OPIC

OFFICE DE LA PROPRIETE

CIPO

(CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA 3 PROPERTY OFFICE

(72) HUANG, YUN-WU, US
(72) YU, PHILIP S.L., US
(72) WU, KUN-LUNG, US

(71) INTERNATIONAL BUSINESS MACHINES CORPORATION,

(51 Int.Cl.” HO4L 12/02, HO4L 29/02, G11B 23/00
30) 1999/03/29 (09/280,746) US
54) METHODE ET APPAREILLAGE D’UN SYSTEME

(12) (19) (CA) Dem ande-Application

(21) (A1) 2,300,562
22) 2000/03/08
43) 2000/09/29

US

MANDATAIRE COLLABORATIF POUR LE DEPLOIEMENT

REPARTI DE RENDU DES OBJETS

54y METHOD AND APPARATUS OF A COLLABORATIVE PROXY
SYSTEM FOR DISTRIBUTED DEPLOYMENT OF OBJECT

RENDERING

110 111

PROXY 1 PROXY 2

100

120

CONTENT
SERVER 1

121 130
SERVER m

112

PROXY k

107

(57) A distributed object rendenng method and system for a collaborative data network 1s disclosed. The data network,
which may include the Internet, has attached computing nodes, including object requestor nodes, object source nodes,
and 1intermediate nodes which may be proxy servers. The method can allow each participating proxy server to adapt
to the dynamic load conditions of itself as well as proxies, as well as to dynamaic traffic conditions 1n the data network.
The determination of which proxy or set of proxies 1s to perform object rendering and caching 1s based on a distributed,

collaborative method that 1s adopted among the proxies. The criteria for such a met

current load of the network links among proxies, and/or the respective CPU usage of

hod can include the bandwidth and

the proxies. If an object rendering

can be staged, e.g., different resolution rendering, 1t can be performed by more than one of the proxies. The
determination of which proxy performs which stage of the multistage rendering can also be adaptive to the dynamic

load conditions, as well as network conditions.

I*I Industrie Canada Industry Canada

10

15

CA 02300562 2000-03-08

METHOD AND APPARATUS OF A COLLABORATIVE PROXY SYSTEM
FOR DISTRIBUTED DEPLOYMENT OF OBJECT RENDERING

ABSTRACT OF THE DISCLOSURE

A distributed object rendering method and system for a collaborative data network is disclosed. The
data network, which may include the Internet, has attached computing nodes, including object
requestor nodes, object source nodes, and intermediate nodes which may be proxy servers. The
method can allow each participating proxy server to adapt to the dynamic load conditions of itself
as well as proxies, as well as to dynamic traffic conditions in the data network. The determination
of which proxy or set of proxies is to perform object rendering and caching is based on a distributed,
collaborative method that is adopted among the proxies. The criteria for such a method can include
the bandwidth and current load of the network links among proxies, and/or the respective CPU usage
of the proxies. If an object rendering can be staged, e.g., different resolution rendering, it can be
performed by more than one of the proxies. The determination of which proxy performs which stage
ot the multistage rendering can also be adaptive to the dynamic load conditions, as well as network

conditions.

YOR9-1999-0072

10

15

20

25

CA 02300562 2000-03-08

METHOD AND APPARATUS OF A COLLABORATIVE PROXY SYSTEM
FOR DISTRIBUTED DEPLOYMENT OF OBJECT RENDERING

Cross-Reference to Related Patent Applications:
This Patent Application is related to co-pending U.S. Patent Application Serial No.: 08/979,748,

filed November 26, 1997, entitled "Collaborative Server Processing of Content and
Meta-Information with Application to Virus Checking in a Server Network," by B. Hailpern et al.
This Patent Applicationis also related to co-pending U.S. Patent Application Serial No.: 09/027,832,
filed February 23, 1998, entitled "Method for Collaborative Transformation and Caching ot Web
Objects in a Proxy Network", by J. Beurket et al.

FIELD OF THE INVENTION:

This invention relates to data networks and, more particularly, to an ability to perform
distributed object rendering on a data network. Specifically, a plurality of collaborative proxy
servers perform distributed object rendering so that object contents can be displayed on or consumed

by various kinds of client devices, based on their respective device capabilities and specifications.

BACKGROUND OF THE INVENTION:

As the Internet becomes ever more popular, more non-personal computer (PC) devices, such
as so-called smart phones and PDAs (personal digital assistants), are connected to the Internet, either
by wired or wireless connections. The Internet is becoming the so-called pervasive computing
environment, where various kinds of information appliances/devices, as well as PCs and other server
computers, are all connected. In such a pervasive computing environment it is expected that the
individual appliances/devices will have different computing powers and display capabilities. For
example, some devices may be capable of displaying color images while others can only display
black-and-white images. Also, some devices may have large, easily viewed displays while others
may have only a relatively much smaller display. It can thus be appreciated that in such a pervasive
computing environment the same information objects may have to be rendered in different forms or

resolutions according to different device display specifications.

YOR9-1999-0072 1

10

I3

20

25

CA 02300562 2000-03-08

Various techniques have been developed to represent information in various resolutions. In

"A Framework for Optimization of a Multiresolution Remote Image Retrieval System" by A. Ortega
et al., Proceedings of IEEE InforCom, 1994, a system was disclosed to transmit images and video
in multiple resolutions. In "The JPEG Still Picture Compression Standard," by G. Wallace, [EEE
Transactions on Consumer Electronics, vol. 38, no. 1, February 1992, the JPEG image compression
standard was described to represent images in multiple ditterent resolutions.
The rendering of an object into different forms or resolutions can be performed 1in different locations.
One possible location is within the content servers. However, the content servers may easily become
overloaded, especially with a large number of different client requests all coming to the same content
servers. Another possible location to render the object is within a client machine which will actually
consume the object. However, this is an undesirable solution since many typical client machines
tend to be too limited in computing power to perform the necessary rendering function.

Alternatively, the rendering can be done by one or more proxy servers, which are positioned
in the data network between the content servers and the client devices. In this scenario the
device-specific information can be piggybacked on the meta-information associated with the objects,
and the proxy server can perform object rendering according to the meta-information. Once the
object rendering is performed by the proxy server the result can be cached (stored) at the proxy
server. In this case any subsequent requests for the same object, from the same kind of device, can
be served directly from the stored copy in proxy server cache. As a result, the repeated rendering
of the object for the same kind of device can be avoided. In order to improve the response time,
many PC servers, such as the IBM NETFINITY servers, are being deployed 1n the Internet as a
network of proxy servers (IBM and NETFINITY are both registered trademarks of the International
Business Machines Corporation). These proxy servers can work collaboratively in object rendering
and caching.

