(54) 发明名称
一种可监测多材料联合防渗体系

(57) 摘要
本发明涉及一种可监测多材料联合防渗体系，属于防渗技术领域。该防渗体系主要包含内置载体、维持载体基本形状的包裹层，抗渗监测层和碳纤维布。内置载体四周边表面设置包裹层，包裹层在渗流来源侧（迎水面）设置抗渗监测层，抗渗监测层外设置碳纤维布。作为分散荷载，抗动植物破坏的保护层。内置载体、包裹层、抗渗监测层之间均涂刷抗滑黏结材料以增加抗剪强度。这种防渗体系的原理成熟可靠，符合现行规范、制作简便，抗震抗裂，能自动适应主体变形，显著延长防渗工程的寿命。
1. 一种可监测多材料联合防渗体系，其特征在于：包括内置传载体（5），维持传载体基本形状的包裹层（6）、抗渗监测层（7）和碳纤维布（8），内置传载体（5）四周表面设置包裹层（6），包裹层（6）在渗流来源侧设置抗渗监测层（7），抗渗监测层（7）外设置碳纤维布（8），传载体（5）、包裹层（6）、抗渗监测层（7）、碳纤维布（8）之间均涂刷抗滑黏结材料。

2. 根据权利要求1所述的可监测多材料联合防渗体系，其特征在于：所述传载体（5）采用粘土或混凝土制成。

3. 根据权利要求1所述的可监测多材料联合防渗体系，其特征在于：所述包裹层（6）采用碳纤维布、钢丝网或土工织物制成。

4. 根据权利要求1所述的可监测多材料联合防渗体系，其特征在于：所述抗渗监测层（7）采用光纤土工膜制成。

5. 根据权利要求1所述的可监测多材料联合防渗体系，其特征在于：所述光纤土工膜中δ为0.2m〜0.5m，B为1〜6m，γ1＝B−2δ，γ2≤1.0m。
一种可监测多材料联合防渗体系

技术领域

0001 本发明涉及一种可监测多材料联合防渗体系，属于防渗技术领域。

背景技术

0002 压力渗流在滑坡、塌陷、泥石流等自然灾害中起着显著的作用，渗吐过程不仅溶蚀带走了岩土中的胶体物质和细颗粒，致使其酥松，还对岩土体具有渗压推动、浮托、湿润等负面效果。国际大坝委员会(International Committee on Large Dams)曾对全世界的堤坝溃决灾难进行统计分析，认为渗流异常是堤坝滑塌的最主要诱因。据中国水利部统计，自1954年有记录以来，我国已经发生大坝溃决事故3515次，其中小型土石坝因漫顶、渗透破坏导致的的溃坝占比超过98%，如2013年新疆联丰水库、黑龙江星火水库、山西曲亭水库等相继溃坝，均造成了显著的人员伤亡和经济损失。

0003 迄今国内外的防渗技术大同小异，主要包括：充填灌浆或帷幕灌浆，以混凝土、粘土、自凝灰等为主体的各种防渗（截水）墙，高压旋喷或摆喷灌浆，土工膜或面板铺盖，盖重防渗等。在近四十年防渗研究的过程中，项目组注意到：由于传统技术在防渗方案的研究、比较选择时，均未考虑建筑材料的互损劣化及细观演变趋势，导致堤坝及其基础在防渗加固后或单位投资太高，或防渗体寿命太短，总体效益普遍很低，每次花费数亿元～数千万元的维修资金，却只能在几年内使渗透及抗滑指标达到标准，远不能达到工程经济寿命(50年以上)的设计要求。红土(laterite)或称红粘土，在湿热多雨地区广泛存在，我国主要在云贵、两广、海南等省区大面分布。红土呈弱酸性,其物理力学的支撑物质主要是SiO₂、Fe₂O₃、Al₂O₃、TiO₂等。项目组近期的研究表明：水泥、石灰等碱性加固材料不仅与红土中硅、铁、铝、钛的氧化物发生互损劣化反应，还会破坏红土粘聚力所必须的酸性水介质，导致其颗粒结构和材料离散化，这无疑就是在红土地基和红土类工程上使用传统防渗技术，其效益太低的根本原因。防渗工程的建造及加固不仅要考虑投资、效果等短期因素，还应当重视材料之间的相互作用、细观结构在环境作用下的劣化演变、不同材料接触面的化学降解物理离析等等长期因素，否则不仅难以根治普遍存在的异种材料界面渗漏病害，更难以解决中小型工程中防渗体的性价比太低、维修投资过高、整个工程的正常运行周期太短等难点。

