(54) 名稱
Material for Light Emitting Layer and Organic Electroluminescent Device Using the Same

(57) 摘要
本發明藉由使用由下述通式（X）所表示的化合物作為發光層用材料，可提供一種驅動電壓、發光效率及元件壽命優異的有機電場發光元件，上述化合物為於 2 個苯基鍵結於 9 位及 10 位上的惡化合物中，使特定芳基φ取代於其中一個苯基（於其 1 位上與鍵結的 2 位及 5 位、3 位及 4 位或 2 位及 4 位及 5 位上而成。

This invention provides an organic electroluminescent device with an excellent driving voltage, light emitting efficiency and device life by using a compound represented by the following formula (X) as a material for a light emitting layer. The compound is obtained by substituting a specific aryl group φ at two position and five position, three position and four position or two position and four position and five position for one phenyl group, which is bonded to an anthracene at one position, in an anthracene compound in which two phenyl groups are bonded at nine position and ten position.

式中，φ 為苯基、萘基、菲基或三苯并苯基，Ar 及 Ar1 為可經取代的芳基，R 為烷基或環烷基。
In the formula, \(\phi \) is a phenyl group, a naphthyl group, a phenanthryl group or a triphenylenyl group, \(\text{Ar} \) and \(\text{Ar}^1 \) are an aryl group which can be substituted, and \(\text{R} \) is an alkyl group or a cycloalkyl group.

指定代表图：

符號簡單說明：
100 有機電場發光元件
101 基板
102 陽極
103 電洞注入層
104 電洞傳輸層
105 發光層
106 電子傳輸層
107 電子注入層
108 陰極

[图1]

特徵化學式：

\[
\phi
\]
【發明摘要】

【中文發明名稱】發光層用材料及使用其的有機電場發光元件

【英文發明名稱】MATERIAL FOR LIGHT EMITTING LAYER AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME

【中文】本發明藉由使用由下述通式（X）所表示的化合物作為發光層用材料，可提供一種驅動電壓，發光效率及元件壽命優異的有機電場發光元件，上述化合物為於2個苯基鍵結於9位及10位上的蒽化合物中，使特定芳基φ取代於其中一個苯基（於其1位上與蒽鍵結）的2位及5位、3位及4位或2位及4位及5位上而成。

式中，φ為苯基、萘基、菲基或三苯并苯基，Ar及Ar′為可經取代的芳基，R為烷基或環烷基。
【英文】This invention provides an organic electroluminescent device with an excellent driving voltage, light emitting efficiency and device life by using a compound represented by the following formula (X) as a material for a light emitting layer. The compound is obtained by substituting a specific aryl group φ at two position and five position, three position and four position or two position and four position and five position for one phenyl group, which is bonded to an anthracene at one position, in an anthracene compound in which two phenyl groups are bonded at nine position and ten position.

\[
\phi \quad \begin{array}{c}
\text{(Ar}^1)_{m} \\
(R)_{c} \\
(y)_{b} \\
(Ar)_{n} \\
\text{(R)}_{d} \\
(R)_{a}
\end{array}
\]

In the formula, φ is a phenyl group, a naphthyl group, a phenanthryl group or a triphenylenyl group, Ar and Ar\(^1\) are an aryl group which can be substituted, and R is an alkyl group or a cycloalkyl group.

【指定代表圖】圖1。
【代表圖之符號簡單說明】
100：有機電場發光元件
101：基板
102：陽極
103：電洞注入層
104：電洞傳輸層
105：發光層
106：電子傳輸層
107：電子注入層
108：陰極

【特徵化學式】

\[
\phi \quad \begin{array}{c}
\text{(Ar}^1\text{)}_m \\
\text{(R)}_c \\
y \text{(R)}_b \\
x \text{(Ar)}_n \\
\text{(X)} \\
\text{(R)}_d \\
\text{(R)}_a
\end{array}
\]
【發明說明書】
【中文發明名稱】發光層用材料及使用其的有機電場發光元件
【英文發明名稱】MATERIAL FOR LIGHT EMITTING LAYER AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME

【技術領域】
【0001】本發明是有關於一種蒽化合物的發光層用材料，進而是有關於一種適合作為例如彩色顯示器等顯示裝置的顯示元件的有機電場發光元件。更詳細而言，本發明是有關於一種藉由將特定的蒽化合物用於發光層中而改善了驅動電壓、發光效率及壽命等的有機電場發光元件（以下有時簡稱為有機EL(Electro-Luminescence)元件或僅簡稱為元件）。

【先前技術】
【0002】有機EL元件為自發光型的發光元件，作為顯示用或照明用的發光元件而備受期待，近年來正在進行活躍的研究。為了促進有機EL元件的實用化，元件的低消耗電力化、長壽命化為不可缺少的要素，尤其於藍色發光元件方面成為大問題。
【0003】因此，對有機發光材料進行了各種研究，為了實現藍色發光元件的發光效率或壽命的提高，對使各種取代基鍵結於蒽的基本骨架上而成的衍生物進行了改良（例如專利文獻1～專利文獻...）
3). 專利文獻 1 中揭示有一種發光材料，該發光材料藉由使 2 個苯基鍵結於蒽骨架的 9 位及 10 位上且使各種基團於其中一個苯基上進行間位取代，而實現了長壽命。於專利文獻 2 中揭示有一種藍色發光材料，該藍色發光材料藉由使經取代/未經取代的苯基及經取代/未經取代的苯基鍵結於蒽骨架上，而實現了與本申請案所需求的特性相同的特性。進而，於專利文獻 3 中揭示了以下嘗試：使用同樣地於蒽骨架的 9 位及 10 位上連結鄰位取代的苯基、且於該苯基上進一步連結經取代的胺基或苯并呋喃基等而成的化合物，來改善發光效率或元件壽命。

【0004】 [先前技術文獻]

[專利文獻]

[專利文獻 1] 日本專利特開 2000-273056 號公報
[專利文獻 2] 日本專利特開 2006-045503 號公報
[專利文獻 3] 日本專利特開 2009-249551 號公報

【發明內容】

【0005】 [發明所欲解決的課題]

然而，即便是上述各專利文獻中揭示的蒽衍生物，亦尚無法獲得充分的特性。在此種狀況下，期望開發出一種驅動電壓、發光效率及元件壽命等得到改善的藍色發光元件以及使用其的顯示裝置。

[解決課題的手段]
【0006】本发明者等人为了了解决上述课题而进行努力研究，结果发现：藉由使用具有特定结构的通式（X）（即通式（1）～通式（4））所表示的化合物作为发光层中所用的发光层用材料，可获得一种驱动电压、发光效率及元件寿命等得到改善的有机电场发光元件，从而完成了本发明。

【0007】即，本发明提供一种下述的发光层用材料、有机电场发光元件及具备该有机电场发光元件的显示装置、照明装置。

【0008】[1]一种发光层用材料，其含有下述通式（X）所表示的化合物：

\[
\phi \begin{array}{c}
\text{(Ar)}_m \\
\text{(R)}_c \\
\text{(R)}_b \\
\text{(Ar)}_n \\
\text{(R)}_d \\
\text{(R)}_a
\end{array}
\]

式（X）中，

\(\phi \) 为与苯基键结的连结，可经 \(\text{Ar}^1 \) 及 \(\text{R} \) 取代的苯基、萘基、菲基或三苯并苯基（triphenylenyl）。

\(\text{Ar} \) 为可经取代的芳基，\(n \) 为 1 或 2，于 \(n \) 为 1 的情形时 \(\text{Ar} \) 键结於 \(x \) 位及 \(y \) 位的任一者上，於 \(n \) 为 2 的情形时 \(\text{Ar} \) 键结於 \(x \) 位及 \(y \) 位两者上且各自的结构可相同亦可不同。
Ar¹ 為可經取代的芳基，m 為 0～於 φ 上可取代的最大整數，於 m 為 2 以上的情形時 Ar¹ 的結構可分別相同亦可不同，

R 分別獨立地為烷基或環烷基，a 為 0～5 的整數，b 為 0～3 的整數且 b+n 為 4 以下，c 為 0～於 φ 上可取代的最大整數且 c+m 為於 φ 上可取代的最大整數以下，d 為 0～4 的整數，而且。

式 (X) 所表示的蔥化合物中的至少一個氫可經氘取代。

於式 (1) 中，

Ar 為可經取代的芳基，n 為 1 或 2，於 n 為 1 的情形時 Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x 位及 y 位兩者上且各自的結構可相同亦可不同，

Ar¹ 為可經取代的芳基，m 為 0～5 的整數，於 m 為 2 以上的情形時 Ar¹ 的結構可分別相同亦可不同，

R 分別獨立地為烷基或環烷基，a 為 0～5 的整數，b 為 0～3
的整數且 b+n 為 4 以下，c 為 0～5 的整數且 c+m 為 5 以下，d 為 0～4 的整數，而且，

式 (1) 所表示的複合物中的至少一個氫可經氨取代。

【0010】[3]如上述[2]所記載之發光塗料材料，其中 Ar 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，n 為 1 或 2，於 n 為 1 的情形時 Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x 位及 y 位兩者上且各自的結構相同，

Ar 1 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，m 為 0～2 的整數，於 m 為 2 的情形時 Ar 1 的結構分別相同，

R 分別獨立地為碳數 1～4 的烷基或碳數 3～6 的環烷基，a 為 0～2 的整數，b 為 0 或 1，c 為 0～2 的整數，d 為 0～2 的整數，而且，

式 (1) 所表示的複合物中的至少一個氫可經氮取代。

【0011】[4]如上述[2]所記載之發光塗料材料，其中 Ar 為烯基、\(\text{苯基} \)、苯基、菲基或三苯并苯基且其可經苯基、苯基、聯苯基、芳基或三苯并苯基取代，n 為 1 或 2，於 n 為 1 的情形時 Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x 位及 y 位兩者上且各自的結構相同，

Ar 1 為苯基、苯基、聯苯基、芳基或三苯并苯基且其可經苯基、苯基或菲基取代，m 為 0～2 的整數，而且，

R 分別獨立地為甲基、乙基、正丙基、異丙基、第三丁基或環己基，a 為 0 或 1，b 為 0 或 1，c 為 0，d 為 0。

(1-1) (1-301) (1-307)

(1-3) (1-23) (1-53) (1-83)

【0014】[7]如上述[2]所记载之发光层用材料，其为下述式（1-252）、式（1-255）、式（1-261）、式（1-262）、式（1-283）、式（1-559）或式（1-560）所表示的化合物：
【0015】[8]如上述[1]所記載之發光層用材料，其含有下述通式

（2）所表示的化合物：

\[
\begin{array}{c}
\text{(2)} \\
\text{\begin{array}{c}
\text{(Ar1)}_m \\
\text{(R\textsubscript{a})}_c \\
\text{(Ar\textsubscript{b})}_b \\
\text{(R\textsubscript{d})}_d \\
\text{(R\textsubscript{b})}_b \\
\text{(R\textsubscript{c})}_c \\
\text{(Ar\textsubscript{a})}_a \\
\end{array}}
\end{array}
\]

於式（2）中，

式（2）中所表示的環為與苯基鍵結的 1-苯基或 2-苯基，

\(\text{Ar}\) 為可經取代的芳基，\(n\) 為 1 或 2，於 \(n\) 為 1 的情形時 \(\text{Ar}\) 鍵結於 \(x\) 位及 \(y\) 位的任一者上，於 \(n\) 為 2 的情形時 \(\text{Ar}\) 鍵結於 \(x\) 位及 \(y\) 位兩者上且各自的結構可相同亦可不同，

