(2H, m), 8.12(1H, d, *J*=7.6Hz), 8.00(1H, s), 7.26-7.20(2H, m), 7.14-7.04(2H, m), 6.96-6.88(1H, m), 6.61(1H, m), 6.18(1H, d, *J*=7.6Hz), 5.12-5.11(1H, d, *J*=8Hz), 3.80-3.74(1H, m), 3.6-3.5(1H, m), 2.5-2.4(1H, m), 2.15-2.0(3H, m).

MS (ESI): m/z 501.8 (M+H).

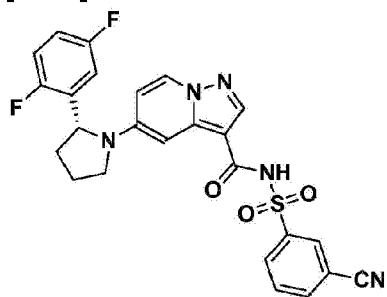
Example-2: (R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide


[0311]

[0312] To a stirred solution of (R)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl) pyrazolo [1, 5-a] pyridine-3-carboxylic acid (170 mg, 0.49 mmol) in dry DCM (10 mL) was added EDCI (288 mg, 1.5 mmol) followed by DMAP (0.18 g, 1.4 mmol) and stirring was continued at 25°C for 2 h. To the reaction mixture was added tert-butyl sulfonamide (67 mg, 0.49 mmol) and the stirring was continued at 25°C for 72 h. Reaction mixture was diluted with DCM (50 mL) and the organic layer was washed with saturated aqueous KHSO₄ solution followed by brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude, which was purified by combiflash chromatography followed by re-crystallisation from EtOH to afford (R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo [1,5-a]pyridine-3-carboxamide as white solid. MS (ESI): m/z 463.2 (M+H).

Example-3: (R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(ethylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide

[0313]

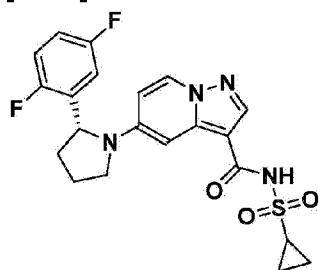


[0314] The title compound was prepared by the method substantially similar to that mentioned in Example-2 using Ethanesulfonamide to afford the crude. The crude compound was purified by Preparative HPLC [Column: 21.2 x 150 x 5um, Zorbax, Eclipse,C-18, Mobile phase-A: 0.1%TFA in Water, B:ACN, Gradient(Time/%B): 0/30, 2/40, 5/80 and Flow rate:20 mL/min] to afford 12 mg of the title compound.

¹H NMR (300 MHz, CD₃OD) δ ppm 8.32-8.29 (2H, m), 7.22-7.12 (1H, m), 7.08-6.96 (2H, m), 6.8-6.72 (1H, m), 6.50 (1H, m), 5.2-5.18 (1H, d, *J*=6.8Hz), 3.9-3.82 (1H, m), 3.6-3.48 (3H, m), 2.5 (1H, m), 2.18-2.0 (3H, m), 1.4-1.3 (3H, t).
 MS (ESI): m/z 434.8 (M+H).

Example-4: (R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide

[0315]

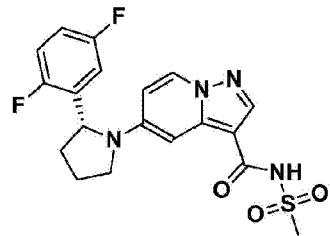


[0316] The title compound was prepared by the similar coupling method as mentioned in Example-2, using 3-cyanobenzenesulfonamide to afford the crude. The crude was purified by Preparative HPLC [Column: 21.2 x 150 x 5um, Zorbax, XDB, C-18(#22), Mobile phase-A: 0.1%TFA in water, B:ACN, Gradient (Time/%B): 0/30, 5/40, 6/80 and flow rate : 20 mL / min] to afford 46 mg of the title compound.

¹H NMR (400 MHz, DMSO-d₆) δ ppm 12.05 (1H, s), 8.51 (1H, s), 8.42-8.45 (1H, d, *J*=7.6Hz), 8.37 (1H, s), 8.30-8.18 (2H, m), 7.89-7.85 (1H, t), 7.36-7.28 (1H, m), 7.18-7.10 (1H, m), 6.90-6.75 (2H, m), 6.39 (1H, bs), 5.14-5.13 (1H, d, *J*=7.2Hz), 3.83-3.81 (1H, t), 3.48-3.38 (1H, m), 2.50-2.42 (1H, m), 2.10-1.85 (3H, m).
 MS (ESI): m/z 507.8 (M+H).

Example-5: (R)-N-(cyclopropylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide

[0317]



[0318] The title compound was prepared by a coupling method substantially similar to that mentioned in Example-2 using cyclopropane sulfonamide in place of 4-fluorobenzenesulfonamide to afford the crude. The crude was purified by Preparative HPLC [Column: 19 x 150 x 5um, Zorbax, XDB, C-18(#22), Mobile phase-A: 0.1%TFA in water, B:ACN, Gradient (Time / %B): 0/30, 2/40, 10/80 and flow rate : 20mL / min] to afford 8 mg of the title compound.

¹H NMR (400 MHz, DMSO-d₆) δ ppm 8.51-8.49 (2H, m), 7.40-7.30 (1H, m), 7.20-7.12 (1H, m), 6.956.85 (2H, m), 6.46-6.40 (1H, bs), 5.20-5.15 (1H, d, *J*=7.6Hz), 3.92-3.85 (1H, m), 3.50-3.42 (1H, m), 3.18-3.10 (1H, m), 2.50-2.41 (1H, m), 2.10-1.85 (3H, m), 1.14-1.02 (4H, m).
MS (ESI): m/z 446.8 (M+H).

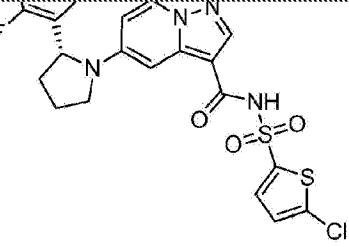
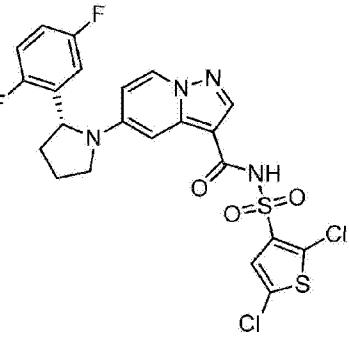
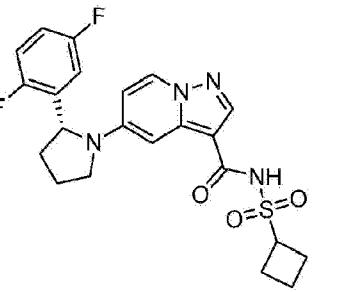
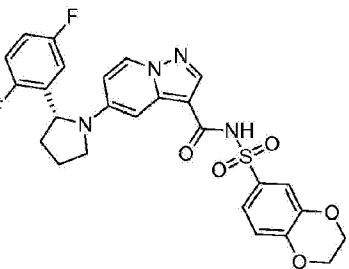
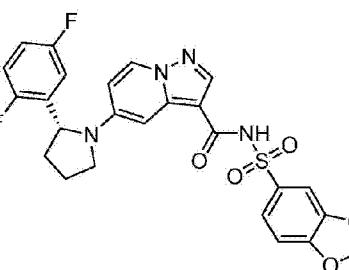
Example-6: (R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(methylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide

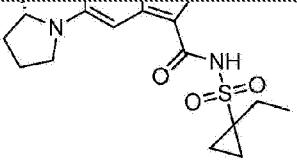
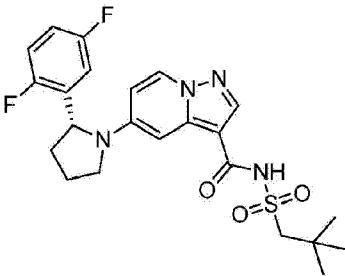
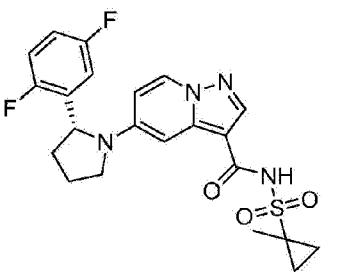
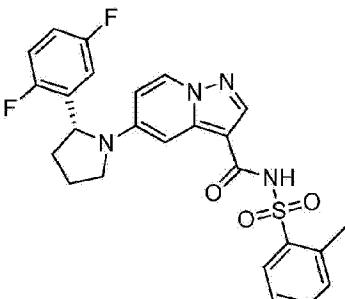
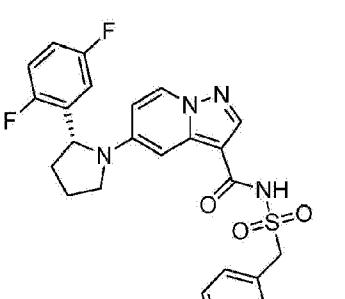
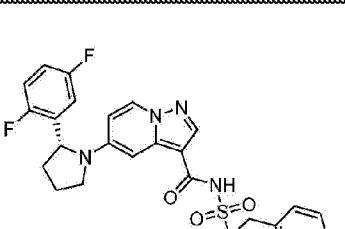
[0319]

[0320] The title compound was prepared by the similar coupling method as mentioned in Example-2, using Methane sulfonamide to afford the crude. The crude was purified by Preparative HPLC [Column: 19 x 150 x 5um, Xbridge, C-18(#22), Mobile phase-A: 0.1%TFA in water, B:ACN, Gradient (Time / %B): 0/40, 2/40, 7/60 and flow rate : 15 mL / min] to afford 16 mg of the title compound.

¹H NMR (400 MHz, DMSO-d₆) δ ppm 8.54-8.46 (2H, m), 7.38-7.30 (1H, m), 7.20-7.12 (1H, m), 6.96-6.64 (2H, m), 6.48-6.40 (1H, bs), 5.17-5.16 (1H, d, *J*=8.4Hz), 3.89-7.81 (1H, t), 3.50-3.40 (1H, m), 3.33 (3H, s), 2.50-2.45 (1H, m), 2.10-1.88 (3H, m).
MS (ESI): m/z 421.2 (M+H).

[0321] Example-7 to Example-41 were synthesized following a procedure substantially similar to Example-2 except appropriate sulfonamide was used in place of tert-butyl sulfonamide to afford the desired product.






Example No.	Structure	IUPAC name	MS(ESI) M+H
7		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 449.3
8		5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrolidin-1-yl)phenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 568.2
9		(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-methylpyrazolo[1,5-a]pyridine-3-carboxamide	m/z 522.2
10		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(propylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 449.1
11		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((3,5-dimethylisoxazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 502.2







Example No.	Structure	IUPAC name	MS(ESI) M+H
12		(R)-N-(cyclohexyl sulfonyl)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxamide	m/z 489.3
13		(R)-N-(cyclopentyl sulfonyl)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a] pyridine-3-carboxamide	m/z 475.1
14		(R)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)-N-(isobutyl) sulfonyl)pyrazolo[1,5-a] pyridine-3-carboxamide	m/z 463.1
15		(R)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-4-yl) sulfonyl)pyrazolo[1,5-a] pyridine-3-carboxamide	m/z 501.1
16		(R)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-5-yl) sulfonyl)pyrazolo[1,5-a] pyridine-3-carboxamide	m/z 501.1

