OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA

OPIC CIPO

ProrERTY OFFICE

(72) SCALES, Daniel J., US
(72) GHARACHORLOO, Kourosh, US
(712) AGGARWAL, Anshu, US

(12) (19) (CA) Demande-Application

CANADIAN INTELLECTUAL

1) (A1) 2,228,483
22) 1998/02/02
43) 1998/08/03

(71) DIGITAL EQUIPMENT CORPORATION, US

51y Int.C1.> GO6F 15/167
(30) 1997/02/03 (08/794,172) US

54y PARTAGE DE MEMOIRE A GRANULARITE VARIABLE
ENTRE DES GROUPES DE MULTIPROCESSEURS

SYMETRIQUES

54y VARIABLE-GRAINED MEMORY SHARING FOR CLUSTERS
OF SYMMETRIC MULTI-PROCESSORS

210 211 210 21 210 211

VAL o o DS -

l bt ' 7 !

| o [ | : :

: SMP L SMP - SMP !
211~ | H—+ 21

| ~ |

e | Y Q@EEE_’EEJ\
209" : | 209

Y IE IE | 23 !

|

pIyppnsAg s LA s sl L

! (W Pl |

[ Mglas(Tof) || M ol) ™ 1/0||

(S e B Yt B - TR N R

2|2> 214 212> }2|4 2|2> L 214
C NE TWORK )
‘220

200

(57) Dans un systéme réparti 8 mémoire partagée, des
groupes de multiprocesseurs symétriques sont reliés par
un réseau. Chaque multiprocesseur symétrique
comprend un certain nombre de processeurs, une
mémoire comportant des adresses, et une interface
d’entrée-sortie pour l’interconnexion des processeurs.
Une méthode logicielle permet le partage de données
entre les groupes de multiprocesseurs symétriques au
moyen de quantités de données de taille wvariable
appelées blocs. Un groupe d’adresses mémoires sont
désignées, en tant qu’adresses partagées virtuelles, pour
le stockage de données partagées. Une partie de ces
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(57) In a distributed shared memory system, clusters of
symmetric multi-processors are connected to each other
by a network. Each symmetric multi-processor includes
a plurality of processors, a memory having addresses,
and an input/output interface to interconnect the
processors. A software implemented method enables
data sharing between the clusters of symmetric multi-
processors using variable sized quantities of data called
blocks. A set of the addresses of the memories are
designated as virtual shared addresses to store shared
data, and a portion of the virtual shared addresses are
allocated to store a shared data structure as one or more
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adresses partagées virtuelles sont affectées au stockage
d’une structure de données partagées en un ou plusieurs
blocs. La taille d’un bloc d’affectation particulier peut
varier pour différentes structures de données partagées.
Chaque bloc comprend un nombre entier de lignes, et
chaque ligne comprend un nombre prédéterminé de
multiplets de données partagées. L information sur un
bloc particulier est stockée dans la mémoire d’un
processeur désigné pour accueillir le bloc. Cette
information comprend la taille du bloc particulier,
I’identité du processeur qui a modifié pour la derniere
fois les données du bloc ainsi que l'identité d’un
processeur ayant une copie du bloc.
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blocks. The size of a particular allocated block can vary
for different shared data structures. Each block includes
an integer number of lines, and each line includes a
predetermined number of bytes of shared data. Directory
information of a particular block is stored in the memory
of a processor designated as the home of the block. The
directory information includes the size of the particular
block, the identity of the processor that last modified the
data in the particular block, and the identity of a
processor having a copy of the block.
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ABSTRACT OF THE DISCLOSURE

In a distributed shared memory system, clusters of
symmetric multi-processors are connected to each other by a
netwcrk. FEach symmetric multi-processor includes a
plurality of processors, a memory having addresses, and an
input/output interface to interconnect the processors. A
software implemented method enables data sharing between
the clusters of symmetric multi-processors using variable
sized quantities of data called blocks. A set of the
addresses of the memories are designated as virtual shared
addresses to store shared data, and a portion of the
virtual shared addresses are allocated to store a shared
data structure as one or more blocks. The size of a
particular allocated block can vary for different shared
data structures. Each block includes an integer number of
lines, and each line includes a predetermined number of
bytes of shared data. Directory information of a
particular block is stored in the memory of a processor
designated as the home of the block. The directory
information includes the size of the particular block, the
identity of the processor that last modified the data in
the particular block, and the identity of a processor

having a copy of the block.

Fig. 2.
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VARIABLE-GRAINED MEMORY SHARING FOR CLUSTERS OF
SYMMETRIC MULTI-PROCESSORS

FIELD OF THE INVENTION
The present invention relates generally to symmetric multi-
processors, and more particularly to sharing data among

symmetric multi-processors.

BACKGROUND OF THE INVENTION

Distributed computer systems typically comprise multiple
computers connected to each other by a communications
network. In some distributed computer systems, the
networked computers can access shared data. Such systems
are sometimes known as parallel computers. If a large
number of computers are networked, the distributed system
is considered to be "massively" parallel. As an advantage,
massively parallel computers can solve complex

computational problems in a reasonable amount of time.

In such systems, the memories of the computers are collec-
tively known as a distributed shared memory (DSM). It is a
problem to ensure that the data stored in the distributed
shared memory are accessed in a coherent manner.
Coherency, in part, means that only one processor can
modify any part of the data at any one time, otherwise the

state of the system would be non-deterministic.

Figure 1 shows a typical distributed shared memory system
100 including a plurality of computers 110. Each computer
110 includes a uni-processor 101, a memory 102, and
input/output (I/0) interfaces 103 connected to each other
by a bus 104. The computers are connected to each other by
a network 120. Here, the memories 102 of the computers 110

constitute the shared memory.

Recently, distributed shared memory systems have been built
as a cluster of symmetric multi-processors (SMP). In SMP

systems, shared memory can be implemented efficiently in
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hardware since the processors are symmetric, e.g.,
identical in construction and operation, and operate on a
single shared processor bus. SMP systems have good
price/performance ratios with four or eight processors.
However, because of the specially designed bus, 1t 1is
difficult to scale the size of an SMP system beyond twelve

or sixteen processors.

It is desired to construct large scale distributed shared
memory systems using symmetric multi-processors connected
by a network. The goal is to allow processes to
efficiently share the memories so that data fetched by one
process executing on a first SMP from memory attached to a
second SMP is immediately available to all processes

executing on the first SMP.

In most existing distributed shared memory systems, logic
of the virtual memory (paging) hardware typically signals
if a process is attempting to access shared data which is
not stored in the memory of the local SMP on which the
process is executing. In the case where the data are not
available locally, the functions of the page fault handlers
are replaced by software routines which communicate

messages with processes executing on remote processors.

