METHOD FOR THE PRODUCTION OF COLLAGEN; COLLAGEN PRODUCED THROUGH THE METHOD AND USE OF COLLAGEN

The present invention relates to a process for the production of collagen from animal intestines etc. It is characterized in that the starting material is mixed with ice-water at a pH of 5.5, that the mixture is disintegrated and then heated to 40-42 °C and hydrolyzed at a pH of 10.5 using a proteolytic enzyme. After finishing of the hydrolyses pH is regulated to 5.5 and the collagen is separated and collected. The invention also encloses collagen produced through the process and a number of new application areas for collagen.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Title:
Method for the Production of Collagen: Collagen Produced through the Method and Use of Collagen.

Technical field:
The present invention relates to an improved way for the production of collagen and collagen produced through the process and the use of collagen in different areas.

Prior art:
Collagen is a fibre formed substance consisting of 18 amino-acids and it provides the main part of the intestines and stomach of animals but is also included in other parts of the animal body, for example in the interial part of the skin in the shape of hide, in lungen and udders etc. One has earlier primarily used the collagen in its native shape, mostly as sausage skin made from cleaned intestines. During resent years one has also produced collagen in its clean shape starting from the above said body parts of animals and used this clean collagen for different purposes such as artificially made sausage skins, additional agents for treatment articles, surgery threads etc. A known way of producing collagen is described in the Swedish Patent No. 8003876-3 in which a process is described that comprises cutting cleaned intestines etc. in stripes and pieces which are deep frozen and ground where upon they are subjected to the influence of an enzyme in a water solution whereby the aminoacids which do not provide a part of the collagen is hydrolysed so that insoluble remaining collagen can be removed and used after further treatment. Another process for producing collagen comprises the use of lime for separating the collagen fibrils. This process is time consuming and results also in that free collagen molecules

SUBSTITUTE SHEET
are separated which impairs the properties of the end product.

Technical problem:

It has since long been a desire to bring about a process which is better than the two above mentioned processes for the production of collagen. Thus, the first of said above mentioned processes includes that one has to freeze this disintegrated starting materials which is circumstantially and expensive and that one has to carry out the hydrolysis at a relatively low pH, approximately 8, using a relatively week enzyme during a period of 2-5 hours. This process is both costly and time consuming.

By the second of the above mentioned processes lime has to be added which results in a lower grade end product at the same time as an extended process will be necessary.

The solution:

By the present invention one has solved the problems connected with the above mentioned processes and brought about a process for the production of collagen from by-products of slaughtered and cut animals, such as intestines, stomach etc. which is characterized by the following process steps:

a) the starting materials are cleaned and immersed in ice-water, pH being regulated to approximately 5,5,

b) the mixture of starting materials and ice-water is ground whereupon further water is added so that the ground mixture contains approximately equal weight parts of starting materials and water,

c) the mixture is heated to 40-42°C and pH is regulated to at most 11, preferably 10,5 whereupon
a proteolytic enzyme, for instance alkalas in an amount corresponding to 60 Anson-units per kilo solid substance is added so that hydrolysis of other proteins than collagen is carried out during maintaining the pH value by adding alkali until the hydrolyses is completed and alkali is no more consumed,

d) pH is regulated to 5.5 by adding an acid whereupon

e) separated collagen is collected.

According to the invention it is suitable that pH in steps a) and d) is regulated by means of hydrochloric acid, citric acid or lactic acid.

The hydrolysing is carried out according to the invention during a period of time of 1 3/4 hours to 3 ½ hours while adding sodium hydroxide as alkali.

According to the invention the separated collagen can be collected by sifting, cleaning with water at about 40°C and centrifugation or decanting. Only one wash with water is sufficient.

It is according to the invention further suitable that the collagen is homogenized after being collected at pH c:a 3 by alternatively adding acids and water while mechanically treating until the desired end concentration of collagen is obtained.

It is according to the invention suitable for obtaining a clear transparent film from the completed collagen that it is mixed with reduction agents, such as ascorbic acid and sodium sulphite in an amount of up to 2 weight per cent, and cross-binding agents for example glutaraldehyde in an
amount of approximately 0.1 weight per cent and 5-10 weight per cent glycerol as softener, all calculated on solid collagen.

The invention comprises also collagen produced by the process according to the above description and use of collagen as a binder for meat products, as a film for packing of food and medicines, as a carrier by the production of colours, as artificial leather, as a gel for treatment of wounds, as a cover on chips for electronic purposes and as covers within the paper industry.

The raw materials that can be used in the process according to the invention is primarily such materials that come from the digesting organs of the animals such as rumen, fourth stomach, second stomach, intestines and lungs and udder from ruminants. Also the large intestine from pigs can be used.