\(\text{Ar1}\) 為可經取代的芳基，\(m\) 為 0～7 的整數，於 \(m\) 為 2 以上的
情形時 Ar1 的結構可分別相同亦可不同，

R 分別獨立地為烷基或環烷基，a 為 0～5 的整數，b 為 0～3 的整數且 b+n 為 4 以下，c 為 0～7 的整數且 c+m 為 7 以下，d 為 0～4 的整數，而且，

式 (2) 所表示的烴化合物中的至少一個氫可經氛取代。

【0016】[9]如上述[8]所記載之發光層用材料，其中式 (2) 中所表示的萘環為與苯基鍵結的 1-萘基或 2-萘基，

Ar 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，n 為 1 或 2，於 n 為 1 的情形時 Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x 位及 y 位兩者上且各自的結構相同，

Ar1 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，m 為 0～2 的整數，於 m 為 2 的情形時 Ar1 的結構分別相同，

R 分別獨立地為碳數 1～4 的烷基或碳數 3～6 的環烷基，a 為 0～2 的整數，b 為 0 或 1，c 為 0～2 的整數，d 為 0～2 的整數，

而且，

式 (2) 所表示的烴化合物中的至少一個氫可經氛取代。

【0017】[10]如上述[8]所記載之發光層用材料，其中式 (2) 中所表示的萘環為與苯基鍵結的 1-萘基或 2-萘基，

Ar 為苯基、萘基、菲基或三苯並菲基且其可經苯基、萘基、

聯苯基、菲基或三苯並菲基取代，n 為 1 或 2，於 n 為 1 的情形時

Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x

位及 y 位兩者上且各自的結構相同，
\[\text{Ar}^1 \] 為苯基、萘基、聯苯基、菲基或三苯并苯基且其可經苯基、
萘基或菲基取代，\(m \) 為 0～2 的整數，而且，

\(R \) 分別獨立地為甲基、乙基、正丙基、異丙基、第三丁基或
環己基，\(a \) 為 0 或 1，\(b \) 為 0 或 1，\(c \) 為 0，\(d \) 為 0。

所表示的化合物：

![化合物](image)

（2-1）

（3）所表示的化合物：

![化合物](image)

式（3）中，

式（3）中所表示的菲環為與苯基鍵結的 1-菲基、2-菲基、3-

第9页，共162页 (发明说明书)
菲基、4-菲基或9-菲基，

Ar 為可經取代的芳基，n 為 1 或 2，於 n 為 1 的情形時 Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x 位及 y 位兩者上且各自的結構可相同亦可不同，

Ar¹ 為可經取代的芳基，m 為 0〜9 的整數，於 m 為 2 以上的
情形時 Ar¹ 的結構可分別相同亦可不同，

R 分別獨立地為烷基或環烷基，a 為 0〜5 的整數，b 為 0〜3
的整數且 b+n 為 4 以下，c 為 0〜9 的整數且 c+m 為 9 以下，d 為
0〜4 的整數，而且，

式（3）所表示的烯化合物中的至少一個氫可經氖取代。

所表示的菲環為與苯基鍵結的 2-菲基、3-菲基或 9-菲基，

Ar 為碳數 6〜18 的芳基且其可經碳數 6〜18 的芳基取代，n
為 1 或 2，於 n 為 1 的情形時 Ar 鍵結於 x 位及 y 位的任一者上，

Ar¹ 為碳數 6〜18 的芳基且其可經碳數 6〜18 的芳基取代，m
為 0〜2 的整數，於 m 為 2 的情形時 Ar¹ 的結構分別相同，

R 分別獨立地為碳數 1〜4 的烷基或碳數 3〜6 的環烷基，a
為 0〜2 的整數，b 為 0 或 1，c 為 0〜2 的整數，d 為 0〜2 的整數，

而且，

式（3）所表示的烯化合物中的至少一個氫可經氖取代。

【0021】[14]如上述[12]所記載之發光層用材料，其中式（3）中

所表示的菲環為與苯基鍵結的 9-苯基，

Ar 為苯基、萘基、菲基或三苯并苯基且其可經苯基、萘基、
聯苯基、菲基或三苯并苯基取代，n 為 1 或 2，於 n 為 1 的情形時
Ar 鍵結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鍵結於 x
位及 y 位兩者上且各自的結構相同。

Ar¹ 為苯基、萘基、聯苯基、菲基或三苯并苯基且其可經苯基、
萘基或菲基取代，m 為 0 ~ 2 的整數，而且，

R 分別獨立地為甲基、乙基、正丙基、異丙基、第三丁基或
環己基，a 為 0 或 1，b 為 0 或 1，c 為 0，d 為 0。

(4) 所表示的化合物：

於式（4）中，

式（4）中所表示的三苯并苯環為與苯基鍵結的 1-三苯并苯
基或 2-三苯并苯基，

Ar 為可經取代的芳基，n 為 1 或 2，於 n 為 1 的情形時 Ar 鍵
結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鎖結於 x 位及 y 位兩者上且各自的結構可相同亦可不同，

ArI 為可經取代的芳基，m 為 0～11 的整數，於 m 為 2 以上的情形時 ArI 的結構可分別相同亦可不同，

R 分別獨立地為烷基或環烷基，a 為 0～5 的整數，b 為 0～3 的整數且 b+n 為 4 以下，c 為 0～11 的整數且 c+m 為 11 以下，d 為 0～4 的整數，而且，

式 (4) 所表示的蔥化合物中的至少一個氫可經氘取代。

Ar 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，n 為 1 或 2，於 n 為 1 的情形時 Ar 鎖結於 x 位及 y 位的任一者上，於 n 為 2 的情形時 Ar 鎖結於 x 位及 y 位兩者上且各自的結構相同，

ArI 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，m 為 0～2 的整數，於 m 為 2 的情形時 ArI 的結構分別相同，

R 分別獨立地為碳數 1～4 的烷基或碳數 3～6 的環烷基，a 為 0～2 的整數，b 為 0 或 1，c 為 0～2 的整數，d 為 0～2 的整數，而且，

式 (4) 所表示的蔥化合物中的至少一個氫可經氘取代。

Ar 為苯基、萘基、菲基或苯並苯基且其可經苯基、萘基、
聯苯基、菲基或苯並苯基取代，n 為 1 或 2，於 n 為 1 的情形時
Ar 鍵結於 x 位及 y 位的任一上，於 n 為 2 的情形時 Ar 鍵結於 x
位及 y 位兩者上且各自的結構相同，
Ar¹ 為苯基、萘基、聯苯基、菲基或苯並苯基且其可經苯基、
萘基或菲基取代，m 為 0～2 的整數，而且，
R 分別獨立地為甲基、乙基、正丙基、異丙基、第三丁基或
環己基，a 為 0 或 1，b 為 0 或 1，c 為 0，d 為 0。

【0025】[18]一種有機電場發光元件，其包括：包含陽極及陰極的一
項所記載之發光層用材料的發光層。

【0026】[19]如上述[18]所記載之有機電場發光元件，其中於上述
發光層中含有選自由具有芴（stilbene）結構的胺、芳香族胺衍生
物及香豆素衍生物所組成的組群中的至少一種。

含有配置於上述陰極與上述發光層之間的電子傳輸層及/或電子注
入層，該電子傳輸層及電子注入層的至少一者含有選自由烴喹啉
系金屬錯合物、吡啶衍生物、啡啉衍生物、硼烷衍生物及苯并咪
唑衍生物所組成的組群中的至少一種。

子傳輸層及電子注入層的至少一者更含有選自由鹼金屬、鹼土金
屬、稀土金屬、鹼金屬的氧化物、鹼金屬的鹵化物、鹼土金屬的
氧化物、鹼土金屬的鹵化物、稀土金屬的氧化物、稀土金屬的鹵化物、鹼金屬的有機錯合物、鹼土金屬的有機錯合物及稀土金屬的有機錯合物所組成的組群中的至少一種。

[發明的效果]

【0031】根據本發明的較佳實施方式，可提供一種驅動電壓低、發光效率高而且元件壽命長的有機電場發光元件。進而可提供一種具備該有效的有機電場發光元件的顯示裝置及照明裝置等。

【圖式簡單說明】

【0032】

圖1為表示本實施形態的有機電場發光元件的概略剖面圖。

【實施方式】

【0033】1.通式（X）所表示的基化合物

通式（X）所表示的基化合物分類為通式（1）所表示的化合物（φ=苯基）、通式（2）所表示的化合物（φ=萘基）、通式（3）所表示的化合物（φ=菲基）及通式（4）所表示的化合物（φ=三苯并苯基）。
【0034】本發明的化合物基本上是於2個苯基鍵結於9位及10位上的兩化合物中，使特定芳基取代於其中一個苯基（於其1位上與蔥鍵結）的2位及5位、3位及4位或2位及4位及5位上而成的化合物，且是藉由選擇此種取代位置及芳基結構來達成作為發光層用材料而更優異的驅動電壓、發光效率及元件壽命的化合物。

【0035】1.1通式（1）所表示的蔥化合物

首先，對上述通式（1）所表示的蔥化合物加以詳細說明。通式（1）分類為以下的式（1a）所表示的結構、式（1b）所表示的結構、式（1c）所表示的結構。

【0036】

\[
\begin{align*}
(\text{Ar}^1)_m & \quad (\text{R})_c & \quad (\text{R})_b & \quad (\text{Ar})_a & \\
(\text{R})_c & \quad (\text{Ar}^1)_m & \quad (\text{R})_b & \quad (\text{Ar})_a & \\
(\text{R})_c & \quad (\text{Ar}^1)_m & \quad (\text{R})_b & \quad (\text{Ar})_a & \\
(\text{R})_c & \quad (\text{Ar}^1)_m & \quad (\text{R})_b & \quad (\text{Ar})_a & \\
(\text{R})_c & \quad (\text{Ar}^1)_m & \quad (\text{R})_b & \quad (\text{Ar})_a & \\
\end{align*}
\]

(1a) n=1
(1b) n=1
(1c) n=2

【0037】作為通式（1）的Ar的「可經取代的芳基」的「芳基」例如可列舉碳數6～30的芳基。較佳的「芳基」為碳數6～18的芳基，更佳為碳數6～14的芳基，進而佳為碳數6～12的芳基。

【0038】具體的「芳基」可列舉：作為單環系芳基的苯基，作為縮合二環系芳基的(1-、2-)萘基，作為縮合三環系芳基的茚-(1-、
3-、4-、5-) 基、氰-(1-、2-、3-、4-、9-) 基、硫-(1-、2-) 基、(1-、
2-、3-、4-、9-) 芳基，作為縮合四環系芳基的三苯并苯-(1-、2-)
基、硫-(1-、2-、4-) 基、稠四苯-(1-、2-、5-) 基、作為縮合五環系
芳基的硫-(1-、2-、3-) 基、稠五苯-(1-、2-、5-、6-) 基等。

【0039】「芳基」於這些中較佳可列舉苯基、萘基、菲基、鈴基
(chrysennyl) 或三苯并苯基等，進而佳可列舉苯基、1-萘基、2-
萘基或菲基，特佳可列舉苯基、1-萘基或2-萘基。

【0040】「芳基」上的取代基只要可獲得所需特性則並無特別限
定，較佳可列舉碳數1～12 的烷基、碳數3～12 的環烷基或碳數6～18 的芳基等。

【0041】作為該取代基的「碳數1～12 的烷基」可為直鍵及分支
鍵的任一種。即，為碳數1～12 的直鍵烷基或碳數3～12 的分支
鍵烷基。更佳為碳數1～6 的烷基（碳數3～6 的分支鍵烷基），進
而佳為碳數1～4 的烷基（碳數3～4 的分支鍵烷基）。具體例可列
舉：甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、
第三丁基、正戊基、異戊基、新戊基、第三戊基、正己基、1-甲
基戊基、4-甲基-2-戊基、3,3-二甲基丁基或2-乙基丁基等，較佳為
甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基或第
三丁基，更佳為甲基、異丙基或第三丁基。

