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(7) ABSTRACT

A method of associating a phenotype with one or more
candidate chromosomal regions in a genome of an organism
includes the step of deriving a phenotypic data structure that
represents differences in phenotypes between different
strains of the organism. Further, a genotypic data structure is
established. The genotypic data structure corresponds to a
locus selected from a plurality of loci in the genome of the
organism. The genotypic data structure represents variations
of at least one component of the locus between different
strains of the organism. The phenotypic data structure is
compared to the genotypic data structure to form a correla-
tion value. The process of establishing a genotypic data
structure and comparing it to the phenotypic data structure
is repeated for each locus in the plurality of loci, thereby
identifying one or more genotypic data structures that form
a high correlation value relative to all other compared
genotypic data structures. The loci that correspond to the one
or more genotypic data structures having a high correlation
value represent the one or more candidate chromosomal
regions.
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SYSTEM AND METHOD FOR PREDICTING
CHROMOSOMAL REGIONS THAT CONTROL
PHENOTYPIC TRAITS

BACKGROUND OF THE INVENTION

[0001] Identification of genetic loci that regulate suscep-
tibility to disease has promised insight into pathophysiologic
mechanisms and the development of novel therapies for
common human diseases. Family studies clearly demon-
strate a heritable predisposition to many common human
diseases such as asthma, autism, schizophrenia, multiple
sclerosis, systemic lupus erythematosus, and type I and type
II diabetes mellitus. For a review, see Risch, Nature 405,
847-856, 2000. Over the last 20 years, causative genetic
mutations for a number of highly penetrant, single gene
(Mendelian) disorders such as cystic fibrosis, Huntington’s
disease and Duchene muscular dystrophy have been identi-
fied by linkage analysis and positional cloning in human
populations. These successes have occurred in relatively
rare disorders in which there is a strong association between
the genetic composition of a genome of a species (genotype)
and one or more physical characteristics exhibited by the
species (phenotype).

[0002] Tt was hoped that the same methods could be used
to identify genetic variants associated with susceptibility to
common diseases in the general population. For a review,
see Lander and Schork, Science 265, 2037-2048, 1994.
Genetic variants associated with susceptibility to subsets of
some common diseases such as breast cancer (BRCA-1 and
-2), colon cancer (FAP and HNPCC), Alzheimer’s disease
(APP) and type II diabetes (MODY-1, -2, -3) have been
identified by these methods, which has raised expectations.
However, these genetic variants have a very strong effect in
only a very limited subset of individuals suffering from these
diseases (Risch, Nature, 405, 847-856, 2000).

[0003] Despite considerable effort, genetic variants
accounting for susceptibility to common, non-Mendelian
disorders in the general population have not been identified.
Since multiple genetic loci are involved, and each individual
locus makes a small contribution to overall disease suscep-
tibility, it will be quite difficult to identify common disease
susceptibility loci by applying conventional linkage and
positional cloning methods to human populations. Mapping
of disease susceptibility genes in human populations has
also been hampered by variability in phenotype, genetic
heterogeneity across populations, and uncontrolled environ-
mental influences. The variable reports of linkage between
the chromosome 1q42 region and systemic lupus erythema-
tosus illustrate the difficulties encountered in human genetic
studies. One group reported strong linkage between the 142
region (Tsao, J.Clin.Invest, 99, 725-731, 1997) and to mic-
rosatellite alleles of a gene (PARP) within that region (Tsao,
J.Clin.Invest. 103, 1135-1140, 1999). In contrast, no evi-
dence for association with the PARP microsatellite marker
was noted (Criswell et al., J.Clin.Invest, Jun;105, 1501-
1502, 2000; Delrieu et al., Arthritis & Rheumatism 42,
2194-2197,1999); and minimal (Mucenski, et al., Molecular
& Cellular Biology 6, 4236-4243, 1986) or no linkage
(Lindgvist, et al., Journal of Autoimmunity, Mar;14, 169-
178, 2000) to the 1q42 region was found in several other
SLE populations analyzed. It is likely that additional tools
and approaches will be needed to identify genetic factors
underlying common human diseases.
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[0004] Analysis of experimental murine genetic models of
human disease biology should greatly facilitate identifica-
tion of genetic susceptibility loci for common human dis-
eases. Experimental murine models have the following
advantages for genetic analysis: inbred (homozygous)
parental strains are available, controlled breeding, common
environment, controlled experimental intervention, and
ready access to tissue. A large number of murine models of
human disease biology have been described, and many have
been available for a decade or more. Despite this, relatively
limited progress has been made in identifying genetic sus-
ceptibility loci for complex disease using murine models.
Genetic analysis of murine models requires generation,
phenotypic screening and genotyping of a large number of
intercross progeny. Using currently available tools, this is a
laborious, expensive and time-consuming process that has
greatly limited the rate at which genetic loci can be identified
in mice, prior to confirmation in humans. For a review, see
Nadeau and Frankel, Nature Genetics Aug;25, 381-384,
2000.

[0005] The difficulties encountered in associating pheno-
typic variations, such as susceptibility to common diseases,
with genetic variations gives rise to a need in the art for
additional tools for identifying chromosomal regions that are
most likely to contribute to quantitative traits or phenotypes.
In view of this situation, it would be highly desirable to
provide a technique for associating a phenotype with one or
more candidate chromosomal regions in the genome of an
organism without reliance on time consuming techniques
such as cross breeding experiments or laborious post-PCR
manipulation.

SUMMARY OF THE INVENTION

[0006] The present invention provides a system and
method for associating a phenotype with one or more
candidate chromosomal regions in the genome of an organ-
ism. In the method, phenotypic differences between a plu-
rality of strains of the organism are correlated with varia-
tions and/or similarities in the respective genomes of the
plurality of strains of the organism. The invention relies on
the use of a genotypic database that includes variations and
similarities of representative strains of the organism of
interest. Representative genotypic databases include, but are
not limited to, single nucleotide polymorphism databases,
microsatellite marker databases, restriction fragment length
polymorphism databases, short tandem repeat databases,
sequence length polymorphism databases, expression profile
databases, and DNA methylation databases.

[0007] One embodiment of the present invention provides
a method for associating a phenotype with one or more
candidate chromosomal regions in a genome of an organism.
In this method, a phenotypic data structure that represents a
difference in one or more phenotypes between different
strains of the organism is derived. In its simplest form, the
phenotypic data structure comprises a definition of one or
more phenotypes exhibited by the organism together with a
measure of each of these phenotypes. For example, a hypo-
thetical phenotypic data structure for rabbits could include
the phenotypes “tail length” and “hair color” and the respec-
tive measure for each of these phenotypes could be “7
centimeters” and “brown.”

[0008] A genotypic data structure is established in accor-
dance with one embodiment of the present invention. The
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genotypic data structure is identified by a particular locus
selected from a plurality of loci present in the genome of the
organism. The genotypic data structure includes one or more
positions within the locus. For each of these positions, the
genotypic data structure provides information on the extent
of a variation between different strains of the organism. A
hypothetical example of a genotypic data structure in accor-
dance with the present invention is an data structure for a
locus that includes genes A and B. In such an example, the
genotypic data structure includes the positions of genes A
and B within the locus as well as some measurement related
to genes A and B, such as the mRNA expression level that
has been measured for each of these genes. In this example,
the mRNA expression-level defines the extent of variation
between different strains of the organism.

[0009] The phenotypic and genotypic data structures are
then compared to form a correlation value. The process
continues with the establishment of another genotypic data
structure that corresponds to a different loci and the con-
comitant comparison of this genotypic data structure to the
phenotypic structure until several of the loci in the genome
of the organism have been tested in this manner. In this way,
one or more genotypic data structures are identified that
form a high correlation value relative to all other genotypic
data structures that have been compared to the phenotypic
data structure. Further, the loci in the genome of the organ-
ism that correspond to the highly correlated genotypic data
structures represent one or more candidate chromosomal
regions that may be associated with the phenotype of
interest.