For example, in the above-referenced commonly assigned U.S Patent Application by B.
Hailpern et al., entitled "Collaborative Server Processing of Content and Meta-Intormation with
Application to Virus Checking in a Server Network," a method was disclosed to perform virus
checking based on the meta-information on the proxy network by choosing one proxy server. This

approach discloses a method to perform certain computations on the object based on the

YOR9-1999-0072 2

10

15

20

235

CA 02300562 2000-03-08

meta-information by one of the proxies in the network. No specific attention was paid to the aspect
of caching the objects after the computation. Also, the computation is done completely by the
chosen proxy server, and 1s not done by more than one proxy server in a distributed way.

In the above-referenced commonly assigned U.S Patent Application by J. Beurket et al.,

entitled "Method for Collaborative Transformation and Caching of Web Objects in a Proxy

"t

Network," a method was proposed to locate one or more specialized proxies to perform the

transformation and caching. Once the transformation/rendering is done and cached, all subsequent
requests tor the desired resolution are served by these specialized transformational proxies. In this
approach the caching and rendering of an object 1s completely done on the same specialized proxies,
and the rendering of objects is not readily performed in different stages or collaboratively by more
than one different proxies in a distributed way.

[n an approach described by A. Fox, entitled "Adapting to Network and Client Variation
Using Infrastructural Proxies: Lessons and Perspective," IEEE Personal Communications, pp. 10-19,
August 1998, a method was disclosed to perform datatype-specific distillation on a cluster of
proxies. Object rendering and caching are all performed by the specific cluster of proxies. A
centralized manager is used to perform load balancing among the proxies in the cluster. A drawback
of this approach 1s that object rendering and caching 1s completely done on the same cluster of
proxies, and 1s not done 1n a distributed way. Other proxies in the network, but not in the same
cluster, cannot participate in some of the stages in the object rendering process.

In view of the foregoing, 1t can be appreciated that there exists a need for a collaborative
proxy system that can deploy object rendering in a distributed fashion. Prior to this invention, this

need was not fulfilled.

OBJECTS AND ADVANTAGES OF THE INVENTION:

It 1s a first object and advantage of this invention to provide a collaborative proxy system that
performs object rendering in a distributed fashion.

It is another object and advantage of this invention to provide a technique to distribute object
rendering processing throughout a proxy network, and to not concentrate the object rendering

processing in only specialized object rendering proxies.

YOR9-1999-0072 3

10

L5

20

25

CA 02300562 2000-03-08

It 1s a further object and advantage of this invention to provide a collaborative proxy network
wherein object processing tasks, such as rendering, are distributed in an adaptive fashion based on,

for example, dynamic loading characteristics of the proxy network.

SUMMARY OF THE INVENTION

The toregoing and other problems are overcome and the objects and advantages are realized
by methods and apparatus in accordance with embodiments of this invention.

In accordance with the teachings of this invention a distributed object rendering method for
a collaborative data network is disclosed. The data network, which may include the Internet, has
attached computing nodes, including object requestor nodes, object source nodes, and intermediate
nodes which may be proxy servers. The method can allow each participating proxy server, which
may be retferred to simply as a "proxy" and in the plural form as "proxies", to adapt to the dynamic
load conditions of itself as well as proxies, as well as to the dynamic traffic conditions in the data
network. The determination of which proxy or set of proxies is to perform object rendering and
caching 1s based on a distributed, collaborative method that is adopted among the proxies. The
criteria for such a method can include the bandwidth and current load of the network links among
proxies, and/or the respective CPU usage of the proxies. If an object rendering can be staged, e.g.,
different resolution rendering, it can be performed by more than one of the proxies. The
determination of which proxy performs which stage of the multistage rendering can also be adaptive
to the dynamic load conditions, as well as network conditions.

As aresult, a participating proxy, upon serving an object, first determines if object rendering
processing 1s needed based on the client device type. If the object rendering processing is found to
be required, then based on the requested object type and the collaborative information about other
proxies in the network, the participating proxy can choose to (a) perform the complete object
rendering by itself, (b) perform a partial rendering if the rendering process can be staged, or (¢) do
nothing and let another proxy perform the rendering task. The objective is to distribute the rendering
processing throughout the proxy network, not just in the specialized object rendering proxies.

This invention thus provides a distributed, dynamic, hierarchical rendering method in a

network comprised of interconnected computing nodes. The method includes steps of, at an object

YOR9-1999-0072 4

10

15

20

25

CA 02300562 2000-03-08

requesting node or at a proxy node coupled to the object requesting node, including with an object
request certain meta-information describing the capabilities of the object requesting node (referred
to herein as receiver hint information (RHI) or as requestor-specific capability information); at an
intermediate node, receiving an object request and forwarding the request to another intermediate
node (or to a source of the requested object), if the requested object is not available locally, while
moditying the RHI to include information for specifying its local condition for providing the
rendering service; otherwise, the intermediate node determines the required rendering, and invokes
a selection function to determine, based on the RHI, what part or subset of the required rendering
s to be carried out by the intermediate node. The intermediate node then performs the rendering and
passes the rendered object to the requesting node. As a part of this invention another intermediate
node that receives a partially rendered object invokes a selection function to determine, based on the
RHI, what portion (or all) of the remaining required rendering is to be carried out by this
intermediate node, and then performs the rendering and passes rendered object to the requesting
node.

At an intermediate node having a less detailed version of the requested object the method
includes such information in the RHI, forwards the request to another node, and at another
intermediate node that has a more detailed version of the requested object, the node decides whether
to return the more detailed version of the requested object, without further local rendering, or to
instead perform some rendering and return a partially rendered object, or to instead return a
completely rendered object.

The local condition information can include the loading and/or capacity of the node (such
as CPU utilization), and can be a function of the network delay (from the requesting node). The
local condition information can further include a type of rendering that can be performed at the node
(which can depend on the software available at the node). The local condition information can
further include the storage availability at the local node.