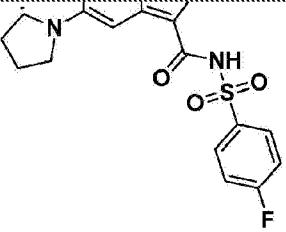
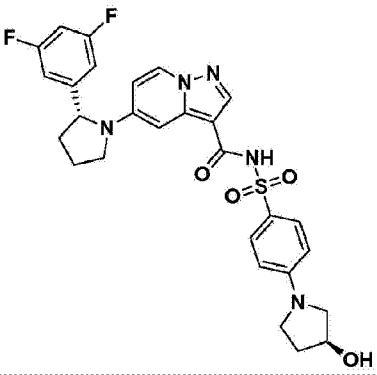
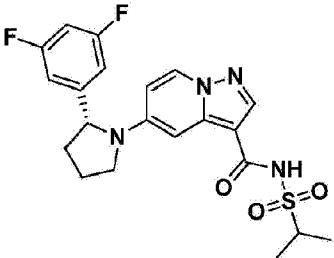
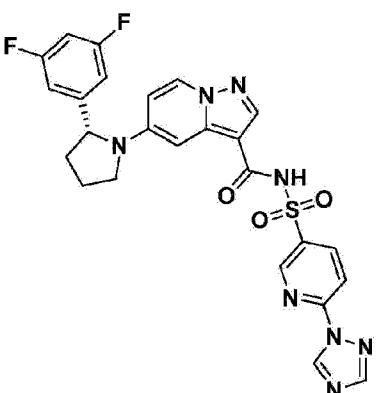
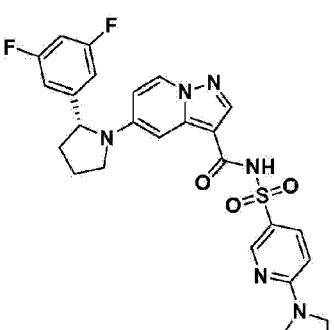
Example No.	Structure	IUPAC name	MS(ESI) M+H
17		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-4-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 490.1
18		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-imidazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 487.3
19		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 487.4
20		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,4-dimethylthiazol-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 518.0
21		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-2-oxoindolin-5-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 552.1
22		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((tetrahydro-2H-pyran-4-yl)sulfonyl)	m/z 491.2

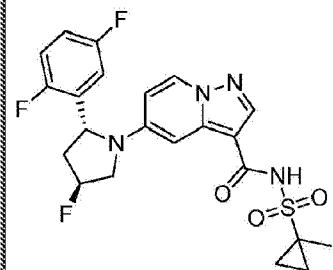
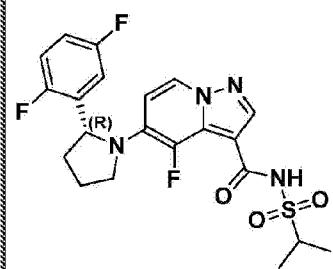
Example No.	Structure	IUPAC name	MS(ESI) M+H
		pyrazolo[1,5-a]pyridine-3-carboxamide	
23		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-(dimethylamino)pyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 527.1
24		5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2-methyltetrahydrofuran-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 491.1
25		5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrolidin-1-yl)pyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 569.1
26		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-methoxypyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 514.1

Example No.	Structure	IUPAC name	MS(ESI) M+H
27		(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 551.2
28		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-4-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 487.1
29		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-morpholinophenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 568.0
30		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyridin-3-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 484.1
31		(R)-N-((5-chlorothiophen-2-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 523.0

Example No.	Structure	IUPAC name	MS(ESI) M+H
		[1,5-a]pyridine-3-carboxamide	
32		(R)-N-((2,5-dichlorothiophen-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 556.7
33		(R)-N-(cyclobutylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 461.1
34		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 541.1
35		(R)-N-(benzo[d][1,3]dioxol-5-ylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 527.1
36		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-ethylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 475.4

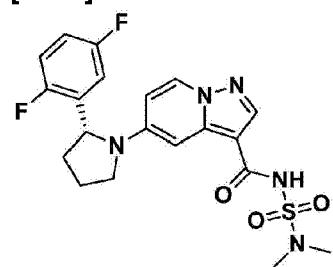
Example No.	Structure	IUPAC name	MS(ESI) M+H
		carboxamide	
37		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(neopentylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 477.4
38		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 461.1
39		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(o-tolylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 498.05
40		(R)-N-(benzylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 497.2
41		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-(4-fluorobenzyl)cyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 555.4






Example No.	Structure	IUPAC name	MS(ESI) M+H
42		(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 475.0
43		(R)-N-(tert-butylsulfonyl)-5-(2-(3-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 510.9
44		(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoropyridin-3-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 446.1
45		(R)-N-(tert-butylsulfonyl)-5-(2-(2-ethoxy-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 488.9
46		(R)-N-(tert-butylsulfonyl)-5-(2-(2-(cyclopropylmethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 514.8
47		(R)-N-(tert-butylsulfonyl)-5-(2-(2-chloro-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 479.1



Example No.	Structure	IUPAC name	MS(ESI) M+H
		a]pyridine-3-carboxamide	
48		N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 478.9
49		(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2,2,2-trifluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 542.7
50 (Isomer-I)		N-(tert-butylsulfonyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 503.4
51 (Isomer-II)		N-(tert-butylsulfonyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	
52 (Isomer-I)		N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 481.2

Example No.	Structure	IUPAC name	MS(ESI) M+H
53 (Isomer-II)		N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 481.3
54		(R)-N-(tert-butylsulfonyl)-5-(2-(4,4'-difluoro-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 539.1
55 (Isomer-I)		(S)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)-4,4-difluoropyrrolidin-1-yl) pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 499.25
56 (Isomer-II):		(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)-4,4-difluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 499.45
57		(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 507.1
58		N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)	m/z 481.1

Example No.	Structure	IUPAC name	MS(ESI) M+H
		pyrazolo[1,5-a]pyridine-3-carboxamide	
59		N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 531.6
60:		N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 531.6
61		(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-4-fluoro pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 481.1
62		(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)-4-fluoropyrazolo[1,5-a]pyridine-3-carboxamide	m/z 529.1
63		(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluoromethoxy)-5-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 511.1
64		(R)-N-(tert-butylsulfonyl)-5-(2-	m/z

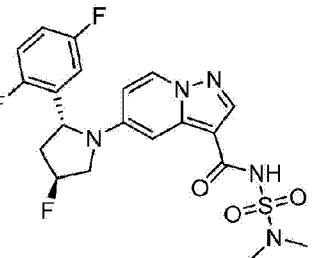
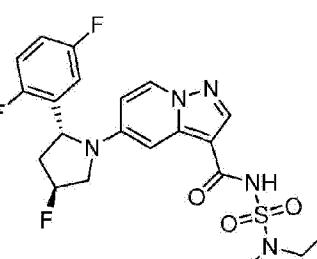
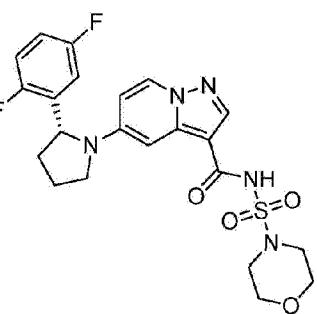
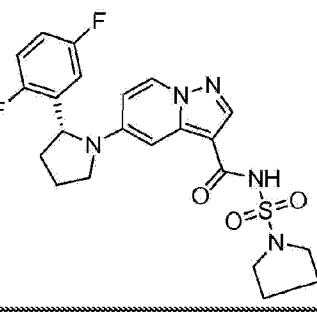
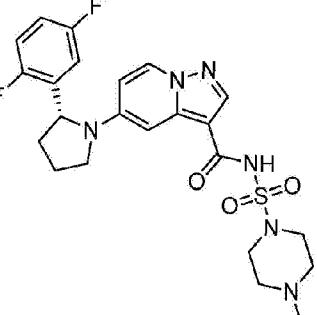
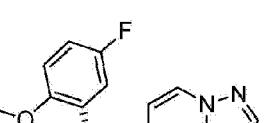

Example No.	Structure	IUPAC name	MS(ESI) M+H
		(2-fluoro-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	519.2
65		(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl) pyrazolo[1,5-a] pyridine-3-carboxamide	m/z 519.1
66		(R)-N-(tert-butylsulfonyl)-5-(2-(3, 5-difluorophenyl) pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 463.1
67		(R)-N-(tert-butylsulfonyl)-5-(2-(3-fluoro-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 519.2
68		N-(tert-butylsulfonyl)-5-((2R)-2-(3-fluoro-5-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 531.2
69		(R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 501

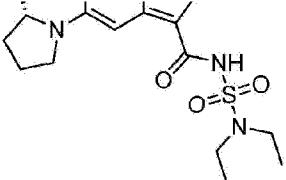
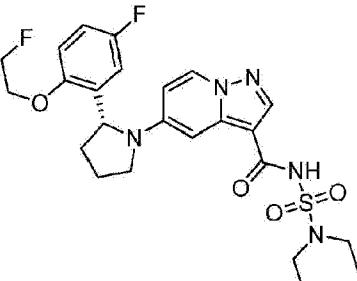
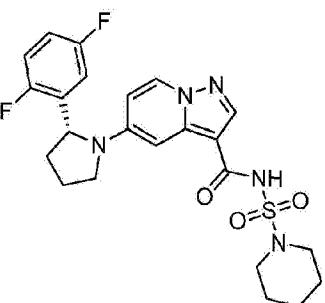
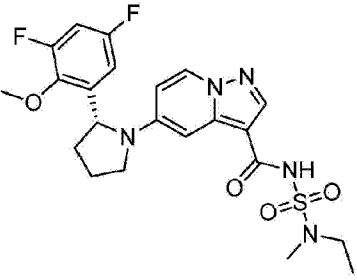
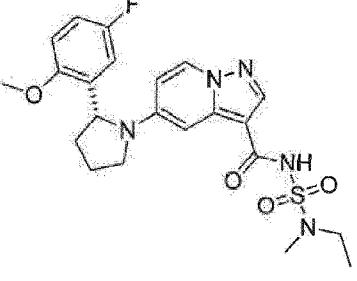
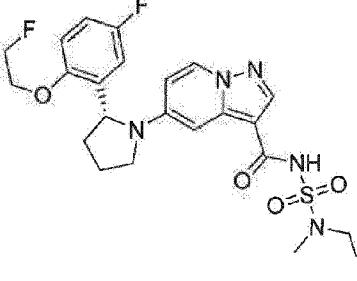
Example No.	Structure	IUPAC name	MS(ESI) M+H
70		5-((R)-2-(3, 5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrolidin-1-yl)phenyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 568.1
71		(R)-5-(2-(3, 5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 449.1
72		(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 551.1
73		5-((R)-2-(3, 5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrolidin-1-yl)pyridin-3-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 568.9

Example No.	Structure	IUPAC name	MS(ESI) M+H
74		5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoro pyrrolidin-1-yl)-N-(1-methylcyclopropyl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 479.1
75		(R)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)-4-fluoro-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 467.2

Example-76: (R)-5-(2-(2, 5-difluorophenyl) pyrrolidin-1-yl)-N-(N, N-dimethylsulfamoyl) pyrazolo [1, 5-a] pyridine-3-carboxamide

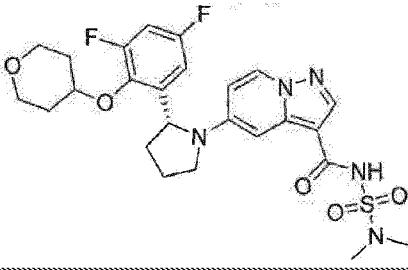
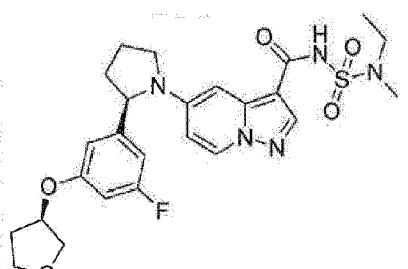
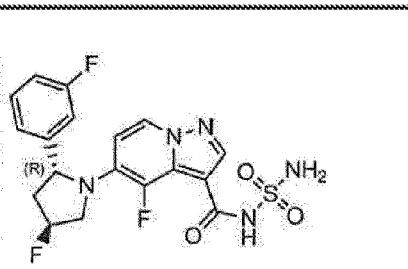
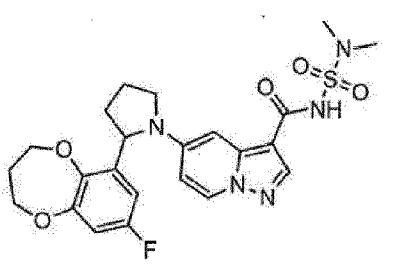
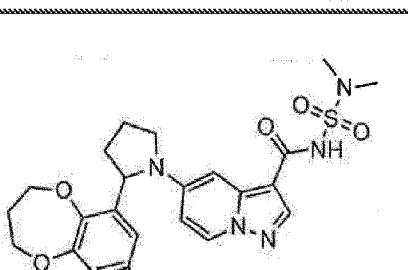
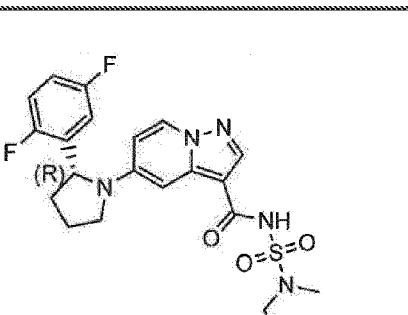
[0322]







[0323] To a stirred solution of (R)-5-(2-(2, 5-difluorophenyl) pyrrolidin-1-yl) pyrazolo [1, 5-a] pyridine-3-carboxylic acid (0.1 g, 0.29 mmol) in DCM (20 mL), added EDCI (0.084 g, 0.43 mmol) followed by DMAP (0.18 g, 1.4 mmol) and stirring was continued at 28°C for 16hr. To the above reaction added 1,1,-dimethyl sulfamide (0.09 g, 0.69 mmol), stirring was continued at 28°C for 48hr. Reaction mixture was diluted with DCM, washed it with saturated KHSO_4 solution followed by brine, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude. The crude obtained was purified by preparative HPLC (AG/AD/PP/C18-25/033, Flow rate: 20mL/min., Mobile phase: 0.1%TFA in water (A) : ACN (B), Gradient - Time : %B = 0 : 20, 2 : 30, 10 : 70) to afford (R)-5-(2-(2, 5-difluorophenyl) pyrrolidin-1-yl)-N-(N, N-dimethylsulfamoyl) pyrazolo [1, 5-a] pyridine-3-carboxamide as pale pink solid.