[0010] In some embodiments of the present invention,
each element in a phenotypic data structure represents a
variation in the phenotype between a different first and
second strain of the organism of interest. Such variations
may be determined by measurement of an attribute corre-
sponding to the phenotype in the respective strains of the
organism. Representative phenotypic variations include, for
example, eye color, hair color, and susceptibility to a par-
ticular disease. In other embodiments, each e¢lement in a
phenotypic data structure represents a variation in the phe-
notype between a different first and second cluster of strains
of the organism of interest.

[0011] In additional embodiments of the present invention,
the genotypic data structure represents a variation of at least
one component of a locus between two strains of the
organism of interest. In other embodiments, each element in
the genotypic data structure represents a variation of at least
one component of the locus between a different first cluster
of strains of the organism and a different second cluster of
strains of the organism. In some embodiments, the pheno-
typic and genotypic data structures represent a subset of all
strains of the organism of interest.

[0012] The present invention contemplates a considerable
number of different methods for comparing the phenotypic
and genotypic data structures. In one embodiment the cor-
relation value between the phenotypic data structure and a
particular genotypic data structure is formed in accordance
with the expression:
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[0013] where,
[0014] c(P, G") is the correlation value;

[0015] p(i) is a value of the i™ element of the phe-
notypic data structure;

[0016] g(i) is a value of the i™ element of the geno-
typic data structure;

[0017] <P> is a mean value of all elements in the
phenotypic data structure;

[0018] <G"> is a mean value of all elements in the
genotypic data structure;

[0019] and

Z‘;

M-

i

[0020] Other methods for forming a correlation value
between the phenotypic data structure and a particular
genotypic data structure include but are not limited to
regression analysis, regression analysis with data transfor-
mations, a Pearson correlation, a Spearman rank correlation,
a regression tree and concomitant data reduction, partial
least squares, and canonical analysis.

[0021] In some embodiments of the present invention,
statistical methods are used to identify which of the geno-
typic data structures that have been compared to a pheno-
typic data structure are highly correlated. In one such
embodiment, a mean correlation value that represents a
mean of correlation values is computed between the pheno-
typic data structure and a particular genotypic data structure.
Further, a standard deviation of the mean correlation is
computed. Genotypic data structures having a correlation
value that is a number of standard deviations above the mean
correlation value are considered to be the data structures that
correspond to loci that are associated with the genotypic
trait. The number of standard deviations that is chosen for
the cutoff is dynamically chosen so that a specific percentage
of the genome, such as ten percent, is identified as positive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 illustrates a computer system for associat-
ing a phenotype with one or more candidate chromosomal
regions in a genome of an organism in accordance with one
embodiment of the present invention.

[0023] FIG. 2 illustrates the processing steps for associ-
ating a phenotype with one or more candidate chromosomal
regions in a genome of an organism in accordance with one
embodiment of the present invention.

[0024] FIG. 3 illustrates a hypothetical representation of
the method for computational prediction of QTL intervals in
accordance with one embodiment of the present invention.
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[0025] FIGS. 4A -4D illustrate the computational predic-
tion of chromosomal regions containing genes that deter-
mine MHC haplotype

[0026] (FIG. 4A), lymphoma susceptibility
[0027] (FIG. 4B), airway hyperresponsiveness
[0028] (FIG. 4C) and retinal ganglion number

[0029] (FIG. 4D) in accordance with one embodiment of
the present invention.

[0030] FIG. 5 illustrates an analysis of the sensitivity of
the computational genome scanning method for prediction
using ten experimentally verified QTL intervals. A graph of
the percentage of correct predictions as a function of the
amount of genomic sequence (percent) contained within the
predicted regions is plotted.

[0031] FIG. 6 illustrates the comparison of a genotypic
database 52 that includes SNP data versus a genotypic
database that includes microsatellite data in identifying the
murine chromosomal location for the phenotypic trait of
retinal ganglion cell formation, in accordance with one
embodiment of the present invention.

[0032] Like reference numerals refer to corresponding
parts throughout the several views of the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

[0033] A key aspect of research in genetics is associating
sequence variations with heritable phenotypes. The most
common variations are single nucleotide polymorphisms
(SNPs), which occur approximately once every 100 to 300
bases in a genome. Because SNPs are expected to facilitate
large-scale association genetics studies, there has recently
been great interest in SNP discovery and detection. The
present invention contemplates the use of genotypic data-
bases such as SNP databases in order to correlate genetic
variances in an organism with one or more phenotypic
variances. As an example, a searchable database of mouse
SNPs that contains alleles for 15 common inbred mouse
strains and information for performing high throughput,
inexpensive genotyping assays for each SNP was built.
Using pooled DNA samples and SNP genotyping assays in
the database, a genome scan on phenotypically extreme
progeny from an experimental intercross was completed.
SNP-based genotyping of pooled samples requires at least
twenty-fold fewer assays than genotyping individual
samples with microsatellite markers, and identified the same
linkage regions.

[0034] Although the examples provided herein utilize a
genotypic database that includes fifteen mouse strains, it will
be appreciated that the methods of the present invention
allow for the use of any number of different types of genetic
information. For example, suitable genotypic databases
include databases that have various types of gene expression
data from platform types such as spotted microarray
(microarray), high-density oligonucleotide array (HDA),
hybridization filter (filter) and serial analysis of gene expres-
sion (SAGE) data. Gene expression changes often reflect
genotypic variation. Therefore, databases of gene expression
among tissues obtained from different individuals (mouse
strains or humans), can also be utilized by this method. The
chromosomal position of all human genes is known for
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human genes, as a result of physical mapping or sequencing
of the human genome. For gene expression data for mouse
or other species, the chromosomal location is either known
(physical mapping or mouse genomic sequencing) or can be
estimated by syntenic mapping based upon homology with
human genes. Another example of a genetic database that
can be used is a DNA methylation database. For details on
a representative DNA methylation database, see Grunau et
al., “MethDB—a public database for DNA methylation
data,” Nucleic Acids Research, in press; or the URL:

[0035] http://genome.imb-jena.de/public.html.

[0036] To accelerate the process of analyzing experimen-
tal genetic models in order to identify the genetic causes of
complex human disease, the present invention provides tools
for scanning genotypic databases, such as SNP databases, to
predict quantitative trait loci (QTL) after phenotypic infor-
mation obtained from common strains of the organism is
provided. The computational QTL prediction method is
capable of correctly predicting the chromosomal regions that
have been previously identified by tedious and laborious
analysis of experimental intercross populations for the mul-
tiple traits that are analyzed. Thus, the present invention
bypasses the burdensome requirement for generation and
characterization of intercross progeny, enabling QTL
regions to be predicted within a millisecond time frame.

[0037] FIG. 1 shows a system 20 for associating a phe-
notype with one or more candidate chromosomal regions in
a genome of an organism.

[0038] System 20 preferably includes:
[0039]

[0040] a main non-volatile storage unit 34, preferably
a hard disk drive, for storing software and data, the
storage unit 34 controlled by disk controller 32;

[0041] a system memory 38, preferably high speed
random-access memory (RAM), for storing system
control programs, data, and application programs,
including programs and data loaded from non-vola-
tile storage unit 34; system memory 38 may also
include read-only memory (ROM);

[0042] a user interface 24, including one or more
input devices (26, 30) and a display 28;

[0043] a network interface card 36 for connecting to
any wired or wireless communication network; and

[0044] an internal bus 33 for interconnecting the
aforementioned elements of the system.

a central processing unit 22;

[0045] Operation of system 20 is controlled primarily by
operating system 40, which is executed by central process-
ing unit 22. Operating system 40 may be stored in system
memory 38. In a typical implementation, system memory 38
includes:

[0046] operating system 40;

[0047] file system 42 for controlling access to the
various files and data structures used by the present
invention;

[0048] phenotype/genotype processing module 44
for associating a phenotype with one or more can-
didate chromosomal regions in a genome of an
organism;
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[0049] genotypic database 52 for storing variations in
genomic sequences of a plurality of strains of an
organism; and

[0050] phenotypic data 60 that includes measured
differences in one or phenotypic traits associated
with the organism.