A selection method is provided for each intermediate node to decide dynamically and
independently of other nodes what portion ofthe required rendering to perform locally using the RHI
information. The selection method can include steps of (a) dividing a remaining rendering operation

into steps; (b) selecting one or more rendering steps to be performed locally in order to optimize a

YOR9-1999-0072 S

10

5

20

235

CA 02300562 2000-03-08

given objective function, using the RHI information as an input parameter; and (c¢) performing the
one or more rendering steps selected for the current node. The objective function can be to perform
the rendering steps with the most bandwidth reduction first, and/or to perform the rendering steps
so as to reduce load unbalancing among the remaining nodes on the path to the requesting client
device node. The objective function can also be an estimated response time from this node to the
requesting node, based on the RHI information.

Alternatively, the selection method can includes steps of (a) dividing the remaining rendering
operation into steps; (b) assigning, in accordance with an assignment plan, the rendering steps to
other nodes on a path to the requesting client device node to optimize the given objective function
using the RHI information as the input parameter; and (c) performing the rendering step or steps that
are assigned to the current node. It is also within the scope of the teaching of this invention to pass
the assignment plan as meta information associated with the rendered object to a next node, which

1S then free to modify the assignment plan according to local considerations, such as CPU loading

at the next node.

The rendered object and/or the received object can be passed to a cache manager for a
caching consideration, such as a cost to produce the rendered object.

In general, ditferent intermediate nodes can choose to use different selection functions for
rendering, and each intermediate node may choose a different selection function depending upon the
local condition of the node (e.g., CPU loading).

Each node may also periodically collect load statistic information from neighboring nodes,

instead ot including the information in the RHI associated with each request.

BRIEF DESCRIPTION OF THE DRAWINGS

The above set forth and other features of the invention are made more apparent in the ensuing
Detailed Description of the Invention when read in conjunction with the attached Drawings, wherein:

Fig. 1 1s a block diagram of an Internet environment in accordance with an exemplary
embodiment of the present invention.

Fig. 2 1s a block diagram which illustrates a proxy environment in accordance with an

exemplary embodiment of the present invention.

YOR9-1999-0072 6

10

IS

20

25

CA 02300562 2000-03-08

Fig. 3 1s a tlowchart diagram which illustrates the configuration of proxy servers in
accordance with an exemplary embodiment of the present invention.

Fig. 4 1s a tlowchart diagram which illustrates operations of a proxy server when it receives
an object request in accordance with an exemplary embodiment of the present invention.
Fig. 51sa tlowchart diagram which illustrates operations of a proxy server when it receives an object

in accordance with an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 1s a block diagram illustrating the overall architecture of a proxy network in
accordance with an exemplary embodiment of the present invention. As is shown, various clients
130, 131 may be connected through proxy servers (or proxies) 110, 111, 112 to access information
objects in the content servers 120, 121. The clients, proxies and content servers may be all
connected through a network 101, such as the Internet. The proxies 110, 111, 112 are generally
employed to improve access times, and to provide services such as caching and content filtering.
For example, an ISP (Internet Service Provider) may comprise a hierarchical network of proxy
servers 110, 111, 112 positioned at various locations (e.g., local, regional and national proxy
servers). Alternatively, and also be example, there may be one or more proxy servers that function
within a private or semiprivate local area network (LAN) or wide area network (WAN), and the one
or more proxy servers may be located behind a firewall that provides security for the LAN or WAN.

Object renderings are performed by the proxies 110, 111, 112 based on objects retrieved from
the content servers 120, 121. The specific device capabilities, referred to herein as receiver hint
information (RHI), as well as the object data type (generally referred to herein as object-specific
descriptor information) are included such as by being appended to the meta-information associated
with requests and requested objects. The RHI can be included with an object request by the
requesting client device 130, 131, or by one of the proxies (e.g., the first proxy coupled to the
requesting device.) In the latter case the proxy 110, 111, 112 can access a table of device capabilities,
based on an identifier of the requesting device sent with the request, and can construct the RHI based
on the stored information in the table. As an example, and assuming an ISP arrangement, the local

proxy server has access to a table wherein are stored the characteristics (e.g., type of display, size

YOR9-1999-0072 7

10

15

20

25

CA 02300562 2000-03-08

of graphics memory, etc.) of the various client devices that can be serviced by the local proxy. The
table entry for a particular client device 130, 131 can be stored when the device first registers with
the ISP. Thereatfter, the local proxy server receives an identifier of the client device when the client
device makes a request, accesses the table, and constructs the appropriate RHI for inclusion with the
object request. In a similar manner the source of the requested object can add the object-specific
descriptor information to the returned object, or this information can be added by the proxy server
local to the source of the requested object (for the case where a proxy server does not fulfil the
request from a copy of the object stored in the proxy, as described in further detail below.)

In a presently preterred embodiment of this invention the RHI is implemented using PICS™
("Plattorm for Internet Content Selection") information, and this aspect of the invention is discussed
in further detail below.

When a requested object passes through the proxy network, any proxy server 110, 111, 112
can perform a complete or partial rendering based on the associated RHI. For example, if the entire
rendering process can be partitioned into two or more steps, a given one of the proxy servers (e.g.,
110) may decide to perform only one of the rendering steps, and to then forward the partially
rendered object to another proxy server (e.g., 111). The proxy server 110 also modifies the RHI to
reflect the processing that it performed, and forwards the modified RHI as well to the proxy server
111. Furthermore, local conditions about a given one of the proxy servers 110, 111, 112, such as
the CPU load and the network traffic load, can also be included in the RHI and passed along through
the network 101. These aspects of the invention are discussed below in further detail.

In an exemplary embodiment of this invention the clients 130, 131 may include, for example,
a personal computer (PC), a workstation, a smart phone, a personal digital assistant (PDA), etc.
Proxy servers 110, 111, 112 may comprise a PC server, a RISC SYSTEM/6000 server, or a S/390
server running, for example, Internet Connection Server (ICS) available from IBM (RISC
SYSTEM/6000, S/390, and Internet Connection Server are all trademarks of the International
Business Machines Corporation). The network 101 may be, for example, the Internet, the World
Wide Web, an Intranet and local area networks (LANs). Content servers 120, 121 may include a PC
server, a RS/6000 server, or an S/390 server running Lotus Go Web server, or Lotus Domino Go

server (Go Web and Domino Go are trademarks of Lotus Development Corporation).

