wo 2011/022040 A1 I 10K 000 RO RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Peoperty Organization. /g3 | I WY KA 000 0 OO
International Bureau Wi 0%
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
24 February 2011 (24.02.2011) PCT WO 2011/022040 A1
(51) International Patent Classification: (74) Agent: WAGNER, Robyn; Van Pelt, Yi & James LLP,
GO6F 17/30 (2006.01) GO6F 9/455 (2006.01) 10050 N. Foothill Blvd., Suite 200, Cupertino, CA 95014
GOG6F 21/00 (2006.01) (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2010/002214 kind of national protection available). AE, AG, AL, AM,
. - AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(22) International Filing Date: CA, CH. CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
11 August 2010 (11.08.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: Enghsh ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
61/234,604 17 August 2009 (17.08.2009) US SE, G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
12/580,891 16 October 2009 (16.10.2009) US TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
61/257,043 2 November 2009 (02.11.2009) US (84) Designated States (unless otherwise indicated, for every
61/286,369 14 December 2009 (14.12.2009) uUs kind of regional protection available): ARIPO (BW, GH,
12/714,547 1 March 2010 (01.03.2010) us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
FATSKUNK, INC. [US/US]; 590 Mariposa Ave., TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Mountain View, CA 94041 (US). EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
(72) Inventors: JAKOBSSON, Bjorn Markus; 590 Mariposa SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Ave., Mountain View, CA 94041 (US). JOHANSSON, GW, ML, MR, NE, SN, TD, TG).
Karl-Anders, R.; 590 Mariposa Ave., Mountain View, .)
CA 94041 (US). Published:
— with international search report (Art. 21(3))
(54) Title: AUDITING A DEVICE
104 106
Device Verifier
FIG. 1

(57) Abstract: The auditing of a device that includes a physical memory is disclosed. One or more hardware parameters that cor-
respond to a hardware configuration is received. Initialization information is also received. The physical memory is selectively
read and at least one result is determined. The result is provided to a verifier.

WO 2011/022040 PCT/US2010/002214

AUDITING A DEVICE

CROSS REFERENCE TO OTHER APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No.
61/234,604 entitled DETECTION OF MALWARE filed August 17, 2009, U.S. Provisional
Patent Application No. 61/257,043 entitled AUDITING A DEVICE filed November 2, 2009,
and U.S. Provisional Patent Application No. 61/286,369 entitled AUDITING A DEVICE
filed December 14, 2009, each of which is incorporated herein, in its entirety, by reference

for all purposes.

BACKGROUND OF THE INVENTION

[0002] Existing techniques for detecting the presence of unauthorized programs are
typically resource-intensive. For example, they generally require constant updates (e.g., of
blacklists) and periodic or continuous scans for problems. The situation is exacerbated if the
device being protected by such techniques has limited resources, such as limited memory, or
by being powered by a battery. As one example, a device with limited resources may not be
able to store definitions for detecting all known unauthorized programs. As another example,
scanning for unauthorized programs is typically a power-intensive act, and may quickly
deplete the battery of a battery-powered device. In some environments, a central authority is
used to facilitate the discovery of unauthorized programs. One drawback of this approach is
that it typically requires that the device being protected compile detailed logs of device
activities. Generating such logs is resource-intensive (e.g., requiring large amounts of disk
storage; processing power to assemble the log data; and the bandwidth to deliver the log data

to the central authority) and can also present privacy problems.

[0003] Existing techniques for detecting the presence of unauthorized programs are
also generally vulnerable to attempts by such programs to cause incorrect reporting. For
example, a rootkit can “listen in” to requests by applications to the operating system, and may \
modify these requests and their responses. If an application requests information about what
processes are running, a malicious rootkit application can avoid detection by removing

information about itself from the report that is returned by the operating system.

WO 2011/022040 PCT/US2010/002214

[0004] Existing techniques for screening against the installation or execution of
unauthorized programs are also known to be vulnerable to new instances of malware that may
not immediately be detectable due to a lack of information about their structure and
functionality. Therefore, and irrespective of the resources available to the device, if the
unauthorized program is sufficiently sophisticated and/or has not previously been
encountered, it can evade detection and cause undetected harm. And, if the unauthorized
program has intentionally been installed by the user to bypass detection (e.g., to facilitate
software piracy), traditional techniques may fail to locate the unauthorized program, or any

other unauthorized activities.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Various embodiments of the invention are disclosed in the following detailed

description and the accompanying drawings.

[0006] Figure 1 illustrates an embodiment of an environment in which device

auditing is provided.

[0007] Figure 2 illustrates an embodiment of a device.

[0008] Figure 3 illustrates an embodiment of a process for performing a device audit.
[0009] Figure 4 illustrates an embodiment of a process for performing a device audit.
[0010] Figure 5A illustrates a representation of a memory prior to an execution of the

process shown in Figure 3.

[0011] Figure 5B illustrates a representation of a memory while the process shown in

Figure 3 is occurring.
[0012] Figure 6 illustrates an embodiment of a process for performing a device audit.

[0013] Figure 7 illustrates an example of pseudo code for use in conjunction with

auditing a device.

[0014] Figure 8 illustrates an example of a process for performing a device audit.

WO 2011/022040 PCT/US2010/002214

[0015] Figure 9 illustrates an embodiment of an environment in which device

auditing is provided.

[0016] Figure 10 illustrates an embodiment of a portion of a device.

[0017] Figure 11 illustrates an embodiment of a process for performing a device
audit.

[0018] Figure 12 illustrates a portion of memory being read in accordance with a step.
[0019] Figure 13 illustrates an embodiment of an implementation of a process for

selectively reading memory.

[0020] Figure 14 illustrates an embodiment of an implementation of a process for

timing a portion of a device audit.
DETAILED DESCRIPTION

[0021] The invention can be implemented in numerous ways, including as a process;
an apparatus; a system; a composition of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such as a processor configured to
execute instructions stored on and/or provided by a memory coupled to the processor. In this
specification, these implementations, or any other form that the invention may take, may be
referred to as techniques. In general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated otherwise, a component such as a
processor or a memory described as being configured to perform a task may be implemented
as a general component that is temporarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task. As used herein, the term
‘processor’ refers to one or more devices, circuits, and/or processing cores configured to

process data, such as computer program instructions.

[0022] A detailed description of one or more embodiments of the invention is
provided below along with accompanying figures that illustrate the principles of the
invention. The invention is described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the invention is limited only by the
claims and the invention encompasses numerous alternatives, modifications and equivalents.

Numerous specific details are set forth in the following description in order to provide a

WO 2011/022040 PCT/US2010/002214

thorough understanding of the invention. These details are provided for the purpose of
example and the invention may be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical material that is known in the
technical fields related to the invention has not been described in detail so that the invention

is not unnecessarily obscured.

[0023] Figure 1 illustrates an embodiment of an environment in which device
auditing is provided. In the example shown, device 102 is a cellular telephone. Device 102
is in communication (e.g. via network 104) with verifier 106. In Figure 1, device 102
communicates with verifier 106 via a 3G network. Verifier 106 is under the control of a
carrier, such as a provider of telephony service to device 102. Verifier 106 includes a
database of hardware configuration information, including an entry corresponding to device

102 and the amount of RAM included on device 102.

[0024] As will be explained in more detail below, device 102 can be audited such that
any evasive programs (e.g., malware) present on the device can be detected and/or removed.
In some embodiments this is accomplished through the undertaking of a sequence of
modifications to physical memory included on device 102. Results associated with the
performance of the memory modifications are verified by verifier 106. Once device 102 is
determined to be free of influence of such evasive programs, additional scans can be
performed, which are also described in more detail below. For example, in addition to
detecting malware (e.g., software installed without a user’s knowledge and/or consent), the
techniques described herein can detect “jailbreaking” actions (e.g., privilege escalations)
taken by the user, such as to circumvent digital rights management installed by a carrier or

hardware manufacturer.

[0025] A variety of devices can be used in conjunction with the techniques described
herein. For example, in some embodiments device 102 is a video game console. The video
game console is configured to communicate with a verifier under the control of the
manufacturer of the game console via the Internet (104). If the owner of device 102 makes
an unauthorized change to device 102 (e.g., by using a modification chip), verifier 106 will

be able to detect the modification accordingly.

[0026] Other examples of devices that can be used in conjunction with the techniques

described herein include desktop computers, notebook computers, netbooks, personal digital

WO 2011/022040 PCT/US2010/002214

assistants, video playback devices (e.g. televisions, DVD players, portable video players),
routers, access points, settop boxes, medical devices, and virtually any other device that

includes a processor and a memory.

[0027] In various embodiments, verifier 106 is controlled by a user of device 102,
instead of by a separate entity. For example, a desktop computer owned by the user of device
102 can be configured to provide verification services to device 102. In that scenario, device
102 can be configured to communicate with the verifier via a local network. Device 102 can
also be configured to communicate with verifier 106 directly (e.g., via a dedicated cable) and

network 104 is omitted as applicable.

[0028] In some embodiments a verifier is collocated with or otherwise directly
coupled to device 102. For example, a subscriber identity module (“SIM”) card inserted into
a cellular phone can be configured to provide the functionality of verifier 106 to the cellular
phone. As another example, the functionality of verifier 106 can be integrated into a power
cord used to charge a cellular phone. In such embodiments, an external verifier can either be
omitted, or can be used in addition to the verification services provided by the
collocated/coupled verifier. As one example, suppose device 102 is a personal video player
with integrated WiFi capabilities. A power cord used to charge the device can be configured
to provide verification services to the device each time it is charged. In addition, if the WiFi
radio is active, the device can be configured to communicate periodically with a verifier
provided by the manufacturer of the device. As another example, a verifier 106 can be
included on a USB device that is periodically inserted by a user into a laptop 102. In
addition, whenever a user of laptop 102 attempts to conduct banking transactions with an
online bank, the bank can also provide verification services to the laptop 102 prior to granting
access to the user’s account. As yet another example, a network operator or service provider
can require a user to have his or her machine audited before he or she is allowed on the
network or allowed to access a service. User can also initiate an audit, for example, after
realizing that he or she has been exposed to a potentially risky situation. One way a user can
initiate an audit is to select a menu option on the device. Another example way is for the user
to request an audit from verifier 106 (e.g., by submitting an online request through a web

form).

[0029] Figure 2 illustrates an embodiment of a device. In the example shown, device

102 includes a processor 202, a first memory 204, a second memory 206, and a

WO 2011/022040 PCT/US2010/002214

communications interface 208. As one example, device 102 includes a 528 Mhz ARM
processor (202), 128MB of RAM (204), a micro SD card slot into which a user has inserted a
1GB micro SD card (206), and a 3G modem (208). Memory 204 is also referred to herein as
“fast” memory. Memory 206 is also referred to herein as “slow” memory. However,
memories 204 and 206 need not be different speeds. Other components may also be included
in device 102, such as a GPS receiver (not shown). Elements, such as second memory 206,
may also be omitted as applicable. One may refer to RAM that can contain active programs

as fast, and consider RAM that can only store data as slow.

[0030] Using the auditing techniques described herein, the absence of active
processes in fast memory can be verified. And, after that verification has been completed, all
memory (e.g., both fast and slow) can be scanned to identify, classify, report and potentially
modify the contents of the fast and slow memory, or portions thereof. The distinction
between fast and slow memory can be made in a variety ways. For example, on a device with
RAM, flash memory and a hard drive, it is possible to treat only the RAM as fast memory
and flash memory and the hard drive as slow memory. It is also possible to treat both the
RAM and the flash memories as fast memory and the hard drive as slow memory. It is also
possible to consider all memory physically located on a given device as being fast, and all
external memory accessible (or potentially accessible) by the device as slow. The turnaround
time to communicate to external components will cause such external accesses to be slower,
irrespective of the type and actual local access speed of the external memory. Depending of
what types of memory are treated as fast vs. slow, the selection of parameters would be done

accordingly.

