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OPTIMAL CONTROL SYSTEM
Field of the Invention

The present invention relates to control systems, and more particularly to

real-time control systems for which an optimized output is desired.
Background of the Invention

Control systems often use integrating feedback in order to eliminate steady-
state tracking errors. Typically, these control systems include an implementation in
which internal state variables integrate or accumulate over time the values of feedback
error signals. Because such internal state variables cannot maintain a steady state
value unless their input error signals are zero, integrating feedback causes the error
signals to go to zero in the steady state. There are a number of problems associated

with these conventional control systems that have long plagued designers in

attempting to create fast, efficient, accurate, and optimized control command outputs
for a particular application. These problems include integrator windup, cross-channel
coupling, channel prioritization, and output mixing.

Integrator windup refers to a control situation in which a large disturbance (or
even a large command) causes a control output signal to exceed some physical limit of
the plant's controls. This causes control "saturation". For example in an airplane
flight control system, rudder deflection might be limited physically to £30 degrees. If
a large disturbance occurs and the rudder command becomes saturated due to this
limit, the plant is running “open loop” in the sense that incremental changes to the
rudder command will have no effect on the rudder's actual positioning--the rudder is
already at a limit. Thus during saturation, the rudder error signal will not immediately

be driven toward zero by incremental feedback action. Instead, the integrator signal
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will “wind up” and continue to increase. After the saturation event ends, normal
feedback action will resume and force the error signal back toward zero. However,
by that time, the integrator signal may have increased to a large value, forcing the
control signal far away from its normal steady-state value. The usual result is a large
temporary overshoot in the command signal, as feedback action causes the error
signal to reverse sign in order to “unwind” the integrator state back to its final steady-
state value.

Prior attempts to solve the integrator windup problem have generally involved
writing special-purpose switching logic code to freeze the integrator states during
control saturation. Freeze logic typically holds the integrator state constant during
saturation events, until the control signal drops below the saturation threshold. This
method often fails in multi-channel controllers because there is no one-to-one
relationship between each control and each integrator state, a fact that leads to cross-
channel coupling, described below. Because the control signal depends directly upon
the frozen integrator state, freeze logic is also prone to “chattering" when the logic
alternately freezes and unfreezes the integrator on successive time steps. Freeze logic
that avoids chattering can be difficult to write and debug, and often requires
tremendous amounts of coding.

Other prior attempts to solve the problem of integrator windup use command
limiting in which the magnitude and rate of change of extermal commands are
restricted before they enter the feedback loop. This technique unnecessarily restricts
the performance of the control system by preventing the controls from reaching their
true limits. It is also vulnerable to large system disturbances, that cannot be artificially
limited.

In addition to integrator windup, for multi-channel systems (i.e., those having
matrix gains and vector variables), there is an undesirable problem of cross-channel
coupling that can occur even when integrator windup has been eliminated. In a
multi-channel integrating control system, more than one error signal is being driven to
zero. For example, a multi-channel aircraft control system might regulate roll rate and
sideslip angle simultaneously by commanding both aileron and rudder deflections.
During control saturation, transient tracking errors can appear in both command
channels. This occurs even when integrator windup is eliminated. In this example,
rudder saturation might introduce errors in both roll rate and sideslip angle command
tracking, because the nonsaturated aileron signal depends upon both error signals (i.e.,

both a roll rate error signal and a sideslip angle error signal.) This phenomenon does
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not occur in single-channel control systems where each control is driven by a single
error signal. In some cases, it is desired to assign fixed priorities to the regulation
channels, so that transient tracking errors from saturation are confined to the least-
important channels when possible. In aircraft, for example, tight regulation of sideslip
angle might be considered more important than roll rate error.

The problem of cross-channel coupling can be exacerbated if a designer
attempts to use traditional freeze logic on an integrator to control windup when its
corresponding control actuator is saturated. This is particularly true if there is no
one-to-one correspondence between the command inputs and the output control
variables, thus posing a system with inherent coupling of its variables.

In addition to integrator windup and its associated problems, a further
problem exists in conventional control systems regarding allocation of control
responses between different control actuators (or more generally "control effectors")
and regarding the application of limits to the commanded outputs. Conventional gain
matrix output mixers typically produce commands based on a gain matrix that weighs
various input commands based a predefined value system. Since the final control
effector commands are subject to saturation by the physical limits of the actual
controls, conventional mixers often include a hard limiter function, where the final
output of the mixer is a limited control effector command. Each element of the
control output vector from the mixer has its own independent upper and lower
bounds, which are applied by the hard limiter function.

These prior implementations of output mixers have usually applied linear gain
matrices to distribute the total power commands to the complete set of control
effectors. This approach is valid for typical small-signal operation, but it introduces
control power errors and potential degraded stability when one or more of the control
effectors is saturated. Attempts to address that problem have usually involved
limiting the total power commands in order to keep the control effectors out of
saturation. This has the undesirable effect of preventing the control system from
producing the full range of possible control power. Thus, the control effectors are not
used to their fullest combined capacity.

In addition, prior methods for general-purpose nonlinear control using internal
dynamic models (e.g., dynamic inversion and feedback linearization) solve certain
model equations at each time step. These known methods fail when the controls

saturate, because the equations have no exact solutions in those cases. These older
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methods also have no ability to incorporate inequality constraints on the controls and
states.

Thus, a need exists for a control system capable of eliminating integrator
windup, improving output mixing, and reducing the problems related to both
integrator windup and output mixing. The ideal system would provide fast, reliable,
control commands that take full advantage of all control effectors within the
boundaries of each effector's capacity. The present invention is directed to fulfilling
these and other needs as described below.

Summary of the Invention

In accordance with aspects of the present invention, an optimal control system
is provided. The system relies on an optimization algorithm newly described herein
and termed the Dailey L1 Optimization Algorithm. In one embodiment, the system is
arranged to eliminate integrator windup. This embodiment includes forming a control
difference signal that is a combination of differenced inputs and then subsequently
integrating and limiting the control difference signal to form a control signal that is
provided to the plant.

In accordance with other aspects of this invention, another embodiment is
described in which cross-channel coupling is eliminated. An error signal is formed as
the difference between a commanded signal and a regulator sensor signal. An
injection error signal is combined with the error signal. The injection error is of an
amount sufficient to ensure that only an attainable command signal is provided to the
plant, without significant cross-channel coupling due to saturation of a control
effector. Yet another embodiment is provided in which output mixing of the control
signal between available plant effectors is improved by determining the optimal mix of
control effectors using the L1 Algorithm.

Brief Description of the Drawings

The foregoing aspects and many of the attendant advantages of this invention
will become more readily appreciated as the same becomes better understood by
reference to the following detailed description, when taken in conjunction with the
accompanying drawings, wherein:

FIGURE 1 is a control flow diagram of a conventional implementation of a
single-channel integrating control system;

FIGURE 2 is a series of time history plots illustrating the effects of a step
input to a rotary motor servo example using a conventional single-channel integrating
control system with no control saturation;
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FIGURE 3 illustrates the results of the rotary actuator of FIGURE 2 during
control saturation, particularly illustrating integrator windup in a conventional single-
channel controller;

FIGURE 4 is a control flow diagram illustrating antiwindup implementation
aspects of a single-channel integrating control system formed in accordance with the
present invention;

FIGURE 5 is a series of time history plots illustrating the effects of a step
input to an example rotary actuator using a control system formed in accordance with
the present invention, particularly having the antiwindup aspects described in
FIGURE 4, the response of FIGURE 3 shown in phantom for comparison;

FIGURE 6 is a control flow diagram of a conventional implementation of a
multi-channel integrating control system;

FIGURE 7 is an example two-armed manipulator linkage;

FIGURE 8 is a series of time history plots illustrating the effects of a step
input to the linkage example of FIGURE 7 using a conventional multi-channel
integrating control system with no control saturation;

FIGURE 9 illustrates the results of the linkage of FIGURE 7 during control
saturation, particularly illustrating integrator windup in a conventional multi-channel
controller;

FIGURE 10 is a control flow diagram illustrating the antiwindup
implementation aspects of a square multi-channel integrating optimal control system
formed in accordance with the present invention;

FIGURE 11 is a series of time history plots illustrating the effects of a step
input to an example linkage using an optimal control system formed in accordance
with the present invention, particularly having the antiwindup aspects described in
FIGURE 10;

FIGURE 12 is a control flow diagram illustrating a general implementation of
a square multi-channel optimal control system having antiwindup, L1 automatic
command limiting, and channel prioritization aspects all formed in accordance with
the present invention;

FIGURE 13 is a series of time history plots illustrating the effects of a step
input to an example linkage using an optimal control system formed in accordance
with the present invention, particularly having the antiwindup aspects described in
FIGURE 12, the response of FIGURE 11 being shown in phantom for comparison;

FIGURE 14 illustrates a conventional gain matrix output mixer structure;
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FIGURE 15 illustrates a cruciform arrangement of missile tail fins;

FIGURE 16 illustrates moments and fin deflections for the conventional fin
mixer of FIGURE 15;

FIGURE 17 is a control flow diagram illustrating the output mixing
implementation aspects of an optimal control system formed in accordance with the
present invention;

FIGURE 18 illustrates moments and fin deflections using a control system
formed in accordance with the present invention, particularly having the output
mixing aspects described in FIGURE 17,

FIGURE 19 is a graph comparing achievable zero-error roll and yaw moment
for the fin example between a conventional output fin mixer an output mixer formed
in accordance with the present invention;

FIGURE 20 is a control flow diagram of a general purpose optimal control
system formed in accordance with the present invention;

FIGURE 21 illustrates the response of a non-square general purpose optimal
control system that combines the present invention command limiting, antiwindup,
and output mixing features;

FIGURE 22 is a flow chart of an L1 Optimizer formed in accordance with the
present invention; and

FIGURE 23 is a signal flow diagram for the multi-rate real-time L1 Optimizer
described by FIGURE 22.

Detailed Description of the Preferred Embodiment

The present invention is an optimal control system (also referred to herein as
an optimal controller) that may be used in various technologies to eliminate
disadvantages of prior art control systems, such as those discussed above. The
present invention is described below using generic control terms. These terms may be
realized using conventional components available in the art. Even though the present
invention is described generically, it is to be understood that its teachings are
applicable to a wide range of technologies.

There are a number of inventive aspects provided in the present invention
optimal control system. When approaching a particular control problem, a designer
can use these aspects as necessary to best address the characteristics of his or her
application. For the sake of clarity in presentation, the description below is divided
into a number of sections. PART 1 describes a method and apparatus for eliminating

integrator windup and additionally for providing automatic command limiting and
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channel prioritization in multi-channel control systems. PART 2 describes a method
and apparatus for efficiently distributing control commands between multiple control
effectors while simultaneously enforcing constraints on them. PART 3 describes an
overall general method and apparatus that combines the features of PARTS 1 and 2.
Each part includes a discussion of the relative prior art.

The present invention is termed an "optimal" system because it makes use of
an optimization method embedded in a real-time control system. Although a number
of optimization methods are known and some of which may be used with the various
aspects of the present invention control system, a preferred method of optimization is
also provided and is described in PART 4. This preferred method is termed the
“Dailey L1 Optimization Algorithm" and is itself unique. The Dailey L1 Optimization
Algorithm presented herein efficiently solves a class of convex optimization problems

in a manner that is ideally suited to the aspects of the present invention optimal
control system.

PART 1

This section describes a method and apparatus for eliminating integrator
windup in both single and multi-channel control systems and additionally for providing
automatic command limiting and channel prioritization in multi-channel control
systems. Discussion of a single-input-single-output (SISO) system is provided first
with reference to FIGURES 1 through 5, followed by a discussion of a multi-input-
multi-output (MIMO) system with reference to FIGURES 6 through 13.

FIGURE 1 illustrates a conventional integrating control system representative
of the prior art. This example is single-channel, having only one regulated variable,
regulator sensor signal y,, and one plant control signal . This example is shown as a
discrete-time system. The transfer function of an integrator 38 is 4/ (z-1) , using
z-transform notation, where /4 is the discrete time step size in seconds. The integrator
output signal e; (n+1) at each new time step n+/ depends on its value e;(n) and its
input signal e(n) at the previous time step n, according to e;(n+l) =e; (n) + emn) h.
Error signal e is based on the difference between a command signal Y. and the plant’s
regulator output sensor signal y,, using the formula e = Ye — Y.. The difference is
calculated in FIGURE 1 at a first combiner 40.

The output of the control system is the control signalu, here
u=K,e; + er e+ Kpsyp + Ky This combination is obtained by applying a
proportional error gain K, to the error signal e, a proportional sensor gain Kps to a
proportional sensor signal Yp, an integrator gain Kj to the integrator output signal e,



10

15

20

25

30

35

WO 00/68744 PCT/US00/11482

and a feedforward gain K¢ to the command signal y.. The calculation of u is
accomplished in FIGURE 1 at a second combiner 42. The gain K is applied to the
command signal y, at block 44, gain K; being applied to the integrator signal e; at
block 46, gain K, being applied to the error signal e at block 48, and gain K being
applied to the proportional sensor signal y, at block 50. The signal Yp can be a
vector, in which case K¢ is a matrix with one output row and multiple input columns.
The other signals and gains in FIGURE 1 are scalars.

The plant outputs both the regulator sensor y, and the proportional sensor
vector yp, This is to allow for arrangements in which it is not necessary to compare
the feedback signals against the commanded values y., but instead the feedback
signals are fed back directly to the control signal. For example, an aircraft control
system might feed back yaw rate directly, without subtracting it from command
reference values as it would with roll rate or sideslip angle. The gain matrix Kos
applies proportional gains to such signals.

Control saturation will occur when a large command y, or a large disturbance
causes the control output signal u to exceed the physical limits of the plant’s controls.
During saturation, incremental changes to # will have no effect on the plant output y.
The error signal e will not be driven toward zero by incremental feedback action, so
the integrator signal e; will “wind up”. After the saturation event ends, normal
feedback action will resume and force the error signal e back toward zero; however,
by this time e; may have increased to a large value, forcing the control signal » far
away from its normal steady-state value. The usual result is a large temporary
overshoot in the regulator sensor signal y,, as feedback action causes e to reverse sign
in order to “unwind” the integrator state e; back to its final steady-state value.