YOR9-1999-0072 8

10

15

20

235

CA 02300562 2000-03-08

Fig. 2 1s a block diagram illustrating a general proxy environment in accordance with an
exemplary embodiment of the present invention. Proxy server node 201 (which could be, by
example, any one of the proxy servers 110, 111, 112 of Fig. 1) is used to represent a computing node
that can service requests through a network 212, such as the network 101 of Fig. 1. Proxy server
node 201 preferably includes a CPU 211, memory 202 such as RAM, and storage devices 210 such
as disk storage devices or, more generally, a direct access storage device (DASD). The proxy server
logic 203 may be stored within the memory 202, and is preferably embodied as computer readable
and executable code which is loaded from disk 210 into memory 202 for execution by CPU 211.
The proxy server logic 203, which is described in more detail with reference to Fig. 3, includes an
object handler 204 (described in further detail in Fig. 5) and an object request handler 205 (described
in further detail in Fig. 4). An object renderer 206, which performs object rendering according to the
RHI associated with a particular object, may also be included in the proxy server logic 203. Object
renderer may be a computer program which renders, by example, a color image into a
black-and-white image, or one that reduces a complex HyperText Markup Language (HTML) text
into a simple HTML text containing only a summary of the HTML headers. Proxy server logic 203
may also include a cache manager 207 which maintains a local copy of the partially rendered or
completely rendered objects in order to avoid repeating some object rendering operations with the
same proxy Server.

Fig. 31s atlow chart diagram that depicts the general operations of the proxy server node 201
when 1t is receiving input in accordance with an exemplary embodiment of the present invention.
At step 301, the proxy server node 201 waits for the input. Depending on the input received,
ditferent actions are taken. If the input received is an object request at step 302 (e.g., a HyperText
Transter Protocol (HTTP) request from a PDA-type of client 130, 131), then the object request
handler 205 is invoked at step 303. The HTTP is generally used for retrieving document contents
and/or descriptive header information. A detailed implementation of object request handler 205 is
described in Fig. 4. It the input received is an object, step 304, (e.g. an object returned to the present
proxy server node 201 in response to a request made by the proxy server node 201) the object
handler 206 is invoked at step 305. A detailed implementation of the object handler 206 is described

in F1g. 5. For other types of requests, such as file transfer protocol (FTP) requests, a miscellaneous

YOR9-1999-0072 9

10

15

20

25

CA 02300562 2000-03-08

handler 1s invoked at step 306. After invoking the appropriate handler, control returns to step 301
to wait for the next input to the proxy server node 201 from the network 212.

Fig. 4 1s a tlow chart diagram illustrating the operations of the object request handler 205 in
accordance with an exemplary embodiment of the present invention. At step 401, the object request
handler 205 checks with the cache manager 207 to determine if the requested object is available in
the cache. It should be noted that the cache may contain a less detailed version of the requested
object, or 1t may contain a more detailed version. A less detailed version of the object does not
satisfy the requirement and a request for the object must be sent out, typically to the appropriate one
of the content servers 120, 121 or to another proxy server. However, a more detailed version of the
object may be further rendered by the proxy server 110, 111, 112 in order to satisfy the request. If
the requested object cannot be found in the cache, at step 404, the proxy server 110, 111, 112
modities the associated RHI to indicate its ability for providing rendering services and then sends
the request and the moditied RHI to another proxy server or to the content server 120, 121,
depending on the position of the proxy server in the entire proxy chain.

It a copy of the requested object can be found in the local cache, at step 402, the proxy server
checks the cached object against the RHI to see if any further rendering is necessary. Note that the
RHI contains the capability specification of the receiving device (i.e. the device that originally
requested the object that was just found in the cache). By checking the RHI, the proxy server 110,
I11, 112 can determine 1t any further rendering is necessary. If no further rendering is necessary,
the proxy server modities the RHI to indicate its local condition for providing rendering services and
returns the object at step 403. If further rendering is found to be necessary, based on the RHI or the
requesting device, then the proxy server executes at step 405 a selection function to determine
whether or not 1t wishes to perform the rendering locally. Ifthe proxy server decides not to perform
any rendering locally, the proxy server modifies the RHI to indicate its local load condition for
providing such rendering services and returns the object along with the modified RHI at step 406.
It the proxy server instead decides to perform the rendering locally, it checks the RHI at step 407 to
determine 1f it wishes to complete the entire rendering process, or just some part of the required
rendering process. If the proxy server wishes to perform only a portion of the rendering process,

then 1t executes at step 409 another selection function to determine which part of the rendering

YOR9-1999-0072 10

10

15

20

25

CA 02300562 2000-03-08

process to perform. In either case, and after making the decision to perform local rendering at step
405, the proxy server 110, 111, 112 calls the object renderer 206 to perform the object rendering at
step 408. After the rendering process is complete (either a complete or partial rendering), the cache
manager 207 1s called at step 410 to determine whether or not to cache a copy of the rendered object
locally. The proxy server 110, 111, 112 then modifies the RHI at step 406 to reflect its local
condition and returns the rendered (completely rendered or partially rendered) object along with the
moditied RHI.

Those skilled in the art will appreciate that, at step 404, a proxy server 110, 111, 112 may
indicate in the RHI that it has a less detailed version of the requested object in the cache, and then
send a request for the object to another proxy server. A proxy server that has stored a more detailed
version of the requested object may then decide to send the more detailed object to the requesting
proxy server, or it may instead send whatever information that is needed in order for the requesting
proxy server to render the object to the necessary resolution. Alternatively, the proxy server 110,
IT1, 112 containing the more detailed version of the requested object may decide to perform the
necessary rendering for the requesting proxy server and return the completely rendered object to the
requesting proxy server. This type of decision can be based on, for example, the loading of the
requesting proxy server versus the loading of the proxy server that stores the more detailed version
of the requested object.

Those skilled in the art will thus further appreciate that there are many different variations
in the selection function for determining whether or not a given one of the proxy servers 110, 111,
112 1s to perform the entire remaining rendering locally, or what part of the object rendering will be
performed locally.

For example, the selection criteria may include the current CPU load and/or the network
delay from the requesting node, as well as the load condition of the requesting node. The criteria
may further include the type of rendering that is to be performed and the availability of the software
needed to do the rendering. For example, a given one of the proxy servers 110, 111, 112 may be
lightly loaded, yet lack a particular type of software that is required to render the object in a manner
consistent with the display capabilities of the requesting one of the clients 130, 131. The criteria

may also include the local storage availability. However, if a particular proxy server is the last one

YOR9-1999-0072 11

10

S

20

25

CA 02300562 2000-03-08

on the path to the requesting device, then 1t must be able to perform any remaining rendering locally.