[0031] As will be described in more detail below, the existence of unauthorized
modifications to device 102 can be detected by configuring device 102 to run a series of
modifications to memory 204 and examining the results. If for example, the time it takes to
perform the modifications exceeds a tolerance of a predetermined length of time, or if a result
determined in conjunction with the modifications does not match an expected result, the
presence of an evasive program may be indicated. In various embodiments, the memory
modifications are performed across all memory on a device (e.g. both memory 204 and

memory 206), instead of being run only on fast memory such as memory 204.

[0032] Figure 3 illustrates an embodiment of a process for performing a device audit.

In various embodiments, the process shown in Figure 3 is performed by device 102. The

WO 2011/022040 PCT/US2010/002214

process shown in Figure 3 can be initiated in a variety of ways. For example, the process can
be initiated every time the user charges the device (e.g., by configuring the device to initiate
the process when it detects a power supply). The process can also be initiated in response to
the occurrence of a particularly large or unusual transaction, in response to a concern that the
user is at risk (e.g., in response to the carrier receiving notification that a new vulnerability
has been released by a nefarious individual), in response to the elapsing of a certain amount
of time, etc. Additional examples of events that can trigger the initiation of the process
shown in Figure 3 include an attempt by the user of device 102 to make a payment or
otherwise engage in a financial transaction, an authentication attempt (e.g., the user of the
device attempting to access to a bank account), and an access request being performed (e.g., a

request for the download of a movie to the device).

[0033] The process begins at 302 when one or more hardware parameters that
correspond to a hardware configuration is received. Example hardware parameters include
the amount and the speed of fast memory 204. For example, in the case of the device shown
in Figure 2, the hardware parameters would include “amount=128M” and “speed= 300Mhz.”

Additional parameters that can be used include the number of cores, the type of bus, etc.

[0034] The hardware parameters can be received in a variety of ways. As one
example, the SIM of a cellular phone can be configured to detect the amount and speed of
installed memory. As another example, if a proprietary cable is used to connect device 102 to
a power source (or to a computer or other device), the parameters may be known (and thus
“received”) by virtue of the cable only working in conjunction with a device having a specific
amount and speed of memory. As yet another example, a serial number of a device may
indicate the amount and speed of fast memory 204 installed on a device. In various
embodiments, the user (or a representative thereof) is requested to input memory parameters
in a web form or a configuration file. Assumptions can also be made about the likely
memory configuration of the device and a benchmarking program can be run to confirm

whether the assumption is likely to be correct.

[0035] At 304, a sequence of modifications to a physical memory is performed.
Examples of ways in which such modifications can be performed are described in more detail
below. In some embodiments the sequence of modifications to be performed is determined
by the verifier. The set of modifications to be made can be provided to the device in a variety

of ways. For example, the sequence can be constructed on the device based on a seed value.

WO 2011/022040 PCT/US2010/002214

The sequence can be pre-loaded onto the device at time of manufacture, at time of delivery to
the supplier or carrier, or at the time of purchase. It can also be loaded by user choice or by a
service provider at any time after purchase (e.g., as an over-the-update or as a firmware
update), or when needed to perform an audit. The parameterization can be performed by the
manufacturer or supplier or carrier, given known specifications. It can also be performed
through a lookup, e.g., of serial number, by a user or service provider. The parameters can be
associated with the model or device name. If the device is reconfigured, e.g., by replacement
or addition of components, then these new components can carry information about the new
or additional parameterization. The components can also carry the entire set of instructions,
instead of just the parameters. Alternatively, the serial numbers, names, or types of
components can indicate the needed change in parameters. If it is believed that the client
device is secure at the time of installation of the algorithm or a new component, then the
client machine can also inquire what components are installed (as is typically done as a

system is booted up), and set the parameters accordingly.

[0036] In various embodiments, device manufacturers offer to preload non-activated
auditing software at no cost, and later request payment to activate auditing services (and/or
the additional scanning services described in more detail below. The auditing software can
subsequently be activated by carriers, on request by end users or service providers. The
carrier collects payment for the activation and optionally forwards portions of the payment to
the handset manufacturer, providers of auditing software, providers of additional scanning

software (e.g., antivirus detection services), and any other parties involved in the transaction.

[0037] At 306, one or more results of the portion of the process performed at 304 are
reported to a verifier. In some embodiments results are provided to proxy 906, which
timestamps the results and provides them to the verifier. As will be described in conjunction
with Figure 5, in some embodiments multiple iterations of modifications to the memory and
communications with the verifier are made, and the processes shown in Figures 3 and 4 are

adapted accordingly.

[0038] Figure 4 illustrates an embodiment of a process for performing a device audit.
In various embodiments, the process shown in Figure 4 is performed by verifier 106. As
explained above, in some embodiments the process shown in Figure 4 is performed by an

entity separate from device 102 (such as on a verifier controlled by a carrier). In other

WO 2011/022040 PCT/US2010/002214

embodiments the process is performed by a verifier located on or otherwise physically

coupled to device 102.

[0039] The process begins at 402 when results are received. For example, when

device 102 reports results at 306, those results are received by a verifier at 402.

[0040] At 404, a determination is made as to whether the results received at 404
indicate that an expected sequence of physical modifications was made. Verifier 106 is
configured with information such as the amount of time the execution of a sequence of
memory modifications should take on device 106 (assuming no authorized modifications
have been made). In some embodiments verifier 106 is also be configured to store additional

information, such as seed values and the results of computations performed by device 102.

[0041] If the expected sequence of physical memory modifications is determined to
have been made (e.g., device 106 performed the sequence of memory modifications), it is
concluded (406) that no unauthorized modifications have been made to the device. And, any
evasive processes that might previously have been active on device 102 have been
neutralized. If the expected sequence of physical memory modifications is determined to
have not been made (e.g., because the amount of time to perform the sequence is off, or
computed results are incorrect), it is concluded (406) that an unauthorized modification has
been made to the device. (e.g., that an evasive process is present on the device and is
attempting to avoid detection). In various embodiments, error correcting codes are used to
avoid errors due to network noise. Message-authentication codes and other authentication
techniques can be used to avoid active tampering with contents. Encryption techniques can be
used to obfuscate contents and make it impossible for eavesdroppers to determine the

plaintext messages being transmitted.

[0042] Figure 5A illustrates a representation of a memory prior to an execution of the
process shown in Figure 3. In the example shown, kernel 502, authorized program 504,
unauthorized program (e.g., a malware agent) 508, and an auditor program 506 are loaded in
RAM. Typically, in order to remain resident on a device, an evasive program needs to do one
of two things. It must either remain active in RAM (or swap space), or it must modify a
legitimate program, data, or configuration of the device to allow the malware agent to gain
control after a scan has been performed. As will be explained in more detail below, using the

techniques described herein, the presence of the malware agent can be detected, irrespective

WO 2011/022040 PCT/US2010/002214

of the techniques it employs to evade detection. In addition, using the techniques described
herein, the presence of the malware agent can be detected even if auditor 506 is loaded after

malware agent 504.

[0043] Figure 5B illustrates a representation of a memory while the process shown in
Figure 3 is occurring. As will be explained in more detail below, auditor 506 is configured to
clear memory RAM (and any swap space) except for the space used by auditor 506. In
various embodiments, a minimalistic set of other services is also permitted to occupy RAM.
For example, if device 102 supports 3G communications, the area of RAM occupied by a 3G
driver/module is not cleared, so that audftor 506 can use the 3G modem to communicate with
verifier 106. As another example, in some embodiments a microkernel is permitted to

occupy a portion of RAM while auditor 506 clears the remainder of the RAM.

[0044] Figure 6 illustrates an embodiment of a process for auditing a device. The
process begins at 602 when an auditor process running on device such as device 102 clears all
portions of memory 204 (and any swap space) that is not claimed for use by the auditor. In
some embodiments, this includes unloading the kernel, various drivers, and all other
processes. In various embodiments, the unclaimed memory space is overwritten by a
sequence instead of being cleared (e.g., with zeros). One example sequence is a pseudo-
random sequence that is combined with the original memory contents, such as by using the
XOR operation. This allows the unclaimed memory space to later be reconstituted by the
repeated combination with a pseudo-random sequence that complements or equals the
previously used pseudo-random sequence. The unclaimed memory space can also be
overwritten with contents in a way that clears it, but which does not correspond to the typical
erasing operation of the device. For example, it is possible to clear unclaimed memory by

writing a sequence of 01010101 to it, or any other appropriate sequence.

[0045] In some embodiments, the auditor code comprises two components: a loader
and a variable algorithm segment. The task of the loader is to load algorithm segments from
non-RAM storage (e.g., something other than memory 204), and hand over control to the
loaded algorithm segment. After an algorithm segment has completed, it hands back the

control to the loader.

10

WO 2011/022040 PCT/US2010/002214

[0046] At 604, contents of memory 204 are reported to verifier 106. In some
embodiments the entire contents are reported. In other embodiments, only descriptions of

changes since the last audit are communicated.

[0047] At 606, the device receives a cryptographic seed from the verifier. The seed is
expanded to a pseudorandom string and the string is written to RAM. An example technique

for writing a string to RAM in accordance with portion 606 of process 600 is provided below.
[0048] At 608, the device receives a cryptographic key from the verifier.

[0049] At 610, the device uses the received key to compute a keyed hash of the entire
contents of the device’s RAM.

[0050] At 612, the device reports the resulting value to the verifier. Verifier 106

evaluates the results, e.g., according to the process shown in Figure 4.

[0051] In various embodiments, device 102 reports state information from
computations at 606 and 610 at time intervals set by verifier 106. The use of such intervals
provides assurance that the computations performed by device 102 are being performed

within memory 204 (and not, e.g. a portion of memory 206).

[0052] Device 102 obtains updates, from verifier 106, of the seed and respective key
on an as-needed basis. The use of updates provides assurance that device 102 is not
outsourcing computation to an external fast resource. For example, in order to outsource the
computation, an evasive program would have to forward the seed and key updates to the

external device, which would introduce a measurable delay.

[0053] Verifier 106 verifies that both the final function value and partial results are
correct and are reported by device 102 to the verifier within acceptable time bounds. An
example technique for evaluating the time it takes an auditor to perform its tasks is provided
below. As mentioned above, in some embodiments verifier 106 is external to device 102 and
is operated by a party other than the owner of the device. In other embodiments, verifier 106

is under the control of the user of device 102.

[0054] After the process shown in Figure 6 has been completed, auditor 506 can
restore the contents of the device, whether fully or partially, and return control to previously

active processes or to a process performing further scans of memory contents. The contents

11

WO 2011/022040 PCT/US2010/002214

of the fast memory can be restored if they were swapped out to slow memory prior to the
execution of the timed computation, or if the original contents were combined with a string,
the latter allowing a similar combination to be performed, thereby recovering the previous
state. It is also possible to restart the device by loading a “starting” state. It is further
possible to first hand over control to a process that scans, reviews, reports and modifies the
contents of memory, or any subset of these operations (described in more detail below). The
reporting can be presented to verifier 106, or to a third party, such as one in charge of
managing the processing of memory contents. In the latter case, verifier 106 may be in
charge of assuring that there is no active malicious process, and the second verifier could be
in charge of processing the memory of the device to determine whether it complies with a
particular policy, which may be related to malware detection, digital rights management, or

another policy identifying what device memory contents are desirable.
[0055] Example Adversarial Strategies

[0056] In order for an evasive program to avoid being detected, e.g., during portion
604 of the process shown in Figure 6, it must be active in RAM, either as a unique process
(504) or as part of a corrupted version of auditor 506. The following are six example ways in

which an evasive program such as malware agent 504 can attempt to remain active:
[0057] Strategy 1: Outsource storage.