【0042】另外，關於作為該取代基的「碳數3～12 的環烷基」，具
體例可列舉：環丙基、環丁基、環戊基、環己基、甲基環戊基、
環庚基、甲基環己基、環辛基或二甲基環己基等。這些中，較佳

第16页，共162页(發明說明書)
為環戊基或環己基。

【0043】另外，關於作為該取代基的「碳數 6〜18 的芳基」，較佳為碳數 6〜14 的芳基，特佳為碳數 6〜10 的芳基。具體例為苯基、(2-、3-、4-)聯苯基、(1-、2-)萘基、(1-、2-、3-、4-、9-)菲基、(1-、2-)三苯並苯基等。

【0044】關於「芳基」上的取代基，較佳為未經取代，於存在取代基的情形時，其個數例如為可取代的最大個數，較佳為 1 個〜3 個，更佳為 1 個〜2 個，進而佳為 1 個。

【0045】作為通式 (1) 的 Ar1 的「可經取代的芳基」的「芳基」例如可列舉碳數 6〜30 的芳基。較佳的「芳基」為碳數 6〜18 的芳基，更佳為碳數 6〜14 的芳基，進而佳為碳數 6〜12 的芳基。

【0046】具體的「芳基」可列舉：作為單環系芳基的苯基，作為二環系芳基的(2-、3-、4-)聯苯基，作為縮合二環系芳基的(1-、2-)萘基，作為縮合三環系芳基的茚-(1-、3-、4-、5-)基、菲-(1-、2-、3-、4-、9-)基，作為縮合四環系芳基的三苯並苯-(1-、2-)基、 herein基-(1-、2-、4-)基、稠四苯-(1-、2-、5-)基，作為縮合五環系芳基的茚-(1-、2-、3-)基、稠五苯-(1-、2-、5-、6-)基等。

【0047】「芳基」於這些中較佳可列舉苯基、聯苯基、萘基、菲基、麼基或三苯並苯基等，進而佳可列舉苯基、3-聯苯基、4-聯苯基、1-萘基、2-萘基、菲基或三苯並苯基，特佳可列舉苯基、1-萘基或 2-萘基。
【0048】「芳基」上的取代基只要可获得所需特性则并無特別限定，較佳可列舉碳數 1～12 的烷基、碳數 3～12 的環烷基或碳數 6～18 的芳基等。

【0049】關於作為該取代基的「碳數 1～12 的烷基」或「碳數 3～12 的環烷基」，可列舉與上述 Ar 的欄中所說明者相同者。

【0050】另外，關於作為該取代基的「碳數 6～18 的芳基」，較佳為碳數 6～14 的芳基，特佳為碳數 6～10 的芳基。具體例為苯基、
(1-、2-)萘基、(1-、2-、3-、4-、9-)菲基等。

【0051】關於「芳基」上的取代基，較佳為未經取代，於存在取代基的情形時，其個數例如為可取代的最大個數，較佳為 1 個～3個，更佳為 1 個～2 個，進而佳為 1 個。

【0052】Ar 的取代基數 m 為 0～5 的整數，較佳為 0～2 的整數，
更佳為 0 或 1。

【0053】作為通式（1）的 R 的「烷基」例如可列舉碳數 1～12 的烷基，其具體說明可引用上述 Ar 的欄中的說明。

【0054】作為通式（1）的 R 的「環烷基」例如可列舉碳數 3～12 的環烷基，其具體說明可引用上述 Ar 的欄中的說明。

【0055】關於 R 的取代基數（a～d），較佳為 a 為 0～5 的整數，b
為 0～3 的整數（b+n 為 4 以下），c 為 0～5 的整數（c+m 為 5 以下）；而且 d 為 0～4 的整數。更佳為 a 為 0～2 的整數，b 為 0 或
1，c 為 0～2 的整數，而且 d 為 0～2 的整數。進而佳為 a～d 為 0。

【0056】另外，構成通式（1）所表示的化合物的蔥骨架中的氫原
子，取代於蒽的9位或10位上的苯基中的氫原子以及Ar基，Ar¹基或R基中的氫原子的全部或一部分亦可為氫。

【0057】上述式(1)所表示的化合物的具體例例如可列舉：屬於上述式(1a)所表示的結構的下述式(1-1)～式(1-244)及式(1-251)～式(1-294)所表示的化合物，屬於上述式(1b)所表示的結構的下述式(1-301)～式(1-544)及式(1-552)～式(1-562)所表示的化合物，屬於上述式(1c)所表示的結構的下述式(1-601)～式(1-612)所表示的化合物。

【0058】下述化合物中，較佳為下述式(1-1)～式(1-10)、式(1-22)～式(1-36)、式(1-52)～式(1-66)、式(1-82)～式(1-96)、式(1-112)～式(1-120)、式(1-142)～式(1-150)、式(1-154)～式(1-156)、式(1-221)～式(1-244)、式(1-251)、式(1-252)、式(1-255)、式(1-261)、式(1-262)、式(1-283)、式(1-301)～式(1-313)、式(1-320)～式(1-333)、式(1-352)～式(1-360)、式(1-382)～式(1-396)、式(1-412)～式(1-423)、式(1-442)～式(1-453)、式(1-521)～式(1-532)、式(1-534)～式(1-542)、式(1-559)、式(1-560)～式(1-562)、式(1-601)～式(1-606)所表示的化合物，進而佳為下述式(1-1)～式(1-10)、式(1-21)～式(1-30)、式(1-35)、式(1-52)～式(1-60)、式(1-221)～式(1-229)、式(1-251)、式(1-252)、式(1-255)、式(1-261)、式(1-262)、式(1-283)、式(1-301)～式(1-310)、式(1-322)～式(1-330)、式(1-352)～式(1-360)、式(1-382)～式(1-390)。
式（1-412）～式（1-420）、式（1-442）～式（1-450）、式（1-521）～式（1-530）、式（1-534）～式（1-542）、式（1-559）、式（1-560）～式（1-562）、式（1-601）～式（1-606）所表示的化合物。

【0059】
(1-13) (1-14) (1-15)
(1-16) (1-17) (1-18)
(1-19) (1-20) (1-21)

【0061】
(1-22) (1-23) (1-24)
(1-25) (1-26) (1-27)
(1-28) (1-29) (1-30)
(1-31) (1-32) (1-33)

【0062】
(1-43) (1-44) (1-45)
(1-46) (1-47) (1-48)
(1-49) (1-50) (1-51)

【0064】
(1-64) (1-65) (1-66)
(1-67) (1-68) (1-69)
(1-70) (1-71) (1-72)

【0066】
【0068】
【0069】
【0075】
(1-201) (1-202) (1-203)
(1-204) (1-205) (1-206)
(1-207) (1-208) (1-209)
(1-210) (1-211) (1-212)
(1-221) (1-222) (1-223)
(1-224) (1-225) (1-226)
(1-227) (1-228) (1-229)
(1-230) (1-231) (1-232)

【0078】

第38頁，共162頁(發明說明書)
【0080】
【0081】
【0082】
【0083】
(1-301) (1-302) (1-303)
(1-304) (1-305) (1-306)
(1-307) (1-308) (1-309)
(1-310) (1-311) (1-312)

【0084】
(1-352) (1-353) (1-354)
(1-355) (1-356) (1-357)
(1-358) (1-359) (1-360)
(1-361) (1-362) (1-363)

【0089】
【0090】
(1-373) (1-374) (1-375)
(1-376) (1-377) (1-378)
(1-379) (1-380) (1-381)
【0093】
(1-403) (1-404) (1-405)
(1-406) (1-407) (1-408)
(1-409) (1-410) (1-411)

【0094】
【0095】
【0097】
【0098】
(1-454) (1-455) (1-456)
(1-457) (1-458) (1-459)
(1-460) (1-461) (1-462)
【0099】
【0104】
【0105】1.2 通式（2）所表示的葸化合物

继而，对上述通式（2）所表示的葸化合物加以详细说明。通式（2）分类为以下的式（2a）所表示的结构，式（2b）所表示的结构，式（2c）所表示的结构。于各结构中，薁环为1-薁基或2-薁基。

【0106】
【0107】通式 (2) 的 Ar、Ar^1 及 R 可列舉通式 (1) 中說明者。另外，Ar^1 的取代基數 m 為 0～7 的整數，較佳為 0～2 的整數，更佳為 0 或 1。關於 R 的取代基數 (a～d)，較佳為 a 為 0～5 的整數，b 為 0～3 的整數 (b+n 為 4 以下)，c 為 0～7 的整數 (c+m 為 7 以下)，進而 d 為 0～4 的整數。更佳為 a 為 0～2 的整數，b 為 0 或 1，c 為 0～2 的整數，而且 d 為 0～2 的整數。進而佳為 a～d 為 0。

【0108】另外，構成通式 (2) 所表示的化合物的鱗骨架中的氫原子，取代於氫的 9 位或 10 位上的苯基中的氫原子，蔡環中的氫原子以及 Ar 基、Ar^1 基或 R 基中的氫原子的全部或一部分亦可為氘。

【0109】上述式 (2) 所表示的化合物的具體例例如可列舉：屬於上述式 (2a) 所表示的結構的下述式 (2-1)～式 (2-12) 及式 (2-51)～式 (2-62) 所表示的化合物，屬於上述式 (2b) 所表示的結構的下述式 (2-101)～式 (2-112) 及式 (2-151)～式 (2-162) 所表示的化合物。
【0110】下述化合物中，較佳為下述式(2-1)～式(2-3)、式(2-5)、式(2-9)～式(2-12)、式(2-51)～式(2-53)、式(2-55)、式(2-59)～式(2-62)、式(2-101)～式(2-103)、式(2-105)、式(2-109)～式(2-112)、式(2-151)～式(2-153)、式(2-155)、式(2-159)～式(2-162)所表示的化合物。

【0111】

第67頁，共162頁(發明說明書)
【0115】1.3 通式（3）所表示的藜化合物

继而，对上述通式（3）所表示的藜化合物加以详细说明。通式（3）分列为以下的式（3a）所表示的结构，式（3b）所表示的结构，式（3c）所表示的结构。于各结构中，菲环为1-菲基、2-菲基、3-菲基、4-菲基或9-菲基。

【0116】
【0117】通式（3）的 Ar、Ar^1 及 R 可列舉通式（1）中說明者。另外，Ar^1 的取代基數 m 為 0～9 的整數，較佳為 0～2 的整數，更佳為 0 或 1。關於 R 的取代基數 (a～d)，較佳為 a 為 0～5 的整數，b 為 0～3 的整數（b+n 為 4 以下），c 為 0～9 的整數（c+m 為 9 以下），而且 d 為 0～4 的整數。更佳為 a 為 0～2 的整數，b 為 0 或 1，c 為 0～2 的整數，而且 d 為 0～2 的整數。進而佳為 a～d 為 0。

【0118】另外，構成通式（3）所表示的化合物的醣骨架中的氫原子、取代於醣的 9 位或 10 位上的苯基中的氫原子、苯環中的氫原子以及 Ar 基、Ar^1 基或 R 基中的氫原子的全部或一部分亦可為氘。

【0119】上述式（3）所表示的化合物的具體例例如可列舉：屬於上述式（3a）所表示的結構的下述式（3-1）～式（3-12）所表示的化合物，屬於上述式（3b）所表示的結構的下述式（3-51）～式（3-62）所表示的化合物。

【0120】下述化合物中，較佳為下述式（3-1）～式（3-3）、式（3-5）～
式 (3-9) ～ 式 (3-12) 、 式 (3-51) ～ 式 (3-53) 、 式 (3-55) 、 式 (3-59) ～ 式 (3-62) 所表示的化合物。