The following example illustrates the effect of the arrangement of FIGURE 1
as applied to a conventional rotary motor servo in which the control system objective
is to cause the motor shaft angle 6 to track a commanded value 6, using feedback on
a shaft angle error e = 6 — 6 and on a rotation rate ©. The single control input to the
plant is a commanded motor torque 7, which has upper and lower limits. The shaft’s
moment of inertia is / and its damping coefficient is . The equations of motion may
be expressed as T=1é + bo and 6 =a.

Using the values 7 = 1.0 kg-m” and 4 = 0.5 N-m-s, T has units of N-m, ® has
units of radians/s, and 6 has units of radians. A nominal control system may be
designed in which an integrator is placed on the tracking error e, to produce a 3"-
order dynamic system containing three states: the integrator state e;, the shaft angle 6,
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and the rotation rate . There are then three closed-loop poles. The feedforward
gain K¢ produces a transmission zero in the command response. The remaining gains
may be selected so that the transmission zero cancels one of the three poles, so that
the remaining two poles are those of a 2"-order lowpass Bessel filter. This type of
filter has a zero-overshoot step response. In this way, all of the command overshoot
observed in the response can be attributed to control saturation, integrator windup, or
system nonlinearity.

Relating the rotary motor servo to the arrangement of FIGURE 1, the
reference sensor signal is y, = 8. The proportional sensor signal is Yp = 0. The error
signal is e =6 - 6_. The control output signal is the commanded motor torque, given
by T'=u=K;e; + Kpoe + Kys 0 + K. If the discrete-time integrator is modeled
as a continuous-time integrator 1/s, the following integral-differential equation
describes the closed-loop system in terms of 6 and 6, .

T = K[(0-6)dt+K,(60-6,)+K,6+K,0, = I§+b6

Applying the Laplace transform yields this transfer function from 6, to 0 :

6 (K, - K,)-K, s+2

6. $1+5(b-K,)-sK,-K,  (s+2)(s +17325+1)

where K; = -2.0, K, = -4.464, K;; = -3.232, and K¢ = -3.464 are used to produce the
desired target poles and zeros.

FIGURE 2 shows the step response of this system to a 60-degree command
0. when the limits on the control output signal « are set high so that no saturation
occurs. The shaft angle acquires the 60 degree command Y. with zero overshoot, as
desired. The integrator state e; acquires a steady-state value, which is necessary in
order to oppose the feedforward gain term K¢ 6. FIGURE 3 shows the same
quantities when control saturation occurs, to demonstrate integrator windup for this
example. The limits on the control output signal # have now been set to +0.15 N-m
to produce deep saturation for the 60 degree step command. The large step
command 6 immediately forces the control output signal u into hard saturation. The
integrator state e; then winds up to a large value, well beyond its steady-state value.
The regulator sensor signal y, (equal to 0) dramatically overshoots its final value while
e; unwinds. For this particular choice of command, control limits, and gains, the
control output signal u bounces between its limits three times before finally attaining
equilibrium. It takes 16 seconds to reach equilibrium, versus 5 seconds in the
unsaturated case.
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FIGURE 4 illustrates one aspect of the present invention useful for
eliminating SISO integrator windup behavior. Instead of integrating the error state
variable e, the arrangement of FIGURE 4 differences the inputs to the control
signal to form a control difference signal #y and then integrates x4 to form the
control signal . Control limits are placed directly upon the integrated control signal
u as necessary.

To accomplish the above, a new differencer operator is introduced with
transfer function l-z-l, to operate on three of the feedback and feedforward signals.
The integrator of block 38 is eliminated and the integrator gain Kj is multiplied by the
discrete time step size 4. Thus, in FIGURE 4, the command signal y, is applied to the
difference operator at block 60 to result in a command difference signal y4. The
error signal e is applied to the difference operator at block 62 to result in an error
difference signal ;. The proportional sensor signal Yp is applied to the difference
operator at block 66 to result in a sensor difference signal Ypd- Functionally, the error
difference signal ey is the difference between the current value of e and its previous
value, i.e., eg(n+1) = e(n+1) - e(n). Similarly, the sensor difference signal Ypd is the
difference between the current value of Ypa and its previous value, ie.,
Ypd(M+1) = yy(n+1) - y,(n). The command difference signal y.4 is the difference
between the current value of y 4 and its previous value, i.e., ygm+1) = y(n+1) —
yem).

The control difference signal u4 then contains the desired change between the
new value of u and its previous value; i.e., ug =K;he + Kyoeq + Kpsypg + KeVea
where A is the discrete-time step size. This signal u4 is then integrated at block 66
using function 1/(1-z.l) to produce control signal u. Control limits may also be
imposed directly upon u using the formula u(n+1) = Lim(u(n) + ug4 (n+1)), where the
function Lim(-) represents the physical limits of the plant’s control input. For
example, if u is a rudder deflection that cannot exceed limits of £30 degrees, the limit
would be presented as Lim(x) = max(-30, min(x,30)). The function Lim() can also
impose slew rate limits by restricting the range of « to a prescribed interval centered
on its previous value. The limits can be made functions of other physical parameters,
such as dynamic pressure or angle of attack in aircraft applications.

The control system of FIGURE 4 has input-output behavior identical to the
conventional system under normal, non-saturated conditions. = When control
saturation occurs, however, the present invention control system produces no windup
or overshoot behavior, and resumes normal linear operation immediately after
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saturation ends. In doing so, the need for special-purpose integrator freeze logic is
also eliminated. The present invention is thus simpler and easier to design, and
requires no significant additional computing throughput in the embedded control
computer for a single-channel controller.

FIGURE 5 illustrates the time history plots illustrating the effects of a step
input to the rotary motor servo example described above when using a control system
formed in accordance with the present invention as described in FIGURE 4, using the
same plant, linear gains, limits, and command signal used earlier in FIGURE 3.
Portions of the response from FIGURE 2 are shown in phantom for comparison. As
shown in FIGURE 5, the present invention antiwindup arrangement eliminates the
occurrence of integrator windup entirely. The regulator sensor signal y_ = 6 no longer
overshoots its final value of 60 degrees, even though the control signal # remains
saturated for three seconds. Because the integrator state e; is no longer present, the
system response does not overshoot in order to unwind it to its steady-state value.
Instead, the control u resumes its normal unsaturated linear response well before 6
reaches its target value, and the linear zero-overshoot response is restored. The
windup response of the conventional control implementation, shown earlier in
FIGURE 3, is shown in phantom in FIGURE 5. The antiwindup implementation
reaches equilibrium in 7 seconds, versus 5 seconds for the unsaturated case and 16
seconds for the conventional implementation. This is a dramatic improvement in
system response.

FIGURE 6 is a control flow diagram of a conventional implementation of a
MIMO control system representative of the prior art. The input variables, Vp» Y and
Y., are provided as vectors, and the gains, Ky, X;, er, and Kps, are provided as
matrices. The output of the second combiner 42 is a pseudo-control vector .. An
invertible mixer matrix G is applied at block 70 to the pseudo-control vector u, to
result in the control vector ¥ which is inputted to the plant. The mixer matrix G is
provided to apply, or map, the pseudo-control vector signals #, onto the various
control effectors available in the vector control signal u.

To demonstrate the shortcomings of the control of FIGURE 6, a two-armed
robotic manipulator will be used. FIGURE 7 illustrates such a manipulator 76 which
is representative of a class of mechanical linkages used in manufacturing industries
(e-g., the food industry) that do work on objects in the horizontal plane (e.g., food
items passing by on a conveyor belt.) The object doing work is defined as having load
mass m. A number of arm linkages of equal length L are connected end-to-end. The
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mass of each linkage arm is assumed negligible compared to the load mass m. The
control inputs are counterclockwise moments T, T, T; and T4. Moments T, and T,
are applied by motors at the base or shoulder of each linkage, which have shaft angles
0: and O, as shown. The linkage shoulders rotate but do not translate. Moments T;
and T, are applied at the elbow joints, from which the load linkage arms extend at
angles O3 and 04 as shown. The total x and y axis forces at the load mass can be
derived as functions of Ty, Tz, Ts and T,, and the linkage angles. The linkages are
hinged at each point marked with a filled circle, including at the load mass point (x).
The motion is analogous to a person’s arms moving with hands clasped.

Because this is a closed linkage, it has only two degrees of freedom. Once the
load mass position (x,y) is set, all four linkage angles 0,, 8,, 0;, and 0, are
constrained. Thus the dynamic equations of motion for this model include only the
load mass position and velocity as states. The linkage angles and their angular rates
are then dependent variables. The two motor positions are at (x,y) = (-D,0) and
(+D,0) as shown, and each linkage arm has equal length L.

The following formulas give the four linkage angles as functions of load mass
position (x,y). The quantities L; and L, are the distances from each shoulder motor
position to the load mass. The angles 6, and 03 are the angles from the positive x axis
direction to the load mass m, as seen from the two shoulder motor positions. The
angles 05 and O are the angles subtended between the elbow joints and the load mass,
as seen from the shoulder motor positions.

4L }
L =(x+D)* +y? 6, = cos '(—2—1%) 6, = tan I(x+D)
L
L, =+(x - D)* + y* 66=c0s"(2—z-) 08=tan"( yD)
x—
8 =6, +6, 6, =6 -6,
6, =6 -6 6, =6 +6

For applied control moments T,, T, T3 and T4, the x and y acceleration components
of the load mass are given by:

mi =——sm(1t -8, +8,)cos(6, )+-——sm(1t+6 -8,)cos(6, )— sm(G,)——-sm(G)

my:————sm(n -9, +93)sm(63)+ sm(1t+6 -0,)sin(6,) + —cos(93)+ cos(e)
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The sines of the elbow hinge angles 8,3 = n—0;46; and 0, = 7+0,-0,
determine the fractions of the shoulder control moments T, and T, that are
transmitted to the load. These fractions are maximized when the hinge angles are 90
degrees. The sines and cosines of 85 and 0, determine the directions of the tension or
compression forces transmitted to the load mass from the shoulder motors through
the linkage arms. They also determine the directions of the forces transmitted to the
load mass from the elbow motors, which act orthogonally to the tension and
compression forces. The overall expression is linear in Ty, T,, T3 and Ts, so the

acceleration components in x and y can be written conveniently in matrix-vector form:

Pan B B B

1 . 1 . . |
|: x:l _ T sm((?n) cos(63) + ;nlzsm(eu) cos(@) - ?sm(@) - ;—L—sm(Q)
" 1. . . . 1
Y —Emn(%)snn(@) + Esm(@,)sm(@) +;Zcos(t93) +7n—L-cos(64)
T T,
l:x] _ [an 4y A a14:| T - F I,
j} aZl a22 a23 a24 T'J 7‘3
T, T,

By incorporating the pseudoinverse of the matrix F into the feedback gain
matrix G for use in the control system of FIGURE 6, or by otherwise solving the
above equation for the desired accelerations, the control system can be made to
compensate for the nonlinearity of the linkage geometry and to provide consistent
closed-loop dynamics for all load mass positions. This form of nonlinear dynamic
inversion is not required for an optimal controller formed in accordance with the
present invention in general, but it is a useful technique and it serves to simplify this
example.

Only the shoulder motor moments T, and T, are considered here in PART 1
so that the matrix inverse of the first two columns of F can be easily calculated for use
in the control system. This provides a first description showing how to handle
“square” plants, in which the number of controls equals the number of regulator
channels. In PART 3 below, all four moments T;, T, T3 and T4 are used, but with
different priorities assigned via the Dailey L1 Optimization Algorithm cost function.
PART 3 describes how to handle redundant controls by combining the output mixer
techniques of PART 2 with the antiwindup, command limiting, and channel
prioritization techniques of PART 1.
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Thus, in FIGURE 6 the control system command inputs in vector Y are X
and y.om, the desired x and y positions. Its outputs are the shoulder motor torques T,
and T,. For the conventional implementation, integrators are placed on the x and y
position errors. The gains X, Kpe, Ky, and Ky in this multi-channel example are
matrices, but their role is the same as in the single-channel case. Using the
information above, the matrix Fi, is defined to consist of the first two columns of F.
The mixer matrix G is defined as the inverse of Fi,. The matrix G now maps the
commanded x and y axis accelerations into the shoulder motor torques T; and T,,
assuming that elbow torques T and T are zero.

The system has six states: the positions x and y, their rates, and the two
integrators on x and y tracking error. The feedback and feedforward gains are
designed to provide a nominally decoupled response in the x and y axes, so that the x
and y regulator channels each have 3 poles. Furthermore, the feedforward gains are
to be designed to provide pole-zero cancellation as in the motor servo example, so
that the nominal command response is that of a 2™ order Bessel filter with zero
overshoot. In this way, the unsaturated system will display zero overshoot and zero
cross-axis coupling in its command response, so that any observed overshoot or
cross-axis coupling can be attributed directly to saturation effects.

The transfer function is derived from the commanded to the actual position.
Because the cross-channel response is nominally zero, the x channel equations may be
used only. The y equations are identical in form. In terms of FIGURE 6, the
pseudo-control vector u, contains the commanded x and y accelerations. The control
vector u contains the shoulder motor torques T, and T,. The proportional sensor
vector y, contains the x and y velocities. The reference sensor vector Yy and
command vector y, contain the actual and desired x and y positions.

B A o R R

If the discrete-time integrator is formed in continuous time, the following
integral-differential equation describes the closed-loop system in terms of x and Xcom.
Here the gains refer to the scalar x channel elements of the gain matrices. The y
channel elements are set identically, and the cross-channel elements are set to zero in
this example so that all the gain matrices except G are diagonal matrices.