With this approach, the main problem is that data coherency
can only be provided at large (coarse) sized quantities
because typical virtual memory page units are 4K or 8K
bytes. This size may be inconsistent with the much smaller
sized data units accessed by many processes, for example 32
or 64 bytes. Having coarse page sized granularity
increases network traffic, and can degrade system

performance.

In addition, multiple processes operating on the same SMP
typically share state information about shared data.
Therefore, there is a potential for race conditions. A

race condition exists when a state of the system depends on
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which process completes first. For example, if multiple
processes can write data to the identical address, data
read from the address will depend on the execution order of
the processes. The order may vary on run-time conditions.
Race conditions can be avoided by adding in-line
synchronization checks, such as locks or flags, to the
processes. However, explicit synchronization increases
overhead costs, and may make the system impractical to

implement.

It is desired to allow the unit of data transfer between
the symmetric multi-processors to vary depending on the
size of the accessed data structures. Coherency control
for large data structures should allow for the transfer of
large units of data so that the time to transfer the data
can be amortized. Coherency for smaller data structures
should allow the transfer of smaller units of data. It
should also be possible to use small units of coherency for
large data structures that are subject to false sharing.
False sharing is a condition which occurs when independent
data elements, accessed by different processes, are stored

in a coherent data unit.

SUMMARY OF THE INVENTION

A software implemented method enables data sharing among
symmetric multi-processors using a distributed shared
memory system using variable sized quantities of data. In
the distributed shared memory system, the symmetric multi-
processors are connected to each other by a network. Each
symmetric multi-processor includes a plurality of identical
processors, a memory having addresses, and an input/output
interface to interconnect the symmetric multi-processors

via the network.

The invention, in its broad form, resides in a method for
sharing access to data stored in the memories of symmetric
multiprocessors in a computer system, as recited in claim
1.
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As described hereinafter, a set of the addresses of the
memories are collectively designated as virtual shared
addresses to store shared data. Shared data can be
accessed by the instructions of programs executing on any
of the processors of the symmetric multi-processors as
processes. A portion of the virtual shared addresses are
allocated to store a shared data structure used by the
processes as one or more blocks. Data are fetched and kept

coherent at the level of individual blocks.

In a preferred embodiment of the invention, the size of a
particular allocated block can vary for a particular shared
data structure. Each block includes an integer number of
lines, and each line includes a predetermined number of

bytes of shared data.

Directory information of a particular block may be stored
in a directory in the memory of a processor designated as
the "home" processor. Allocated blocks are assigned to the
various processors in a round-robin manner. The directory
information includes the size of the particular block, the
identity of the processor that last modified the block, and
the identities of all processors which have a copy of the
block.

Prior to execution, the programs are preferably statically
analyzed to locate memory access instructions such as load
and store instructions. The programs are instrumented by
adding additional instructions to the programs. The
additional instructions can dynamically check to see if the
target address of load and store instructions access a
particular line of the shared data structure, and if the

data at the target address has a valid state.

If the data are invalid an access request is generated. In
response to receiving the access request from a requesting
one of the processors, a particular block including the

particular line and the size of the particular block are
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sent to the requesting processor. The block is sent via
the network. This enables the symmetric multi-processors
to exchange shared data structures stored in variable sized

blocks via the network.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding of the invention may be had
from the following description of a preferred embodiment,
given by way of example, and to be understood in

conjunction with the accompanying drawing, wherein:

¢ Figure 1 shows a prior art uni-processor distributed

shared memory system;

¢ Figure 2 is a block diagram of a symmetric multi-
processor distributed shared memory system according

to a preferred embodiment of the invention;

¢ Figure 3 is a flow diagram of a process to instrument
programs;

¢ Figure 4 is a block diagram of optimizing steps;

¢ Figure 5 is block diagram of a memory partitioning;

¢ Figure 6 is a diagram of optimized store miss check
code;

¢ Figure 7 is a diagram of miss check code arranged for
optimal scheduling;

¢ Figure 8 is a flow diagram of a process to check for
invalid data on a load access;

¢ Figure 9 is a diagram of instructions checking for an
invalid flag;

¢ Figure 10 is a block diagram of an exclusion table;

¢ Figure 11 is a block diagram of a process for checking
for batches of access instructions;

¢ Figure 12 is a diagram for instructions which
implement the process of Figure 11 and as arranged for

optimal scheduling;

¢ Figure 13 is a block diagram of a block directory; and
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¢ Figure 14 is a block diagram of data structures having

variable granularities.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

System Overview

Figure 2 shows a symmetric multi-processor (SMP)
distributed shared memory (DSM) computer system 200 which
can use the invention. The DSM-SMP system 200 includes a
plurality of SMP systems 210 connected to each other by a
network 220. Each SMP system 210 includes two, four,
eight, or more symmetric processors 211 connected to each
other by a processor bus 209. In addition, each SMP 210
can include memories (M) 212, and input/output interfaces
(I/0) 214 connected to the symmetric processors 211 by a
system bus 213.

The memories 212 can be dynamic random access memories
(DRAM). The memories 212 may include high-speed hardware
caches to take advantage of spatial and temporal localities
of data. Frequently used data are more likely to be stored

in the cache.

The memories 212 store programs 215 and data structures
216. Some of the addresses of the memories 212 can
collectively be designated as a single set of shared
virtual addresses. Some of the data structures can include
shared data. Shared data can be accessed by any process
executing on any of the processors 211 of any of the SMPs

210 using the virtual addresses.

The buses 209 and 213 connect the components of the SMPs
210 using data, address, and control lines. The network
220 uses network protocols for communicating messages among
the symmetric multi-processors 210, for example,
asynchronous transfer mode (ATM), or FDDI protocols.
Alternatively, the network 220 can be in the form of a

high-performance cluster network such as a Memory Channel
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made by Digital Equipment Corporation.

General System Operation

During operation of the SMP-DSM system 200, instructions of
the programs 215 are executed by the processors 211 as
execution threads or processes. The instructions can
access the data structures 216 using load and store
instructions. It is desired that any of the programs 215
executing on any of the processors 211 can access any of
the shared data structures 216 stored in any of the

memories 212.

Instrumentation

Preferably, as is described herein, the programs 215 are
instrumented prior to execution. Instrumentation is a
process which statically locates access instructions (loads
and stores) in the programs 215. The instrumentation also
locates instructions which allocate and aeallocate portions

of the memories 211.