【0121】

(3-1) (3-2) (3-3)

(3-4) (3-5) (3-6)

(3-7) (3-8) (3-9)

(3-10) (3-11) (3-12)

【0122】
【0123】1.4 通式（4）所表示的蔥化合物

継而，對上述通式（4）所表示的蔥化合物加以詳細說明。通式（4）分類為以下的式（4a）所表示的結構、式（4b）所表示的結構、式（4c）所表示的結構。於各結構中，三苯并苯環為 1-三苯并苯基或 2-三苯并苯基。

【0124】
【0125】通式（4）的 Ar、Ar\(^1\) 及 R 可列舉通式（1）中說明者。另外，Ar\(^1\) 的取代基數 m 為 0～11 的整數，較佳為 0～2 的整數，更佳為 0 或 1。關於 R 的取代基數（a～d），較佳為 a 為 0～5 的整數，b 為 0～3 的整數（b+n 為 4 以下），c 為 0～11 的整數（c+m 為 11 以下），而且 d 為 0～4 的整數。更佳為 a 為 0～2 的整數，b 為 0 或 1，c 為 0～2 的整數，而且 d 為 0～2 的整數。進而佳為 a～d 為 0。

【0126】另外，構成通式（4）所表示的化合物的蒽骨架中的氫原子、取代於蒽的 9 位或 10 位上的苯基中的氫原子、三苯并苯環中的氫原子以及 Ar 基、Ar\(^1\) 基或 R 基中的氫原子的全部或一部分亦可為氘。

【0127】上述式（4）所表示的化合物的具體例例如可列舉：屬於上述式（4a）所表示的結構的下述式（4-1）～式（4-12）所表示的化合物，屬於上述式（4b）所表示的結構的下述式（4-51）～式（4-62）所表示的化合物。
【0128】下述化合物中，較佳為式(4-1)～式(4-3)、式(4-5)、式(4-9)～式(4-12)、式(4-51)～式(4-53)、式(4-55)、式(4-59)～式(4-62)所表示的化合物。

【0129】

(4-1) (4-2) (4-3)
(4-4) (4-5) (4-6)
(4-7) (4-8) (4-9)
(4-10) (4-11) (4-12)

【0130】
【0131】2. 通式（X）所表示的蒽化合物的製造方法

通式（X）所表示的蒽化合物分類為通式（1）所表示的化合物（φ=苯基）、通式（2）所表示的化合物（φ=萘基）、通式（3）所表示的化合物（φ=菲基）及通式（4）所表示的化合物（φ=三苯并苯基）。

【0132】式（1）所表示的蒽化合物可利用已知的合成法來製造。
首先，以式 (1a) 所表示的囝化合物为例对其实合成法加以说明。式 (1a) 所表示的囝化合物例如可经由下述反应式 (1) 所示的路徑来合成。

【0133】首先，於第一阶段的反应中，使用钯触媒且於酸的存在下使囝硼酸衍生物 (1a-2) 與化合物 (1a-1) 進行鈮木偶合反應，合成中间化合物 (1a-3)。其次，於第二阶段中，使用钯触媒且於酸的存在下使硼酸衍生物 (1a-4) 與上述所得的中间化合物 (1a-3) 進行鈮木偶合反應，合成中间化合物 (1a-5)，進而使硼酸衍生物 (1a-6) 進行鈮木偶合反應，藉此可合成本発明的式 (1a) 所表示的囝化合物。式中的 Ar、Ar¹、R、n、m 及 a～d 與通式 (1) 中所用者相同。

【0134】
【0135】於反應式（1）中，藉由使化合物（1a-1）中的反應基 \(Y^1 \)及反應基 \(Y^2 \) 的反應性不同，可使具有不同結構的硼酸衍生物（1a-4）及硼酸衍生物（1a-6）依序反應而合成式（1a）所表示的化合物。於硼酸衍生物（1a-4）及硼酸衍生物（1a-6）具有相同結構的情形（例如式（1-1）所表示的化合物）時，反應基 \(Y^1 \)及反應基 \(Y^2 \) 的反應性亦可相同。
【0136】另外，藉由在反應式（1）中變更化合物（1a-1）中的反應基Y₂的位置，或進一步追加反應基Y₃，可合成式（1b）所表示的叢化合物或式（1c）所表示的叢化合物。

【0137】继而，對作為其他反應路徑的反應式（2）加以說明。於反應式（2）中，使用鈀觸媒且於鹼的存在下使叢硼酸衍生物（1a-2）與預先合成或作為市售品而獲取的化合物（1a-7）進行鈑木偶合反應，藉此可合成本發明的式（1a）所表示的叢化合物。

【0138】
反應式（2）

\[
\begin{align*}
\text{（1a-7）} & \quad X^2: \text{Cl, Br, I或OTf} \\
\text{（1a-2）}
\end{align*}
\]

【0139】於反應式（2）中，藉由選擇預先準備的化合物（1a-7），可合成式（1b）所表示的叢化合物或式（1c）所表示的叢化合物。

【0140】继而，對作為其他反應路徑的反應式（3）加以說明。於
反應式（3）中，使用钯觸媒且於鹼的存在下使預先合成或作為市售品而獲取的硼酸衍生物或硼酸酯衍生物（1a-9）與化合物（1a-8）進行鈴木偶合反應，藉此可合成本發明的式（1a）所表示的碳化合物。

【0141】

反應式（3）

\[
\begin{align*}
\text{X}^2, \text{Cl, Br, I or OTf} & \quad \text{(1a-8)} \\
\text{Z: } & \quad \text{OH, OR, or OAc} \\
\text{Pd 觸媒/鹼} & \quad \text{(1a) n=1}
\end{align*}
\]

【0142】於反應式（3）中，藉由選擇預先準備的化合物（1a-9），可合成式（1b）所表示的碳化合物或式（1c）所表示的碳化合物。

【0143】鈴木偶合反應中所用的钯觸媒的具體例可使用：四(三苯基膦)钯（0）: Pd(PPh₃)₄、雙(三苯基膦)二氯钯（II）: PdCl₂(PPh₃)₂、乙酸钯（II）: Pd(OAc)₂、三(二亞苄基丙酮)二钯（0）: Pd₂(dba)₃、
三(二亞苄基丙酮)二鈀(0)氯仿錯合物：Pd₂(dba)₃·CHCl₃，雙(二亞苄基丙酮)鈀(0)：Pd(dba)₂，雙(三第三丁基膦基)鈀(0)：Pd(P(t-Bu)₃)₂，或二氯化[1,1'-雙(二苯基膦基)二茂鐵]鈀(Ⅱ)二氯甲烷錯合物(1：1)：PdCl₂(dppe)·CH₂Cl₂等。

【0144】另外，為了促進反應，視情況而定亦可於該些鈀化合物中添加膦化合物。膦化合物例如可列舉：三(第三丁基)膦：t-Bu₃P，三環己基膦：PCy₃，1-(N,N-二甲基胺基甲基)-2-(二第三丁基膦基)二茂鐵，1-(N,N-二丁基胺基甲基)-2-(二-第三丁基膦基)二茂鐵，1-(甲氧基甲基)-2-(二-第三丁基膦基)二茂鐵，1,1'-雙(二-第三丁基膦基)二茂鐵，2,2'-雙(二-第三丁基膦基)-1,1'-聯萘，2-甲氧基-2'-(二-第三丁基膦基)-1,1'-聯萘或2-二環己基膦基-2',6'-二甲氧基聯苯等。

【0145】另外，反應中所用的鹼的具體例可列舉：碳酸鈉，碳酸鈾，碳酸氫鈉，碳酸氫鈉，氫氧化鈉，氫氧化鈣，氫氧化鋰，乙氧基鈉，第三丁氧基鈉，乙酸鈉，磷酸三鈉：K₃PO₄或氟化鈉等。

【0146】進而，上述反應式(1)～反應式(3)中所用的溶劑例如可列舉：苯，甲苯，二甲苯，1,2,4-三甲基苯，N,N-二甲基甲醯胺，N,N-二甲基乙醯胺，四氫呋喃，二乙醚，第三丁基甲醚，1,4-二噁烷，甲醇，乙醇，異丙醇，第三丁醇，環戊基甲基醚等。這些溶劑可單獨使用，亦能以混合溶劑的形式使用。反應通常是於50℃～180℃的溫度範圍內實施，更佳為70℃～130℃。

【0147】另外，本發明的化合物中亦包含至少一部分氫原子經氘
取代者，此種化合物可藉由使用將所需部位氫化所得的原料與上述同樣地合成。

【0148】以上，對選擇苯基作為通式 (X) 中的 φ 的化合物 (通式 (1) 所表示的脂肪化合物) 的製造方法進行了說明，但通式 (2) ~ 通式 (4) 所表示的脂肪化合物亦可應用上述製造方法來製造。即，可藉由以下方式製造：於上述製造方法中，將以 φ 成為苯基的方式選擇的原料化合物分別變更為使 φ 成為萘基、菲基或三苯并苯基的原料化合物。

【0149】3. 有機電場發光元件

本發明的脂肪化合物例如可用作有機電場發光元件的材料。以下，根據圖式對本實施形態的有機電場發光元件加以詳細說明。圖 1 為表示本實施形態的有機電場發光元件的概略剖面圖。

【0150】＜有機電場發光元件的結構＞

圖 1 所示的有機電場發光元件 100 具有基板 101、設於基板 101 上的陰極 102、設於陽極 102 上的電洞注人層 103、設於電洞注人層 103 上的電洞傳輸層 104、設於電洞傳輸層 104 上的發光層 105、設於發光層 105 上的電子傳輸層 106、設於電子傳輸層 106 上的電子注人層 107 及設於電子注人層 107 上的陰極 108。

【0151】再者，有機電場發光元件 100 亦可將製作順序顛倒而設定為例如以下構成：具有基板 101、設於基板 101 上的陰極 108、設於陰極 108 上的電子注人層 107、設於電子注人層 107 上的電子傳輸層 106、設於電子傳輸層 106 上的發光層 105、設於發光層 105
上的電洞傳輸層 104，設於電洞傳輸層 104 上的電洞注入層 103
及設於電洞注入層 103 上的陽極 102。

【0152】上述各層並非全部必需，將最小構成單位設定為包含陽
極 102、發光層 105 及陰極 108 的構成，電洞注入層 103、電洞傳
輸層 104、電子傳輸層 106、電子注入層 107 為任意設置的層。另
外，上述各層分別可包含單一層，亦可包含多層。

【0153】構成有機電場發光元件的層的實施方式除了上述「基板/
陽極/電洞注入層/電洞傳輸層/發光層/電子傳輸層/電子注入層/陰
極」的構成方式以外，亦可為「基板/陽極/電洞傳輸層/發光層/電
子傳輸層/電子注入層/陰極」、「基板/陽極/電洞注入層/發光層/電
子傳輸層/電子注入層/陰極」、「基板/陽極/電洞注入層/電洞傳輸層/
發光層/電子注入層/陰極」、「基板/陽極/電洞注入層/電洞傳輸層/
發光層/電子傳輸層/陰極」、「基板/陽極/發光層/電子傳輸層/電子注
入層/陰極」、「基板/陽極/電洞傳輸層/發光層/電子注入層/陰極」、
「基板/陽極/電洞傳輸層/發光層/電子傳輸層/陰極」、「基板/陽極/
電洞注入層/發光層/電子注入層/陰極」、「基板/陽極/電洞注入層/
發光層/電子傳輸層/陰極」、「基板/陽極/發光層/電子傳輸層/陰
極」、「基板/陽極/發光層/電子注入層/陰極」的構成方式。