X = K,.J'(x—xm)dt +K”(x-xm) +K, x+K,x,

Applying the Laplace transform yields this transfer function from x..q to x :
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e A K)K e
X eom s =5'K, -sK,, K,  (s+1)s? +17325+1)

To produce the desired target poles and zeros, the following gains are chosen:
K;=-10, er =.2.732, Kps =-2.732, and K¢=-1.732. The pole and zero at s =-1.0
cancel each other in the command response. The two remaining complex poles

provide the desired Bessel filter step response. The complete set of gain matrices
corresponding to figure 1-7 are thus:

X —-1.000 0 X -2732 0
U ) -1.000 Lol ) -2732

K— -2732 0 X -1732 0
B -2732 771 o0 -1732

FIGURE 8 shows a set of time history plots for this 2-channel regulator when
a large step command is introduced into the x channel, while the y position command
is held constant. For these plots, the motor torque limits on T, and T, were set high
so that no control saturation occurs. The system acquires its new commanded x
position in about 5 seconds, with negligible movement in the y position. This
illustrates the substantially decoupled nature of the nominal linear control system.
The x integrator state moves to a new value in order to counteract the feedforward
gain terms.

FIGURE 9 shows the response of the same conventional multi-channel
controller when control saturation and integrator windup occur. For this example, the
saturation limits on motor torques T, and T, were set to £0.16 N-m, to produce deep
saturation relative to the unsaturated responses of FIGURE 8. The x position
overshoots its target value by about 20% of the total step size, and the y position is
perturbed by about 10% of the x step size through cross-channel coupling. The x
error integrator winds up well beyond its final steady-state value, causing the motor
torques to remain in saturation for about 7 seconds, even as they reverse sign to
bounce between their limits. The overall response takes about 13 seconds to
approach equilibrium for this particular step command.

An arrangement similar to that in FIGURE 4 can be used to eliminate
integrator windup in multi-channel systems as well. FIGURE 10 illustrates such a
control system formed in accordance with the present invention suitable for square
MIMO control problems (i.e., those with equal numbers of regulator channels as
control actuators.) The system of FIGURE 10 is similar to the system described with
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reference to FIGURE 4 only with vector-valued signals for », YerYer Vpo Va- @ €4,
and x4, and gain matrices rather than scalar real numbers for KpS , er ,and K. As
with the single-channel antiwindup controller, it is important to eliminate the explicit
integrator states e; and instead to perform feedback integration directly on the control
difference signal u.

A new pseudo-control output vector u_ is used, in order to better handle cases
in which the mixer matrix G is a smooth nonlinear function of the system state, as it is
with the two-armed manipulator example above (i.e., G includes trigonometric
functions of the linkage arm angles.) This pseudo-control vector, also called the
command target vector herein, is used again in the general-purpose, non-square
controller system described in PART 3 below. In order to prevent windup, the
pseudo-control vector u, should accurately reflect the physical limits placed on the
actual control vector u. The sequence of calculations to enforce this are:

uo(ntl) =u(n) + uq (n+1)

u=Lim(Gu)

u,=G'u
The vector u, holds a temporary value of the incremented pseudo-control vector u.
This is mapped to the physical controls through G, the limits are applied to produce ,
and this is then mapped in reverse through G to enforce u = G u.. This requirement
for an invertible G is what restricts this technique to square controllers. PARTS 2 and
3 describe how to handle non-square controllers.

FIGURE 11 is a series of time history plots illustrating the effects of a step
input to the example linkage described above, only using a control system formed in
accordance with the present invention as described in FIGURE 10. All feedback gain
matrices, control limits, initial conditions, and commands are the same as those used
to generate FIGURE 9 with the conventional controller structure. The improvement
in response is dramatic. The controller now tracks and acquires the x position step
command with no significant overshoot, and does so in about 8 seconds, versus
14 seconds for the conventional controller and 5 seconds for the unsaturated
response. The motor torques remain in saturation for only about 1 second, versus
7 seconds for the conventional controller.

- The behavior under control saturation is acceptable for many multi-channel
controller applications; however, there is one undesirable artifact of saturation in the
response. The presence of saturation still introduces cross-channel coupling even

though integrator windup has been eliminated. In this example, the shoulder motor
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torques T; and T, do not have a one-to-one correspondence with the x and y position
variables. Moving only x without disturbing y, as in this example, requires the
coordinated use of both motors, as FIGURES 8 and 11 illustrate. In FIGURE 11, the
y position is perturbed by about 5% of the x step command size, even though the y
command is constant.

For applications in which cross-channel coupling is unacceptable, or in which
the regulator channels must be prioritized, L1 optimization (described in detail below)
can be introduced to the controller to eliminate the cross-channel coupling and
provide relative prioritization of channels. In some cases, it may also be desirable to
assign priorities to the regulation channels, so that transient tracking errors from
saturation are confined to the least-important channels when possible. In aircraft, for
example, tight regulation of sideslip angle might be considered more important than
roll rate error. Handling of cross-channel coupling and channel prioritization in multi-
channel regulators is addressed with reference to FIGURE 12.

FIGURE 12 shows a general-purpose multi-channel control system, using
vector signals and matrix gains. The significant aspect of FIGURE 12 is the
introduction of an injected command error input signal vector y, to be combined with
the command signal vector y, at the first combiner 40. Thus, error vector e is now e
=Y — Yo + Ye. The proportional error gain matrix Kpe and integrator gain matrix K;
apply feedback to the error vector e to drive it to zero in the steady state.

The injected command error input signal vector y, is provided by an Optimizer
in block 72. During command saturation, the Optimizer provides an injection error
signal that will alter the error signal so that the downstream control signal used by the
plant will result in the desired prioritization and limiting of effector movement (and
hence the desired lack of cross-channel coupling in regulator motions.) The
Optimizer does this by attempting to produce the smallest injection error signal that
will prevent the system from exceeding its constraints.

This vector y, provides a powerful way to simultaneously prevent cross-
channel coupling and provide channel prioritization. The Optimizer solves for the
smallest possible injection error signal y, that will satisfy all constraints. The
Optimizer considers the restraints of channel prioritization and effector limits and
feeds the compensating element into the control system as an input to the formation
of the control signal « itself. This is somewhat akin to "cheating on the answer" since

the Optimizer considers the effect that various inputs will have on the system and
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provides a compensating factor to the other system components in an amount that will
alter the plant's response to give an optimal response.

The Optimizer uses the Dailey L1 Optimization Algorithm which includes a
cost function, J. (The Optimizer is also referred to herein as an "L1 Optimizer",
meaning a computer program or electronic component that incorporates the Dailey L1
Optimization Algorithm in providing an optimized output in response to the inputs
provided.) A minimum J corresponds to the best possible injection error available
(i.e., the least amount that will keep the total error e below the maximum acceptable
error) given the channel prioritizations between effectors. Under normal, non-
saturated conditions, the optimal error is y, = 0, and normal linear behavior occurs.
During saturation, the optimal y, vector can assign all the tracking error to the lowest-
priority regulator channels when possible.

In addition to y,, the arrangement of FIGURE 12 also introduces one or more
filters at block 74 to process plant output signals. Any dynamic states in the control
system (except integrators) are included in the filters. Examples include Kalman
filters, other state estimator filters, complementary filter pairs, lead-lag compensation
filters, and sensor notch filters. The addition of the filters allows the system to
accommodate all dynamic control types, in addition to PI (proportional-integral)
structures. The filters provide as outputs the regulator sensor vector y, and the
proportional sensor vector y,,

FIGURE 13 is a series of time history plots illustrating the effects of a step
input applied to the same two-armed manipulator example discussed earlier. In this
case, the Optimizer is used to calculate the injection error y, and to prevent regulation
errors from appearing in a “high priority” y position channel during saturation. All
other command signals, limits, and gain matrices are identical to those used in
FIGURES 11 and 9. The antiwindup controller response without optimization, also
plotted in FIGURE 11, is shown in phantom for comparison.

The cross-axis coupling disturbance to the y position channel is completely
eliminated. Examining the motor torque commands shows how the injected x channel
error causes the T, motor torque to stop short of its actual saturation limit. Instead,
T rides along a constraint boundary that corresponds to zero y axis acceleration,
which the L1 optimizer calculates implicitly at each time step. The difference between
the x step command and the calculated injection error for x is plotted to show how, in
effect, the total x command is made to ramp gently to its final value, rather than
stepping there instantaneously.
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Superficially, this behavior may appear to be similar to that provided by
known “easy-on” command limiting methods (such as placing a fixed rate limit on the
x command before it enters the feedback loop.) However, they are not the same.
There are several significant differences. First, the present invention control system
uses the L1 Optimizer to find the true limits of system performance automatically, by
solving the constraint equations directly. In the linkage example, torque T; remains
fully saturated during the time that the x injection error is nonzero. This means the
system is accelerating x as fast as possible subject to the constraint that y remain
undisturbed. A fixed command rate limit cannot achieve maximum system
performance in this way--it will degrade system performance instead. Designing fixed
command rate limits is a trial-and-error process for this reason.

Second, the L1 Optimizer provides channel prioritization together with
command limiting. In the linkage example, the penalty weight on injected y error was
made ten times higher than the penalty on x error, so that y regulation has a higher
priority thanx. This capability can be important for reasons of safety and system
performance requirements. Third, a fixed command rate limit can only protect against
abrupt command inputs, but offers no protection against abrupt system disturbances.
For example, an aircraft is subject to sudden gusts and turbulence. A control system
should preferably respond in a robust manner against unplanned disturbances. The
present invention optimal control system which incorporates the L1 Optimizer
provides this protection by acting on the system’s actual state, not just its operator’s
command inputs.

The detailed description of the Dailey L1 Optimization Algorithm is given in
PART 4. Formulation of its optimization elements for use in a MIMO control setting
to eliminate cross channel coupling is as follows. The cost function J for real-time L1
optimization is formulated as:

J= in|yd|+iWPi max(O, u, - uui) +ZM:W,H. max(O, u, —ui)

i=l i=l i=l

where
r number of elements in y,
m number of elements in u

Ye: i ith element of y,

u; ith element of u

ug; i ith element of uy
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U upper bound of control signal u;
uy; lower bound of control signal u;

W.; i penalty weight on y..
Wi i penalty weight on upper bound of u;
Wi i penalty weight on lower bound of u;

The optimal value of y, is calculated at each time step to minimize J. Because
the control difference vector uy depends upon y, through the K,e and K; gain
matrices, this technique automatically accounts for the gains, even in gain-scheduled
control systems where the gain matrices change continually.

The cost function J is piecewise-linear since it contains absolute value and
maximum functions. The first term penalizes the absolute values of the injection error
vector elements. By assigning the W, penalty weights, relative priorities are placed
upon each regulator channel. For example, one degree of sideslip error might incur
the same cost penalty as fifty degrees per second of roll rate error. The second term
penalizes the control vector » when its elements exceed their upper bounds u,;. The
Wpi weights are typically set to large values, relative to W,;, in order to enforce the
control bounds. The third term similarly penalizes the elements of # when they
exceed their lower bounds u;.

When the control vector  is not saturated, the optimal solution is y, = 0, the
optimal cost J is zero, and the nominal linear response remains in effect. When the
control vector v is saturated, the optimal solution y, will offset or "back off" the
operator's commands in y, just enough to keep the control vector  at the saturation
boundary. This keeps the control system from overdriving the control effectors,
which overdriving may break the feedback loop and cause instability in some
conventional control systems.

The control difference vector uy4 depends upon the unknown injection error
vector Y, through the formula derived below. The vector e 4 refers to the value of e

from the previous time step. The vector u, o4 is the value of u, from the previous
time step.



10

15

20

WO 00/68744 PCT/US00/11482

21-

u;,=Khe+K, e, +K,y,,+K y,
e =Y, =Y.+,
e, =e—e,,
u, = (Kh+ Ky, +(Kh+ K0, =)~ Kyl + KV pa + K Vs
u=G (uc'o,d +ud)
Using the above matrix formula for uy, the cost function J can be represented in the

basic matrix form used by the L1 Algorithm. The basic form for J is given by:
J= z W o max(O, ea.) + ZW,,,,. max(O, - ea) where e, =A4,x, +b,
i=1 i=l

P
respectively. The unknown solution vector x, 1s, in this case, simply the injection error

vector y,. The vectors Wy, Wy, e, and by, and the matrix 4, are defined in terms of

the control system vectors and matrices as follows:

Here the elements of the vectors W, Wy, and e, are given by Wy, Wy; , and ey

w, w, Y. I
w,=\w,| W,=|0 e, =| Gl +u)-u,| 4 =|G(Kh+K,,)
0 v, G(ucold + "d) -y G(K,.h + KP‘)
0

b =\-u,+ G(uwld +(Kih + Kpc)(yr - yc)_ ereold + Kpsypd + Kfycd)
—uU + G(ucold +(Kih + er)(yr = yc) = ereald + Kp:ypd + Kfycd)

Using this matrix problem description, the L1 Algorithm can solve the
equation e, = 4, x; + b, for the vector x; that minimizes J, thereby finding the optimal
injection error vector y, = x. The Algorithm takes Wy, Wy, 4y, and b as inputs,
and returns the optimal vector y,. The Algorithm also requires upper and lower
bounds on x, , which should be set to large values in this case, since it is the bounds
on u that should dominate the solution. PARTS 2 and 3 describe how to formulate
L1 optimization elements for output mixers and non-square optimal controllers using
the same input matrices and vectors.

The SISO and MIMO present invention control systems described above can
be used in a multitude of different applications. Because the systems are so robust
and can provide such fast accurate control responses, they are particularly well suited
to aerospace applications.
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As will be appreciated from a reading of PART 1, the aspects of the present
invention relating to the prevention of integrator windup and cross-channel coupling
during control saturation provide a significant advantage for both single and multi-
channel systems. These aspects also provide automatic command limiting and
prioritization of regulator channels, while exploiting the full limits of available control
power from all control effectors. Under quiescent, small-perturbation conditions, the
present invention control system produces responses identical to those of traditional
linear controllers. However, when large commands or system disturbances appear,
causing control saturation and other nonlinear limiting effects, the L1 Optimizer acts
automatically to prevent a range of undesirable effects that have long plagued linear
controllers under these conditions. It also provides these benefits in a single general-
purpose structure without requiring labor-intensive special-purpose embedded code to
be written, as has been necessary to prevent these problems on a case-by-case basis in
the past.