Once the instructions have been located, additional
instructions, e.g., miss check code, can be inserted into
the programs before the access instructions to ensure that
memory accesses are performed correctly. The miss check
code is optimized to reduce the amount of overhead required
to execute the additional instructions. The additional
instructions which are inserted for allocation and
deallocation instructions maintain coherency control

information such as the size of the blocks being allocated.

As stated above, the programs 215 can view some of the
addresses of the distributed memories 212 as a shared
memory. For a particular target address of the shared
memory, an instruction may access a local copy of the data,
or a message must be sent to another processor to request a

copy of the data.
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Access States

With respect to any SMP, the data stored in the shared
memory can have two possible states: invalid or wvalid. The
valid state can have sub-states shared, or exclusive. If
the state of the data is invalid, then access to the data
is not allowed. If the state is shared, a local copy
exists, and other SMPs may have a copy as well. If the
state 1s exclusive, only one SMP has a only valid copy of
the data, and no other SMPs can access the data. In
addition, as described below, data can be in transition, or

"pending."

The states of the data are maintained by coherency control
messages communicated over the network 220. The messages
are generated by procedures called by the miss check code

of the instrumented programs.

Data can be loaded directly from the memory of a local SMP
only 1f the data have a shared or exclusive state. Data
can be stored in the local memory only 1if the state is
exclusive. Communication is required if a processor
attempts to load data that are in an invalid state, or if a
processor attempts to store data that are in an invalid or
shared stated. These accesses which require communications

are called misses.

The addresses of the memories 212 can be allocated dynami-
cally to store shared data. Some of the addresses can be
statically allocated to store private data only accessed by
processes executing on a local processor. Overhead can be
reduced by reserving some of the addresses for private
data, since accesses to the private data by the local

processor do not need to be checked for misses.

As in a hardware controlled shared memory system, addresses
of the memories 212 are partitioned into allocatable
blocks. All data within a block are accessed as a coherent

unit. As a feature of the system 200, blocks can have
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variable sizes for different ranges of addresses. To
simplify the miss check code described below, the variable
sized blocks are further partitioned into fixed-size ranges

of addresses called "lines."

State information is maintained in state tables on a per
line basis. The size of the line is predetermined at the
time that a particular program 215 is instrumented,
typically 32, 64 or 128 bytes. A block can include an

integer number of lines.

During the operation of the system 200, prior to executing
a memory access instruction, the miss check code determines
if the target address is in private memory. If the target
address is in private memory, then the miss check code can
immediately complete, since private data can always be
accessed by a local processor. Otherwise, the miss check
code calculates which line of a particular block includes
the target address of the instruction, and determines if
the line is in the correct state for the access. If the
state is not correct, then a miss handler is invoked to

fetch the data from the memory of a remote SMP.

Instrumentation Process

Figure 3 shows a flow diagram of a process 300 which can be
used to instrument programs so that the amount of overhead
required for the additional instructions is reduced. In
addition, the process 300 admits coherency control for
variable sized data quantities accessed by symmetric multi-
processors. The process 300 includes an analyzer module
320, an optimizer module 330, and an

executable image generator 340.

Machine executable programs 310 are presented to an
analyzer module 320. The analyzer 320 breaks the programs
310 into procedures 301, and the procedures 301 into basic
execution blocks 302. A basic block 302 is defined as a

set of instructions that are all executed if the first
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instruction of the set is executed. The instructions of
procedures and the basic blocks are analyzed to form

program call and flow graphs 303.

The graphs 303 can be used to determine a data and
execution flow of the programs 310. The basic blocks and
graphs 303 are analyzed to locate instructions which
allocate memory addresses and perform accesses to the
allocated addresses. If an instruction accesses shared
portions of the memories 212, miss check code is inserted
to ensure that the access is performed in a coherent

manner.

The miss check code is inserted by the optimizer module 330
as described in further detail below. After the programs
310 have been instrumented, the image generator 340
produces a modified machine executable image 350. The
modified image 350 includes instrumented programs 351 with
miss check code, miss handling protocol procedures 352, and
a message passing library 353. The image 350 can replace

the programs 310.

Figure 4 shows the steps performed by the optimizer module
330 of Figure 3. These steps include memory partitioning
410, register analyzing 420, code scheduling 430, load
check analyzing 440, and batching 450 steps.

Memory Layout

Figure 5 shows an allocation of addresses to the memories
212 of Figure 2. Addresses are increasing from the bottom
of Figure 5 to the top. Addresses are reserved for stacks
510, program text 520, statically allocated private data
530, state tables 540, and dynamically allocated shared
data 550.

During operation, addresses used by the stacks 510 decrease
towards the stack overflow area 505. The text space 520 is

used for storing the executable instructions, e.g., the
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image 350 of Figure 3. The addresses assigned for text

increase towards the text overflow area 525.

The addresses of the private data section 530 are used to

_store data structures which are exclusively used by a

single local processor, e.g., the data are not shared. The
addresses in this portion of memory are statically
allocated when a particular program is loaded for

execution.

State tables

The state tables 540 include a shared state table 541,
private state tables 542, and exclusion tables 1000. The
exclusion tables 1000 can also include a shared 1001 and

private 1002 portion.

The shared and private state tables 541 respectively
include one byte shared and private state entries 545 for
each line of allocated addresses. The bits of the state
entries 545 can be used to indicate the various states of
the corresponding line of data. One or more lines of data

constitute a block.

According to the preferred implementation, all proceSsors
211 of a particular SMP 210 can share the same data.
Therefore, the state table entries 545 are shared for all
processors of the SMP 210. This means that when a block,
e.g., one or more lines of data, is fetched from a remote
SMP and the state of the block is changed from invalid to
shared or exclusive, the shared memory hardware of the SMP
recognizes the state of the data, and any processor 211 of

the SMP can access the new data.

Because more than one processor of a particular SMP may
concurrently attempt to access a state table entry, the
entry is locked before access is made to the entry. The
miss checks inserted in the code may also require access to

the state table entry. However, in this case, the entry is
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not locked to decrease overhead. Instead, each processor
maintains a corresponding private state table 542 which can

be accessed by in-line code without additional overhead.

The entries of the private state tables 542 of the

processors are updated by two different mechanisms.

In the case where a processor attempts to access invalid
data, a miss condition will occur, and the data are fetched
from a remote SMP. Upon receipt, the state of the data
becomes valid. This is called "upgrading" the state,
because now the data are available, whereas previously this
was not the case. However, the data are still marked as
invalid in the private state tables of other processors on
the same SMP 210.