Those skilled in the art will also appreciate that 1f a given one of the proxy servers 110, 111,
112 decides to perform partial rendering, it can first divide the remaining rendering operation into
multiple steps and then select one or more of the steps for its own local processing. The goal 1s to
optimize a given objective function using the associated RHI as input parameters. Moreover, a given
one of the proxy servers 110, 111, 112 may also assign the remaining steps to the remaining proxy
server(s) along on the path to the requesting client device 130, 131. Any proxy server receiving such
an assignment plan may alter the assignment based on its own local condition (e.g., based on
loading, storage, and/or the availability of the software necessary to perform its allocated portion of
the assignment plan.) The objective function, which is desired to optimize, can be to reduce the
greatest amount of bandwidth, to reduce the greatest amount of load imbalance among the remaining
proxies on the path to the requesting device, or a combination of the two. It can also be to minimize
the estimated response time from the current proxy server 110, 111, 112 to the requesting client
device 130, 131, based on the RHI.

Fig. 5 is a flow chart diagram illustrating the object handler 204 of the proxy server logic
203. At step 501, when a proxy server receives an object, it first tests the associated RHI to
determine if further rendering is necessary. Ifnot, it passes the object to the cache manager 207 tor
caching consideration at step 502. At step 503, the received object 1s returned to the requesting
client device 130, 131, or to another proxy server 110, 111, 112 on the path to the recetving client
device. In returning the object, the proxy server may modify the associated RHI to indicate 1ts local
condition.

[f the proxy server instead determines at step 501 that further rendering of the object 1s
necessary, it determines at step 504 whether or not it will perform the rendering based on 1ts local
condition(s), such as CPU loading. If it decides not to perform the local rendering, at step 5035 1t
modifies the RHI and then return the object to another proxy server on the path to the requesting
client device 130, 131. If, on the other hand, the proxy server determines at step 504 to pertorm
local rendering of the object, at step 506 the proxy server further determines if it will perform the
entire remaining rendering process locally. Ifnot, it may divide the remaining rendering process into

multiple steps, and then select a subset of the steps to perform locally at step 508. Object renderer

YOR9-1999-0072 12

10

15

20

235

CA 02300562 2000-03-08

206 1s then called to perform the local rendering at step 507. After the rendering computations, at
step 509, the cache manager 207 is called to determine if the rendered object should be cached. The
proxy server 110, 111, 112 then modities the associated RHI and returns the object either to the
requesting client device 130, 131, or to another proxy server on the path to the requesting client
device 130, 131.

It 1s possible that different intermediate proxy servers will choose different selection
functions for determining the amount of object rendering to perform locally. In addition, each node
in the proxy network can periodically collect load statistics from neighboring proxy server nodes,
instead ot including such load conditions in the RHI associated with each request.

Those skilled in the art will appreciate that the cache manager 207, in managing the cache,
may take into consideration the processing cost of producing the rendered object. Therefore, the
cache manager may maintain a separate stack for locally rendered objects in addition to a regular
stack for other objects. It may also cache objects rendered by other proxy servers if it is beneficial
to do so.

Having thus described this invention with respect to exemplary embodiments thereof, amore
detailed explanation of certain aspects of this invention, in particular the presently preferred
implementation for the receiver hint information (RHI), will now be provided, as will an example
of the use of this invention.

In general, meta-data information can be stored in HTTP request headers and response
headers, much the same way as the PICS™ ("Platform for Internet Content Selection"). Most
generally, the PICS™ specification enables labels (metadata) to be associated with Internet content.
PICS™ gpecifies amethod of sending meta-information concerning electronic content, and is a Web
Consortium Protocol Recommendation (see http:/www.w3.org/PICS). PICS™ was first used for
sending values-based rating labels for electronic content, but can also facilitate other uses for labels,
such as code signing and privacy. However, the format and meaning of the meta-information is fully
general. In PICS™ meta-information that is descriptive of electronic content is grouped according
to a producer-and-intended-usage of the information, and within one such group, any number of

categories or dimensions of information can be transmitted. Each category has a range of permitted

values. For a specific piece of content, a particular category may have a single value or multiple

YOR9-1999-0072 13

T e N e i s I (AR A oA A TR TR RN 1 Fh 1) 2ideie fe e

CA 02300562 2000-03-08

values. Inaddition, the meta-information group, knownasa "PICST™™ label", may contain expiration

information. Each PICS™ label for a specific piece of electronic content may be add

f-om the content independently.

5 Communications Protocols”,

31-October-96, which is available at http:/Www.W3.0rg /PICS,

article entitled "Filtering Information on the Internet”, Paul Resnick, Scientific American, March

e the resolution of the image.

erver with a PICS label having a field or fields set to indicat
ge size, 1(c 168 1000),

tion label can be specified by a pair of color encoding and 1ma

Such a resolu
information types, and the applicable values

where "c¢" and "s" are transmit names for various meta-

(for ¢) and 1000 (for s), indicating a 16-bit color encoding and 1000M

for this image content are 16

bytes image size. Those proxy servers
hese categories and values.

e similarly encoded as PICS™ labels and transmitted

15 rendering are aware ot how to interpret t Other device capabilities, as well

as load conditions of proxy servers, cal also b

together with the HTTP request headers and/or res

For example, the device capability of a personal di

ponse headers.
gital device (PDD), such as a PDA, can

), indicating that the PDD can only

be specified as a pair of color encoding and image size, d(c1s?2

display (d) animage size (s) of up to 2M bytes (two megabytes) with a 1-bit color encoding (¢). This

20
device capability PICS label can be inserted into a HTTP request header sent among different proxy

servers 110, 111, 112,
above. This PICS label 1s refe

either by the PDD or by a proXy servet coupled to the PDD, as was described

rred to in the context of this invention as the receiver hint information

(RHI).
25 It can be appreciated that a pr

the above-noted PICS label r(c 16 s 1000

noted RHI d(c 1 s 2), will be informed that the PDD
o be rendered into a form that the PDD 1s

oxy server 110,111, 1 12 that receives an image object having
), in response to a request from the PDD having the

above- is incapable of displaying the 1mage

object as received, and that the image object will need t

capable of displaying. The proxy server may perform the entire rendering process, and will then

YOR9-1999-0072 14

10

15

20

25

CA 02300562 2000-03-08

modify the PICS label of the image object to be r(c 1 s 2), i.e., to indicate a format compatible with
the requesting PDD's display capabilities. If, however, for some reason the proxy server elects to not
completely render the image object, or to not render the image object at all, due to, for example,
loading considerations or a lack of suitable software, then the PICS label of the image object will
not reflect a condition compatible with the display capabilities of the PDD. For example, assume that
a given one of the proxy servers 110, 111, 112 elects to only modify the color encoding of the
received image object from 16 level to 1, then the modified PICS label as received by a next proxy
server will be r(c 1 s 1000), which is a form still not compatible with the PDDs' RHI ot d(c 1 s 2).
The next proxy server 110, 111, 112 may then elect to render the received image object to reduce
the image size from 1000 megabytes to 2 megabytes, resulting in the modified PICS label of r(c 1
s 2), which is a form that is compatible with the PDDs' RHI of d(c 1 s 2).

