PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/31664
GO6F 17/30 A2

(43) International Publication Date: 2 June 2000 (02.06.00)

(21) International Application Number: PCT/US99/27218 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 16 November 1999 (16.11.99)

(30) Priority Data:

09/196,336 Us

19 November 1998 (19.11.98)

(71) Applicant: ANDERSEN CONSULTING, LLP [US/US]; 1661
Page Mill Road, Palo Alto, CA 94304 (US).)

(72) Inventors: HANDEL, Sean; 2927 Pine Street, San Fran-
cisco, CA 94115 (US). DAY, Brian; 1112 Palm Drive,
Burlingame, CA 94919 (US). YUEN, Miya; 748 Bounty
Drive #4802, Foster City, CA 94404 (US).

(74) Agent: STEPHENS, L., Keith; Hickman Stephens & Coleman,
LLP, P.O. Box 52037, Palo Alto, CA 94303 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR A GROUPED PROFILE NETWORK INTERFACE

(57) Abstract

Customer's Web Browser

A system is disclosed that facilitates a web-based data model to support user information capture and storage is created by obtaining

user profile information, grouping the user profile information in a logical manner, associating a unique name wih the grouped user profile
information, and storing the grouped user profile information and correlated name in a database. Access to the profile information is
restricted and a customized user interface is created for each application based on the current grouped user profile information.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
CM
CN
CU
Cz
DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

S1
SK
SN
SZ
™
TG
TJ
™
TR
T
UA
UG
Us
vz
VN
YU
A

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

30

35

WO 00/31664 PCT/US99/27218

A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR
A GROUPED PROFILE NETWORK INTERFACE

Field Of The Invention

The present invention relates to agent based systems and more particularly to an agent based system for providing a user
interface that facilitates tuning of the user experience to the personal intentions of a particular user profile selected from a group

of user profiles.

Agent based technology has become increasingly important for use with applications designed to interact with a user for
performing various computer based tasks in foreground and background modes. Agent software comprises computer programs
that are set on behalf of users to perform routine, tedious and time-consuming tasks. To be useful to an individual user, an
agent must be personalized to the individual user's goals, habits and preferences. Thus, there exists a substantial requirement
for the agent to efficiently and effectively acquire user-specific knowledge from the user and utilize it to perform tasks on behalf

of the user.

The concept of agency, or the user of agents, is well established. An agent is a person authorized by another person, typically
referred to as a principal, to act on behalf of the principal. In this manner the principal empowers the agent to perform any of the
tasks that the principal is unwilling or unable to perform. For example, an insurance agent may handle all of the insurance

requirements for a principal, or a talent agent may act on behalf of a performer to arrange concert dates.

With the advent of the computer, a new domain for employing agents has arrived. Significant advances in the realm of expert
systems enable computer programs to act on behalf of computer users to perform routine, tedious and other time-consuming

tasks. These computer programs are referred to as “software agents.”

Moreover, there has been a recent proliferation of computer and communication networks. These networks permit a user to
access vast amounts of information and services without, essentially, any geographical boundaries. Thus, a software agent has
arich environment to perform a large number of tasks on behaif of a user. For example, it is now possible for an agent to make
an airline reservation, purchase the ticket, and have the ticket delivered directly to a user. Similarly, an agent could scan the
Internet and obtain information ranging from the latest sports or news to a particular graduate thesis in applied physics. Current
solutions fail to apply agent technology to existing calendar technology to provide targeted acquisition of background information

for a user's upcoming events.

SUMMARY OF THE INVENTION
According to a broad aspect of a preferred embodiment of the invention, a data model to support user information capture and
storage is created by obtaining user profile information, grouping the user profile information in a logical manner, associating a
unique name with the grouped user profile information, and storing the grouped user profile information and correlated name in a
database. Access to the profile information is restricted and a customized user interface is created for each application based
on the current grouped user profile information.
-1-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages are better understood from the foliowing detailed description of a

preferred embodiment of the invention with reference to the drawings, in which:

Figure 1 is a black diagram of a representative hardware environment in accordance with a preferred embodiment;

Figure 2 is a flowchart of the system in accordance with a preferred embodiment;

Figure 3 is a flowchart of a parsing unit of the system in accordance with a preferred embodiment,

Figure 4 is a flowchart for pattern matching in accordance with a preferred embodiment;

Figures 5 is a flowchart for a search unit in accordance with a preferred embodiment;

Figure 6 is a flowchart for overall system processing in accordance with a preferred embodiment,;

Figure 7 is a flowchart of topic processing in accordance with a preferred embodiment;

Figure 8 is a flowchart of meeting record processing in accordance with a preferred embodiment;

Figure 9 is a block diagram of process flow of a pocket bargain finder in accordance with a preferred embodiment;

Figure 10A and 10B are a block diagram and flowchart depicting the logic associated with creating a customized content web

page in accordance with a preferred embodiment;

Figure 11 is a flowchart depicting the detailed logic associated with retrieving user-centric content in accordance with a preferred

embodiment;

Figure 12 is a data model of a user profile in accordance with a preferred embodiment;

Figure 13 is a persona data model in accordance with a preferred embodiment;

Figure 14 is an intention data model in accordance with a preferred embodiment;

Figure 15 is a flowchart of the processing for generating an agent's current statistics in accordance with a preferred embodiment;

Figure 16 is a flowchart of the logic that determines the personalized product rating for a user in accordance with a preferred

embodiment;

2.

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

Figure 17 is a flowchart of thé logic for accessing the centrally stored profile in accordance with a preferred embodiment,

Figure 18 is a flowchart of the interaction logic between a user and the integrator for a particular supplier in accordance with a

preferred embodiment;

Figure 19 is a flowchart of the agent processing for generating a verbal summary in accordance with a preferred embodiment;
Figure 20 illustrates a display login in accordance with a preferred embodiment,

Figure 21 illustrates a managing daily logistics display in accordance with a preferred embodiment,;

Figure 22 illustrates a user main display in accordance with a preferred embodiment;

Figure 23 illustrates an agent interaction display in accordance with a preferred embodiment;

Figure 24 is a block diagram of an active knowledge management system in accordance with a preferred embodiment;
Figure 25 is a block diagram of a back end server in accordance with a preferred embodiment; and

Figure 26 is a block diagram of a magic wall in accordance with a preferred embodiment.

DETAILED DESCRIPTION
A preferred embodiment of a system in accordance with the present invention is preferably practiced in the context of a personal
computer such as an IBM compatible personal computer, Apple Macintosh computer or UNIX based workstation. A
representative hardware environment is depicted in Figure 1, which illustrates a typical hardware configuration of a workstation
in accordance with a preferred embodiment having a central processing unit 110, such as a microprocessor, and a number of
other units interconnected via a system bus 112. The workstation shown in Figure 1 includes a Random Access Memory (RAM)
114, Read Only Memory (ROM) 116, an /O adapter 118 for connecting peripheral devices such as disk storage units 120 to the
bus 112, a user interface adapter 122 for connecting a keyboard 124, a mouse 126, a speaker 128, a microphone 132, and/or
other user interface devices such as a touch screen (not shown) to the bus 112, communication adapter 134 for connecting the
workstation to a communication network (e.g., a data processing network) and a display adapter 136 for connecting the bus 112
to a display device 138. The workstation typically has resident thereon an operating system such as the Microsoft Windows NT
or Windows/95 Operating System (OS), the IBM OS/2 operating system, the MAC OS, or UNIX operating system. Those skilled
in the art will appreciate that the present invention may also be implemented on platforms and operating systems other than

those mentioned.

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

A preferred embodiment is written using JAVA, C, and the C++ language and utilizes object oriented programming methodology.
Object oriented programming (OOP) has become increasingly used to develop complex applications. As OOP moves toward the
mainstream of software design and development, various software solutions require adaptation to make use of the benefits of
OOP. A need exists for these principles of OOP to be applied to a messaging interface of an electronic messaging system such

that a set of OOP classes and objects for the messaging interface can be provided.

OOP is a process of developing computer software using objects, including the steps of analyzing the problem, designing the
system, and constructing the program. An object is a software package that contains both data and a collection of related
structures and procedures. Since it contains both data and a collection of structures and procedures, it can be visualized as a
self-sufficient component that does not require other additional structures, procedures or data to perform its specific task. OOP,
therefore, views a computer program as a coliection of largely autonomous components, called objects, each of which is
responsible for a specific task. This concept of packaging data, structures, and procedures together in one component or

module is called encapsulation.

In general, OOP components are reusable software modules which present an interface that conforms to an object model and
which are accessed at run-time through a component integration architecture. A component integration architecture is a set of
architecture mechanisms which allow software modules in different process spaces to utilize each others capabilities or

functions. This is generally done by assuming a common component object model on which to build the architecture.

It is worthwhile to differentiate between an object and a class of objects at this point. An object is a single instance of the class
of objects, which is often just called a class. A class of objects can be viewed as a biueprint, from which many objects can be

formed.

QOP allows the programmer to create an object that is a part of another object. For example, the object representing a piston
engine is said to have a composition-relationship with the object representing a piston. In reality, a piston engine comprises a
piston, valves and many other components; the fact that a piston is an element of a piston engine can be logically and

semantically represented in OOP by two objects.

OOP also allows creation of an object that “depends from” another object. If there are two objects, one representing a piston
engine and the other representing a piston engine wherein the piston is made of ceramic, then the relationship between the two
objects is not that of composition. A ceramic piston engine does not make up a piston engine. Rather it is merely one kind of
piston engine that has one more limitation than the piston engine; its piston is made of ceramic. In this case, the object
representing the ceramic piston engine is called a derived object, and it inherits all of the aspects of the object representing the
piston engine and adds further limitation or detail to it. The object representing the ceramic piston engine “depends from” the

object representing the piston engine. The relationship between these objects is called inheritance.

When the object or class representing the ceramic piston engine inherits all of the aspects of the objects representing the piston
engine, it inherits the thermal characteristics of a standard piston defined in the piston engine class. However, the ceramic

piston engine object overrides these ceramic specific thermal characteristics, which are typically different from those associated
4-

10

15

20

30

35

WO 00/31664 PCT/US99/27218

with a metal piston. It skips over the original and uses new functions related to ceramic pistons. Different kinds of piston
engines have different characteristics, but may have the same underlying functions associated with it (e.g., how many pistons in
the engine, ignition sequences, lubrication, etc.). To access each of these functions in any piston engine object, a programmer
would call the same functions with the same names, but each type of piston engine may have different/overriding
implementations of functions behind the same name. This ability to hide different implementations of a function behind the same

name is called polymorphism and it greatly simplifies communication among objects.

With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an object can represent just about
anything in the real world. In fact, our logical perception of the reality is the only limit on determining the kinds of things that can
become objects in object-oriented software. Some typical categories are as follows:

o Objects can represent physical objects, such as automobiles in a traffic-flow simulation, electrical components in a

circuit-design program, countries in an economics model, or aircraft in an air-traffic-controf system.

o Objects can represent elements of the computer-user environment such as windows, menus or graphics objects.
. An object can represent an inventory, such as a personnel file or a table of the latitudes and longitudes of cities.
. An object can represent user-defined data types such as time, angles, and complex numbers, or points on the plane.

With this enormous capability of an object to represent just about any logically separable matters, OOP allows the software
developer to design and implement a computer program that is a mode! of some aspects of reality, whether that reality is a
physical entity, a process, a system, or a composition of matter. Since the object can represent anything, the software developer

can create an object which can be used as a component in a larger software project in the future.

If 90% of a new OOP software program consists of proven, existing components made from preexisting reusable objects, then
only the remaining 10% of the new software project has to be written and tested from scratch. Since 90% already came from an
inventory of extensively tested reusable objects, the potential domain from which an error could originate is 10% of the program.

As aresult, OOP enables software developers to build objects out of other, previously built, objects.

This process closely resembles complex machinery being built out of assemblies and sub-assemblies. OOP technology,
therefore, makes software engineering more like hardware engineering in that software is built from existing components, which
are available to the deveioper as objects. Al this adds up to an improved quality of the software as well as an increased speed

of its development.

Programming languages are beginning to fully support the OOP principles, such as encapsulation, inheritance, polymorphism,
and composition-relationship. With the advent of the C++ language, many commercial software developers have embraced
OOP. C++is an OOP language that offers a fast, machine-executable code. Furthermore, C++ is suitable for both commercial-
application and systems-programming projects. For now, C++ appears to be the most popular choice among many OOP
programmers, but there is a host of other OOP languages, such as Smalitalk, common lisp object system (CLOS), and Eiffel.

Additionally, OOP capabilities are being added to more traditional popular computer programming languages such as Pascal.

10

15

20

30

35

WO 00/31664 PCT/US99/27218

The benefits of object classes can be summarized, as follows:

Objects and their corresponding classes break down complex programming problems into many smaller, simpler
problems.

Encapsulation enforces data abstraction through the organization of data into small, independent objects that can
communicate with each other. Encapsulation protects the data in an object from accidental damage, but allows other
objects to interact with that data by calling the object's member functions and structures.

Subclassing and inheritance make it possible to extend and modify objects through deriving new kinds of objects from
the standard classes available in the system. Thus, new capabilities are created without having to start from scratch.
Polymorphism and multiple inheritance make it possible for different programmers to mix and match characteristics of
many different classes and create specialized objects that can still work with related objects in predictable ways.
Class-hierarchies and containment hierarchies provide a flexible mechanism for modeling real-world objects and the
relationships among them.

Libraries of reusable classes are useful in many situations, but they also have some limitations. For example:
Complexity. In a complex system, the class hierarchies for related classes can become extremely confusing, with
many dozens or even hundreds of classes.

Flow of control. A program written with the aid of class libraries is stili responsible for the flow of control (i.e., it must
control the interactions among all the objects created from a particular library). The programmer has to decide which
functions to call at what times for which kinds of objects.

Duplication of effort. Although class libraries allow programmers to use and reuse many smali pieces of code, each
programmer puts those pieces together in a different way. Two different programmers can use the same set of class
libraries to write two programs that do exactly the same thing but whose internal structure (i.e., design) may be quite
different, depending on hundreds of small decisions each programmer makes along the way. Inevitably, similar pieces

of code end up doing similar things in slightly different ways and do not work as well together as they should.

Class libraries are very flexible. As programs grow more complex, more programmers are forced to reinvent basic solutions to

basic problems over and over again. A relatively new extension of the class library concept is to have a framework of class

libraries. This framework is more complex and consists of significant collections of collaborating classes that capture both the

small scale patterns and major mechanisms that implement the common requirements and design in a specific application

domain. They were first developed to free application programmers from the chores involved in displaying menus, windows,

dialog boxes, and other standard user interface elements for personal computers.

Frameworks also represent a change in the way programmers think about the interaction between the code they write and code

written by others. In the early days of procedural programming, the programmer called libraries provided by the operating

system to perform certain tasks, but basically the program executed down the page from start to finish, and the programmer was

solely responsible for the flow of control. This was appropriate for printing out paychecks, calculating a mathematical table, or

solving other problems with a program that executed in just one way.

6-

10

15

20

30

35

WO 00/31664 PCT/US99/27218

The development of graphical user interfaces began to turn this procedural programming arrangement inside out. These
interfaces allow the user, rather than program logic, to drive the program and decide when certain actions should be performed.
Today, most personal computer software accomplishes this by means of an event loop which monitors the mouse, keyboard,
and other sources of external events and calls the appropriate parts of the programmer's code according to actions that the user
performs. The programmer no longer determines the order in which events occur. Instead, a program is divided into separate
pieces that are called at unpredictable times and in an unpredictable order. By relinquishing control in this way to users, the
developer creates a program that is much easier to use. Nevertheless, individual pieces of the program written by the developer
stilt call libraries provided by the operating system to accomplish certain tasks, and the programmer must still determine the flow

of control within each piece after being called by the event loop. Application code still “sits on top of” the system.