0004 国内外在防渗体相关领域的研究主要集中在五个方面：(1)红土的颗粒演化与级配设计，学者们或分析红土的成因，或讨论红土的团粒结构及相互耦合，或研究反滤料的设计和级配分析方法，或研究颗粒级配对压实度的影响……。(2)异种材料接触面的渗流与稳定：有科研人员研究了接触界面的力学性质，有的则讨论差别较大的材料接触面的摩阻力和剪切特性……。(3)防渗与加固：有学者着眼于渗水裂隙对粘土凝聚力的影响研究，或分析水-土作用机理，或研究防渗设计方法，或研究防渗体的性能评价技术进行研究，或研究库区水位与浸润线的关系……。(4)与施工相关的工艺：例如有的科研人员研究了高压喷射的工艺和质量控制方法，有的探讨了软土的加固工艺，有的则为简化施工工艺而对防渗墙的材料进行了分析……。(5)抗渗性能与指标：有学者对防渗墙深度与抗渗稳
定性的关系进行了分析，还有学者分别探讨了地震时土的动力特性与液化现象……。上述在防渗体相关领域的研究，都是针对“单一防渗材料”性能、应用、修复等方面的仿真和试验分析结果，未检索到与多材料联合防渗体系相关的研究信息。

在国家自然科学基金项目（50869003, 41462013, 51069003）、云南省应用基础研究计划重点项目（2013FA033）、云南省自然科学基金（1991E016, 1995Y1016, 1999E047M, 2012ZC048）以及云南省教育厅（10968221, 10978057）、昆明理工大学创新团队（14098193）、精品课程（10986137）等项目资助下，本项目组经过长期研究认为，使用单一材料构成的防渗体均存在着明显的未知缺陷：粘土心墙、斜墙对易溶蚀颗粒级配的依赖很大，防渗效果较差，且强度低的有感地震就会造成松弛离析或撕裂；混凝土、石灰、自凝灰等材料强度依赖于强碱成分，其构成的防渗体不仅造价和技术要求高，且水与碳化性材料主体发生化学反应而破坏接触界面，造成大量细微管涌；土工膜太薄，不仅难以抵御数十年动植物的啃咬撕裂，更难以适应固结、地震后红土的不均匀沉陷形成的膜后较大架空……。因此，对防渗体实施大面积有效的密集监测，并采用多种手段进行联合防渗体系在必行。本项目组弄清了红土防渗体的非正常劣化因素，获知了水泥等粘碱对红土材料的侵蚀，提出了传统防渗体系暴晒过长、难以达到设计寿命的根源，明显地为长期的材料互损演变机制，发明了光纤土工膜并在获得了 3 项专利授权，较多研究论文已在《岩土工程学报》、《岩石力学与工程学报》、《建筑材料学报》、《水力发电学报》、《Advanced Materials Research》、《Applied Mechanics and Materials》等期刊及国内外权威期刊上发表，并被 SCI、EI 等国际著名检索机构收录。研究成果表明：迄今红土地基和坝体采用的防渗抗滑技术和加固材料都存在明显的缺陷，由于化学反应、力学效应、水土作用等因三的长期联合侵蚀，这些缺陷仅仅依靠材料筛分、结构碾压、反滤排水、加筋充填等传统措施显然都无法根治。实际上，短期及反复对防渗体进行加固处理，已经有许多红土工程上造成了巨大的浪费，并且形成了制约该领域继续发展的瓶颈。因此，研究不仅具有相应强度、而且能够抵御环境侵蚀、便于大面积密集监测的多材料联合防渗体系，已经成为十分紧迫的任务。为此本项组 2014 年专门申请并获准了国家自然科学基金项目：激波诱发红土滑坡的防渗新模式探索，项目批准号：41462013。