[0051] In a preferred embodiment, phenotype/genotype
processing module 44 includes:

[0052] a phenotypic data structure derivation subrou-
tine 46 for deriving a phenotypic data structure that
represents a variation in a phenotype between dif-
ferent strains of an organism of interest;

[0053] a genotypic data structure derivation subrou-
tine 48 for establishing a genotypic data structure
that corresponds to a locus in the genome of the
organism of interest; and

[0054] a phenotype/genotype comparison subroutine
50 for comparing the phenotypic array to the geno-
typic array to form a correlation value.

[0055] The operation of these subroutines is described
below in connection with the description for FIG. 2.

[0056] Genotypic database 52 is any type of genetic
database that tracks variations in the genome of an organism
of interest. Information that is typically represented in
genotypic database 52 is a collection of loci 54 within the
genome of the organism of interest. For each locus 54,
strains 56 for which genetic variation information is avail-
able are represented. For each represented strain 56, varia-
tion information 58 is provided. Variation information 58 is
any type of genetic variation information. Representative
genetic variation information 58 includes, but is not limited
to, single nucleotide polymorphisms, restriction fragment
length polymorphisms, microsatellite markers, restriction
fragment length polymorphisms, and short tandem repeats.
Therefore, suitable genotypic databases 52 include, but are
not limited to:

Genetic
variation type ~ Uniform resource location

SNP http://bioinfo.pal.roche.com/usuka__bioinformatics/
cgi-bin/msnp/msnp.pl
SNP http://snp.cshl.org/
SNP http://www.ibc.wustl.edu/SNP/
SNP http://www-genome.wi.mit.edu/SNP/mouse/
SNP http://www.ncbi.nlm.nih.gov/SNP/
Microsatellite  http://www.informatics.jax.org/searches/
markers polymorphism_ form.shtml
Restriction http://www.informatics.jax.org/searches/
fragment polymorphism__form.shtml
length
polymorphisms
Short tandem  http://www.cidr.jhmi.edu/mouse/mmset.html
repeats
Sequence http://mcbio.med.buffalo.edu/mit.html
length
polymorphisms
DNA http://genome.imb-jena.de/public.html
methylation
database
[0057] In addition, the genetic variations used by the

methods of the present invention may involve differences in
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the expression levels of genes rather than actual identified
variations in the composition of the genome of the organism
of interest. Therefore, genotypic databases 52 within the
scope of the present invention include a wide array of
expression profile databases such as the one found at the
URL:

[0058] http://www.ncbi.nlm.nih.gov/geo/

[0059] 1t will be appreciated that when the variation
tracked by genotypic database 52 is a variation in the
expression level of a gene rather than a variation in the
genome, there is no requirement that genomic database 52
be populated with elements such as locus 54.

[0060] Referring to FIG. 2, the processing steps that are
performed in accordance with one embodiment of the
present invention are illustrated. In processing step 202, a
phenotypic data structure is derived from phenotypic data 60
(FIG. 1) using phenotypic data structure derivation subrou-
tine 46 (FIG. 1). The phenotypic data structure tracks
measured differences in traits between strains of an organism
of interest.

[0061] In one embodiment, the phenotypic data structure
used is a phenotypic array. In this embodiment, the pheno-
typic array is formed in a stepwise fashion by subroutine 46.
First, an NxN phenotypic distance matrix, P, is established
where both the ith row and the jth column are associated
with a given strain for which quantitative information t;
exists for a given trait.

[0062] This matrix is populated with the differences
between strains in regard to the examined trait as follows:
D=l
[0063] Therefore, each element in the matrix corresponds
to a distance between strains using the quantitative trait as a
metric for the space. This matrix has the following proper-
ties:
[0064] All of its diagonal elements are zero, because
pli,i)=lt—t=0Vi
[0065] The matrix is symmetric, because
pED=ltt|=l6-1l=pG, 1)
[0066] As an example, consider phenotypic information
on the lifespan of five mouse strains:

Strains Lifespan (days)
A/ 777
AKR/T 282
C3H/Hel 510
CS57BL/6] 895
DBA/2T 568

[0067] A phenotypic distance matrix that tracks the
lifespan for these five species members has the form:

P A/ AKR/]  C3H/He] CS57BL/6] DBA/2T
A/ 0 495 267 118 209
AKR/J 495 0 228 613 286
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-continued
P AT AKR/J  C3H/He] C57BL/6]  DBA/2T
C3H/He] 267 228 0 385 58
C57BL/6T 118 613 385 0 327
DBA/2T 209 286 58 327 0

[0068] Each value in this illustrative phenotypic distance
matrix represents the difference in life span between the
designated members.

[0069] The phenotypic data structure derivation subrou-
tine 46 converts the phenotypic matrix to the phenotypic
array by taking the non-redundant, non-diagonal elements of
the matrix and arranging them into a vector P:

P=p(1,2), p(1,3), . . ., pLN), p(2,3), p(24), . . .,

p(2N), ... p(N-1,
[0070] The vector P obtained for the illustrative distance
matrix set forth above is P=(495, 267, 118, 209, 228, 613,
286, 385, 58, 327). The linear format of P facilitates the
ordered comparison of the phenotype and genotype of
respective strains of an organism of interest in subsequent
computational steps.

[0071] Insome embodiments of the present invention, the
phenotypic data used by phenotypic data structure derivation
subroutine 46 (FIG. 1) in processing step 202 (FIG. 2) is
entered by hand into system 20 by a computer operator. In
other embodiments, the phenotypic data is read from a
source such as phenotypic data file 60 (FIG. 1). It will be
appreciated that there are no limitations on the format of the
phenotypic data. The phenotypic data can, for example,
represent a series of measurements for a quantifiable phe-
notypic trait in a collection of strains of a species. Such
quantifiable phenotypic traits may include, for example,
murine tail length, lifespan, eye color, size and weight.
Alternatively, the phenotypic data can be in binary form that
tracks the absence or presence of some phenotypic trait. As
an example, a “1” may indicate that a particular species of
the organism of interest possesses a given phenotypic trait
and a “0” may indicate that a particular species of the
organism of interest lacks the phenotypic trait. The pheno-
typic data structure can be populated with any form of
biological data that is representative of the phenotype of the
organism of interest. Thus, in some embodiments of the
present invention, the phenotypic data can be expression
data such as mRNA expression data or protein expression
level data. In such embodiments, each element in the phe-
notypic data structure is populated with differences in
mRNA or protein expression levels between strains of the
organism of interest or of cells cultured from the organism
of interest.

[0072] At processing step 204, a particular locus, or posi-
tion, is selected within the genome of the organism of
interest. Processing step 204 is the first step of a repetitive
loop formed by processing steps 204 through 212 that is
repeated for several different loci, or positions, within the
genome of the organism of interest.

[0073] In processing step 206, a genotypic data structure
is established for the selected locus. In one embodiment,
processing step 206 is performed by genotypic data structure
derivation subroutine 48 (FIG. 1). The genotypic data
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structure is typically formed in a method similar to the
construction of the phenotypic data structure. While the
phenotypic data structure’s values are typically the differ-
ences in quantitative traits exhibited by several strains of an
organism of interest, the values in the genotypic data struc-
ture correspond to counts of the polymorphic differences
between strains for a given locus L that contains M genetic
variations, such as SNPs. That is, a given locus [. may have
several independent genetic variations M, and the goal of the
genotypic array that corresponds to this locus is to quantify
the number of these independent genetic variations. To
accomplish this, an individual variation matrix S* is estab-
lished for each variation in every position x within locus L.
In each such matrix, S, the i row and the j"™* column are
associated with the allele value 1%(i) for strain i at locus
position x. The elements of these S matrices are populated
according to the following rule:

sy(b)=¥% if F()=0 or F()=@=0 if FG)=F() =1 if
Fo=F()

[0074] where @ indicates the allelic value for strain i at
locus position x is not known at the present time. Therefore,
if the alleles for two strains i and j are identical at position
X, the entry in the individual variation matrix for x would be:
sx(b)=sx(,)=0

[0075] and if the two alleles are different, a “1” is entered.
A complication arises regarding variations for which not all
allelic information is known at the present time (symbolized
by @). For example, locus position 1* may contain informa-
tion on the allele for strain i, but not for strain j. In this
situation, the assumption is made that strain j has equal
probability of containing either allele, and the corresponding
entry is set equal to one half.