[0058] The malware agent can stay active in RAM and attempt to remain undetected
by causing auditor 106 to not clear the appropriate space (e.g., at 602) and rely on non-RAM
storage or external storage to store the corresponding portion of the pseudo-random string
generated at 606. The computation at 610 would then be modified to use the outsourced

storage instead of the space where the malware agent resides.
[0059] Strategy 2: Compute missing data.

{0060] Instead of outsourcing storage of portions of the pseudo-random string, the
malware agent can store a modified representation of the string (e.g., a compressed version,
or a version that is missing portions), and reconstitute relevant portions of the string as they
are needed during the computation of the keyed hash at 610. Since the malware agent has the
seed from which the pseudo-random string is generated, it can use this — or later states of the

pseudo-random generator — to regenerate required portions of data.

12

WO 2011/022040 PCT/US2010/002214

[0061] Strategy 3: Outsource computation.

[0062] The malware agent can forward relevant data to an external device (assuming
the necessary communications infrastructure, such as a WiFi connection is still enabled). The
external device receives data from device 102 and computes the values needed to report to

verifier 106, feeding these values to the malware agent on device 102.
[0063] Strategy 4: Modify detection code.

[0064] The malware agent can attempt to replace the code of auditor 506 with
modified code. This replacement code may be designed to suppress reports of compromised
memory contents, or contain a hook for malware code to be loaded after the audit completes.
The malware agent can attempt to incorporate such changes to auditor 506 without taking up
more space by swapping out or compressing portions of the auditor code and loading or

unpacking it again as it is needed.
[0065] Filling Fast Memory

[0066] This section describes an example technique that can be used in conjunction

with portion 606 of the process shown in Figure 6.

[0067] Figure 7 illustrates an example of pseudo code for use in conjunction with

auditing a device. In the example shown, the subroutine get permutation returns a vector
indicating a random permutation of number_blocks items, ranging from 0 to
number_blocks —1, where number_blocks is the number of portions of size equal to a flash

block that the RAM comprises, minus those needed by the auditor. The subroutine

next_string_chunk returns a pseudo-randomly generated chunk of bits; the term chunk is

used to refer to the amount of data that can be sent on the memory bus. As one example, for

an Android G1 phone, a chunk is 32 bits.

[0068] Both get _permutation and next_string chunk use the most recently provided
seed as input. The pseudo-random string can be computed as segment, «— hash(segment,_)),

i.e., in a way that cannot be computed using random access. One example is a function based
on iterated application of the hash function, given the non-homomorphic properties of hash

functions. A variety of hash functions may be used. One example is MD6 in 512-bit mode.

13

WO 2011/022040 PCT/US2010/002214

[0069] The constant rounds is the number of times a pseudo-random chunk is
XORed into the contents of a cell, using the function modify_memory. The choice of
rounds controls the amount of work an adversary has to perform to carry out the second
adversarial strategy (computing missing data), while also incurring an increasing cost to the
honest execution of the algorithm for large values. In the example shown, rounds =2, which
results in a noticeably greater cost to the adversary than rounds=1, since the value of each
cell will come to depend on two other cells. This can confound memory management
strategies of an adversary. In the example shown, chunks_per_block is the number of
chunks contained in a flash block, equaling 32768 (=128kB/ 32 bits) for an example G1
phone, while number _blocks =1024 (=128 MB / 128kB).

[0070] The function modify_memory(pos,string) XORs the contents of position
pos with the value string, where pos =0 describes the first chunk of RAM to be operated

on, and pos = number_blocks x chunks_per_block —1 is the last chunk.

[0071] The memory access structure described in conjunction with Figure 7 causes
accesses to individual pages of randomly ordered blocks, if forced to use flash (e.g., memory
206) instead of RAM (204). This will cause the flash to be cleared with an overwhelming
probability, and the pseudo-random access order prevents the adversary from scheduling the
memory accesses to avoid this drawback. The cost of a flash-bound computation in
comparison to the RAM-bound alternative available to the honest execution of the algorithm

is noticeably more time consuming.

[0072] In some embodiments, one hash function application is used to generate
several invocations of next_string_chunk . This reduces the computational burden associated
with the auditing process, which emphasizes the contribution of the memory access in terms

of the time to perform the task.

[0073] In various embodiments the input to the hash function is a constant number of
previous outputs; this complicates storage for a malware agent wishing to reconstitute the
state of a given portion of the pseudo-random generator, and is thus useful to further frustrate

any attempt to use strategy 2 (compute missing data).

[0074] Performing Timing

14

WO 2011/022040 PCT/US2010/002214

[0075] This section describes an example technique that can be used for timing the
execution of auditing tasks. For example, in some embodiments the technique is employed

by verifier 106 as described in conjunction with the text corresponding to Figure 6.

[0076] Verifier 106 is configured to time the execution of portions 606 and 610 of the
process shown in Figure 6, e.g., to identify attempts to outsource storage; compute missing

data; and outsource computation.

[0077] In some embodiments verifier 106 is configured to obtain state information
from device 102 at frequent intervals (e.g., that are set by verifier 106). One example of state
information is the memory contents of the memory chunk that was last updated, which
vouches for that device 102 has reached this stage of the computation. Verifier 106 sends
update requests to device 102 at regular intervals. In some embodiments the update requests
correspond to updates of the state of the pseudo-random generator used to compute the output
of the subroutine next_string chunk . If the output of the subroutine next_string_chunk is
generated by selecting an unused portion from an already generated pseudo-random string,
the string can be cleared at the same time, thus forcing the new seed to affect the state

immediately.

[0078] An evasive program employing adversarial strategy 3 (i.e., outsourcing
computation), must transmit the update of the pseudo-random string to the external device
that performs the computation, after which the external device has to compute the resulting
next value to be reported by device 102 to verifier 106 and transmit this to the evasive
program. This incurs a round-trip delay. If the round-trip delay exceeds the time between
timing checkpoints, the cheating will be detected. Here, an assumption is made that seeds
and keys, along with other status information, is communicated securely between the client

device and the verifier. Various cryptographic techniques can be used to achieve this.

[0079] In various embodiments, the device-specific time between checkpoints is
chosen so that there is not enough time to outsource computation using communications
equipment (e.g., WiFi) included on device 102, pessimistically assuming congestion-free

environments.

[0080] The execution time of modify_memory is determined by the parameter

selections described above and what hash function to use to compute next_string_chunk. For

15

WO 2011/022040 PCT/US2010/002214

example, the MD6 hash function can be configured to different output sizes, from 224 to 512
bits. As explained above, in some embodiments a 512-bit version is used. The time per

invocation of modify_memoryis noticeably less than the time between checkpoints

determined above.
[0081] Examples of Detecting Various Evasive Programs

[0082] The following section provides examples of how evasive programs employing

the various strategies described above can be detected using the techniques described herein.
[0083] Defending against adversarial strategy 1 — outsource storage.

[0084] Assume an empty SD card has been inserted into device 102. The
corresponding write speed could reach up to SMB/s. The size of a block processed by
modify_memory as described above is chosen, in this example, to be 128kB. The time to
write the data to the SD card would be 25ms. In comparison, suppose RAM on device 102
has a write speed of 100MB/s. The corresponding write time would be 1.25ms. The
additional delay can be readily detected. And, if multiple accesses to the SD card are made

between two checkpoints, the additional delay will be even more readily detected.
[0085] Defending against adversarial strategy 2 — compute missing data.

[0086] As mentioned above, the pseudo-random string can be computed in a way that
cannot be computed using random access. To compute the value of a certain output, the
corresponding input needs to be computed from stored data. Since rounds > 1, the data
stored in RAM is not this needed state, but a combination of the states of the two or more
rounds. The state needs to be explicitly stored (in RAM) by the malware agent, as part of its
code space, and the needed state computed from this. This forces the malware agent to
compute at least (and in fact, much more) than rounds x number_blocks x chunks_per_block
hash operations during the execution of portion 610 of the process shown in Figure 6, in
addition to the computation it needs to perform to “legitimate” computation. For the selected
parameter choices, that is more than 100 million hash operations. Given an approximate time
of 10 pus for computing a hash function invocation, this is about 1000 s, which is
approximately 3 orders of magnitude more than the expected and can be detected

accordingly.

16

WO 2011/022040 PCT/US2010/002214

[0087] A sample proof corresponding to the defense against strategy 2 will now be
provided. Assume that an evasive program resides in memory 204 and takes up at least
portions of some ¢ 32-bit chunks for itself and its variables. A pessimistic assumption can
be made that all of this space can effectively be used to store variables, which is not possible,
but which gives a lower bound on the amount of work that the malware has to perform to
remain undetected. In reality, its effort is greater as not all ¢ chunks can be used for storage,

but some are needed to store its code.

[0088] For each one of the ¢ hits to RAM chunks that do not contain the values
needed to compute the function, the malware agent has to compute the expected contents. It
is assumed in this example that the original contents — before the RAM-filling was performed
— were zero. If this is not so, the effort of the malware agent would be greater, so making this
assumption establishes a lower bound on the effort of the malware agent. To compute the
expected updates to this cell that would have been performed by the RAM-filling algorithm,
the malware agent needs to compute the values for all the rounds passes on the memory
chunk in question. The values XORed in to memory come from a pseudo-random sequence.
And, it is only possible to reconstitute the state of the chain in the cell where it is missing by

computing the value next_string chunk from a value that is stored by the malware agent in
part of the ¢ chunks of storage. It is assumed that the variables are stored solely in RAM, or

the malware agent needs to also succeed with strategy 1 (outsource storage).

[0089] As explained above, the pseudo-random generator cannot be computed using a
random-access approach. It is the case that L =16 chunks is needed to store a state, given a
chunk size of 32 bits and a state size (= MD6 output size) of 512 bits. The malware agent has
to recompute the sequence of hash function invocations from a position of RAM associated

with this state (which does not have to be where the malware agent stored this state.)

[0090] Given the random permutation over cells during the writing of the memory
(the order which cannot be anticipated by the malware agent), the expected length of the run
to the string position corresponding to the stored state is at least roundsxn/(c/ L), where

n = number_blocks x chunks_per_block corresponds to the number of chunks that RAM
consist of, roundsx n is the length of the pseudo-random string, and where ¢/ L are the
number of pseudo-random states stored by the malware agent. Thus, for each hit to a “bad”

cell, the malware agent has to perform an expected roundsxnx L/c invocations of

17

WO 2011/022040 PCT/US2010/002214

next_string_chunk , which corresponds to roundsxnx/c. There are ¢ such hits, not
counting hits to “bad” cells that occur as the malware agent attempts to compute one of the
expected states. Therefore, the malware agent has to perform at least roundsxn hash
operations to compute the contents of the ¢ bad blocks from the stored contents. The
approximate time to do this (according to an example implementation) is at least between
100,000-1,000,000 times slower than the legitimate client which indicates that any attempt to

compute missing data will be detected.

[0091] If the computation of the chain causes the access to a cell that has been used to
store a value for another pass of the computation, then this causes another hit to be incurred.
It would happen with an approximate probability

(c—c/rounds) ! cxc/ number_blocks = (c —c / number_blocks) / number_blocks = c / number_blocks
for each memory access, and therefore, with approximate probability

1-(1-c¢/ number_blocks)""'"b"-b'“'“""“"“‘z/” for a given first bad cell hit, as described above. A

rough approximation of this quantity is 1—e" | For rounds =2, this is more than 98%
probability. This additional cost would increase with increasing values of ¢. An adversary

would therefore do best to make ¢ small.