If one of these other processors now attempts to access the
data, the other processor will still see an invalid state
in its private state table 542. The other processor can
acquire a lock on the shared state table 540 and determine
that the data are valid for the local SMP and update its
private state table 542 accordingly. Subsequent accesses
to data can be performed without having to access the
shared state table 540.

In the case where the state of the data needs to be changed
back to invalid, e.g., a processor on another SMP needs the
data, the state of the data is "downgraded." In this case,
the processor receiving the request selectively sends an
internal message to other processors executing on the local
SMP so that the state maintained in their private state
tables 542 can be downgraded. The "downgrading" of a line
is not completed until all processors have changed their

private state tables.

Note, a race condition may result if the processor
receiving the invalidation request were to directly change

all the private state tables of all the processors of the
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local SMP. For example, a race condition would result when
a first processor sees a valid state while doing the in-
line check for a store, but a second processor downgrades
the state of the data to invalid before the first process

gets a chance to store the modified data.

One way to avoid race conditions would be to acquire state
table locks with the in-line miss check code. However,
this approach increases overhead, because of the locking.
This is especially true on processors with a relaxed memory
model, such as an Alpha processor made by Digital Equipment
Corporation. Hence, the use of private state tables is

important for efficiently avoiding race conditions.

The use of private state tables 542 not only avoids race
conditions in the miss check code, but also reduces the
number of messages that need to be communicated while
downgrading the state of data within a SMP 210. For
example, if a local processor never accesses data that are
valid within a local SMP, then its private state table does

not need to be updated.

Shared Data

The addresses of the shared data 550 are dynamically
allocated by the programs while executing. As an
advantage, the addresses of the shared data 550 can be
allocated in variable sized blocks 551. The blocks are

further partitioned into lines 552.

With the layout as shown in Figure 5, not all access

instructions need to be instrumented. For example, data

- stored in the program stacks 510 are not shared.

Therefore, any instructions which use the stack pointer
register (SP) as a base, do not need miss check code
applied. Also, any instructions which access private data
530, using a private data pointer register (PR) do not need

to be instrumented.
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Register Usage

The analyzer module 320 of Figure 3 uses the graphs 303 and
data-flow analysis to track the content of general purpose
registers to determine whether values stored in the
registers were derived from addresses based on the SP or PR
registers. Then, an instruction accessing the stack or
private data via a derived address does not need to be
instrumented. The analyzer 320 can also locate any
registers which are free at the time that the miss check
code needs to be applied, which eliminates the need to save

and restore the registers used by the miss check code.

By starting the private state table 540 at address
0x2000000000 in each processor's private address space, a
shift of the target access address can directly produce the
address of the corresponding entry 545 in the private state
table 540. Although the layout of the addresses shown in
Figure 5 is for a processor with 64 bit addressing
capabilities, it should be understood that the layout 500
can be modified for processors having 32 bit, and other

addressing capabilities.

Optimized Miss Check Code

Figure 6 shows miss check code 600 optimized for the memory
layout of Figure 5. The target address for an access can
be determined by instruction 601. However, 1if

the target base address has already been established in a
register by, for example, a previously executed load or
store instruction, then the instruction 601 which loads the

targeted base address is not required.

The shift instruction 602 determines if the target address
is within the shared data area 550. The branch instruction
603 proceeds directly to execute the original store
instruction if this is not the case. The shift instruction
604 produces the address of the entry in the state table
corresponding to the line including the target address. By
making the value of the state "EXCLUSIVE" be a zero, the
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need to compare with a constant value is eliminated.
Instead, a simple branch instruction 607 can be performed
to check for a miss. Instructions 605-606 retrieve the
state table entry. The miss handling code 608 is executed
in the case of a miss, and the original store instruction

is executed at 609.

The miss check code 600 only requires the execution of
three instructions if the target address is not in the
shared data area. In the case of a shared data access,

seven instructions need to be executed.

Code Scheduling

In step 430 of Figure 4, instruction scheduling techniques
can be used to further reduce the amount of overhead used
by the miss check code 600. In modern processors that are
pipelined and superscalar, the added miss check code can,
in many cases, be arranged to introduce minimal pipeline
delays, and maximize the potential for multiple

instructions being issued during a single processor cycle.

For example, in some processors, there is a one cycle delay
before the result of a shift operatibn can be used.
Therefore, if the second shift instruction 604 of Figure 6
is advanced to occupy the delay slot which results from the
first shift instruction 702, the stall between the
relocated second shift 703 and the 1ldg_u instruction 705 is
eliminated. This means that the code 700 can complete in
fewer machine cycles than the code 600. Note, as for code
600, the need for instruction 701 can be eliminated in many

cases. Instructions 705-707 load and check the data state.

To further reduce overhead costs in a multiple issue
processor, the instructions of the miss check code 700 can
be placed so that they are issued during pipeline stalls in
the original executable code, or concurrently with the
instructions of the executable image. Note, the execution

of the first three instructions 701-703 can be advanced in
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a basic block of instructions as long as the registers (rl
and r2) remain free. In fact, in many cases all three
instructions can be advanced sufficiently to completely
hide the additional overhead of executing the instructions.
Therefore, it clearly is beneficial to arrange the code as

shown in Figure 7.

Store Check

The miss check code can further be optimized when the
access instruction is a store instruction 710. In this
case, the first three instructions 701-703 are placed
before the store instruction 710. The remaining
instructions 704-707 are placed after the store instruction
710. This placement is advantageous in the cases where
there may be long-latency instructions immediately
preceding the store instruction 710 while the program is
computing the value to be stored. In this case, the store
instruction 710 must stall until the value becomes
available. Therefore, the overhead associated with
executing the advanced instructions may be completely
hidden.

Load Check

As shown in Figures 8 and 9, the data loaded by a load
instruction can be analyzed to further reduce the overhead
of the miss check code. Whenever data of a line become
invalid, a "flag" 801 is stored at all of the addresses
810-811 associated with the line. The flag 801 is, for
example, OxFFFFFF03 (-253). Then, instead of determining
the state of a line via the state table entries, the state
can, in almost all cases, be determined from the data
loaded.

For example, the data at target addresses are accessed with
a load instruction 901, step 820. 1In step 830, add the
complement 840 of the flag, e.g., 253. 1In step 850, check
to see if the data loaded from memory likely indicates an

invalid state. If true, proceed with the miss code 870,
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otherwise continue with step 860, no-miss. In the case
where there is a presumed miss, the miss code 870 can

confirm by checking the entry for the line in the state
table 540. This takes care of the rare case where the

program actually uses data equal to the flag.