[0076] At this point, in some embodiments, each indi-
vidual variation matrix S contains elements that take on one
of three values: 0, %, or 1. It will be appreciated that many
other types of schemes may be used when allelic informa-
tion is not presently known and use of the value “%:” in such
instances merely illustrates one example of a scheme that
may be used in such instances. Similarly, any number of
weighting schemes can be used rather than a “0” or “1” and
all such weighting schemes are within the scope of the
present invention.

[0077] A variation matrix S that tracks an individual locus
position I* for five members (M1 through M5) of a species
may have the form:

S M1 M2 M3 M4 MsS
M1 0 0.5 0.5 1 0
M2 0.5 0 0.5 0 1
M3 0.5 0.5 0 1 1
M4 1 0 1 0 0.5
MsS 0 1 1 0.5 0

[0078] To assemble the overall genotypic matrix for this
locus, the M individual variation matrices, representing the
M variations in locus L, are summed:

&)= (i)
[0079] Therefore, an illustrative genotypic matrix G that

represents a specific locus in five species members (M1
through M5) has the form:
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G M1 M2 M3 M4 M5

M1 0 3.5 2 4 3

M2 3.5 0 3 2.5 1

M3 2 3 0 1 1

M4 4 2.5 1 0 0.5

M5 3 1 1 0.5 0
[0080] In viewing the illustrative genotypic matrix G, it is

apparent that there is relatively little genotypic variance
between members M5 and M4 (0.5) whereas there is more
variance between M1 and M2 (3.5).

[0081] Finally, one embodiment of genotypic data struc-
ture derivation subroutine 48 converts the genotypic matrix
to a genotypic array by taking the non-redundant, non-
diagonal elements of the matrix and arranging them into the
vector G:

G=g(1,2), g(1,.3), . . .

g2N), ... gN-1, N)
[0082] The vector G obtained for the illustrative genotypic
matrix set forth above is G=(3.5, 2, 4, 3, 3,2.5,1, 1, 1, 0.5).
Once a genotypic matrix such as G has been established in
processing step 206, a correlation value is formed between
the phenotypic array and the genotypic array (processing
step 208). This correlation value is typically computed by
phenotype/genotype comparison subroutine 50 (FIG. 1). In
one embodiment, this correlation is determined by linear
regression and the correlation coefficient is calculated as:

> 8(LN), 5(2.3), g(2,4), . . .,

Dbl - < P>)glh - < G- >)

(P, GMy = — . T
{[ZF (p) — < P>RIIE! (g() - < G >}

[0083] where,

[0084] <A>=X'a(i)/1, 1=i=I; (The mean of the sca-
lars comprising vector A);

[0085] c(P, G") is the correlation value between the
phenotypic array and the genotypic array that corre-
sponds to locus L;

[0086] p(i) is a value of the i element of the phe-
notypic array;

[0087] g(i) is a value of the i** element of the geno-
typic array;

[0088] <P> is a mean value of all elements in the
phenotypic array;

[0089] <G> is a mean value of all elements in the
genotypic array; and

i

[0090] 1t will be appreciated that the phenotypic and
genotypic arrays can be compared in processing step 208
using any number of algorithms other than linear regression.
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For example, alternative methods for forming a correlation
value in processing step 208 include, but are not limited to,
regression analysis, regression analysis with data transfor-
mations, Pearson correlations, Spearman rank correlation, a
regression tree and concomitant data reduction, partial least
squares, and canonical analysis. (See e.g. Lui, “Statistical
Genomics,” CRC Press LLC, New York, 1998; Stuart &
Ord, “Kendall’s Advanced Theory of Statistics,” Arnold,
London, England, 1994).

[0091] While processing steps 202 through 206 have been
described with reference to linear phenotypic and genotypic
arrays, it will be appreciated that the methods of the present
invention are not limited to the comparison of such arrays.
Indeed, any form of data structure having elements that
preserve the information in the above described matrices and
arrays may be used. For example, rather than using the
genotypic array described above, the individual variation
matrices can be used. Further, rather than using the pheno-
typic array, a phenotypic distance matrix can be used.

[0092] Once a correlation value between the phenotypic
data structure and a genotypic data structure that corre-
sponds to a particular locus L has been formed, the corre-
lation value is stored in processing step 210 so that it can be
subsequently ranked with the correlation value of each of the
other loci that are analyzed.

[0093] Processing step 212 is provided so that the proce-
dure can be repeated in an iterative fashion for all suitable
loci vectors L in genotypic database 52. Thus, in processing
step 212, a decision is made whether to test an additional
locus by asking whether all of the loci present in genotypic
database 52 (FIG. 1) have been tested. In one embodiment,
when additional loci 54 are present in genotypic database 52,
processing step 212 returns a “yes” and the process contin-
ues by looping back to processing step 204 where an
additional, untested locus is selected from genotypic data-
base 52.

[0094] When there are no additional loci to test (212-No),
the correlation value for each of the comparisons of geno-
typic data structures to the phenotypic data structure are
ranked with respect to each other in processing step 214. In
one embodiment, processing step 214 comprises the
arrangement of the tested loci in a vector K according their
correlation scores:

K=, L% LY, .. .)
[0095] where c(P, G*)Zc(P, G™)Zzc(P, Gz . ..

[0096] In another embodiment of the present invention,
processing step 214 includes the computation of (i) a mean
correlation value that represents a mean of each correlation
value formed during instances of processing step 208; and
(ii) a standard deviation of the mean correlation value based
on each of the correlation values formed during instances of
processing step 208.

[0097] In processing step 216, the genotypic data struc-
tures that achieve the highest correlation values are selected.
Since each genotypic data structure corresponds to a par-
ticular locus in the genome, the selection process in pro-
cessing step 216 results in the association of the phenotype
with particular loci in the organism of interest. In one
embodiment, the selection process in processing step 216 is
performed by selecting genotypic data structures that form a
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correlation value that is a predetermined number of standard
deviations above the mean correlation value. Typically, the
predetermined number is chosen so that a small percentage
of the genome of the organism, such as five percent, will be
selected during processing step 216.

EXAMPLES
[0098] Building a Murine SNP Database.

[0099] The methods of the present invention are particu-
larly useful in embodiments that make use of genetic infor-
mation from inbred strains of an organism of interest. Thus,
a genotypic database 52 was developed that contains allele
information across 15 inbred strains. At Roche Bioscience,
293 SNPs at defined locations were identified in the mouse
genome. The SNPs were identified by direct sequencing of
PCR amplification products from defined chromosomal
locations. This database also incorporates published allele
information for 2848 SNPs, 45% of which are characterized
in a subset of M. Musculus strains, and 55% of the SNPs are
polymorphic between M. castaneus and one or more M.
musculus subspecies (Lindblad-Toh, et al., Nature Genetics
Apr;24,381-386, 2000). User queries regarding SNPs found
within a specified chromosomal region or between selected
inbred strains are executed in real time and provided via a
user interface 24.

Example 1

Hypothetical Example of the Method for Prediction
of QTL Regions

[0100] To aid in the understanding of the methods of the
present invention, FIG. 3 is provided. FIG. 3 shows hypo-
thetical comparisons, in accordance with the methods of the
present invention, between three mouse strains (A, B, C)
using SNP information found in the murine SNP database.
Each of the two chromosomes sets for a given mouse strain
is represented by a horizontal box along the horizontal axis
of FIG. 3. Each chromosome set is characterized by the
hatching type (horizontal, diagonal, and vertical). Chromo-
somes with the same hatching style in each of the mouse
strains are identical. Cross hatched or diagonally hatched
ovals respectively represent alleles at specific chromosomal
positions. A dashed horizontal line is used to differentiate
each of the mouse strains and the accompanying chart at the
bottom of FIG. 3.