[0092] In the following, assume that the adversary uses ¢ = L =16 cells only, all 16 to
store one value. With this configuration, the adversary would fail to compute the value
(unless using external memory) in those situations where the chain leads in a direction that
does not make it possible to compute the value corresponding to the “programcell” from the
value in the “storage cell”. For rounds = 2, this failure occurs with probability 75%. In the
remaining 25% of the cases, the adversary would simply be slowed down. (To always

succeed to compute the value, the adversary needs to store at least round =2 values, each

512 bits long.
[0093] Defending against adversarial strategy 3 — outsource computation.
[0094] In some embodiments the time between checkpoints is chosen so that there is

no time to outsource computation using the communications equipment on the device. The
time between checkpoints can be chosen by verifier 106 in a way that makes this immediately
detectable. A strategy involving outsourcing of computation will fail, as the roundtrip has to

be completed between two checkpoints for the right value to be provided by the adversary.

18

WO 2011/022040 PCT/US2010/002214

This is independent of the speed of communication between the client device and the

verifying party.
[0095] Defending against adversarial strategy 4 — modify detection code.

[0096] Suppose unauthorized program 508 corrupts the execution of some steps (€.g.,
as described in conjunction with Figure 6), then willingly loads legitimate code and removes
itself. Such an adversary could potentially corrupt portions 602 and 604 of the process, but
will not be able to corrupt portion 606. Specifically, it needs to corrupt portion 602 of the
process (clearing swap space and RAM) in order to maintain active. It can then cause a
misreporting of state at 604. However, this will be detected when the keyed hash of the
memory contents are computed (610). This is both due to the assumed collision-freeness of
the hash function used, and the fact that the key is not disclosed to the device until 608.
Portion 608 cannot be corrupted without being active during 606, which in turn would cause
detection, as described above. And, the evasive program will be unable to compute the
correct values to be reported at 612 without executing portion 606 of the process shown in

Figure 6.

[0097] Combinations of the four adversarial strategies will also fail, since each of

them will be detected and combinations of them do not change the underlying device-specific

limitations.
[0098] Additional Processing
[0099] Figure 8 illustrates an example of a process for performing a device audit. In

various embodiments, the auditing processes described above form one phase (802) of a two
(or more) phase process. Once the techniques described above have been employed with
respect to a device such as device 102, an assumption can be made that no evasive software is
active in the RAM of the device. Arbitrary additional processing can then be performed on

the device (804). Examples of additional processing that can be performed are described

below.
[00100] Example: Malware
[00101] After the processing of 802 is performed, at 804, device 102 performs

traditional antivirus software to identify known bad software, such as may be stored in

19

WO 2011/022040 PCT/US2010/002214

memory 206. At 804 device 102 can also be configured to report the entire contents of

memory 206 or portions of memory to verifier 106 or to another device.
[00102] Example: Jailbreaking

[00103] After the processing of 802 is performed, at 804 device 102 determines
whether its operating system loader has a particular hash, and/or otherwise determines

whether the operating system loader has been altered away from a desirable state.
[00104] Example: Phone Unlocking

[00105] After the processing of 802 is performed, at 804 device 102 determines
whether its operating system loader has been altered and also determines whether any

information associated with a service provider has been altered.
[00106] Example: Software Piracy

[00107] After the processing of 802 is performed, at 804 device 102 determines
whether any software included in memory 206 has been modified from an expected
configuration, ascertains any associated serial numbers for the software, and/or otherwise
determines whether the included software is being used in an unauthorized/unlicensed
manner. In some embodiments device 102 reports the contents of memory 206 or portions

thereof to verifier 106.
[00108] Example: Media Piracy

[00109] Suppose that media files (e.g., music, video, or image files) are customized
using watermarks during distribution, and that these watermarks are cryptographically
authenticated, e.g., using a MAC or digital signature. At 804 it can be determined which files
present on device 102 have legitimate watermarks, and whether these contain valid
authenticators. The determination can be made either locally to device 102 or centrally (e.g.,

on verifier 106).

[00110] In various embodiments, applications (such as a music player installed on
device 102) record usage and other data (forming a log of activity) and associate the
information with the appropriate media (e.g., song file). The logs can be read by the verifier
106 at 804.

20

WO 2011/022040 PCT/US2010/002214
[00111] Example: Chains of Custody / Usage Logs

[00112] Suppose an application (or data file) has an associated log file that is used to
record transactions. One example is a log file that records the occurrence of financial
transactions, including stored-value information. The legitimacy of changes made to the log
file can be verified as follows. First, the processing of 802 is performed. Then, at 804 a
determination can made (e.g., by comparing hashes of program images) as to whether or not

the application (or data file) has been altered, and thus, whether the log file is genuine.

[00113] One approach to the processing performed at 804 in this example is as

follows: First, memory 206 is scanned and a list of applications and data files associated with
the applications is created. Next, a list of descriptors for the applications and data files is
determined. An example of a descriptor is a hash of the file, along with the name and type of
file, and an identifier stating what string sequence(s) it matched. Next, a second list of any
descriptions of applications or data that is not already reported on in the first list is made.

The description created here may include all or parts of the code for an application, or of a
description of what type of input files it processes and output files it produces. The second
list is transmitted to an external party, such as verifier 106, where it is verified. The second

list can also be processed locally using any policy obtained from a policy verification server.

[00114] The outcome of the verification can be used to affect the permissions to the
applications and data, and can be used to control how external servers interact with the
device, including whether it is granted access to network resources (such as the Internet, 3G
networks, corporate networks, etc.). As another example, the software allowed to run on the
device can be restricted, and notify the user of lack of compliance, attempt to remove or

repair or otherwise modify files, etc.
[00115] Example: Parental Control Filters and other Monitoring Features

[00116] After the processing of 802 is performed, in various embodiments, additional
middleware is installed that can be configured to log (and/or block) various events associated

with the device. Examples include:

[00117] (a) determining what photos was generated on the device and later transmitted

out (e.g., to prevent “sexting”).

21

WO 2011/022040 PCT/US2010/002214

[00118] (b) determining (e.g., based on device activity and GPS changes) whether the
device was used (e.g., for texting or watching video clips) while travelling at a speed greater

than 20 miles per hour.

[00119] (c) determining (e.g., based on installation activity) whether alternative
applications (such as a second instant messaging program in addition to a default program)

has been installed, and then creating a log file for the alternative application.

[00120] (d) determining (e.g., based on browser history information) what URLs a user
has visited including which URLs were manually navigated to and which URLs were referred
to in other HTML documents that were accessed. One benefit of this logging is to identify
whether a person is likely to have fallen victim to phishing; has visited a web site known to
distribute unwanted content, including malware; and whether the device is likely to be
involved in click-fraud. Such abuse is possible to achieve without infection of the device

itself, e.g., by use of JavaScript, cascading style sheets, and/or other related scripting

languages.
[00121] Example: Additional Applications
[00122] In addition to the above examples, yet more uses of the techniques described

herein are possible. For example, device auditing can be used in vehicular black-boxes for
metering usage, purposes of insurance, tariffs, taxes, tolls, etc. - both to identify malware and

intentional tampering.

[00123] The device auditing technique can be included as a component in other
applications, allowing these applications to temporarily suspend themselves to perform the

scan, and later be given control again, in the known clean state.

[00124] As yet another example, the techniques can be used in medical devices, to
determine that they are free from infection, correctly configured and maintained, and in order
to audit usage in special cases when it becomes valuable to know who had access to data and
equipment. The devices in question may log usage information at all time, in a way that
preloaded application cannot interfere with; the audit process would include a memory-
printing scan to assert that the preloaded applications are still in a good state, and that no

conflicting applications or configurations are present.

22

WO 2011/022040 PCT/US2010/002214

[00125] Finally, the techniques can be used for detection of malware in situations
where there is no need to remediate, or where that is not the primary goal. One such context

is for online games, to detect the absence of modules to cheat in the games.
[00126] Preserving Privacy

[00127] In some embodiments descriptions of all state (e.g., the contents of memory
204) is communicated to the verifier 106. However, some data should preferably not be
transferred off device 102, such as private keys and non-executable private data. In the

following section, techniques preserving the privacy of such data are described.

[00128] Assume that a first random number is called x, and that it is selected from
some space of possible values, 1 .. max,. It is possible that x encodes malware apart from
providing an input to the auditing process for which it was intented. A legitimate program
computes a one-way function value y from the input data x and some system parameters,
which is called (g),n;). One example way of doing this is by computing y=g;* modulo n,,

where g; generates a large subgroup of Gy;.

[00129] Let the program then compute a second one-way function value z from the
value y and some system parameters, which is called (gz,n;). One example way of doing this

is by computing z=g;* modulo n2, where g, generates a large subgroup of Gy.

[00130] Next, it is assumed that the client machine proves (e.g., using a zero-

knowledge proof) that there is a value x such that z = g,% ™**" modulo n2, where (z, gi, g2,

n;, ny) are known by the verifier, but (z,x) are not. The device (the “prover”) then erases the

value x but stores (y,z) and the parameters (g;, g2, ni, n2).

[00131] At later times, the device has to prove that the value y that it stores, but which
is secret, corresponds to the value z. (Here, z can be stored on device 102, but can also be

stored by verifier 106.) One example proof that can be used is a zero-knowledge proof.

[00132] If the second proof concludes and verifier106 accepts it, then the verifier
knows that the unknown value z that the client stores is of a format that cannot be used to

hide a significant amount of data of value to a malware agent.

[00133] Here, z can be used to encrypt some other data, which is referred to as m, and

whose ciphertext is referred to as c. Thus, c=E;(m) for an encryption algorithm E. Assuming

23

WO 2011/022040 PCT/US2010/002214

symmetric encryption, m=D,(c) for some decryption algorithm D. The device contents can
be verified, but m remains unknown by the party receiving ¢. This party would not know z,
but only that z is of some acceptable form that cannot hide large amounts of malware data.
Since the auditing process described herein allows the verifier party to be assured that only
legitimate programs exist in the RAM of the client device, it can be known that the programs

— using the secret value z — can access m, given c. However, the verifier cannot.

[00134] Since it is known that the accessing program is legitimate, it is also known that
m will only be accessed in an approved manner. For example, if m is data and not code, then

it is the case that the accessing program will not try to execute the data.
[00135] Using A Pseudo Random String Generator

[00136] Figure 9 illustrates an embodiment of an environment in which device
auditing is provided. In the example shown, device 902 includes, in addition to the
components illustrated in Figure 2, a SIM configured to serve as a proxy (906) for external
verifier 904. As will be described in more detail below, a monolith kernel stored in the
instruction cache of device 102 (where it fits in its entirety) swaps out all other processes
(excepting any processes it chooses to except) when it is activated, and performs an auditing
process. The monolith kernel has an associated working space that is located in the data
cache (and registers). The cache is typically implemented using RAM, and is considered as -
being part of it herein. As used herein, “free RAM” is the portion of RAM which ought to be
free after all applications — including the regular kernel — have been swapped out. In some
embodiments, “free RAM” is defined as the segment of RAM that is not taken up by a set of
approved routines and data. For example, the regular kernel may be an approved routine, as
may common and whitelisted applications. Moreover, approved data may correspond to data
that is known by the external verifier, and may be of any format, as long as it is whitelisted
(i.e., believed to be safe.). In such cases, the approved programs need not be swapped out to
secondary storage (as described in more detail below) but may instead remain resident during

the memory reading portion of the audit (e.g., 1108).