The flag is chosen so that a single instruction 902 can be
used to check for invalid data. It is possible that almost
any constant could be used. Note, if a zero value is used
to indicate an invalid condition, then a simple branch
instruction would suffice. However, in cases where a zero
or other small integer, e.g., -1, 0, +1, is used, the
measured overhead of the miss check code seems to increase
due to dealing with a larger number of false misses. In
actual practice when using the flag OxFFFFFF03, false
misses rarely occur, therefore, the optimized miss check
code 900 as shown in Figure 9 greatly reduces the miss

check code for a load instruction, e.g., two instructions.

Besides reducing the overhead, the flag technique also has
other advantages. The main advantage is that the need to
examine the state table is eliminated in cases where the
load access is valid. Also, the loading of the "flag" data
from the target address and the state check are done
atomically. This atomicity eliminates possible race
conditions between the load instruction and protocol
operations for the same address that may be occurring on

another processor of the same SMP.

The flag checking technique can also be used for floating
point load access instructions. In this case, the miss
check code loads the data of the target address into a
floating point register, followed by a floating point add
and compare. However, on some processors, floating point
instructions may have long associated delays. Therefore,
floating point miss code can be optimized by inserting an
integer load for the same target address, and implementing

the flag checking as described above for Figures 8 and 9.
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Even with the additional load instruction, this technique
is still more efficient than checking an entry of the state
table.

Alternatively, the floating point data can directly be
transferred from the floating point register to the integer
register, if such an operation is available on the

underlying processor.

It should be understood that instruction scheduling can be
applied to the instructions of Figure 9 for load miss code
checks. 1In a preferred implementation, the séheduling step
430 of Figure 4 attempts to delay the execution of
instructions 902 and 903 to avoid a pipeline stall when the

value of the load is to be used.

Cache Misses

When loading entries from the state table 540, misses in a
cache can be one potential source of increased overhead for
the miss check code. If the program has good spatial |
locality, then the program will not experience many
hardware cache misses. If 64 byte lines are used, then the
memory required for the state table is only 1/64th of the
memory of the corresponding lines. However, if the program
does not have good spatial locality, then cache misses on
the data, as well as misses on the state table, are more
likely.
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Exclusion Table

Figure 10 shows the shared exclusion table 1001. The
private exclusion tables 1002 of Figure 5, one for each
processor, can be similar in construction. The purpose of
the exclusion tables 1000 is to reduce hardware cache
misses caused by the miss check code loading state table
entries for store instructions. The exclusion table 1001
has bit entries 1010, one bit for each corresponding line.
A bit is set to a logical one if the corresponding line
has the exclusive state, otherwise, the bit is set to a

logical zero.

Instead of checking the entries 545 of the state table 540,
the store miss check code can examine the bits 1010 of the
exclusion table 1000 to determine whether a corresponding
line has the exclusive state. If the line does have the

exclusive state, then the store can execute immediately.

For sixty-four byte lines, the memory used by the exclusion
table 1000 is 1/512 of the amount of memory used by the
lines. Therefore, the number of hardware cache misses
caused by store miss check code using the exclusion table
1001 can be one eighth of the hardware cache misses that
would occur just using the state tables. Note, the use of
the exclusion tables 1000 for store miss code checks is
enabled, in part, by the invalid flag 801 of Figure 8. The
load miss check code for loads does not have to access the
state table 540 in the case where the data are wvalid.
Hence, the exclusion tables 1000 are only accessed by the

miss check code for store instructions.
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Batching

The batch optimizing step 450 of Figure 4 recognizes that
loads and stores of data are frequently executed in batches
relative to a common base register. For example, in
programs, it is frequently the case that data are accessed
and manipulated in a sequential order according to their
addresses. The batch optimizing step 450 detects a set of
instructions which access a range of target addresses no
greater than the size of one line, e.g., -the range is 64
bytes or less. Such a set of load and store instructions
can at most access data in two immediately adjacent lines,

and in some cases only a single line.

In this case, the miss check code determines if the two
lines are in a correct state. If this is true, then all of
the load and/or store instructions in the set can be
performed without requiring any additional checks. It
should be understood that a batch check can also be
performed for a range of target addresses which span a
single line. However the code which checks for two
adjacent lines can check for a single line without a

substantial increase in overhead.

As one constraint, the batched load and store instructions
cannot be intermingled with other loads and stores which
have separate miss check code. Misses induced by other
loads and stores may change the state of a line to yield an
improper result for the batched load and store
instructions. However, loads and stores via multiple base
registers can be batched as long as proper miss checks are
done for the respective lines referenced via the

corresponding base registers.

As another constraint, the base register used by the batch
of instructions cannot be modified by a variable while the
batch is accessing target addresses in the checked range.

This would invalidate the initial check for the batch. It

is possible to modify the base register by a constant,
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since in this case the range check can be performed
statically prior to executing the batched access

instructions.

The batching technique is always successful in reducing
miss check code overhead. However, the technique is
especially useful for instructions of a loop which has been
"unrolled." An unrolled loop includes instructions which
are executed linearly instead of in an iterative circular
fashion. Here, access instructions typically work within a
small range of a base register that is not modified during
the iterations. 1In this case, the batching technique can

nearly always be applied, and is very effective.

Although batching is always attempted for instructions of a
single basic block, it may also be possible to perform
batching for load and store instructions which span several
basic blocks. When loads and stores across several basic
blocks are batched, there are additional constraints. The
batched set of instructions cannot include any subroutine
calls, since these calls may cause the execution of loads
and stores having unknown target addresses in the called
subroutines. Also, the batched instructions cannot include
a loop, since the number of times the loop is repeated
cannot be determined until the instructions of the batch
are executed. Furthermore, in a batch including
conditional branches, a store which occurs in one of the
branched execution paths must occur in all paths. Only
then can it be determined which store accesses have been

performed when the batched instructions are executed.

The batching process can arbitrarily batch many loads and
stores relative to any number of base registers, and across

one or more basic blocks.

A "greedy" batching algorithm can be used. The greedy
algorithm locates as many load and store instructions as

possible to include in a batch. The algorithm completes
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when a terminating condition, as described below, is
reached. If there is only a single load or store
instruction in a batch, then batched miss check code is not

used.

If a conditional branch instruction is encountered which
results in two possible execution paths, then both paths
are examined for instructions to include in a batch. The
scanning of the two separate execution paths is merged when

the execution of the two paths merge.

Terminating conditions can include: a load or store
instruction which uses a base register which is modified by
a variable; a load or store instruction which has a target
address outside the lines being checked; a subroutine call;
a conditional branch instruction which causes a loop, e.g.,
a re-execution of one or more instructions; the end of a
subroutine is reached; a store instructions in one of
several branches; and the scanning of one branch which
merges with a parallel branch, but scanning of the parallel

branch has already terminated.