In addition, the present invention handles position and rate saturation of
control effectors, provides output mixer function for redundant multiple control
effectors, imposes equality and inequality constraints on controls and states,
reconfigures automatically after known control effector failures, automatically limits
large input commands to respect control limits, and switches between active
constraints without special mode switching logic.

PART 2

In addition to the above control system improvements to eliminate integrator
windup and its associated problems, the present invention includes aspects relating to
the allocation of control responses between different control effectors and regarding
the application of limits to those control outputs. The problem with conventional
output mixing arrangements is their inability to exploit the full range of possible
combined control effector movements. As before, a description of the prior art using
an example application is provided as a way to illustrate this shortcoming. The output
mixer aspects of the present invention are described thereafter, with reference to
FIGURES 17-19.

FIGURE 14 is a diagram of a conventional gain matrix output mixer for
allocating controls and applying limits to the outputs. The total control power
command u (represented in vector form) is multiplied by the gain matrix G at
block 80 to produce a command for each control effector. The result is often
summed at a third combiner 82 with a set of reference bias command values u (e.g.,
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“trim” commands in the aerospace industry) for each effector. These signals
provide nominal effector commands when the control power commands #, are zero.
The combination is subject to a hard limiter function at block 84 that reflects the
physical limits of each control effector. The output of the mixer is therefore a control
effector command vector signal u, where v = Lim(G u, + ). Each signal element of
the vector u has its own independent upper and lower bounds, which are applied by
the Lim(*) function.

To illustrate the shortcomings of the prior art output mixer shown in
FIGURE 14, the simplified missile example illustrated in FIGURE 15 will be used. A
set of four control fins (finl, fin2, fin3, fin4) are arranged at the missile tail in a
cruciform pattern and are the control effectors of the missile. FIGURE 15 illustrates a
view of the four fins from the rear of the missile. These four control effectors can be
deflected by servos to produce three control power effects--roll, pitch, and yaw
moment. The missile control system includes an output mixer such as the one
illustrated in FIGURE 14 to map roll, pitch, and yaw commands into deflection
commands for the four fins. A positive deflection of each fin produces a force in the
clockwise direction. Combined forces and moments in the directions illustrated in
FIGURE 15 correspond to positive roll, yaw, and pitch moments for the missile as
shown.

With these definitions, the command target matrix F, given below, maps the
four fin deflections into pitch, roll, and yaw moments. There are three output rows,
but four input columns, because there are more controls than there are desired
moments. Systems with such redundant control effectors are commonly encountered.
For simplicity, it is assumed that all fin deflections are limited to the %1 unit range.

The matrix elements are also normalized to values of 1, 0, and -1 for simplicity.

nl nl
roll +1 +1 +1 +1 % s
1 O 1 0 Jin2 F fin2
=1 — + =
yaw fin3 fin3
pitch 0 +1 0 -1
fin4 fin4

A conventional mixer gain matrix G simply consists of the Moore-Penrose
pseudo-inverse of this matrix F, which can be calculated by G = FT (F F7)!, where F
T is the transpose of F. This matrix maps the three desired moments into the four fin
deflections. The pseudo-inverse yields the smallest set of fin deflections that produce
the desired moments, as measured by the 2-norm or root sum of squares.
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finl +025 -05 0 . .
fin2 +025 0 +05||"™ o ro
fim3| T [+025 +05 o | |’ “"; = Y ““;1
find +025 0 —o05| LP¥e pite

Thus, input commands to the plant are based on a gain matrix that can be made to
weigh the various inputs depending on a predefined value system.

FIGURE 16 illustrates the results of sweeping through a range of roll
commands using the conventional output mixer of FIGURE 14 and using the matrix
G given above with clipping limits of 1 unit on each fin. The yaw command is fixed
at +1.5 and the pitch command is fixed at +0.2, while the roll command sweeps from
-5 to +5. For roll commands in a neighborhood centered at zero, the mixer delivers
the requested roll, pitch, and yaw moments simultaneously. However, when the roll
command magnitude exceeds 1.0, the fin deflections begin to saturate, and errors are
introduced in the resulting moments. For this particular choice of commands, the
achieved yaw moment begins to drop toward zero as the roll command magnitude
increases above 1.0. Eventually, the pitch moment also drops when the roll command
magnitude exceeds 3.6. The achieved roll moment is no longer equal to the
commanded value, having a reduced magnitude, so that the roll response plot looks
like a curve instead of a straight line. Actually, all the responses are piecewise-linear,
but a series of closely-spaced saturation “events” gives it a curved appearance.

When a feedback control system is used with a conventional output mixer,
such as the one of FIGURE 14, the moment target errors for large input commands
can have undesirable effects on system stability and performance. Cross-channel
coupling and tracking errors are produced when uncommanded changes in yaw and
pitch moments appear in response to roll commands. These errors degrade the
tracking performance. Failure to provide the full requested roll moment also degrades
stability, because the incremental gain of the system is reduced. A typical approach to
avoiding these undesirable effects is to restrict the inputs to the mixer so that the
output stays within the linear region. For this example, the roll command would have
to be restricted to the =1 range, even though the fins are capable of producing roll
moments in a +4 range. Thus, the control power envelope has been restricted to 25%
of its true limits.

In accordance with aspects of this invention, an L1 Optimizer can be used in a
controller to distribute a set of total control power commands, such as total forces or

moments, among a larger, redundant set of control effectors, while enforcing the
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position and rate limits of each control effector, and while imposing additional
equality and inequality constraints on the control effector commands. This allows the
plant’s full range of achievable control power to be exploited by a controller.
Priorities can be placed automatically upon the use of different control effectors, so
that some become “primary” controls to be used first, with the other “secondary”
controls to be used when the primary controls have saturated. Also, priorities can be
placed upon the achievement of the total control power commands. For example, an
output mixer for producing roll, yaw, and pitch moment could be prioritized to trade
off yaw in favor of roll, or vice versa. Such prioritizations of control effectors and
control power commands are similar to the prioritization of regulator channels
described in PART 1, and are achieved using the L1 cost function weights.

To accomplish this, the L1 Optimizer solves directly for control deflections
using the F matrix, instead of applying a prestored pseudo-inverse G matrix that
becomes invalid under control saturation. To produce a well-posed optimization
problem, additional constraint signals are added to penalize undesirable control
activity so that a unique optimal solution is defined. In general, there must be at least
as many rows (constraints) in the F matrix as there are columns (controls).
Otherwise, there could be an infinite number of solutions all producing the same cost
function value.

FIGURE 17 is a diagram of an embodiment of an L1 Optimizer for use in
output mixing. Its primary input signal is the commanded target vector ., containing
the desired values for all the target quantities produced by the control effectors.
Typically, these are physical quantities such as forces, moments, accelerations, nozzle
areas, fluid flow rates, etc. This target vector is differenced with a vector u,,
containing the actual values for the same quantities. The differencing is accomplished
at a fourth combiner 86. The output difference is an error vector u,, which is then
used to generate an L1 cost function at block 88. The output of block 88 is inputted
to an L1 Solver at block 90, which accomplishes the remaining L1 Algorithm tasks.
The output of block 90 is the vector u, containing commanded values for the control
effectors. The control effector output vector u is provided as an input to the plant
and as an input to a target gain matrix F. The output of the matrix F is combined
with the bias vector uy, at a combiner 94 to form the actual target vector u,.

The target vector u, includes direct commands such as roll, pitch, and yaw,
and also includes the nominal values of the fixed constraints, such as control ganging
constraints, nominal trim settings for secondary controls (to be perturbed only when
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primary controls are saturated), and limits for any inequality constraints. In general,
the actual targets in u, can be nonlinear functions of the controls in #. The
relationship can be approximated by a linearized matrix-vector equation: u,=Fu+
uy,, where u is the control vector and uy, is the bias vector to hold the value of u, when
u=0.

The L1 Optimizer is used to minimize the cost function based on the error
vector u,, where u, = u, —u, = F u + uy, — u, and where u is the vector of unknown
control signals. The cost function includes a set of penalty weights Wpi and Wy;, as
described in PART 4 below, to penalize the elements of u, for going positive or
negative, respectively. The total cost function J is defined by this formula:

J= ZWP,. max(O, ue) ZW max( e,) where u, = Fu+u, —u,

i=l i=]

The lower and upper bounds on each control %; are given by up; and u,;.
These are the deflection limits on each control. Slew rate limits can be handled
directly by restricting the upper and lower bounds to the achievable range at each time
frame, on an interval centered at the current control position.

Discussed below are various types of constraints in which an L1 optimizer
output mixer formed in accordance with the present invention is capable of
addressing. This list is not conclusive, but rather illustrative of the flexibility of the
present invention.

The present invention output mixer can easily address equality constraints.
For example, if the commanded target values for force and moment need to be
satisfied exactly when possible, then they are handled as equality constraints by using
equal penalty weights W, and W, for positive and negative values of u,.

The present invention can address the relationships between primary and
secondary controls. It is common for multi-variable control systems to designate
certain control effectors as primary or secondary. The primary controls are used first
to generate the desired control target values, and the secondary controls are used only
if the primary controls are unable to meet the targets alone. For example, an airplane
might preferentially use its outboard ailerons rather than its inboard ailerons to
generate roll moment. An L1 output mixer can automatically redistribute control
power to the secondary effectors when needed. The secondary effectors can simply
be assigned to nominal, fixed values via u.. The difference between actual and
nominal values, normally zero, can be treated as a weak equality constraint by using
small, equal values of penalty weights Wp and W,. The optimal L1 solution will
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respect this constraint when possible, but will violate it when necessary by using the
secondary effectors to meet the higher-priority target values in u.

The present invention can address ganging or gearing of controls. Another
known practice in control systems design is to “"gear" sets of control effectors
together through fixed mathematical relationships. A typical example is to move pairs
of left and right control effectors in a symmetric or antisymmetric fashion. For
example, the left and right ailerons might move by equal and opposite amounts. This
can be enforced in an L1 output mixer using weak equality constraints. If the sum of
left and right aileron deflections is constrained to zero, it produces antisymmetric
motion. If their difference is constrained to zero, it produces symmetric motion.
Using relatively weak penalty weights on these constraints allows the L1 mixer to
violate these rules when necessary to match the higher-priority target commands.

The present invention can address inequality constraints. An L1 output mixer
can enforce inequality constraints on the achieved target values in u, by setting /¥, to
zero for upper bounds or Wp to zero for lower bounds. In such cases, . provides the
value of the bound itself. In the aerospace field, typical quantities that can be
constrained in this way include total acceleration, total jerk (the rate of change of
acceleration), structural load limits such as hinge moments or wing bending moments,
electrical power consumption, hydraulic fluid flow rates, and many others. Many such
constraints are linear (or nearly linear) functions of the controls. Some are nonlinear,
such as electrical power, which is proportional to the square of motor voltage or
current. However, smooth nonlinearities in elements of #, can be well approximated
by linearization at the current control values.

The present invention can address nonlinear control targets. In general, a
nonlinear control target function u, = f{z) can be linearized by the approximation u, =
Fu +u, . The output mixer makes one call to the L1 Optimizer for each such
linearization. If necessary, multiple calls can be made, using the gradient matrix F and
bias vector uy, at each successive value of u to solve the nonlinear target function with
high accuracy. Alternatively, the linearized problem solution can be used as the actual
control in each time frame, with the result converging to the true nonlinear optimum
over time,

The present invention can address slew rate limits. Limits on the values or
rates of change of the controls # can be handled directly in discrete-time control
systems, without the need for adding rows to the F matrix and new targets to u,. The
L1 Optimizer accepts upper and lower bounds on u directly. To accommodate slew
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rate limits, the upper and lower bound interval should simply be the intersection of the
deflection limit interval and an interval centered about the current control values. For
example, if the current aileron deflection is 2.0 degrees, and the maximum rate of
change is 0.25 degree per time frame, then the upper and lower bounds should not
exceed the interval from 1.75 to 2.25 degree during that time frame, even if the total
deflection limits are +30 degree.

The present invention can address failure reconfiguration. One very useful
advantage of L1 output mixers over conventional mixers is the ability to
accommodate known control effector failures immediately. If a control effector is
known to have failed to a specific control value (such as zero), this can be handled
directly by setting the upper and lower bounds to that value. Alternatively, the failed
control's column of the F matrix can simply be removed, and a reduced-size problem
solved. Because the number of possible failure combinations and failure modes in a
large set of redundant control effectors is so large, conventional mixers can fail to
account accurately for this important issue.

The present invention can address absolute value constraints. One type of
nonlinear constraint requires special treatment. If a sum of absolute value terms needs
to observe an equality or inequality constraint, a straightforward linear matrix
representation of the problem cannot account for this directly, because the derivative
of an absolute value term is discontinuous at zero. An example is a limit on nozzle
area or total thrust for bi-directional thrusters: the thruster setting can be negative or
positive (to represent left or right thrust, for example) but the magnitude of the thrust
must be constrained. There is a relatively simple way to handle this in an L1 output
mixer. Assume the need to use the absolute value of a variable x, either alone or in
another equation. Then define a new unknown variable x4 to be solved for in the u
vector, to contain the absolute value of x. Define two inequality constraints, having
strong W, penalty weights, to enforce these relationships: x, + x 2 0 and x, — x 2 0.
Then the L1 Solver will force x, to equal the absolute value |x| in order to eliminate
these inequality penalties.

The present invention can address prioritization of target values. The
individual target values in u,, are given priorities through the setting of the ¥ and Wy
penalty weights on the error values u, = u, - u.. Increasing the penalty weight on a
given error value will increase its priority for matching its target value u, to its
commanded value u.. For inequality constraints, increasing the penalty weight causes
the constraint to be treated more like a hard, inviolable constraint. An aerospace
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vehicle example might be to make the target pitch acceleration more important than
the target yaw acceleration.