Even event loop programs require programmers to write a lot of code that should not need to be written separately for every
application. The concept of an application framework carries the event loop concept further. Instead of dealing with all the nuts
and bolts of constructing basic menus, windows, and dialog boxes and then making these things all work together, programmers
using application frameworks start with working application code and basic user interface elements in place. Subsequently, they
build from there by replacing some of the generic capabilities of the framework with the specific capabilities of the intended

application.

Application frameworks reduce the total amount of code that a programmer has to write from scratch. However, because the
framework is really a generic application that displays windows, supports copy and paste, and so on, the programmer can also
relinquish control to a greater degree than event loop programs permit. The framework code takes care of almost ail event
handling and flow of control, and the programmer’s code is called only when the framework needs it (e.g., to create or

manipulate a proprietary data structure).

A programmer writing a framework program not only relinquishes control to the user (as is also true for event loop programs),
but also relinquishes the detailed flow of control within the program to the framework. This approach allows the creation of more
complex systems that work together in interesting ways, as opposed to isolated programs, having custom code, being created

over and over again for similar problems.

Thus, as is explained above, a framework basically is a collection of cooperating classes that make up a reusable design
solution for a given problem domain. It typically includes objects that provide default behavior (e.g., for menus and windows),
and programmers use it by inheriting some of that default behavior and overriding other behavior so that the framework calls

application code at the appropriate times.

There are three main differences between frameworks and class libraries:

. Behavior versus protocol. Class libraries are essentially collections of behaviors that you can call when you want
those individual behaviors in your program. A framework, on the other hand, provides not only behavior but also the
protocol or set of rules that govern the ways in which behaviors can be combined, including rules for what a

programmer is supposed to provide versus what the framework provides.

7-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

. Call versus override. With a class library, the code the programmer instantiates objects and calls their member
functions. It's possible to instantiate and call objects in the same way with a framework (i.e., to treat the framework as
a class library), but to take full advantage of a framework’s reusable design, a programmer typically writes code that
overrides and is called by the framework. The framework manages the flow of control among its objects. Writing a
program involves dividing responsibilities among the various pieces of software that are called by the framework rather
than specifying how the different pieces should work together.

. Implementation versus design. With class libraries, programmers reuse only implementations, whereas with
frameworks, they reuse design. A framework embodies the way a family of related programs or pieces of software
work. It represents a generic design solution that can be adapted to a variety of specific problems in a given domain.
For example, a single framework can embody the way a user interface works, even though two different user

interfaces created with the same framework might solve quite different interface problems.

Thus, through the development of frameworks for solutions to various problems and programming tasks, significant reductions in
the design and development effort for software can be achieved. A preferred embodiment of the invention utilizes HyperText
Markup Language (HTML) to implement documents on the Internet together with a general-purpose secure communication
protocol for a transport medium between the client and the Newco. HTTP or other protocols could be readily substituted for
HTML without undue experimentation. Information on these products is available in T. Berners-Lee, D. Connoly, "RFC 1866:
Hypertext Markup Language - 2.0" (Nov. 1995); and R. Fielding, H, Frystyk, T. Berners-Lee, J. Gettys and J.C. Mogul, "Hypertext
Transfer Protocol -- HTTP/1.1: HTTP Working Group Internet Draft' (May 2, 1996). HTML is a simple data format used to create
hypertext documents that are portable from one platform to another. HTML documents are SGML documents with generic
semantics that are appropriate for representing information from a wide range of domains. HTML has been in use by the World-
Wide Web global information initiative since 1990. HTML is an application of ISO Standard 8879:1986 Information Processing
Text and Office Systems; Standard Generalized Markup Language (SGML).

To date, Web development tools have been fimited in their ability to create dynamic Web applications which span from client to
server and interoperate with existing computing resources. Untif recently, HTML has been the dominant technology used in

development of Web-based solutions. However, HTML has proven to be inadequate in the following areas:

. Poor performance;

. Restricted user interface capabilities;

o Can only produce static Web pages;

. Lack of interoperability with existing applications and data; and
o Inability to scale.

Sun Microsystem's Java language solves many of the client-side problems by:

) improving performance on the client side;
. Enabling the creation of dynamic, real-time Web applications; and
o Providing the ability to create a wide variety of user interface components.

8-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

With Java, developers can create robust User Interface (Ul) components. Custom "widgets" (e.g. real-time stock tickers,
animated icons, etc.) can be created, and client-side performance is improved. Unlike HTML, Java supports the notion of client-
side validation, offloading appropriate processing onto the client for improved performance. Dynamic, real-time Web pages can

be created. Using the above-mentioned custom Ul components, dynamic Web pages can also be created.

Sun's Java language has emerged as an industry-recognized language for "programming the Internet." Sun defines Java as: “a
simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multithreaded,
dynamic, buzzword-compliant, general-purpose programming language. Java supports programming for the Internet in the form
of platform-independent Java applets.” Java applets are small, specialized applications that comply with Sun's Java Application
Programming Interface (API) allowing developers to add-"interactive content" to Web documents (e.g. simple animations, page
adornments, basic games, etc.). Applets execute within a Java-compatible browser (e.g. Netscape Navigator) by copying code
from the server to client. From a language standpoint, Java's core feature set is based on C++. Sun's Java literature states that

Java is basically "C++, with extensions from Objective C for more dynamic method resolution".

Another technology that provides similar function to JAVAis provided by Microsoft and ActiveX Technologies, to give developers and
Web designers wherewithal to build dynamic content for the Internet and personal computers. ActiveX includes tools for developing
animation, 3-D virtual reality, video and other multimedia content. The tools use Internet standards, work on multiple platforms, and
are being supported by over 100 companies. The group's building blocks are called ActiveX Controls, small, fast components that
enable developers to embed parts of software in hypertext markup language (HTML) pages. ActiveX Controls work with & variety of
programming languages including Microsoft Visual C++, Borland Delphi, Microsoft Visual Basic programming system and, in the
future, Microsoft's development tool for Java, code named "Jakarta." ActiveX Technologies also includes ActiveX Server Framework,
allowing developers to create server applications. One of ordinary skill in the art readily recognizes that ActiveX could be substituted

for JAVA without undue experimentation to practice the invention.

In accordance with a preferred embodiment, BackgroundFinder (BF) is implemented as an agent responsible for preparing an
individual for an upcoming meeting by helping him/her retrieve relevant information about the meeting from various sources. BF
receives input text in character form indicative of the target meeting. The input text is generated in accordance with a preferred
embodiment by a calendar program that includes the time of the mesting. As the time of the meeting approaches, the calendar
program is queried to obtain the text of the target event and that information is utilized as input to the agent. Then, the agent
parses the input meeting text to extract its various components such as fitle, body, participants, location, time etc. The system
also performs pattern matching to identify particular meeting fields in a meeting text. This information is utilized to query various
sources of information on the web and obtain relevant stories about the current meeting to send back to the calendaring system.
For example, i an individual has a meeting with Netscape and Microsoft to talk about their disputes, and would obtain this initial
information from the calendaring system. It will then parse out the text to realize that the companies in the meeting are
“Netscape’ and “Microsoft” and the topic is “disputes.” Then, the system queries the web for relevant information concerning the
topic. Thus, in accordance with an objective of the invention, the system updates the calendaring system and eventually the
user with the best information it can gather to prepare the user for the target meeting. In accordance with a preferred

embodiment, the information is stored in a file that is obtained via selection from a link imbedded in the calendar system.

9.

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

PROGRAM ORGANIZATION
A computer program in accordance with a preferred embodiment is organized in five distinct modules: BF.Main, BF Parse,
Background Finder.Error, BF PatternMatching and BF.Search. There is also a frmMain which provides a user interface used
only for debugging purposes. The executable programs in accordance with a preferred embodiment never execute with the user
interface and should only return to the calendaring system through Microsoft's Winsock control. A preferred embodiment of the
system executes in two different modes which can be specified under the command line sent to it by the calendaring system.
When the system runs in simple mode, it executes a keyword query to submit to external search engines. When executed in

complex mode, the system performs pattern matching before it forms a query to be sent to a search engine.

DATA STRUCTURES

The system in accordance with a preferred embodiment utilizes three user defined structures:

1. TMeetingRecord;

2. TPatternElement; and

3. TPatternRecord.

The user-defined structure, tMeetingRecord, is used to store all the pertinent information concerning a single meeting. This info
includes useriD, an original description of the mesting, the extracted list of keywords from the title and body of meeting etc. Itis
important to note that only one meeting record is created per instance of the system in accordance with a preferred embodiment.
This is because each time the system is spawned to service an upcoming meeting, it is assigned a task to retrieve information
for only one meeting. Therefore, the meeting record created corresponds to the current meeting examined. ParseMeetingText
populates this meeting record and it is then passed around to provide information about the meeting to other functions.

If GoPatternMatch can bind any values to a particular meeting field, the corresponding entries in the meeting record is also
updated. The structure of tMeetingRecord with each field described in parentheses is provided below in accordance with a

preferred embodiment.

A11.1141 Public Type tMeetingRecord
sUserlD As String (user id given by Munin)
sTitleOrig As String (original non stop listed title we need to keep around to send back to Munin)
sTitleKW As String (stoplisted titie with only keywords)
sBodyKW As String (stoplisted body with only keywords)
sCompany() As String (companys identified in title or body through pattern matching)
sTopic() As String (topics identified in title or body through pattern matching)
sPeople() As String (people identified in title or body through pattern matching)
sWhen() As String (time identified in titie or body through pattern matching)
sWhere() As String (location identified in title or body through pattern matching)
sLocation As String (location as passed in by Munin)

sTime As String (time as passed in by Munin)

-10-

10

15

20

25

WO 00/31664 PCT/US99/27218

sParticipants() As Stringv (all participants engaged as passed in by Munin)
sMeetingText As String (the original meeting text w/o userid)

End Type

There are two other structures which are created to hold each individual pattern utilized in pattern matching. The record
tAPatternRecord is an array containing all the components / elements of a pattern. The type tAPatternElement is an array of
strings which represent an element in a pattern. Because there may be many "substitutes" for each element, we need an array
of strings to keep track of what all the substitutes are. The structures of tAPatternElement and tAPatternRecord are presented

below in accordance with a preferred embodiment.

Public Type tAPatternElement
elementArray() As String

End Type

Public Type tAPatternRecord
patternArray() As tAPatternElement

End Type

COMMON USER DEFINED CONSTANTS

Many constants are defined in each declaration section of the program which may need to be updated periodically as part of the
process of maintaining the system in accordance with a preferred embodiment. The constants are accessible to allow dynamic

configuration of the system to occur as updates for maintaining the code.

inctuded in the following tables are lists of constants from each module which | thought are most likely to be modified from time
to time. However, there are also other constants used in the code not included in the foliowing list. It does not mean that these

non-included constants will never be changed. It means that they will change much less frequently.

For the Main Module (BF.Main) :

CONSTANT PRESET VALUE USE

MSGTOMUNIN_TYPE 6 Define the message number used to identify
messages between BF and Munin

IP_ADDRESS_MUNIN "10.2.100.48" Define the IP address of the machine in which Munin

and BF are running on so they can transfer data
through UDP.

PORT_MUNIN 7777 Define the remote port in which

we are operating on.
TIMEQUT_AV 60 Define constants for setting time out in inet controls
TIMEOUT_NP 60 Define constants for setting time out in inet controls

11-

WO 00/31664

PCT/US99/27218

CONSTANT PRESET VALUE USE

CMD_SEPARATOR i Define delimiter to tell which part of Munin's command
represents the beginning of our input meeting text

OUTPARAM_SEPARATOR " Define delimiter for separating out different portions of
the output. The separator is for delimiting the msg
type, the user id, the meeting titie and the beginning
of the actual stories retrieved.

For the Search Module (BF.Search):

CONSTANT CURRENT VALUE USE

PAST_NDAYS 5 Define number of days you want to look back for
AltaVista articles. Doesn't really matter now because
we aren't really doing a news search in alta vista. We
want all info.

CONNECTOR_AV_URL "+AND+" Define how to connect keywords. We want all our
keywords in the string so for now use AND. If you
want to do an OR or something, just change
connector.

CONNECTOR_NP_URL "+AND+" Define how to connect keywords. We want all our
keywords in the string so for now use AND. If you
want to do an OR or something, just change
connector.

NUM_NP_STORIES 3 Define the number of stories to return back to Munin
from NewsPage.

NUM_AV_STORIES 3 Define the number of stories to return back to Munin
from AltaVista.

For the Parse Module (BF .Parse):
CONSTANT CURRENT VALUE USE

PORTION_SEPARATOR

n..n

Define the separator between different portions of the
meeting text sent in by Munin. For example in
"09::Meet with Chad::about life::Chad | Denise:::::"
"' is the separator between different parts of the

meeting text.

10

15

20

25

30

WO 00/31664 PCT/US99/27218

CONSTANT CURRENT VALUE USE
PARTICIPANT_SEPARATOR " Define the separator between each participant in the

participant list portion of the original meeting text.

Refer to example above.

For Pattern Matching Module (BFPatternMatch): There are no constants in this module which require frequent updates.

General Process Flow

The best way to depict the process flow and the coordination of functions between each other is with the five flowcharts
illustrated in Figures 2 to 6. Figure 2 depicts the overall process flow in accordance with a preferred embodiment. Processing
commences at the top of the chart at function biock 200 which launches when the program starts. Once the application is
started. the command line is parsed to remove the appropriate meeting text to initiate the target of the background find operation
in accordance with a preferred embodiment as shown in function block 210. A global stop fist is generated after the target is
determined as shown in function block 220. Then, all the patterns that are utilized for matching operations are generated as
illustrated in function block 230. Then, by tracing through the chart, function block 200 invokes GoBF 240 which is responsible
for logical processing associated with wrapping the correct search query information for the particular target search engine. For
example, function block 240 flows to function block 250 and it then calls GoPatternMatch as shown in function block 260. To see

the process flow of GoPatternMatch, we swap to the diagram titled “Process Flow for BF's Pattern Matching Unit."

One key thing to notice is that functions depicted at the same level of the chart are called by in sequential order from left to right
(or top to bottom) by their common parent function. For example, Main 200 calls ProcessCommandLine 210, then
CreateStopListist 220, then CreatePatterns 230, then GoBackgroundFinder 240. Figures 3 to 6 detail the logic for the entire
program, the parsing unit, the pattern matching unit and the search unit respectively. Figure 6 details the logic determinative of
data flow of key information through BackgroundFinder, and shows the functions that are responsible for creating or processing

such information.

DETAILED SEARCH ARCHITECTURE UNDER THE SIMPLE QUERY MODE

SEARCH ALTA VISTA

(Function block 270 of Figure 2)
The Alta Vista search engine utilizes the identifies and returns general information about topics related to the current meeting as
shown in function block 270 of Figure 2. The system in accordance with a preferred embodiment takes all the keywords from the
title portion of the original meeting text and constructs an advanced query to send to Alta Vista. The keywords are logically
combined together in the query. The results are also ranked based on the same set of keywords. One of ordinary skill in the art
will readily comprehend that a date restriction or publisher criteria could be facilitated on the articles we want to refrieve. A set of

top ranking stories are returned to the calendaring system in accordance with a preferred embodiment.

13-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

NEWS PAGE
(Function block 275 of Figure 2)
The NewsPage search system is responsible for giving us the latest news topics related to a target meeting. The system takes
all of the keywords from the title portion of the original meeting text and constructs a query to send to the NewsPage search
engine. The keywords are logically combined together in the query. Only articles published recently are retrieved. The
Newspage search system provides a date restriction criteria that is settable by a user according to the user’s preference. The

top ranking stories are returned to the calendaring system.

