

(12) UK Patent Application (19) GB (11) 2 373 497 (13) A

(43) Date of Printing by UK Office 25.09.2002

(21) Application No 0215873.1
(22) Date of Filing 05.12.2000
(30) Priority Data
(31) 09458278 (32) 09.12.1999 (33) US
(86) International Application Data
PCT/US2000/042555 En 05.12.2000
(87) International Publication Data
WO2001/042163 En 14.06.2001

(51) INT CL⁷
C04B 35/581 41/00, H01L 21/68
(52) UK CL (Edition T)
C1A AE5G AG4 APC
H1K KMBX
(56) Documents Cited by ISA
EP 0882689 A EP 0771772 A
WO 1997/035816 A
(58) Field of Search by ISA
INT CL⁷ C04B, H01L

(71) Applicant(s)
Saint-Gobain Ceramics and Plastics, Inc.
(Incorporated in USA - Delaware)
1 New Bond Street, Box number 15138, Worcester,
Massachusetts 01615-0138, United States of America

(74) Agent and/or Address for Service
Gallafent & Co
9 Staple Inn, LONDON, WC1V 7QH, United Kingdom

(72) Inventor(s)
Ramesh Divakar

(54) Abstract Title
High-purity low-resistivity electrostatic chucks

(57) The volume resistivity of a body consisting essentially of aluminum nitride is reduced by exposing the body to a soak temperature of at least about 1000°C in an atmosphere deficient in nitrogen, such as an atmosphere consisting essentially of argon. The body can be, for example, a green body of aluminum nitride powder of a densified, or sintered body, such as a polycrystalline body. An electrostatic chuck has an electrode within a chuck body. A first portion of the chuck body, at a first side of the electrode, has a volume resistivity less than about 1×10^{13} ohm.cm at about 23°C. A second portion of the body, at a second side of the electrode, has a volume resistivity within one order of magnitude that of the first portion.

GB 2 373 497 A