Miss Check Code for Batches of Instructions

Figures 11 and 12 respectively show the flow 1100 and miss
check code 1200 for a group of batched load instructions
which access a range of target addresses 1130. One
convenient way to check the range 1130 is to perform miss
code checking 1140-1141 on the first address 1111 and the
last address 1121 of the range 1130 of addresses accessed
by the set of access instructions. The first and last
addresses must respectively be in the first and last lines
1110 and 1120, see instructions 1201-1204. The
instructions 1205 and 1206 check for the

invalid flag.

If either address 1111 or 1121 is invalid (1150), then the
miss handling code 1160 is called. If both the first and

the last addresses store valid data, all of the



10

15

20

25

30

35

CA 02228483 1998-02-02

- 23 -

instructions of the set can be executed without any further
checking. As an advantage, the miss check code 1200 for
the endpoint addresses can be interleaved with each other

to effectively eliminate pipeline stalls.

Message Passing Library

The message passing library 353 of Figure 3 provides the
necessary procedures to allow the symmetric multi-
processors 210 to communicate over the network 220. For
example, if the network 220 uses ATM protocols, the
routines of the library 353 communicate ATM type of
messages. The routines 6f the library 353 can send and
receive messages of an arbitrary size. In addition, the

routines can periodically check for incoming messages.

MisHandling Protocol

The other code which is linked to the instrumented program
351 of Figure 3 is the miss handling protocol code 352.
This code can fetch data from the memory of another
symmetric multi-processor, maintain coherence among shared
copies of data, and ensure that a processor which is
attempting to store data has exclusive ownership of the
data.

The protocol code 352 also implements synchronization
operations such as "locks" and "barriers." The code 352 is
called whenever the miss check code detects a load or store

miss, or when a synchronization operation is required.

The protocol code 352 is a directory-based invalidation
protocol. For each block 551 of shared data 550 of Figure
5, one of the processors is assigned to be the "home"
processor. Blocks can be assigned to different home
processors in a round-robin manner, e.g., in turn of
allocation. Blocks can be explicitly assigned to a
particular processor if placement hints are supplied by one

of the programs 310 of Figure 3.
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A home processor is responsible for initializing the data
stored at addresses of the block. The home processor also
establishes the initial states of the lines of the
allocated block, for example the state can reflect an
exclusive ownership. The home processor also creates the

initial directory information about the block.

The directory also indicates, as described below, which
processors have a copy of a block assigned to the home
processor. When a processor, other than the home
processor, desires to access data of the block, it sends a
message to the home processor indicating that it either
wants to load or store data of the block. 1In the case of a

store, an ownership request is also sent.

Home Processor Directory

As shown in Figure 13, each processor 210 maintains a
directory 1300 which can store information about lines
contained in blocks for which the processor is the home.
Also, at any one time, each line of a particular block has
a "controlling" processor. The processor which controls a
line can be the processor that last had exclusive ownership

over the line.

For each block owned by a home processor, the directory
1300 has an entry 1301 for each line in the block. Each
entry 1301 includes an identification (ID) 1310, a block
size 1315, and a bit vector 1320. The ID 1310 indicates
which processor currently controls the block, and the
vector 1320 has one bit 1321 for each processor having a
copy of the block. The size of the block 1315, as

described in further detail below, can be varied.

Protocol Messages

The processors 211 communicate messages with each other
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via the network 220 of Figure 2. The messages are of the
following general types. Request messages can request
copies of data for the purpose of loading and storing, and
reply messages can include the requested data. Requests
for data are typically sent to the home processor. If the
home processor does not have a copy of the data, then the
request is forwarded to the controlling processor. The
controlling processor can reply directly to the processor

which issued the request.

Some messages are also used for process synchronization.
Two types of synchronization mechanisms can be used.

First, processors can be synchronized to a specified
"barrier" address. When synchronizing on a barrier
address, processors having reached the barrier address wait
until all other processors have also reached the barrier

address.

Another type of synchronization is via a lock. A "lock"

can be exercised by any processor on a specified address of

the shared memory. Another processor cannot exercise a

lock on the same address until the lock is released.

The details of the messages supported by the miss handling

code 352 are as described in the following passages.

Read Message

A read message requests data for a specified processor to
read. This message includes the address of the block which
stores the requested data and an identity of the requesting
processor. In response to the message, the entire block

including the requested data is fetched.

Write Message
The write message includes the address of the requested
data, and an identity of the requesting processor. This

message requests a block of data for the purpose of
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storing new data in the block when the requesting processor
does not have a copy of the data. Therefore, the message

also requests ownership of the block of data.

Ownership Message

This message requests ownership of data in the case where
the requesting processor does have a copy of the data.

This message is used 1if the requesting processor decides to
modify its copy of the data. The ownership message
includes the address of the data, and an identity of the

requesting processor.

Clean Message

This message is used to communicate a request for a (clean)
read-only copy of the data. The clean message includes the
address of the requested data, the number of bytes, and an
identity of the requesting processor. As an optimization,
the request does not have to be forwarded to another
processor if the home processor has a copy of the requested
data.

Forward Message

This message requests that a writable copy of the data be
forwarded from the processor currently controlling the data
to the processor which made a request for the data. The
forward message includes the address of the requested data,
the number of bytes, and an identity of the requesting

processor.

Invalidate Message

This message requests that a copy of the data be invali-
dated. When the invalidation has been completed, an
acknowledgment is sent to the requesting processor. The
invalidate message includes the address of the requested
data, the number of bytes to be invalidated, and an

identity of the requesting processor.



10

15

20

25

30

35

CA 02228483 1998-02-02

Downgrade Message

This message is sent locally within an SMP, when the state
of a block is downgraded, to processors whose private state
tables must also be downgraded. The downgrade message
includes the type of downgrade, the address of the
requested data, the number of bytes, and the identity of
the requesting processor. The last processor that receives
the downgrade message completes the action associated with

the request that initiated the downgrade.

Clean Reply Mesgsage

This message includes a copy of the actual data requested
in the clean message. The clean reply message includes the
address of the requested data, the number of bytes, and the
data.

Forward Reply Message
This message includes a writable copy of the requested
data. The forward reply message includes the address of

the requested data, the number of bytes, and the data.

Invalidate Reply Message

This message is an acknowledgment that the data were
invalidated. The invalidate reply message includes the
address of the requested data, and the number of bytes that

were invalidated.

Barrier Wait Message

This message requests notification to the requesting
processor when all processors have reached a specified
barrier address. The barrier wait message includes the
barrier address, and the identity of the requesting

processor.