When using an intestine this is first emptied by having a machine squeezing out the content and the inner part of the intestines called the mucosa by squeezing between rubber rollers. Any limitation of the assortment of raw materials does not exist and all such that comprise collagen in sufficient amount can be used. The raw materials are pre-treated advantageously by removing fat, the so called mesentery and the like.

The cleaned starting materials are then mixed with iced-water which suitably have an addition of acetic acid so that a pH of about, 5.5 is obtained. Herethrough the intestine is rapidly cooled and possible bacteria evolution will cease. One avoids to freeze the starting materials that can be transported and maintained in this condition before they are ground. This is important as the production of collagen only occurs at very few places and the starting
materials have to be transported from the slaughter-houses to the collagen-factory.

At the collagen-factory pure water is added so that the starting materials are present in an amount of about 50 per cent by weight of the mixture. This is heated to 40-42°C when stirring and one adds sodium hydroxide so that pH is raised to 10,5 and the temperature adjusted to 40-42°C. It is important that the temperature does not exceed this value as the collagen than will undergo crystalline changes and at still higher temperatures will change into gelatine. At the desired temperature and pH value the proteolytic enzymes are added which preferably consist of alkalas. At this high pH a strong concentration of enzymes can be added and the time for hydrolysing is therefore short, from 1 3/4 hour to 3 ½ hours. During the hydrolysing the alkalas is consumed so that alkali has to be added continuously maintaining a pH of 10,5. When the hydrolysing is completed, which is noticed by the fact that the pH does not sink any more when alkali is not added, the pH of the mixture is lowered to 5,5 by the addition of an acid, for example hydrochloric acid, acetic acid, citric acid or lactic acid. What occurs during the hydrolysing is that the alkalas is hydrolysing the proteins which are not a part of the collagen.

At pH 5,5 lumps are formed and a contraction of the collagen occurs. This depends on that the isoelectric point of the collagen is at pH about 5,5, which is generally known. In this shape it is preferable to separate the collagen suitably through a sifter or the like.

The collagen is finally washed in water at a temperature of about 40°C and is centrifugated or decanted. At the centrifugation the collagen normally gets a solids content
of about 22 per cent and at the decantation about 30 per cent.

To use the collagen for the intended purpose it is preferable that it is homogenized which occurs through mechanical treatment in a vacuum mixer suitably with a dough hook or the like when acid such as hydrochloric acid or lactic acid is added together with water so that pH 3 and a desired concentration of collagen is obtained. After the homogenisation the collagen is set to ripen at a low temperature, normally 8-10°C during a period of time of 24 hours.

When the collagen shall be used for film forming, for example film in the shape of eatable sausage skin, a cross-linking agent for example glutaric aldehyde is added to the collagen in an amount of about 0.1 weight per cent and a softener in the shape of glycerol in an amount of 5-10 weight per cent. To obtain a film which is clear and transparent also an anti-oxidant such as ascorbic acid or sodium-bisulphate in an amount of up to 2 per cent by weight, preferably 0.02-0.1 per cent by weight should be added.

As a by-product from the collagen production animal pellets can be produced from the hydrolysing water by evaporation while adding vitamins, minerals, and taste agents or it can be used as wet fodder which then must be consumed rapidly so that putrefaction does not occur.

The proteolytic enzyme used consists preferably of Novos alkalas 2.6 which contains 60 Anson units per 25 millilitre. This alkalas is about 4 times stronger than earlier known varieties of alkalas. Together with the high pH-value during the hydrolyses it therefore gives a very rapid hydrolyses reaction, which in its turn means an
economic advantage. This process also gives a product having a small fat content, which is of great importance for the succeeding film formation.

Example:
6,5 kilogram cleaned pig intestines are immersed in ice-water having a pH of 5.5. The pH-value is regulated by means of acetic acid. The intestines and the ice-water are ground whereupon water is added so that a total amount of water plus intestines became 13 kilogram, that is 6,5 kilogram water and 6,5 kilogram cleaned pig intestines.

The mixture is stirred and heated to 40-41°C during addition of about 143 millilitre 4 M NaOH until a pH of 10.5 was obtained. Thereafter a proteolytic enzyme in the shape of alkalas 2,6L from Novo in an amount of about 150 millilitre was added. pH was maintained constant at 10.5 during about 1 3/4 hour at further addition of 4 M NaOH so that the total amount NaOH became 253 millilitre.

After the hydrolysing the pH was lowered to 5.5 by the addition of hydrochloric acid. The collagen produced contracted and formed lumps.