传统的各种防渗抗滑技术，其共同缺陷可归纳为：①传统防渗体存在明显缺陷，不能承受环境水土的长期侵蚀，因此远不能达到设计寿命；②防渗加固材料存在重要缺陷，其与红土等酸性岩石体相互破坏，是造成坝体及其基础在短期内反复维修，越修越漏，诱发边坡滑塌和溃坝的根源；③粘土和灌浆形成的防渗体较薄，容易在有感地震时出现断裂，且渗透破坏的发展很快；④防渗体系中防渗设施不完善，传感器布置的间距太小且与防渗体的亲和性太差。各种环境侵蚀都是由外至内逐渐发展的，若能将传统防渗体与腐蚀物质相隔，就可延长侵蚀时间，其耐久性也已超过了土石坝的设计经济寿命。土工膜的主要缺陷是：①强度太低，铺设的平整度和稳定性在很大程度上决定了土工膜是否长寿命；②不能及时确定堤坝内部的破损部位，由此将丧失宝贵的抢修时间。

前述第①个问题，可选用具有高韧性且能适应岩土结构变形的抗力过渡材料———碳纤维布来解决。碳纤维布是一种价格相对低廉的高强度柔性材料，其抗拉强度 \(\geq 3200 {\text{MPa}} \)。这
说明书

种材料耐酸碱腐蚀、抗磨损和耐穿，适宜在恶劣环境中长期服役，可任意剪裁、易于搭接粘结，且能适应岩土体的不均匀沉降或固结变形，目前已经在大量应用于建筑工程之中。前述的第⑴个关键技术，课题组在已经结题的项目中获得了实质性进展，发表相关成果，获准了“光纤土工膜”的发明专利权，能够实现防渗体的实时大面积密监测。

【0009】本发明和长期溶液，具体实现红土类地基和堤坝出现裂隙、内部架空。本发明设计的防渗方案为：以粘土或混凝土作为内置传载体，将抗渗面传来的各种荷载传递给主体结构；以碳纤维布保持传载体断裂后的基本形体及传载功能，并为土工膜提供均匀抗力和整齐的垫层，以光纤土工膜抗渗并作为监测载体。三者结合即获得性能优良的联合抗震防渗体系，并将各种荷载分布传递给工程的承载主体。本发明中采用的光纤土工膜不仅是大面密集监测的载体，作为隔离层还解决了传统防渗体普遍存在的与其它材料界面的侵蚀问题。

水中动植物的啃咬撕裂由高强度的碳纤维布抵抗，内置传载体不仅给予土工膜以适宜的平面支撑和荷载传递，还能承担土面防渗的定性任务。传载体若出现内部架空或断裂，将由高强且柔性碳纤维布自动调整其基本形状以适应基础或堤坝的主体，确保其荷载传递效果。作为土工膜的抗力保护垫层，碳纤维布还将起到均匀荷载、避免应力集中等效果。因此，这种新颖的多材料联合防渗体系能够避免遂近普遍出现的侵蚀、架空、脆裂、滤出、撕裂、扩散等病害发展。

【0010】本发明由国家自然科学基金项目（50869003、41462013、51069003）等资助研究，侧重解决传统防渗体断裂或内部架空之后阻渗失效、渗流急剧恶化诱发岩土滑坡、坍塌等难题，并能显著降低渗漏量、长期监测渗流的发展过程、确诊防渗体系的病害位置。本发明提出的防渗体系不仅抗震耐用，而且能为异常渗流治理提供准确的病害定位，为地质灾害抢险提供宝贵的时间。

发明内容

【0010】本发明所解决的技术问题主要包括：(1) 防渗体断裂、内部架空后，工程整体即出现异常渗流，抗渗失效；(2) 防渗体断裂、内部架空后，工程出现异常沉降乃至坍塌；(3) 防渗体与工程主体在接触界面的材料相互腐蚀劣化；(4) 渗流监测不全面、病害定位不准确。本发明提出了抗震抗裂且能监测渗流的多材料联合防渗体系，通过以下技术方案实现。