Barrier Done Message
This message indicates that the conditions of the barrier
wait message have been satisfied. The barrier done

message includes the barrier address.
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Lock Message

This message requests ownership of a lock. In the present
implementation the lock is exercised on a specified address
of the shared memory. The data stored at the address is of
no concern with respect to the lock message. The lock

message includes the address associated with the lock.

Lock Forward Message
This message forwards a lock request to a processor
currently controlling the locked address. The lock forward

message includes the lock address.

Lock Reply Message

This message transfers control for the locked address to
the requesting processor. The lock reply message includes
the locked address.

Dirty Data

The protocol messages described above allow the sharing of
"dirty" data. This means that the home processor of a
block is not required to have a clean, up-to-date copy of
data. For example, another processor could have modified
its copy of the data, and subsequently shared the modified
copy of the data with processors other than the home
processor. This feature makes the need for write-backs to
the home processor optional. Otherwise, a write-back to
the home processor is required whenever a processor reads a

copy of dirty data from another processor.

Polling

A polling mechanism is used to process the messages gener-
ated by the processors 211. For example, the network 220
is polled for an incoming message when a processor is
waiting for a response to a request message. This avoids a

deadlock situation.

In addition, in order to ensure reasonable response times

for requests, the programs are instrumented to poll for
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incoming messages whenever the programs make a function
call. If the network 220 is of the type which has short
latencies, polling can be on a more frequent basis, such as
on every program control back-edge. A program control
back-edge can be a branch type of instruction which causes
a loop to be iteratively re-executed. Therefore, back-edge

polling is done for each iteration of a loop.

Messages could be serviced using an interrupt mechanism.
However, servicing an interrupt usually takes longer to
process, since the state which exists at the time of the
interrupt must first be saved and subsequently be restored.
Also, with polling, the task of implementing atomic

protocol actions is simplified.

Because of the relatively high overhead associated with
sending messages between processors, extraneous protocol
coherence messages are minimized. Because a home processor
of a block guarantees the servicing of the request by
forwarding the request to the currently controlling
processor, all messages which change information in the
directory 1300 can be completed when the messages reach the
home processor. Thus, there is no need to send an extra
message to confirm that a forwarded request has been
satisfied. In addition, all invalidation acknowledgments
generated in response to exclusive requests are directly
communicated to the requesting processor, instead of via

the home processor.

Lock-up Free Cache

The protocol 352 also provides a release consistency model
which is substantially equivalent to a hardware type of
lock-up free cache which allows non-blocking loads and
stores. Data that are "cached" in the distributed shared
memories can have any one of the following states: invalid,

shared, exclusive, pending-
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invalid, or pending-shared. The pending states are
transitory states of a line when a request for the block
including the line is outstanding. The pending-invalid
state exists for data having an outstanding read or write
request. The pending-shared state exists for data with an

outstanding ownership request.

Non-blocking stores are supported by having a processor
continue processing instructions after a request for data
has been made. While the request is outstanding, the
protocol notes the addresses of any data that are modified
in the local copy of the block. Then, when the requested
block of data becomes available, the modified data can be
merged with the requested data. It should be noted that
the batching of loads and stores described above enables
non-blocking loads since the batching of loads can lead to

multiple outstanding loads for a single check.

Lock-up free behavior can also be supported for data that
have a pending state. Storing data at addresses of pending
data can be allowed to proceed by noting the addresses
where the data are stored, and passing the addresses to the

miss handing code 352 of Figure 3.

All stores to a block in a pending state are completed
inside the protocol routine while a lock is held on the
appropriate state table entry. This method of doing
pending stores is important to ensure that the stores are
made visible to any processor that may later do a protocol

operation on the same block.

Loads from addresses of data having a pending-shared state
are allowed to proceed immediately, since the processor
already has a copy of the data. Loads from addresses of
data of a block having the pending-invalid state can also
proceed, as long as the loads are from addresses of a line
of the block that stores valid data. Valid loads to pending

lines proceed quickly because of the use of the invalid
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flag 801 of Figure 8. A valid load to a pending line can
proceed immediately because the loaded value is not equal

to the invalid flag.

Variable Granularities

As a feature of the protocols as described herein, variable
granularities for coherency are possible, even within a
single program, or a single data structure. Variable
granularities are possible because all checks for misses
are performed by software instructions accessing data at
very small granularities, e.g., bytes, long words, and
quadwords. In contrast, other distributed memory systems
use virtuél memory hardware to do miss checks at fixed and
coarse granular addresses determined by virtual memory page

size, typically 4096 or 8192 bytes.

Different types of data used by a program are most

naturally, and efficiently accessed at wvariable

granularities. For example, blocks of data read from and

written to bulk sequential addresses of input/output
devices are best dealt with in coarse granularities, e.g.,
2K, 4K etc. However, many programs also require random
access to ranges of addresses which are considerably
smaller, e.g., 32, 256, 1024 bytes.

Allowing application programs and data structures to have
variable access granularities can improve performance
because data can be communicated in the most efficient
units of transfer. Data having good spatial locality,
e.g., data "clumped" into blocks, can be transported at
coarse granularities to amortize the time of long
communications latencies. In contrast, data subject to

"false sharing”" can be communicated at finer granularities.

False sharing is a condition where independent portions of
data, for example, array elements, are stored in the data
structure, e.g., one or more blocks, and accessed by

multiple symmetric multi-processors. Variable sized
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blocks, eliminates the need to repeatedly transfer large
fixed size quantities of data including smaller independent
portions of false shared data between the symmetric multi-

processors.

Accordingly, the process 300 of Figure 3 is optimized to
process units of data transfer having variable
granularities. A unit of data transfer, e.g. a block, can
be any integer multiple of lines, depending on the fixed
line size chosen for the program, e.g., different programs
can access data having different line sizes (32, 64, 128

byte lines).

In order to choose an appropriate block size for any
particular data structure, a heuristic based on the
allocated size can be used. The basic heuristic chooses a
block size equal to the size of the allocated data
structure, up to a predetermined threshold size of the data
structure, for example, 1K or 2K bytes. For allocated data
structures which are larger than the predetermined
threshold size, the granularity can simply be the size of a
liﬁe. The rationale for the heuristic is that small data
structures should be transferred as a unit when accessed,
while larger data structures, such as arrays, should be

communicated at fine granularities to avoid false sharing.

The heuristic can be modified by inserting special allo-
cation instructions in the programs which explicitly define
the block size. Since the size of allocated blocks does
not affect the correctness of the program, the appropriate
block size for maximum performance can be determined

empirically.