[0101] In the hypothetical example provided in FIG. 3,
two of the three strains, (A) and (B), exhibit a similar
phenotype. That is, strains A and B exhibit a similar phe-
notype (full size tail), while strain C has a different pheno-
type (short tail). SNP alleles at particular chromosomal
regions are represented as cross hatched or diagonally
hatched ovals. A series of pairwise comparisons, in accor-
dance with the algorithm illustrated in FIG. 2, are made to
establish the correlation value between the phenotype and
genotype for each locus. In each of these series of pairwise
comparisons, allelic differences in a respective segment of
the chromosome of each of the mouse strains is correlated
with the phenotypic difference between each mouse strain.
Graphic analysis of the correlation data between the respec-
tive strains is shown at the bottom of FIG. 3. The analysis
indicates that while most sites exhibit a negative correlation
with respect to murine tail length, two chromosomal regions
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(302) and (304) have a strong positive correlation. In fact,
302 and 304 are the chromosomal regions predicted to have
genes regulating tail length.

[0102] The following four examples, (Examples 2 through
5) are made with reference to FIG. 4. FIG. 4 illustrates the
correlation between the genotype and phenotype distribu-
tions for all 19 mouse autosomal chromosomes for a given
trait. Loci are arranged proximal to distal for each chromo-
some. Each bar represents a 30 cM interval of the respective
chromosome and neighboring bars are offset by 10 cM.
Dotted line 402 represents a useful cutoff for analyzing the
data, with the highest correlated ten percent of the genome
being above this line.

Example 2

Predicting the Chromosomal Location of the MHC
Complex

[0103] The methods of the present invention were used to
predict the chromosomal location of the MHC complex,
which has been mapped to murine chromosome 17, using
the H2 haplotypes for the MHC K locus for 10 inbred strains
(Anonymous, JAX Notes 475, 1998). Phenotypic distances
for strains that shared a haplotype were set to zero, and a
distance of one was used for strains of different haplotypes.
The SNPs within and near the MHC region had a genotypic
distribution which were highly correlated with the pheno-
typic distances; the correlation value for interval 440 (FIG.
4A) was 5.35 standard deviations above the average for all
loci analyzed. There were no other peaks throughout the
mouse genome that exhibited a comparable correlation with
the phenotype. The computational analysis, executed in
accordance with the methods of the present invention,
excluded 96% of the mouse genome from consideration
without missing the genomic region known to contain the
MHC.

Example 3

Identification of the QTLs that Correspond to
Allergic Asthma

[0104] The chromosomal positions that regulate suscepti-
bility to experimental allergic asthma have been investigated
using prior art techniques. For example, published analyses
of intercross progeny between susceptible (A/J) and resistant
(C3H/HeJ) mouse strains identified QTL intervals on chro-
mosomes 2 and 7 (Ewart, et al., Am J Respir Cell Mol Biol
23, 537-545, 2000; Karp, et al., Nature Immunology 1,
221-226, 2000). The ability of the methods of the present
invention to identify these chromosomal regions was inves-
tigated.

[0105] The phenotypic distance used to populate the phe-
notypic matrix was the absolute difference between the
measured airway response after allergen-challenge for each
strain pair. The experimentally identified QTL intervals on
chromosomes 2 and 7 were among the strongest peaks
identified by the methods of the present invention (FIG.
4B). The computational method excluded 80% of the mouse
genome from consideration without missing the experimen-
tally mapped QTL regions using airway responsiveness data
from only 5 inbred mouse strains.
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Example 4

Lifespan Data

[0106] Lifespan data for five mouse strains, which
reflected susceptibility to T cell lymphoma, has been pub-
lished (Chrisp et al., Veterinary Pathology 33, 735-743,
1996). Using conventional techniques, three susceptibility
regions were experimentally identified by analysis of inter-
cross progeny (Wielowieyski et al., Mammalian Genome 10,
623-627, 1999; Gilbert, et al., J. Virol. 67, 2083-2090, 1993;
Mucenski et al., Molecular & Cellular Biology 6, 4236-
4243, 1986; Mucenski et al, Molecular & Cellular Biology
8, 301-308, 1988); and all three regions were predicted by
the computational genome scan (FIG. 4C). In this example,
over ninety percent of the genome could be excluded from
consideration by the computational method without over-
looking any experimentally verified QTL interval.

Example 5

Retinal Ganglion Cells

[0107] In another example, the measured density of retinal
ganglion cells was used as a phenotype. Using conventional
techniques, the QTLs associated with this phenotype have
been localized to chromosome 11 in the mouse genome
(Williams et al., Journal of Neuroscience 18, 138-146,
1998). The experimentally verified QTL interval on chro-
mosome 11 was contained in the chromosomal regions
predicted by the methods of the present invention, while
96% of the mouse genome was excluded (FIG. 4D).

Example 6

Additional Phenotypic Traits

[0108] The ability of the computational method of the
present invention to identify candidate chromosomal regions
that are associated with six additional quantitative traits was
performed. The chromosomal positions for these six addi-
tional quantitative traits are derived from published studies
that provided mapped QTL intervals and phenotypic data
across multiple inbred strains for each trait (Table 1). As
shown in Table 1, a total of 10 QTLs from 6 published
phenotypic studies are identified from the literature. Each
QTL resides on a different chromosome. Centimorgan posi-
tions were interpreted from published marker locations on
physical maps.

TABLE 1

Published chromosomal positions of QTLs that have been associated
with particular phenotypes using conventional techniques

Phenotype Chromosome (cM) Notes

AHR 2(23.5),7 (1) Allergen induced airway
response
(APTT)

Eye weight 5 (0-10) Mouse eye weight (grams),
day 75

Retinal anglion 11 (57.5) Retinal ganglion
cell #

Lymphoma 1 (62-73), 6 (30), Tumor incidence, lifespan

16 (50)
MHC 17 (10) H2 K serotyping
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TABLE 1-continued

Published chromosomal positions of QTLs that have been associated
with particular phenotypes using conventional techniques

Phenotype Chromosome (cM) Notes

PKC 11 (66), 3 (16.4, 45)  PKC-a protein

amount, activity

[0109] The ability of the methods of the present invention
to correctly predict chromosomal regions containing experi-
mentally verified QTL intervals associated with the six
phenotypic traits is presented in Table 2.

TABLE 2

Summary of predictions made in accordance
with the methods of the present invention

Experimentally Methods of the Present Invention
Phenotype Verified Correct  Predicted Threshold (%)
AHR 2 2 8 19
Eye weight 1 1 6 17
Ganglion 1 1 2 4
Lymphoma 3 3 4 8
MHC 1 1 1 2
PKC 2 2 6 2,11
Totals 10 10 27

[0110] As shown in Table 2, the methods of the present
invention identified all ten experimentally characterized
QTL intervals. In addition, seventeen other chromosomal
regions were predicted by this computational method.
Whether these predicted regions affect phenotypic traits has
not yet been experimentally verified. The threshold required
for correct identification of a QTL varied from two percent
to nineteen percent of the complete mouse genome.

[0111] The percentage of correct predictions as a function
of the percentage of the mouse genome contained within the
predicted chromosomal regions was examined. If predicted
regions contained eighteen percent of the mouse genome (by
selecting eighteen percent of the peaks with the highest
correlation), all ten experimentally verified QTL intervals
were correctly identified (FIG. 5). As the threshold was
raised, limiting the number of predicted candidate chromo-
somal regions, the methods of the present invention missed
some experimentally verified QTL intervals for these traits.
When only three (or nine) percent of the genome was above
the threshold, the method identified four (or seven) of the ten
verified QTL intervals for these traits (FIG. 5).