[00137] In some embodiments the monolith kernel corresponds to a program F,
parameterized for a known execution environment €. As explained above, the execution
environment corresponds to a hardware configuration of the device. Executing Feon input x

produces a sequence of outputs F,(F,,x), each within atime ¢,(F,,x) from the start of the

24

WO 2011/022040 PCT/US2010/002214

execution and produces an ending state s(F,,x). In this example, x € X, where X is the set

of all legitimate inputs.

[00138] Proxy 906 is used to reduce latency variance from the device, and in various
embodiments is implemented as a tethered cellular phone, a cell phone tower, etc., instead of
or in addition to a SIM. In some embodiments external verifier 904 performs an initial
computation (described in more detail below) and communicates (e.g., via a secure channel),
part of the information to proxy 906, using device 902 as an intermediary. Proxy 906 times
computations performed by the monolith kernel and reports the timing measures back to
external verifier 904. In some embodiments, external devices, such as tethered cell phones or
computers, base stations, or additional external verifiers are used instead of or in addition to
proxy 906. It is also possible to use software proxies that are believed to be tamper resistant,

or to use special-purpose hardware proxies.

[00139] Figure 10 illustrates an embodiment of a portion of a device. As mentioned
above, “free” RAM is defined as being the portion of RAM that ought to be free after all
applications and the standard kernel have been swapped out. The width of the bus is a word.
The size of memory is also describable in words. For example, a 512 byte memory page as
shown in Figure 10 has a size 128 words on a standard handset, where a word is 32 bits. As
used herein, a “chunk” is the length of the cache line. In the example shown, the cache line

corresponds to 8 words, each of which is 32 bits, and the chunk is 256 bits accordingly.

[00140] Figure 11illustrates an embodiment of a process for performing a device audit.
In various embodiments, the process shown in Figure 11 is performed by device 902. The
process is configured such that its computations are expected to complete in a particular
amount of time. Any change to the amount of free RAM evaluated and any attempts to
access secondary storage 1004 will result in an observable lengthening of the amount of time
the computations take to complete. Similarly, changing the contents of any of the whitelisted

programs or associated data will cause a delay or the computation of the incorrect responses.

[00141] The process shown in Figure 11 can be initiated in a variety of ways, such as
the ways described in conjunction with the process shown in Figure 3. As additional
examples, the audit process can be included in a shutdown or boot route. It is also possible
for an application to initiate the audit process. The application would be deactivated, the

processing would be performed, and control would be handed back to the application when

25

WO 2011/022040 PCT/US2010/002214

complete. In some embodiments an application queries a central authority (or the device) for
information about how recent the last scan was performed. The SIM card can store
information about when a scan was performed. If the SIM card has the functionality that
allows it to constantly measure time, it can give an actual time as the answer. Otherwise, it
can give a time estimate based on the number of seen transactions, many of which will be

known to be periodic. Such information can be used to assess the duration since the last scan.

[00142] The process begins at 1102 when contents of memory 1002, except monolith
kernel 1006 (and any processes it deems acceptable to retain) are swapped to secondary
storage 1004. In some embodiments portion 1102 of the process includes swapping out the
normal kernel, or parts thereof. Crucial features, such as device drivers for serial
communication, are re-implemented in monolith kernel 1106. In various embodiments, the
contents are swapped out verbatim, or compact descriptions of the contents are swapped out
or stored on the proxy, external verifier, or other trusted device, or stored in RAM in a state
that cannot be used for active code. (E.g., it is possible to store instructions in a portion of
cache not intended for instructions, but only data.) In some embodiments, no “free” space

exists and portion 1102 of the process shown in Figure 11 is omitted.

[00143] At 1104, one or more hardware parameters that correspond to a hardware
configuration are received. This portion of the process is similar to portion 302 of the
process shown in Figure 3. Also at 1104, initialization information, such as a seed that can be
used to generate a pseudo-random string, is received. Other examples of initialization

information include a step value and a key value, as described in more detail below.

[00144] At 1106, the free RAM is overwritten. In some embodiments the output of a
pseudorandom string generated using the seed is used to overwrite the free RAM. One
technique for overwriting the free RAM is to generate an n’-bit pseudorandom string with the
particular property that the computation of any one of the output bits will take at least half as
long as the computation of the entire block of bits or at least 512 applications of MD6 in 512
bit mode. The technique uses three phases, and repeats (with different values of aux) until

the output strings fill the entire free RAM:

[00145] 1. Generating: Using a hash function h (e.g., MD6) with an output size of “n”

bits, generate the value x, = h(seed,i,aux) for 0<i<n-1, and some value aux. This

generates n® pseudorandom bits.

26

WO 2011/022040 PCT/US2010/002214

[00146] 2. Shuffling: Compute y, =] [, 2'BIT,(x,), 0< j<n-1, where BIT, isa
function that returns the jy most significant bit of the input. This shuffles the bits in a manner

that requires computation of all n hash function applications to reconstitute any one of the

values.

[00147] 3. Blending: Compute z, =h(y,), for 0< j<n—1. This assures that each bit

of the output is a function of all the n input bits, each one of which required one hash function

evaluation to compute.

[00148] In various embodiments, additional shuffling and blending is performed to
further increase the cost of computing any part of the final string. In addition, other
techniques for overwriting free RAM can be used instead of the example technique described

in conjunction with portion 1106 of the process shown in Figure 11.

[00149] At 1108, memory 1002 (or portions thereof) is read in a manner determined by
the “step” value. Results are accumulated and the computation is keyed using a key. In
various embodiments, the processing of portion 1108 is performed by a memory access

scheduler and an accumulator, each of which will now be described in more detail.

[00150] Memory Access Scheduler

[00151] Let “sRAM?” be the size of RAM 1002, measured in its entirety, in chunks.
External verifier 904 will select a random value step in the range

page < step < sSRAM — page , such that “step” is an odd value. Here, “page” denotes the size
of one memory page in secondary storage, also measured in chunks. In the case where there
are several page sizes (e.g., if there are several components that constitute secondary storage),

in various embodiments the largest of the page sizes is used.

[00152] Performing the processing of 1108 includes a loop in which memory is
accessed and the results combined to form a keyed memory checksum. For each iteration of
the loop, the access location is increased by the value step, modulo SRAM. Because “step”
and SRAM are relatively prime, all RAM memory locations will be accessed exactly once.
Further, the access order will be unknown to an adversary until the value “step” is disclosed.
An illustration of memory 1002 being read in accordance with a “step” is provided in Figure
12.

27

WO 2011/022040 PCT/US2010/002214

[00153] In the example shown in Figure 9, device 902 includes a single, single-core
CPU. In systems such as laptop computers that include multi-core processors and/or multiple
processors, the processing of 1108 can be constructed in a way that is either inherently serial
(and which will therefore obstruct the use of multiple processors) or adapted to take
advantage of multiple processors. As one example of the latter, several computations can be
started with offsets such that each thread corresponds to a different portion of memory, and

where there are no collisions.
[00154] Accumulator

[00155] Memory contents can be accumulated in a register using a simple non-linear
function that combines the previous register contents (referred to herein as a “state”) with the
newly read memory contents (data), one by one. Examples of accumulating functions

include hash functions (e.g., MD6); a non-linear shift-back register; and simpler functions.

[00156] On example of a simpler function is state— ROR(state + data). The latter
function corresponds to a function ROR(...(ROR(statep+data,)+data). . .+data,), where “+”
refers to regular addition, and “ROR” rotates the contents of the register one bit to the right.
In this case, the function itself may not be nonlinear, but when combined with the a priori
unknown step size and the tight timing requirements, it is nonetheless sufficient to satisfy the

processing requirements needed.

[00157] Is mentioned above, in various embodiments, the accumulation process is
keyed. One way to accomplish this is to offset the value “state” with a new value “key”
(obtained from the external verifier or the proxy) at regular intervals. The offset can be

performed by adding the current value state to the new value key.

[00158] Further, while the process described in conjunction with 1108 is based on
reading memory, in some embodiments a write operation is included to cause further flash-
based slowdowns. As one example, sequences of “1”’s are written, as causing an erase of the
entire block, should the data be stored in flash. To simplify the scheduling of where to write
(and with it the monolith kernel), the location can be obtained from the proxy at the same

time a new key value is obtained.

[00159] Various other sequences of memory accesses can also be performed at 1108.

For example, it is possible to use two step values instead of one, where these step values may

28

WO 2011/022040 PCT/US2010/002214

both be even numbers, but where they cause mostly all of the space to be covered. It is also
possible to use a collection of numbers or parameters that determine a function that selects
the sequence of locations. It is possible to think of this as a maximum-length sequence, where
the outputs are locations, and the maximum-length sequence includes all values in a given
range, corresponding to memory positions. It is possible to offset such values to avoid
accessing certain areas (e.g., the monolith kernel), should that be desirable. In the case of a
maximum-length sequence, the key provided by the external verifier or proxy can be the

initial state, or the weights associated with the various cells of the LFSR.

[00160] At 1110, the keyed computation is provided to an external verifier 904. If the

external verifier approves of the results, device 902 is deemed to be in a safe state.

[00161] At 1112, device 902 executes any functions that are to be executed in a safe
state. Examples include setting up an SSL connection, casting a vote, entering a password,
scanning secondary storage for malicious/unwanted programs, etc. In various embodiments,
if the code of the safe-state function is in secondary storage (i.e. it is not part of the monolith
kernel), a digest of the function is compared to a value stored in the monolith kernel (or on
the proxy). The function is activated only if the values match. In various embodiments, if
the proxy can perform the message digest computation, the monolith kernel need not contain

code to do the same.

[00162] At 1114, the state of RAM 1002 is restored by loading contents (swapped out
at 1102) of secondary storage 1004.

[00163] A large portion of the potential load of the process shown in Figure 11

involves swapping out applications and data from RAM to secondary storage, and swapping
it back. It is possible to avoid doing this, e.g., in order to save time. This could be done by
killing the applications. If an external verifier or other resource knows what applications are
running, and potentially also their state or parts thereof, it is possible for this party to assist in
restarting selected applications after the auditing process has run. It is possible for secondary
storage or a SIM card or other on-board unit to maintain some of this information. It is
possible to identify applications and data not by their full strings, but by shorter identifiers to
save space and time. It is possible to have approximate algorithms that largely re-generate the
same state after the detection algorithm has run. For example, this may restart a browser, but

fail to recover the browser contents.

29

WO 2011/022040 PCT/US2010/002214

[00164] Further, it is not necessary to swap out active applications if they only take up
some portion of RAM. For example, suppose they only take up the lower half of RAM. For
each cell (number i) in free RAM, copy the contents of that cell to a position higher up
(position 2i). This is preferably done starting from the end (higher numbered positions.) This
effectively slices the applications, and makes them reside only in even positions. Now
pseudorandom values need only bet written into the odd-numbered positions, and only need
to perform the nonlinear accumulation of the odd-numbered cells. Note that it is not possible
for any functional malware to remain active. It is possible for malware to exist, but only if its
instructions are “jump to next open space” and that is where the next instruction is. Since all
the space that is not overwritten by pseudorandom material will be jumps only (there is not
space for more in consecutive space), it is knowable that the malware cannot achieve
anything. It is possible to make the distance between slices larger, especially if the space is
not predictable by an adversary. The distance may be predicted by a sequence generator, for
example, where different distances are different length. The spreading out of data and
programs within the RAM can be combined with offsetting these with random strings. The
microkernel (the program in charge of the malware detection)-would not be spread out in this

manner, as it needs to remain in a state that allows it to execute.

