(12) PATENTTIJULKAISU
PATENTSKRIFT

(10) FI 111325 B
(45) Patentti myönnetty - Patent beviljats
(51) Kv.k.7 - Int.kl.7
A23C 9/142, 9/15

(21) Patenttilahemmus - Patentansökning
(22) Hakemispäivä - Ansökningsdag
(24) Alkupäivä - Löpdag
(41) Tullut julkiiseksi - Blivit officiell
(32) (33) (31) Etuoiheus - Prioritet

(73) Haltia - Innehavare
1 * Société des Produits Nestlé S.A., 1800 Vevey, SVEITSI, (CH)

(72) Keksijä - Uppfinnare
1 * Behringer, Reinhard, Route de la Croix-Blanche 37, 1066 Epalinges, SVEITSI, (CH)
2 * Berrocal, Rafael, 81, Route de St-Léger, 1806 St-Léger, SVEITSI, (CH)
3 * Jost, Rolf, Ch. de Béranges 265, 1814 La Tour-de-Peilz, SVEITSI, (CH)

(74) Asiaines - Ombud: Leitzinger Oy
High Tech Center, Tammasaarenkatu 1, 00180 Helsinki

(54) Keksinnön nimivys - Uppfinningens benämning
Menetelmä maitotuotteen valmistamiseksi
Förfarande för framställning av mjölkprodukt

(56) Viitejulkaisut - Anförda publicationer
AT B 390870 (A23C 9/14), GB A 2212380 (A23C 9/14)

(57) Tiivistelmä - Sammandrag
Keksinnön kohteena on maitotuote, joka perustuu maiton luonnollisiin ainesosiin ja jossa on suuresti alentuneet natrium-, kalium- ja sitraattipitoisuudet.

Tuotteilla on organoleptiset ominaisuudet, jotka ovat paremmat maitoon verrattuna ja joille on ominaista lisääntynyt pehmeys ja puhtaanraikas maku sekä valkoisuus, joka on suurempi kuin väkevödyyn maiton.

Uppfinningen avser en mjölkprodukt, som baserar sig på mjölkens naturliga beståndsdelar och som har i hög grad nedsatta kalium- och citrathalter.

Produkten har organoleptiska egenskaper, vilka är bättre jämfört med mjölk och för vilka det karakteristiska är ökad mjukhet och ren och frisk smak samt en vithet, som

re ante den koncentrerade mjölkens.
Menetelmä maitotuotteen valmistamiseksi - Förfarande för framställning av mjölkprodukt

Keksinnön kohteena on menetelmä valmistaa maidon luonnollisiin ainesosiin perustuva maitotuote, sisältäen rasvattomien kiintotaineiden painoprosentteina 33 - 36 % proteiinia, 48 - 58 % lakoosia ja 3 - 5 % mineraaleja ja että mineraalien joukossa kalsiumpitoisuus on 75 - 100 % maidon vastaavasta, fosforipitoisuus on 50 - 75 % maidon vastaavasta, natrium- ja kalliumpitoisuus on kumpkin 5 - 20 % maidon vastaavasta ja sitraattipitoisuus on 10 - 30 % maidon vastaavasta.

Väkevöidylle maidolle on ominaista suhteellisen suuri mineraalipitoisuus, joka on läsnä liukenevana faasinaan ja erityisesti kaseiniminiselliin sitoutumattomina ioneina, kuten esimerkiksi natrium- ja kalliumkationit ja -anionit, kuten kloridi ja tiettyt fosfaatit ja sitraatit. Tähän mennessä on erityisesti yritytä stabiloidalta väkevöity maito haihduttamalla suoritetun teknillisen väkevointi-prosessin aikana lisäämällä siihen stabilointisuoloja, kuten sitraatteja ja fosfaatteja proteiinien suojaamiseksi sääntölämpökasittelyyn aikana ja faasien sakeutumisen ja erottumisen välittämiseksi varastoinnin aikana. Lisättäessä edelleen misellisiin sitoutumattomien mineraalien suhteellista osuutta on näillä suoloilla se vaikutus, että ne huonontavat maidon organoleptiisiä ominaisuuksia, erityisesti sen makua. Lisäksi lämpökasittely edistää väkevöidyyn maidon stabiloitumista, mutta vaikuttaa epäedullisesti sen makuun ja valkoisuuteen.