MS (ESI): m/z 450.3(M+H). ^1H NMR (300MHz, DMSO-d6) : δ ppm 11.2(1H, s), 8.6-8.4(2H, m), 7.2-7.1(1H, m), 7.1-7.05(1H, m), 7.0-6.8(2H, m), 6.5-6.3(1H, d), 5.25-5.08(1H, d), 3.95-3.75(1H, m), 3.55-3.4(1H, m), 2.84(6H, s), 2.15-2.85(3H, m).

Following acylsulfamides Example-77 to Example-116 were synthesized by a similar procedure as that of Example-76.







Example	Chemical Structure	Chemical Name	m/z
77		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	463.8
78		5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	468.1
79		5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	482.1
80		(R)-N-(N-(cyclopropylmethyl)-N-methylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	490.6
81		(R)-N-(N,N-diethylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	478.1

82		5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 468.1
83		5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 482.1
84		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(morpholino sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 492.1
85		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyrrolidin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 476.3
86		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(4-methylpiperazin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 505.2
87		(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)	m/z 490.1

		pyrazolo[1,5-a]pyridine-3-carboxamide	
88		(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 522.55
89		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-1-ylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 490.5
90		(R)-5-(2-(3,5-difluoro-2-methoxyphenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 494.5
91		(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 476.55
92		(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluoro-2-(2-fluoroethoxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 508.6

93		5-(R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((S)-3-hydroxypyrrolidin-1-yl)sulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 492.3
94		(R)-5-(2-(3,5-difluoro-2-fluoroethoxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 525.8
95		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-sulfamoyl pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 422.3
96		N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I)	m/z 518.2
97		N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II)	m/z 518.2
98		N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I)	m/z 490.2
99		N-(N,N-dimethylsulfamoyl)-5-	m/z

		(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II)	489.8
100		N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-I)	m/z 504.1
101		N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluoro-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-II)	m/z 504.1
102		N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 481.8
103		N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluoro-5-((S)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 532.4
104		(R)-5-(2-(3,5-difluoro-2-tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 564.2
105		(R)-5-(2-(3,5-difluoro-2-	m/z

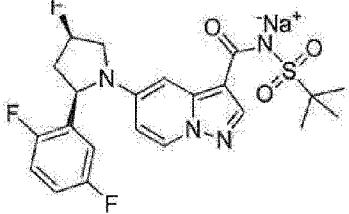
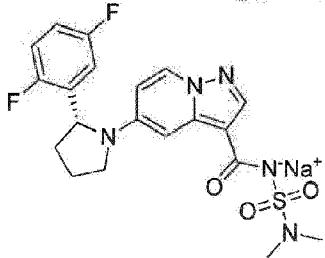
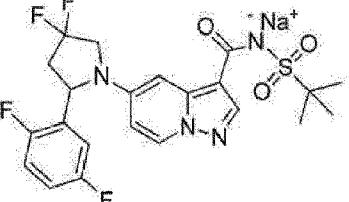
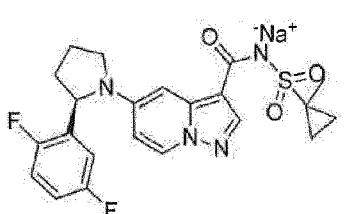
		((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	549.8
106		N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluoro-5-((R)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 532.4
107		4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)-N-sulfamoylpyrazolo[1,5-a]pyridine-3-carboxamide	m/z 539.7
108		N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-1)	m/z 503.8
109		N-(N,N-dimethyl sulfamoyl)-5-(2-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Diastereomer-2)	m/z 504.1
110		(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N-isobutyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 491.8

111		(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 464.2
112		(R)-N-(N,N-dimethylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 450.1
113		(R)-N-(N,N-dimethylsulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 450.1
114		(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluoro-5-(2-(5-fluoro-2-(tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 546.2
115		5-((2R)-2-(3-((2,2-difluorocyclopropyl)methoxy)-5-fluorophenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 552.40

Examples 116 to Example-127 were synthesized following a procedure similar to Example-2, except that an appropriate acid counter part was used in place (R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylic acid and appropriate sulfonamides were used in place t-butylsulfonamide to afford the desired product.

Example		(R)-N-(N,N-bis(cyclopropylmethyl)sulfamoyl)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 529.8
---------	--	---	-----------

116		yl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	
117 (Diastereomer-I)		N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 532.1
118 (Diastereomer-II)		N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluoro-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 532.2
119		N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide (Racemic mixture)	
120		(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluoro-2-methoxyphenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 493.3
121		N-(tert-butylsulfonyl)-4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 481.05
122		4-fluoro-5-((2R,4S)-4-fluoro-2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 467.2





		carboxamide	
123		(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluoro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 563.50
124		(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluoro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 545.50
125		(R)-5-(2-(3,5-difluoro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl) pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 549.2
126		(R)-4-fluoro-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl) pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 449.2
127		(R)-N-(tert-butylsulfonyl)-4-fluoro-5-(2-(5-fluoro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carboxamide	m/z 532.2

General procedure for salt synthesis:

[0324] Above examples 1-127 can be converted to a pharmaceutically acceptable salt by reacting with a suitable salt, by reacting a solution of the compound (1-127) with suitable salt. For example a solution of the compound of (1-127)(1 eq) in water sodium hydroxide or potassium hydroxide or calcium hydroxide (1M, 1 eq.) can be added drop wise and to be stirred for 1 h at 25°C-100°C. Reaction mixture shall be cooled and filtered and the filtrate to be concentrated to get required salt as white powder compound.

[0325] Illustrative examples of the salts prepared are as given below:

Example	Chemical Structure	HNMR (400 MHz, DMSO-D6) δ 8.4-8.3 (d, 1H), 7.95 (s, 1H), 7.3-7.2 (m, 1H), 7.2-7.09 (m, 3H), 6.6 (dd, 1H), 5.55-4.9 (d, 1H), 5.3-5.2 (m, 1H), 4.15-4.0 (m, 1H), 3.8-3.65 (m, 1H), 2.95-2.8 (m, 1H), 2.3-2.1 (m, 1H), 1.25 (s, 9H); LCMS (ESI) m/z 481.1
128		
129		¹ H NMR (400 MHz, DMSO-D6) δ 8.35-8.333 (d, 1H), 7.93 (s, 1H), 7.32-7.27 (m, 1H), 7.15-7.10 (m, 1H), 7.04 (s, 1H), 6.84-6.79 (m, 1H), 6.28-6.26 (dd, 1H), 5.07-5.05 (dd, 1H), 3.80-3.76 (m, 1H), 3.40-3.38 (m, 1H), 2.46-2.42 (m, 1H), 2.04-2.02 (m, 1H), 1.93-1.85 (m, 2H), 1.25 (s, 9H); LC-MS (API) 463.1
130		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.31-8.29 (1H, d), 7.91 (1H, s), 7.10 (1H, s), 6.66-6.62 (1H, dd), 6.25-6.22 (1H, dd), 6.13-6.12 (1H, m), 5.01-4.99 (1H, d), 4.38-4.28 (4H, m), 3.72-3.68 (1H, t), 2.36-2.31 (1H, m), 2.02-1.99 (1H, m), 1.93-1.87 (2H, m), 1.28 (9H, s); MS (ESI): m/z 502.8

131		^1H NMR (400 MHz, DMSO-d ₆) δ ppm 8.42-8.40 (1H, d), 8.00-7.90 (1H, s), 7.30-7.29 (1H, dt), 7.17-7.09 (1H, m) 7.04 (1H, s), 6.82-6.80 (1H, m), 6.40-6.30 (1H, d), 5.59-5.46 (1H, m), 5.19-5.16 (1H, d), 4.03-4.96 (1H, m), 3.85-3.73 (1H, m), 2.88-2.66 (1H, m), 2.32-2.24 (1H, m), 1.22 (9H, s); MS (ESI): m/z 481.5
132		^1H NMR (400 MHz, DMSO-d ₆) δ ppm 8.35-8.33 (1H, d), 7.91 (1H, s), 7.33-7.27 (1H, m), 7.15-7.10 (1H, m), 7.06 (1H, s), 6.85-6.81 (1H, m), 6.31-6.29 (1H, d), 5.06-5.04 (1H, d), 3.83-3.79 (1H, t), 3.44-3.38 (1H, q), 2.06-2.02 (1H, m), 1.93-1.85 (2H, m); MS (ESI): m/z 449.8
133		^1H NMR (400 MHz, DMSO-d ₆) δ ppm 8.44-8.42 (1H, d), 7.95 (1H, s), 7.36-7.30 (1H, m), 7.19-7.15 (1H, m), 7.05-7.04 (1H, d), 7.00-6.95 (1H, m), 6.37-6.35 (1H, dd), 5.35-5.32 (1H, d), 4.25-4.23 (1H, m), 3.98-3.93 (1H, m), 1.21 (9H, s); MS (ESI): m/z 499.1
134		^1H NMR (400 MHz, DMSO-d ₆) δ ppm 8.32-8.30 (1H, d), 7.93 (1H, s), 7.32-7.26 (1H, m), 7.15-7.10 (2H, m), 6.90-6.80 (1H, m), 6.22-6.21 (1H, d), 5.11-5.09 (1H, d), 3.79-3.78 (1H, m), 2.04-1.88 (3H, m), 1.14 (2H, m), 0.50 (2H, m); MS (ESI): m/z 461.8
135		^1H NMR (400 MHz, DMSO-d ₆) δ ppm 8.42-8.40 (1H, d), 7.95 (1H,

		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.33-7.27 (1H, m), 7.15-7.10 (1H, m), 7.05 (1H, s), 6.84-6.81 (1H, m), 6.36-6.35 (1H, d), 5.59-5.46 (1H, m), 5.18-5.16 (1H, d), 4.06-3.96 (1H, m), 3.85-3.73 (1H, dd), 2.91-2.76 (1H, m), 2.32-2.25 (1H, m), 1.22 (9H, s); MS (ESI): m/z 480.8
136		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.35-8.34 (1H, d), 7.93 (1H, s), 7.31-7.25 (1H, m), 7.16-7.13 (2H, m), 7.10-7.04 (1H, m), 6.34-6.32 (1H, dd), 5.56-5.43 (1H, m), 5.23-5.18 (1H, t), 4.16-4.03 (1H, m), 3.81-3.72 (1H, m), 2.92-2.81 (1H, m), 2.52-2.44 (6H, s), 2.17-2.11 (1H, m); MS (ESI): m/z 468.8
137		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.77-8.75 (1H, d), 7.92 (1H, s), 7.34-7.28 (2H, m), 7.17-7.12 (2H, m), 7.03-6.98 (1H, m), 5.51-5.38 (1H, m), 5.11-5.07 (1H, m), 4.31-4.18 (1H, m), 3.70-3.62 (1H, m), 2.85-2.76 (1H, m), 2.48-1.99 (1H, m), 1.25 (9H, s); MS (ESI): m/z 481.8
138		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.68-8.66 (1H, d), 7.92 (1H, s), 7.35-7.29 (2H, m), 7.07-6.98 (3H, m), 5.09-5.08 (1H, m), 3.88-3.86 (1H, m), 3.55-3.52 (1H, m), 2.56 (6H, s), 2.00-1.89 (2H, m), 1.86-1.84 (1H, m); MS (ESI): m/z 449.8
139		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.30-8.29 (1H, d), 7.90 (1H,