[00165] In conjunction with Figure 11, a description was made as to how RAM could
be read using a step size that is not a priori known. It is also possible to write (free) RAM
using a step size other than one, where the step size may be unknown a priori. One effect of
this is that it causes writes to secondary storage for an attacker wishing to store information in
secondary storage. These delays are greater than read delays if secondary storage uses flash.
It is possible to use a simple step increment modulo an integer corresponding to the range to
be written -- plus an offset if the monolith kernel does not reside in high addresses. It is also
possible to use no particular modulo for the arithmetic -- which corresponds to using a
modulo corresponding to the addressable RAM space -- and to identify whether the cell to be

written is in a range that should not be written.

[00166] Figure 13 illustrates an embodiment of an implementation of a process for
selectively reading memory. In some embodiments Figure 13 is used to implement a portion

of portion 1108 of the process shown in Figure 11.

[00167] In some embodiments, full use of the data cache is made. Specifically, data is

processed in chunks the width of the cache line, whose size typically ranges from 8 to 512

30

WO 2011/022040 PCT/US2010/002214

bytes. In the following, the parameter “a” denotes the width of the cache line, in words. The
parameter “period” corresponds to the length of the timing periods. This is set to correspond
to a time that is shorter than an optimistic roundtrip latency from device 902 to a potential

external helper. The reported values, and the time at which they are reported, are recorded by

proxy 906.
[00168] Examples of Detecting Various Evasive Programs
[00169] The following section provides examples of how evasive programs employing

the various strategies described above can be detected using the techniques described herein.
To succeed in evading detection, an adversary has to provide the correct responses F (x)
within the expected time ¢,(F,,x)+6 . There are various ways this can be attempted by an

adversary, each of which will now be described.
[00170] Defending against adversarial strategy 1 — external support.

[00171] The values “key” and “step” are communicated to the proxy over a secure
channel. The value of “state” is reported for each iteration of the outer loop. The computation
of this value depends on the value “key.” Therefore, it is not possible for an external device

to help with the generation of the responses if the roundtrip latency (from sending out the

value key to receiving the result of the computation) exceeds the time threshold #,(F,,x)+ 0,

where t,(F,, x) is the time for F. to generate the response.

[00172] Defending against adversarial strategy 2 — using secondary storage.

[00173] Assume that the adversary has modified some “k” words of data in RAM, and

that an image of the “intended" contents of this area is kept in secondary storage. When F,

would have attempted to access one of the modified cells, F’ instead accesses the image in

secondary storage.

[00174] This can be done in three ways: (a) The entire RAM can be imaged in

secondary storage, and each access is made there; (b) Each memory access of F. is replaced

with a comparison of the address to a range, with select access attempts only being rerouted
to secondary storage; and (c) the Translation Lookaside Buffer (TLB) is used to

automatically reroute accesses with selected ranges.

31

WO 2011/022040 PCT/US2010/002214

[00175] In the first case, each memory access will suffer the delay associated with
accessing secondary storage instead of RAM. In the second case, only rerouted accesses
suffer this delay, but for each memory access, a comparison has to be made. In the third case,
there is only a delay imposed for rerouted accesses. However, due to the somewhat coarse

granularity of the TLB, there is a minimum number of cells for which accesses can be

rerouted.
[00176] Defending against adversarial strategy 3 — using RAM.
[00177] Due to the construction of the pseudorandom string that is used to fill free

RAM, computing any one cell will require the computation of at least 512 hash function
evaluations, since the value in each cell (in some embodiments) is a portion of the second-
layer hash function output, whose input is a function of 512 first-level hash function

evaluations.

[00178] Suppose there is a setup cost for each hash function computation, and that this
is at least 1156 clock cycles. At the same time, the hash computation for MD6-512 — once the
setup is completed — takes 155 cycles per byte, or 9920 cycles for a 64 bit input. Both of
these assume optimized code and for a typical 32 bit processor. The total cost per hash
function evaluation in this setting is therefore 11076 cycles. Computation of the contents of

only one cell in RAM will take at least (512+1)*11076 cycles.
[00179] Using Proxies For Timing

[00180] As mentioned above, in some embodiments an external verifier is used to
distribute new seeds and to time the arrival of values from timing checkpoints. To example
models of communication between the audited device and the external verifier are: (a) a
physical connection; and (b) a VPN between the external verifier and a SIM card. Data down

is encrypted, data up is authenticated and/or bi-directional authentication occurs.

[00181] When a physical connection is not used between the device and the verifier,
variances in latency can frustrate the timing of the computation. Accordingly, in some
embodiments a proxy (with less latency variance) is used to support the timing. One example

piece of hardware that can be used as a proxy is a SIM card.

32

WO 2011/022040 PCT/US2010/002214

[00182] A proxy can be used to reduce the variance associated with the starting of the
computation. This applies both to the entire computational task, and to subtasks. Both of
these can be initiated by sending a key or a seed that is needed for the computation,

guaranteeing that the computation does not start until the key or seed is received.

[00183] The SIM card receives encrypted seeds, decrypts them, and provides device
902 with the values. This dispensal time can be made relative to other events that are
observed on the device. Consider a triplet (location,data,seed), and assume the verifier
produces such triplets, and sends them in an encrypted and authenticated fashion to the SIM
card. Here, location describes a computational step (or stage) within a program, and data
describes some state associated with this location. Assume that the computation can be
anticipated by the external verifier, or that a small number of very likely computational paths

can be anticipated.

[00184] This makes it possible for the external verifier to compute these triplets,
predicting what data (or state) will be observable on the device at a given location (or stage).
The third element of the triple, seed, denotes the value to be dispensed to the device if it

reaches a given state, associated with location and data.

[00185] The SIM card will send the “value” location to the device, unless it can be
computed or predicted by the device, or received from elsewhere. When the computation has
reached a stage associated with the value location (this can be a loop iteration value), the
software on the device sends the most recently computed value of some predetermined type —
or parts thereof — to the SIM card. This can be the most recently computed value, the
contents of a given register, or any other appropriate value. The SIM card compares this
value to the value data associated with location, and if they are the same or equivalent, then
responds with the value seed. The device replaces its current seed value with this new value
for seed. This allows the device to replace the seed at a time when it has computed some
value that vouches for it having reached a given computational stage. The new seed is not
disclosed before this, which has security benefits. Alternatively, new seeds can be disclosed
as soon as a new result is reported, independently of whether this reported value was correct
or not; any reported value would be recorded, along with when it was received, allowing a
verifier later to determine if incorrect results were received, or whether there were any
noteworthy delays. The reports sent by the proxy can be compressed or digested in order to

save bandwidth, as applicable.

33

WO 2011/022040 PCT/US2010/002214

[00186] The computation has reached a given checkpoint associated with a triple

(location, data, seed) once a match is made and the associated seed value is dispensed.

[00187] In some embodiments the SIM card has a long vector of such triples, and
selects either the first one (in the case of straight computation) in the line, or any one that
matches the input (in the case where there are branches not foreseeable by the external
verifier unit). It is possible to leave out the value location if a predictable location is used.
The SIM card can obtain a long list of triples without it being possible for any of these to be
intercepted by the handset or other parties; this is made possible by the use of point-to-point

encryption between the external verifier (or associated proxy) and the SIM card.

[00188] It is also possible to use a verifier-initiated event instead of the value data.
Thus, once that event is observed by the SIM card, the associated value seed is released, and
the device computation is started with this value. This can be used to start the clocking. This
can also be implemented by the device having to present a given piece of data that may, for

example, be delivered by the external verifier to the handset in order to start the computation.

[00189] It is possible that some of the seed values are empty, in which case no seed
value is sent to the device. This could be used to perform a check as to what point of the

communication the handset has reached.

[00190] The SIM card does not have to be clocked (and therefore be aware of time),
and it can operate in a hostile environment (as long as the values “data” are sufficiently long
to preclude exhaustive search by malicious code on the handset, with the goal of obtaining

seed values in a premature manner.

[00191] The end of a computation can be identified by having a checkpoint, as above,
after which the SIM card reports the time of the computation to the external verifier, or
reports information which allows the external verifier to compute an estimate of the time
between the beginning and end of the computation. In the former case, a collection of local
time values can be recorded by the SIM card, one for each checkpoint that is reached. This
can be recorded as a list of pairs (location, time), where the value time can be a local time
that does not need to be synchronized with the external verifier’s notion of time.
Alternatively, pairs of reported values and the associated times can be recorded. The SIM
card can authenticate this list and transmit it to the external verifier, who would verify that

the authentication was correct, after which it can make a determination of how long various

34

WO 2011/022040 PCT/US2010/002214

computational tasks took. This can be used to infer the device’s security posture.
Alternatively, the SIM card can make this security determination and send an authenticated

result of the determination to the external verifier.

[00192] Even without the ability to tell time, the SIM card can order events. As it
receives packets from the verifier (or any entity collaborating with the verifier, and not with
the malware), it will determine what device-reported event most recently took place. This
corresponds to a value “data” that was received and verified as being correct. Thus, the
values data can be generated by the device (given some computational task set up by or
known by the external verifier) or can be a result of communication from the external

verifier.

[00193] To deal with intentionally delayed reporting to the SIM card, it is possible to
require immediate acknowledgment by the SIM card to the external verifier, once an event
packet is received. These messages are authenticated and/or have a format that cannot be
anticipated by a malware agent. An example way to construct this by letting the value “data”
above correspond to the event from the external verifier, and let the device report the
associated value “seed” to the external verifier once it is received from the SIM card. The
external verifier can then time the arrival of this acknowledgment after a preceding packet is
sent. Alternatively, the device can be allowed to report values corresponding to “data”
directly to the external verifier. This can be done for some portion of all the checkpoints, or

for additional checkpoints.

[00194] Assume that a packet identified by a string S was received by the SIM card
after an event E took place, but before any other event took place (and was correctly verified
by the SIM card). Then, the pair (S,E) is added to a log L. Alternatively, identifying portions
of the strings S and E are added to the log. The log is communicated to the verifier at the end
of the communication. Alternatively, ordering information is communicated to the external

verifier.

[00195] In some embodiments, triplets (location,data,report) are added to the vector,
where “report” is a value that signifies a report being sent to the verifier. This can also be
achieved using regular seed values, where the last seed value released is a value that the
device communicates to the verifier in order to stop the timing. The timing can also be

stopped by having the device perform some additional keyed task and report back values in

35

WO 2011/022040 PCT/US2010/002214

exchange for seeds, in which case the arrival of the next packet with a string S would identify
when the timing stopped (extrapolated from the number of cycles that apparently were

computed after the intended computation ended.)

[00196] Once the timing has ended, the SIM card encrypts (and potentially
authenticates) the log, and passes this to the device for transmission to the verifier. The
verifier determines whether it was correctly authenticated, decrypts it, and then determines
from the log what the completion times of partial steps of the communication were, given
information about the transmission times of the packets containing values such as S. It may
know the times when these were transmitted by the base station closest to the handset, or may

know when they were processed by a network proxy, or by the originator of the packet itself.

[00197] In some embodiments the values S are generated by a trusted beacon and
potentially not known by the external verifier by the time it starts the computation on the

device.

[00198] Some types of packets, like the packets containing S, need not be encrypted
before they are transmitted over the network. In some embodiments they are authenticated.
However, the verification by the SIM card of whether a packet has a correct authentication
need not be done before a preliminary log entry is compiled. If the authentication verification

fails for an already compiled log entry, this log entry can be erased.