Keksinnön tarkoituksena on saada aikaan menetelmä läheisesti maitoa muistuttavan maito- tai meijerituoitten valmistamiseksi, joka maito- tai meijertiuote perustuu maiton luonnollisiin ainesosiin ja jonka organoleptiset ja ravinto-opilliset ominaisuudet ovat merkittävästi parantuneet verrattuna väkeväöityyn maitoon.

Keksinnön mukaiselle menetelmälle on tunnusomaista, että kuorittu maito väkevöidään ultrasuodatuksella tai mikrosuodatuksella tilavuuteen, joka on 1/3 - 1/6 kuoritun maiton lähtötilavuudesta ja että retentaattiin liuotetaan laktoosimäärä, joka painoltaan vastaa likimain retentaatissa olevan kuivaaineen määrää.

Keksinnön yllä olevassa määrittelyssä ja tämän jälkeen keksinnön selityksessä esitetty prosenttiluvut ja pitoisuudet on saatu analysoimalla aineet maiton yhteydessä tavallisesti käytetyillä analyysimenetelmillä.

Keksinnön mukaisesti maito voi tulla mistä tahansa maitoa kantavasta naaraaspuolisuista nisäkkäästä, esimerkiksi lehmäkarjasta, vuohista tai lampasta.

Keksinnön mukaisella menetelmällä aikaansaatu seos tai tuote voi olla väkevöidyn nesteen muodossa, jolloin siinä on esimerkiksi 20 - 30 paino-% rasvatonta kuiva-ainetta tai se on laimmennettu suuremmassa tai pienemmässä määrin rekonstituoimalla vedellä tai vesipitoisella nesteellä. Menetelmällä aikaansaatu seos tai tuote voi sisältää jopa 15 paino-% rasvoja. Seos tai tuote voi olla myös jauheen muodossa, esimerkiksi suihkekuivauksella suoritetun kuivauksen jälkeen, jolloin tarkoitus on rekonstituoida se nestemäiseen mutoon lisäämällä vettä tai vesipitoista nestettä.

On havaittu, että keksinnön mukaisella menetelmällä valmistetulla tuotteella on erinomaiset organoleptiset ominaisuudet, joille on ominaisista lisääntynyt pehmeys ja puhtaanraikas makru verrattuna maitoon ja erityisesti väkeväöityyn...
maitoon sekä parantunut valkoisuus verrattuna väkevöityyn maitoon. Lisäksi tuotteella on tiivistetyssä muodossa erinomainen varastointikesävyys ilman suolojen, esimerkiksi kalsiumsitraatin sakeutumista.

5 Alkuperäinen kuorittu maito on edullisesti pastöroitua.

Menetelmän ensimmäisen suoritusmuodon mukaisesti yllä kuvattu nestemäinen seos kuivataan esimerkiksi suihkekuivauskella tai pakastuskuivauskella.

10 Menetelmän toisessa suoritusmuodossa nestemäinen tiiviste sekoitetaan edeltäkäsien steriloituun kermaan, seos homogenoidaan ja pakataan sen jälkeen hermeetistisesti säiliöihin ja säiliöt steriloidaan esimerkiksi autoklavaissa.

Keksinnön mukaisen menetelmän eräässä edullisessa suoritusmuodossa retentaatti ja vesipitoinen laktoosiliuos steriloidaan erikseen, retentaatti ja laktoosiliuos sekoitetaan aseptisesti, edeltä käsin steriloitu maitorasva lisätään siihen ja seos homogenoidaan ja pakataan aseptisesti säiliöihin.

Soveltuvissa määrin seos jälkisteriloidaan kohtuullisissa lämpöolosuhteissa ennen aseptista pakkaamista.

Eräässä homogenointia seuraavassa menettelyiden muunnuksmuodossa voidaan homogenoitua seos pakata säiliöihin, jotka suljetaan hermeetisesti ja jotka sen jälkeen steriloidaan kohtuullisissa lämpöolosuhteissa, esimerkiksi autoklavaissa.