【0011】一种可监测多材料联合防渗体系，包括内置传载体 5、维持传载体基本形状的包裹层 6、抗渗监测层 7 和碳纤维布 8。内置传载体 5 四周表面设置包裹层 6，包裹层 6 在渗流来源侧(迎水面)设置抗渗监测层 7，抗渗监测层 7 外设置碳纤维布 8，作为分散荷载、抗动植物破坏的保护面。传载体 5、包裹层 6、抗渗监测层 7、碳纤维布 8 之间均涂刷抗滑黏结材料(如沥青乳胶等)。

【0012】所述传载体 5 采用粘土或混凝土制成。
【0013】所述包裹层 6 采用碳纤维布、钢丝网或土工织物制成。
【0014】所述抗渗监测层 7 为采用光纤土工膜制成。
【0015】所述光纤土工膜中 δ为 0.2m~0.5m，B为 1~6m，Γ1＝B－2δ，Γ2≤1.0m。
【0016】如图 2 所示，本监测多材料联合防渗体系的应用，防渗体 9 与堤坝的坝壳 10 按现行规范同时填筑，同步增高，最后砌筑排水棱体 11。防渗体 9 上的光纤土工膜面对水流方向，迎水面覆盖碳纤维布 8 作为分散荷载、抗动植物破坏的保护面。碳纤维布与土工膜的结
合界面涂刷沥青乳胶以增加抗渗性能。防渗体向两岸的嵌入、砌筑高程、底部的裁水槽、坝顶防浪墙及上下游护坡等均无异常之处，按现行土石坝规范实施即可。

[0017] 本发明的具体技术方案还包括；以粘土或混凝土作为内置载体；以碳纤维布或钢丝网、土工织物来保持载体裂缝、架空后基本形体及荷载传递功能，并为光纤土工膜提供均匀的抗力和平衡的厚层；以光纤土工膜来抗渗并作为监测载体，三者结合即获得抗渗性能优良的耐用结构。利用光纤土工膜上游的螺旋形光纤作为密集传感器，监视抗渗面各部位的温度和变形，出现温度异常、应变异常的区域判定为渗漏部位，而异常最大之处即是土工膜破损的中心位置。试验验证，依据这种监测数据对异常渗漏的分析快捷、病害定位准确。这种新型防渗体系的原理成熟可靠，符合现行规范、制作简便。

[0018] 本发明中各重要组成的功能是：

（1）内置载体；以粘土或混凝土按照现有的心墙规范制成，其主要功能是将抗渗面传来的各种荷载传递给坝壳、基础等主体结构。其次，内置载体还能给予土工膜以适宜的平面支撑，并承担立面防渗体的定形任务。

（2）包裹层：以碳纤维布或钢丝网或土工织物剪裁黏结（焊接）制成，全面包裹内置载体的外表面。其主要用途是保证载体裂缝、架空后的基本形体及荷载传递功能，并自动适应载体的变形，为土工膜提供均匀的反力和平整的厚层。载体若出现内部架空或断裂，将由高强度且柔性的包裹层自动调整其基本形状以适应基础或坝壳的主体，确保其荷载传递效果。

（3）抗渗监测层；以获得专利授权的光纤土工膜剪裁黏结制成，仅置于防渗体的渗流来源侧，迎水面覆盖碳纤维布。其主要功能是显著降低渗漏量，且对渗流进行长期的密集监测。光纤土工膜不仅是抗渗和大面积密集监测的载体，作为隔离层还解决了传统防渗体普遍存在的与其它材料界面侵蚀的难题。水中动植物的啃咬撕裂，由高强度的碳纤维布抵抗。