[00199] SIM cards are half duplexed, i.e., cannot receive and send data at same time.
SIM cards operate as slaves, i.e., will only (with some special exceptions, such as when they
are powered up) send data to the attached device (our handset) after having been requested to
do so. However, some smart cards can operate independently between queries from their

associated handsets, and not only as a reaction to being queried.

[00200] If a SIM card supports multi-threading, it is possible to let one thread perform
a simple count (started when the timing starts), and to provide this counter to the other thread,
which records this value each time a correct data value is received. The counter can be stored
along with the data value, the associated location, or an index that indicates what data value is
associated with the counter. In some situations, such as if it is guaranteed that one data value
cannot be accepted more than once, and there is a deterministic order of values to be

received, then we may record the counter values, and not the data values or other state

information.

36

WO 2011/022040 PCT/US2010/002214

[00201] Some SIM cards, such as typical Java Cards, only support computation after a
message is received from the SIM card interfacing device (CAD). The computation typically

ends when the response from the SIM card is generated and transmitted to the CAD.

[00202] If a SIM card allows a counter to be increased for each clock cycle (or another
deterministic periodicity) even before messages received from the handset, and after
responses being transmitted, then it is possible to maintain the proper count, even without

support for multi-threading.

[00203] It is possible to keep time-based state in the SIM card; it is also possible for
the SIM card to authenticate events (including the time at which they took place) and export

lists of such authenticated events.

[00204] Figure 14 illustrates an embodiment of an implementation of a process for
timing a portion of a device audit. In the example shown, a modified Java Card is used as a
proxy. The modification permits the process to remain active after responding to a request.
The proxy receives a vector of values input and output from the external verifier, and
produces a vector duration that is transmitted to the external verifier at the completion of the
execution. (All the communication between the proxy and the external verifier is assumed to
be authenticated and encrypted.) In the example shown, the value “o0” corresponds to an
error message indicative of an attempt of a malware agent on the client to cheat. Upon
receipt, the external verifier will determine if the values in the vector duration all fall within
the tight bounds suggesting successful completion, and will conclude that the client is in a

safe state only if that holds.
[00205] Additional Ways Of Using Proxies For Timing

[00206] In addition to using a SIM or similar piece of hardware as a proxy, it is also

possible to use as a proxy another device that is believed to be in a secure state. It is possible
to bootstrap security by first having one device (such as a phone) be verified as being secure,
and then use that device to perform local timing and other verification tasks in the process of

verifying the security of a second device.

[00207] The devices can be of different types. For example, one may use a SIM card,
local cell phone tower, or a local computer to assist the security verification of a handset, on

the request of an external verifier. It is possible for this external verifier to have prepared

37

WO 2011/022040 PCT/US2010/002214

parts of the data used in the verification, such as the pairs of (data,seed) described above. It is
also possible for a third party to perform this pre-computation. In various embodiments, a
seed is generated by the proxy. One example is for the proxy and the device to both contain a
sensor such as an accelerometer or photovoltaic sensor. Both the device and the proxy
observe the same phenomenon (e.g., by being held together and shaken together) and
calculate a seed the manner. In this case, the device uses the observed seed, and the proxy

sends the seed (which it independently experienced) to the external verifier.

[00208] As soon as a first device is determined to be in a secure state, it can be used to
time or otherwise assist in the security assessment of a second device, such as the
infotainment system of a car, another handset, a netbook, a laptop or desktop, or other device.
This security assessment can be of the same type (e.g., based on the time to perform
computational tasks), or it can be an alternative security assessment method that is
bootstrapped on the first. Likewise, the first security assessment can be of a different type,
while later security assessment can be bootstrapped on the first one, and may use our timing-

based approach.

[00209] In some embodiments, a first known “safe” device is used to produce a
collection of sets of seed values, to be consumed by other devices at a later point. It is
possible to have such sets certified (e.g., using a PKI or by peer-based authentication of
values). Further, it is possible for the external verifier to operate in an off-line manner if it has
the support of an online proxy. For example, the external verifier can send encrypted and
authenticated data at a time far ahead of the auditing process; several such transcripts can be
sent at a time. They can either be sent to the proxy, where they can be kept; or they can be
sent to the audited device, or a proxy thereof, where they would be kept until needed. The
transcripts that are generated by the proxy as a result of the memory-printing may also be
buffered by a device and later sent to the external verifier, whether when they are requested,
or when there is an availability of a communication channel. In some embodiments all
records are marked up with time-stamps and serial numbers before they are authenticated and

possibly encrypted.

[00210] It is possible to implement this in a network of small nodes, wherein some of
the nodes either are trusted a priori, or are assessed to be secure; after which these nodes are
used to assist the security assessment of other nodes. This is a potentially recursive approach,

and can be circular, i.e., a previous trusted device used to assess the security of other devices

38

WO 2011/022040 PCT/US2010/002214

may later on be verified by some of these devices, or devices assessed to be secure in other
ways. The external verifier can still be included in the environment, and may help start up

the chain of verification events, and help schedule what nodes should be verified when, and

by whom.
[00211] Using Compressed Access Tables
[00212] In some embodiments the position of a memory access is determined by the

contents of a vector “location” whose contents correspond to a permutation of all cells of free
RAM. This vector can take up all of free RAM, if kept there. In some embodiments it is
stored in secondary storage (such as flash), and portions are swapped in as needed. An
alternative approach that maintains a pseudorandom access order, but which minimizes the

computational effort during the main loop will now be described.

[00213] Consider two vectors, locationH and locationL, where both are vectors, each
one containing a permutation of partial memory access positions. Here, the actual memory
access position is the combination of two partial positions, e.g., the bits of one locationH
element concatenated with the bits of one locationL element. Here, the locationH element is
assumed to contain the higher order bits and the locationL element the lower order bits. These
elements can be of the same or different size, but will, when combined, be the size that
addresses one memory location. If each contains all possible elements in the range, then the
collection of all combinations will correspond to a collection of all memory addresses. (From
this, one can remove those that are not in free RAM by comparing the combined result to a
threshold, and trash the result if it falls below this threshold.) This representation takes only
the square root of the size of the space addressed to store. It is possible to use three
components, in which case they take the third root of the space addressed. It is possible to use

a large number of components as well. One example combination function is concatenation.

[00214] In some embodiments the order of access of the elements of the vector follows
a geometric pattern that guarantees that all combinations are going to be used with an
overwhelming likelihood. It can be beneficial not to have several accesses of one and the
same item within one vector, as this reduces the degree of unpredictability to an adversary,
given the increased patterns in memory access. It is possible to cover one combination more
than once, although it is beneficial to limit the total number of accesses to memory at the

same time as guaranteeing that all accesses are made, but for a negligible probability.

39

WO 2011/022040 PCT/US2010/002214

[00215] It is possible to access the locationH vector at a position x and the locationL
vector at a position y, and to access the x-y positions along the diagonals. Here, the first
sequence can be started at position (x,y)=(0,0), after which x and y are both and
simultaneously increased by one for each iteration of the loop. When one coordinate is
increased beyond the size of the vector, the coordinate is set to 0 again. Then, when the
position again becomes (0,0), it can be to modified to start at position (x,y)=(1,0), after which
the sequence of increments is repeated until it comes back to (1,0), at which time it is
changed to (2,0). This is not the location of the memory access: it is the position in the

vectors that describe where to make memory accesses.

[00216] It is also possible to otherwise compress the description of what cells to access
by having a vector of locations elements, where each such location only describes part of an
address, and the remaining bits of the address are computed in another fashion, or inferred
from program state at the time of the computation. Moreover, these two approaches can be
combined, and combined with yet other related descriptions of access locations that are at

least partially pregenerated.
[00217] Additional Information On Timing

[00218] In various computations, timing of computation, and partial computation
occurs as follows. (A) The timer is started once the auditor is provided with all necessary
values, whether from the external verifier or a proxy thereof. These values typically include
the value seed. (B) The timer is stopped (and the time since it was started recorded) when the

auditor submits a correct value “state” to the external verifier or a proxy thereof.

[00219] It is possible to immediately start a new time interval when an old one has
ended (where the start is signified by step A and the end is signified by step B above). It is
also possible to implement “recesses” between these intervals; during these recesses, the
computation may not be timed, and the algorithm may perform routine maintenance, such as
communicating with external parties, reading or writing to secondary storage, or other
functionality. The recess can be ended when the algorithm requests that the next timing
interval is started (e.g.. step A); one way this can be done is by signaling to the external
verifier or proxy thereof to start the next interval; or it can be done by the external verifier or

proxy thereof selecting to start the new interval.

40

WO 2011/022040 PCT/US2010/002214

[00220] It is also possible to implement recesses as standard timing intervals, whose

length is not critical to the final determination of the security posture of the audited device.

[00221] Pseudorandom Access

[00222] In some embodiments, the selective reading performed as part of the audit
process is accomplished through access in a pseudo-random order, with a sequence of reads
and writes to the accessed positions. An alternate embodiment using pseudorandom access
now be described. First, a description of an example of memory filling will be provided.

Then a description of an example of periodic timing will be provided.
[00223] Filling Fast Memory

[00224] The following memory-printing function can be used to fill free RAM. It can
also be used to fill other types of fast memory, in the event that such other types of memory
are comparable with RAM in terms of access times. A pseudo-random sequence is XORed in
to free RAM in a pseudo-random order; later, a keyed hash of the entire contents of RAM is
computed. Even though RAM does not use blocks and pages, it can nonetheless be divided
into “virtual” blocks and pages, corresponding to those of flash. Consecutive chunks of flash
are not accessed in a page or block. This makes the access slow in flash, but still fast in

RAM.

[00225] In order to fill free RAM with a pseudo-random string, there are two main
steps. First, a setup function is run. This determines the random order of memory accesses to
be made by the memory-printing function, using a seed obtained from the verifier to generate
pseudorandom values. The table is stored in flash, and the program space used by the setup
function is cleared after the setup completes. Second, a memory-printing function is used to

fill all free RAM. Its execution is timed, both from beginning to end and in shorter intervals.
[00226] Handling Network Delays

[00227] Delays caused by infection can be measured from a device connected to the
client device by internal wiring; standard network port, such as USB; over a wired interface;
over a WiFi network; over a LAN; over the Internet; over a packet-switched network; over a

communication network; or a combination of these. Some of these communication media

41

WO 2011/022040 PCT/US2010/002214

may introduce delays and variance, which can be separated from the measurement using

statistical methods.

[00228] The verification is made by a device that is connected to the audited device
using a cable, a LAN, a WAN, Bluetooth, Wifi, the Internet, another network, or a
combination of networks. The verification is made by comparing a received result with a
computed result, and to verify that it (and the sequence before it) was received within the
proper time bounds. All of these communication media may incur latencies, and some may

drop packets.

[00229] Assume for a moment that a “good” event takes 10 units of time, plus between

1 and 5 (for typical network variance).

[00230] Then, assume that a “bad” event takes 15 units of time, plus 1 to 5 for network
variance.

[00231] Consider the receipt of partial results at these times:

[00232] Sequence a: 0, 12, 25, (missing packet), 50 — this sequence is likely to be

good, in spite of the missing packet, since the last partial result “vouches for” the lost packet.

[00233] Sequence b: 0, 11, 30, 35, 50 — this sequence is likely to be good, in spite of
the long delay between the second and third packet, since the fourth packet was received “too
early”.

[00234] Sequence c: 0, 11, 30, 45, 57 — this sequence is likely to be bad due to the long

delay after the second packet, and no event that explains the delay.

[00235] Although the foregoing embodiments have been described in some detail for
purposes of clarity of understanding, the invention is not limited to the details provided.
There are many alternative ways of implementing the invention. The disclosed embodiments

are illustrative and not restrictive.