As a further example of distributed object rendering, assume that a personal digital device
PDD is requesting an image file and such image file is not currently present in any of the proxy
servers 110, 111, 112 in the network 101. The request is first sent to a local proxy server A, such
as a local ISP (Internet Service Provider), and then forwarded to a regional proxy server B, and then
to a national proxy server C. The national proxy server C then makes a request to the appropriate
content server 120 or 121.

In accordance with an aspect of the teachings of this invention the local proxy server A
recognizes that a HTTP request for an image file comes from a specific device PDD by recognizing
the device's ID. The local proxy server A then looks up a table or directory stored in local memory

or in another memory to find the device capabilities of the device PDD and the corresponding device

~ capability PICS label, such as d(c 1 s 3), indicating this device can only display an image size ot up

to 3M bytes with 1-bit color encoding. Such a PICS label is then put into the HTTP request header
(as the RHI for the PDD) and is subsequently sent to regional and national proxy servers B and C.
In response to the request from the national proxy server C, the content server 120 or 121 prepares
a resolution PICS label, r(c 16 s 100), and inserts it into the response HTTP header. The image file
is then sent to the national proxy server C. After comparing the resolution PICS label against the
device capability PICS (RHI) label, proxy server C determines that rendering 1s needed for this

image file. Proxy server C then decides whether to do the rendering locally. Ifit is to perform the

YOR9-1999-0072 15

10

15

20

25

CA 02300562 2000-03-08

rendering locally, the national proxy server C then decides whether to complete all of the rendering
itself, or to divide the rendering into multiple steps so that only some of it is performed locally.
Assume that the national proxy server C determines that it will perform a partially rendering, it
partially renders the image file and then updates the resolution PICS label accordingly. Nextassume
that the resulting resolution PICS label is sent, together with the partially rendered image file, to the
regional proxy server B. Similarly, proxy server B determines if it will perform the remaining
rendering locally. If not, it simply forwards the previously modified resolution PICS label, together
with the partially rendered image file, to the local proxy server A. When proxy server A finally
receives the image file, it determines if any remaining rendering needs to be done. If yes, it
completes the rendering locally, since proxy server A is the last proxy server 110, 111, 112 in the
proxy network before the PDD client device 130, 13 |. Proxy server A completes the rendering so
that the image satisfies the device specification indicated by the PICS label d (¢ 1 s 3), and sends the
rendered image file to the requesting PDD client device 130 or 131.

Those skilled in the art should realize that a number of possible network topologies and
architectures can benefit from and operate in accordance with the teachings of this invention, and
the teachings of this invention are thus not intended to be construed to be limited to only the specific
exemplary embodiments that were described above.

Furthermore. the teachings of this invention are not limited to using PICS™ formatted labels
or data structures for implementing the RHI.

Also, objects other than image objects can be requested, returned and also processed by one
or more intermediate computing nodes. As one example, audio objects can be handled in the same
or a similar manner as the above described image objects, wherein the RHI could indicate the audio
playback capability of the requestor. The teachings of this invention can also be applied to complex
HTML documents, containing many headers and paragraphs of text, tor simplifying the documents
when requested by devices, such as PDDs, having limited display capabilities.

1t should also be realized that the teachings of this invention encompass a computer program
embodied on a computer-readable medium (such as the disk 210) for providing individual ones of
servers in a network of collaborative servers capable of performing object processing, such as i1mage

rendering, in accordance with the capabilities of a device which is to consume the object. The

YOR9-1999-0072 16

cere e et el e O LR PRGN RE K B! DI RL en LS e i

10

15

CA 02300562 2000-03-08

computer program includes a code segment, responsive to requestor-specific capability information
included with a request for the object, as well as object-specific information included with the
received object, for processing the object either partially or entirely for causing the object to conform
to the capabilities of the requestor.

The invention also encompasses a program storage device, readable by a machine, that
tangibly embodies a program of instructions executable by the machine to perform method steps
enabling individual ones of computing node machines in an interconnected hierarchical network of
collaborative computing nodes to perform object processing, such as rendering, in accordance with
the capabilities of a device which is to consume the object. The method 1s responsive to
requestor-specific capability information that is included with a request for the object, and is further
responsive to object-specific information included with the object as received from a source of the
object or another computing node machine, for processing the object either partially or entirely so
as to cause the object to conform to the capabilities of the requestor to consume the object.

Thus, while the invention has been particularly shown and described with respect to preferred
embodiments thereof, it will be understood by those skilled in the art that changes in form and details

may be made therein without departing from the scope and spirit of the invention.

YOR9-1999-0072 17

L e et U pretrrbe 415 ASSA AHRAE AL AN M1 47 B HNRREIR i k AED R B N AL EN | PO I LG M+ + € Sae 2L L A R R ST MY b Tas e ERRCTRA L N D M TP R B2 b (4 am e tE

10

15

20

235

CA 02300562 2000-03-08

CLAIMS

The embodiments of the invention in which an exclusive property or privilege is claimed are defined

as follows:

I. A method for operating a data network, comprising steps of:

providing a plurality of computing nodes coupled to the data network, wherein at least one
computing node is a requestor of an object and generates a request, at least one computing node is
a source of the requested object, and at least one computing node is an intermediate computing node
that 1s interposed between the requestor and the source for forwarding the request to the source and
for returning the requested object from the source to the requestor;

including requestor-specific capability information with a generated request for an object;

including object specific descriptor information with the requested object; and

at the at least one intermediate computing node, examining the requestor-specitic capability
information and the object-specific descriptor information and making a determination to process
the object either entirely or partially for causing the requested object to conform either entirely or

partially to the requestor-specific capability information.