Figure 3 is a user profile data mode! in accordance with a preferred embodiment. Processing commences at function block 300
which is responsible for invoking the program from the main module. Then, at function block 310, a wrapper function is invoked
to prepare for the keyword extraction processing in function block 320. After the keywords are extracted, then processing flows
to function block 330 to determine if the delimiters are properly positioned. Then, at function block 340, the number of words in a
particular string is calculated and the delimiters for the particular field are and a particular field from the meeting text is retrieved
at function block 350. Then, at function block 380, the delimiters of the string are again checked to assure they are placed
appropriately. Finally, at function block 360, the extraction of each word from the title and body of the message is performed a
word at a time utilizing the logic in function block 362 which finds the next closest word delimiter in the input phrase, function
block 364 which strips unnecessary materials from a word and function block 366 which determines if a word is on the stop list

and returns an error if the word is on the stop list.

PATTERN MATCHING IN ACCORDANCE WITH A PREFERRED EMBODIMENT

The limitations associated with a simple searching method include the foliowing:

1. Because it relies on a stoplist of unwanted words in order to extract from the meeting text a set of keywords, it is
limited by how comprehensive the stoplistis. Instead of trying to figure out what parts of the meeting text we should
throw away, we should focus on what parts of the meeting text we want.

2. Asimple search method in accordance with a preferred embodiment only uses the keywords from a meeting title to
form queries to send to Alta Vista and NewsPage. This ignores an alternative source of information for the query, the
body of the meeting notice. We cannot include the keywords from the meeting body to form our queries because this
often results in queries which are too long and so complex that we often obtain no meaningful results.

3. Thereis no way for us to tell what each keyword represents. For example, we may extract "Andy” and “Grove” as two
keywords. However, a simplistic search has no way knowing that “Andy Grove” is in fact a person’s name. imagine
the possibilities if we could somehow intelligently guess that "Andy Grove” is a person's name. We can find out if he is
an Andersen person and if so what kind of projects he’s been on before etc. etc.

4. In summary, by relying solely on a stoplist to parse out unnecessary words, we suffer from “information overload".

-14-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

PATTERN MATCHING OVERCOMES THESE LIMITATIONS IN ACCORDANCE WITH A PREFERRED EMBODIMENT

Here's how the pattern matching system can address each of the corresponding issues above in accordance with a preferred

embodiment.

1. By doing pattern matching, we match up only parts of the meeting text that we want and extract ihose parts.

2. By performing pattern matching on the meeting body and extracting only the parts from the meeting body that we want.
Our meeting body will not go to complete waste then.

3. Pattern matching is based on a set of templates that we specify, allowing us to identify people names, company names etc
from a meeting text.

4. In summary, with pattern matching, we no longer suffer from information overload. Of course, the big problem is how well
our pattern matching works. If we rely exclusively on artificial intelligence processing, we do not have a 100% hit rate. We

are able to identify about 20% of all company names presented to us.
PATTERNS

A pattern in the context of a preferred embodiment is a template specifying the structure of a phrase we are looking for in a
meeting text. The patterns supported by a preferred embodiment are selected because they are templates of phrases which
have a high probability of appearing in someone's meeting text. For example, when entering a meeting in a calendar, many
would write something such as “Meet with Bob Dutton from Stanford University next Tuesday.” A common pattern would then
be something like the word “with” followed by a person’s name (in this example it is Bob Dutton) followed by the word “from” and

ending with an organization's name (in this case, it is Stanford University).
PATTERN MATCHING TERMINOLOGY
The common terminology associated with pattern matching is provided below.

+ Pattern: a pattern is a template specifying the structure of a phrase we want to bind the meeting text to. It contains sub
units.

+ Element a pattern can contain many sub-units. These subunits are called elements. For example, in the pattern “with
$PEOPLES from $COMPANYS”, “with” “SPEOPLES" “from” “§COMPANY$" are all elements.

¢ Placeholder: a placeholder is a special kind of element in which we want to bind a value to.Using the above example,
“$PEOPLES" is a placeholder.

¢ Indicator: an indicator is another kind of element which we want to find in a meeting text but no vaiue needs to bind to it.
There may be often more than one indicator we are looking for in a certain pattern. That is why an indicator is not an
“atomic” type.

+ Substitute: substitutes are a set of indicators which are all synonyms of each other. Finding any one of them in the input is

good.
-15-

10

15

20

WO 00/31664 PCT/US99/27218

There are five fields which are identified for each meeting:

¢+ Company (3COMPANYS)

¢ People ($PECPLES)

+ Location (SLOCATIONS)

¢ Time ($TIMES)

+ Topic ($TOPIC_UPPERS) or ($TOPIC_ALLS)

In parentheses are the placeholders | used in my code as representation of the corresponding meeting fields.

Each placeholder has the following meaning:
¢ $COMPANYS: binds a string of capitalized words (e.g. Meet with Joe Carter of <Andersen Consulting >)
+ $PEOPLES: binds series of string of two capitalized words potentially connected by *," “and” or “&” {e.g. Meet with
<Joe Carter> of Andersen Consulting, Meet with <Joe Carter and Luke Hughes> of Andersen Consulting)
¢ $LOCATIONS: binds a string of capitalized words (e.g. Meet Susan at <Palo Alto Square>)
+ $TIMES: binds a string containing the format #:## (e.g. Dinner at <6:30 pm>)
+ $TOPIC_UPPERS: binds a string of capitalized words for our topic (e.g. <Stanford Engineering Recruiting>
Meeting to talk about new hires).
+ 3TOPIC_ALLS: binds a string of words without really caring if it's capitalized or not. {e.g. Meet to talk about
<ubiquitous computing>)
Here is a table representing all the patterns supported by BF. Each pattern belongs to a pattern group. All patterns within a
pattern group share a similar format and they only differ from each other in terms of what indicators are used as substitutes.
Note that the patterns which are grayed out are also commented in the code. BF has the capability to support these patterns but

we decided that matching these patterns is not essential at this point.

- PAT# PATTERN EXAMPLE.
PATGRP

1 a $PEOPLES of SCOMPANY$ Paui Maritz of Microsoft

b $PEOPLES from SCOMPANY$ Bill Gates, Paul Allen and Paul Maritz from Microsoft
2 a $TOPIC_UPPERS meeting Push Technology Meeting

b $TOPIC_UPPER$ mtg Push Technology Mtg

c $TOPIC_UPPERS demo Push Technology demo

d $TOPIC_UPPERS interview Push Technology interview

e $TOPIC_UPPERS presentation Push Technology presentation

f $TOPIC_UPPERS visit Push Technology visit

g $TOPIC_UPPERS briefing Push Technology briefing

h $TOPIC_UPPERS discussion Push Technology discussion

i $TOPIC_UPPERS workshop Push Technology workshop

-16-

WO 00/31664 PCT/US99/27218
j $TOPIC_UPPERS prep Push Technology prep
k $TOPIC_UPPERS review Push Technology review
I $TOPIC_UPPERS lunch Push Technology lunch
m $TOPIC_UPPERS project Push Technology project
n $TOPIC_UPPERS projects Push Technology projects
3 a $COMPANY?$ corporation intel Corporation
b $COMPANYS corp. IBM Corp.
c $COMPANY$ systems Cisco Systems
d $COMPANY$ limited IBM limited
e SCOMPANYS itd 1BM ftd
4 a about $TOPIC_ALLS About intelligent agents technology
b discuss $TOPIC_ALL$ Discuss intelligent agents technology
c show $TOPIC_ALL$ Show the client our intelligent agents technology
d re: $TOPIC_ALLS re: intelligent agents technology
e review $TOPIC_ALL$ Review intelligent agents technology
f agenda The agenda is as follows:
--Clean up
--Clean up
--clean up
g agenda: $TOPIC_ALLS Agenda:
--demo client intelligent agents technology.
--demo ecommerce.
5 a w/SPEOPLES of SCOMPANYS Meet w/Joe Carter of Andersen Consuiting
w/SPEOPLES from $COMPANY$ Meet widoe Carter from Andersen Consulting
6 a w/$COMPANY$ per $PEOPLES Talk w/intel per Jason Foster
7 a At $TIMES at 3:00pm
b Around $TIMES Around 3:00 pm
8 a At SLOCATIONS At LuLu’s resturant
b in $LOCATIONS in Santa Clara
9 a Per $PEOPLES per Susan Butler
10 a call wi$PEOPLES Conf call w/John Smith
B call with SPEOPLE$ Conf call with John Smith
11 A prep for STOPIC_ALL$ Prep for London meeting
B preparation for $TOPIC_ALL$ Preparation for London meeting

Figure 4 is a detailed flowchart of pattern matching in accordance with a preferred embodiment. Processing commences at

function block 400 where the main program invokes the pattern matching application and passes control to function block 410 to
A7-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

commence the pattern match processing. Then, at function block 420, the wrapper function loops through to process each
pattern which includes determining if a part of the text string can be bound to a pattern as shown in function block 430. Then, at
function block 440, various placeholders are bound to values if they exist, and in function block 441, a list of names separated by
punctuation are bound, and at function block 442 a full name is processed by finding two capitalized words as a full name and
grabbing the next letter after a space after a word to determine if it is capitalized. Then, at function block 443, time is parsed out
of the string in an appropriate manner and the next word after a blank space in function block 444. Then, at function block 445,
the continuous phrases of capitalized words such as company, topic or location are bound and in function block 445, the next
word after the blank is obtained for further processing in accordance with a preferred embodiment. Following the match meeting
field processing, function block 450 is utilized to loacte an indicator which is the head of a pattern, the next word after the blank
is obtained as shown in function block 452 and the word is checked to determine if the word is an indicator as shown in function
block 454. Then, at function block 460, the string is parsed to locate an indicator which is not at the end of the pattern and the
next word after unnecessary white space such as that following a line feed or a carriage return is processed as shown in function
block 462 and the word is analyzed to determine if it is an indicator as shown in function block 464. Then, in function block 470,
the temporary record is reset to the nuil set to prepare it for processing the next string and at function block 480, the meeting
record is updated and at function block 482 a check is performed to determine if an entry is already made to the meeting record

before parsing the meeting record again.

USING THE IDENTIFIED MEETING FIELDS
Now that we have identified fields within the meeting text which we consider important, there are quite a few things we can do
with it. One of the most important applications of pattern matching is of course to improve the query we construct which
eventually gets submitted to Alta Vista and News Page. There are also a lot of other options and enhancements which exploit
the results of pattern matching that we can add to BF. These other options will be described in the next section. The goal of this
section is to give the reader a good sense of how the results obtained from pattern matching can be used to help us obtain better

search results.

Figure 5 is a flowchart of the detailed processing for preparing a query and obtaining information from the Internet in accordance
with a preferred embodiment. Processing commences at function block 500 and immediately flows to function block 510 to
process the wrapper functionality to prepare for an Internet search utilizing a web search engine. If the search is to utilize the
Alta Vista search engine, then at function block 530, the system takes information from the meeting record and forms a query in
function blocks 540 to 560 for submittal to the search engine. !f the search is to utilize the NewsPage search engine, then at

function block 520, the system takes information from the meeting record and forms a query in function blocks 521 to 528.

Alta Vista Search Engine
The strength of the Alta Vista search engine is that it provides enhanced flexibility. Using its advance query method, one can
construct all sorts of Boolean queries and rank the search however you want. However, one of the biggest drawbacks with Alta
Vista is that it is not very good at handling a large query and is likely to give back irrelevant results. If we can identify the topic
and the company within a meeting text, we can form a pretty short but comprehensive query which will hopefully yield better
results. We also want to focus on the topics found. It may not be of much merit to the user to find out info about a company
-18-

10

WO 00/31664 PCT/US99/27218

especially if the user already knows the company well and has had numerous meetings with them. It's the topics they want to

research on.
News Page Search Engine

The strength of the News Page search engine is that it does a great job searching for the most recent news if you are able to
give it a valid company name. Therefore when we submit a query to the news page web site, we send whatever company name
we can identify and only if we cannot find one do we use the topics found to form a query. if neither one is found, then no search
is performed. The algorithmn utilized to form the query to submit to Alta Vista is illustrated in Figure 7. The algorithmn that we

will use to form the query to submit to News Page is illustrated in Figure 8.

The following table describes in detail each function in accordance with a preferred embodiment. The order in which functions
appear mimics the process flow as closely as possible. When there are situations in which a function is called several times, this

function will be listed after the first function which calls it and its description is not duplicated after every subsequent function

which calls it.
Procedure Name Type Called By Description
Main Public Sub None This is the main function where the program first
(BF.Main) launches. It initializes BF with the appropriate
parameters(e.g. Internet time-out, stoplist...) and calls
GoBF to launch the main part of the program.
ProcessCommand | Private Sub Main This function parses the command line. It assumes that
Line the delimiter indicating the beginning of input from
(BF .Main) Munin is stored in the constant CMD_SEPARATOR.
CreateStopList Private Main This function sets up a stop list for future use to parse
(BF.Main) Function out unwanted words from the meeting text.
There are commas on each side of each word to enable
straight checking.
CreatePatterns Public Sub Main This procedure is called once when BF is first initialized
(BF.PatternMatch) to create all the potential patterns that portions of the

meeting text can bind to. A pattern can contain however
many elements as needed. There are two types of
elements. The first type of elements are indicators.
These are real words which delimit the potential of a
meeting field (eg company) to follow. Most of these
indicators are stop words as expected because stop
words are words usually common to all meeting text so
it makes sense they form patterns. The second type of
elements are special strings which represent

placeholders.

WO 00/31664

Procedure Name

Type

Called By

PCT/US99/27218

Description

A placeholder is always in the form of $*$ where * can
be either PEOPLE, COMPANY, TOPIC_UPPER,
TIME,LOCATION or TOPIC_ALL. A pattern can begin
with either one of the two types of elements and can be
however long, involving however any number/type of
elements. This procedure dynamically creates a new
pattern record for each pattern in the table and it also
dynamically creates new tAPatternElements for each
element within a pattern. In addition, there is the
concept of being able to substitute indicators within a
pattern. For example, the pattern $PEOPLES of
$COMPANYS is similar to the pattern SPEOPLES from
$COMPANYS. "from" is a substitute for "of" . Our
structure should be able to express such a need for

substitution.

GoBF
(BF.Main)

Public Sub

Main

This is a wrapper procedurer that calls both the parsing
and the searching subroutines of the BF. Itis also

responsible for sending data back to Munin.

ParseMeetingText
(BF.Parse)

Public

Function

GoBackGroundFinder

This function takes the initial meeting text and identifies
the userlD of the record as well as other parts of the
meeting text including the title, body, participant list,
location and time. In addition, we call a helper function
ProcessStopList to eliminate all the unwanted words
from the original meeting title and meeting body so that
only keywords are left. The information parsed out is
stored in the MeetingRecord structure. Note that this
function does no error checking and for the most time
assumes that the meeting text string is correctly
formatted by Munin. The important variable is
thisMeeting Record is the temp holder for all info
regarding current meeting. It's eventually returned to

caller.

FormatDelimitation
(BF Parse)

Private

ParseMeetingText,
DetermineNumWords,
GetAWordFromString

There are 4 ways in which the delimiters can be placed.
We take care of all these cases by reducing them down
to Case 4 in which there are no delimiters around but

only between fields in a string(e.g. A::B::C)

DetermineNumWor

Pubilic

ParseMeeting

This functions determines how many words there are in

-20-

WO 00/31664

Procedure Name
ds
(BF.Parse)

Type

Function

Called By
Text, ProcessStop
List

PCT/US99/27218

Description

a string (stinEvalString) The function assumes that each
word is separated by a designated separator as
specified in stSeparator. The return type is an integer
that indicates how many words have been found
assuming each word in the string is separated by
stSeparator. This function is always used along with
GetAWordFromString and should be called before
calling GetAWordFrom String.

GetAWordFromStri

ng
(BF.Parse)

Public

Function

ParseMeeting Text,
ProcessStop
List

This function extracts the ith word of the
string(stinEvalString) assuming that each word in the
string is separated by a designated separator contained
in the variable stSeparator. In most cases, use this
function with DetermineNumWords. The function returns
the wanted word. This function checks to make sure that
iinWordNum is within bounds so that i is not greater
than the total number of words in string or less
than/equal to zero. Ifit is out of bounds, we return
empty string to indicate we can't get anything. We try to
make sure this doesn't happen by calling

DetermineNumWords first.