Keksinnön mukaisessa menetelmässä on edullista tiivistää aikaisemmin pastöroitu kuorittu maito käyttämällä mikrosuodatusta mineraalikalvoilla, joiden huokosuus on edullisesti noin 0,1 – 0,2 μm. Tätä tarkoituksia varten voidaan käyttää myös ultrasuodatusta, mutta parempaa pidettään mikrosuodatusta, joka mahdollistaa paremman läpäisyasteen ja korkeamman pitoisuuden kuin

Voi olla edullista säilyttää joitakin heraproteiineja retentaatissa samalla, kun mikrosuodatusta käytetään proteiinilähteen kuiva-aineksen suhteellisen osuuden lisäämiseksi. Tätä tarkoituksa varten alkuperäinen kuorittu maito lämpökäsittelään suhteellisen ankarissa olosuhteissa lämpötilassa 90 - 140°C ja 20 sekunnista 10 minuutin kestävän ajan, jolloin korkein lämpötila vastaa lyhentää aikaa ja päinvastoin. Tällä käsittelyllä aikaansaadaan heraproteiinien aggresoituminen ja aggregaattien retentaatio.

Mikrosuodatuksen tai ultrasuodatuksen permeaatti muodostaa käyttökelpoisena raakaaineena, joka voidaan demineralisoida esimerkiksi ioninvaihto- ja/tai elektrodialyysillä käytettäväksi esimerkiksi vauvoille tarkoitettuissa tuotteissa.

Mikrosuodatuksesta saatuna tällä permeaatilla on myös se etu, että sillä on alhainen mikrobipitoisuus.

Kuten aiememmin mainittiin, edullinen menetelmä on sellainen, jossa reentaatti ja laaksoos sterilooidaan toisistaan erillään. Tätä tarkoituksa varten reentaatti edullisesti sterilooidaan ultrakorkeassa lämpötilassa (UHT) 120 - 150°C:ssa ja edullisesti 130 - 140°C:ssa. Steriloointi tapahtuu säilyttämällä tämä lämpötila 15 - 60 sekuntia. Laktoosi liukenee kuumaan demine-
ralisoituun veteen suurimmassa mahdollisessa väkevyydessä, esimerkiksi saturaatiossa. Laktoosin steriointi suoritetaan lämpötilassa ja kestoaajalla, jotka ovat verrattavissa retentaattiin käytetyihin ja tällöin saadaan aikaan kaiken suspensiossa säilyvän laktoosin uudelleenliukeminen. Steriloinnin jälkeen tämä laktoosiliuos säilytetään lämpötilassa 50°C tai yli ja sekoitetaan retentaattiin edullisesti 50 - 60°C:ssa laktoosin uudellenkiteytymisen estämiseksi ennen sekoitusta ja sen aikana. pH (mitattu 50 - 60°C:ssa) säädetään edullisesti tarvittaessa arvoon > 6,8, esimerkiksi lisäämällä kalsiumhydroksidin vesiliuosta.

Voiöljyn tai kerman muodossa olevan aikaisemmin sterioidun maitorasvan lisäyksen jälkeen suoritetava homogenointi tapahtuu edullisesti 50 - 55°C:ssa kahdessä vaiheessa, jolloin paine ensimmäisessä vaiheessa on esimerkiksi 10 - 30 mPa ja toisessa vaiheessa 2,5 - 5 mPa.

Mikä tahansa jälkisterilointivaiheen muunnosmuoto onkin, esimerkiksi UHT tai autoklaavi, käytetty olosuhteet vastaavat lievää lämpökäsittelyä UHT-käsittelyyn tapaaksessa edullisesti lämpötilassa 135 - 145°C 3 - 5 sekuntia, esimerkiksi noin 140°C:ssa 3 sekuntia tai 120 - 125°C:ssa 1 - 3 minuuttia ja esimerkiksi noin 121°C:ssa 2 minuuttia, kun kysymyksessä on käsitteily autoklaavissa. On mahdollista käyttää lieviä käsittelyolosuhteita, koska mikroorganismit ovat täydellisesti inaktivointeet retentaatin ja laktoosin suhteellisen ankaran steriointikäsittelyn aikana. Tällä tavoin saadaan minimoiduksi Maillard'ın reaktion vaikutus.