2. A method as in claim I, wherein when processing the object the method includes a step of
moditying in whole or in part the object-specific descriptor information to reflect the processing

performed by the at least one intermediate computing node.

3. Amethod as in claim 1, wherein the object is an image object, and wherein the requestor-specific

capability information indicates a capability of the requestor to display the object.

4. A method as in claim 1, wherein the data network is comprised of the Internet.

J>. A method as in claim 1, wherein the step of making a determination can also determine not to
process the object, and wherein the step of making a determination considers at least one local

condition of the intermediate computing node.

YOR9-1999-0072 18

10

15

20

25

CA 02300562 2000-03-08

6. A method as in claim I, wherein the intermediate computing node stores a copy of the requested

object, and wherein the intermediate computing node functions as the source computing node.

7. A method as in claim 3, wherein the intermediate computing node stores a less detailed version
ot the requested object than the requestor-specific capability information indicates the requestor 1s
capable ot displaying, and further including steps of forwarding the request to at least one other
computing node, and at another computing node that has a more detailed version of the requested
object, making a determination as to whether to return the more detailed version of the requested
object, without local rendering, or to instead perform local rendering and return a partially rendered

object, or to instead perform local rendering and return a completely rendered object.

8. A method as in claim 3, wherein the intermediate computing node stores a more detailed version
ot the requested object than the requestor-specific capability information indicates the requestor is
capable of displaying, and further comprising a step of making a determination as to whether to
return the more detailed version of the requested object, without local rendering, or to instead

perform local rendering and return a partially rendered object, or to instead perform local rendering

and return a completely rendered object.

9. Amethod as in claim 3, wherein the intermediate computing node either receives or stores a more
detailed version of the requested object than the requestor-specific capability information indicates
the requestor is capable of displaying, and further comprising a step of rendering the object in order
to reduce an amount of data network bandwidth that is required to transfer the object from the

intermediate computing node.

10. A method as in claim 3, wherein the intermediate computing node one of receives or stores a
more detailed version of the requested object than the requestor-specific capability information
indicates the requestor is capable of displaying, and further comprising a step of rendering the object

in order to reduce an amount of load unbalance for any further intermediate computing nodes located

YOR9-1999-0072 19

10

15

20

235

CA 02300562 2000-03-08

between this intermediate computing node and the requestor.

l1. A method as in claim I, wherein the step of making a determination is made at least in part by

considering a rendering capability of the intermediate computing node.

12. A method as in claim 1, wherein the step of making a determination is made at least in part by

considering a current processing load of the intermediate computing node.

[3. A method as in claim 1, wherein the step of making a determination is made at least in part by

constdering an amount of network delay to the requestor.

4. A method as in claim 3, wherein the intermediate computing node one of receives or stores a
more detailed version of the requested object than the requestor-specific capability information
indicates the requestor is capable of displaying, and wherein the step of making a determination
turther comprises steps of dividing an amount of image object processing into a plurality of steps,
and assigning at least one of the steps to at least one other intermediate computing node located

between the intermediate computing node and the requestor.

[5. A method as in claim 14, wherein the step of assigning generates an assignment plan that is

passed to the at least one other intermediate computing node over the data network.

16. A method as in claim 15, and further comprising a step of modifying the assignment plan at the

at least one other intermediate computing node in accordance with a local condition.

I'7. A method as 1n claim 1, wherein the object is an image object, and wherein the object-specific
descriptor information specifies at least how a color of the image object is expressed, and also a size

of the 1mage object.

18. A method as 1n claim 1, wherein the object is an image object, wherein the requestor computing

YOR9-1999-0072 20

10

15

20

235

CA 02300562 2000-03-08

node 1s comprised of a display for displaying an image object, and wherein the requestor-specific
capability information specifies at least a capability of the requestor to display color, as well as a

maximum size of an image object that can be displayed.

19. A method as in claim 1, wherein at least the requestor-specific capability information is

expressed as meta-information.

20. A method as in claiam 1, wherein at least the requestor-specific capability information is

expressed using a Platform for Internet Content Selection format.

21. A method as in claim 1, wherein the step of including requestor-specific capability information

with a generated request for an object is performed by the requestor.

22. A method as in claim 1, wherein the step of including requestor-specific capability information

with a generated request for an object is performed by an intermediate computing node.

23. Amethod as in claim |, wherein the step of including object-specific descriptor information with

a requested object is performed by the source of the requested object.

24. A method asin claim 1, wherein the step of including object-specific descriptor information with

a requested object 1s performed by an intermediate computing node.

25. A data network having computing nodes coupled thereto, wherein at least one computing node
1S a requestor of an image object and generates a request, said requestor comprising a display for
displaying a requested image object, at least one computing node is a source of the requested image
object, and at least one computing node is an intermediate computing node that is interposed
between the requestor and the source for forwarding the request to the source and for returning the
requested 1mage object from the source to the requestor, wherein one of said requestor or said

intermediate computing node adds requestor-specific image display capability information to a

YOR9-1999-0072 21

10

15

20

25

CA 02300562 2000-03-08

generated request for an image object, wherein one of said source or said intermediate computing
node adds image object-specific descriptor information to a returned requested image object, said
Image object-specific descriptor information being modifiable to reflect a change made to the
associated image object, and where said at least one intermediate computing node is responsive to
an examination of said requestor-specific image display capability information and said
object-specific descriptor information, as well as to at least one local condition, for making a
determination as to whether to render the associated returned image object either completely or
partially so as cause the image object-specific descriptor information of the requested image object
to contorm either completely or partially to the requestor-specific image display capability

information, or to not render the associated image object at all.

26. A network as in claim 25, wherein said at least one intermediate computing node, after rendering
the image object, modifies the associated image object-specific descriptor information to indicate

a result of the rendering operation or operations performed by said at least one intermediate

computing node.

27. A network as in claim 25, wherein the data network is comprised of the Internet.

28. A network as in claim 25, wherein said at least one intermediate computing node comprises a
memory for storing a copy of said image object, and wherein said intermediate computing node can

function as said source computing node by returning the stored copy to the requestor.

29. A network as in claim 28, wherein said at least one intermediate computing node stores a less
detailed version of the requested image object than the requestor-specific image display capability
information indicates the requestor is capable of displaying, and where said at least one intermediate
computing node forwards the request to another intermediate computing node that stores a more
detailed version of the requested image object, and where said another intermediate computing node
1S responsive to an examination of said requestor-specific image display capability information and

said object-specific descriptor information, as well as to the at least one local condition, for making

YOR9-1999-0072 22

[0

15

20

25

CA 02300562 2000-03-08

a determination as to whether to render the stored image object either completely or partially so as
cause the image object-specific descriptor information of the stored image object to conform either

completely or partially to the requestor-specific image display capability information, or to not

render the stored image object at all.