The formulation of optimization elements for use with an output mixer having
an L1 Optimizer is as follows. For output mixing, the cost function J depends only on
the target error vector u,. The L1 Optimizer is used to solve for the control vector u.
Therefore, it is necessary to determine the most efficient manner of mapping u into u,.
The definition of the cost function J for output mixing is:

J:Zm:Wp,. max(O,u ) ZW max( el)

i=l

m number of elements in u,

U ith element of u,,

W, i penalty weight on positive u,;

W i penalty weight on negative u,;

The W,; and Wy; weights penalize the elements of the target error vector u,
for being positive or negative. In most cases, prioritized equality constraints are
desired, so the corresponding Wpi and W; elements will be equal in magnitude. An
inequality penalty, such as an upper bound on some linear combination of « elements,
would have W, or W; terms set to zero.

The basic form for describing the cost function J uses the composite vectors
pr Wt €, X¢, and b, and the matrix 4, as follows:

J =iWPﬁ max(O,e ) ZW max( eﬁ) where e, = 4,x, + b,

i=l i=l
The elements of the vectors Wy, Wy, and e, are given by Wy , Wy, and ey
respectively. The optimal solution vector x is the output of the Algorithm. The
vectors Wy, Wy, €, X;, and by, and the matrix 4 are defined in terms of the output
mixer vectors and matrices as follows:

=w] w=m] e=[w] x=ll 4-=[F]

bt = [ub - uc]
Using this description, the Dailey .1 Optimization Algorithm can solve for the
optimal solution vector x,, which here consists of simply the control vector u. The
Algorithm takes Wy, Wy, 4, , and b as inputs, together with upper and lower
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bounds on the x; elements, and returns the optimal solution vector x;. The upper and
lower bounds on x; are simply the control effector limits u, and ;.

FIGURE 18 illustrates the results of implementing an L1 Optimizer for output
mixing in the missile fin example of FIGURE 15. Starting with the same F matrix
used before to define roll, pitch, and yaw in terms of fin deflection, the first step is to
add an additional row defining a constraint equation on the four fin deflections that is
normally desired to be zero, and which corresponds to “wasted” fin motion producing
no net change in pitch, roll, or yaw. Such constraint equations can be found easily by
applying the singular value decomposition (SVD) to the F matrix, to identify the
nullspace of the matrix. Since this target quantity is orthogonal to the motions
producing roll, pitch, and yaw, the constraint signal is given the name “ortho.” The
motion corresponds to feathering adjacent pairs of fins toward each other so that their
forces, except for drag, cancel out.

The new, expanded F' matrix below adds a new “ortho” row to the F matrix
used for the previous, conventional example. In the previous example, the matrix
pseudo-inverse G causes this “ortho” quantity to be zero when the fins are
unsaturated. In general, the ortho quantity corresponds to wasted control activity, for
example, creating drag without any useful pitch, roll, or yaw. Therefore, it is
desirable to constrain the ortho quantity to zero.

roll +1 +1 +1 +1 finl Sinl
yaw -1 0 +1 O Sin2 fin2
pitch 1o +1 0 -1 fin3 = F fin3
ortho +1 -1 +1 -1} | fin4 fin4

The output mixer using the L1 Optimizer exploits this fourth constraint
directly to determine and deliver the full range of achievable control power. When
one or more fins is saturated, the L1 optimizer can still deliver the commanded
moments by allowing the ortho constraint term to become nonzero. Accordingly, the
ortho output error is given smaller ¥, and W, penalty weights than the roll, pitch, and
yaw error terms, so that the optimal solution will make ortho nonzero before it allows
roll, pitch, or yaw error to become nonzero. -

FIGURE 18 illustrates the results of sweeping through a range of roll
commands with this L1 optimal constrained output mixer, using the 4-by-4 matrix F
given above, with clipping limits of +1 on each fin. For this example, the Wy and Wa
penalty weights for roll were set to 10.0, the weights for yaw and pitch were set to

PCT/US00/11482
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1.0, and the weights for ortho were set to 0.1. Other conditions are identical to the
previous conventional example. The yaw command is fixed at +1.5 and the pitch
command is fixed at +0.2, while the roll command sweeps from -5 to +5.

As with the conventional mixer, for roll commands in a neighborhood centered
at zero, the mixer delivers the requested roll, pitch, and yaw moments simultaneously.
The conventional mixer failed to deliver the requested moments for roll command
magnitudes above 1.0, when one or more of the fins became saturated. However, for
this L1 output mixer, all three commanded moments are produced exactly, with no
error, for roll command magnitudes up to 2.3. Thus, the linear control power
envelope has been more than doubled, compared to the conventional mixer, for this
set of inputs. For this example, it is impossible to deliver all three commanded
moments beyond this point with the given fin deflection limits. However, even when
the input commands are impossible, the L1-optimized output mixing provides useful
results by prioritizing the constraints through its penalty weights.

In the range of roll moment magnitudes from 2.3 to 3.6, the mixer continues
to deliver exactly the requested roll and pitch moments, but the achieved yaw moment
drops steadily. From 3.6 to 4.0, the pitch moment also drops to zero. Beyond 4.0,
the mixer delivers a pure roll moment of 4.0, the maximum possible, with zero values
for yaw, pitch, and ortho. This prioritization behavior occurs because roll error was
given a higher penalty weight than the other constraints. Similarly, ortho is the first
constraint to be sacrificed, because its penalty weight is lower than the others.

FIGURE 19 illustrates the functional difference between the use of a
conventional output mixer verses the output mixer of the present invention. In
particular, FIGURE 19 illustrates the range of achievable zero-error roll and yaw
moment that an optimal control system using an L1 Optimizer for output mixing and a
conventional output mixer can produce, for a pitch moment value fixed at zero.
“Zero-error” means that within this envelope, the roll, pitch, and yaw command
targets are all met exactly by the mixers. Because the conventional mixer introduces
command matching errors as soon as any fin becomes saturated, its envelope is a
four-sided diamond shape corresponding to the four fins reaching their saturation
limits. The L1 optimal mixer encloses a significantly larger region, because it can
tolerate up to two saturated fins before it must give up on matching pitch, yaw, or roll

exactly. The additional region covered by the L1 output mixer is shaded in the
diagram.
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These zero-error control power envelopes correspond to the range of
moments that a linear control system could command before encountering stability or
cross-axis coupling problems, caused by unsatisfied moment commands or
uncommanded cross-axis moments.

The present invention output mixer is useful in a wide range of control system
applications. The mixer can be used in a controller to distribute a set of total control
power commands, such as total forces or moments, among a larger, redundant set of
control effectors, while enforcing the position and rate limits of each control effector,
and while imposing additional equality and inequality constraints on the control
effector commands. The technique allows the plant’s full range of achievable control
power to be exploited by the controller. Priorities can be placed automatically upon
the use of different control effectors, so that some become “primary” controls to be
used first, with the other “secondary” controls to be used when the primary controls
have saturated. Also, priorities can be placed upon the achievement of the total
control power commands. For example, an output mixer for producing roll, yaw, and
pitch moment could be prioritized to trade off yaw in favor of roll, or vice versa.
Such prioritizations of control effectors and control power commands are similar to
the prioritization of regulator channels described in PART 1, and are achieved using
the L1 cost function weights.

Examples of control effectors include aircraft or missile control surfaces,
thruster nozzle areas, hydraulic servo valves, electric motors and servos, engine
controls, and others. Nearly all practical control effectors have upper and lower
bounds, such as bounds on control surface deflection angle, and also have slewing
rate limits. One example of additional equality constraints that the L1 output mixer
can handle is an area matching constraint, in which the sum of several thruster nozzle
areas must be held constant. An example of an inequality constraint in a hydraulic
system, would be keeping the sum of all servo valve flow rates below a set maximum.

In conventional linear programming (LP), all inequality and equality
constraints are generally hard and inviolable. That limitation has made LP difficult to
apply successfully to control problems in the past, since there was no way to prioritize
the constraints, and since many problems had no feasible solutions. One of many
ways that the Dailey L1 Optimization Algorithm differs from LP is that the L1
Algorithm handles constraints as penalties rather than as hard constraints.
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PART 3

This section describes a general feedback control system to fully exploit
control power limits using a single L1 Optimizer to perform the output mixing of
PART 2 and the anti-windup and automatic command limiting features of PART 1.
This overall general optimal control system addresses antiwindup, automatic
command limiting, channel prioritization, output mixing, control effector
prioritization, control and state limit constraints, and gain-scheduled linear controls.

PART 1 described how to use L1 optimization to solve for injection errors at
the input of a control system, in order to provide prioritized command channel
limiting and to prevent cross-channel coupling when the controls saturate. The
control system of PART 1 also prevents integrator windup during control saturation,
although that feature does not depend directly upon L1 optimization. The controller
structure was explained first for single-channel systems and then for multiple channels.
The technique in PART 1 was restricted to “square” systems, having equal numbers
of controls and regulator command channels, because it required a matrix inverse.

PART 2 described how to create output mixers for “non-square” systems,
having more controls than commands, by using the Dailey L1 Optimization Algorithm
to distribute the commands to the control effectors. The technique in PART 2
handles control saturation, control effector prioritization, failure reconfiguration, and
additional equality constraints and inequality constraints on the controls. PART 2
treated the output mixer as a self-contained system acting upon the outputs of a
separate control system. It did not address automatic command limiting at the inputs,
asin PART 1.

PART 3 will now describe how to combine the output mixer of PART 2 with
the antiwindup command-limiting structure of PART 1. The result is a general-
purpose arrangement for non-square multi-channel control systems, having more
control effectors than regulator command channels. A single, combined optimization
problem provides all the benefits claimed in PARTS 1 and 2 simultaneously. A
significant advantage in combining them is that the automatic command limiter can
then use the full range of available control power from all control effectors, instead of
limiting the input commands at the point where the first control effector saturates, as
with a conventional output mixer. This provides significantly higher command
tracking performance, as the example will show.

FIGURE 20 is a diagram of the general-purpose optimal control system
formed in accordance with the present invention. It combines the elements described
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above in the square system controller of PART 1 and the output mixer of PART 2.
The diagram in FIGURE 20 is similar to FIGURE 12, which shows the optimal
control system for “square” systems. The difference in FIGURE 20 is that the control
vector u is no longer taken from the output of a mixer gain matrix G. Instead, it is
directly solved for by the L1 Optimizer at block 100, in a manner as described in the
output mixer of PART 2. A target gain matrix F and control bias vector u, define
the relationship u, = Fu + uy, between u and the achieved control target quantities in
vector u,, which will usually be forces, moments, accelerations, and related quantities.
The pseudo-control output command from the linear control system is the vector u_.
The target error vector u, = u, — u,, and a set of penalty weights, are used to define
part of the cost function for the L1 Optimizer, as in the output mixer of PART 2.

The remainder of the L1 cost function is built up by penalizing the magnitude
of the injection error vector y,, as in PART 1. The objective is to make y, as small as
possible subject to the requirement that u, = 0, at least for those elements of u, that
represent unsatisfied control power commands. This is handled by placing relatively
large penalty weights on such elements of #,. In this way, the output signal is always
required to respect the true physical limits of the plant. At the same time, the output
mixer ensures that all of the control effectors in « are used within their limits to
deliver the commanded target u_ (force, acceleration, moment, etc.) as long as it is
possible to do so. When it is not possible to meet the target u,, the L1 Optimizer will
adjust the injection error y, until u, is reduced to an achievable value. The penalty
weights on y, can be prioritized to favor errors in some regulator channels over
others, as with the “square” controller of PART 1.

As will be appreciated from a reading of the above, the present invention
provides a remarkable set of capabilities in a single control system. By performing the
optimal output mixer function simultaneously with the command error injection
function, this general-purpose L1 controller can not only prevent integrator windup
and cross-channel coupling as in PART 1, but can also operate freely through the full
envelope of available control power, even in non-square systems having many more
control effectors than regulator channels. The output mixer capabilities described in
PART 2 still apply, including failure reconfiguration, equality and inequality
constraints, assignment of secondary controls, control ganging or gearing, control
effector position and rate limits, and absolute value constraints. Finally, the injection
errors in y, can be prioritized for tighter regulation of some channels than others, with
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injection errors appearing only when it is physically impossible to meet the targets
using all the available controls.

The vector signal relationships in FIGURE 20 are summarized as:

e =Ve— Vet e

uy =Kihe+ered+Kpsypd+Kfycd
eq(ntl) =e(n+l)—en)

Ypa(mtl) =y, (n+1) -y, (n)
Yea(r+1l) =y, (n+l)-y.(n)

ug (n+1) =u,(n) +uy(n+l)

Uy =u,—u, = Fu+ uy—u,

The L1 Optimizer at block 100 is presented with its problem data in a form
consisting of the total problem matrix 4, total target vector b, , positive and negative
penalty weights Wpe and Wy, and the upper and lower bounds on the unknowns to be
solved for. The formulation of these matrices and vectors in terms of the quantities in
FIGURE 20 are given later in PART 3.

To demonstrate the effectiveness of the arrangement in FIGURE 20, the
present invention general purpose optimal control system is now applied to the two-
armed manipulator linkage example described in PART 1. In PART 1, the two-armed
manipulator example was presented using only the two “shoulder” motors, T, and T.
All four control motors may be used now, by adding the “elbow” motor torque
controls T3 and T, to the problem. The linear control system used in PART 1 is used
again here (refer to PART 1 for the derivation and values of the gain matrices Ko, K,
K;, and Kps.) The output of these linear gain matrices is a pseudo-control target
vector u,, consisting of desired x and y axis accelerations. In PART 1, a square mixer
matrix G was used to map these targets into the motor torques T, and T, by applying
the inverse of the corresponding columns of the target plant gain matrix F. The
requirement for a matrix inverse restricted the method to square systems.

In PART 3, the entire 2-row, 4-column F matrix can be used. The L1 output
mixer function calculates the optimal values of T,, T,, T3, and T4 to deliver the
requested accelerations. In addition, x and y command injection errors can be solved
for, as in the PART 1 example, to ensure that the linear control system does not drive
the target command vector u, beyond what is physically achievable.