ParseAndCleanPhr
ase
(BF.Parse)

Private

Function

ParseMeetingText

This function first grabs the word and send it to
CleanWord in order strip the stuff that nobody wants.
There are things in parseWord that will kill the word, so
we will need a method of looping through the body and
rejecting words without killing the whole function i guess
keep CleanWord and check a return value

ok, now | have a word so | need to send it down the
parse chain. This chain goes ParseCleanPhrase ->
CleanWord -> EvaluateWord. If the word gets through
the entire chain without being killed, it will be added at
the end to our keyword string.

first would be the function that checks for "/" as a
delimiter and extracts the parts of that. This | will call
"StitchFace" (Denise is more normal and calls it
GetAWordFromsString)

if this finds words, then each of these will be sent, in

turn, down the chain. If these get through the entire

WO 00/31664

Procedure Name

Type

Called By

PCT/US99/27218

Description
chain without being added or killed then they will be
added rather than tossed.

FindMin
(BF.Parse)

Private

Function

ParseAndCleanPhrase

This function takes in 6 input values and evaluates to
see what the minimum non zero value is. i first creates
an array as a holder so that we can sort the five input
values in ascending order. Thus the minimum value will
be the first non zero value element of the array. If we go
through entire array without finding a non zero value, we

know that there is an error and we exit the function.

CleanWord
(BF .Parse)

Private

Function

ParseAndCleanPhrase

This function tries to clean up a word in a meeting text. It
first of all determines if the string is of a valid length. 1t
then passes it through a series of tests to see it is clean
and when needed, it will edit the word and strip
unnecessary characters off of it. Such tests includes

getting rid of file extensions, non chars, numbers etc.

EvaluateWord
(BF.Parse)

Private

Function

ParseAndCleanPhrase

This function tests to see if this word is in the stop list so
it can determine whether to eliminate the word from the
original meeting text. If a word is not in the stoplist, it
should stay around as a keyword and this function exits
beautifully with no errors. However, if the words is a
stopword, an error must be returned. We must properly
delimit the input test string so we don't accidentally

retrieve sub strings.

GoPatternMatch
(BF .PatternMatch)

Public Sub

GoBF

This procedure is called when our QueryMethod is set to
complex query meaning we do want to do all the pattern
matching stuff.It 's a simple wrapper function which
initializes some arrays and then invokes pattern

matching on the title and the body.

MatchPatterns
(BF.PatternMatch)

Public Sub

GoPattern Match

This procedure loops through every pattern in the
pattern table and tries to identify different fields within a
meeting text specified by sinEvalString. For debugging
purposes it also tries to tabulate how many times a
certain pattern was triggered and stores itin
gTabulateMatches to see whichp pattern fired the most.
gTabulateMatches is stored as a global because we
want to be able to run a batch file of 40 or 50 test strings

and stili be able to know how often a pattern was

WO 00/31664

Procedure Name

Called By

PCT/US99/27218

Description

triggered.

MatchAPattern
(BF .PatternMatch)

Private

Function

MatchPatterns

This function goes through each element in the
current pattern. It first evaluates to determine
whether element is a placeholder or an indicator. If it
is a placeholder, then it will try to bind the
ptaceholder with some value. If it is an indicator,
then we try to locate it. There is a trick however.
Depending on whether we are at current element is
the head of the pattern or not we want fo take
different actions. If we are at the head, we want to
look for the indicator or the placeholder. If we can't
find it, then we know that the current pattern doesn't
exist and we quit. However, if it is not the head, then
we continue looking, because there may still be a

head somewhere. We retry in this case.

gField
(BF .PatternMatch)

Private

Function

MatchAPattern

This function uses a big switch statement to first
determine what kind of placeholder we are talking about
and depending on what type of placeholder, we have
specific requirements and different binding criteria as
specified in the subsequent functions called such as
BindNames, BindTime etc. If binding is successful we

add it to our guessing record.

BindNames
(BF.PatternMatch)

Private

Function

MatchMeetingField

In this function, we try to match names to the
corresponding placeholder SPECPLES. Names are
defined as any consecutive two words which are
capitalized. We also what to retrieve a series of names
which are connected by and , or & so we look until we
don't see any of these 3 separators anymore. Note that
we don 't want to bind single word names because it is
probably too general anyway so we don't want to
produce broad but irrelevant results. This function calls
BindAFullName which binds one name so in a since

BindNames collects all the results from BindAFullName

BindAFuliName
(BF.PatternMatch)

Private

Function

BindNames

This function tries to bind a full name. [f the SPEOPLES$
placeholder is not the head of the pattern, we know that
it has to come right at the beginning of the test string

because we 've been deleting stuff off the head of the

23-

WO 00/31664 PCT/US99/27218

Procedure Name Tpe Called By Description
string all along. Ifitis the head, we search until we find
something that looks like a full name. If we can'tfind it,
then there's no such pattern in the text entirely and we
quit entirely from this pattern. This should eventually
return us to the next pattern in MatchPatterns.

GetNextWordAfter | Private BindAFull This function grabs the next word in a test string. It

WhiteSpace Function Name, BindTime, looks for the next word after white spaces, @ or /. The

(BF.PatternMatch) BindCompanyTopicLo | word is defined to end when we encounter another one

c of these white spaces or separators.

BindTime Private MatchMeetingField Get the immediate next word and see if it looks like a

(BF.PatternMatch) | Function time pattern. If so we've found a time and so we want to
add it to the record. We probably should add more time
patterns. But people don't seem to like to enter the time
in their titles these days especially since we now have
tools like OutlLook.

BindCompanyTopi | Private MatchMeetingField This function finds a continuous capitalized string and

cLoc Function binds it to stMatch which is passed by reference from

(BF .PatternMatch) MatchMeetingField. A continous capitalized string is a
sequence of capitalized words which are not interrupted
by things like , . etc. There's probably more stuff we can
add to the list of interruptions.

LocatePatternHea | Private MatchAPattern This function tries to locate an element which is an

d Function indicator. Note that this indicator SHOULD BE AT THE

(BF .PatternMatch) HEAD of the pattern otherwise it would have gone to the
function Locatelndicator instead. Therefore, we keep on
grabbing the next word until either there's no word for us
to grab (quit) or if we find one of the indicators we are
looking for.

ContaininArray Private LocatePattern " This function is really simple. It loops through all the

(BF.PatternMatch) | Function Head, Locatelndicator | elements in the array ' to find a matching string.

Locateindicator Private MatchAPattern This function tries to locate an element which is an

(BF .PatternMatch) | Function indicator. Note that this indicator is NOT at the head of
the pattern otherwise it would have gone to
LocatePatternHead instead. Because of this, if our
pattern is to be satisfied, the next word we grab HAS to
be the indicator or else we would have failed. Thus we
only grab one word, test to see if it is a valid indicator

WO 00/31664

Procedure Name

Type

Called By

PCT/US99/27218

Description

and then return result.

[nitializeGuessesR
ecord
(BF.PatternMatch)

Private Sub

MatchAPattern

This function reinitializes our temporary test structure
because we have already transfered the info to the
permanent structure, we can reinitialize it so they each

have one element

AddToMeetingRec
ord
(BF .PatternMatch)

Private Sub

MatchAPattern

This function is only called when we know that the
information stored in tinCurrGuesses is valid meaning
that it represents legitamate guesses of meeting fields
ready to be stored in the permanent

record, tinMeetingRecord. We check to make sure that
we do not store duplicates and we also what to clean up
what we want to store so that there's no cluttered crap
such as punctuations, etc. The reason why we don't
clean up until now is to save time. We don't waste
resources calling ParseAndCleanPhrase until we know

for sure that we are going to add it permanently.

NoDuplicateEntry
(BF.PatternMatch)

Private

Function

AddToMeetingRecord

This function loops through each element in the array to
make sure that the test string aString is not the same as
any of the strings already stored in the array. Slightly

different from ContaininArray.

SearchAltaVista
(BF.Search)

Public

Function

GoBackGroundFinder

This function prepares a query to be submited to
AltaVista Search engine. It submits it and then parses
the returning result in the appropriate format containing
the title, URL and body/summary of each story
retrieved. The number of stories retrieved is specified
by the constant NUM_AV_STORIES.

important variables include stURLAltaVista used to store
query to submit stResultHTML used to store html from

page specified by stURLAltaVista.

ConstructAltaVista
URL
(BF.Search)

Private

Function

SearchAltaVista

This function constructs the URL string for the alta vista
search engine using the advanced query search mode.
Itincludes the keywords to be used, the language and
how we want to rank the search. Depending on whether
we want to use the results of our pattern matching unit,

we construct our query differently.

ConstructSimpleKe
yWord

Private

Function

ConstructAltaVistaURI,

ConstructNewsPageU

This function marches down the list of keywords stored

in the stTitleKW or stBodyKW fields of the input meeting

25-

WO 00/31664

Procedure Name

Type

Called By

PCT/US99/27218

Description

(BF.Search) RL record and links them up into one string with each
keyword separated by a connector as determined by the
input variable stinConnector. Returns this newly
constructed string.

ConstructComplex | Private ConstructAltaVistaURL | This function constructs the keywords to be send to the

AVKeyWord Function AltaVista site. Unlike ConstructSimpleKeyWord which

(BF.Search) simply takes all the keywords from the title to form the
query, this function will look at the results of BF 's
pattern matching process and see if we are able to
identify any specific company names or topics for
constructing the queries. Query will include company
and topic identified and default to simple query if we
cannot identify either company or topic.

JoinWithConnector | Private ConstructComplexAVK | This function simply replaces the spacesbetween the

s Function ey words within the string with a connector which is

(BF.Search) Word, specified by the input.

ConstructComplexNP
Key

Word,

RefineWith

Rank

RefineWithDate Private ConstructAltaVistaURL | This function constructs the date portion of the alta vista

(NOT CALLED AT | Function query and returns this portion of the URL as a string. It

THE MOMENT) makes sure that alta vista searches for articles within

(BF.Search) the past PAST_NDAYS.

RefineWithRank Private ConstructAitaVistaURL | This function constructs the string needed to passed to

(BF.Search) Function Altavista in order to rank an advanced query search. If
we are constructing the simple query we will take in all
the keywords from the title. For the complex query, we
will take in words from company and topic, much the
same way we formed the query in
ConstructComplexAVKeyWord.

-26-

WO 00/31664

Procedure Name
IdentifyBlock
(BF.Parse)

Type
Public

Function

Called By
SearchAltaVista,

SearchNewsPage

PCT/US99/27218

Description

This function extracts the block within a string marked
by the beginning and the ending tag given as inputs
starting at a certain location(iStart). The block retrieved
does not include the tags themselves. If the block
cannot be identified with the specified delimiters, we
return unsuccessful through the parameter
iReturnSuccess passed to use by reference. The return

type is the block retrieved.

IsOpenURLError
(BF.Error)

Public

Function

SearchAltaVista,Searc

hNewsPage

This function determines whether the error encountered
is that of a timeout error. It restores the mouse to default
arrow and then returns true if it is a time out or false

otherwise.

SearchNewsPage
(BF.Search)

Public

Function

GoBackGroundFinder

This function prepares a query to be submited to
NewsPage Search engine. It submits it and then parses
the returning result in the appropriate format containing
the title, URL and body/summary of each story retrieved.
The number of stories retrieved is specified by the
constant UM_NP_STORIES

ConstructNewsPag
eURL
(BF.Search)

Private

Function

SearchNewsPage

This function constructs the URL to send to the
NewsPage site. It uses the information contained in the
input meeting record to determine what keywords to
use. Also depending whether we want simpie or

complex query, we call diffent functions to form strings.

ConstructComplex
NPKeyWord
(BF.Search)

Private

Function

ConstructNewsPageU
RL

This function constructs the keywords to be send to the
NewsPage site. UnlikeConstructKeyWordString which
simply takes all the keywords from the fitle to form the
query, this function will look at the results of BF 's
pattern matching process and see if we are able to
identify any specific company names or topics for
constructing the queries. Since newspage works best
when we have a company name, we 'll use only the
company name and only if there is no company will we

use topic.

ConstructOveraliR
esult
(BF.Main)

Private

Function

GoBackGroundFinder

This function takes in as input an array of strings
(stinStories) and a MeetingRecord which stores the
information for the current meeting. Each element in the

array stores the stories retrieved from each information

27-

10

15

WO 00/31664 PCT/US99/27218

Procedure Name

Type Called By Description
source. The function simply constructs the appropriate
output to send to Munin including a return message type
to let Munin know that it is the BF responding and also
the original user_id and meeting title so Munin knows

which meeting BF is talking about.

ConnectAndTransf | Public Sub GoBackGroundFinder | This function allows Background Finder to connect to
erTo Munin and eventually transport information to Munin.
Munin We will be using the UDP protocol instead of the TCP
(BF .Main) : protocol so we have to set up the remote host and port

correctly. We use a global string to store gResuit Overall
because although it is unecessary with UDP, it is
needed with TCP and if we ever switch back don't want

to change code.

DisconnectFromM | Public Sub
uninAnd
Quit

(BF.Main)

Figure 6 is a flowchart of the actual code utilized to prepare and submit searches to the Alta Vista and Newspage search
engines in accordance with a preferred embodiment. Processing commences at function block 610 where a command line is
utilized to update a calendar entry with specific calendar information. The message is next posted in accordance with function
block 620 and a meeting record is created to store the current meeting information in accordance with function block 630. Then,
in function block 640 the query is submitted to the Alta Vista search engine and in function block 650, the query is submitted to
the Newspage search engine. When a message is returned from the search engine, it s stored in a results data structure as
shown in function block 660 and the information is processed and stored in summary form in a file for use in preparation for the

meeting as detailed in function block 670.

Figure 7 provides more detail on creating the query in accordance with a preferred embodiment. Processing commences at
function block 710 where the meeting record is parsed to obtain potential companies, people, topics, location and a time. Then,
in function block 720, at least one topic is identified and in function block 720, at least one company name is identified and finally

in function block 740, a decision is made on what material to transmit to the file for ultimate consumption by the user.

Figure 8 is a variation on the query theme presented in Figure 7. A meeting record is parsed in function block 800, a company is
identified in function block 820, a topic is identified in function biock 830 and finally in function block 840 the topic and or the
company is utilized in formulating the query.

.28-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

Alternative embodiments for adding various specific features for specific user requirements are discussed below.

Enhance Target Rate for Pattern Matching

To increase BF’s performance, more patterns/pattern groups are added to the procedure “CreatePatterns.” The existing code
for dectaring patterns can be used as a template for future patterns. Because everything is stored as dynamic arrays, it is
convenient to reuse code by cutting and pasting. The functions BindName, BindTime, BindCompanyLocTopic which are
responsible for associating a value with a placeholder can be enhanced. The enhancement is realized by increasing the set of
criteria for binding a certain meeting field in order to increase the number of binding values. For example, BindTime currently
accepts and binds all values in the form of ##:## or ###. To increase the times we can bind, we may want BindTime to also
accept the numbers 1 to 12 followed by the more aesthetic time terminology “o'clock.” Vocabulary based recognition algorithms

and assigning an accuracy rate to each guess BF makes allowing only guesses which meet a certain threshold to be valid.

Depending on what location the system identifies through pattern matching or alternatively depending on what location the user
indicates as the meeting place, a system in accordance with a preferred embodiment suggests a plurality of fine restaurants
whenever it detects the words lunch/dinner/breakfast. We can also use a site like company finder to confirm what we got is
indeed a company name or if there is no company name that pattern matching can identify, we can use a company finder web
site as a “dictionary” for us to determine whether certain capitalized words represent a company name. We can even display

stock prices and breaking news for a company that we have identified.