Saatu maitotuote muodostaa perustan, jolla on tyypillisesti erinomaiset pehmeys- ja makuominaisuudet ja jota käytetään tiivisteiden, jälkiriekon ja esimerkiksi alhaisen natriumpitoisuuden omaavien ravinto- tai ruokavaliotuotteiden tapaistiin tuotteisiin.
Seuraavat esimerkit valaisevat keksintöä. Osat ja prosenttiluvut ovat näissä paino-osia ja painoprosentteja, ellei toisin ole mainittu.

Esimerkki 1

250 kg kuorittua maitoa pastöroidaan 72°C:ssa 14 sekuntia ja sen jälkeen sille suoritetaan tangentiaalinen mikrosuodatus Techsep S 151-yksiköllä, joka on varustettu Carbosep M 14-kalvoilla, joiden kokonaispinta-ala on 3,2 m². Käsittely suoritetaan 50°C:ssa, kunnes tilavuussuhde maito/retentaatit on 6.

Tässä vaiheessa retentaatin kuiva-ainepitoisuus on 24 % ja läpäisyvirtaus on 1/3 lähtöarvostaan. Sen kuiva-ainepitoisuus säädetään sitten 20 %:iin ja siihen lisätään laktoosia siten, että lisäys on 2 kg laktoosia per 10 kg retentaattia. Seosta sekoitetaan 50°C:ssa, kunnes laktoosi on täysin liuennut ja sen jälkeen kuivataan pakastuskuivauksella.

Saadulla jauheella on alla olevassa taulukossa 1 esitetty koostumus verrattuna kuoritun maidon koostumukseen ja ilmaistuna kokonaiskiintoaineen (muukaanluettuna jäljellä oleva kosteus) prosenttimäärianä.

Taulukko 1

<table>
<thead>
<tr>
<th>Ainesosa</th>
<th>% kokonaiskiintoaineesta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Esimerkki 1</td>
</tr>
<tr>
<td>Proteiini (N x 6,38)</td>
<td>35</td>
</tr>
<tr>
<td>Rasva</td>
<td>1</td>
</tr>
<tr>
<td>Laktoosi</td>
<td>57,6</td>
</tr>
<tr>
<td>Tuhka</td>
<td>4,2</td>
</tr>
<tr>
<td>Sitraatti</td>
<td>0,5</td>
</tr>
<tr>
<td>Tuhka, mukaanluettuna</td>
<td></td>
</tr>
<tr>
<td>Kalsium</td>
<td>1,1</td>
</tr>
<tr>
<td>Fosfori</td>
<td>0,7</td>
</tr>
<tr>
<td>Kalium</td>
<td>0,3</td>
</tr>
<tr>
<td>Natrium</td>
<td>0,1</td>
</tr>
</tbody>
</table>
Sen jälkeen suoritettiin rekonstituutio demineralisoidulla vedellä ja saatiin 48 g laktoosia/kg, minkä jälkeen jauheesta saatu nestemäinen seos arvioitiin organoleptisesti verrattuna saman laktoosipitoisuuden omaavaan pastöroiduun kuorittuun maitoon ja suihkekuivaaksella kuivattuun kuorittuun maito-jauheeseen, jolla oli alhainen lämpötila ja joka oli rekonstituoitu vedellä samalla laktoosipitoisuudella. Maistajaraati totesi, että keksinnön mukaisen seoksen pehmeys ja maku oli paljon miellyttävämpi kuin pastöroidun tai rekombinoidun kuoritun maiton.

Esimerkki 2

23 % rasvattomia kiintoaineita ja 10 % rasvaa sisältävä seos valmistetaan homogenoimalla sopivat määrät esimerkin 1 mukaista retentaatti/laktoosiseosta sekä UHT:llä steriloitua ja 35 % rasvapitoisuuden omaavaa kermaa ja steriloimalla sitten homogenoitu tuote autoklaavissa.