		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.30-8.29 (1H, d), 7.90 (1H, s), 7.90-7.80 (1H, d), 7.40-7.03 (7H, m), 6.90-8.1 (1H, m), 6.18 (1H, bs), 5.10-5.05 (1H, m), 3.74-3.70 (2H, m), 2.01-1.89 (4H, m); MS (ESI): m/z 531.8
140		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.30-8.29 (1H, d), 7.90 (1H, s), 7.90-7.80 (1H, d), 7.40-7.03 (7H, m), 6.90-8.1 (1H, m), 6.18 (1H, bs), 5.10-5.05 (1H, m), 3.74-3.70 (2H, m), 2.01-1.89 (4H, m);
	¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.30-8.29 (1H, d), 7.90 (1H, s), 7.90-7.80 (1H, d), 7.40-7.03 (7H, m), 6.90-8.1 (1H, m), 6.18 (1H, bs), 5.10-5.05 (1H, m), 3.74-3.70 (2H, m), 2.01-1.89 (4H, m);	MS (ESI): m/z 497.1
141		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.76-8.74 (1H, d), 7.91 (1H, s), 7.51-7.49 (1H, d), 7.32 (2H, bs), 7.24-7.22 (1H, d), 7.03-7.00 (1H, m), 5.52-5.39 (1H, m), 5.02-4.98 (1H, m), 4.38-4.24 (1H, m), 3.71-3.63 (1H, m), 3.50-3.42 (1H, m), 2.80-2.73 (1H, m), 2.17-2.06 (1H, m), 1.15-1.11 (6H, d);
	¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.76-8.74 (1H, d), 7.91 (1H, s), 7.51-7.49 (1H, d), 7.32 (2H, bs), 7.24-7.22 (1H, d), 7.03-7.00 (1H, m), 5.52-5.39 (1H, m), 5.02-4.98 (1H, m), 4.38-4.24 (1H, m), 3.71-3.63 (1H, m), 3.50-3.42 (1H, m), 2.80-2.73 (1H, m), 2.17-2.06 (1H, m), 1.15-1.11 (6H, d);	MS (ESI): m/z 467.35
142		¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.33-8.31 (1H, d), 7.93 (1H, s), 7.30-7.25 (1H, m), 7.16-7.11 (3H, m), 6.28-6.27 (1H, d), 5.58-5.44 (1H, m), 5.25-5.21 (1H, t), 4.15-4.04 (1H, m), 3.79-3.71 (1H, m), 2.88-2.80 (1H, m), 2.92-2.12 (1H, m), 1.38 (3H, s) 1.16 (2H, m), 0.51 (2H, m);
	¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.33-8.31 (1H, d), 7.93 (1H, s), 7.30-7.25 (1H, m), 7.16-7.11 (3H, m), 6.28-6.27 (1H, d), 5.58-5.44 (1H, m), 5.25-5.21 (1H, t), 4.15-4.04 (1H, m), 3.79-3.71 (1H, m), 2.88-2.80 (1H, m), 2.92-2.12 (1H, m), 1.38 (3H, s) 1.16 (2H, m), 0.51 (2H, m);	Sodium (5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)

	((1-methylcyclopropyl)sulfonyl)amide	
143	MS	MS (ESI): m/z 479.40
	Sodium (R)-(5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazolo[1,5-a]pyridine-3-carbonyl)(piperidin-1-ylsulfonyl)amide	¹ H NMR (400 MHz, DMSO-d ₆) δ ppm 8.30-8.28 (1H, d), 7.93 (1H, s), 7.33-7.27 (1H, m), 7.21 (1H, bs), 7.16-7.10 (1H, m), 6.89-6.85 (1H, m), 6.15-6.14 (1H, d), 5.13-5.11 (1H, d), 3.82-3.79 (1H, t), 3.44-3.38 (1H, q), 3.02 (4H, t), 2.04-1.89 (3H, m), 1.53-1.51 (4H, m), 1.43-1.42 (2H, m); MS (ESI): m/z 489.8

Example-144

Determination of *in vitro* TrkA inhibitory activity using TR-FRET assay

[0326] Compounds were screened in the TR-FRET assay with TrkA kinase. 5 ng of TrkA [Upstate, USA] kinase was used for assay. The compound was incubated with the kinase for 30 minutes at 20-35°C. After the incubation, substrate mix [40 nM Ultra light poly GT (Perkin Elmer, USA) and 500 μM ATP] was added. The above reaction was stopped by the addition of 40mM EDTA after 30 minutes. The Eu-labelled antiphospho-tyrosine antibody [Perkin Elmer, USA] was added at 0.5 nM and the fluorescence emission at 615nm/665nm [excitation at 340nm] was measured. The compounds were initially screened at 100nM, 1μM and 10μM concentrations. The potent compounds with >25% inhibition at 1μM of TrkA were taken for the full dose response studies. The final DMSO concentration in the assay was 1%. For IC₅₀ determination, 1/3rd serial dilution was made from the 20mM DMSO stock solution. 2 μl of these were transferred to the test wells containing 20 μl reaction mixture [Total reaction volume 22 μl]. The fluorescence was measured in Perkin Elmer Wallac 1420 Multilabel Counter Victor 3. The IC₅₀ was determined by fitting the dose response data to a sigmoidal curve fitting equation using GraphPad Prism software version 5.

[0327] Using this protocol, various compounds as described herein and further as exemplified above, were found to exhibit inhibitory effect on TrkA (Table 2).

[0328] Examples 2, 7, 8, 9, 10, 25, 31, 39, 40, 41, 52, 57, 59, 65, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 128, 132, 136, 137, 138, 139, 140, 141, 142 and

143, as described herein, exhibited a TrkA inhibition in-vitro IC₅₀ values less than or equal to about 50 nM;

Examples 4, 26, 34, 35, 38, 44, 45, 46, 47, 60, 63 and 134, as described herein, exhibited a TrkA inhibitory activity in-vitro IC₅₀ values between about 50 nm and about 100 nM;

Examples 1, 3, 5, 6, 11, 12, 13, 14, 19, 20, 22, 23, 24, 27, 28, 29, 32, 33, 36, 37, 43, 49, 50, 54, 56, 61, 62, 66, 71, 72, 75, 86, 93, 130 and 133, as described herein, exhibited a TrkA inhibitory activity in-vitro IC₅₀ values between about 100 nm to about 500 nm;

Examples 15, 21, 30, 48, 58, 67, 68, 69 and 131, as described herein, exhibited a TrkA inhibitory activity in-vitro IC₅₀ values between about 500 nm to about 1 μ M;

Examples 16, 17, 18, 51, 53, 55 and 135, as described herein, exhibited a TrkA inhibitory activity in-vitro IC₅₀ values between about 1 μ M to about 10 μ M.

Example-145

Stability Protocol: Metabolic stability using Rat Liver Microsomes (RLM) and Human Liver Microsomes (HLM).

[0329] This assay was performed using pooled male rat liver microsomes (In-house prepared as per SOP), Pooled Human liver microsomes (XENOTECH; Batch No-H0630-1110189). The 100 μ l reaction contains the compounds at 1 μ M, 0.3mg/ml microsomal protein and both the co-factors (1mM NADPH) in buffer and the mixture was incubated at different time points (0, 15, 30, 45, 60, & 90 minutes). The reaction was stopped by the addition of equal volume of acetonitrile containing internal standard (Telmesartin). The precipitated protein was removed by centrifugation and the supernatant were analyzed LC/MS-MS method. The percent parent compound remaining was quantified by analysis using following formula (% parent compound remaining = (peak area at Time x /peak area at T0) X 100. The intrinsic clearance was calculated using the following formula.

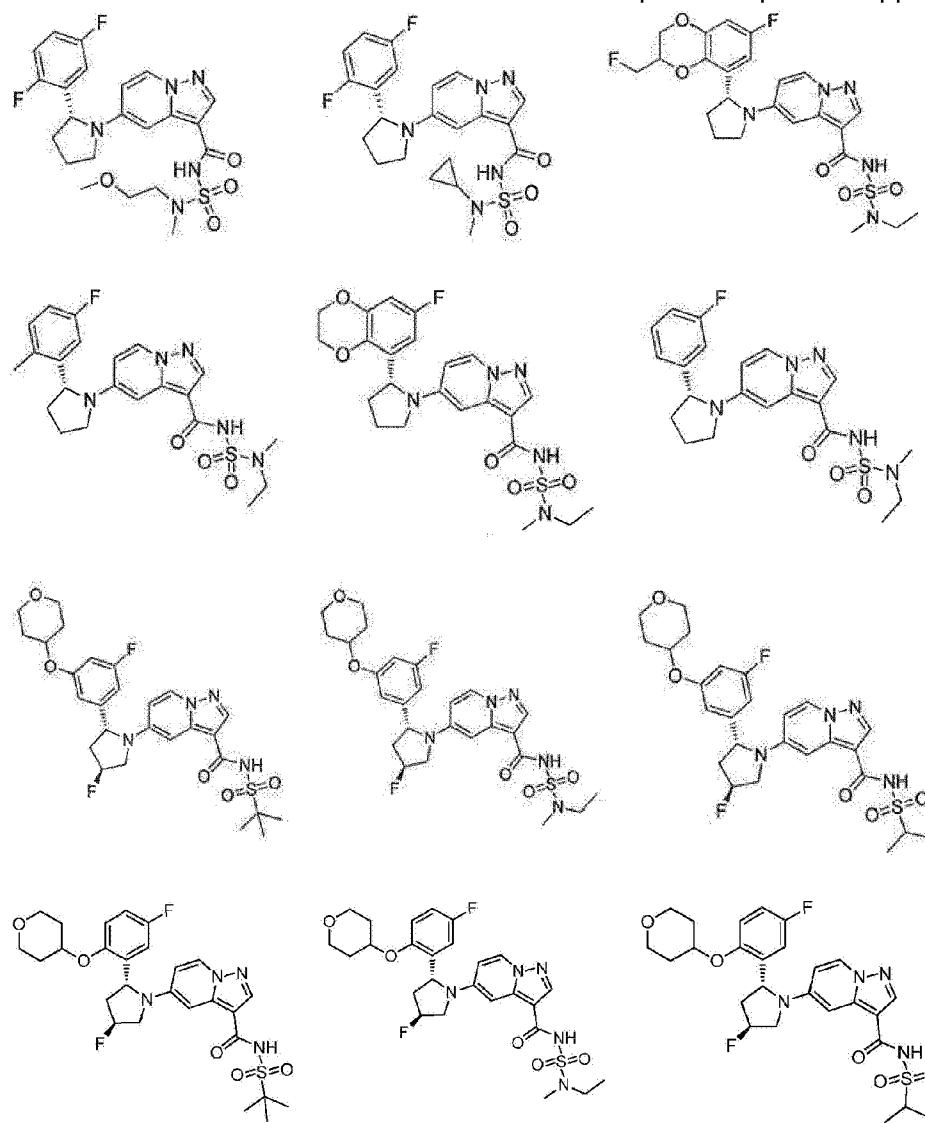
$CL_{int,app} : (0.693/in vitro t1/2) (incubation volume/mg of microsomal protein)$