Wireless Bargain Identification in Accordance With A Preferred Embodiment

Figure 9 is a flow diagram that depicts the hardware and logical flow of control for a device and a software system designed to
allow Web-based comparison shopping in conventional, physical, non-Web retail environments. A wireless phone or similar
hand-held wireless device 920 with Internet Protocol capability is combined with a miniature barcode reader 910 (installed either
inside the phone or on a short cable) and used to scan the Universal Product Code (UPC) bar code on & book or other product
900. The wireless device 920 fransmits the bar code via an antennae 930 to the Pocket BargainFinder Service Module (running
on a Web server) 940, which converts it to (in the case of books) its International Standard Book Number or (in the case of other
products) whatever identifier is appropriate. The Service Module then contacts the appropriate third-party Web site(s) to find
price, shipping and availability information on the product from various Web suppliers 950. This information is formatted and
displayed on the hand-held device's screen. The IP wireless phone or other hand held device 920 utilizes a wireless modem
such as a Ricochet SE Wireless Modem from Metricom. Utilizing this device, a user can hang out in a coffee shop with a
portable computer perched on a rickety little table, with a latte sloshing dangerously close to the keyboard, and access the

internet at speeds rivaling direct connect via a telephone line.

The 8-ounce Ricochet SE Wireless Modem is about as large as a pack of cigarettes and setup is extremely simple, simply attach
the modem to the back of your portable's screen with the included piece of Velcro, plug the cable into the serial port, flip up the
-29-

10

15

20

30

35

WO 00/31664 PCT/US99/27218

stubby antenna, and transnﬁit. Software setup is equally easy: a straightforward installer adds the Ricochet modem drivers and
places the connection icon on your desktop. The functional aspects of the modem are identical to that of a traditional telephone

modem.

Of course, wireless performance isn't nearly as reliable as a traditional dial-up phone connection. We were able to get strong
connections in several San Francisco locations as long as we stayed near the windows. But inside CNET's all-brick
headquarters, the Ricochet couldn't connect at all. When you do get online, performance of up to 28.8 kbps is avaitable with
graceful degradation to slower speeds. But even the slower speeds didn't disappoint. Compared to the alternative--connecting
via a cellular modem--the Ricochet is much faster, more reliable, and less expensive to use. Naturally, the SE Wireless is battery
powered. The modem has continuous battery life of up to 12 hours. And in accordance with a preferred embodiment, we ran

down our portable computer's dual cells before the Ricochet started to fade.

Thus, utilizing the wireless modem, a user may utilize the web server software 940 to identify the right product 950 and then use
an appropriate device's key(s) to select a supplier and place an order in accordance with a preferred embodiment. The

BargainFinder Service Module then consummates the order with the appropriate third-party Web supplier 960.
mySite! Personal Web Site & Intentions Value Network Prototype

mySite! is a high-impact, Internet-based application in accordance with a preferred embodiment that is focused on the theme of
delivering services and providing a personalized experience for each customer via a personal web site in a buyer-centric world.
The services are intuitively organized around satisfying customer intentions - fundamental life needs or objectives that require
extensive planning decisions, and coordination across several dimensions, such as financial planning, healthcare, personal and
professional development, family life, and other concerns. Each member owns and maintains his own profile, enabling him to
create and browse content in the system targeted specifically at him. From the time a demand for products or services is
entered, to the completion of payment, intelligent agents are utilized to conduct research, execute transactions and provide
advice. By using advanced profiling and filtering, the intelligent agents learn about the user, improving the services they deliver.
Customer intentions include Managing Daily Logistics (e.g., email, calendar, contacts, to-do list, bill payment, shopping, and
travel planning); and Moving to a New Community (e.g., finding a place to live, moving household possessions, getting travel
and shipping insurance coverage, notifying business and personal contacts, learning about the new community). From a
consumer standpoint, mySite! provides a central location where a user can access relevant products and services and

accomplish daily tasks with ulimate ease and convenience.

From a business standpoint, mySite! represents a value-added and innovative way to effectively attract, service, and retain
customers. Intention value networks allow a user to enter through a personalized site and, and with the assistance of a learning,
intelligent agent, seamlessly interact with network participants. An intention value network in accordance with a preferred
embodiment provides superior value. It provides twenty four hour a day, seven days a week access to customized information,
advice and products. The information is personalized so that each member views content that is highly customized to assure

relevance to the required target user.

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

Egocentric Interface

An Egocentric Interface is a user interface crafted to satisfy a particular user's needs, preferences and current context. It utilizes
the user's personal information that is stored in a central profile database to customize the interface. The user can set security
permissions on and preferences for interface elements and content. The content integrated into the Egocentric Interface is
customized with related information about the user. When displaying content, the Egocentric Interface will include the
relationship between that content and the user in a way that demonstrates how the content relates to the user. For instance,
when displaying information about an upcoming ski trip the user has signed up for, the interface will include information about
events from the user's personal calendar and contact list, such as other people who will be in the area during the ski trip. This

serves to put the new piece of information into a context familiar to the individual user.

Figure 10A describes the Intention Value Network Architecture implementation for the World Wide Web. For simpiification
purposes, this diagram ignores the complexity pertaining to security, scalability and privacy. The customer can access the
Intention Value Network with any Internet web browser 1010, such as Netscape Navigator or Microsoft internet Explorer, running
on a personal computer connected to the Internet or a Personal Digital Assistant with wireless capability. See Figure 17 for a
more detailed description of the multiple methods for accessing an Intention Value Network. The customer accesses the
intention Value Network through the unique name or IP address associated with the Integrator's Web Server 1020. The
Integrator creates the Intention Value Network using a combination of resources, such as the Intention Database 1030, the

Content Database 1040, the Supplier Profile Database 1050, and the Customer Profile Database 1060.

The Intention Database 1030 stores all of the information about the structure of the intention and the types of products and
services needed to fulfill the intention. Information in this database includes intention steps, areas of interest, layout templates
and personalization templates. The Content Database 1040 stores all of the information related to the intention, such as advice,

referral information, personalized content, satisfaction ratings, product ratings and progress reports.

The Supplier Profile Database 1050 contains information about the product and service providers integrated into the intention.
The information contained in this database provides a link between the intention framework and the suppliers. Itincludes
product lists, features and descriptions, and addresses of the suppliers' product web sites. The Customer Profile Database 1060
contains personal information about the customers, such as name, address, social security number and credit card information,
personal preferences, behavioral information, history, and web site layout preferences. The Supplier's Web Server 1070

provides access to all of the supplier's databases necessary to provide information and fransactional support to the customer.

The Product Information Database 1080 stores all product-related information, such as features, availability and pricing. The
Product Order Database 1090 stores all customer orders. The interface to this database may be through an Enterprise
Resource Planning application offered by SAP, Baan, Oracle or others, or it may be accessible directly through the Supplier's
Web Server or application server. The Customer Information Database 1091 stores all of the customer information that the

supplier needs to complete a transaction or maintain customer records.

31-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

Figure 10B is a flowchart providing the logic utilized to create a web page within the Egocentric Interface. The environment
assumes a web server and a web browser connected through a TCP/IP network, such as over the public Internet or a private
Intranet. Possible web servers could include Microsoft Internet Information Server, Netscape Enterprise Server or Apache.
Possible web browsers include Microsoft Internet Explorer or Netscape Navigator. The client (i.e. web browser) makes a
request 1001 to the server (i.e. web server) for a particular web page. This is usually accomplished by a user clicking on a
button or a link within a web page. The web server gets the layout and content preferences 1002 for that particutar user, with the
request to the database keyed off of a unique user id stored in the client (i.e. web browser) and the User profile database 1003.
The web server then retrieves the content 1004 for the page that has been requested from the content database 1005. The
relevant user-centric content, such as calendar, email, contact list, and task list items are then retrieved 1006. (See Figure 11
for a more detailed description of this process.) The query to the database utilizes the user content preferences stored as part of
the user profile in the User profile database 1003 to fiiter the content that is returned. The content that is returned is then
formatted into a web page 1007 according to the layout preferences defined in the user profile. The web page is then returned

to the client and displayed to the user 1008.

Figure 11 describes the process of refrieving user-centric content to add to a web page. This process describes 1006 in Figure
108 in a more detailed fashion. It assumes that the server already has obtained the user profile and the existing content that is
going to be integrated into this page. The server parses 1110 the filtered content, looking for instances of events, contact names
and email addresses. If any of these are found, they are tagged and stored in a temporary holding space. Then, the server tries
to find any user-centric content 1120 stored in various databases. This involves matching the tagged items in the temporary
storage space with calendar items 1130 in the Calendar Database 1140; email items 1115 in the Email Database 1114; contact
items 1117 in the Contact Database 1168; task listitems 1119 in the Task List Database 1118; and news items 1121 in the

News Database 1120. After retrieving any relevant user-centric content, it is compiled together and returned 1122.

User Persona

The system allows the user to create a number of different personas that aggregate profile information into sets that are useful in
different contexts. A user may create one persona when making purchases for his home. This persona may contain his home
address and may indicate that this user is looking to find a good bargain when shopping. The same user may create a second
persona that can be used when he is in a work context. This persona may store the user's work address and may indicate that
the user prefers certain vendors or works for a certain company that has a discount program in place. When shopping for work-
related items, the user may use this persona. A persona may also contain rules and restrictions. For instance, the work persona

may restrict the user to making airline reservations with only one travel agent and utilizing booking rules set up by his employer.

Figure 12 describes the relationship between a user, his multiple personas and his multiple profiles. At the User Level is the
User Profile 1200. This profile describes the user and his account information. There is one unique record in the database for
each user who has an account. Attached to each user are multiple Personas 1220, 1230 & 1240. These Personas are used to
group multiple Profiles into useful contexts. For instance, consider a user who lives in San Francisco and works in Palo Alto, but
has a mountain cabin in Lake Tahoe. He has three different contexts in which he might be accessing his site. One context is
work-related. The other two are home-life related, but in different locations. The user can create a Persona for Work 1220, a

Persona for Home 1230, and a Persona for his cabin home 1240. Each Persona references a different General Profile 1250,
-32-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

1260 and 1270 which contains the address for that location. Hence, there are three General Profiles. Each Persona also
references one of two Travel Profiles. The user maintains a Work Travel Profile 1280 that contains all of the business rules
related to booking tickets and making reservations. This Profile may specify, for instance, that this person only travels in
Business or First Class and his preferred airline is United Airiines. The Work Persona references this Work Travel Profile. The
user may also maintain a Home Travel Profile 1290 that specifies that he prefers to travel in coach and wants to find non-
refundable fairs, since they are generally cheaper. Both the Persona for Home and the Persona for the cabin home point to the

Home Travel Profile.

Figure 13 describes the data model that supports the Persona concept. The user table 1310 contains a record for each user
who has an account in the system. This table contains a username and a password 1320 as well as a unique identifier. Each
user can have multiple Personas 1330, which act as containers for more specialized structures called Profiles 1340. Profiles
contain the detailed personal information in Profile Field 1350 records. Attached to each Profile are sets of Profile Restriction
1360 records. These each contain a Name 1370 and a Rule 1380, which define the restriction. The Rule is in the form of a
pattern like (if x then y), which allows the Rule to be restricted to certain uses. An example Profile Restriction would be the rule
that dictates that the user cannot book a flight on a certain airline contained in the list. This Profile Restriction could be
contained in the “Travel” Profile of the “Work” Persona set up by the user's employer, for instance. Each Profile Field also
contains a set of Permissions 1390 that are contained in that record. These permissions dictate who has what access rights to

that particular Profile Field's information.

Intention-Centric Interface
Satisfying Customer Intentions, such as Planning for Retirement or Relocating requires a specialized interface. Customer
Intentions require extensive planning and coordination across many areas, ranging from financial security, housing and
transportation to healthcare, personal and professional development, and entertainment, among others. Satisfying Intentions

requires a network of complementary businesses, working across industries, to help meet consumers’ needs.

An Intention-Centric Interface is a user interface designed to help the user manage personal Intentions. At any given point, the
interface content is customized to show only content that relates to that particular Intention. The Intention-Centric Interface
allows the user to manage the process of satisfying that particular Intention. This involves a series of discrete steps and a set of
content areas the user can access. At any point, the user can also switch the interface to manage a different Intention, and this
act will change the content of the interface to include only that content which is relevant to the satisfaction of the newly selected

Intention.

Figure 14 provides a detailed description of the data model needed to support an Intention-Centric Interface. Each User
Persona 1410 (see Figure 13 for a more detailed description of the Persona data model.) has any number of active User
Intentions 1420. Each active User Intention is given a Nickname 1430, which is the display name the user sees on the screen.
Each active User Intention also contains a number of Data Fields 1440, which contain ény user data collected throughout the
interaction with the user. For instance, if the user had filled out a form on the screen and one of the fields was Sociat Security
Number, the corresponding Data Field would contain Name = "SSN" 1450, Value = “999-99-9999" 1460. Each User intention

also keeps track of Intention Step 1470 completion status. The Completion 1480 field indicates whether the user has completed
-33-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

the step. Every User Intention is a user-specific version of a Generic Intention 1490, which is the defauit model for that intention
for ali users. The Generic intention is customized through Custom Rules 1411 and 1412 that are attached to the sub-steps in
the Intention. These Custom Rules are patterns describing how the system wili customize the Intention for each individual user

using the individual user's profile information.

Statistical Agent

An agent keeps track of key statistics for each user. These statistics are used in a manner similar to the Tamagochi virtual
reality pet toy to encourage certain behaviors from the user. The statistics that are recorded are frequency of login, frequency of
rating of content such as news articles, and activity of agents, measured by the number of tasks which it performs in a certain

period. This information is used by the system to emotionally appeal to the user to encourage certain behaviors.

Figure 15 describes the process for generating the page that displays the agent's current statistics. When the user requests the
agent statistics page 1510 with the client browser, the server retrieves the users’ statistics 1520 from the users’ profile database
1530. The server then performs the mathematical calculations necessary to create a normalized set of statistics 1540. The
server then retrieves the formulas 1550 from the content database 1560 that will be used to calculate the user-centric statistics.
Graphs are then generated 1570 using the generic formulas and that user's statistics. These graphs are inserted into a template

to create the statistics page 1580. This page is then returned to the user 1590.

Personalized Product Report Service

The system provide Consumer Report-like service that is customized for each user based on a user profile. The system records
and provides ratings from users about product quality and desirability on a number of dimensions. The difference between this
system and traditional product quality measurement services is that the ratings that come back to the users are personalized.
This service works by finding the people who have the closest match to the user's profile and have previously rated the product
being asked for. Using this algorithm will help to ensure that the product reports sent back to the user only contain statistics from

people who are similar to that user.

Figure 16 describes the algorithm for determining the personalized product ratings for a user. When the user requests a product
report 1610 for product X, the algorithm retrieves the profiles 1620 from the profile database 1630 (which includes product
ratings) of those users who have previously rated that product. Then the system retrieves the default thresholds 1640 for the
profile matching algorithm from the content database 1650. 1t then maps ali of the short list of users along several dimensions
specified in the profile matching algorithm 1660. The top n (specified previously as a threshold variable) nearest neighbors are
then determined and a test is performed to decide if they are within distance y (also specified previously as a threshold variable)
of the user’s profile in the set 1670 using the results from the profile matching algorithm. If they are not within the threshold, then
the threshold variables are relaxed 1680, and the test is run again. This processing is repeated until the test returns true. The
product ratings from the smaller set of n nearest neighbors are then used to determine a number of product statistics 1690 along
several dimensions. Those statistics are inserted into a product report template 1695 and returned to the user 1697 as a
product report.

-34-

10

15

25

30

35

WO 00/31664 PCT/US99/27218

Personal Profile and Services Ubiquity

This system provides one central storage place for a person's profile. This storage place is a server available through the public
Internet, accessible by any device that is connected to the Internet and has appropriate access. Because of the ubiquitous
accessibility of the profile, numerous access devices can be used to customize services for the user based on his profile. For
example, a merchant's web site can use this profile to provide personalized content to the user. A Personal Digital Assistant
(PDA) with Internet access can synchronize the person’s calendar, email, contact list, task list and notes on the PDA with the
version stored in the Internet site. This enables the person to only have to maintain one version of this data in order to have it

available whenever it is needed and in whatever formats it is needed.