[0021] 本发明的工作原理：

传统防渗体的主要病害包括；材料侵蚀、内部架空、断裂，颗粒滤出、抗渗效果差、破坏应力集中；缺乏有效监测等，详见“背景技术”中的阐述。

[0022] （1）本发明采用高精度且柔性的“包裹层”，用以解决上述内部架空、断裂、颗粒滤出、破坏应力集中等难题。以堤坝中普遍使用的心墙为例，传统的心墙通常由粘土地基础碾压而成，在压力释放的长期作用下，土颗粒溶液滤出、心墙内部的架空不可避免，若不及时加固则易发展成坍陷；在较大地震荷载的作用下，心墙很容易断裂，渗流急剧恶化，若抢险不及时将导致溃坝。在本发明中，传统心墙（如图4所示）仅用作新型联合防渗体系中的载体，而不只是防渗主体，因此其断裂、坍陷均不会引起渗流恶化；高精度的包裹层约束着心墙的变形，使其在颗粒滤出、内部架空、断裂之后的形状变化显著减小，加之本体系中的包裹层和抗渗监测层都是柔性的，能够自动调整形状来适应载体的小变形，有效避免了应力集中。故本项发明的抗渗性能基本不受上述内部架空、断裂、颗粒滤出、应力集中等病害的影响，明显延长了防渗工程的整体寿命。

[0023] （2）本发明采用“抗渗监测层”，用以解决上述抗渗效果差、颗粒溶液滤出、材料侵蚀等难题。研究成果表明；粘土地心墙的渗透系数一般为 10^{-9}～10^{-8}cm/s，而本发明采用的抗渗主体为光纤土工膜，其渗透系数仅为 10^{-11}～10^{-12}cm/s，因此其抗渗效果显著提高、大大降
低了膜后的渗压和渗流量，进而有效减少了载体体颗粒的溶蚀滤出。在包装、抗渗的同时，
光纤土工膜和碳纤维布还将载体体的材料与壳壳、基础等全面隔离开来，从而避免了防渗
体与其它材料发生界面接触浸蚀，明显延长了工程的寿命。

[0024] 本发明采用“抗渗监测层”，用以解决上述有效监测的难题。传统防渗体限于造
价和探头对整体的扰动，传感器的设备实在太少，性能太弱，对于渗流的发展和恶化难以进
行有效而长期的监测。本发明中采用的监测主体为光纤土工膜，其中的分布式光纤作为
密集传感器，这种新型传感器耐腐蚀，寿命长，可长期监测土工膜中各点的温度、应力变化，
并以“温度对比异常”和“应力对比异常”作为土工膜破裂、渗流恶化判定依据。土工膜
的破损部位将出现集中渗漏，水体的流动导致此处的温度、应力与破损之前、与附近未破损
的部位均有明显区别，通过时域、频域监测数据的对比异常即可确定土工膜的破损部位，详
见已获准授权的光纤土工膜发明专利说明书(ZL201010109990.4 ; ZL201010101987.2)。

[0025] 本发明的有益效果是：

(1) 解决了传统防渗体在断裂、内部架空后渗流急剧恶化的问题

传统防渗体在地震荷载下极易断裂，使在土体的长期溶蚀下，防渗体内部无法避免
细微架空。传统防渗体在断裂或内部架空后渗流量明显加大，由此引发的管涌、掏刷和推移
使得裂隙和架空急剧扩张，导致岩土体滑坡或坍塌。

[0026] 在本发明提出的防渗体系中，传统防渗体仅作为载体体，而作为抗渗体使用，因
此其断裂或架空均不会改变渗流量。本发明中的包裹层和抗渗监测层均为柔性材料，在载
体体断裂、内部架空乃至坍塌之后，都能够自动适应变形，显著减少了颗粒的流出，并能维
持传递荷载的基本形体、避免应力集中，由此就有效防止了渗流的病害发展及恶化。

[0027] (2) 防止了动植物对防渗体的破坏

粘土类、土工膜类传统防渗体对植物的生长刺穿、动物的啃咬撕裂均缺乏防御能力，这
也是传统防渗体遭受破坏的重要原因。本发明中的组合方案采用高强度的碳纤维布或钢丝
网或土工织物作为全表面包裹层，可有效抵御各种集中应力对防渗体的破坏。

[0028] (3) 阻断了防渗体与其它材料的互损劣化

混凝土、火山灰、自凝灰类防渗体均属碱性材料，与酸性的红土堤坝主体发生长期的化
学反应，生成物可溶及为粉状，极易被压力渍流带走，从而导致传统防渗体发生细微管涌等
病害。本发明采用耐腐蚀的包裹层和抗渗监测层，把载体体和堤坝主料有效隔离开来，大大
降低了材料的相互侵蚀。