Weak penalty weights, with values of 0.01, are placed on the controls T3 and
T4 This causes them to be treated as “secondary” controls during output mixing, to

be used only when the T, and T, “primary” controls are unable to deliver the
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commanded acceleration. Stronger penalty weights, with values of 0.1 and 0.3
respectively, are placed on the x and y position command injection errors in y,. A
stronger penalty is placed on y error than on x error, so that the system will tend to
inject x error before y error when the nominal linear control system demands
unachievable acceleration levels. The strongest penalty weights, with values of 100.0,
are placed on the elements of the target command error vector u,, so that the L1
Optimizer will treat these as hard constraints, using command injection errors in y, to
ensure that the control system never requests unachievable acceleration levels. The
outputs of the L1 Optimizer are the x and y injection errors in y,, and the four control
torques Ty, T, T3, and Ta4. All four torques are limited to the range + 0.16 N-m, as T,
and T, were in PART 1.

FIGURE 21 plots the time histories of several variables for this control
system. The initial conditions, limits, and step command are identical to those used in
the example in PART 1. A large x position step command is introduced at f = 1 sec,
while the y position command remains steady. As before, the linear feedback and
feedforward gains produce a command that saturates the control effectors. Also as
before, the linkage x position moves rapidly to its target, with zero overshoot, while
the y position remains steady at its initial position with no cross-channel coupling
effects.

In this example, the T; and T, motor torque commands at the linkage
“elbows” are available; the PART 1 example used only the T, and T, torques for the
linkage “shoulders.” Nevertheless, the step command is still large enough that even
all the control power available cannot satisfy the linear control system's nominal x
acceleration command, even using four motors. Therefore, the x error injection
signal, calculated by the L1 Optimizer, provides a brief 1-second triangular pulse, so
that the total command (external step plus injection error) ramps down gradually over
that 1-second period to its final value. Comparing this to the PART 1 example
shows, however, that the injection error now disappears in only 1 second, rather than
2 seconds as before. The additional control power from T3 and T, allow the system
to return to normal linear operation more quickly.

Examining the motor torques shows why this is so. At the initial step, control
torques T,, T,, and T, saturate to their limits, while T; is unsaturated and follows a
curved path. This combination of torques provides the maximum possible x-axis
acceleration under the constraint that y-axis acceleration remain zero. After one
second, both T; and T, ramp quickly down to zero and remain at zero for the rest of
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the time history. That occurs because the output mixing penalty weights discourage
the use of these controls: T3 and T4 are penalized in the cost function while T; and T,
are not. Thus, Ts and T, are treated as ”secondary” controls, and are used only when
necessary to deliver the x or y acceleration targets.

Because the penalty weights on T; and T4 are weaker than the penalty weights
on x and y command injection error, the L1 Optimizer will allow T3 and T4 to be used
when they will reduce the size of the injection error. In other words, tracking the x
and y position commands as closely as possible is more important than avoiding the
use of the secondary controls. This prioritization establishes the requirement that the
controller should use all the available control power to track its commands, even
when some controls are in deep saturation. This behavior is an important advantage
when combining the output mixer of PART 2 with the command-limiting controller of
PART 1.

The strongest penalty weights are those on the acceleration errors between the
linear control system's request and the actual acceleration achieved by the output
mixer. By making these weights strong, these errors are treated as absolute
constraints that are always satisfied. Whenever the nominal linear control system
would have demanded an unachievable acceleration, the injection error signals will
limit the commands so that the acceleration demand is reduced to an achievable level.

Comparing FIGURE 21 against FIGURE 13 for the “square” L1 controller
example, the total time to acquire the step command target has been reduced by about
1 second. The time spent in control saturation was reduced from 2 seconds to 1
second, which accounts for the difference.

The formulation of L1 optimization elements for use with the present
invention general purpose control system is as follows. The cost function J for the L1
Algorithm is formulated below for the general-purpose L1 controller. In PART 1, the
“square” controller’s cost function J penalized the injection error vector y, , and also
applied strong constraint penalties to force the control vector u to respect its upper
and lower bounds u, and %) . Now that output mixing is part of the controller, it is no
longer necessary to use penalty weights to enforce these bounds on u. Instead, the
control u is solved for directly by the L1 Optimizer, and it applies the bounds directly.
The L1 Optimizer also solves for the command injection error vector y,, as in
PART 1.

However, it is now necessary to put penalty weights on the controller target
error vector u, = u, — u, = Fu + uy, — u, so that the target vector u, always remains

PCT/US00/11482



10

15

20

WO 00/68744

-38-

physically achievable. Therefore, the matrices that map Ye and u into u, must be
included in the 4; and b; problem matrix data presented to the L1 Optimizer.

At each time step, the controller calculates the optimal values of Ye and u to
minimize J, which is a function of y, and u, , where u, includes the full set of desired
output mixer constraints, such as the “ortho” signal in the example of PART 2.
Because u, depends upon y, through the er and K; gain matrices, this technique
automatically accounts for the control system gains, even in gain-scheduled linear
control systems where the gain matrices change continually.

The symbols in the formula for the cost function J are defined below.

r number of elements in y,

m number of elements in u,

Vei ith element of y,,

u; ith element of u ”

ug; i ith element of uy

uy; i upper bound of control signal ;

uy; lower bound of control signal u;

Wei i penalty weight on y..

Wi i penalty weight on positive .

W.i__i penalty weight on negative u;
The cost function J is defined as:

I=3W,

v+ W, max(0, w,) + 3, max(0, -1,

i=l i=1 i=l

As in PART 1, the first term penalizes the absolute values of the injection
error vector elements. By assigning the W,; penalty weights, relative priorities are
placed upon each regulator channel.

The second and third terms no longer enforce the upper and lower bounds of
u, as they did in PART 1. Now they correspond to the penalty terms in the L1 output
mixer of PART 2. The second term penalizes the elements of the mixer’s target error
vector u, when they are positive, and the third term penalizes them when they are
negative. These penalties should be large for those elements of u, that represent
control power errors (e.g., acceleration errors, force errors, etc.) However, other
elements of u, may represent “soft” constraints on secondary controls, or ganging
constraints like the “ortho” signal in the PART 2 example. For these terms, the

PCT/US00/11482
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penalty weights should be smaller, so that the output mixer can override them when
necessary to deliver the needed control power.

When the output mixer is able to deliver the linear control system’s nominal
control power request, the optimal solution will set y, = 0, and the nominal linear
control system response remains in effect. Note that, unlike the PART 1 “square”
controller, this general-purpose controller can enforce the nominal linear control
system gains even when some controls are saturated. As long as some combination of
controls in u is able to deliver the control power, the injection error y, will be zero
and the linear control system behavior is preserved.

The control difference vector u4 and the command target vector u, depend
upon the injection error vector y, and the control vector u through the relationships
below. The vector e,y refers to the value of e from the previous time step. The
Vector u, 44 is the value of u from the previous time step.

u, = K.he +K,.e, +Kﬂypd +K,y.,

e =Y, -Vt

e, =e—e,,

uy = (K + K, ), +(Kh+ K, )0, 9.~ K s + Ky pa + K Ve

U, = U g T Uy

u, =Fu+u, —u,

Using the above matrix formula for ., the cost function J can be represented

in the basic matrix form used by the Dailey L1 Optimization Algorithm. The basic
form is given by:
J= Z W, max(O, e,,.) + Z W, max(O, - e,,.) where e, =A4,x, +b,
i=1 i=l
Here the elements of the vectors Wy, Wy, and e, are given by Wy, Wy, and
ey; respectively. The optimal solution vector x, is the output of the L1 Algorithm.
The vectors Wy, Wy, €, x;, and b, and the matrix 4, are defined in terms of the

control system vectors and matrices as follows:

- . W, Ve Y. y I 0
m_WF I'Vn:'_"/" el—u. X, = u l_Kih+Kp¢ F

0
§ =[ub_uoou_(Kih'*'KP«)(yr'—yC)+Kp¢eold—KPfyP"—Kfy"":|
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Using the above matrix description, the L1 Algorithm can solve for the
optimal solution vector x; , which includes y, and  as elements. The Algorithm takes
Wpt, Whe 4y, and b as inputs, together with upper and lower bounds on the x;
elements, and returns the optimal solution vector x;. The upper and lower bounds on
u are simply the control effector limits #, and u; , as with the output mixer of
PART 2. The upper and lower bounds on y, should be set to large values so that they
do not affect the solution.

As will be appreciated from a reading of the above, the present invention
provides an optimal control system having tremendous advantages. Because the
present invention controller can include conventional linear control system gain
equations as constraints, it is compatible with most current-day control system design
practices. In this sense, it can be viewed as a higher-level “wrapper” that encloses a
conventional control system, and that automatically solves and prevents a wide variety
of problems that have long plagued control system designers. In addition, should
circumstances warrant, it is possible for a designer to select only those aspects
presented herein that are directly useful for his or her particular application.

As the examples have shown, the L1 Optimizer allows the control system to
make maximum use of all the available control effectors, and to “ride the limits” of the
control power envelope to deliver the maximum possible performance. By fully
exploiting all the controls while enforcing general constraints, product weight, cost,
and power consumption can be reduced by eliminating control hardware and/or
reducing control effector performance requirements. Alternatively, aspects of the

present invention can boost the performance of existing systems without adding any
new control hardware.

PART 4

The Dailey L1 Optimization Algorithm is new and is capable of solving
piecewise-linear convex optimization problems. When implemented in an electronic
device or other type of computer system, the Algorithm is referred to as an L1
Optimizer.

The Algorithm (or Optimizer, as implemented) accepts input data in a basic
matrix form consisting of the matrices and vectors 4, b, Wp , Wa, Xy, and xp, listed

below. The subscript 7 after any vector name denotes the ith element of that vector.

n number of columns in 4

number of rows in 4
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initial problem description matrix

vector of initial values for e (when x = 0)

vector of unknowns

error vector

NP iR oPoe im

the L1 cost function

=K

vector of upper bounds for x

vector of lower bounds for x

dual vector to x, for handling upper bounds

penalty weight for positive e elements

penalty weight for negative e elements

problem description tableau matrix

first column of C

remaining columns of C

a candidate pivot column of G

scalar parameter for one-dimensional searches

vector of row variables

vector of column variables

index vector for column variables in v,

r>>‘.'-\w'n< S ~ =R Q\”Qﬁ.5§\<’§

index vector for column variable in v,

S

weighted cost reduction score

The cost function J is given by:

J= Zm:Wpi max(O, ei) + Zm: W, max(O, B e‘)

i=1 i=l
e=Ax+b

xli < xi = xui

PCT/US00/11482

In general, the Dailey L1 Optimization Algorithm assembles the input data
(also referred to as "problem" data) into a single tableau matrix C. The value of the
cost functionJ is calculated using the tableau matrix C. Row and column pivoting
operations are applied to the tableau matrix C until the cost function J converges to
an optimal cost function value. The paragraphs below first provide a description of
the formation of the tableaux matrix C, the calculation of the cost function J, and the
transformation provided by the pivoting step. Next, is a description of how the row
and column pivot locations are selected. This is followed by a description made with
reference to the flow chart of FIGURE 22.
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Formation of the Tableau Matrix C

The formation of the tableau matrix C is accomplished by initially loading
vector b and matrix 4 into a single matrix, with vector b in column 1 and matrix 4 in
columns 2 through n+1:

c=[p4] = s=[r0]
Vector f and matrix G refer to the first column of tableau matrix C and the remaining
columns of C, respectively. Initially, vector f = vector b and matrix G =matrix 4. As
the Algorithm proceeds, the contents of tableau matrix C are transformed at each
step.

The tableau matrix C represents a mapping from the vector of column
variables v, into the vector of row variables v, , as follows:

ve =/+Gv,
Initially, the error vector e is used as the row variable vector v,, and the vector of
unknowns x is used as the column variable vector v. Thus, the relationship between
them is initially given by:
e=v, =f+Gv,=b+Ax

The Dailey L1 Optimization Algorithm selects pairs of variables, one from v,
and one from v,, to be exchanged via a matrix pivoting operation. The two variables
used are a row pivot (one element of v;) and a column pivot (one element of v;). This
pivoting step is equivalent to algebraically exchanging these two variables between the
lefi-hand and right-hand sides of the equation v, =f+G v . Thus, over time, both v,
and v, will contain variables from both e and x, with the unknown x variables tending
to migrate from v, to v.. The algebraic pivoting operation transforms all the elements
of C at each step, and involves the same formulas used in standard Gauss-Jordan
elimination. However, the method used herein to choose which two variables to
exchange is unique to the Dailey L1 Optimization Algorithm.

Calculation of Cost Function J

The value of J is determined by assuming that v, = 0; i.e. all the column
variables are zero. With that assumption, v, = £, so the values of the row variables
can simply be read directly from the first column of C. Recall that v; contains both x
and e variables, and that x variables do not contribute directly to the cost function J.
Therefore J can be calculated from C by stepping through each element of v,=f. If
an element is an x variable, ignore it. If an element is an e variable, apply its Wp
weight if positive or its Wy weight if negative. Accumulate the total to find J.
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As the elements of v, and v, are repeatedly exchanged, their identities as
elements of the original e and x vectors must be preserved. This is handled by
maintaining two index vectors of integers, one vector each for vector v, and vector Ve,
and by assigning a unique index number to each element of ¢ and x. As each pivoting
step is performed, the two corresponding index vector elements are exchanged. This
allows each element of vector v, and vector v. to be traced back to its original element
of e or x. This is important for calculating the cost function.J, in which the W, and
W, weights must be known for each e variable. It is also important for finding the
upper and lower bounds for each x variable.