Figure 17 presents the detailed logic associated with the many different methods for accessing this centrally stored profile. The
profile database 1710 is the central storage place for the users’ profile information. The profile gateway server 1720 receives all
requests for profile information, whether from the user himself or merchants trying to provide a service to the user. The profile
gateway server is responsible for ensuring that information is only given out when the profile owner specifically grants
permission. Any device that can access the public Internet 1730 over TCP/IP (a standard network communications protocol) is
able to request information from the profile database via intelligent HTTP requests. Consumers will be able to gain access to
services from devices such as their televisions 1740, mobile phones, Smart Cards, gas meters, water meters, kitchen
appliances, security systems, desktop computers, laptops, pocket organizers, PDAs, and their vehicles, among others.
Likewise, merchants 1750 will be able to access those profiles (given permission from the consumer who owns each profile),

and will be able to offer customized, personalized services to consumers because of this.

One possible use of the ubiquitous profile is for a hotel chain. A consumer can carry a Smart Card that holds a digital certificate
uniquely identifying him. This Smart Card's digital certificate has been issued by the system and it recorded his profile
information into the profile database. The consumer brings this card into a hotel chain and checks in. The hotel employee
swipes the Smart Card and the consumer enters his Pin number, unlocking the digital certificate. The certificate is sent to the
profile gateway server (using a secure transmission protocol) and is authenticated. The hotel is then given access to a certain
part of the consumer's profile that he has previously specified. The hotel can then retrieve all of the consumer’s billing
information as well as preferences for hotel room, etc. The hotel can also access the consumer’s movie and dining preferences
and offer customized menus for both of them. The hotel can offer to send an email to the consumer's spouse letting him/her
know the person checked into the hotel and is safe. All transaction information can be uploaded to the consumer’s profile after
the hotel checks him in. This will allow pariners of the hotel to utilize the information about the consumer that the hotel has

gathered (again, given the consumer's permission).

intention Value Network

In an Intention Value Network, the overall integrator system coordinates the delivery of products and services for a user. The
integrator manages a network of approved suppliers providing products and services, both physical and virtual, to a user based
on the user's preferences as reflected in the user's profile. The integrator manages the relationship between suppliers and
consumers and coordinates the suppliers’ fulfiliment of consumers’ intentions. [t does this by providing the consumer with

information about products and suppliers and offering objective advice, among other things.

.35-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

Figure 18 discloses the detailed interaction between a consumer and the integrator involving one supplier. The user accesses a
Web Browser 1810 and requests product and pricing information from the integrator. The request is sent from the user’s
browser to the integrator's Web/Application Server 1820. The user's preferences and personal information is obtained from an
integrator's customer profile database 1830 and returned to the Web/Application server. The requested product information is
extracted from the supplier's product database 1840 and customized for the particular customer. The Web/Application server
updates the supplier's customer information database 1850 with the inquiry information about the customer. The product and

pricing information is then formatted into a Web Page 1860 and returned to the customer’s Web Browser.

- Summary Agent
A suite of software agents running on the application and web servers are programmed to take care of repetitive or mundane
tasks for the user. The agents work according fo rules set up by the user and are only allowed to perform tasks explicitly defined
by the user. The agents can take care of paying bills for the user, filtering content and emails, and providing a summary view of

tasks and agent activity. The user interface for the agent can be modified to suit the particular user.

Figure 19 discloses the logic in accordance with a preferred embodiment processing by an agent to generate a verbal summary
for the user. When the user requests the summary page 1900, the server gets the user's agent preferences 1920, such as
agent type, rules and summary level from the user profile database 1930. The server gets the content 1940, such as emails, to
do listitems, news, and bills, from the content database 1950. The agent parses all of this content, using the rules stored in the
profile database, and summarizes the content 1960. The content is formatted into a web page 1970 according to a template.
The text for the agent's speech is generated 1980, using the content from the content database 1990 and speech templates

stored in the database. This speech text is inserted into the web page 1995 and the page is returned to the user 1997.

Trusted Third Party

The above scenario requires the web site to maintain a guarantee of privacy of information according to a published policy. This
system is the consumer’s Trusted Third Party, acting on his behalf in every case, erring on the side of privacy of information,
rather than on the side of stimulation of commerce opportunities. The Trusted Third Party has a set of processes in place that
guarantee certain complicity with the stated policy.

“meCommerce”
This word extends the word “eCommerce” to mean “personalized electronic commerce.”
Figure 20 iflustrates a display login in accordance with a preferred embodiment. The display is implemented as a Microsoft
Internet Explorer application with an agent 2000 that guides a user through the process of interacting with the system to
customize and personalize various system components to gather information and interact with the user’s personal requirements.
A user enters a username at 2010 and a password at 2020 and selects a button 2040 to initiate the login procedure. As the logo

2030 suggests, the system transforms electronic commerce into a personalized, so called “me" commerce.

Figure 21 illustrates a managing daily logistics display in accordance with a preferred embodiment. A user is greeted by an
animated agent 2100 with a personalized message 2190. The user can select from various activities based on requirements,

including travel 2110, household chores 2120, finances 2130 and marketplace activities 2140. Icons 2142 for routine tasks such
-36-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

as e-mail, calendaring and document preparation are also provided to facilitate rapid navigation from one activity to another.
Direct links 2146 are also provided to allow transfer of news and other items of interest. Various profiles can be selected based
on where the user is located. For example, work, home or vacation. The profiles can be added 2170 as a user requires a new
profile for another location. Various items 2180 of personal informaticn are collected from the user to support various

endeavors. Moreover, permissions 2150 are set for items 2180 to assure information is timely and current.

Figure 22 illustrates a user main display in accordance with a preferred embodiment. World 2200 and local news 2210 is
provided based on a user’s preference. The user has also selected real estate 2230 as an item to provide direct information on

the main display. Also, a different agent 2220 is provided based on the user's preference.

Figure 23 illustrates an agent interaction in accordance with a preferred embodiment. The agent 2310 is communicating
information 2300 to a user indicating that the user's life insurance needs have changed and pointing the user to the chart that
best summarizes the information for the user. Particular tips 2395 are provided to facilitate more detailed information based on
current user statistics. A chart 2370 of the user's life insurance needs is also highlighted at the center of the display to assist the
user in determining appropriate action. A button 2380 is provided to facilitate changing the policy and a set of buttons 2390 are

provided to assist a user in selecting various views of the user's insurance requirements.

Event Backgrounder

An Event Backgrounder is a short description of an upcoming event that is sent to the user just before an event. The Event
Backgrounder is constantly updated with the latest information related to this event. Pertinent information such as itinerary and
logistics are included, and other useful information, such as people the user knows who might be in the same location, are also
included. The purpose of the Event Backgrounder is to provide the most up-to-date information about an event, drawing from a
number of resources, such as public web sites and the user's calendar and contact lists, to allow the user to react optimally in a

given situation.

Vicinity Friend Finder

This software locks for opportunities to tell the user when a friend, family member or acquaintance is or is going to be in the
same vicinity as the user. This software scans the user's calendar for upcoming events. It then uses a geographic map to
compare those calendar events with the calendar events of people who are listed in his contact list. It then informs the user of

any matches, thus telling the user that someone is scheduled to be near him at a particular time.

Information Overload
The term information overload is now relatively understood in both its definition as well as its implications and consequences.
People have a finite amount of attention that is available at any one time, but there is more and more vying for that attention
every day. In short, too much information and too little time are the primary factors complicating the lives of most knowledge

workers today.

The first attempts to dynamically deal with information overload were primarily focused on the intelligent filtering of information
such that the quantity of information would be lessened. Rather than simply removing random bits of information, however, most
-37-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

of these approaches tried to be intefligent about what information was ultimately presented to the user. This was accomplished
by evaluating each document based on the user's interests and discarding the less relevant ones. It follows, therefore, that the

quality was also increased.

Filtering the information is only a first step in dealing with information is this new age. Arguably, just as important as the quality
of the document is having ready access to it. Once you have entered a meeting, a document containing critical information
about the meeting subject delivered to your office is of little value. As the speed of business continues to increase fueled by the
technologies of interconnectedness, the ability to receive quality information wherever and whenever you are becomes critical.

This new approach is called intelligent information delivery and is heralding in a new information age.

A preferred embodiment demonstrates the intelligent information delivery theory described above in an attempt to not only
reduce information overload, but to deliver high quality information where and when users' require it. In other words, the system

delivers right information to the right person at the right time and the right place.

Active Knowledge Management System Description

Figure 24 is a block diagram of an active knowledge management system in accordance with a preferred embodiment. The
system consists of the following parts: back-end 2400 connection to one or more servers, personal mobile wireless clients
(Awareness Machine)2430, 2436, public clients (Magic Wall) 2410, 2420, web clients 2446, 2448, e-mail clients 2450, 2460.

Back-end Server (2400) Processes

Figure 25 is a block diagram of a back end server in accordance with a preferred embodiment. The back-end (2400 of Figure
24) is a computer system that has the following software active: Intelligent Agents Coordinator (Munin) 2580, Information
Prioritization Subsystem 2530, a set of continuously and periodically running information gathering and processing Intelligent
Agents 2500, 2502 and 2504, User Profiles Database 2542 and supporting software, Information Channels Database 2542 and

supporting software, communications software 2550, information transformation software 2560, and auxiliary software.

The Awareness Machine (2446 & 2448 of Figure 24)

The Awareness Machine is a combination of hardware device and software application. The hardware consists of handheld
personal computer and wireless communications device. The Awareness Machine reflects a constantly updated state-of-the-
owner's-world by continually receiving a wireless trickle of information. This information, mined and processed by a suite of
intelligent agents, consists of mail messages, news that meets each user's preferences, schedule updates, background
information on upcoming meetings and events, as well as weather and fraffic. The Awareness Machine is covered by another

patent application.

Figure 26 is a block diagram of a magic wall in accordance with a preferred embodiment.

The Magic Wall

The Magic Wall hardware includes:

10

15

20

30

35

WO 00/31664 PCT/US99/27218

Computer system 2640 connected to the back-end server

e Sensor array 2634, 2630 and 2632 detects presence, position, and identity of a person
e large touch-sensitive display 2620

e Sound input 2610 /output 2614 hardware

The Magic Wall software supports:

o Multimedia output compatible with current Web standards
¢ Speech recognition

o Tactile input

o Intelligent agents representations in the form of speech-enabled animated characters

The Magic Wall operates as follows:

1. Ifauser appears in the vicinity of Magic Wall, the sensor array triggers “user here” event that sends an environmental cue
containing the person's id and the location to the Intelligent Agent Coordinator.

2. User is identified based on the information returned by the sensor array.

3. The Magic Wall switches to “locked on the user” mode. If another user approaches, the system will notify him or her that it
cannot serve another user while the current user is being served.

4. Intelligent Agent Coordinator is notified about the user presence.

5. The Intelligent Agent Coordinator decides if there is pertinent to that user and Magic Wall location time-sensitive information
to show (e.g. traffic report, meeting reminder). If such information exists, it is prepared for delivery. If not, control is
transferred to the Information Prioritization Subsystem.

6. Information Prioritization Subsystem decides what information is most relevant to the user based on their personal profile,
freshness of the information, and the Intelligent Agent Coordinator's prior suggestions.

7. The page of information identified as the most relevant to the user at this time and place is shown. The act of the
information delivery can also include animation and speech output of the intelligent agent representation.

8. If user desires so, he or she can ask Magic Wall to show a particular page. The Magic Wall recognizes the speech fragment
and then identifies and shows the requested page.

9. As the user departs from the Magic Wall area, the sensor array triggers “user left” event.

10. The Magic Wall switches back to the waiting state.

Other Clients

The Web client is a standard browser navigating to a set of Web pages which allow user to see the same information that is

available via the Magic Wall.

The e-mail client is any standard e-mail program.

Inteiligent Agent Coordinator Description

-39-

10

15

20

25

30

35

WO 00/31664 ‘ PCT/US99/27218

This piece of code is the coordinating agent (or meta-agent) for the Active Knowledge Management system. This means that all
communications between the system and each user, as well as communication between the different minion agents are handled

(coordinated) by the Intelligent Agent Coordinator. Examples of these minion agents are:

o BackgroundFinder - an agent that parses meeting text determining important keywords and phrases and finds background
information on the meeting for each user

e TrafficFinder - an agent that finds traffic information for each user based on where they live

o Several other agents that are responsible for doing statistical analysis of the data in each user's profile and updating fields

pertinent to that data

The Intelligent Agent Coordinator 2580 of Figure 25 is also the user's “interface” to the system, in that whenever the user
interacts with the system, regardless of the GUI or other end-user interface, they are uitimately dealing with (asking questions of
or sending commands to) the Intelligent Agent Coordinator. The Intelligent Agent Coordinator has four primary responsibilities:
1) monitoring user activities, 2) handling information requests, 3) maintaining each user's profile, and 4) routing information to

and from users and to and from the other respective agents.

Monitoring User Activities

Anytime a user triggers a sensor the Intelligent Agent Coordinator receives an "environmental cue." These cues not only enabie
the Inteliigent Agent Coordinator to gain an understanding where users' are for information delivery purposes, but also to learn
the standard patterns (arrival time, departure time, etc.) of each persons' life. These patterns are constantly being updated and
refined in an attempt to increase the system'’s intelligence when delivering information. For instance, today it is not uncommon
for a person to have several email accounts (work-based, home-based, mobile-based, etc.) as well as several different
computers involved in the retrieval process for all of these accounts. Thus, for the Intelligent Agent Cocrdinator to be successful
in delivering information to the correct location it must take into account all of these accounts and the times that the user is likely
to be accessing them in order to maximize the probability that the user will see the information. This will be discussed further in

another section.

Handling Information Requests

The Intelligent Agent Coordinator handles information requests from other agents in order to personalize information intended for
each user and to more accurately reflect each user's interests in the information they are given. These requests wili commonly
be related to the user's profile. For instance, if an agent was preparing a traffic report for a user it may request the traffic region
(search string) of that user from the Intelligent Agent Coordinator. All access to the user's profile data is accessed in this

method.

Maintaining User Profiles

User profiles contain extensive information about the users. This information is a biend of user-specified data and information

that the Intelligent Agent Coordinator has learned and extrapolated from each user's information and activities. In order to protect

the data contained in the profiles, the Intefligent Agent Coordinator must handle all user information requests. The Intelligent

Agent Coordinator is constantly modifying and updating these profiles by watching the user's activities and attempting to learn
-40-

10

15

25

30

35

WO 00/31664 PCT/US99/27218

the patterns of their lives in order to assist in the more routine, mundane tasks. The Intelligent Agent Coordinator also employs
other agents to glean meaning from each user's daily activities. These agents mine this data trying to discover indications of
current interests, long-term interests, as well as time delivery preferences for each type of information. Another important aspect
of the Intelligent Agent Coordinator's observations is that it also tries to determine where each user is physically located

throughout the day for routing purposes.

Information Routing

Most people are mobile throughout their day. The Intelligent Agent Coordinator tries to be sensitive to this fact by attempting to
determine, both by observation (unsupervised learning) and from cues from the environment, where users are or are likely to be
located. This is certainly important for determining where to send the user’s information, but also for determining in which format
to send the information. For instance, if a user were at her desk and using the web client, the Intelligent Agent Coordinator
would be receiving indications of activity from her PC and would know to send any necessary information there. In addition,
because desktop PCs are generally quite powerful, a full-featured, graphically intense version could be sent. However, consider
an alternative situation: the Intelligent Agent Coordinator has received an indication (via the keycard reader next to the exit) that
you have just left the building. Minutes later the Intelligent Agent Coordinator also receives notification that you have received
an urgent message. The Intelligent Agent Coordinator, knowing that you have left the building and having not received any other
indications, assumes that you are reachable via your handheld device (for which it also knows the capabilities) and sends the

text of the urgent message there, rather than a more graphically-criented version.