The collagen was separated over a sift and washed in water at a temperature of 40°C and a water amount of 6-7 kilogram during stirring. The washing time was 20-25 minutes. Collagen was then collected by centrifugation and was homogenized in a vacuum mixer with a suitable dough hook. During the homogenisation water and hydrochloric acid was added so that a pH of 3 and a solids content of 8 per cent was obtained. During the homogenisation the temperature of the collagen was not higher than 15-18°C.

After the homogenisation the collagen was ripened during a period of time of 24 hours and at a temperature of 8-10°C
whereupon it was sifted for removing of possible lumps or impurities in a special sift under pressure.

After addition of ascorbic acid, glutaric aldehyde and glycerol the collagen was extruded to a clear film.

By the present invention one has accordingly brought about an economic process which results in collagen having a very high quality and which can be used in a number of new areas such as declared above.

The invention is not limited to the above described but can be varied in different ways within the scope of the claims.
Claims

1. Process for the production of collagen from intestines, stomach, skin hides etc., characterized by the following process steps;

 a) the starting materials are cleaned and immersed in ice-water, the pH is regulated to about 5.5,

 b) the mixture of starting materials and ice-water is ground whereupon further water is added so that the ground mixture contains about equal weight parts of starting materials and water,

 c) the mixture is heated to 40-42°C and pH is regulated to at most 11, preferably 10.5 whereupon a proteolytic enzyme, for example alkalas, in an amount corresponding to 60 Anson units per kilogram solids is added so that hydrolyses of other proteins than collagen occurs when maintaining the pH-value by adding alkali until the hydrolyses is completed and the alkali is no longer consumed, whereupon

 d) pH is regulated to 5.5 by the addition of an acid, whereupon

 e) collagen is separated and collected.

2. Process according to claim 1, characterized in that pH in the steps a) and d) is regulated by means of hydrochloric acid, citric acid or lactic acid.
3. Process according to claim 2, characterized in that the hydrolysation is carried out during a period of time of 1 3/4 hours-3 1/2 hours during adding sodium hydroxide.

4. Process according to claim 3, characterized in that the collagen is collected by sifting, washing with water at about 40°C and centrifugation or decantation.

5. Process according to the claims 1-4, characterized in that the collagen is homogenised after collection at a pH of about 3 by mechanical treatment.

6. Process according to the claims 1-5, characterized in that for receiving a clear transparent film the washed collagen is mixed with a reduction agent, such as ascorbic acid or natrium bisulphate in an amount to 2 weight per cent and cross-linking agents such as glutaric aldehyde in an amount of about 0.1 weight per cent and 5-10 weight per cent glycerol as a softener calculated on solid collagen.
INTERNATIONAL SEARCH REPORT

International Application No: PCT/SE 92/00192

I. CLASSIFICATION OF SUBJECT MATTER

If several classification symbols apply, indicate all.

IPC5: C 07 K 15/20, 3/28

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC5</td>
<td>C 07 K</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are included in Fields Searched

SE, DK, FI, NO classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO, A1, 8103261 (Sjölander, Einar) 26 November 1981, see the whole document</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2023613 (Röhm G.M.B.H.) 3 January 1980, see the whole document</td>
<td>1-6</td>
</tr>
</tbody>
</table>

- **A** - Document defining the general state of the art which is not considered to be of particular relevance
- **E** - Earlier document but published on or after the International filing date
- **L** - Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** - Document referring to an oral disclosure, use, exhibition or other means
- **P** - Document published prior to the International filing date but later than the priority date claimed
- **T** - Later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** - Document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- **Y** - Document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **Z** - Document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 3rd July 1992

Date of Mailing of this International Search Report: 1992-07-14

International Searching Authority: SWEDISH PATENT OFFICE

Signature of Authorized Officer: Mikael G:son Bergstrand

Form PCT/ISA/210 (second sheet) (January 1985)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned International search report.
The members are as contained in the Swedish Patent Office EDP file on
The Swedish Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-D- 7159581</td>
<td>81-12-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-D- 7172281</td>
<td>81-12-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0052618</td>
<td>82-06-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-B-C- 426902</td>
<td>83-02-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 8003876</td>
<td>81-11-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 81/03260</td>
<td>81-11-26</td>
</tr>
<tr>
<td>GB-A- 2023613</td>
<td>80-01-03</td>
<td>CA-A- 1122550</td>
<td>82-04-27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-C- 2813075</td>
<td>79-10-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A-B- 2420551</td>
<td>79-10-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 54163895</td>
<td>79-12-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4220724</td>
<td>80-09-02</td>
</tr>
</tbody>
</table>