The Pivoting Step

The choice of row and column pivots is made to reduce the cost function J at
each step. The formulas used to perform the pivoting step are given below. To
simplify the derivation and explanation, assume without loss of generality, that the last
row and column have been chosen as pivots in an example tableau matrix C. Since Ve
=f+ G v, the vectors and matrices may be defined as follows:

G:[G” glz:l le:f;:l ” =[vrl] v =[vcl:|
&n 8En A " va © e
where element gy, is the pivot element and is assumed to be nonzero. Further, g2, /2,
Vi2, and v, are scalars. The submatrix g5, is a row vector, while gy, fi, Vi1, and v, are
column vectors and Gy, is a full matrix.
The relation between v, and v, can be written as a system of equations:
Va =fi+ G va + g Ve
Vo =fo+ g Va + gn Ve
Using standard linear algebra, scalar v, can be isolated onto the left-hand side of the

second equation.  Substituting that expression into the first equation yields a
reordered system of equations having v, and v., on the left-hand side:

. =(f1 B gufz) +[Gn _ gugz.)vd +(_g,l)v'2
8n 8 En

vc2 = (_ .f_z) + (— _g.?.l.) vcl + (_1-) vr2
g22 g22 g22

Rewriting the transformed tableau matrix C contents (denoted by hats) using these
formulas produces:
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8./ 81282 82
. A . f-8uls g _Eufn S
.{1 G, & _ : 82 " 82 8n
fi &y &n S _ & _ b
47 822 82

This algebraic transformation is not new, but is described here to make clear
the relationship between the row and column vectors v, and v, and the tableau matrix
C. After each pivoting step, one pair of variables will have been swapped between Ve
and v.. Since the evaluation of the cost function J always assumes that v, = 0 so that
v, = f, the choice of which two variables to swap must be made to reduce J at each
step. The method used to choose these two variables (the row and column pivots) is
unique to the Dailey L1 Optimization Algorithm and is described below.

Selection of Row and Column Pivots

Prior to describing the selection, a description of how upper and lower bounds
on x are treated and a description of the convex nature of cost functionJ are
provided.

Recall that in the problem formulation, each element x; of the vector of
unknowns x has a lower and upper bound:

X, S£x, £x,,
The Algorithm simplifies the handling of these bounds by subtracting the lower bound
x); from each element of x and its corresponding upper bound x;, in a simple change
of variables. The same notation x; to denote these transformed variables is used in the
explanation that follows. As described below, the lower bounds are added back to the
optimal solution before reporting the results. Therefore, the Algorithm assumes the
lower bound is zero, where the new upper bounds x,; are given by the original
Xyi - Xij-

0<x,<x,

As the Algorithm proceeds, some of the x variables may need to go to their
upper bounds in order to minimize the cost function J. Recall that all variables in the
column vector v, are assumed to be zero. It is also necessary to represent an x
variable at its upper bound by the quantity zero, so that it can be represented in the
column vector v,. This can be done easily by defining a new set of variables y; =
Xyi - Xj, in which each x variable is subtracted from its upper bound. Where x; hits is
upper bound, y; goes to zero, and vice versa. The same upper bounds (and lower
bound of zero) apply to both x and y:

0<y, =x,-x <x,
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At each pivoting step, the Algorithm automatically converts any x variable that
has hit its upper bound into its y counterpart, and vice versa. In this way, x and y
variables are never set to their upper bounds; their counterparts are set to zero
instead, which allows them to be stored in the column vector v.. The Algorithm
keeps track of this by modifying the unique index numbers already used to keep track
of the location of x and e variables in the row and column vectors v, and v.. Each y;
variable and its x; counterpart receive unique index numbers.

The pivot selection method used by the Dailey L1 Optimization Algorithm
relies on the cost function J being a convex function of x. By being a convex
function, the cost function J will have only one local minimum, which is identical to its
global minimum. Thus, there is no possibility of converging to a false (non-global)
minimum. In addition, because the cost functionJ is convex, its derivative (i.e.,
dJ(t)/dr) will not decrease ast increases, where f represents position along any
straight-line ray. This fact holds at every value of ¢ where the derivative dJ(1)/dt
exists. For piecewise-linear functions, such as the cost function J, the derivative does
not exist at the breakpoints.

The method for selecting the best row and column pivot variables depends on
first choosing the best pivot row for a given column. This process is repeated for
each column, and the best overall choice is retained. Since the column variables in v,
are zero, the process of swapping a column with a row involves setting that column’s
variable to some nonzero value, while keeping all other column variables at zero. The
unknown new value for the column variable is designated by the letter #. The best
pivot row is indicated by the value of ¢ that minimizes the cost function J(?).

As stated above, the row vector is given by v, = f + G v.. Since all but one
element of v, will be kept at zero, the candidate pivot column of G may be designated
by the lowercase vector g. Thus v, = f+ g7, where { is an unknown real number.

The cost function J(¥) depends directly only upon the e variables, so any
elements of the row vector v, that are e variables will vary with v, = f+ g and change
the value of the cost function J. If the pivot column is itself an e variable, then 7 will
also contribute a term to the cost function J directly. All other elements of v, remain
zero, and do not affect the value of J. '

The e variables contribute to the cost functionJ only through summing the
weighted cost terms Wpi max( 0, ¢; ) and W; max( 0, —e; ). These terms are all
piecewise-linear and each has a single breakpoint at e;= 0. Therefore J(f) is a
piecewise-linear function of #, and its slope dJ/d! can change only at those values of ¢
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where some e;= 0. The function J(f) can be completely described by tabulating its
values at these e;= 0 breakpoint values of .
Since the row vector is v, = f + gt, its ith element v;; will go to zero when
=—f;/ g; as long as g; is nonzero. If g; = 0 for any row, then ¢ will not affect that
row variable and it cannot contribute a breakpoint to J(f), so that row is removed
from consideration.

Recall that any x; variable (or its y; counterpart) is required to lie in the
interval 0<x, <x,,. This has the effect of restricting the range of permissible values
for ¢. If the column variable is itself an x or y variable, then 0<¢ < x_,. Furthermore,

any x or y row variables also impose bounds on z. If the ith row variable v; is an x or
y variable with upper bound x; , then 7 must satisfy 0<v, = f,+gr<x,. This

produces the following direct bounds on :
~filg st s(xu-f)lg ifg>0
(ru-f)lg <t<-flg ifg<0

To determine the overall upper and lower bound on ¢, the above bounds for
each x or y row variable are evaluated. If the column variable is itself an x or y
variable, them the bounds 0</<x_ are imposed. The overall upper bound on ¢ is
the smallest of all these separate upper bounds, and the overall lower bound on ¢ is the
largest of the separate lower bounds.

The goal is to find the value of ¢ that minimizes J(¢). For a smooth convex
function such as a parabola, this would occur when dJ/dt = 0. However, the gradient
of the piecewise-linear J(f) changes in discrete steps at each e; = 0 breakpoint value of
{. The minimum of J(f) must occur at a breakpoint where dJ/df increases from
negative to positive. The Algorithm uses this fact to find the minimizing ¢ using the
following steps:

e First determine the overall upper and lower bounds on ¢ generated by the x
and y upper and lower bounds, as described above.

¢ Calculate the e zero breakpoint values £ = - f; / g; for each row of v, where g;
is nonzero and the row represents an e variable.

¢ Discard any ¢ breakpoints that lie outside the upper and lower bounds for ¢ .

e Sort the remaining values of t into ascending order, using any efficient sorting
algorithm such as the Shell algorithm.

e Determine the right-sided slope dJ/dt of J(f) at the lower bound of .

e IfdJ/dt> 0 is true at the lower bound of ¢, then this value of t minimizes J(7).

Otherwise step through the 7 breakpoints in ascending order, accumulating the
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stepwise changes in dJ/dt at each breakpoint. The value of dJ/dt increases by |

Wi 8k |+ | Wy; 8k | at each breakpoint, where Wy; and W; are the penalty

weights for the e; variable corresponding to that breakpoint, and where g is

the corresponding element of the column vector g.

e If dJ/dt increases to a positive value at any breakpoint, then that value of ¢

minimizes J(f).

o IfdJ/dt is still negative at the upper bound of ¢, then that value of # minimizes

J(@).

It is possible to have degenerate matrix data in which multiple e; variables hold
the same values. In these cases, there would be repeated e; = 0 breakpoints at the
same value of 7. If the minimum of J(f) occurs at such a repeated breakpoint, then any
of the e; row variables associated with the breakpoint could serve equally well as a
pivot row to minimize J(f). In these degenerate cases, the Algorithm includes all such
degenerate e; row variables in its search for the overall best pivot row and column.

Choosing the overall best pivot row and column pair simply involves repeating
for each column the minimization of J(t) described above. For each column, the pivot
row (or rows, in degenerate cases) that minimizes J(t) and the current column are
compared against the best candidate pivot row and column found so far. When a new
candidate pair has a higher evaluation score than the previous best, it is retained.
After all columns have been examined, the surviving best row-column pair is used to
perform the pivoting step described above.

The Dailey L1 Optimization Algorithm combines two criteria to determine the
best choice: (1) the amount by which the cost function J decreases, and (2) the
magnitude of the pivot element. In order to minimize roundoff error, it is desirable to
use pivot elements with magnitudes relatively close to 1. Each candidate row-column
pair is assigned an evaluation score using this function:

AJ

max( &b gLD
p,

where AJ is the magnitude of the reduction in cost function J, and where g; is
the candidate pivot element. In this way, the further the pivot element magnitude
strays from 1 in either direction, the more the resulting cost reduction is devalued.
Flow Diagram of the Algorithm

The Dailey L1 Optimization Algorithm cost function J is defined by:



10

15

20

25

30

WO 00/68744 PCT/US00/11482

48-

J=§Wpimax( ) ZW max( )

i=1
e=Ax+b
X, £X, <X,

The Algorithm first performs a change of variables to make all the lower
bounds on x; equal to zero. The upper bounds are then given by x,; - x;;. The change
of variables is reversed after the Algorithm converges. Therefore, in most of this
discussion it is assumed that x; = 0.

The L1 Algorithm stores most of its problem data in the tableau matrix C,

which is first initialized using the 4 matrix and & vector from the cost function
definition.

=[64]=]s 6]

As the Algorithm proceeds to modify C through successive pivoting
operations, the first column is always designated by f and the remaining columns by
the matrix G. The matrix C always represents a mapping from the vector of column
variables v, into the vector of row variables v, , given by v, = f+ G v . Initially, the
row vector is v, = ¢, and the column vector is v, = x. Each pivoting step swaps a pair
of variables between v, and v.. As they are swapped, their corresponding index
numbers are swapped between a pair of index arrays holding this integer data for v,
and v.. The index array for v, is named k, , and the index array for v, is named ..

In order to represent variables on their upper bounds, the Algorithm also
defines a set of alternate variables y; = x; - x; , in which each x; variable is subtracted
from its upper bound. At appropriate times, x; variables are replaced by their y;
counterparts, and vice versa. Each e; , x; , and y; variable receives a unique index
number for bookkeeping purposes. The choice of index numbers is arbitrary. The
assignments used herein are: 1 through m for the e; elements, (m+1) through (m+n) for
the x; elements, and (m+n+l) through (m+2n) for the y; elements. This rule allows the
Algorithm to determine whether a given element of v, or v is currently an e; , x; , or
yj variable, by checking the index in the corresponding elements of &, and &, .

The flowchart in FIGURE 22 illustrates the top-level operation of the
Algorithm, and its major iteration loop. In essence, it repeatedly reduces the cost
function J by choosing the best possible weighted cost reduction AJ,, at each
iteration. When J can no longer be reduced by any pivoting operation, then J has

reached its global minimum. Reaching the global minimum is guaranteed because J is
a convex function.
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Referring to FIGURE 22, the Algorithm may be summarized as follows:

At block 102, obtain the input data 4, b, x,,, x;, Wp, Wy. At block 104, adjust
the input data to set x; = 0. Replace b with b + 4 x| , replace x, with x, - x; , and
replace x; with 0. Save the initial values of x; to reverse this process later. At block
106, initialize C = [ f G ] using f= b, G = A. Initialize row index vector k, with
indices 1 through m, and initialize column index vector k_ with indices (m+) through
(m+n). The matrix C always represents the mapping v, = f + G v, where initially the
row and column vectors are v, = e and v, = x. At block 108, is the iteration loop
where the cost function J is evaluated. Initialize the weighted cost reduction score 4
Jyw to zero at block 110.

At block 112, step through each column g of the matrix G, and do the
following for each: Identify the row or rows of that column which minimize the cost
function J when used as a pivot with the current column. The process is described
above, and involves algebra on the elements of f and g, the weighting vectors Wp and
Wn, references to the index vectors &, and & , and a sorting operation. For each of
these minimizing rows, evaluate the weighted cost reduction AJ, using the formula
in the text to weight the actual cost reduction AJ,,, to favor pivot magnitudes near 1.0.
If AJ,, exceeds the previous best value, retain the new AJ,, value and the current row
and column choice as the pivot candidates.

If at inquiry 114 the optimal choice of row and column pivots reduces the cost
function J, then perform the pivoting step on the optimal row and column pivots at
block 116. This transforms all the elements of C as described above. Also swap the
elements of k. and k for the row and column pivots. If an x; or y; variable goes to its
upper bound x,; as a result of the pivot operation, transform its index value in k, or k,
to convert it from an x; variable to its y; counterpart, or vice versa. If the optimal
choice of row and column pivots did not reduce the cost function J, exit the iteration
loop 108 since convergence is achieved.

At block 118, extract the optimal solution x from the C matrix by stepping
through the elements of &, and k; . This is done by first initializing all x; = 0. The
next step is to go through the row index elements k; , for i from 1 to m. If kj
represents an x variable x; , set that x variable to f; , the element in row i, column 1 of
C. If kj represents a y variable Y;j » set the corresponding x; variable to xy; - f; where
Xyj is the upper bound x;. Continue on by stepping through the column index

elements k; , for i from 1 to n. If k; represents a y variable Y; » set the corresponding

PCT/US00/11482
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x; variable to Xy; the upper bound for that variable. Any x; variables not set by this
process have values of zero.

At block 120, adjust the optimal solution x to account for the original lower
bounds. Replace x with x + x; , where x; holds the original lower bounds. Finally
return the optimal solution x to the calling routine.

The number of iterations required for the L1 Algorithm to converge to the
optimal solution x is data-dependent. Generally, the number of iterations is
proportional to mn2, so doubling both the number of unknowns in x and constraints in
e will increase execution time by roughly a factor of 8.