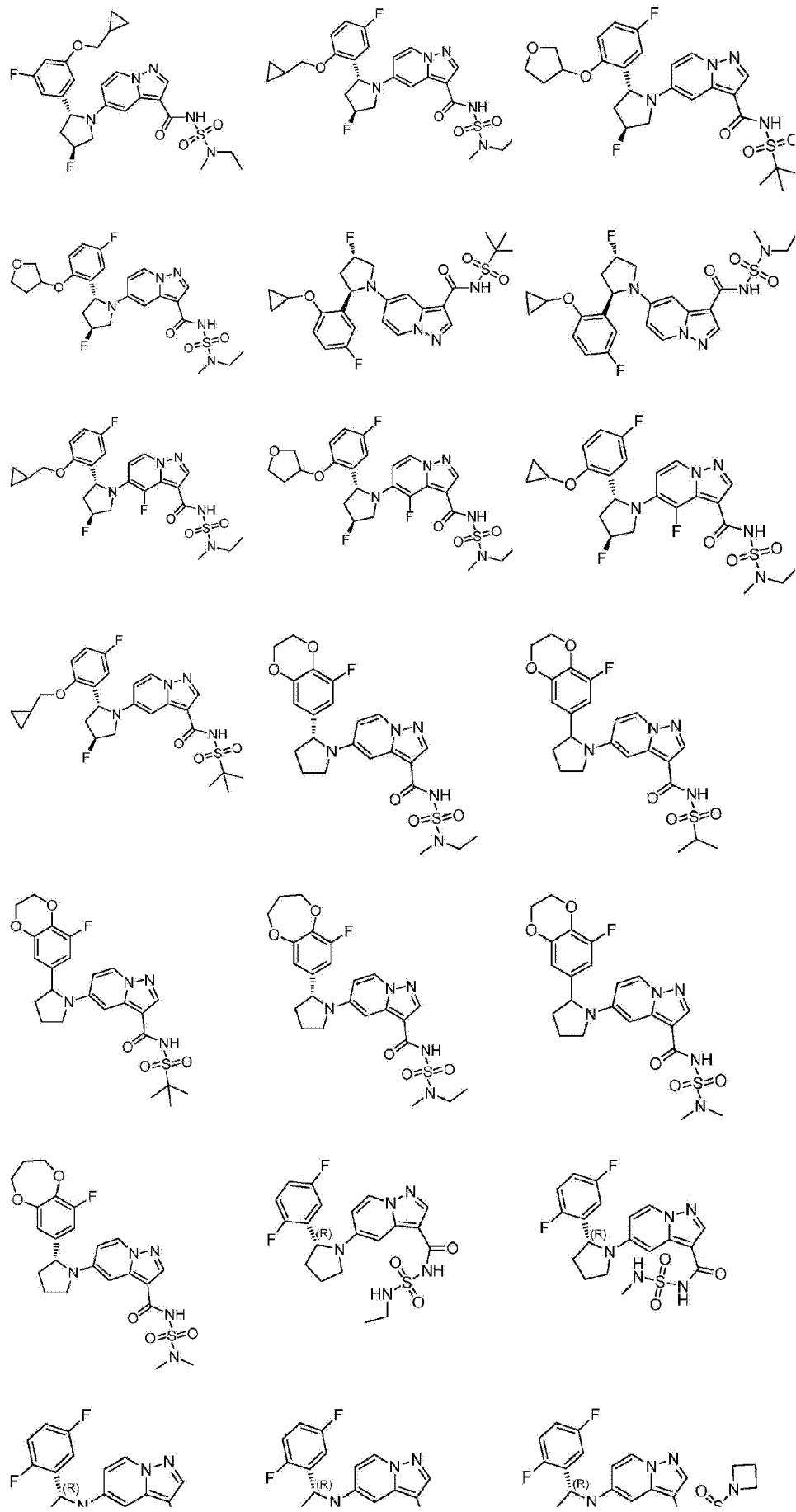
(45 mg microsomal protein/gram of liver) (20^a g of liver/kg body weight)

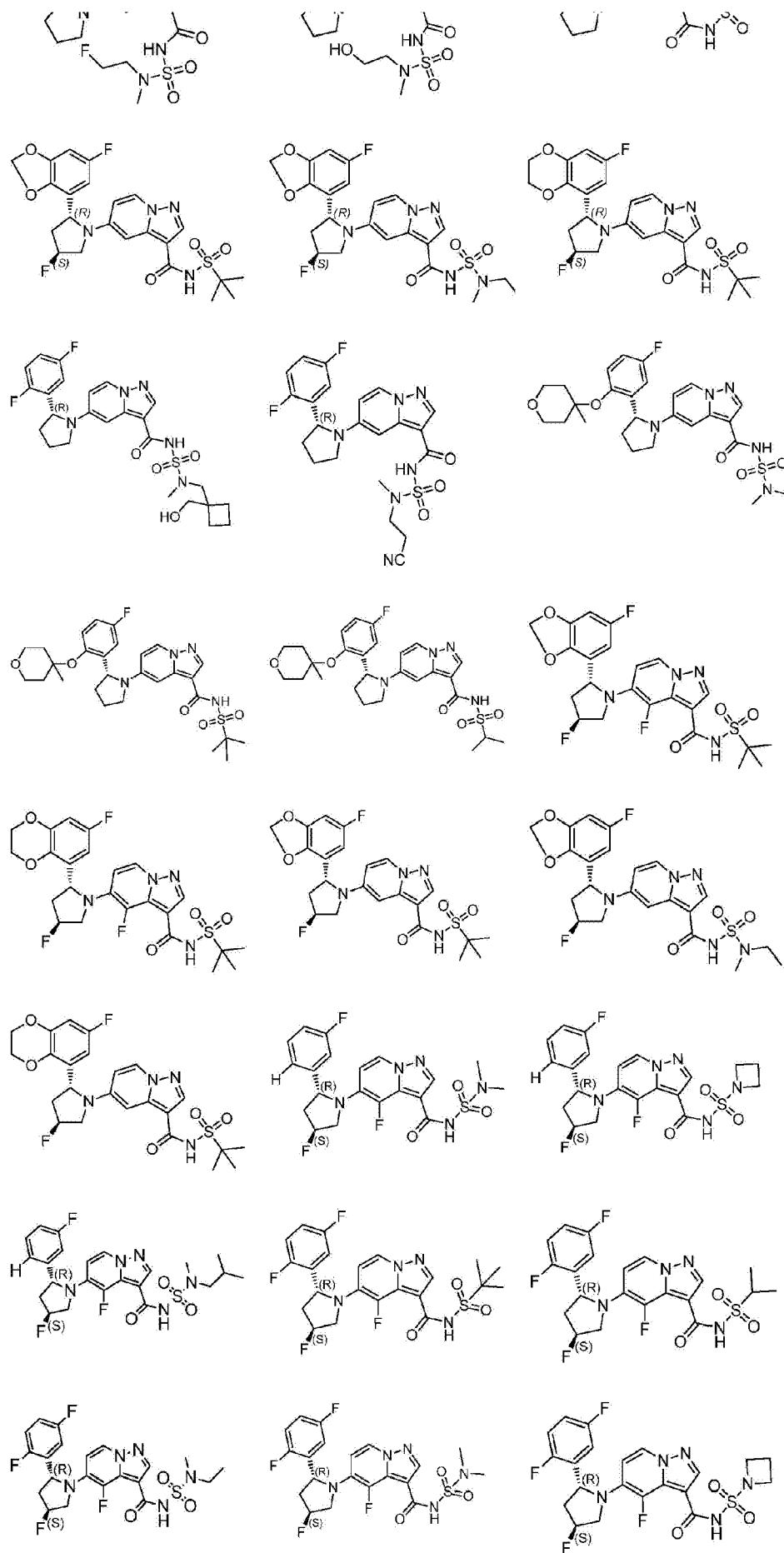
a: 20 and 45 g of liver/kg of body weight were used for human and rat, respectively (Lu C et al., DMD, 2006).

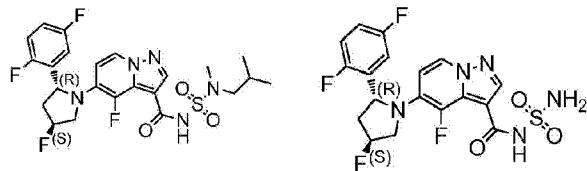
Bio-analysis: It was performed in Multiple Reaction Monitoring mode (negative mode) using Applied Biosystems API 4000 coupled to Agilent Technologies 1100 series HPLC on a reverse phase column (Zorbax Eclipse XDB C18, 50 x 4.6 mm, 5 μ m). Celecoxib was used as internal standard both in in-vitro and in-vivo experiments. Mobile phase used 0.05% monofluoro acidic water and acetonitrile (10:90) with a flow rate of 0.6ml/minute. The injection volume was kept as 10 μ l.

Examples 1, 2, 3, 4, 10, 24, 25, 26, 35, 38, 39, 40, 42, 43, 45, 46, 50, 52, 57, 59, 65, 74, 75, 76, 77, 78, 79, 91, 97, 102, 106, 107, 123, 122 and 124 as described herein, exhibited metabolic stability half life (in minutes) of >80, by using Human Liver Microsomes,


Example-147: Apparent aqueous Solubility Assay:


[0330] The 10mM DMSO solution of test compounds or reference standards were added to Dulbecco's phosphate buffer saline pH 7.4 (DPBS) and DMSO in a 96 deep-well plate to generate theoretical concentration of 200 μ M. The solutions were equilibrated by shaking (200 rpm, Ika plate shaker) for 16 hours at 25 °C. Undissolved compound was removed by centrifugation, and the supernatant was analyzed by HPLC-UV. The assays were performed in duplicates. Aqueous solubility was calculated using the equation:


$$\text{Aqueous solubility} = 200 \mu\text{M} \times \text{PA}_{\text{PBS}} / \text{PA}_{\text{DMSO}}$$

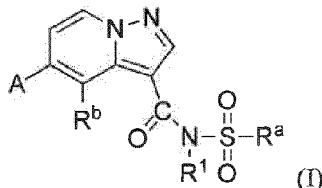

Whereas PA_{PBS} and PA_{DMSO} are the peak areas from the analyses of test compound in PBS with 2% DMSO and of test compound in 100% DMSO, respectively.

[0331] Although the present application has been illustrated by certain of the preceding examples, it is not to be construed as being limited thereby; For example, the following compounds, their pharmaceutically acceptable salts, pharmaceutically acceptable solvates or stereoisomers thereof are also included in the scope of the present application.

REFERENCES CITED IN THE DESCRIPTION

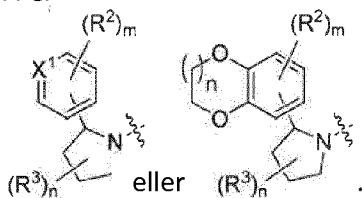
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description


- [US20110195948A \[0007\]](#)
- [JP2003231687B \[0008\]](#)
- [WO200505427A \[0009\]](#)
- [WO2004011461A \[0010\]](#)
- [WO2009140128A \[0234\] \[0235\]](#)

Non-patent literature cited in the description

- Curr Opin Neurobiol, 2001, vol. 11, 272-280 [\[0002\]](#)
- Bone, 2011, vol. 48, 2389-398 [\[0003\]](#)
- **J. PAINArticle**, 2011, vol. 12, 101059-1068 [\[0003\]](#)
- Neuroscience, 1994, vol. 62, 327-331 [\[0003\]](#)
- J. Pain, 2004, vol. 5, 157-163 [\[0003\]](#)
- Nat. Med., 1995, vol. 1, 774-780 [\[0003\]](#)
- Pain, 2005, vol. 116, 8-16 [\[0003\]](#)
- Pain, 2003, vol. 105, 489-497 [\[0003\]](#)
- Eur. J. Neurosci., 1999, vol. 11, 837-846 [\[0003\]](#)
- Pain, 1999, vol. 79, 265-274 [\[0003\]](#)
- Pain, 1999, vol. 81, 245-255 [\[0003\]](#)
- Neurosci. Lett., 2003, vol. 336, 117-120 [\[0003\]](#)
- J. Physiol., 2005, vol. 569, 685-95 [\[0004\]](#)


- Proc. Natl. Acad. Sci. USA, 1999, vol. 96, 7714-18 [0004]
- Molecular Pain, 2008, vol. 4, 281-11 [0004]
- Pharmacol. Therapeut., 2008, vol. 117, 152-76 [0005]
- J. Urology, 2005, vol. 173, 31016-21 [0005]
- Gut, 2000, vol. 46, 5670-678 [0005]
- Arc Dermatol Res., 2006, vol. 298, 131-37 [0005]
- J. Investig Dermatol., 2004, vol. 122, 3812-819 [0005]
- Expert Opin. Ther. Patents, 2009, vol. 19, 3305-319 [0006]
- J. Org. Chem., 2003, vol. 68, 7119-7122 [0149]
- J. Med. Chem., 2003, vol. 46, 1016-1030 [0303]
- LU C et al.DMD, 2006, [0329]