Saadun seoksen maistaminen osoitti, että se oli pehmeämpää kuin perinteinen väkevöity maito, jossa on samat suhteelliset määrät rasvattomia kiintoaineita ja rasvoja, ja ero oli jopa selvempi kuin väkevöimättömän maiton tapauksessa.

Esimerkki 3

250 l kuorittua maitoa pastöroidaan 72°C:ssa 14 sekunnin ajan ja väkevöiden jälkeen esimerkin 1 tapaan mikrosuodatuksella, kunnes saadaan maito/retenctaatin tilavuussuhde 3. Tässä vaiheessa suoritetaan retentaatin diasuodatus demineralisointua vettä vasten, kunnes on muodostunut 250 l permeaattia. Tällöin demineralisoidun veden lisäys lopetetaan ja retentaatti tiivistetään sitten lopulliseen tilavuuteen 40 l. Sen jälkeen, kun laktoosia on lisätty kiinteän retentaatin ja kiinteän laktoosin suhdelukujen ollessa 0,442 ja 0,558, kunnes laktoosii on täysin liennut, se on suihkekuivaaksella.
Saadun jauheen koostumus on esitetty alla olevassa taulukossa 2.

<table>
<thead>
<tr>
<th>Ainesosa</th>
<th>% kokonaiskiintoaineesta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Esimerkki 3</td>
</tr>
<tr>
<td>Proteiini (N x 6,38)</td>
<td>35</td>
</tr>
<tr>
<td>Rasva</td>
<td>1</td>
</tr>
<tr>
<td>Laktoosi</td>
<td>57,5</td>
</tr>
<tr>
<td>Tuhka</td>
<td>3,5</td>
</tr>
<tr>
<td>Sitraatti</td>
<td>0,3</td>
</tr>
<tr>
<td>Tuhka, mukaanluebun</td>
<td></td>
</tr>
<tr>
<td>Kalsium</td>
<td>1,1</td>
</tr>
<tr>
<td>Fosfori</td>
<td>0,7</td>
</tr>
<tr>
<td>Kalium</td>
<td>0,2</td>
</tr>
<tr>
<td>Natrium</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Esimerkin 1 tapaan vedellä suoritetun rekonstituution jälkeen ja esimerkin 2 tapaan suoritetun kerman lisäyksen jälkeen jauheesta saadun nestemäisen seoksen pehmeys ja maku oli paljon miellyttävämpi kuin samalla rasvatomalla kiintoainepitoisuudella varustetun pastöroidun tai rekombinoidun kuorittun maidon ja vastaavasti saman rasvattoman kiintoainepitoisuuden ja rasvapitoisuuden omaavan täyskermamaidon.

Esimerkki 4

250 l kuorittua maitoa lämpökäsitellään 135°C:ssa 21 sekunnin ajan UHT-laitteissa. Tämä käsittely aiheuttaa heraproteiinien lähes täydellisen denaturoinnin. Tällä tavoin käsitellyn maidon diasuodatuksella tapahtuva mikrosuodatus suoritetaan sitten esimerkissä 3 esitetyllä tavalla ja sen jälkeen

Taulukko 3

<table>
<thead>
<tr>
<th>Ainesosa</th>
<th>% kokonaiskiintoaineesta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Esimerkki 4</td>
</tr>
<tr>
<td>Proteiini (N x 6,38)</td>
<td>35</td>
</tr>
<tr>
<td>Rasva</td>
<td>1</td>
</tr>
<tr>
<td>Laktoosi</td>
<td>56,4</td>
</tr>
<tr>
<td>Tuhka</td>
<td>3,4</td>
</tr>
<tr>
<td>Sitraatti</td>
<td>0,3</td>
</tr>
<tr>
<td>Tuhka, mukaanluettuna</td>
<td></td>
</tr>
<tr>
<td>Kalsium</td>
<td>1,0</td>
</tr>
<tr>
<td>Fosfori</td>
<td>0,7</td>
</tr>
<tr>
<td>Kalium</td>
<td>0,2</td>
</tr>
<tr>
<td>Natrium</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Esimerkin 1 mukaisen vedellä tapahtuvan rekonstituution ja esimerkissä 2 esitetyn kerman lisäyksen jälkeen jauheesta saadulla nestemäisellä seoksella oli samat pehmeys- ja makuominaisuudet kuin esimerkkien 1, 2 ja 3 mukaisilla seoksilla. Tämä merkitsee sitä, että denaturoitujen heraproteiinin läsnäolo retentaatissa ei millään tavoin vaikuta seosten organoleptisiin ominaisuuksiin ja lisäksi proteiinisaanto paranee edelleen.
Esimerkki 5