For a particular application, testing over a range of input conditions can reveal
the performance the Algorithm will exhibit in terms of the number of iterations and
the amount of computer CPU time consumed. However, many real-time systems
require a guaranteed maximum execution time from all algorithms. In a real-time
control system, the L1 optimization calculation can be spread out over multiple time
frames, using the most recently completed solution and an associated gain matrix to
ap’proximate the optimum during each frame. This feature is important in order to
guarantee a minimum execution time (latency) in an embedded control system.

By placing a limit on the number of pivoting iterations per call, and then by
resuming the suspended iteration process on subsequent calls, a subroutine for L1
optimization can provide a guaranteed maximum execution time per call, which is
proportional to the allowed number of iterations. This resolves the execution time
problem for "hard" real-time systems.

However, when the optimal solution x finally emerges from this multi-frame
iteration process, it solves the problem data from the earlier frame when the iteration
process began. It does not solve the problem data for the current frame. The
problem data are given by 4, b, Wp, W, , x,, and x; ; typically, the contents of & will
change for each frame, while the other problem data will change slowly or not at all.
Real-time embedded controllers have requirements on data latency as well as on
execution time: a signal may not take more than a given number of frames (usually
one) to propagate through the controller. Multiple-frame time delays can cause
stability problems in some feedback systems, and can degrade system performance in
other ways.

This problem can also be resolved by extracting a gain matrix from the L1
Optimizer in addition to the optimal solution x. The gain matrix can be used in a
foreground task in the embedded controller software to provide a fast, low-latency-
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time signal path, while the full optimal solution can be executed in the background at
a slower sample period, if necessary to meet throughput requirements. This feature of
the L1 Solver allows system designers to make a tradeoff between speed and
accuracy.

The tableau matrix C = [ f G ] is partitioned to distinguish its first column f
from the remaining columns G. After convergence, it is S that contains the
unconstrained x variable values, since f holds the row variables in v,. However, the G
matrix also contains a great deal of useful information about the optimal solution.
The contents of G can be interpreted as a gain matrix that maps perturbations in b into
perturbations in the optimal x. This gain matrix provides approximate solutions that
are actually identical to the optimal solution in a sufficiently small neighborhood of
the optimum. The reason is that the optimal x is a piecewise-linear function of b;
therefore, a linear gain matrix can describe it exactly within one of its linear regions.

Define a new matrix A having m+n rows and m+n columns. It has the 2-by-2
block structure shown below, in which H,, and H,, have m rows, H,. and H,, have n
rows, He, and H,, have m columns, and H, and H,, have n columns. The H matrix
maps perturbations in certain elements of e and x into perturbations in the remaining
elements of e and x, in the neighborhood of the optimal x. Specifically, its inputs are
perturbations in those elements of e and x that are column variables in v,. It outputs
are perturbations in those elements of e and x that are row variables in v,. Recall that
v =f+ G v, after any pivoting step.

Ae| _|H, H_|]Ae — | Qe
Ax| T|H_,H_ Ax| — Ax |

The elements of H are simply copied directly from the elements of G after
convergence. It represents an "unscrambling" of the rows and columns of G, to
restore the original order of the e and x variables. Because any element of v, or v, can
represent either an e or an x variable, the H matrix is defined with enough rows and
columns to represent any possible final configuration of e and x variables at the
optimal solution. Any y variables in v, or v, are converted into x variables by
reversing the sign of their matrix rows or columns before copying from G into H:
recall that y; = x,; - x; . For any e or x variable that does not appear in v_ , the
corresponding columns of H are zero. Similarly, for any e or x variable that does not
appear in v, the corresponding rows of H are zero. Since the G matrix has m rows

and » columns, H will always have n rows and m columns filled entirely with zeros.
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The H matrix represents the sensitivity of the unconstrained e and x variables
with respect to the constrained e and x variables, in the neighborhood of the optimal
solution. For an e variable, "unconstrained” means nonzero. For an x; variable, it
means the variable is not on its upper or lower bounds x; or xj; .

For example, consider an typical optimal solution in which all of the column
variables in v, are e variables, and are thus constrained to zero. In this case, H,, and
H,, will be zero, since there are no x variables in v.. H,, would provide the gain
matrix data for use by an embedded control law, since it provides the sensitivity from
the constraints e to the solution variables x.

However, it is more useful to consider the effect of varying the problem data
vector b, rather than varying e directly. The actual cost function is defined in terms of
e=Ax + b. In an embedded control system, the control commands and sensor data
will typically enter the problem as elements in the b vector.

The H,, submatrix gives the sensitivity of x variables to changes in those e
variables that are zero at the optimum. If an element of & is perturbed in a small
neighborhood of the optimum, these e variables will continue to be zero at the new,
perturbed optimum solution, because they are the active constraints. Thus it is
necessary to know how the optimal x must vary when an element of b is perturbed,
assuming that the e variable for that element of b is an active constraint being held at
zero.

Suppose that b is perturbed to a new value b + Ab, where Ab has only one
nonzero element, affecting an active constraint element of e. In order for that element
of e to remain zero, x must change to cancel the perturbation in e caused by
perturbing &. This occurs when x is perturbed by an amount Ax = -Hy, Ab . Thus the
desired gain matrix K, mapping b perturbations into x perturbations, is simply given by
K=-H,,.

FIGURE 23 shows the signal flow structure of an L1 Optimizer arrangement
suitable for multi-rate embedded real-time applications. The L1 Algorithm is called
once per time frame, but with a fixed limit on the number of pivoting iterations per
call, so that it may take multiple frames to converge to a solution. At all times, the
most recently completed solution vector is called xo. The value of the problem data
vector b that was used to generate xq is called by, and the gain matrix K =-H,,
corresponding to X is called K. These quantities describe the optimal solution to the
problem data that was presented to the L1 Algorithm a few frames in the past. They
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are used to generate a fast, low-latency output signal, which always corresponds to
the current frame's input vector .

The implementation is as follows. At each time frame, calculate Ab = b - bg,
the difference between the new input b and the most recent b for which a solution is
available. Multiply by the gain matrix K, to generate an increment to x : Ax = Kq Ab.
Then add Ax to the most recent optimal solution: x = xg + Ax = xg + Ky Ab. This
estimated optimal x is then returned by the embedded L1 Solver as the low-latency
output for the current frame. The L1 Algorithm itself can then be called as a
background process, to complete another set of iterations on its current set of
problem data. Each time the L1 Algorithm converges, it copies its new values for b,
xg, and K into storage for use in the next time frame; then it reads the current values
of the problem data 4, 5, Wy, Wy, X, , and x| and begins a new iteration cycle.

This linear estimate x = xg + K Ab is an accurate prediction of the true
optimal solution for the new value of 5, assuming that A and the other problem data
have not also changed.

As noted above, it is identical to the true optimal solution if » has remained
within the current piecewise-linear region of the optimal solution. For example, in a
control output mixer, if the new & does not cause the true optimal x to cross a new
saturation limit, then the estimated x is equal to the true optimum. Estimation errors
will appear only as brief transients after large changes to the input.

Still referring to FIGURE 23, operations below the dashed line occur once per
frame, using the most recently available data, to provide a low-latency signal path
with guaranteed execution time. The L1 Optimization Algorithm, shown above the
dashed line, runs as a multi-frame background process with a fixed iteration limit
during each frame to provide guaranteed per-frame execution time.

Because the gain matrix Ky has n rows and m columns, the number of floating
point operations required in each frame to calculate x = x; + Ko Ab is only mn. This
is a quite small amount of computing overhead, easily handled by modem embedded
control processors.

While the preferred embodiment of the invention has been illustrated and
described, it will be appreciated that various changes can be made therein without
departing from the spirit and scope of the invention. For example, discrete time
integration could be provided based on a method other than the Euler discrete time
integration method used above.
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The embodiments of the invention in which an exclusive property or privilege
is claimed are defined as follows:

1. A method of distributing a pseudo-control vector () amongst
multiple plant effectors, the method comprising:

(a) differencing a command target signal () with an actual target
vector (u,) at a first combiner (86) to form a target error signal (u,);

(b)  applying an L1 Optimizer to the target error signal to solve for
an optimal control effector output signal (), the L1 Optimizer applying absolute
penalty weights (Wpi, Wp;) to the target error signal and solving a cost function (J)
for the optimal control effector output signal ();

(c) providing the optimal control effector output signal () to the
plant;

(d)  feeding back the optimal control effector signal through a
target gain matrix (F) to form a gain-applied effector signal; and

(e) combining the gain-applied effector signal with a bias vector
signal () to form the actual target vector (u,);

wherein the application of the control signal in the plant results in the optimal

mapping of the command target signals (u;) onto the control effector output
signals () in a manner consistent with the L1 optimization weights.

2. The method according to Claim 1, wherein the number of control

effector output signals (u) is greater or equal to the number of command target
signals (u,).

3. The method according to Claim 1, wherein the cost function (J) is of

J=ZWP,. max(O, un.)+ZW,u. max(O,—uﬂ.) .
the form i=l i=1 where m is the number of
elements (7) in the target error signal (u,), W,; is the penalty weight on positive target

error signals (u.;), and W; is the penalty weight on negative target error signals (ugy).

4. The method according to Claim 3, wherein the absolute penalty
weights (Wpi, W,;) of at least one element (/) are equal in magnitude in order to
establish equality constraints.
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5. The method according to Claim 3, wherein at least one of the absolute

penalty weights (Wpi, Wy;) of at least one element (i) is set equal to zero in order to
establish inequality constraints.

6. The method according to Claim 3, wherein the weights (Wpi» Wp;) of a
first element differ in magnitude from the weights of a second element in order to
prioritize the commands and control effectors.

7. The method according to Claim 1, wherein during failure of a control

effector to a specific value, upper and lower allowable bounds for that effector are set
to the same value.

8. A method of forming an optimal feedback control signal (u) for use
with a plant, the method comprising:

(a) combining a command signal (y.) with a regulator sensor signal (78]
and an optimal injection error signal (y,) to form an error signal (e); the injection error
signal (y,) being calculated by an L1 Optimizer (72); the L1 Optimizer applying
absolute penalty weights (Wpi, Wyi, W) to the feedback control signal () and the
injection error signal (y,) and solving a cost function (J) for the optimal injection error
signal (y,);

) applying a discrete differencer (62) to the error signal () to form an
error difference signal (ey); applying a proportional error gain (Kp) to the error
difference signal (e4) and providing the result to a second combiner (42);

(c) applying a discrete integrator gain (K;h) to the error signal (e) and
providing the result to the second combiner (42);

(d)  forming a control difference signal (u4) as the output of the second
combiner (42); and

(e) applying a discrete integrator (66) to the control difference signal ()
to form the feedback control signal (u), the control signal () being provided to the
plant;

wherein the method is digitally implemented using a discrete-time step size,
the signals being either discrete scalar, vector, or matrix signals; the gains being

matrix gains, and each differencer being of the form (1-z'1) and the integrator being of
the form 1/(1-z°1).
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9. The method according to Claim 8, wherein an invertible mixer matrix

(70) is applied to the control difference signal (u4) after the discrete integrator (66)
and before providing the control signal («) is provided to the plant.

10.  The method according to Claim 8, wherein the second combiner (42)
receives as a further input a feedforward signal formed by applying a differencer (60)
and a feedforward gain (Ky) to the command vector (y.).

11.  The method according to Claim 8, wherein the second combiner (42)
receives as a further input a proportional sensor signal formed by applying a
differencer (64) and a proportional sensor gain (Kps) to a proportional sensor signal

(vp), the proportional sensor signal (y,) being a function of the plant's actual
condition.

12.  The method according to Claim 8, wherein the proportional sensor

signal (yp) is filtered to apply desired dynamic responses of the control system to the
plant measurements.

13.  The method according to Claim 8, wherein the regulator sensor signal

(v,) is filtered to apply desired dynamic responses of the control system to the plant
measurements.

14.  The method according to Claim 8, wherein the integrator (66) applied
to the control difference signal (1) includes a maximum limit and a minimum limit.

15. The method according to Claim 8, wherein the cost function (J) is of
the form J = ZWdlym.I +ZWP,. max(O, u, - uw.) + ZWM max(O, u, - ui) where m is
i=l i=l i=]
the number of elements (¢) in the feedback control signal (), Wpi is the penalty
weight on positive control signals (¥;), W,; is the penalty weight on negative control
signals («;), and W; is the penalty weight on the absolute value of injection error
signals (Ve;)-

16.  The method according to Claim 8, wherein the L1 Optimizer is applied
to the control difference signal (u4) after the discrete integrator (66) and before
providing the control signal («) to the plant; the L1 Optimizer providing an optimal
distribution of output mixing between control effectors by applying absolute penalty



WO 00/68744 PCT/US00/11482

-57-

weights (Wp;, Wy;, W) to the target error signal (#,) and the injection error signal
(ve), and solving a cost function (J) for the optimal control effector output signal (u)
and injection error signal (y,).

17.  The method according to Claim 16, wherein the number of control
effector output signals () is greater or equal to the number of command target
signals (z,).

18.  The method according to Claim 16, wherein the cost function (J) is of

the form J = ZW|y,,l+Z max(O,u ) ZW max( u,,.) where m is the
i=l =l

number of elements (i) in the target error signal (u,), W,; is the penalty weight on

positive target error signals (u,;), and W,; is the penalty weight on negative target

error signals (u;), and W, is the penalty weight on the absolute value of injection
error signals (y,;).

19.  The method according to Claim 18, wherein the absolute penalty
weights (W,;, Wp;) of at least one element (i) are equal in magnitude in order to
establish equality constraints.

20.  The method according to Claim 18, wherein at least one of the
absolute penalty weights (Wyi, Wyp) of at least one element (i) is set equal to zero in
order to establish inequality constraints.

21.  The method according to Claim 18, wherein the weights (W pir Wais
We;) of a first element differ in magnitude from the weights of a second element in
order to prioritize the commands and control effectors.

22, The method according to Claim 16, wherein during failure of a control

effector to a specific value, upper and lower allowable bounds for that effector are set
to the same value.
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