[0112] When a genome-wide threshold of ten percent was
used, the genomic region to search for candidate genes is
computationally reduced by an order of magnitude. Since
the average size of a predicted genomic region was 38 cM,
the 1500 c¢cM mouse genome could be subdivided into
approximately forty regions. The computational method was
used for seven different phenotypes, so approximately 280
genomic intervals (38-cM in size) were examined. This
method correctly identified seven of ten experimentally
validated QTL intervals, while missing three, at the ten
percent genome-wide threshold. The algorithm further pre-
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dicted 23 genomic intervals were involved in a phenotypic
trait where no QTL had been experimentally characterized.
Finally, the computational method and experimental analy-
sis agreed on 240 loci that were not QTL intervals for the
phenotypes examined. This data can be assembled into a 2x2
matrix to assess the ability of the computational method to
predict QTL intervals. A Fisher Exact test yields a highly
significant P value (7.0x107°) for the computationally pre-
dicted intervals.

[0113] In summary, the methods of the present invention
were able to identify ten QTLs for seven phenotypic traits
that had been previously identified by prior art techniques.
Each of the experimentally verified QTL intervals was
identified by the methods of the present invention. The
genotypic array used to identify these chromosomal regions
was derived from a murine SNP genotypic database. In each
case, the conventionally identified QTL interval exhibited a
computational SNP distribution that was highly correlated
with the tested phenotype. The correlation was well above
the mean value for the entire genome, and nine of ten were
greater than a full standard deviation above the mean.

Example 7

Use of Alternative Genotypic Databases 52

[0114] Although the examples provided herein utilize a
genotypic database of 15 inbred mouse strains, other types
of genotypic databases may be used. For example, suitable
genotypic databases include various databases that have
various types of gene expression data from platform types
such as spotted microarray (microarray), high-density oli-
gonucleotide array (HDA), hybridization filter (filter) and
serial analysis of gene expression (SAGE) data.

[0115] As a proof of concept, 315 microsatellite polymor-
phisms were downloaded from the Center for Inherited
Disease Research URL

[0116] http://www.cidrjhmi.edu/download/CI-
DR_mouse xIs

[0117] Genotypic database 52 was populated in manner
analogous to the case when SNP data was used to populate
database 52: if the polymorphisms matched between two
mouse strains, a “0” was entered, if they differed, a “1” was
entered. In this way, the number of differences between
mouse strains was counted for a given locus. The remainder
of the analysis was performed in accordance with the
methods of the present invention. For this trial, the MHC
locus was identified on chromosome 17. Although the QTL
for the MHC region was not as clearly distinguished when
using microsatellite information as it was for SNP data, it
should be noted that the microsatellite data used for the trial
was sparser than the information currently available in the
mouse SNP database.

Example 8

Comparison of the Performance of a Genotypic
Database 52 Populated with SNP Data to a
Genotypic Database 52 Populated with
Microsatellite Data

[0118] The genotypic database 52 populated with micro-
satellite data as described in Example 7 was compared to the
previously described genotypic database 52 that contains
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allele information across 15 inbred strains for 287 SNPs at
defined locations in the mouse genome. In this case, the
phenotype is the formation of retinal ganglion cells in infant
mice. The experimentally verified QTL that correlates with
this phenotype is on chromosome 11. As illustrated in FIG.
6, the genotypic database 52 populated with the microsat-
ellite information more strongly identifies the correct QTL
peak than the genotypic database 52 populated with SNP
data (4.2 standard deviations with microsatellites versus 2.3
standard deviations with SNPs). Furthermore, the results
using the microsatellite data are less noisy than the results
using the SNP data. See, for example, the reduced positive
peak on chromosome 9 using the microsatellite data (702
versus 704).

Discussion

[0119] Computational analysis of genotypic databases 54
using phenotypic data from sources such as inbred parental
strains and the methods of the present invention rapidly
identifies candidate QTL intervals. This can eliminate many
months to years of laboratory work required for generation,
characterization and genotyping of intercross progeny. In
effect, the methods of the present invention reduce the time
required for QTL interval identification from many months
to milliseconds.

[0120] There are several factors contributing to the suc-
cessful QTL predictions by computational scanning of the
murine SNP genotypic database using the methods of the
present invention. The use of inbred mouse strains limits
variability due to environment, and timed experimental
intervention and sampling limits error in phenotypic assess-
ment. The inbred strains are homozygous at all loci, which
eliminates confounding effects due to heterozygosity found
in human populations. However, there is no absolute
requirement that inbred strains be used to populate geno-
typic database 52.

[0121] The methods of the present invention will greatly
accelerate analysis of complex traits and mammalian disease
biology. Recently, there has been increased emphasis on
using chemical mutagenesis in the mouse as a method for
studying complex biology. This has occurred as a result of
the difficulties noted by investigators searching for complex
trait loci using standard methods for QTL analysis. For a
review, see Nadeau and Frankel, Nature Genetics Aug;25,
381-384, 2000. However, analysis of genetic variation
among existing inbred mouse strains can be markedly accel-
erated by application of the methods of the present inven-
tion. Of course, understanding the genetic basis of complex
disease requires additional steps beyond computational pre-
diction of genomic intervals. Specific gene candidates must
be identified and evaluated before the underlying mutations
can be identified and effective treatment strategies can be
designed, tested in animal models, and developed for use
with humans.

Alternative Embodiments

[0122] The foregoing descriptions of specific embodi-
ments of the present invention are presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, obviously many modifications and variations are
possible in view of the above teachings. For example, the
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techniques of the invention may be applied using pooled or
clustered genetic variation information as a source for the
genotypic data structure or genetic variation information
from individual samples. Similarly, the phenotypic informa-
tion provided from sources, such as phenotypic data file 60,
may be in the form of pooled or clustered phenotypic data
or phenotypic data from individual species. Furthermore,
genotypic database 52 may represent inbred species of the
organism of interest or randomized species of the organism
of interest that have not been inbred. Because of the over-
whelming homology between murine and human genomes,
the examples provided herein clearly demonstrate that the
methods of the present invention provide an invaluable tool
for correlating human phenotypic traits with specific loci in
the human genome.

[0123] While the examples provided herein describe the
comparison of a plurality of genotypic data structures to a
phenotypic data structure, one of skill in the art will appre-
ciate that many other types of comparisons may be practiced
in accordance with the present invention. For instance,
consider the genotypic to phenotypic data structure com-
parison as a two-dimensional comparison. Higher dimen-
sional comparisons than the two-dimensional comparison
are possible. For instance, one embodiment of the present
invention provides for a three dimensional comparison of
the class: “genotypic data structure” versus “phenotypic data
structure one” versus “phenotypic data structure two.”
Another example of a type of comparison within the scope
of the present invention includes a comparison of “SNP
genotypic data” to “disease phenotypic data” to “microarray
data.”

Conclusion

[0124] The embodiments were chosen and described in
order to best explain the principles of the invention and its
practical application, to thereby enable others skilled in the
art to best utilize the invention and various embodiments
with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalents.

We claim:

1. A method of associating a phenotype with one or more
candidate chromosomal regions in a genome of an organism
using a phenotypic data structure that represents a difference
in a phenotype between different strains of said organism,
said genome including a plurality of loci, said method
comprising:

establishing a genotypic data structure, said genotypic
data structure corresponding to a locus selected from
said plurality of loci, said genotypic data structure
representing a variation of at least one component of
said locus between different strains of said organism;

comparing said phenotypic data structure to said geno-
typic data structure to form a correlation value; and

repeating said establishing and comparing steps for each
locus in said plurality of loci, thereby identifying one or
more genotypic data structures that form a high corre-
lation value relative to all other genotypic data struc-
tures that are compared to said phenotypic structure
during said comparing step; wherein the loci that
correspond to said one or more genotypic structures
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that form a high correlation value represent said one or
more candidate chromosomal regions.

2. The method of claim 1, each element in said phenotypic
structure representing a difference in a phenotype between
different strains of said organism; wherein, for each element
in said phenotypic structure, said different strains of said
organism are selected from a plurality of strains of said
organism.

3. The method of claim 2, wherein said difference in said
phenotype is determined by a measurement of an attribute
corresponding to said phenotype in different strains of said
organism.