【0154】＜有機電場發光元件中的基板＞

基板 101 成為有機電場發光元件 100 的支撐體，通常可使用
石英、玻璃、金屬、塑膠等。基板 101 是根據目的而形成為板狀、
膜狀或片狀，例如可使用玻璃板、金屬板、金屬箔、塑膠膜、塑
胶片等。其中，较佳为玻璃板及聚酯、聚甲基丙烯酸酯、聚碳酸酯、聚砜等透明的合成树脂製板。若为玻璃基板，则可使用碱石灰玻璃（soda lime glass）或无酸玻璃等，另外，厚度亦只要有确保机械强度的充分厚度即可。例如只要为 0.2 mm 以上即可。厚度的上限值例如为 2 mm 以下，较佳为 1 mm 以下。关于玻璃的材質，由于自玻璃中的溶出離子以少為佳，故较佳為無酸玻璃，但実施有 SiO₂ 等的阻障塗層（barrier coat）的碱石灰玻璃亦有市售，故可加以使用。另外，於基板 101 上，为了提高阻氧性，亦可至少於单面上设置緻密的矽氧化膜等阻氣膜，尤其於使用阻氧性低的合成树脂製板、膜或片作为基板 101 的情形時，較佳為設置阻氧膜。

【0155】＜有機電場發光元件中的陽極＞

陽極 102 發播對發光層 105 注入電洞的作用。再者，於陽極 102 與發光層 105 之間設有用電洞注入層 103 及/或電洞傳輸層 104 的情形時，經由該些層對發光層 105 注入電洞。

【0156】形成陽極 102 的材料可列舉無機化合物及有機化合物。無機化合物例如可列舉：金屬（鋁、金、銀、鎳、鈀、銥等）、金屬氧化物（铟的氧化物、錳的氧化物、铟-錳氧化物（Indium Tin Oxide, ITO）、铟-錳氧化物（Indium Zinc Oxide, IZO）等）、鈷化金屬（碘化銅等）、硫化銅、碳黑、ITO 玻璃或奈塞玻璃（NESA glass）等。有機化合物例如可列舉：聚(3-甲基噻吩)等聚噻吩、聚吡咯、聚苯胺等導電性聚合物等。此外，亦可自被用作有機電場
發光元件的陽極的物質中適當選擇而使用。

【0157】關於透明電極的電阻，只要可對發光元件的發光供給充分的電流，則並無限定，就發光元件的消耗電力的觀點而言，理想的是低電阻。例如若為300 Ω/c以下的ITO基板則作為元件電極發揮功能，但由於目前亦可提供10 Ω/c左右的基板，故例如特別理想的是使用100 Ω/c～5 Ω/c，較佳為50 Ω/c～5 Ω/c的低電阻品。ITO的厚度可根據電阻值而任意選擇，通常大多於50 nm～300 nm之間使用。

【0158】＜有機電場發光元件中的電鍵注入層、電鍵傳輸層＞

電鍵注入層103發揮以下作用：將自陽極102移動而來的電洞高效地注入至發光層105內或電鍵傳輸層104內。電鍵傳輸層104發揮以下作用：將自陽極102注入的電洞或自陽極102經由電洞注入層103而注入的電洞高效地傳輸至發光層105。電洞注入層103及電鍵傳輸層104是分別藉由將一種或兩種以上的電洞注入/傳輸材料積層、混合而形成，或藉由電洞注入/傳輸材料與高分子黏結劑的混合物而形成。另外，亦可於電洞注入/傳輸材料中添加氟化鐵（III）般的無機鹽而形成層。

【0159】電洞注入/傳輸性物質必須於被施加了電場的電極間高效地注入/傳輸來自正極的電洞，理想的是電洞注入效率高，高效地傳輸所注入的電洞。因此，較佳為以下物質：離子化電位小，而且電洞移動度大，進而穩定性優異，於製造時及使用時不易產生成為陷阱（trap）的雜質。
作為形成電洞注入層 103 及電洞傳輸層 104 的材料，可自以下化合物中選擇使用任意者：於光導電材料中作為電洞的電荷傳輸材料而先前以來慣用的化合物，p 型半導體、有機電場發光元件的電洞注入層及電洞傳輸層中使用的公知化合物。這些的具體例為咔唑衍生物（N-苯基咔唑、聚乙烯基咔唑等）、雙(N-芳基咔唑)或雙(N-烷基咔唑)等雙咔唑衍生物，三芳基胺衍生物（於主鍵或側鍵上具有芳香族三級胺基的聚合物、1,1-雙(4-二-對甲苯基胺基苯基)環己烷、N,N'-二苯基-N,N'-二(3-甲基苯基)-4,4'-二胺基聯苯、N,N'-二苯基-N,N'-二萘基-4,4'-二胺基聯苯、N,N'-二苯基-N,N'-二萘基-4,4'-二苯基-1,1'-二胺、N,N'-二萘基-N,N'-二苯基-4,4'-二苯基-1,1'-二胺、4,4',4''-三(3-甲基苯基(苯基)胺基)三苯基胺等三苯基胺衍生物，星爆狀胺（starburst amine）衍生物等），芪衍生物，酞菁衍生物（無金屬酞菁、銅酞菁等），吡唑啉衍生物、腙系化合物、苯并呋喃衍生物或噻吩衍生物、噻二唑衍生物、卟啉（porphyrin）衍生物等雜環化合物，聚砜烷等。聚合物系中，較佳為於側鍵上具有上述單體的聚碳酸酯或苯乙烯衍生物、聚乙烯基咔唑及聚砜烷等，只要為形成製作發光元件所必需的薄膜、可自陽極注入電洞、進而可傳輸電洞的化合物，則並無特別限定。

另外，亦已知有機半導體的導電性受到其摻雜物的強烈影響。此種有機半導體基質物質包含供電子性良好的化合物，或受電子性良好的化合物。為了摻雜供電子物質，已知有四氰基醌二甲烷（Tetracyanoquinodimethane，TCNQ）或 2,3,5,6-四氟四氮

第 86 頁，共 162 頁(發明說明書)
基-1,4-苯醌二甲烷（2,3,5,6-tetrafluorotetracyano-1,4-benzoquinodimethane，F4TCNQ）等强的受电子体（例如参照文献「M.Pfeiffer, A.Beyer, T.Fritz, K.Leo, 應用物理學（Appl.Phys.Lett.），73(22), 3202-3204(1998)」及文献「J.Blochwitz, M.Pfeiffer, T.Fritz, K.Leo, 應用物理學（Appl.Phys.Lett.），73(6), 729-731(1998)」。这些藉由供电子型基质物质（电洞传输物质）中的电子移动製程而生成所谓电洞。基质物质的传导性视电洞的个数及移动度而相当大幅度地变化。具有电洞传输特性的基质物质例如已知有联苯胺衍生物（N,N'-双(3-甲基苯基)-N,N'-雙(苯基)联苯胺（N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine, TPD），或星状胺衍生物（4,4',4''-三(N,N-联苯胺基)三苯胺（4,4',4''-tris(N,N-benzidylamino)triphenylamine，TDATA）等），或特定的金属酞菁（特别是锌酞菁 ZnPc 等）（日本专利特开2005-167175号公报）。

【0162】＜有機電場發光元件中的發光層＞

發光層 105 藉由以下方式而發光：於被施加了電場的電極間，使自陽極 102 注入的電洞與自陰極 108 注入的電子再結合。形成發光層 105 的材料只要為藉由電洞與電子的再結合受到激發而發光的化合物（發光性化合物）即可，較佳為可形成稳定的薄膜形状，且於固體狀態下顯示強的發光（螢光）效率的化合物。本發明中，可使用上述通式（X）（即通式（1）～通式（4））所表示的化合物作為發光層用的材料。
【0163】發光層為單一層或包含多層均可，分別是藉由發光層用材料（主體材料，摻雜材料）而形成。主體材料與摻雜材料分別為一種或為多種的組合均可。摻雜材料含有於主體材料整體中，或局部地含有於主體材料中均可。作為摻雜方法，可藉由與主體材料的共蒸鍍法而形成，亦可與主體材料預先混合後同時蒸鍍。

【0164】主體材料的使用量視主體材料的種類而不同，只要根據該主體材料的特性來決定即可。主體材料的使用量的標準較佳為發光層用材料整體的 50 重量%～99.999 重量%，更佳為 80 重量%～99.95 重量%，進而佳為 90 重量%～99.9 重量%。本發明的上述通式 (X)（即通式 (1) ～通式 (4)）所表示的化合物特佳為作為主體材料。

【0165】摻雜材料的使用量視摻雜材料的種類而不同，只要根據該摻雜材料的特性來決定即可。摻雜物的使用量的標準較佳為發光層用材料整體的 0.001 重量%～50 重量%，更佳為 0.05 重量%～20 重量%，進而佳為 0.1 重量%～10 重量%。若為上述範圍，則例如於可防止濃度消光現象的方面而言較佳。

【0166】可與本發明的上述通式 (X)（即通式 (1) ～通式 (4)）所表示的化合物併用的主體材料可列舉：先前以來作為發光體而已知的蒽或芘等縮合環衍生物，雙苯乙烯基蒽衍生物或二苯乙烯基苯衍生物等雙苯乙烯基衍生物，四苯基丁二烯衍生物，環戊二烯衍生物，茚衍生物，苯并茚衍生物等。

【0167】另外，摻雜材料並無特別限定，可使用已知的化合物，
可根據所需發光色自各種材料中選擇。具體而言，例如可列舉：菲、蒽、芘、稠四苯、稠五苯、芘、萘并芘、二苯并芘、紅瑩烯（rubrene）及麴（chrysene）等縮合環衍生物；苯并噁唑衍生物，苯并噻唑衍生物，苯并咪唑衍生物，苯并三唑衍生物，噁唑衍生物，噁二唑衍生物，噻唑衍生物，咪唑衍生物，噻二唑衍生物，三唑衍生物，吡唑啉衍生物，芪衍生物，噻吩衍生物，四苯基丁二烯衍生物，環戊二烯衍生物，雙苯乙烯基蔭衍生物或二苯乙烯基苯衍生物等雙苯乙烯基衍生物（日本專利特開平1-245087號公告），雙苯乙烯基仲芳基衍生物（日本專利特開平2-247278號公告），二氮雜苯并二茚（diazaindacene）衍生物，呋喃衍生物，苯并呋喃衍生物，苯基異苯并呋喃、二(2,4,6-三甲苯基)異苯并呋喃、二(2-甲基苯基)異苯并呋喃、二(2-三氟甲基苯基)異苯并呋喃，苯基異苯并呋喃等異苯并呋喃衍生物，二苯并呋喃衍生物，7-二烷基胺基香豆素衍生物，7-哌啶基香豆素衍生物，7-羥基香豆素衍生物，7-甲氧基香豆素衍生物，7-乙醯氧基香豆素衍生物，3-苯并噻唑基香豆素衍生物，3-苯并咪唑基香豆素衍生物，3-苯并噁唑基香豆素衍生物等香豆素衍生物，二氮基亞甲基吡喃衍生物，二氮基亞甲基噻喃衍生物，塩次甲基衍生物，黃隕衍生物，呔雜苯並蔭衍生物（oxabenzanthracene derivative），二苯并哌喃衍生物（xanthene derivative），若丹明衍生物（rhodamine derivative），螢光素衍生物（fluorescein derivative），吡喃鎂衍生物（pyrylium derivative），碳苯乙烯基衍生物，吖啶衍生物，噁嗪衍生物，苯醚衍生物，噻
吲哚酮衍生物，喹啉啉衍生物，吲哚并吡啶衍生物，呋喃吡啶衍生物，1,2,5-噻二唑并茚衍生物，吡咯亚甲基衍生物（pyrromethene derivative），哌瑞酮衍生物（perinone derivative），吡咯并吡咯衍生物，方酸内鎓衍生物，紫ulan酮衍生物（violanthrone derivative），吲哚衍生物，吲哚酮衍生物，去氮杂黄素衍生物（deazaflavin derivative），茚衍生物及苯并茚衍生物等。