30. A network as in claim 28, wherein said at least one intermediate computing node stores a more
detailed version of the requested image object than the requestor-specitic image display capability
information indicates the requestor is capable of displaying, and where said at least one intermediate
computing node is responsive to an examination of said requestor-specitic image display capability
information and said object-specific descriptor information, as well as to the at least one local
condition, for making a determination as to whether to render the stored image object either
completely or partially so as cause the image object-specific descriptor information of the stored
image object to conform either completely or partially to the requestor-specific image display

capability information, or to not render the stored image object at all.

31. A network as in claim 25, wherein said at least one intermediate computing node, when
rendering a requested image object that is being returned to said requestor, renders the image object

in order to reduce an amount of data network bandwidth that is required to transfer the image object.

32. A network as in claim 25, wherein said at least one intermediate computing node, when
rendering a requested image object that is being returned to said requestor, renders the 1mage object
in order to reduce an amount of load unbalance for any further intermediate computing nodes located

between said at least one intermediate computing node and said requestor.

33. A network as in claim 25, wherein said at least one local condition is comprised of at least one
of a rendering capability of said intermediate computing node, a current processing load of said

intermediate computing node, and an amount of network delay to the requestor.

34. A network as in claim 25, wherein said at least one intermediate computing node further divides

YOR9-1999-0072 23

10

15

20

25

CA 02300562 2000-03-08

an amount ot image object rendering into a plurality of steps, and assigns at least one of the steps

to at least one other intermediate computing node located between said at least one intermediate

computing node and said requestor.

35. A network as in claim 34, wherein said at least one intermediate computing node derives a
rendering step assignment plan that is passed to the at least one other intermediate computing node

over said data network, and where said at least one other intermediate computing node can modify

said assignment plan in response to at least one local condition.

36. A network as in claim 25, wherein said image object-specific descriptor information specifies
at least how a color of said image object is expressed, and also a size of said image object, and
wherein said requestor-specific image display capability information specifies at least a capability
of said requestor to display color, as well as a maximum size of an 1mage object that can be

displayed.

37. A network as in claim 25, wherein at least said requestor-specific 1image display capability

information is expressed as meta-information.

38. A network as in claim 25, wherein at least said requestor-specific image display capability

information is expressed using a Platform for Internet Content Selection format.

39. A computer program embodied on a computer-readable medium for providing individual ones
of servers in a network of collaborative servers a capability of selectively performing object
processing in accordance with capabilities of a device which is to consume the object; said program
comprising a code segment that is responsive to requestor-specific capability information included
with a request for the object, as well as object-specific descriptor information included with a
recelved object being returned to the requestor, for selectively one of not processing the object, or
processing the object either partially or entirely for causing the object to conform to the capabilities

of the requestor to consume the object.

YOR9-1999-0072 24

10

CA 02300562 2000-03-08

40. A program storage device, readable by a machine, that tangibly embodies a program of

Instructions executable by the machine to pertorm method steps enabling individual ones of

the object, the method is responsive to requestor-specitic capability information that is included with
a request for the object, and is further responsive to object-specific descriptor information included
with the object as received from a source of the object or another computing node machine, for
selectively one of not processing the object, or processing the object either partially or entirely for

causing the object to conform to the capabilities of the requestor to consume the object.

YOR9-1999-0072 25

02300562 2000-03-08

CA

LEl

101

49!

0¢i

L 01

LLL

el s ETAte E N

INJINOO

XA

0Cl

oLl

MRCENYeER
INJINOD

L AXOdd

001

ryvely)

L1 D A ke At oL i

02300562 2000-03-08

CA

AHOMLIN

¢cLe

dIOVNVIN
JHOVO /07

<ElENEr

123rgo 907

43 1TONVH

1S3N03y 123rgo COZ

J31ANVH 103780

140)4

219071 '€0¢

AJON3N "20¢

Ol

C

LLC

¢ Il

LOC

RN

ZLE 1L 0L

02300562 2000-03-08

CA

90¢

¢ Ol

43 10NVH
SNOINVTI3OSIN

ON
140)%

¥0Z ¥3TANVH 103780
IAOANI

SJA

GO¢

¢0¢

¢1S3N03Y

ON 193780

¢0%

LNdNI 04 1IVM

10%

e —

GOC 43 10NVH
1S3N03y 193r80
IAOANI

]

SJA

02300562 2000-03-08

CA

v Ol

dJOVNVN JHOVO -

Ol¥
NdO0dd3d Ol Sd31S
SIS OIN oNb3aNay [YRIEON L03re0 (o
ONINIVA3Y 3QIAId -
mo¢M|
ON

¢ONIYIANIY
ONINIVNIY
J4IIN3 3131dNOD

103rg0 N¥N13Y
ANV |HY AJIGONW

SJA

LOV

¢ATIVOOT
ONIJIANIY

s

SJA ON

GOv

SJA

103rg0 NYNL3 SONINIANIY
ANV |HY A4IQOW ON HIHLYNA SIA

op 20% Ot

90v

103r80 1S3ND3Y
ANV [HY AJIGON

¢d334N8 3HL NI
193r80 431S3N03Y

LI N P e A i T4 0 XYWL VPRI

02300562 2000-03-08

CA

103r80 N¥NLIY
ANV |HM AJIQON

GOl

NJ0483d Ol Sd3IS
HOIHM 3NINY3130 ANV
SdJLS OINI ONIYIANIY

IONINIVA3Y 3AIAIG

PP r S —

806G -

ON

¢IONIYIANTY
ININIVN IS
JA4IINI 3131dW0D

906G

SdA

JAOVNVN JHOVD |

205 -/

ON

43OVNVWN JFHOVO

5

d3430NJd 103190

SJA

606G

£0G

103r80 N¥NL3Y
ANV |4 AJIQON

¢ATIVOOT
INIYIANIY

140

SJA

¢INIGIANIY
dIHL1HNS

L 0S

GOG

ON

s ~ Setpla v Lo D HYIDANE L s o e

110 111 112

PROXY 1 PROXY 2 tee PROXY k

100

101

120

CONTENT
SERVER 1

121 130
SERVER m

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - abstract drawing