Inherent Innovations

The Active Knowledge Management system represents some of the most advanced thinking in the world of knowledge

management and human computer interaction. Some of the primary innovations include the following:

+ The Intelligent Agent Coordinator as illustrated above.

¢ The development, demonstration, and realization of the theory of Intelligent Information Delivery

¢ Support for several channels of information delivery, all of which utilize a common back-end. For instance, if a useris in
front of a Magic Wall the information will be presented in a multimedia-rich form. If the system determines that the user is
mobile, the information will be sent by to their Awareness Machine in standard text. It facilitates delivery of information
whenever and wherever a user requires the information.

¢ Personalization of information based not only on a static user profile, but also by taking into account history of the user
interactions and current real-time situation including “who, where, and when" awareness.

» Utilization of fast and scalable Information Prioritization Subsystem that takes into account Intelligent Agents Coordinator
opinion, user preferences, and history of user interactions. It takes the load of mundane decisions off the Intelligent Agents
part therefore allowing the agents to be much more sophisticated and precise without compromising the system scalability.

e Speech recognition and speech synthesis in combination with intelligent agent animated representation and tactile input

provides for efficient, intuitive, and emotionally rewarding interaction with the system.

-41-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

Supporting Code in Accordance With A Preferred Embodiment

The following code is written and executed in the Microsoft Active Server Pages environment in accordance with a preferred
embodiment. It consists primarily of Microsoft Jscript with some database calls embedded in the code to query and store

information in the database.

Intention-Centric Interface

Create an Intention ASP Page (“intention_create.asp”)

<%@ LANGUAGE = "JScript" %>
<%

Response.Buffer = true;
Response.Expires = 0;

%>

<html>
<head>
<title>Create An Intention<ftitie>

<fhead>

<body bgcolor="#FFESD5" style="font-family: Arial" text="#000000">

<%

//Define some variables

upl = Server.CreateObject(“SoftArtisans.FileUp")
intention_name = upl.Form(“intention_name")

intention_desc = upl.Form("intention_desc")

/fintention_name = Request.Form(*intention_name")

/iintention_desc = Request.Form("intention_desc")

/lintention_icon = Request.Form("intention_icon")
submitted = upl.Form("submitted")
items = new Enumerator(upl.Form)

%>

<%
/IEstablish connection to the database

objConnection = Server.CreateObject("ADODB.Connection")

49-

WO 00/31664 PCT/US99/27218

objConnection. Open("Maeistrom")

%>

<%

10

15

20

25

30

35

//Check to see if the person hit the button and do the appropriate thing
if (submitted == "Add/Delete")

{

flag = "false”

INoop through all the inputs
while(fitems.atEnd())
{

i = items.item()

fif items are checked then delete them

if(upl.Form(i) == "on")

{
objConnection.Execute("delete from user_intention where intention_id =" +i);
objConnection.Execute("delete from intentions where intention_id =" +i);
objConnection.Execute("delete from tools_to_intention where intention_id =" + i)
flag = "true"

}

items.moveNext()

/1 if items were not deleted then insert whatever is in the text field in the database
if(flag == "false")
{

intention_name_short = intention_name.replace(/ /gi,"")

objConnection.Execute("INSERT INTO intentions (intention_name,intention_desc,intention_icon) values(™ +

wom

intention_name +"," + intention_desc + "™ + intention_name_short + " gif* + "")

Response.write("the intention short name is " + intention_name_short);

upl.SaveAs("E:development/asp_examples/"+ intention_name_short +* gif")

I/ Query the database to show the most recent items.
rsCustomersList = objConnection.Execute("SELECT * FROM intentions")

%>

<input type="Submit' name="return_to_mcp" value="Go to Main Control Panel" onclick="location.href="default.asp">
43-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

<form method="post" action="intention_create.asp" enctype="multipart/form-data" >
<TABLE border=0>

<tr><td colspan="2">Enter in a new intention</td></tr>

<tr><td>Name:</td> <td><INPUT TYPE="text" name="intention_name"></td></tr>
<tr><td>Description:</td><td><TEXTAREA name="intention_desc"></TEXTAREA></td></tr>
<tr><td>Icon Image:</td><td><INPUT TYPE="file" NAME="intention_icon" size=40></td></tr>
<tr><td colspan="2"><INPUT type="submit' name="submitted" value="Add/Delete"></td></tr>

</TABLE>

<HR>
Current Intentions
<TABLE>
<tr bgcolor=E69780 align="center">
<td>
Delete
</td>
<TD>
ltention
</TD>
<TD>
Description
<TD>
<TD>
Image
<[TD>
<ftr>
<%

I/ Loop over the intentions in the list
counter = 0;
while (IrsCustomersList.EOF)
{
%>
<tr bgcolor="white" style="font-size: smaller">
<td align=center>
<INPUT type="checkbox" name="<%=rsCustomersList("intention_id")%>">
</TD>

<td>
A4-

10

15

20

25

30

35

WO 00/31664
<%= rsCustomersList("intention_name")%>
<hd>
<td>
<%= rsCustomersList("intention_desc")%>
<ftd>
<td>
<img src="../images/<%= rsCustomersList("intention_icon")%>">
<ftd>
<ftr>
<%
counter++

rsCustomersList.MoveNext()}
%>

</TABLE>

<hr>

Available Tools

<fform>

</BODY>

</HTML>

Retrieve Intentions List ASP Page (“intentions_list.asp”)

<l-- #finclude file="include/check_authentication.inc" -->

<HTML>
<HEAD>
<TITLE>mySite! Intentions List</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function intentionsList () {
this.internalArray = new Array();
<%
Il establish connection to the database

objConnection = Server.CreateObject("ADODB.Connection");

objConnection.Open("Maelstrom"),;

-45-

PCT/US99/27218

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

{/ create query

intentionsQuery = objConnection.Execute("SELECT * FROM intentions ORDER BY intention_name asc");

%>
I/ write out the options
<%
numOptions = 0
while (lintentionsQuery.EOF) {
intentionName = intentionsQuery("intention_name");
intentionicon = intentionsQuery("intention_icon");
%>
this.internalArray[<%= numOptions%>] = new Array(2);
this.internal Array[<%= numOptions%>][0] = "<%= intentionName %>";
this.internalArray[<%= numOptions%>][1] = "images/<%= intentionicon %>"
<% numOptions++: intentionsQuery. moveNext(); %>
<% } %>
}
numintentions = <%= numOptions%>;
intentionArray = new intentionsList().internalArray;
function selectintention () {
for (i=0;i<numintentions;i++) {
if (IntentionsListSelect.options[i].selected) {
intentionNameTextField.value = intentionArray(i][0];
/lintentionPicture.src = intentionArray[i][1];
break;
}
}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR="<%=Session("main_background")%>" style="font-family: Arial">

<CENTER>
<l--- <FORM NAME="intention_list"> --->
<TABLE FRAME="BOX" border=0 CELLPADDING="2" CELLSPACING="2">

46-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

<TR><TD COLSPAN="3" STYLE="font: 20pt arial" ALIGN="CENTER">Add a mySite! Intention</TD></TR>
<TR><TD COLSPAN="3"> </TD></TR>

<TR>
<TD width="100">Please Select An Intention You Would Like to Add to Your List</TD>
<TD colspan=2>
<SELECT ID="IntentionsListSelect" NAME="IntentionsListSelect' SIZE="10" style="font: 9pt Arial;"
onClick="selectIntention()">
<%
intentionsQuery.moveFirst();
for(j=0;j<numOptions;j++) { %>
<OPTION VALUE="<%= intentionsQuery("intention_id") %>" <% if (j == 0) { %> SELECTED <% }

%>>
<%= intentionsQuery("intention_name") %>
<% intentionsQuery.moveNext()
}
intentionsQuery.moveFirst();
%>
</SELECT>
<TD>
</TR>

<TR><TD COLSPAN="3"> </TD></TR>

<TR>

<TD width="100">Customize the Intention name</TD>

<TD COLSPAN=2"><INPUT TYPE="text' NAME="intentionNameTextField" ID="intentionNameTextField" SIZE="30"
VALUE="<%= intentionsQuery("intention_name") %>"></TD>
</TR>

<TR><TD COLSPAN="3"> </TD></TR>

<TR>
<TD COLSPAN="3" ALIGN="CENTER">
<INPUT TYPE="button" NAME="intentionOKButton" VALUE=" OK " SIZE="10" ID="intentionOKButton"

onClick="javaScript:top.opener.top.navframe.addAnintention();">
-47-

10

15

20

25

30

35

WO 00/31664 PCT/US99/27218

<INPUT TYPE="button" NAME="intentionCancelButton" VALUE="Cancel!" SIZE="10"

ID="intentionCancelButton" onClick="self.close(};">

<TD>

<[TR>

</TABLE>

<l--- </[FORM> --->

</CENTER>

<% objConnection.Close(); %>
</BODY>
</HTML>

Display User Intention List ASP Page (excerpted from “navigation.asp”)

<DIV ID="intentionlist" style="position: absolute; width:210; height:95; left: 365pt; top: -5; visibility: hidden; font-family: Arial; font-
color: #000000; font: 8pt Arial ; " >
<DIV style="position: absolute; top:7; left:7; height:78; width:210; z-index:2; background: <%=Session("main_background")%>;
border: solid 1pt #000000; padding: 3pt; overflow: aute; alink: biack; link: black;">
<body LINK="#000000" ALINK="#000000" vlink="black">

<%

I create query

intentionsQuery = objConnection.Execute("SELECT user_intention.* FROM user_intention,
user_intention_to_persona WHERE user_intention_to_persona.user_persona_id =" + Session("currentUserPersona") + " AND
user_intention_to_persona.user_intention_id = user_intention.user_intention_id");

numintentions = 0;

Response. Write("<SCRIPT>numintentions=" + intentionsQuery.RecordCount +
"</SCRIPT><TABLE cellpadding='0" width="100%" cellspacing="0">");

while (lintentionsQuery.EOF)

{

%>

<TR><TD><a href="javascript.changelntention('<%= intentionsQuery("user_intention_id")
%>','<%=numintentions%>")" onmouseover="mouseOverTab()" onmouseout="mouseOutOfTab()"><font color="Black"
face="arial" size="-2"><%= intentionsQuery("intention_custom_name") %></TD><TD><IMG align="right"
SRC="images/delete.gif" alt="Delete this intention" onClick="confirmDelete{<%= intentionsQuery("user_intention_id")
%>)"></TD></TR>

<%numintentions++; intentionsQuery.moveNext(); %>
-48-

10

15

20

WO 00/31664 PCT/US99/27218

<% }
Response. Write("<SCRIPT>numintentions="+numintentions +"'</SCRIPT>");
%>

<tr><td colspan="2"><hr></td></tr>

<TR><td colspan="2"><a href="javascript.changelntention('add ...", <%=numintentions%>);"
onmouseover="mouseOverTab()" onmouseout="mouseOutOfTab()">add
...<[font><fa></td></TR>

</table>
</body>
</DIV>
<DIV style="position: absolute; top:0; left-5; width: 230; height:105; z-index:1;"
onmouseout="intentionlist.style.visibility="hidden™ onmouseout="intentionlist.style.visibitity="hidden"
onmouseover="intentionlist.style.visibility="hidden"></DIV>
</DIv>
</Div>

While various embodiments have been described above, it should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the
above described exemplary embodiments, but should be defined only in accordance with the following claims and their

equivalents.

-49-

(S N O R S

—

~N O R W N

WO 00/31664 PCT/US99/27218

CLAIMS

What is claimed is:

A method for creating a data model that supports user information capture and storage, comprising the steps of:
obtaining user profile information;

grouping the user profile information in a logical manner,

associating a unique name with the grouped user profile information; and

storing the grouped user profile information and correlated name in a database.

A method for creating a user network interface as recited in claim 1, including the step of securing the grouped user

profile information against access by an unauthorized user.

A method for creating a user network interface as recited in claim 1, including the step of customizing an application

based on the current grouped user profile information.

A method for creating a user network interface as recited in claim 1, including the step of updating the current grouped

user profile information based on a user interaction with an application.

A method for creating a user network interface as recited in claim 1, including the step of restricting information access

based on the current grouped user profile information.

A method for creating a user network interface as recited in claim 1, including the step of storing rules indicative of

information usage in the grouped user profile information.

A method for creating a user network interface as recited in claim 1, including shared lists of user profile information.

A method for creating a user network interface as recited in claim 1, wherein the profile information is grouped in an

optimal manner for a target application.

A method for creating a user network interface as recited in claim 1, inciuding the step of providing access to the

grouped profile information by a trusted third party.

An apparatus that creates a data model that supports user information capture and storage, comprising;
a processor;

a memory that stores information under the controt of the processor;

logic that obtains user profile information;

logic that groups the user profile information in a logical manner;

logic that associates a unique name with the grouped user profile information; and

logic that stores the grouped user profile information and correlated name in a database.
-50-

(o) NNV TN S UL I S

—

WO 00/31664 PCT/US99/27218

13.

14,

15.

16.

17.

18.

19.

A computer program embodied on a computer-readable medium that creates a data model that supports user
information capture and storage, comprising:

a code segment that obtains user profile information;

a code segment that groups the user profile information in a logical manner,

a code segment that associates a unique name with the grouped user profile information; and

a code segment that stores the grouped user profile information and correlated name in a database.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, including logic that secures the grouped user profile information against access by an unauthorized user.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, including logic that customizes an application based on the current grouped user profile information.
A computer program embodied on a computer-readable medium that creates an information summary as recited in
claim 11, including logic that updates the current grouped user profile information based on a user interaction with an

application.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, including logic that restricts information access based on the current grouped user profile information.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, including logic that stores rules indicative of information usage in the grouped user profile information.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, including logic that shares lists of user profile information.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, wherein the profile information is grouped in an optimal manner for a target application.

A computer program embodied on a computer-readable medium that creates an information summary as recited in

claim 11, including logic that provides access to the grouped profile information by a trusted third party.

-51-

PCT/US99/27218

WO 00/31664

1/27

[OIAd

- Y31dvay
¥31dvay
AV1dSIa HOYIALNI
\ \ N
acl 9¢l o) 174"
41!
¥3Ldvay ¥3Ldvay
NOLLYOINNWWOD oll Wvd WOoY NdO
/ ! \ \ \
Vel 120 9Ll 0kl

(SE1) YHOMLAN
14}

WO 00/31664 PCT/US99/27218
Public Sub
Main
(Starts program)
200
L
[I I 1
Private Sub Private Function Public Sub Public Sub
ProcessCommandLine CreateStopList CreatePatterns GoBackgroundFinder
(parse the command line for meeting text) (Prepares global stop list) (Prepares ali the patterns for pattern match) (Wrapper Function)
210 220 230 240

FIG. 2

™1 (Extracts keywords from meeting record)

Public Function
ParseMeetingText

250

Public Function
GoPatternMatch
(Initiates pattern matching)

260

Public Function
SearchAltaVista
(Parse Resuits)

270

Public Function

SearchNewsPage
(Query and Parse Results)

275

Private Function
ConstructOverallResult
(Prepares data)

280

Public Sub
ConnectAndTransferToMunin
{Sends data to Munia)

290

Built-In Function
Winsock.SendData
(Sends data through UDP)

295

Public Sub

297

DisconnectFromMuninAndQuit
"} (Once data is sent, clean program snd exit)

WO 00/31664

3/27

Public Sub
Main
START

300

|

Public Sub
GoBackgroundFinder
(Wrapper Function)

310

Public Function
ParseMeetingText
(Extracts keywords)

320

I

PCT/US99/27218

l

I

Private Function
FormatDelimitation

330

(Makes sure that delimiters are placed correctly)

Public Function
DetermineNumWords

(Return number of words in string given separator)

340

Public Function

GetAWordFromString
(Get ith field from input meeting text)

350

Private Function
ParseAndCleanPhrase

(Extracts » word at 9 time from titke and body)

360

Private Function
FormatDelimitation
(Check delimiters)

370

Private Function
FormatDelimitation
(Check delimiters)

380

Private Function
FindMin

7] (Finds the next closest word delimiter)

362

FIG.