Kuorittua maiota pastöroidaan 72°C:ssa 15 sekuntia ja sen jälkeen se väke- 5
vöidään mikrosuodatuksella mineraalikalvolla, jonka nimellinen huokosmita
on 0,2 μm, kunnes saadun retentaatin tilavuus on 1/6 lähtömaiden tilavuus-
desta. Sen jälkeen suoritetaan retentaatin diasuodatus vakiotilavuudella käyt- 10
tämällä kolme kertaan sen tilavuuden verran demineralisoitua vettä ja sen jäl-
keen se tiivistetään 20 %:iin kuiva-ainetta. Sen jälkeen retentaatti sterili-
daan 135°C:ssa 20 sekuntia UHT:llä ja sijoitetaan sterilliiin säiliöön.

Laktoosi liuotetaan erikseen demineralisoituun veteen 80°C:ssa ja pitoisuud-
en ollessa 60 %, eli suurin mahdollinen. Laktoosi ei liukene täydellisesti, 15
mutta sen täydellinen liukenneminen saavutetaan käsiteltäessä se tämän jäl-
keen UHT:llä 135°C:ssa 30 sekunnin ajan. Steriloinnin jälkeen laktoosi varas-
toidaan sterilliiin säiliöön.

Sen jälkeen retentaatti ja laktoosiliuos sekoitetaan aseptisesti siten, että kun 20
87 % proteiineja on poistettu retentaatin kokonaiskiintoaineesta, suhteelliset
määrit vastaavat 40 % kiinteää retentaattia ja 60 % kiinteää laktoosia. Tämä
sekoitus suoritetaan hämmentämällä 50 - 60°C:ssa. 35 % rasvapitoisuu-
den omaavaa ja edeltäkäsin UHT:llä steriloitua kermaa lisätään sitten tähän
seoksen sopiva määrä, jolloin saadaan 23 % rasvattomia kiintoaineita 10 %
rasvaa kohti lämpötilassa 50 - 55°C. Sen jälkeen pH säädetään arvoon 6,8 - 25
6,9 (määritelty lämpötilassa 50 - 60°C) lisäämällä kalsiumhydroksidin vesidis-
persiota, ellei pH jo ole tässä arvossa.

Sen jälkeen seos homogenoidaan lämpötilassa 50 - 55°C kahdessa vaiheessa, 30
ensimmäinen 15 mPa:ssa ja toinen 3 mPa:ssa ja sen jälkeen se jälkisteriloi-
daan 140°C:ssa 5 sekunnin ajan ja pakataan aseptisesti säiliöihin.
Maitotuotteella on kirkkaus 84,55 (L-arvo, joka on mitattu spektrofotometrialla laitteella Macbeth 2000) ja 5,83 % suojattua lysiniä. Vertailun vuoksi voidaan todeta, että kaupallisesti saatavissa olevan väkevöidyn maidon kirkkaus on 75,49 L ja siinä on 36,98 % suojattua lysiniä.

Esimerkki 6

Käsittely suoritetaan samalla tavoin kuin esimerkissä 5 lukuunottamatta jälkisterilointia, joka suoritetaan autoklaavissa 120°C:ssa 2 minuutin ajan sen jälkeen, kun tuote on pakattu hermeettisesti suljettuihin säiliöihin.