4. The method of claim 1, each element in said phenotypic
structure representing a difference in said phenotype
between a first cluster of strains of said organism and a
different second cluster of strains of said organism; wherein,
for each element in said phenotypic structure, said different
first and second cluster of strains of said organism are
selected from a plurality of clusters of strains of said
organism.

5. The method of claim 1, each element in said genotypic
structure representing a variation of at least one component
of said locus between different strains of said organism;
wherein, for each element in said genotypic structure, said
different strains of said organism are selected from a plu-
rality of strains of said organism.

6. The method of claim 1, each element in said genotypic
structure representing a variation of at least one component
of said locus between a first cluster of strains of said
organism and a different second cluster of strains of said
organism; wherein, for each element in said genotypic
structure, said different first and second clusters of strains of
said organism are selected from a plurality of strains of said
organism.

7. The method of claim 1, wherein said correlation value
is formed in accordance with the expression:

D pli - < P)glh - < Gt >)
{2 (p() — < P>1[% (gD — < GE >}

c(P, Gl =

where,
o(P, GY) is said correlation value;

p(i) is a value of the ith element of said phenotypic data
structure;

g(i) is a value of the ith element of said genotypic data
structure;

<P> is a mean value of all elements in said phenotypic
data structure; and

<G"> is a mean value of all elements in said genotypic
data structure.

8. The method of claim 1, wherein said correlation value
is formed using an algorithm selected from the group
consisting of regression analysis, regression analysis with
data transformations, a Pearson correlation, a Spearman rank
correlation, a regression tree and concomitant data reduc-
tion, partial least squares, and canonical analysis.
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9. The method of claim 1, wherein said repeating step
further comprises:

computing (i) a mean correlation value that represents a
mean of each said correlation value formed during
instances of said comparing step; and (ii) a standard
deviation of said mean correlation value based on each
said correlation value formed during instances of said
comparing step;

wherein, said one or more genotypic data structures that
form a high correlation value relative to all other
genotypic data structures compared to said phenotypic
data structure during said comparing step are identified
by selecting genotypic data structures that form a
correlation value that is a predetermined number of
standard deviations above said mean correlation value.

10. The method of claim 1, wherein each said variation in
said genotypic data structure is obtained from a variation in
a single nucleotide polymorphism database, a microsatellite
marker database, a restriction fragment length polymor-
phism database, a short tandem repeat database, a sequence
length polymorphism database, or an expression profile
database.

11. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com-
puter program mechanism comprising:

a genotypic database for storing variations in genomic
sequences of a plurality of strains of an organism;

a phenotypic data structure that represents a difference in
a phenotype between different strains of said organism;
and

a program module for associating a phenotype with one or
more candidate chromosomal regions in a genome of
said organism, said genome including a plurality of
loci, said program module comprising:

instructions for establishing a genotypic data structure,
said genotypic data structure corresponding to a
locus selected from a plurality of loci, said genotypic
data structure representing a variation of at least one
component of said locus between different strains of
said organism stored in said genotypic database;

instructions for comparing said phenotypic data struc-
ture to said genotypic data structure to form a
correlation value; and

instructions for repeating said instructions for estab-
lishing and instructions for comparing for each locus
in said plurality of loci, thereby identifying one or
more genotypic data structures that form a high
correlation value relative to all other genotypic data
structures that are compared to said phenotypic data
structure by said instructions for comparing; wherein
the loci that correspond to said one or more geno-
typic data structures that form a high correlation
value represent said one or more candidate chromo-
somal regions.

12. The computer program product of claim 11, each
element in said phenotypic data structure representing a
difference in said phenotype between different strains of said
organism; wherein, for each element in said phenotypic data
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structure, said different strains of said organism are selected
from said plurality of strains of said organism represented in
said genotypic database.

13. The computer program product of claim 12, wherein
said difference in said phenotype is determined by a mea-
surement of an attribute corresponding to said phenotype in
said different strains of said organism that are represented in
said genotypic database.

14. The computer program product of claim 11, each
element in said phenotypic data structure representing a
difference in said phenotype between a first cluster of strains
of said organism and a different second cluster of strains of
said organism; wherein, for each element in said phenotypic
data structure, said different first and second cluster of
strains of said organism are selected from a plurality of
clusters of strains of said organism that are represented in
said genotypic database.

15. The computer program product of claim 11, each
element in said genotypic data structure representing a
variation of at least one component of said locus between
different strains of said organism; wherein, for each element
in said genotypic data structure, said different strains of said
organism are selected from said plurality of strains of said
organism represented in said genotypic database.

16. The computer program product of claim 11, each
element in said genotypic data structure representing a
variation of at least one component of said locus between a
first cluster of strains of said organism and a different second
cluster of strains of said organism; wherein, for each element
in said genotypic data structure, said different first and
second clusters of strains of said organisms are selected from
said plurality of strains of said organism represented in said
genotypic database.

17. The computer program product of claim 11, wherein
said instructions for comparing include instructions for
forming said correlation value in accordance with the
expression:

D pl - < P)glh - < GF>)
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where,
o(P, GY) is said correlation value;

p(i) is a value of the i"™ element of said phenotypic data
structure;

g(i) is a value of the i'"® element of said genotypic data
structure;

<P> is a mean value of all elements in said phenotypic
data structure; and

<G> is a mean value of all elements in said genotypic
data structure.

18. The computer program product of claim 11, wherein
said instructions for comparing include instructions for
forming said correlation value by an algorithm selected from
the group consisting of regression analysis, regression
analysis with data transformations, a Pearson correlation, a
Spearman rank correlation, a regression tree and concomi-
tant data reduction, partial least squares, and canonical
analysis.
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19. The computer program product of claim 11, wherein
said instructions for repeating further comprise:

instructions for computing (i) a mean correlation value
that represents a mean of each said correlation value
formed during instances of said instructions for com-
paring; and (ii) a standard deviation of said mean
correlation value based on each said correlation value
formed during instances of said instructions for com-
paring;

wherein, said one or more genotypic data structures that
form a high correlation value relative to all other
genotypic data structures compared to said phenotypic
data structure by said instructions for comparing are
identified by selecting genotypic data structures that
form a correlation value that is a predetermined number
of standard deviations above said mean correlation
value.

20. The computer program product of claim 11, wherein
said genotypic database is a single nucleotide polymorphism
database, a microsatellite marker database, a restriction
fragment length polymorphism database, a short tandem
repeat database, a sequence length polymorphism database,
an expression profile database, or a DNA methylation data-
base; and said variation in said genotypic data structure is
obtained from said genotypic database.

21. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com-
puter program mechanism comprising:

a genotypic database for storing variations in genomic
sequences of a plurality of strains of an organism;

a phenotypic data structure, each element in said pheno-
typic data structure representing a difference in said
phenotype between different strains of said organism;
and

a program module for associating a phenotype with one or
more candidate chromosomal regions in a genome of
said organism, said genome including a plurality of
loci, said program module comprising:

instructions for identifying a genotypic data structure,
said genotypic data structure corresponding to a
locus selected from said plurality of loci, each ele-
ment in said genotypic data structure representing a
variation of at least one component of said locus
between different strains of said organism;

instructions for comparing said phenotypic data struc-
ture to said genotypic data structure to form a
correlation value; and

instructions for repeating said instructions for identi-
fying and said instructions for comparing, for each
locus in said plurality of loci, thereby identifying one
or more genotypic data structures that form a high
correlation value relative to all other genotypic data
structures that are compared to said phenotypic data
structure by said instructions for comparing; wherein
the loci that correspond to said one or more geno-
typic data structures that form a high correlation
value represent said one or more candidate chromo-
somal regions.
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22. A computer system for associating a phenotype with
one or more candidate chromosomal regions in a genome of
an organism, said genome including a plurality of loci, the
computer system comprising:

a central processing unit;

a memory, coupled to the central processing unit, the
memory storing:

a genotypic database for storing variations in genomic
sequences of a plurality of strains of said organism;

a phenotypic data structure that represents a difference
in a phenotype between different strains of said
organism; and

a program module, said program module comprising:

instructions for establishing a genotypic data struc-
ture, said genotypic data structure corresponding
to a locus selected from a plurality of loci, said
genotypic data structure representing a variation
of at least one component of said locus between
different strains of said organism stored in said
genotypic database;

instructions for comparing said phenotypic data
structure to said genotypic data structure to form
a correlation value; and

instructions for repeating said instructions for estab-
lishing and said instructions for comparing, for
each locus in said plurality of loci, thereby iden-
tifying one or more genotypic data structures that
form a high correlation value relative to all other
genotypic data structures that are compared to said
phenotypic data structure by said instructions for
comparing; wherein the loci that correspond to
said one or more genotypic data structures that
form a high correlation value represent said one or
more candidate chromosomal regions.