3

Private Function
CleanWord

I (Strips out unwanted char/punctuation)

364

Private Function
EvaluateWord

| (Checks to see if 2 word is in the stop List)

366

WO 00/31664

4/27

Public Sub
Main
400

l

Public Sub
GoPattemMatch

410

I

Public Sub
MatchPatterns

420

Private Function
MatchAPattern

430

I

PCT/US99/27218

[

1

1

Private Function
MatchMeetingField

440

Private Function
LocatePatternHead

450

Private Function
Locatelndicator

460

Private Sub
InitializeGuessesRecord

470

Private Sub
AddToMeetingRecord

480

Private Function
BindNames

441

Private Function
GetNextWordAfterWhiteSpace

452

Private Function
GetNextWordAfterWhiteSpace

462

Private Function
BindAFullName
GetNextWord AfterWhiteSp

Private Function
ContainlnArray

454

Private Function
ContainlnArray

464

442

Private Function
BindTime 443

Private Function

444

GetNextWordAfterWhiteSpace

Private Function
(- BindCompanyTopicLoc

445

Private Function
GetNextWord AfterWhi

446

FIG. 4

Private Function
NoDuplicateEntry

482

WO 00/31664

5127

Public Sub
Main
500

|

Public Sub
GoBackgroundFinder
(Wrapper Function)

510

I

PCT/US99/27218

[

Public Function
SearchAitaVista

530

|

1

Public Function
SearchNewsPage

520

Private Function
ConstructAltaVistaURL

540

Public Function
IdentifyBlock

550

Public Function
IsOpenURLError

560

Private Function
ConstructNewsPageURL

521

Private Function
4 ConstructSimpleKeyWord

542

Private Function
|- ConstructCompiexA VKeyWord

544

Private Function
JoinWithConnectors

545

Private Function
= RefineWithRank

546

Private Function
JoinWithConnectors

548

Private Function
L] RefineWithDate

549

FIG. 5

Private Function
ConstructSimpleKeyWord

522

Private Function
ConstructComplexNPKeyWord

524

Private Function
JoinWithConnectors

526

Public Function
IdentifyBlock

527

Public Function
IsOpenURLError

528

WO 00/31664 PCT/US99/27218

6/27

610 — . ~ COMMAND LINE o
"/ user_id, meeting title, meeting body, list, location, time"

y

620 — . . MESSAGE . .
"user_id, meeting title, meeting body, participant fist, time"

A 4

MEETING RECORD TO STORE CURRENT MEETING INFORMATION
stUSERID, sTitleOrig, sTitleKW, sBodyKW, sLocation, sTime,

630 — sParticipants(), sMeetingText: original message minus user_id

sCompany, sPeople, sTopic, sWhen, sWhere from GoPatternMatch

A 4
640 — SUBMIT QUERY TO ALTA VISTA
A 4
650 ——— SUBMIT QUERY TO NEWSPAGE
660 STORE MESSAGE IN gResultOverall
"msg_id, user_id, meeting titie concatenated with stories"

Y

670 —— PROCESS STORIES FROM ALTA VISTA AND NEWSPAGE

FIG. 6

WO 00/31664 PCT/US99/27218

7/27
710 —| A MEETING RECORD - POTENTIAL COMPANIES, PEOPLE, TOPICS,
LOCATION AND A TIME ARE IDENTIFIED
y
720 — AT LEAST ONE TOPIC IS IDENTIFIED
Y
730 — AT LEAST ONE COMPANY NAME IS IDENTIFIED
740 — A DECISION IS MADE ON WHAT MATERIAL TO TRANSMIT

FIG. 7

WO 00/31664 PCT/US99/27218

8/27

800 —| A MEETING RECORD - POTENTIAL COMPANIES, PEOPLE, TOPICS,
LOCATION AND A TIME ARE IDENTIFIED

y

820 — AT LEAST ONE COMPANY NAME IS IDENTIFIED
A
830 — AT LEAST ONE TOPIC IS IDENTIFIED
A 4
840 — USE THE TOPIC AND OR THE COMPANY

FIG. 8

WO 00/31664 PCT/US99/27218

9/27

900 — BOOK OR OTHER PRODUCT WITH VISIBLE UPC BAR CODE
910 — MINIATURE BAR CODE READER
920 — IP WIRELESS PHONE OR OTHER HAND HELD DEVICE

930 ANTENNAE TRANSMITS SIGNAL

940 — WEB SERVER RUNNING SOFTWARE

A 4
950 — PRODUCT LOOKUP ON THE WEB
960 — BUY PRODUCT ON THE WEB

FIG. 9

PCT/US99/27218

WO 00/31664

10/27

Jasmolg gopn SJawoisn)d

)

010t

L1601

v

jaulialu)

aseqeleq
uonuajuj

0€01

Janag gapn | sJojelbaug aseqeleq

JOAIRS gSM sJalddng
o ozot

oo oo
]
R m 0<01
=]
[— aseqejeq
» 3ol Jayddng

0201

aseqeeq
ajljoid Jawolsny

aseqeleq
uonewou|
Jswosn)

sseqejeq
JaplO Jonpoid

aseqejeq
uoneuwLIoju|
1onpolid

V0L DId

WO 00/31664

1003

1001

1002

11/27

Fig. 10B

START
4

Content Page

User Requests)
y

User Profile
Database

Get User
Preferences

1004

X

/

1006

Get Page
Content

PCT/US99/27218

1005

/

A 4

Y

Get User-
Centric
Content

1007

A 4

Create Page
Using Layout
Preferences

1008

Y

Display Page
to User

END

Content
Database

¥

WO 00/31664 PCT/US99/27218

12/27

Fig. 11

(o) 1110

v /
Parse

Content for

Times, Dates,
Contacts 1 1 1 1

: ////////

Get User-
Centric
Content

1112 l—¢
\~b Get Matching 113

Calendar

ltems Calendar &1
" = Setones 1114
> Get Matching /
Email items Emal A
mai
1117 v Database 116

\

> Get Matching
Contact ltems

Contact

11 19\ v Database 1118
| Get Matching
Task List pe
1121 lterns Task List

Database

\ v
> Get Matching
News ltems

T
[

A&
News
112 2\ ¢—‘ Database
> Return
Content

END

PCT/US99/27218

WO 00/31664

13/27

(18lqo ayyoid)
(soue]) justuuleyaiuy

(elgo ajoid)
(swoR) smaN

(08lqo 9jj0ud)
(awoH) |aAes],

(103lqo ajyoud)

(alqo ayy0id)
(swoH) ewuenauly

(108lqo ayyoid)
(awoH) smaN

(308lqo 8)yosd)
(swoH) [aAeIL
A)

(10elqo ejio.d)

(18lqo e|yosd)

(OHOAN) SMBN

(welqo ayyoud)

« (>HOAN) [9ABIL

{(y08lqo ajiyo1d)

021

(swoy) rew3 (swioy) jrewz (Hopn) llewq H
0621 08¢l S
(10alqo ayijoid) (walqo sjyoud) (alqo ajjoud) (]
(owoH) B0 (awoy) oeuo) (O1oMN) 108D ._ﬂ
s
(103lqo 8|yosd) (108lqo sij01d) (10alqo sjy0id)
) « (soye]) |esauss) « (swoy) jesaus) « (I0AA) jBIBUBD)
v
e
(308fqo euOsiad) ch F (100lqo eUOSIOd) QmN —‘ (yalqo euosiad) %
(eoue]) pineg (swoH) pireq (110M) pireg a
-
A A A)
yAl 3
(y8lqo sasn) c
ypws pineq @
H4
A3 r
@
<
e

2l b4

PCT/US99/27218

WO 00/31664

14/27

06¢€l

« SuoIssiwIad

3Ny w

¢l bi-

sWeN

oA — | pai4 spoid s
B, pley - ajijold < -
” , /82
0S€l
SuoISSIWIa i«
play
uonduosaq i«
piay sjijold
adAL <
play
aweN <
piay /
orel
uonduose(q i«
pioy euosiad
aweN <
piey /
0}og o %
aweN »
pIay Jasn
piomsseq i«
\ play
3 /
oLElL
ionsAw

NSQ

0.€l

PCT/US99/27218

WO 00/31664

15/27

% anjeA < » UON3IdWOD .
ppp— PRy plaid ereq deyg uonual | piey P
oovt,/” - A= g
osvl ovvl 1JA48
uonduoss,
ndl a P 2uOSIOg uoRudY|
aweN < 198
PRY | g P
1]543 ocri

A 4

aNy wWwoisny
/ RA0

444"

vi

‘B4

o6vL

pIay
» ™
abed uonuaju| piey
» uopdudsaq
piey
> aweN
" pIey
h
9y Wwosn) v
pioy /
> 1BUMO
ealy uonuaju| prey
» uopduose(
IRy
> aWweN
pioy
» Tdnyselds
uopusju| it uopduosaq
Jusuag poy —
> awepN
A piay

WO 00/31664 PCT/US99/27218

16/27

Fig. 15

User Requests
Agent Statistics
Page

1520
1540 I Y

Get User
A Statistics

User Profile 1540

Database

A 4

Y

Normalize
Statistics

155Q\\\ ! 1?39
A

Get Statistics ¥
Formulas b
Content
Database

1570

y

Generate
Graphs with
Statistics

1580

Create
Statistics
Page

//}590
Pt

Return
Statistics
Page to User

END

WO 00/31664

17/27

Fig. 16

Product Report

about Product X
y ///

Get User 4

" Profiles of
Users Who
Have Rated
Product X

1630

1640

User Profile
Database

\ 4
Get Profile ¥
Matching
Algorithm

PCT/US99/27218

1650

Thresholds

1660

\ 4
Map Users

A

Content
Database

¥

According to
Profile
Matching
Algorithm

1670

1680

Are n neares
neighbors within

Relax
threshold
variables

¢——No

1690

Yes

4

A3

Calculate
statistics from
n nearest
neighbors
(high, low,
avg.) for
features

1695

A 4

Insert
statistics into
product report

template

N

1697

A 4

Return
product report
to user

END

WO 00/31664 PCT/US99/27218

18/27

Fig. 17

17ﬁ0 1710

1750

Secure Storage Environment

Merchant

Profile Gateway Merchant's Server

k Server

1730

Public Intemet

http
http
1740 \
B@ é e ég@
Television (Mobile) Telephone Computer Smart Card Laptop computer Pocket organizer Vehicle PDA

L Consumer Access Devices

WO 00/31664 PCT/US99/27218
Fig. 18
1830
Integrator's
Customer
Customer
1850 Preferences D::zott:;ese
Orders
Satisfaction
Supplier's Ratings + Preferences
Customer + Orders
Information .
Personal
Database Information + Preferences 1810
1820 + Orders
v * Requests for
1840 ~a ‘ Information ¥
Integrator's Web/ | Customer's Wab
Application Server Browser
Supplier's : '
Product : Intention Web
Database Product Page
lFr:f.crmatlon + Information
rices + Advice
Specialist * Progress
Advice Reports
3::::'65 + Referalls to
Products Suppiers LY

1860

WO 00/31664 PCT/US99/27218

20/27

FIG. 19

START

A

1900

User Requests
Summary Page

192Q\\\ o

A Get User
Agent

Preferences
User Profile 1 940

Database 1950

y

1930

[

Get Content

A

¥

Content

1960 Database
\

A 4

Summarize

Content 1970

/

Create Page
Using Layout
Preferences

\ 4
Generate
Agent < 4
Speech Text

Content

199K | Database

A
Insert Agent

Speech Text
1997
\ v
A
Display Page
to User

END

PCT/US99/27218

WO 00/31664

21/27

| oosoWwto HSUT O] 92420 D0 BUIIOLSUEBL

0£0C.

1210)dxR 7 JDUIDIU] JJOS01DIR - LBOT] - Egdu

PCT/US99/27218

WO 00/31664

22/27

& O

O O Y

Mt

3 daaspN
3 danap
3 48rap
SELLIY
_y 18ABN
) d8seN
_3 4aasp
BRLLEN
BELLCIN
BRLLEIN
) 1anapN

ey o UMO
POCEr 6|

sayaig panun |

ol

ol ojed|

~ 00€ v

peoY | abed 1991

sjeway Bl =
yuwsg|

12UMOIWOH
apoD di7
Anuno)
aels

A

¢ Ssalippy

L ssauppy
19puadn
awep 1se
uup SIppIN
aweN 1sii

1210gtx J 1PUIDNU] PYUSOID - Ypu g prae(- 2154w

PCT/US99/27218

WO 00/31664

23/27

9

ie9 | JUoWigDeUuE] 0} sIo(uial] 0OM] Soulcl 9je)s] [eay

UOEICp] SAC[a(UOHONIISUG) peoy fE=r

S

(SIU1] Siea aoey [CI0AEH (7> -
AB3IENDS WswobCUE] pool] MaN SITOPY MO [

01¢¢ sasvg (pMmoln uonendod PHOAn (Hoday mmw\.f

suoNpoloig papucdxy 10} [Je0) SISIAO | [eJUatInoIAUT (>
SouIpedf Isae| =

00¢T

age|diayiew JUonIaje AL Ul spoob |j@s pue dng

STOHISTOH SEONVYRIG DV IdLINEYW

1310jdR 3 j5uI1aJU] 1JOSOIDIN -

yye3aH [ruosiag
ajeys] |eay
SNy g SHY
sjuBYIIa
aaueul{ |[euosiad
SAMBYN |BD0

SMON PHUOAA

afied juoiy

ynws piaeq -

PCT/US99/27218

WO 00/31664

_._uoo.0®@ P
-papsau
afesaao0)
z=feianco oN
[15A27 2be1aA0 PaPUBWILIOOSY M | 000°02.8 ISV PIoYssnaoH
\lMN 000" 089 SpasN PIOYISNOH
afiy 006 wia) Buon
/ i & B SE LE LT uonendj|ed) abelaao)
° o
oz 2
a
POV HOSLS Jysuag IejoL sl S
[is~o] abrisnog uaung ooz = s-& wnpwalg Alyiuon uswafieuepy
o0 & Z-1586L .)
oozl M. a daqunp Aoljod adueinsuj
oobt a4
: tadA) Aolo
ajoum 1 Ad110d
SpPa3at] 2auensu] apg spiejag £oiod

AINVHOSNI

aosue|S e je asueInsu] 317 INOA

BUOBLI0S 0] HEL

0€eT
09¢¢ 0S¢ 0cec

e A JguLs e

eys ayg

spaau asueinsuy 3|

pabueyd asey

1910]dx 19UIa] JOSOIDIp - Yllwg plae(-

PCT/US99/27218

WO 00/31664

25/27

JusIlo jlew-3

=
=

Jusljo |lew-3

38%o qam 0572 yusio qem

=0 -

T|E]

pT N3y

llem o1ben

0L T I[

| e

o ™

SUIUOBIN gppz suiyoen

ssauslemy

ssoualemy

ov¥e

PCT/US99/27218

WO 00/31664

26/27

e N

ga sjpuueys
uojeULIOU}

ovs

wa)sAsqng

uoleziLold uoew.lou| 08G¢C

(uunpy)
Jojeulpioo)
sjuaby
Juabyjsyu|

052

0Lse 01sZ Y0ST z0gz 00S¢

WO 00/31664 PCT/US99/27218

27127

2610
2620 2614
A

Microphone

Display

with touch screen Speaker

Speaker

Computer

Sensor \

2640 ~

2634

Figure 26

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