1. Forbindelse med formlen (I),

deres farmaceutisk acceptable salte, farmaceutisk acceptable solvater eller stereoisomerer deraf, hvor

A er

X₁ er CH eller N;

R¹ står for hydrogen eller -(C₁-C₆)alkyl;

R² er uafhængigt udvalgt blandt hydrogen, halogen, cyano, -(C₁-C₆)alkyl, halo(C₁-C₆)alkyl-, halo(C₁-C₆)alkoxy-, phenyl eventuelt substitueret med 1 til 3 halogener eller en eventuelt substitueret -O-heterocyklyl, hvor den eventuelle substituent er udvalgt blandt alkyl, -ORⁱ eller -C(O)N(Rⁱ)₂;

når X₁ er CH, kombineres to R²ere, der er til stede på hvilke som helst to tilstødende carbonatomer, eventuelt til dannelse af en 5 til 7-leddet heterocyklig ring;

R³ er uafhængigt udvalgt blandt halogen, cyano, -ORⁱ, -C(O)N(Rⁱ)₂, eller to R³ere danner sammen med carbonatomet, som de er forbundet til, en (C₃-C₇)cykloalkylgruppe, der er spiroforbundet til pyrrolidin; eller to R³ danner, når de er forbundet til tilstødende carbonatomer, en (C₃-C₇)cykloalkylring, som er kondenseret med pyrrolidinen;

R^a er udvalgt blandt

(i) en gruppe udvalgt blandt eventuelt substitueret -(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl- eller -(C₁-C₆)alkyl-(C₁-C₆)alkoxy, hvor den eventuelle substituent er udvalgt blandt cyano, halogen eller -(C₆-C₁₂)aryl,

(ii) en eventuelt substitueret -(C₃-C₁₀)cykloalkyl, hvor den eventuelle substituent er udvalgt blandt cyano, -(C₁-C₆)alkyl, hydroxyl, halogen eller -R^s,

(iii) en eventuelt substitueret -(C₆-C₁₂)aryl, hvor den eventuelle substituent er udvalgt blandt cyano, hydroxyl, halogen, -(C₁-C₆)alkyl eller -R^r,

(iv) en eventuelt substitueret 5 til 10-leddet heterocyklyl, hvor den eventuelle substituent er udvalgt blandt cyano, hydroxyl, halogen eller -(C₁-C₆)alkyl,

(v) en eventuelt substitueret 5 til 10-leddet heteroaryl, hvor den eventuelle substituent er udvalgt blandt cyano, oxo (=O), hydroxyl, halogen, -(C₁-C₆)alkyl, -(C₁-C₆)alkoxy, -NR^cR^d eller -R^r,

(vi) -NR⁴R⁵,

(vii) $-(C_1-C_6)\text{alkyl}-(C_6-C_{12})\text{aryl}$;

R^b står for hydrogen eller halogen;

R^4 er udvalgt blandt hydrogen, $-(C_1-C_6)\text{alkyl}$, $-(C_3-C_{10})\text{cykloalkyl}$, hydroxy(C_1-C_6)alkyl-, alkoxy(C_1-C_6)alkyl-, halogen(C_1-C_6)alkyl- eller $-(C_1-C_6)\text{alkyl}-(C_3-C_{10})\text{cykloalkyl}$;

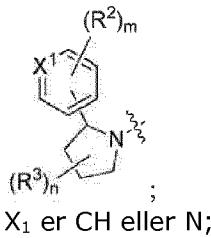
R^5 er udvalgt blandt hydrogen eller $-(C_1-C_6)\text{alkyl}$ eller $-(C_1-C_6)\text{alkyl}-(C_3-C_{10})\text{cykloalkyl}$;

alternativt kan R^4 og R^5 sammen med nitrogenatomet, hvortil de er forbundne, danne en eventuelt substitueret 5 til 10-leddet heterocyklistisk ring, eventuelt indeholdende 1-2 yderligere heteroatomer eller grupper udvalgt blandt $-\text{O}-$, $-\text{S}-$, $-\text{N}-$, $-\text{C}(=\text{O})-$, $-\text{S}(=\text{O})-$ eller $-\text{S}(=\text{O})_2-$, hvor den eventuelle substituent er udvalgt blandt hydroxyl, $-(C_1-C_6)\text{alkyl}$, $-\text{C}(=\text{O})-(C_1-C_6)\text{alkyl}$, mesyl eller COOR^e ;

R^c og R^d er uafhængigt udvalgt blandt hydrogen eller $-(C_1-C_6)\text{alkyl}$;

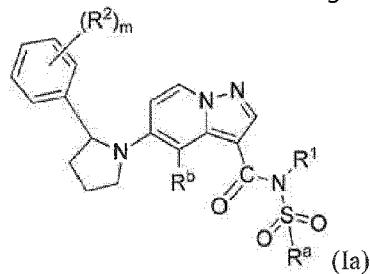
R^e er udvalgt blandt hydrogen eller alkyl;

R^i er hydrogen, $-(C_1-C_6)\text{alkyl}$, -halo(C_1-C_6)alkyl, $-(C_1-C_6)\text{alkyl}-(C_1-C_6)\text{alkoxy}$, $-(C_3-C_{10})\text{cykloalkyl}$, eventuelt substitueret $-(C_1-C_6)\text{alkyl}-(C_3-C_{10})\text{cykloalkyl}$, hvor den eventuelle substituent er halogen eller $-(C_1-C_6)\text{alkyl}$ substitueret med 1 til 3 hydroxygrupper;


R^r er uafhængigt udvalgt blandt en 5 til 10-leddet heterocyklyl eller en 5 til 10-leddet heteroaryl, hvor en eventuel substituent er udvalgt blandt hydroxyl, halogen, $-(C_1-C_6)\text{alkyl}$ eller $-(C_1-C_6)\text{alkoxy}$;

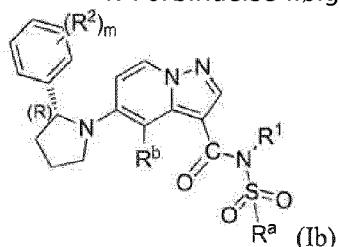
R^s er en eventuelt substitueret $-(C_1-C_6)\text{alkyl}-(C_6-C_{10})\text{aryl}$, hvor den eventuelle substituent er halogen;

m står uafhængigt for 0, 1, 2, 3 eller 4; og

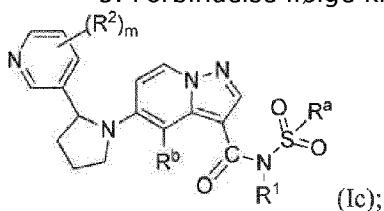

n står uafhængigt for 0, 1, 2, eller 3.

2. Forbindelse ifølge krav 1, hvor A er

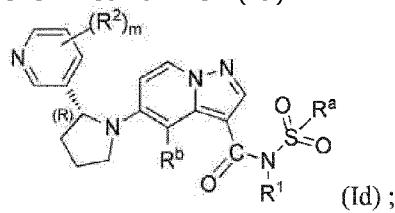
X_1 er CH eller N;


3. Forbindelse ifølge krav 1, med formlen (Ia)

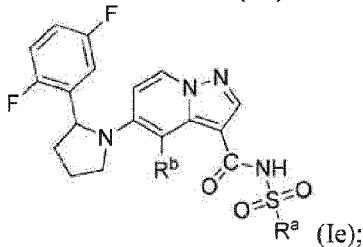
deres farmaceutisk acceptable salte, farmaceutisk acceptable solvater eller stereoisomerer

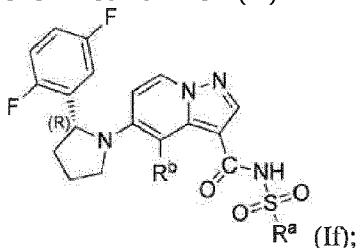

deraf.

4. Forbindelse ifølge krav 1, med formlen (Ib)

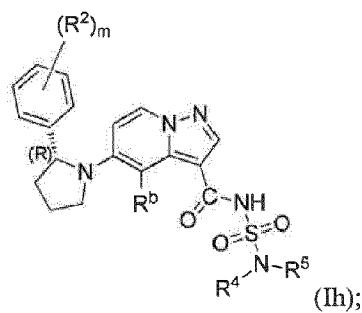


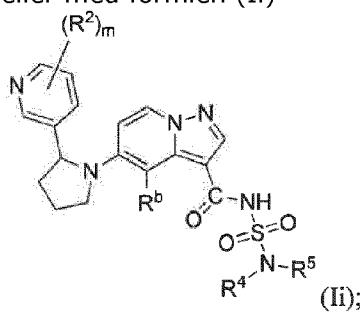
deres farmaceutisk acceptable salte, farmaceutisk acceptable solvater eller stereoisomener deraf, hvor værdierne for alle variablerne er som beskrevet for forbindelsen med formlen (Ib).

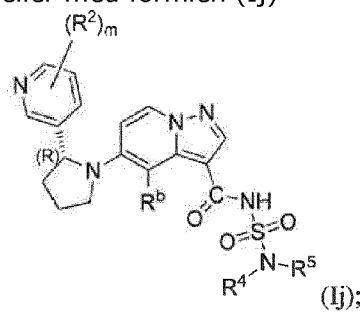

5. Forbindelse ifølge krav 1, med formlen (Ic)

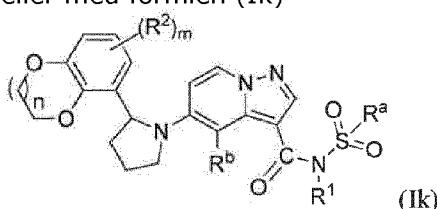

eller med formlen (Id):

eller med formlen (Ie)

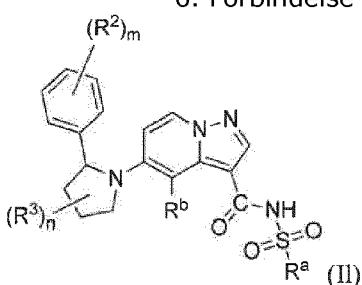

eller med formlen (If)


eller med formlen (Ig)

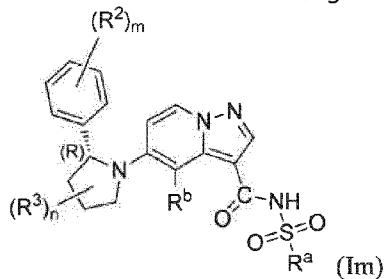

eller med formlen (Ih):


eller med formlen (II)

eller med formlen (Ij)



eller med formlen (Ik)


eller farmaceutisk acceptable salte, farmaceutisk acceptable solvater eller stereoisomerer deraf.

6. Forbindelse ifølge krav 1, med formlen (II)

deres farmaceutisk acceptable salte, farmaceutisk acceptable solvater eller stereoisomerer deraf, hvor R³ er fluor, n er 1 eller 2.

7. Forbindelse ifølge krav 1, med formlen (Im)

deres farmaceutisk acceptable salte, farmaceutisk acceptable solvater eller stereoisomerer deraf.