【0168】若以顯色光分別例示，則藍色～藍綠色摻雜材料可列舉：萘、蒽、菲、芘、苯并苯、芘、茚（indene）、薁等芳香族烴化合物或其衍生物，呋喃、吡咯、噻吩、噻唑（salole）、9-芴（9-silafuorene）、9,9'-螺二芴、苯并噻吩、苯并呋喃、吲哚、二苯并噻吩、二苯并呋喃、吡唑并吡啶、啡啉、吡嗪、萘啶（naphthrydine）、喹啉啉、吡咯并吡啶、噻唑等芳香族雜環化合物或其衍生物，二苯乙烯基苯衍生物、四苯基丁二烯衍生物、芪衍生物、醛連氮衍生物（aldazine derivative）、香豆素衍生物，吲唑、噻唑、噻二唑、咔唑、噻唑、噻二唑、三唑等嘧啶衍生物及其金屬錯合物及 N,N'-二苯基-N,N'-二(3-甲基基苯基)-4,4'-二苯基-1,1'-二胺所代表的芳香族胺衍生物等。

【0169】另外，綠色～黃色摻雜材料可列舉：香豆素衍生物、䒪苯二甲醯亞胺衍生物，萘醯亞胺衍生物，哌瑞酮衍生物，吡咯并吡咯衍生物，環戊二烯衍生物，吲哚酮衍生物，喹吲哚酮衍生物及紅薊烯等稠四苯衍生物等，進而，於作為上述藍色～藍綠色摻雜材料而例示的化合物中導入有芳基、雜芳基、芳基乙烯基、胺
基、氮基等可實現長波長化的取代基而成的化合物亦可列舉作為較佳例。
【0170】進而，これら～紅色塗料材料可例舉：隸(二異丙基苯基)基四羧酸醯亞胺等醋醯亞胺衍生物，哌嗪酮衍生物，以乙醯丙酮或苯甲醯丙酮與啡啉等作為配位基的 Eu 錯合物等稀土錯合物，4-(二氰基亞甲基)-2-甲基-6-(對二甲基苯基苯乙烯基)-4H-吡喃或多其類似物，鎂酞菁、鋁氧酞菁等金屬酞菁衍生物，若丹明化合物，去氮雜黃素衍生物，香豆素衍生物，喹吖啶酮衍生物，啡喃噪衍生物，喀唑衍生物，喹唑啉衍生物，吡咯並吡啶衍生物，方酸內鍍衍生物，紫䒰酮衍生物，吩嗪衍生物，啡喃噪酮衍生物及噁二唑並芘衍生物等，進而，於作為上述藍色～藍綠色及綠色～黃色塗料材料而例示的化合物中導入有芳基、雜芳基、芳基乙烯基、胺基、氮基等可實現長波長化的取代基的化合物亦可列舉作為較佳例。
【0171】除此以外，塗料物可自化學工業 2004 年 6 月號 13 頁，及其中所列舉的參考文獻等中記載的化合物等中適當選擇使用。
【0172】上述塗料材料中，特佳為具有芪結構的胺、芘衍生物、硼烷衍生物、芳香族胺衍生物、香豆素衍生物、吡喃衍生物或芘衍生物。
【0173】具有芪結構的胺例如是由下述式所表示。
\[
\text{Ar}^1 \text{N} \left(\begin{array}{c} \text{Ar}^2 \\ \text{Ar}^3 \\ \end{array} \right)_m
\]
該式中，Ar^1 為來源於碳數 6～30 的芳基的 m 倍的基團，Ar^2 及 Ar^3 分別獨立地為碳數 6～30 的芳基。$\text{Ar}^1 \sim \text{Ar}^3$ 的至少一個具有芪結構，$\text{Ar}^1 \sim \text{Ar}^3$ 可經取代，而且，m 為 1～4 的整數。

【0174】具有芪結構的胺更佳為下述式所表示的二胺基芪。

该式中，Ar^2 及 Ar^3 分別獨立地為碳數 6～30 的芳基，Ar^2 及 Ar^3 可經取代。

【0175】碳數 6～30 的芳基的具體例可列舉：苯、萘、苊、苊、。

【0176】具有芪結構的胺的具體例可列舉：N,N,N',N'-四[4-(二苯基胺)-4,4'-二胺基芪]，N,N,N',N'-四[2-(萘基)-4,4'-二胺基芪]，N,N',N'-二[二苯基胺]-4,4'-雙[4'-雙(二苯基胺基)苯乙烯基]-聯苯，1,4-雙[4'-雙(二苯基胺基)苯乙烯基]-苯，2,7-雙[4'-雙(二苯基胺基)苯乙烯基]-9,9-二甲基芪，4,4'-雙(9-乙基-3-咔唑乙烯基)-聯苯(4,4'-bis(9-ethyl-3-carbazovinylene) biphenyl)，4,4'-雙(9-苯基-3-咔唑乙烯基)-聯苯等。

另外，亦可使用日本專利特開 2003-347056 號公報、及日本專利特開 2001-307884 號公報等中記載的具有芪結構的胺。

【0177】芘衍生物例如可列舉：3,10-雙(2,6-二甲基苯基)芘，3,10-
雙(2,4,6-三甲基苯基)芐、3,10-二苯基芐、3,4-二苯基芐、2,5,8,11-四-第三丁基芐、3,4,9,10-四苯基芐、3-(1'-芐基)-8,11-二(第三丁基)芐、3-(9'-蔥基)-8,11-二(第三丁基)芐、3,3'-雙(8,11-二(第三丁基)芐基)等。

【0178】硼烷衍生物例如可列舉：1,8-二苯基-10-(二(2,4,6-三甲苯基)硼基)蔥、9-苯基-10-(二(2,4,6-三甲苯基)硼基)蔥、4-(9'-蔥基二(2,4,6-三甲苯基)硼基)蔥、4-(10'-苯基-9'-蔥基)二(2,4,6-三甲苯基)硼基)蔥、9-(二(2,4,6-三甲苯基)硼基)蔥、9-(4'-聯苯基)-10-(二(2,4,6-三甲苯基)硼基)蔥、9-(4'-(N-咔唑基)苯基)-10-(二(2,4,6-三甲苯基)硼基)蔥等。

另外，亦可使用國際公開第2000/40586號手冊等中記載的硼烷衍生物。

【0179】芳香族胺衍生物例如是由下述式所表示。

\[
\begin{align*}
\text{Ar}^4 \left(\begin{array}{c}
\text{N} \\
\text{Ar}^5 \\
\text{Ar}^6
\end{array} \right)_n
\end{align*}
\]

該式中，\(\text{Ar}^4\) 為來源於碳數 6 〜 30 的芳基的 \(n\) 價的基團，\(\text{Ar}^5\)
及 Ar⁶ 分別獨立地為碳數 6 ～30 的芳基，Ar⁴ ～ Ar⁶ 可經取代，而 且 n 為 1 ～4 的整數。

【0180】尤其更佳為以下的芳香族胺衍生物：Ar⁴ 為來源於蔥、鹴或苯的二價基，Ar⁵ 及 Ar⁶ 分別獨立地為碳數 6 ～30 的芳基，Ar⁴ ～ Ar⁶ 可經取代，而 且 n 為 2。

【0181】碳數 6 ～30 的芳基的具體例可列舉：苯、萘、蒽、菲、菲、蔥、彎蒽、三苯并苯、芐、鹴四苯、芐、彎五苯等。

【0182】作為芳香族胺衍生物，鹴系例如可列舉：N,N,N',N'-四苯基-6,12-二胺、N,N,N',N'-四(對甲苯基)阿-6,12-二胺、N,N,N',N'-四(間甲苯基)阿-6,12-二胺、N,N,N',N'-四(萘-2-基)阿-6,12-二胺、N,N'-二苯基-N,N'-二(對甲苯基)阿-6,12-二胺、N,N'-二苯基-N,N'-雙(4-乙基苯基)阿-6,12-二胺、N,N'-二苯基-N,N'-雙(4-異丙基苯基)阿-6,12-二胺、N,N'-二苯基-N,N'-雙(4-第三丁基苯基)阿-6,12-二胺、N,N'-二苯基-N,N'-雙(4-異丙基苯基)-N,N'-二(對甲苯基)阿-6,12-二胺等。

【0183】另外，芐系例如可列舉：N,N,N',N'-四苯基芐-1,6-二胺、N,N,N',N'-四(對甲苯基)芐-1,6-二胺、N,N,N',N'-四(間甲苯基)芐-1,6-二胺、N,N,N',N'-四(4-異丙基苯基)芐-1,6-二胺、N,N,N',N'-四(3,4-二甲基苯基)芐-1,6-二胺、N,N'-二苯基-N,N'-二(對甲苯基)芐-1,6-二胺、N,N'-二苯基-N,N'-雙(4-乙基苯基)芐-1,6-二胺、N,N'-二苯基-N,N'-雙(4-異丙基苯基)-N,N'-二(對甲苯基)芐-1,6-二胺等。
異丙基苯基)荏-1,6-二胺、N,N'-二苯基-N,N'-雙(4-第三丁基苯基)荏-1,6-二胺、N,N'-雙(4-異丙基苯基)-N,N'-二(對甲苯基)荏-1,6-二胺、N,N,N',N'-四(3,4-二甲基苯基)荏-3,8-二苯基荏-1,6-二胺等。

【0184】另外，蒜系例如可列舉：N,N,N,N-四苯基蒜-9,10-二胺、N,N,N',N'-四(對甲苯基)蒜-9,10-二胺、N,N,N',N'-四(間甲苯基)蒜-9,10-二胺、N,N,N',N'-四(4-異丙基苯基)蒜-9,10-二胺、N,N'-二苯基-N,N'-二(對甲苯基)蒜-9,10-二胺、N,N'-二苯基-N,N'-二苯基-N,N'-雙(4-乙基苯基)蒜-9,10-二胺、N,N'-二苯基-N,N'-雙(4-異丙基苯基)蒜-9,10-二胺、N,N'-二苯基-N,N'-雙(4-異丙基苯基)蒜-9,10-二胺、N,N'-二苯基-N,N'-雙(4-第三丁基苯基)蒜-9,10-二胺、N,N'-雙(4-異丙基苯基)-N,N'-二(對甲苯基)蒜-9,10-二胺、2,6-二-第三丁基-N,N,N',N'-四(對甲苯基)蒜-9,10-二胺、2,6-二-第三丁基-N,N'-二苯基-N,N'-雙(4-異丙基苯基)蒜-9,10-二胺、2,6-二-第三丁基-N,N'-雙(4-異丙基苯基)-N,N'-二(對甲苯基)蒜-9,10-二胺、2,6-二環己基-N,N'-雙(4-異丙基苯基)-N,N'-二(對甲苯基)蒜-9,10-二胺、2,6-二環己基-N,N'-雙(4-異丙基苯基)-N,N'-雙(4-第三丁基苯基)蒜-9,10-二胺、9,10-雙(4-二苯基胺基-苯基)蒜、9,10-雙(4-二(1-苯基胺基)苯基)蒜、9,10-雙(4-二(2-苯基胺基)苯基)蒜、10-二-對甲苯基胺基-9-(4-二-對甲苯基胺基-1-苯基)蒜、10-二苯基胺基-9-(4-二苯基胺基-1-苯基)蒜、10-二苯基胺基-9-(6-二苯基胺基-2-苯基)蒜等。