23. The computer system of claim 22, each element in
said phenotypic data structure representing a variation in
said phenotype between different strains of said organism;
wherein, for each element in said phenotypic data structure,
said different strains of said organism are selected from said
plurality of strains of said organism represented in said
genotypic database.

24. The computer system of claim 23, wherein said
difference in a phenotype is determined by a measurement of
an attribute corresponding to said phenotype in said different
strains of said organism that are represented in said geno-
typic database.

25. The computer system of claim 22, each element in
said phenotypic data structure representing a variation in
said phenotype between a first cluster of strains of said
organism and a different second cluster of strains of said
organism; wherein, for each element in said phenotypic data
structure, said different first and second cluster of strains of
said organism are selected from a plurality of clusters of
strains of said organism that are represented in said geno-
typic database.

26. The computer system of claim 22, each element in
said genotypic data structure representing a variation of at
least one component of said locus between different strains
of said organism; wherein, for each element in said geno-
typic data structure, said different strains of said organism
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are selected from said plurality of strains of said organism
represented in said genotypic database.

27. The computer system of claim 22, each element in
said genotypic data structure representing a variation of at
least one component of said locus between a first cluster of
strains of said organism and a different second cluster of
strains of said organism; wherein, for each element in said
genotypic data structure, said different first and second
clusters of strains of said organisms are selected from said
plurality of strains of said organism represented in said
genotypic database.

28. The computer system of claim 22, wherein said
instructions for comparing include instructions for forming
said correlation value in accordance with the expression:

Dbl - < P>)glh - < G- >)
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where,
c(P, G") is said correlation value;

p(i) is a value of the i"® element of said phenotypic data
structure;

g(i) is a value of the i"® element of said genotypic data
structure;

<P> is a mean value of all elements in said phenotypic
data structure; and

<G> is a mean value of all elements in said genotypic
data structure.

29. The computer system of claim 22, wherein said
instructions for comparing include instructions for forming
said correlation value by an algorithm selected from the
group consisting of regression analysis, regression analysis
with data transformations, a Pearson correlation, a Spearman
rank correlation, a regression tree and concomitant data
reduction, partial least squares, and canonical analysis.

30. The computer system of claim 22, wherein said
instructions for repeating further comprise:

instructions for computing (i) a mean correlation value
that represents a mean of each said correlation value
formed during instances of said instructions for com-
paring; and (ii) a standard deviation of said mean
correlation value based on each said correlation value
formed during instances of said instructions for com-
paring;

wherein, said one or more genotypic data structures that
form a high correlation value relative to all other
genotypic data structures compared to said phenotypic
data structure by said instructions for comparing are
identified by selecting genotypic data structures that
form a correlation value that is a predetermined number
of standard deviations above said mean correlation
value.

31. The computer system of claim 22, wherein said
genotypic database is a single nucleotide polymorphism
database, a microsatellite marker database, a restriction
fragment length polymorphism database, a short tandem
repeat database, a sequence length polymorphism database,
an expression profile database, or a DNA methylation data-
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base; and said variation in said genotypic data structure is
obtained from said genotypic database.

32. Amethod of associating a phenotype with one or more
candidate chromosomal regions in a genome of an organism
using a phenotypic data structure that represents alterations
in phenotypes between different strains in a plurality of
strains of said organism,

said phenotypic data structure including a description of
each said alteration and individual elements of said
phenotypic data structure including an amount of alter-
ation between different strains of said organism
selected from said plurality of strains of said organism,

said genome including a plurality of loci, each said loci
representing one or more positions within said genome,

said method comprising:

establishing a unique individual variation matrix for
each said one or more positions represented by said
loci, wherein an element within each said unique
individual variation matrix represents an allelic com-
parison between different strains of said organism
that are selected from said plurality of strains of said
organism;

summing corresponding elements in each said unique
individual matrix to form a genotypic data structure;

comparing said phenotypic data structure to said geno-
typic data structure to form a correlation value; and

repeating said establishing, summing and comparing
steps, for each locus in said plurality of loci, thereby
identifying one or more genotypic data structures
that form a high correlation value relative to all other
genotypic data structures that are compared to said
phenotypic data structure during said comparing
step; wherein the loci that correspond to said one or
more genotypic data structures that form a high
correlation value represent said one or more candi-
date chromosomal regions associated with said phe-
notype.

33. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com-
puter program mechanism comprising:

a genotypic database for storing variations in genomic
sequences of a plurality of strains of an organism;

a phenotypic data structure that represents alterations in
phenotypes between different strains of said organism
selected from said plurality of strains of said organism,
said phenotypic data structure including a description
of each said alteration and individual elements of said
phenotypic data structure including an amount of alter-
ation between different strains in said plurality of
strains of said organism; and

a program module for associating a phenotype with one or
more candidate chromosomal regions in a genome of
said organism, said genome including a plurality of
loci, each said loci representing one or more positions
within said genome, said program module comprising:

instructions for establishing a unique individual varia-
tion matrix for each said one or more positions
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represented by said loci, wherein an element within
each said unique individual variation matrix repre-
sents an allelic comparison of values stored in said
genotypic database between different strains of said
organism that are selected from said plurality of
strains of said organism;

instructions for summing corresponding elements in
each said unique individual matrix to form a geno-
typic data structure;

instructions for comparing said phenotypic data struc-
ture to said genotypic data structure to form a
correlation value; and

instructions for repeating said instructions for estab-
lishing, summing and comparing, for each locus in
said plurality of loci, thereby identifying one or more
genotypic data structures that form a high correlation
value relative to all other genotypic data structures
that are compared to said phenotypic data structure
during said comparing step; wherein the loci that
correspond to said one or more genotypic data struc-
tures that form a high correlation value represent said
one or more candidate chromosomal regions associ-
ated with said phenotype.

34. A computer system for associating a phenotype with
one or more candidate chromosomal regions in a genome of
an organism, said genome including a plurality of loci, each
said loci representing one or more positions within said
genome, said program module comprising:

a central processing unit;

a memory, coupled to the central processing unit, the
memory storing:

a genotypic database for storing variations in genomic
sequences of a plurality of strains of said organism;

a phenotypic data structure that represents alterations in
phenotypes between different strains in said plurality
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of strains of said organism, said phenotypic data
structure including a description of each said alter-
ation and individual elements of said phenotypic data
structure including an amount of alteration between
different strains in said plurality of strains of said
organism; and

a program module, said program module comprising:

instructions for establishing a unique individual
variation matrix for each said one or more posi-
tions represented by said loci, wherein an element
within each said unique individual variation
matrix represents an allelic comparison of values
stored in said genotypic database between differ-
ent strains of said organism that are selected from
said plurality of strains of said organism;

instructions for summing corresponding elements in
each said unique individual matrix to form a
genotypic data structure;

instructions for comparing said phenotypic data
structure to said genotypic data structure to form
a correlation value; and

instructions for repeating said instructions for estab-
lishing, summing and comparing, for each locus in
said plurality of loci, thereby identifying one or
more genotypic data structures that form a high
correlation value relative to all other genotypic
data structures that are compared to said pheno-
typic data structure during said comparing step;
wherein the loci that correspond to said one or
more genotypic data structures that form a high
correlation represent said one or more candidate
chromosomal regions associated with said pheno-

type.