8. Forbindelse ifølge krav 1, hvor R^b er hydrogen, eller hvor R^b er fluor, eller hvor R^2 er fluor, eller hvor R^3 er fluor

9. Forbindelse, som er

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-fluorophenyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(ethylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol [1,5-a] pyridin-3-carboxamid,

(R)-N-(cyklopropylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(methylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrolidin-1-yl)phenyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-((3-cyanophenyl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-methylpyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(propylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((3,5-dimethylisoxazol-4-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(cyklohexylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(cyklopentylsulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(isobutylsulfonyl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-4-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1,2-dimethyl-1H-imidazol-5-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-4-ylsulfonyl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-imidazol-4-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-5-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2,4-dimethylthiazol-5-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-2-oxoindolin-5-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((tetrahydro-2H-pyran-4-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-(dimethylamino) pyridin-3-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((2-methyltetrahydrofuran-3-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrrolidin-1-yl)pyridin-3-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-methoxypyridin-3-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((1-methyl-1H-pyrazol-4-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-morpholinophenyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyridin-3-ylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-((5-chlorothiophen-2-yl)sulfonyl)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-((2,5-dichlorothiophen-3-yl)sulfonyl)-5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazol[1,5-a] pyridin-3-carboxamid,

(R)-N-(cyklobutylsulfonyl)-5-(2-(2,5-difluorphenyl) pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(benzo[d][1,3]dioxol-5-ylsulfonyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-((1-ethylcyklopropyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(neopentylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-((1-methylcyklopropyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(o-tolylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(benzylsulfonyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-((1-(4-fluorbenzyl)cyklopropyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluor-2-methoxyphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(3-(difluormethoxy)-5-fluorphenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluorpyridin-3-yl) pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-ethoxy-5-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(cyklopropylmethoxy)-5-fluorphenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-chloro-5-fluorphenyl)pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorphenyl)-4-hydroxypyrrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluor-2-(2,2,2-trifluorethoxy)phenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Isomer-I),

N-(tert-butylsulfonyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Isomer-II),

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluopyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Isomer-I),

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluopyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Isomer-II),

(R)-N-(tert-butylsulfonyl)-5-(2-(4,4'-difluor-[1,1'-biphenyl]-2-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(S)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorphenyl)-4,4-difluopyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorphenyl)-4,4-difluopyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluor-2-(2-fluorethoxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-5-((2R,4R)-2-(2,5-difluorphenyl)-4-fluopyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-5-((2R)-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2,5-difluorphenyl) pyrrolidin-1-yl)-4-fluopyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluormethoxy)-5-fluorphenyl) pyrrolidin-1-yl)-4-fluopyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-(difluormethoxy)-5-fluorphenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(2-fluor-5-(2-methoxyethoxy) phenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluor-2-(2-methoxyethoxy) phenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluorphenyl) pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(3-fluor-5-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-5-((2R)-2-(3-fluor-5-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluorphenyl) pyrrolidin-1-yl)-N-((4-fluorphenyl) sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((R)-2-(3,5-difluorphenyl) pyrrolidin-1-yl)-N-((4-((S)-3-hydroxypyrrrolidin-1-yl)phenyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-((6-(1H-1,2,4-triazol-1-yl)pyridin-3-yl)sulfonyl)-5-(2-(3,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((R)-2-(3,5-difluorophenyl)pyrrolidin-1-yl)-N-((6-((S)-3-hydroxypyrrrolidin-1-yl)pyridin-3-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-((1-methylcyklopropyl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-4-fluor-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(N, N-dimethylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N-(cyklopropylmethyl)-N-methylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluoropyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(morpholinosulfonyl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(pyrrolidin-1-ylsulfonyl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-((4-methylpiperazin-1-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluor-2-methoxyphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N,N-diethylsulfamoyl)-5-(2-(5-fluor-2-(2-fluorethoxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorophenyl)pyrrolidin-1-yl)-N-(piperidin-1-ylsulfonyl) pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluor-2-methoxyphenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluor-2-methoxyphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluor-2-(2-fluorethoxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((R)-2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-((S)-3-hydroxypyrrrolidin-1-yl)sulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-sulfamoylpyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluor-2-(2-fluorethoxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluor-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-I),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluor-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-II),

N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-I),

N-(N,N-dimethylsulfamoyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-II),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-I),

N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-II),

N-(N-ethyl-N-methylsulfamoyl)-4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluor-5-((S)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(N-ethyl-N-methylsulfamoyl)-5-((R)-2-(3-fluor-5-((R)-tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)-N-sulfamoyl pyrazol[1,5-a]pyridin-3-carboxamid,

N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluor-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-I),

N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluor-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-2);

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-isobutyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluor-5-(2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N,N-dimethylsulfamoyl)-4-fluor-5-(2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(N-ethyl-N-methylsulfamoyl)-4-fluor-5-(2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

5-((2R)-2-(3-((2,2-difluorcyklopropyl)methoxy)-5-fluorphenyl)pyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3 -carboxamid,

(R)-N-(N,N-bis(cyklopropylmethyl)sulfamoyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid (Diastereomer-II),

N-(tert-butylsulfonyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a] pyridin-3-carboxamid (Racemic mixture);

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluor-2-methoxyphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

N-(tert-butylsulfonyl)-4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(3,5-difluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-5-(2-(3,5-difluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid,

(R)-4-fluor-5-(2-(3-fluorphenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol [1,5-a]pyridin-3-carboxamid,

(R)-N-(tert-butylsulfonyl)-4-fluor-5-(2-(5-fluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

eller et farmaceutisk acceptabelt salt deraf, et farmaceutisk acceptabelt solvat deraf eller en stereoisomer deraf.

10. Farmaceutisk sammensætning omfattende mindst en forbindelse ifølge enten krav 1 eller krav 9 og mindst én farmaceutisk acceptabel excipiens.

11. Forbindelse ifølge krav 1 eller 9 til anvendelse i behandling eller forebyggelse af tilstænde, sygdomme og/eller forstyrrelser, som er smerte, inflammation, cancer, restenose, aterosklerose, psoriasis, trombose, psoriatisk arthritis, rheumatoid arthritis, inflammatorisk tarmsygdom, ulcerøs colit, Crohns sygdom, fibrose, neurodegenerativ sygdom, en sygdom, forstyrrelse eller skade forbundet med dysmyelinering eller demyelinering eller visse infektionssygdomme såsom infektion med *Trypanosoma cruzi*; eller til anvendelse i behandling af smerte hos en patient.

12. Forbindelse til anvendelse ifølge krav 11, hvor smerte indbefatter kronisk og akut smerte, eller hvor smerten er forbundet med cancer, kirurgi, knoglebrud, knoglesmerte forvoldt af tumormetastase, ostearthritis, psoriatisk arthritis, rheumatoid arthritis, interstiel cystitis, kronisk pancreatitis, visceral smerte, inflammatorisk smerte, migræne, kroniske lændesmerter, blæresmertesyndrom og neuropatisk smerte.

13. Forbindelse ifølge krav 1, som er

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-(2-methoxyethyl)-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-cyklopropyl-N-methylsulfamoyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluor-2-methylphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-4-fluor-2-(3-fluor-5-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N-ethyl-N-methylsulfamoyl)-5-((2R,4S)-4-fluor-2-(3-fluor-5-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-4-fluor-2-(5-fluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N-ethyl-N-methylsulfamoyl)-5-((2R,4S)-4-fluor-2-(5-fluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-4-fluor-2-(5-fluor-2-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2-(cyklopropylmethoxy)-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-4-fluor-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N-ethyl-N-methylsulfamoyl)-5-((2R,4S)-4-fluor-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2-(cyklopropylmethoxy)-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)-4-fluorpyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2-(cyklopropylmethoxy)-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-ethylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-(2-fluorethyl)-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-(2-hydroxyethyl)-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(azetidin-1-ylsulfonyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-4-fluor-2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-(2-cyanoethyl)-N-methylsulfamoyl)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-4-fluor-5-((2R,4S)-4-fluor-2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N,N-dimethylsulfamoyl)-4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

eller et farmaceutisk acceptabelt salt deraf, et farmaceutisk acceptabelt solvat deraf eller en stereoisomer deraf.

14. Forbindelse ifølge krav 1, som er

N-(N-ethyl-N-methylsulfamoyl)-5-((2R)-2-(7-fluor-3-(fluormethyl)-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-4-fluor-2-(3-fluor-5-((tetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(3-(cyklopropylmethoxy)-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2-cyklopropoxy-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2-cyklopropoxy-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N-ethyl-N-methylsulfamoyl)-4-fluor-5-((2R,4S)-4-fluor-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2-cyklopropoxy-5-fluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)-4-fluorpyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(8-fluor-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(8-fluor-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-(2-(8-fluor-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-(2-(9-fluor-3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N,N-dimethylsulfamoyl)-5-(2-(8-fluor-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N,N-dimethylsulfamoyl)-5-(2-(9-fluor-3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-4-fluor-2-(6-fluorbenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N-ethyl-N-methylsulfamoyl)-5-((2R,4S)-4-fluor-2-(6-fluorbenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl)-N-(N-((1-(hydroxymethyl)cyklobutyl)methyl)-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(N-ethyl-N-methylsulfamoyl)-5-(2-(5-fluor-2-((4-methyltetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-N-(tert-butylsulfonyl)-5-(2-(5-fluor-2-((4-methyltetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

(R)-5-(2-(5-fluor-2-((4-methyltetrahydro-2H-pyran-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-4-fluor-5-((2R,4S)-4-fluor-2-(6-fluorbenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-4-fluor-2-(6-fluorbenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(N-ethyl-N-methylsulfamoyl)-5-((2R,4S)-4-fluor-2-(6-fluorbenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(azetidin-1-ylsulfonyl)-4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carboxamid;

4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorphenyl)pyrrolidin-1-yl)-N-(N-isobutyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

N-(tert-butylsulfonyl)-5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-4-fluorpyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-4-fluor-N-(isopropylsulfonyl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N-ethyl-N-methylsulfamoyl)-4-fluorpyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-N-(N,N-dimethylsulfamoyl)-4-fluorpyrazol[1,5-a]pyridin-3-carboxamid;

N-(azetidin-1-ylsulfonyl)-5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-4-fluorpyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-4-fluor-N-(N-isobutyl-N-methylsulfamoyl)pyrazol[1,5-a]pyridin-3-carboxamid;

5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)-4-fluor-N-(N-sulfamoylpyrazol[1,5-a]pyridin-3-carboxamid;

eller et farmaceutisk acceptabelt salt deraf, et farmaceutisk acceptabelt solvat deraf eller en stereoisomer deraf.

15. Farmaceutisk sammensætning omfattende mindst én forbindelse ifølge krav 13 eller krav 14 og mindst én farmaceutisk acceptabelt excipiens.

16. Forbindelse ifølge krav 14 til anvendelse i behandling af smerte, omfattende indgift af en virksom mængde af forbindelsen.

17. Forbindelse ifølge krav 1, som er

natrium(tert-butylsulfonyl)(5-((2R,4S)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

natrium(R)-(tert-butylsulfonyl)(5-(2-(2,5-difluorphenyl)pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carbonyl)amid,

natrium(R)-(tert-butylsulfonyl)(5-(2-(7-fluor-2,3-dihydrobenzo[b][1,4]dioxin-5-yl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

natrium(tert-butylsulfonyl)(5-((2R,4R)-2-(2,5-difluorphenyl)-4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

natrium(R)-(5-(2-(2,5-difluorphenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)(N,N-dimethylsulfamoyl)amid,

natrium(tert-butylsulfonyl)(5-(2-(2,5-difluorphenyl)-4,4-difluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

natrium(R)-(5-(2-(2,5-difluorphenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)((1-methylcyklopropyl) sulfonyl)amid,

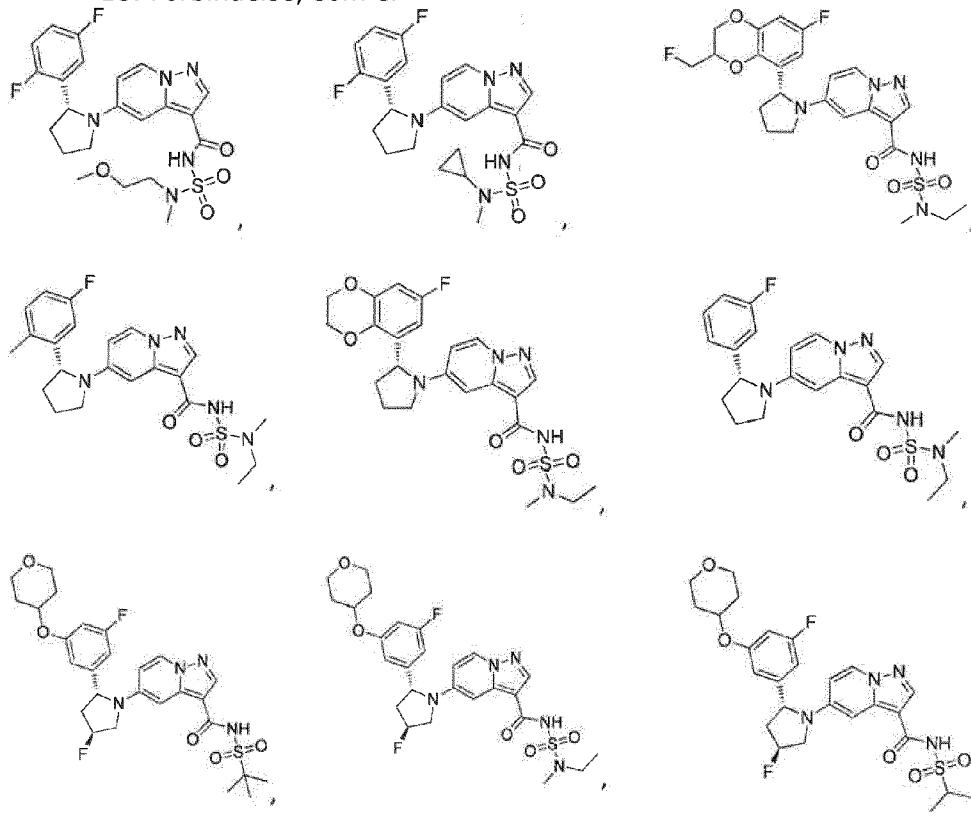
natrium(tert-butylsulfonyl)(5-((2R)-2-(2,5-difluorophenyl)-4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