[00236] WHAT IS CLAIMED IS:

42

20

25

WO 2011/022040 PCT/US2010/002214

4.

5.

CLAIMS

A system, comprising:
a physical memory; and
a processor configured to:
receive one or more hardware parameters that correspond to a hardware
configuration and receive initialization information;
selectively read the physical memory and determine at least one result; and

provide the result to a verifier.
The system of claim 1 wherein the initialization information comprises a seed value.
The system of claim 1 wherein the initialization information comprises a step value.
The system of claim 1 wherein the initialization information is received from a proxy.

The system of claim 1 wherein the initialization information is received from an

external verifier.

6. The system of claim 1 wherein the initialization information is a representation of a
phenomenon.
The system of claim 6 wherein the initialization information is received from an

.

accelerometer included in the system.

8.

The system of claim 6 wherein the processor is configured to receive the initialization

information at least in part by measuring a phenomenon.

9.

The system of claim 1 wherein the processor is further configured to determine a

portion of the physical memory to be overwritten in accordance with a function.

10.

The system of claim 1 wherein the processor is further configured to write a portion

of the physical memory in accordance with a function.

11.

The system of claim 1 wherein the processor is configured to selectively read the

physical memory based at least in part on a step counter.

12.

The system of claim 11 wherein the step counter is relatively prime to a measurement

of the size of the physical memory.

43

10

20

25

30

WO 2011/022040 PCT/US2010/002214

13. The system of claim 11 further comprising a plurality of processors and wherein the
step counter is relatively prime to a measurement of the size of the physical memory

multiplied by the number of processors.

14. The system of claim 1 wherein the processor is configured to determine the result at
least in part by using a function that is not the identity function and takes as input a portion of

the physical memory.

15. The system of claim 1 wherein the processor is configured to determine the result at

least in part by using an accumulator.
16. The system of claim 15 wherein the accumulator includes a nonlinear function.
17. The system of claim 15 wherein the accumulator uses an XOR and a rotate.

18. The system of claim 1 wherein the processor is configured to provide the result to the

verifier at least in part by providing information to a proxy.

19. A method, comprising:

receiving one or more hardware parameters that correspond to a hardware
configuration and receiving initialization information;

selectively reading a physical memory and determining at least one result; and

providing the result to a verifier.

20. A computer program product embodied in a computer readable storage medium and
comprising computer instructions for:

receiving one or more hardware parameters that correspond to a hardware
configuration and receiving initialization information;

selectively reading a physical memory and determining at least one result; and

providing the result to a verifier.

21. A system, comprising:
a physical memory; and
a processor configured to:
receive one or more hardware parameters that correspond to a hardware
configuration;
perform a sequence of modifications to the physical memory; and

provide results to a verifier.

44

10

20

25

WO 2011/022040 PCT/US2010/002214

22. The system of claim 21 wherein the verifier is configured to determine, based at least
in part on the received results, whether an expected sequence of physical memory

modifications was made by the processor.

23. The system of claim 22 wherein the determination is based at least in part on timing

information associated with the performance of the sequence of modifications.

24. The system of claim 22 wherein the determination is based at least in part on the

correctness of a result received from the device.

25. The system of claim 21 wherein the verifier is collocated on a device with the

processor.

26. The system of claim 25 wherein the verifier is included in a subscriber identity

module.

27. The system of claim 21 wherein the verifier is in communication with the processor

via a network connection.

28. The system of claim 21 wherein the processor is further configured to obtain a seed

from the verifier.

29. The system of claim 21 wherein the sequence of modifications depends at least in part

on an input obtained from the verifier.

30. The system of claim 21 wherein the one or more hardware parameters is an amount of

memory.

31. The system of claim 21 wherein the one or more hardware parameters is a memory

speed.

32. The system of claim 21 wherein the processor is configured to perform a scan once it

is determined that no evasive software is active in the physical memory.
33. The system of claim 32 wherein the scan comprises a scan for unlicensed software.

34. The system of claim 21 wherein the memory includes secret data and wherein

providing results to the verifier does not compromise the secret data.
35. The system of claim 21 wherein the processor is included in a mobile phone.

36. A method, comprising:

45

20

25

30

WO 2011/022040 PCT/US2010/002214

receiving one or more hardware parameters that correspond to a hardware
configuration,;
performing a sequence of modifications to the physical memory; and

providing the results to a verifier.

37. The method of claim 36 wherein the verifier is configured to determine, based at least
in part on the received results, whether an expected sequence of physical memory

modifications was made.

38. A computer program product embodied in a computer readable storage medium and
comprising computer instructions for:

receiving one or more hardware parameters that correspond to a hardware
configuration;

performing a sequence of modifications to the physical memory; and

providing the results to a verifier.

39. A system, comprising:
a processor configured to:
receive from a device one or more results associated with the performance by
the device of a sequence of modifications to a memory included on the device;
determine that the one or more results indicates that the memory included on
the device is free of evasive software; and
initiate a scan of the device after the determination is made;
a memory coupled to the processor and configured to provide the processor with

instructions.

40. A system, comprising:
a processor configured to:
initiate a request that a device determine a result;
receive the result from the device; and
determine, based at least in part on the result and a length of time that it takes
the device to provide the result, a security state of the device; and
a memory coupled to the processor and configured to provide the processor with

instructions.

46

WO 2011/022040 PCT/US2010/002214

104

102 106
S S

Device Verifier

FIG. 1

1/14

WO 2011/022040

102
If—

PCT/US2010/002214

202
Device)—

Processor

204 206
pa S

1% Memory 2" Memory

208
)_

Communications
Interface

FIG. 2

2/14

WO 2011/022040 PCT/US2010/002214

302
Receive hardware parameters that correspond to a)_
hardware configuration

304
Perform a sequence of modifications to a physical)_
memory

306
Provide results to a verifier j—

FIG. 3

3/14

WO 2011/022040 PCT/US2010/002214

’—-402
Receive results from device

04
Determine whether an expected sequence of physical)
memory modifications was made

;—-406
Determine whether unauthorized modification of
device has occured

FIG. 4

4/14

WO 2011/022040

204
)_

PCT/US2010/002214

1%t Memory
02 Pia
K | Authorized
erne Program
Auditor Un:uthonzed
rogram
FIG. 5A
)—204
1% Memory

506
),_

Auditor .

FIG. 5B

5/14

WO 2011/022040 PCT/US2010/002214

Clear RAM

)-—602

l

Report contents to verifier

)—604

l

Receive seed from verifier and write pseudorandom
string to RAM

j—-606

l

Receive key from verifier

j—608

l

Compute keyed hash of RAM

)—610

l

Report results to verifier

)—612

600—"
FIG.6

6/14

WO 2011/022040 PCT/US2010/002214

for i:=1 to rounds
for k:=0 to chunks_per_block -1
permutation[1 number_blocks] := get_permutation
for j:==1 to number_blocks
modify memory(permutation[j]*chunks_per_block+k, next_string_chunk)

FIG.7

7/14

WO 2011/022040

PCT/US2010/002214

Remove any evasive programs from memory

)—802

l

Perform additional auditing

)—804

FIG. 8

8/14

WO 2011/022040 PCT/US2010/002214

/902 /—904

Device 5—906

External
Verifier

FIG. 9

9/14

WO 2011/022040

1006

—1002

Cache

512 bytes RAM (size 2")

Secondary Storage

FIG. 10

10/14

L1004

PCT/US2010/002214

WO 2011/022040 PCT/US2010/002214

)—1 102
Swap out contents of free RAM to secondary storage

l

1104
Receive hardware parameters that correspond to a f
hardware configuration and initialization information

l

1106
Overwrite free RAM)_

l

Selectively read the physical memory and determine j—1108
at least one result 1

l

1110
Provide results to a verifier)_
)—1 112
Execute safe state operation(s)
1114
Restore RAM state j_
FIG. 11

11/14

WO 2011/022040 PCT/US2010/002214

FIG. 12

12/14

PCT/US2010/002214

WO 2011/022040

JUOIIBO0] 1X8U 9
UOIB[NUINDOE

87080 WIOL peal ¥

UOT)B[NUWINDI8 9

97080 WO P8I ¥
UOT)B[NUWNI08 9,

oul[8yoes B pBal ¥

€l 'Old

27D35 onjeA j1odel
Wvds pout (dags + ©0130007) — UOIDIO]
(vg0p YOX 21015)40Y — 21095
[1 — 0 + uoywoolliNvy — vI0p

(v10p YOX 21015)40Y — 21095
1+ uoywoolinvy — vop
(p10p YOX 21015)HOY — 27095
[uoymoollNvyg — pip
:sewr} portad jeadel
fiayy JOX 21p1s — 91018
fiayy an[eA aA18001
:sout) (0/porsad/WVHs) 1esdal
0 — U0V00]
0 — 231035

13/14

PCT/US2010/002214

WO 2011/022040

vl "Old

T — (427un00)uoigpinp
os[e
(42quno00)ndino enyea)m puodsal
2wy — (U2JUN02)UOIFDUND
uey)} («427unoo)indur = 27075 JI
I + 493UN00 — LAIUNOD
T — (4JUNOD JUOLIDLTD
ey} 2WTOUL = JULY I
T + 2wy — sy
“POATODRI ST 97D1s onfea [rjun jeadal
1 + 427UN02 — 4IJUNOD
:sount) poisad Jeadal
0 — 2wy
0 — 427UN0D

14/14

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/02214

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 17/30, 21/00, 9/455 (2010.01)
USPC - 726/22; 703/13

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8): GO6F 17/30, 21/00, 9/455 (2010.01)
USPC: 726/22; 703/13

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 703/23, 707/E17.01, 707/E17.032 (keyword limited; terms below)

Electronic data base consulted during the international search (name of
PubWest; Google Scholar; Google Patents; FreePatentsOnline. Sear

data base and, where practicable, search terms used)
ch terms used:

malware malicious-software unauthorized-program blacklist, memory, processor microprocessor CPU SPU, hardware-parameter
hardware-configuration, initialize, modify change update revise, verify, seed, step ...

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2008/0034406 A1 (GINTER et al.) 07 February 2008 (07.02.2008) entire document, 39, 40

- especially Abstract; para [0063), [0157], [0158), [0165], [0166), [0257], [0419], [0422], [0453], emmeen

Y [0473], [0490], [0512], [0520], [0535], [0587], [0688], [0827], [0940], [0944], [0955], [1013], 1-38
[1063], [1092], [1130], [1516], [1629], [1847], [2042], [2112], [2135], [2153]

Y US 2008/0229415 A1 (KAPOOR et al.) 18 September 2008 (18.09.2008) entire document, 1-38
especially Abstract; para [0013], [0063], [0129), [0144], [0153], [0257], [0297], [0436), [0455])

Y US 2005/0097094 A1 (SILVERBROOK et al.) 05 May 2005 (05.05.2005) entire document, 7
especially Abstract; para [0009]. [0499]-[0502]

Y US 2005/0188218 A1 (WALMSLEY et al.) 25 August 2005 (25.08.2005) entire document, 15-17
especially Abstract; para [0045]-[0047], [5179), [5186], [5191]), [7774]

Y US 7,315,826 B1 (GUHEEN et al.) 01 January 2008 (01.01.2008) entire document, especially 33
Abstract; para col 2, In 3-12; col 161, In 44-45

A US 2009/0109959 A1 (ELLIOTT et al.) 30 April 2009 (30.04.2009) entire document 1-40

I:I Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” carlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified) :

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the a;:ﬁlication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11 October 2010 (11.10.2010)

Date of mailing of the international search report

15 OCT 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774 :

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - wo-search-report