Maitotuotteen kirkkaus on 80,77 L ja siinä on 13,84 % suojattua lysiniä.
Patenttivaatimukset

1. Menetelmä valmistaa maidon luonollisiin ainesosiin perustuva maitotuote, sisältäen rasvattomien kiintoaineiden painoprosentteina 33 - 36 % proteiinia, 48 - 58 % laktoosia ja 3 - 5 % mineraaleja ja että mineraalien joukossa kalsiumpitoisuus on 75 - 100 % maidon vastaavasta, fosforipitoisuus on 50 - 75 % maidon vastaavasta, natrium- ja kaliumpitoisuus on kumpikin 5 - 20 % maidon vastaavasta ja sitraattipitoisuus on 10 - 30 % maidon vastaavasta, tunnettu siitä, että kuorittu maito väkevöiddään ultrasuodatuksella tai mikrosuodatuksella tilavuuteen, joka on 1/3 - 1/6 kuoritun maidon lähtötilavuudesta ja että retentaattiin liotetaan laktoosimäärä, joka painoltaan vastaa likimain retentaatissa olevan kuiva-aineen määrää.

2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että retentaatin ja laktoosin nestemäinen seos kuivataan suihkekuivauksella tai pakastuskuvauksella.

3. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että retentaatin ja laktoosin nestemäiseen seokseen lisätään aikaisemmin steriloitua kemaa, seos homogenoidaan ja sen jälkeen se pakataan hermeetisesti säiliöihin ja säiliöt steriloidaan.

4. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että retentaatti ja laktoosin vesiliuos steriloidaan erikseen, retentaatti ja laktoosiliuos sekoitetaan aseptisesti, edeltäkäsin steriloitu maitorasva lisätään siihen, seos homogenoidaan ja pakataan aseptisesti säiliöihin.

5. Patenttivaatimuksen 4 mukainen menetelmä, tunnettu siitä, että ennen pakkaamista seos steriloidaan lievissä lämpöolosuhteissa.
6. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että retentaatti ja laktoosin vesiliuos steriloidaan erikseen, retentaatti ja laktoosiliuos sekoitetaan aseptisesti, siihen lisätään edeltäkäsin sterilointi maistorasva, seos homogenoidaan ja homogenoitu seos pakataan säiliöihin, jotka suljetaan hermeettisesti ja sen jälkeen steriloidaan lievissä lämpöolosuhteissa.
Patentkrav

1. Förfarande för framställning av en mjölkprodukt baserad på mjölkens naturliga komponenter, innehållande i fettfria fastämnens viktprocent 33 - 36 % protein, 48 - 58 % laktos och 3 - 5 % mineraler och att bland mineralerna kalciumhalten är 75 - 100 % av mjölkens motsvarande, fosforhalten är 50 - 75 % av mjölkens motsvarande, natrium- och kaliumhalten är för båda 5 - 20 % av mjölkens motsvarande och citrathalten är 10 - 30 % av mjölkens motsvarande, känettecknat därav, att skummjölk koncentreras genom ultrafiltrering eller mikrofiltrering till en volym, som är 1/3 – 1/6 av skummjölkens utgångsvolym och att i retentatet löses en laktosmängd, som till sin vikt i stort motsvarar mängden torrämne i retentatet.

2. Förfarande enligt patentkravet 1, känettecknat därav, att retentatets och laktosens vätskeblandning torkas genom spraytorkning eller frystorkning.

3. Förfarande enligt patentkravet 1, känettecknat därav, att till retentatets och laktosens vätskeblandning sätts tidigare steriliserad grädde, blandningen homogeniseras och därefter packas den hermetiskt i behållare och behållarna steriliseras.

4. Förfarande enligt patentkravet 1, känettecknat därav, att retentatets och laktosens vattenlösning steriliseras separat, retentatet och laktoslösningen blandas aseptiskt, det på förhand steriliserade mjölkfettet tillsätts, blandningen homogeniseras och förpackas aseptiskt i behållare.

5. Förfarande enligt patentkravet 4, känettecknat därav, att före packningen steriliseras blandningen under milda värmeförhållanden.

6. Förfarande enligt patentkravet 1, känettecknat därav, att retentatets och laktosens vattenlösning steriliseras separat, retentatet och laktoslösning-
en blandas asepiskt, det på förhand steriliserade mjölkfettet tillsätts, blandningen homogeniseras och den homogeniserade blandningen förpackas i behållare, som tillslutes hermetiskt och därefter sterileras i milda värmedehållanden.