【0185】另外，蒜系例如可列舉：N,N,N,N-四苯基-1,8-蒜-1,6-二
胺、N-聯苯-4-基-N-聯苯-1,8-芘-1,6-二胺、N1,N6-二苯基-N1,N6-雙
-(4-三甲基矽烷基-苯基)-1H,8H-芘-1,6-二胺等。

【0186】另外，除此以外可列舉：[4-(4-二苯基胺基-苯基)萘-1-基]-
二苯基胺、[6-(4-二苯基胺基-苯基)萘-2-基]-二苯基胺、4,4'-雙[4-
二苯基胺基萘-1-基]蒽、4,4'-雙[6-二苯基胺基萘-2-基]蒽、4,4"-
雙[4-二苯基胺基萘-1-基]對聯三苯、4,4"-雙[6-二苯基胺基萘-2-
基]對聯三苯等。

另外，亦可使用日本專利特開2006-156888 號公報等中記載
的芳香族胺衍生物。

【0187】香豆素衍生物可列舉香豆素-6、香豆素-334 等。

另外，亦可使用日本專利特開2004-43646 號公報、日本專利
特開2001-76876 號公報、及日本專利特開平6-298758 號公報等中
記載的香豆素衍生物。

【0188】吡喃衍生物可列舉下述4-二氰基亞甲基-2-甲基-6-對二
甲胺基苯乙烯基-4H-吡喃（4-(dicyanomethylene)-2-methyl-6-
[p-(dimethylamino)-styryl]-4H-pyran，DCM）、4-(二氰基亞甲基)-2-
第三丁基-6-(1,1,7,7-四甲基久羅尼定基-4-乙烯基)-4H-吡喃
（4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin
-4-vinyl)-4H-pyran，DCJTB）等。

【0189】＜有機電場發光元件中的電子注入層、電子傳輸層＞

電子注入層 107 發揮以下作用：將自陰極 108 移動而來的電子有效地注入至發光層 105 內或電子傳輸層 106 內。電子傳輸層 106 發揮以下作用：將自陰極 108 注入的電子或自陰極 108 經由電子注入層 107 而注入的電子有效地傳輸至發光層 105。電子傳輸層 106 及電子注入層 107 是分別藉由將一種或兩種以上的電子傳輸/注入材料積層、混合而形成，或藉由電子傳輸/注入材料與高分子黏結劑的混合物而形成。

【0190】所謂電子注入/傳輸層，是指發揮自陰極注入電子、進而傳輸電子的作用的層，理想的是電子注入效率高，且高效地傳輸所注入的電子。因此較佳為以下物質：電子親和力大，而且電子移動度大，進而穩定性優異，於製造時及使用時不易產生成為陷阱的雜質。然而，於考慮到電洞與電子的傳輸平衡的情形時，於
主要發揮可高效地阻止來自陽極的電洞並不再結合而流向陰極側的作作用的情形時，即使電子傳輸能力並不高那麼高，亦具有與電子傳輸能力高的材料同等的提高發光效率的效果。因此，本實施形態中的電子注入/傳輸層亦可包含以下功能：可高效地阻止電洞的移動的功能。

【0191】形電子傳輸層 106 或電子注入層 107 的材料（電子傳輸材料）可自以下化合物中任意選擇而使用：於光導電材料中作為電子傳送化合物而先前以來慣用的化合物，有機電場發光元件的電子注入層及電子傳輸層中使用的公知的化合物。

【0192】電子傳輸層或電子注入層中所用的材料較佳為含有選自以下化合物中的至少一種：包含芳香環或雜芳香環的化合物（上述芳香環或雜芳香環包含選自碳、氫、氧、硫、矽及磷中的一種以上的原子）、吡咯衍生物及其縮合環衍生物及含有受電子性氨的金屬錯合物。具體可列舉：萘、蒽等縮合環系芳香環衍生物、4,4'-雙(二苯基乙烯基)聯苯所代表的苯乙烯基系芳香環衍生物、哌嗪酮衍生物、香豆素衍生物、萘誘亞胺衍生物、蒽醌或二苯蒽等醚衍生物、磺氧化物衍生物、咔唑衍生物及吲哚衍生物等。具有受電子性氨的金屬錯合物例如可列舉：羥基苯基噻唑錯合物等羥基唑錯合物、導氮次甲基錯合物、托酚酮（tropolone）金屬錯合物、黃酮醇（flavonol）金屬錯合物及苯并噻唑金屬錯合物等。這些材料可單獨使用，亦可與不同的材料混合而使用。

【0193】另外，其他電子傳送化合物的具體例可列舉：吡啶衍生
物、硝衍生物、蒽衍生物、喹啉衍生物、哌嗪酮衍生物、香豆素衍生物、萘酯亚胺衍生物、蒽醌衍生物、二苯醚衍生物、二苯酮衍生物、芘衍生物、嘧啶二唑衍生物（1,3-双[(4-第三丁基苯基)1,3,4-嘧啶二唑]苯等）、噻吩衍生物、三唑衍生物（N-萘基-2,5-二苯基-1,3,4-三唑等）、嘧啶二唑衍生物、8-羟基喹啉衍生物（oxine derivative）的金属络合物、哚喹啉系金属络合物、喹啉衍生物、喹啉衍生物的聚合物、苯并唑（benzazole）类化合物、镍络合物、吡啶衍生物、全氯化苯衍生物、三嗪衍生物、吡嗪衍生物、苯并噻啉衍生物（2,2'-双(苯并[h]喹啉-2-基)-9,9'-螺双茚等）、咔唑并吡啶衍生物、硼烷衍生物、苯并咔唑衍生物（三(N-苯基苯并咔唑-2-基)苯等）、苯并喹啉衍生物、苯并喹啉衍生物、喹啉衍生物、三联吡啶（terpyridine）等低聚吡啶衍生物、联吡啶衍生物、三联吡啶衍生物（1,3-双(4-(2,2':6'2''-三联吡啶基))苯等）、萘啶衍生物（双(1-萘基)-4-(1,8-萘啶-2-基)苯基膦氧化物等）、醛连氮衍生物、咔唑衍生物、吲哚衍生物、硫氧化物衍生物、双苯乙烯基衍生物等。

【0194】另外，亦可使用具有受电子性氮的金属络合物，例如可列举：吲哚喹啉系金属络合物或吲哚基苯基喹啉络合物等吲哚基喹啉络合物、偶氮次甲基络合物、托酚酮金金属络合物、黄酮醇金属络合物及苯并咔唑金属络合物等。

【0195】上述材料可单独使用，亦可与不同的材料混合而使用。

【0196】上述材料中，较佳为吲哚喹啉系金属络合物、联吡啶衍生
物、啡啉衍生物或硼烷衍生物。

【0197】羥喹啉系金屬錯合物為下述通式（E-1）所表示的化合物。

![化学结构式]

式中，R₁～R₆為氫或取代基，M為 Li、Al、Ga、Be 或 Zn，n為1～3的整數。

【0198】羥喹啉系金屬錯合物的具體例可列舉：8-羥喹啉鋁、三(8-羥基喹啉)鋁、三(4-甲基-8-羥基喹啉)鋁、三(5-甲基-8-羥基喹啉)鋁、三(3,4-二甲基-8-羥基喹啉)鋁、三(4,5-二甲基-8-羥基喹啉)鋁、三(4,6-二甲基-8-羥基喹啉)鋁、雙(2-甲基-8-羥基喹啉)苯酚)鋁、雙(2-甲基-8-羥基喹啉)苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2-甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(3-甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(4-甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2-苯基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(3-苯基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2,3-二甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2,6-二甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(3,4-二甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(3,5-二甲基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2,6-二苯基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2,4,6-三苯基苯酚)鋁、雙(2-甲基-8-羥基喹啉)(2,4,5,6-四甲基苯酚)鋁、雙
(2-甲基-8-羟基喹啉)(1-萘酚)铝、双(2-甲基-8-羟基喹啉)(2-萘酚)铝、双(2,4-二甲基-8-羟基喹啉)(2-苯基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(3-苯基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(4-苯基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(3,5-二甲基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(3,5-二甲基苯酚)铝、双(2-甲基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-8-羟基喹啉)铝、双(2,4-二甲基-8-羟基喹啉)铝-μ-氧代-双(2,4-二甲基-8-羟基喹啉)铝、双(2-甲基-4-乙基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-4-乙基-8-羟基喹啉)铝、双(2-甲基-4-甲氧基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-4-甲氧基-8-羟基喹啉)铝、双(2-甲基-5-氯基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-5-氯基-8-羟基喹啉)铝、双(2-甲基-5-三氟甲基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-5-三氟甲基-8-羟基喹啉)铝、双(2-甲基-5-三氟甲基-8-羟基喹啉)铝、双(10-羟基苯并[h]喹啉)铝等。

【0199】联吡啶衍生物为下述通式（E-2）所表示的化合物。

\[
\begin{array}{c}
\text{(E-2)} \\
\end{array}
\]

式中，G 表示单键或 n 倍的基团，n 为 2～8 的整数。另外，不用於吡啶-吡啶或吡啶-G 的键结的碳原子可经取代。

【0200】通式（E-2）的 G 例如可列举以下结构式者。再者，下述结构式中的 R 分別独立地为氢、甲基、乙基、異丙基、環己基、苯基、1-萘基、2-萘基、聯苯基或联三苯基（terphenyl）。
【0201】 吩喃衍生物的具体例可列如下：
2,5-双(2,2'-吡啶-6-基)-1,1-二甲基-3,4-二苯基噻咯
2,5-双(2,2'-吡啶-6-基)-1,1-二甲基-3,4-二
(2,4,6-三甲苯基)噻咯
2,5-双(2,2'-吡啶-5-基)-1,1-二甲基-3,4-二苯
基噻咯
2,5-双(2,2'-吡啶-5-基)-1,1-二甲基-3,4-二(2,4,6-三甲苯基)
噻咯
9,10-二(2,2'-吡啶-6-基)蒽
9,10-二(2,2'-吡啶-5-基)蒽
9,10-二(2,3'-吡啶-6-基)蒽
9,10-二(2,3'-吡啶-5-基)蒽
9,10-二(2,3'-吡
啶-6-基)-2-苯基氯、9,10-二(2,3'-吡啶-5-基)-2-苯基氯、9,10-二(2,2'-吡啶-6-基)-2-苯基氯、9,10-二(2,2'-吡啶-5-基)-2-苯基氯、9,10-二(2,4'-吡啶-6-基)-2-苯基氯、9,10-二(2,4'-吡啶-5-基)-2-苯基氯、9,10-二(3,4'-吡啶-6-基)-2-苯基氯、9,10-二(3,4'-吡啶-5-基)-2-苯基氯、3,4'-二苯基-2,5-二(2,2'-吡啶-6-基)噻吩、3,4'-二苯基-2,5-二(2,3'-吡啶-5-基)噻吩、6'6''-二(2-吡啶基)2,2',4',4'',2''-四聯吡啶等。

【0202】啡啉衍生物為下述通式 (E-3-1) 或通式 (E-3-2) 所表示的化合物。

![化学式](E-3-1)

式中，R1～R8 為氫或取代基，鄰接的基團亦可相互鍵結而形成締合環，G 表示單鍵或 n 值的連接基，n 為 2～8 的整數。另外，通式 (E-3-2) 的 G 例如可列舉與聯吡啶衍生物的欄中說明者相同者。