As shown in Figure 13, the block size 1315 of an
allocatable piece of data is maintained by the home
processor in a directory 1300. Each line entry includes
the size 1315 of the corresponding block. Processors

become aware of the size of a block when data of the block
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are transported to a requesting processor.

Because processors do not need to know the size of blocks,
the sizes can be determined dynamically. For example, a
home processor can change the granularity of an entire data
structure by first invalidating all lines which comprise
the data structure, and then changing the block sizes in

the directory entries 1301.

The home processor can look up the size of a block when an
access request, e.g., read, write, ownership, for data at a
target address of a particular line is received. Then, the
home processor can send the correct number of lines
comprising the entire block to the requesting processor.
Any other copies of the lines can be appropriately handled
by the processor using the vector 1320. In reply to any
access request, other than the initial request, all
protocol operations are performed on all lines of the
block.

In order to simplify the miss check code, the states of
pieces of data are checked and maintained on a per-line
basis. However, the protocol 352 ensures that all lines of
a block are always in the same state. Therefore, the in-
line miss check code can efficiently maintain states for

variable sized blocks.

In the case of variable sized granularities, a processor
may not know the size of a block containing a'requested
line. For example, a processor requests to access data at
address A, and address A+64. In the case where the
processor does not know the size of blocks, it may make two
requests assuming a line size of 64 bytes, one for each
target address, even if the addresses are in the same
block.

However, as an advantage, the protocol as described herein

transfers in a single message the entire block containing
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the lines. Subsequently, the home processor processing the
initial request can also recognize that the second request
is not needed. This is true in all cases, except when
another processor makes a request for access to the first
line, before the request for the second line is fully
processed. In this case, the second request must be
treated as an initial request, since the current states of

the data are not always determinable.

Figure 14 shows data structures having variable
granularities. Memories 1401 are associated with a first
processor (PROCl), and memories 1402 are associated with a

second processor (PROC2).

Within memories 1401 of the first processor, a first
program (Pl) 1411 has allocated data structures to have
lines of 64 bytes, and a second program (P2) 1441 has
allocated data structures to have lines of 32 bytes.

The first program 1411 includes data structures 1421 and
1431. Data structures 1421 includes 1 block of 128 bytes,
e.g., two lines per block. Data structures 1431 has 8

blocks of 64 bytes, e.g., one line per block.

The second program includes data structures 1451, 1461, and
1471. Data structures 1451 include eight blocks of 32
bytes (one line) each. Data structures 1461 includes three
blocks of 128 bytes (four lines) each. Data structures

1471 includes one block of 256 bytes, e.g., eight lines.

The memories 1402 of the second processor include
comparable programs 1412 and 1442 and their data
structures. As described above, the processors communicate
data in block sized units of transfer. For example, the
first programs 1411 and 1412 transfer data using blocks
1403, and the second programs 1441 and 1442 transfer blocks
1404. As an advantage, the blocks 1403 and 1404 can have

different sizes, e.g., variable granularities, and
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different line sizes, e.g., 32 and 64 bytes.

This invention is described using specific terms and
examples. It is to be understood that various other
adaptations and modifications may be made within the scope
of the invention. Therefore, it is the object of the
appended claims to cover all such variations and

modifications as come within the scope of the invention.
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WHAT IS CLATIMED:

1. A sdftware implemented method for sharing access to
data stored in the memories of the symmetric multi-
processors, in a computer system including a plurality of
symmetric multi-processors, each symmetric multi-processor
including a plurality of processors, a memory having
addresses, and an input/output interface connected to each
other by a bus, the input/output interfaces connecting the
symmetric multi-processors to each other by a network,
comprising the steps of:
designating a set of the addresses of the
memories as virtual shared addresses to store shared
data;
allocating a portion of the virtual shared
addresses to store a shared data structure as one or
more blocks accessible by programs executing in any of
the processors, the size of a particular allocated
block to vary with the size of the shared data
structure, each block including an integer number of
lines, each line including a predetermined number of
bytes of shared data;
maintaining a shared state table including a
plurality of shared state entries, there being one
shared table entry for each line of the one or more
blocks, each shared state entry to indicate a possible
state of the line, the possible states being invalid,
shared, exclusive, and pending;
maintaining a private state table for each
processor of the plurality of symmetric multi-
processors, each private state table having a
plurality of private state entries, the private state
table entries of a particular private state table to
indicate a possible state of a particular line
accessed by the associated particular processor;
storing directory information of a particular
block of the shared data structure in the memory of a

home processor, the directory information including



37
38
39
40
41
42
43
44
45
46

(92 T =SV B S U b W N o) TN 2 B - N N R S A

B W N R

CA 02228483 1998-02-02

- 37 -

the size of the particular block;

instrumenting the programs at instructions which
access the shared data to check whether the data are
available; and

in response to receliving an access request from a
requesting one of the processors to access the shared
data, sending a particular block including the
particular line and the size of the particular block
to the requesting processor via the network to enable
the processors to exchange shared data structures

stored in variable sized blocks via the network.

2. The method of claim 1 further comprising:

storing the directory information in a directory maintained
by the home processor, the directory including an entry for
each line of the one or more blocks of the shared data
structure, each entry including the size the particular

block including the line.

3. The method of claim 2 further comprising:

maintaining, in the entry for each line of the particular
block, an identity of a controlling one of the processors,
the controlling processor last having an exclusive copy of

the particular block including the particular line.

4. The method of claim 3 further comprising:

maintaining, in the entry, a bit vector, the bit vector
including one bit for each processor, each bit to indicate
whether a corresponding processor has a shared copy of the

particular block.

5. The method of claim 1 further comprising:
dynamically changing the size of the one or more blocks
allocated for the shared data structure while the programs

are executing.

6. The method of claim 1 further comprising:

locking the shared state table before modifying one of the
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shared table entries, further comprising:
setting the state of each line of the one or more blocks to
invalid before dynamically changing the size of the one or

more blocks.

7. The method of claim 6 further comprising:
modifying one of the private state tables only
by the processor associated with the private state
table.

8. The method of claim 7 further comprising:
selectively sending a message from a particular
one of the processors of a particular symmetric
multi-processor to other processors of the
particular symmetric multi-processor when
downgrading states in the private state table

associated with the particular processor.

9. The method of claim 1 wherein the number of lines of
the one or more blocks of a first shared data structure are
different than the number of lines of the one or more

blocks of a second data structure.

10. The method of claim 1 wherein the number of bytes in
one of the lines of the first data structure in one program
are different than the number of bytes in one of the lines

of a second data structure in another program.
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