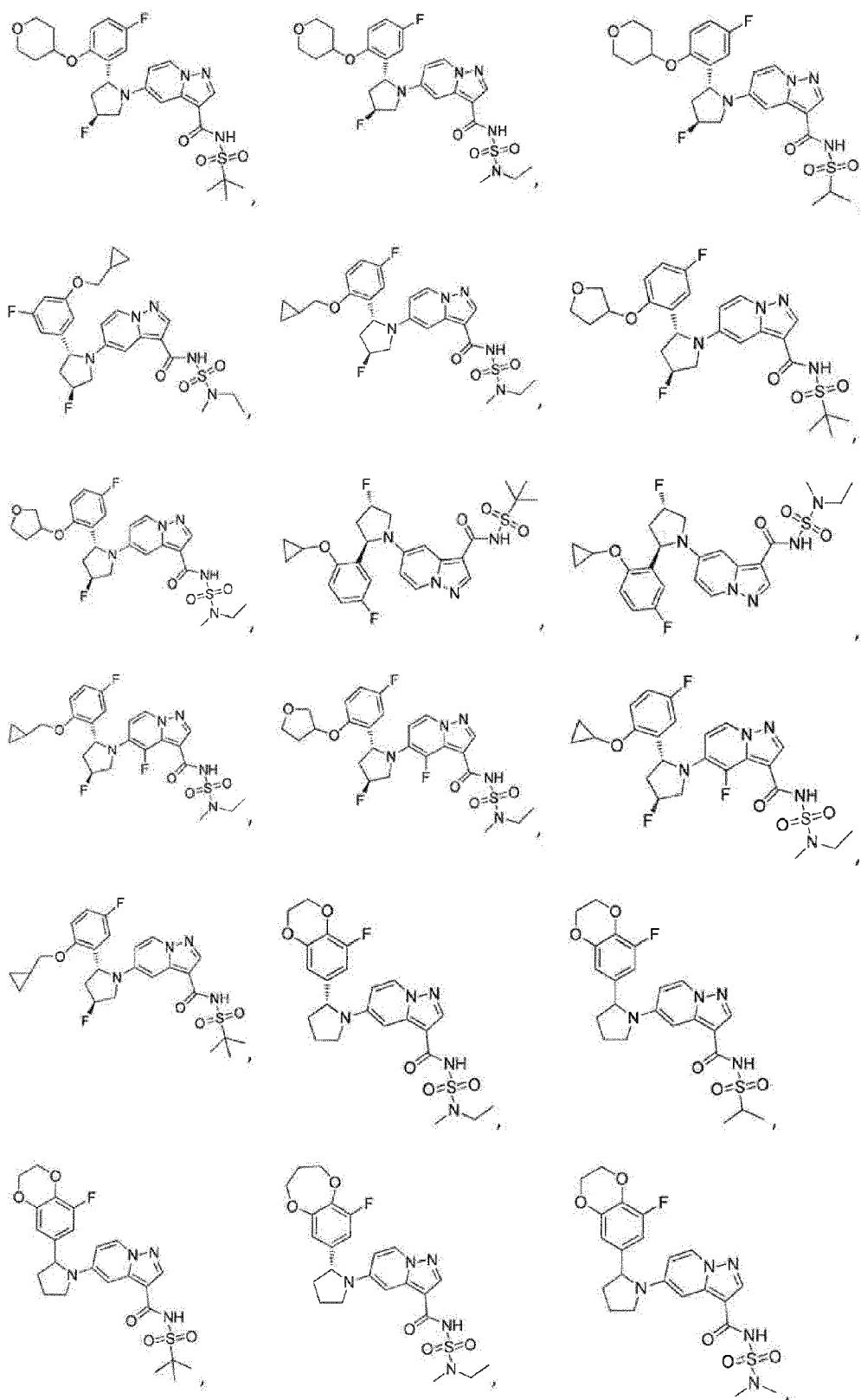
natrium(5-((2R,4S)-2-(2,5-difluorophenyl)-4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)(N,N-dimethylsulfamoyl)amid,

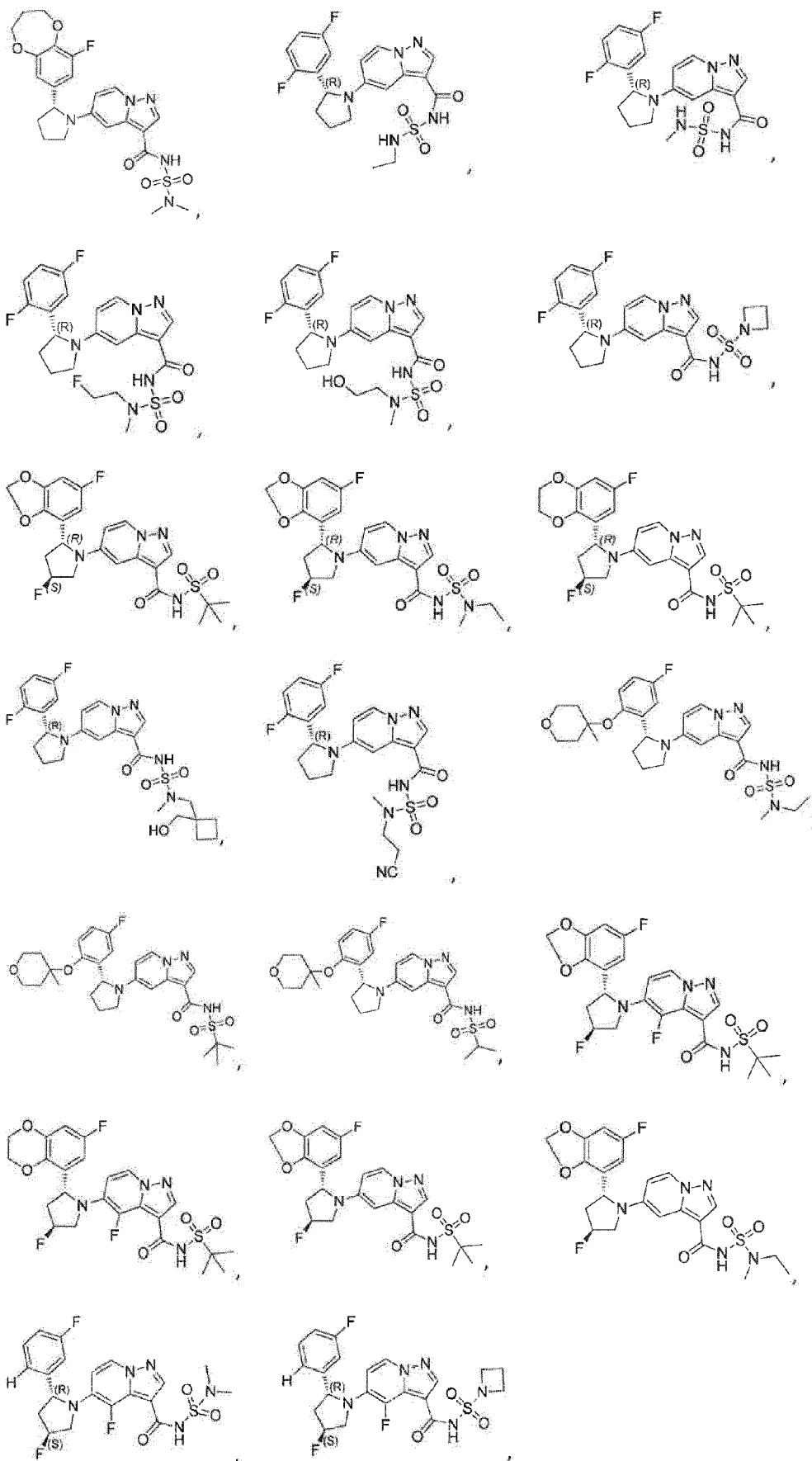
natrium(tert-butylsulfonyl)(4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorophenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

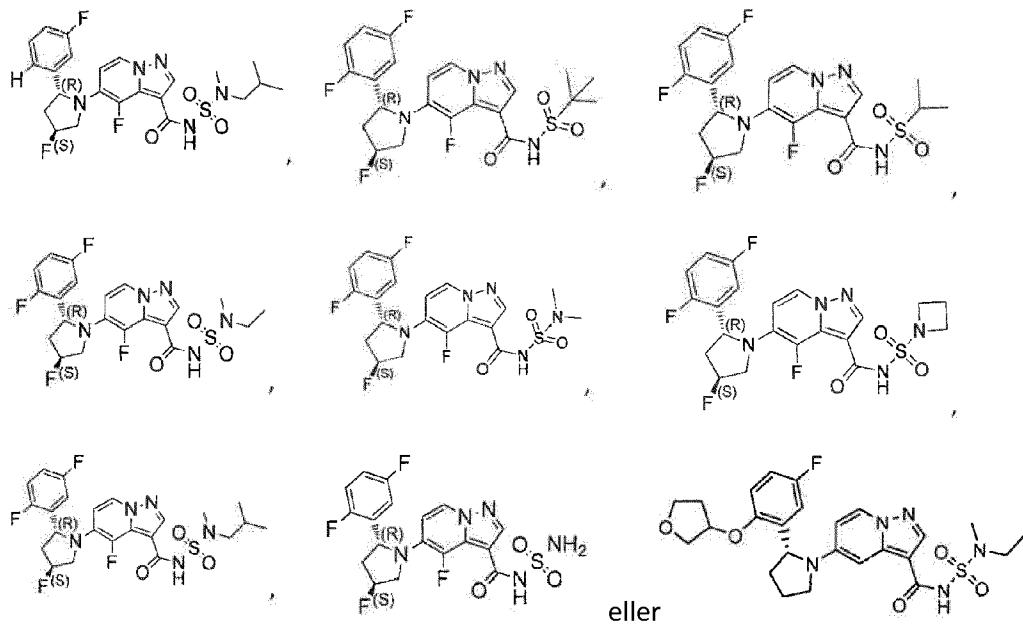
natrium(R)-(N,N-dimethylsulfamoyl)(4-fluor-5-(2-(3-fluorophenyl)pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)amid,

natrium(N-ethyl-N-methylsulfamoyl)(5-((2R)-2-(5-fluor-2-((tetrahydrofuran-3-yl)oxy)phenyl)pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carbonyl)amid,


natrium(R)-(5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)(o-tolylsulfonyl)amid,


natrium(4-fluor-5-((2R,4S)-4-fluor-2-(3-fluorophenyl)pyrrolidin-1-yl) pyrazol[1,5-a]pyridin-3-carbonyl) (isopropylsulfonyl)amid,


natrium(5-((2R,4S)-2-(2,5-difluorophenyl) -4-fluorpyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)(1-methylcyklopropyl)sulfonyl)amid, or


natrium(R)-(5-(2-(2,5-difluorophenyl) pyrrolidin-1-yl)pyrazol[1,5-a]pyridin-3-carbonyl)(piperidin-1-ylsulfonyl)amid.

18. Forbindelse, som er

eller et farmaceutisk acceptabelt salt deraf, et farmaceutisk acceptabelt solvat deraf eller en stereoisomer deraf.

19. Farmaceutisk sammensætning omfattende mindst én forbindelse ifølge krav 18 og mindst en farmaceutisk acceptabel excipiens.