[0029] (4) 能够对渗流实施长期有效的监测

本发明中采用的的抗渗监测层是已获得3项发明专利权的光纤土工膜，利用光纤传
感技术和相关的光谱理论，对渗流量及其突变均能实现长期的密监测测监控。因此，本防渗
体能够预警渗流病害，有效防范异常渗流导致的岩土滑坡或堤坝溃决灾难。

[0030] (5) 能够确诊病害的部位

传统防渗体出现病害之后，只能依据堤坝上游的水淹和下游的水流出逸点来大致判断
病害的部位。但由于堤坝各层的裂缝不对应，渗流在料中扩散等原因，这种病害定位的误
差很大，往往只能耗费数倍乃至数十倍的代价进行普遍防渗治理。渗流异常部位的温度、应
力均与正常部位的差异明显，本发明抗渗体系中采用的抗渗监测层能够测知各点温度、应
力的突变，因此能够确诊病害的部位，从而显著节省了对管涌或流土的抢修时间。
说明

施工说明

图1是本发明的结构示意图。
图2是本发明防渗体在坝体中的应用图。
图3是光纤土工膜的构成图（其中δ为光纤与土工膜间的切线，Γ1, Γ2为光纤的切线长度，β为土工膜的幅宽）。
图4是坝体中常用的传统粘土心墙截面示意图。

具体实施方式

下面结合附图和具体实施方式，对本发明作进一步说明。

实施例1

如图1、3所示，该可监测多材料联合防渗体系包括内置传载体5，维持传载体基本形状的包裹层6，抗渗监测层7和碳纤维布8。内置传载体5四周表面设置包裹层6，包裹层6在渗流来源侧（迎水面）设置抗渗监测层7，抗渗监测层7外设置碳纤维布8，作为分散荷载、抗动植物破坏的保护面。传载体5，包裹层6、抗渗监测层7、碳纤维布8之间均涂刷沥青乳胶作为抗滑黏结材料。

实施例2

如图1、3所示，该可监测多材料联合防渗体系包括内置传载体5，维持传载体基本形状的包裹层6，抗渗监测层7和碳纤维布8。内置传载体5四周表面设置包裹层6，包裹层6在渗流来源侧（迎水面）设置抗渗监测层7，抗渗监测层7外设置碳纤维布8，作为分散荷载、抗动植物破坏的保护面。传载体5，包裹层6、抗渗监测层7、碳纤维布8之间均涂刷沥青乳胶作为抗滑黏结材料（硅酮密封胶）。

实施例3

如图1、3所示，该可监测多材料联合防渗体系包括内置传载体5，维持传载体基本形状的包裹层6，抗渗监测层7和碳纤维布8。内置传载体5四周表面设置包裹层6，包裹层6在渗流来源侧（迎水面）设置抗渗监测层7，抗渗监测层7外设置碳纤维布8，作为分散荷载、抗动植物破坏的保护面。传载体5，包裹层6、抗渗监测层7、碳纤维布8之间均涂刷沥青乳胶作为抗滑黏结材料（硅酮密封胶）。
的包裹层 6、抗渗监测层 7 和碳纤维布 8。内置传载体 5 四周表面设置包裹层 6，包裹层 6 在
渗流来源侧(迎水面)设置抗渗监测层 7，抗渗监测层 7 外设置碳纤维布 8，作为分散荷载、抗
动植物破坏的保护面。传载体 5、包裹层 6、抗渗监测层 7、碳纤维布 8 之间均涂抹丙烯酸酯
密封胶作为抗渗黏结材料。
[0040] 其中传载体 5 采用混凝土制成；包裹层 6 采用土工织物制成；抗渗监测层 7 采用光
纤土工膜制成，光纤土工膜中 $\delta = 0.35m$，$B = 3m$，$\Gamma_1 = 2.3m$，$\Gamma_2 = 0.7m$。
[0041] 以上结合附图对本发明的具体实施方式作了详细说明，但是本发明并不限于上述
实施方式，在本领域普通技术人员所具备的知识范围内，还可以在不脱离本发明宗旨的前
提下作出各种变化。