【0203】啡啉衍生物的具體例可列舉：4,7-二苯基-1,10-啡啉、2,9-二甲基-4,7-二苯基-1,10-啡啉、9,10-二(1,10-啡啉-2-基)蒽、2,6-二(1,10-啡啉-5-基)呫啶、1,3,5-三(1,10-啡啉-5-基)苯、9,9'-二氟-聯(1,10-啡啉-5-基)、2,9-二甲基-4,7-聯苯-1,10-鄰二氮雜菲 (bathocuproin) 或 1,3-雙(2-苯基-1,10-啡啉-9-基)苯等。

【0204】特別對將啡啉衍生物用於電子傳輸層，電子注入層中的情形加以說明。為了長時間獲得穩定的發光，理想的是熱穩定性
或薄膜形成性優異的材料，啡啉衍生物中，較佳為取代基自身具有三維立體結構或藉由與啡啉骨架的立體排斥或與鄰接取代基的立體排斥而具有三維立體結構者，或者將多個啡啉骨架連結而成者。進而，於將多個啡啉骨架連結的情形時，更佳為連結單元中含有一共軛鍵，經取代或未經取代的芳香族烴，經取代或未經取代的芳香雜環的化合物。

【0205】硼烷衍生物為下述通式（E-4）所表示的化合物，詳細揭示於日本專利特開2007-27587號公報中。

\[\text{Y-} \text{X-} \text{B} \]

式中，R^{11} 及 R^{12} 分別獨立地為氮原子、烷基、可經取代的芳基、經取代的礦烷基、可經取代的含氮雜環基或氰基的至少一個，R^{13} \sim R^{16} 分別獨立地為可經取代的烷基或可經取代的芳基，X 為可經取代的伸芳基，Y 為可經取代的碳數 16 以下的芳基，經取代的硼基或可經取代的咔唑基，而且，n 分別獨立為 0 \sim 3 的整數。

【0206】上述通式（E-4）所表示的化合物中，較佳為下述通式（E-4-1）所表示的化合物，進而佳為下述通式（E-4-1-1） \sim 通式（E-4-1-4）所表示的化合物。具體例可列舉：9-[4-(4-二(2,4,6-三甲苯基)硼基苯-1-基)苯基]咔唑、9-[4-(4-二(2,4,6-三甲苯基)硼基苯-1-基)苯-1-基]咔唑等。
式中，R_{11} 及 R_{12} 分別獨立地為氫原子、烷基、可經取代的芳基、經取代的烷烷基、可經取代的含氮雜環基或氫基的至少一個，$R_{13} \sim R_{16}$ 分別獨立地為可經取代的烷基或可經取代的芳基，R_{21} 及 R_{22} 分別獨立地為氫原子、烷基、可經取代的芳基、經取代的烷烷基、可經取代的含氮雜環基或氫基的至少一個，X^1 為可經取代的碳數 20 以下的仲芳基，n 分別獨立為 0 ～ 3 的整數，而且，m 分別獨立為 0 ～ 4 的整數。

【0207】

各式中，$R_{31} \sim R_{34}$ 分別獨立地為甲基、異丙基或苯基的任一者，而且，R_{35} 及 R_{36} 分別獨立地為氫、甲基、異丙基或苯基的任一者。
上述通式（E-4）所表示的化合物中，較佳為下述通式（E-4-2）所表示的化合物，進而佳為下述通式（E-4-2-1）所表示的化合物。

式中，R^{11} 及 R^{12} 分別獨立地為氫原子、烷基、可經取代的芳基、經取代的烷基、可經取代的含氮雜環基或氮基的至少一個，R^{13}～R^{16} 分別獨立地為可經取代的烷基或可經取代的芳基，X^1 為可經取代的碳數 20 以下的延伸基，而且，n 分別獨立為 0～3 的整數。

式中，R^{31}～R^{34} 分別獨立地為甲基、異丙基或苯基的任一者，而且，R^{35} 及 R^{36} 分別獨立地為氫、甲基、異丙基或苯基的任一者。

上述通式（E-4）所表示的化合物中，較佳為下述通式（E-4-3）所表示的化合物，更佳為下述通式（E-4-3-1）或通式（E-4-3-2）所表示的化合物。
式中，R^{11} 及 R^{12} 分別獨立地為氫原子、烷基、可經取代的芳基、經取代的烷基、可經取代的含氮雜環基或氰基的至少一個，$R^{13} \sim R^{16}$ 分別獨立地為可經取代的烷基或可經取代的芳基，X^1 為可經取代的碳數 10 以下的伸芳基，Y^1 為可經取代的碳數 14 以下的芳基，而且，n 分別獨立地為 0～3 的整數。

【0211】

各式中，$R^{31} \sim R^{34}$ 分別獨立地為甲基、異丙基或苯基的任一者，而且，R^{35} 及 R^{36} 分別獨立地為氫、甲基、異丙基或苯基的任一者。

【0212】苯并咪唑衍生物為下述通式（E-5）所表示的化合物。

![E-5](image-url)
式中，$\text{Ar}^1 \sim \text{Ar}^3$ 分別獨立地為氯或可經取代的碳數 6～30 的芳基。特佳為 Ar^1 為可經取代的蒽基的苯并咔唑衍生物。

【0213】碳數 6～30 的芳基的具體例為苯基、1-萘基、2-萘基、苊-1-基、苊-3-基、苊-4-基、苊-5-基、茇-1-基、茇-2-基、茇-3-基、茇-4-基、茇-9-基、艄-1-基、艄-2-基、1-菲基、2-菲基、3-菲基、4-菲基，9-菲基、1-蒽基、2-蒽基、9-蒽基、艐蒽-1-基、艐蒽-2-基、艐蒽-3-基、艐蒽-7-基、艐蒽-8-基、三苯并苯-1-基、三苯并苯-2-基、芘-1-基、芘-2-基、芘-4-基、茙-1-基、茙-2-基、茙-3-基、茙-4-基、茙-5-基、茙-6-基、稠四苯-1-基、稠四苯-2-基、稠四苯-5-基、芘-1-基、芘-2-基、芘-3-基、稠五苯-1-基、稠五苯-2-基、稠五苯-5-基、稠五苯-6-基。

【0215】電子傳輸層或電子注入層亦可更含有以下物質，該物質可將形成電子傳輸層或電子注入層的材料還原。該還原性物質只要具有一定的還原性，則可使用各種物質，例如可較佳地使用選
自由鹼金屬、鹼土金屬、稀土金屬、鹼金屬的氧化物、鹼金屬的卤化物、鹼土金屬的氧化物、鹼土金屬的卤化物、稀土金屬的氧化物、稀土金屬的卤化物、鹼金屬的有機錯合物、鹼土金屬的有機錯合物及稀土金屬的有機錯合物所組成的組群中的至少一種。

【0216】 較佳的還原性物質可列舉：Na（功函數為 2.36 eV）、K（功函數為 2.28 eV）、Rb（功函數為 2.16 eV）或 Cs（功函數為 1.95 eV）等鹼金屬，或 Ca（功函數為 2.9 eV）、Sr（功函數為 2.0 eV～2.5 eV）或 Ba（功函數為 2.52 eV）等鹼土金屬，特佳為功函數為 2.9 eV 以下者。這些中，更佳的還原性物質為 K、Rb 或 Cs 的鹼金屬，進而佳為 Rb 或 Cs，最佳為 Cs。該些鹼金屬的還原能力特別高，可藉由以相對較少的量添加至形成電子傳輸層或電子注入層的材料中，而實現有機 EL 元件中的發光亮度的提高或長壽命化。另外，功函數為 2.9 eV 以下的還原性物質較佳為這些中的兩種以上的鹼金屬的組合，特佳為含有 Cs 的組合，例如 Cs 與 Na、Cs 與 K、Cs 與 Rb，或 Cs 與 Na 與 K 的組合。藉由含有 Cs，可有效地發揮還原能力，可藉由添加至形成電子傳輸層或電子注入層的材料中，而實現有機 EL 元件的發光亮度的提高或長壽命化。

【0217】 〈有機電場發光元件中的陰極〉

陰極 108 發揮以下作用：經由電子注入層 107 及電子傳輸層 106 對發光層 105 注入電子。

【0218】 形成陰極 108 的材料只要為可將電子高效地注入至有機層中的物質，則並無特別限定，可使用與形成陽極 102 的材料相
同者。其中，較佳為錫、銅、鈷、鋁、銀、銅、鎳、鉻、金、鉑、鐵、鋅、鋰、鈉、鉀、銦及鎂等金屬或這些的合金（鎂-銀合金、鎂-銦合金、氟化鋁/鎂等鋁-鋰合金等）等。為了提高電子注入效率而提昇元件特性，有效的是鋰、鈉、鉀、銦、鈣、鎂或含有這些低功函數金屬的合金。然而，該些低功函數金屬通常大多於大氣中不穩定。為了改善此方面，例如已知有以下方法：於有機層中摻雜微量的鋰、銦或鎂，使用穩定性高的電極。其他摻雜物亦可使用氟化鋁、氟化銦、氧化鋁及氧化銦般的無機鹽。然而，並不限定於這些。

【0219】進而，可列舉以下情況作為較佳例：為了保護電極，而積層鉑、金、銀、銅、鐵、錫、鋁及鎂等金屬或使用這些金屬的合金，以及二氧化矽、二氧化氧及氮氧化等無機物，聚乙烯醇、氯乙烯、烴系高分子化合物等。該些電極的製作法只要為電阻加熱、電子束、濺鍍、離子電鍍及塗佈等可實現導通的方法，則並無特別限制。

【0220】＜各層中可使用的黏結劑＞

以上的電洞注入層、電洞傳輸層、發光層、電子傳輸層及電子注入層中所用的材料可單獨使用而形成各層，亦可分散於作為高分子黏結劑的以下樹脂中而使用：聚氯乙烯、聚碳酸酯、聚苯乙烯、聚（N-乙烯基咔唑）、聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯、聚酯、聚楓、聚苯醚、聚二烯、烴樹脂、酮樹脂、苯氧樹脂、聚醯胺、乙基纖維素、乙酸乙烯酯樹脂、丙烯腈-丁二烯-苯乙烯
（Acrylonitrile-Butadiene-Styrene，ABS）樹脂、聚胺基甲酸酯樹脂等溶劑可溶性樹脂，或酚樹脂、二甲苯樹脂、石油樹脂、脲樹脂、三聚氰胺樹脂、不飽和聚酯樹脂、醇酸樹脂、環氧樹脂、矽酮樹脂等硬化性樹脂等。

【0221】《有機電場發光元件的製作方法》

構成有機電場發光元件的各層可藉由以下方式形成：藉由蒸鍍法、電阻加熱蒸鍍、電子束蒸鍍、濺鍍、分子積層法、印刷法、旋塗法或澆鑄法、塗佈法等方法，將應構成各層的材料形成薄膜。如此而形成的各層的膜厚並無特別限定，可根據材料的性質而適當設定，通常為 2 nm～5000 nm 的範圍。膜厚通常可利用石英振盪式膜厚測定裝置等來測定。於使用蒸鍍法加以薄膜化的情形時，其蒸鍍條件根據材料的種類、製成膜的目的的結晶結構及締合結構等而不同。蒸鍍條件通常較佳為於舟皿加熱溫度為+50°C ～+400°C，真空度 10^-6 Pa～10^-3 Pa，蒸鍍速度為 0.01 nm/s～50 nm/s，基板溫度-150°C ～+300°C，膜厚 2 nm～5 μm 的範圍內適當設定。

【0222】繼而，作為製作有機電場發光元件的方法的一例，對包含陽極/電洞注入層/電洞傳輸層/包含主體材料與摻雜材料的發光層/電子傳輸層/電子注入層/陰極的有機電場發光元件的製作法加以說明。於適當的基板上藉由蒸鍍法等形成陽極材料的薄膜而製作陽極後，於該陽極上形成電洞注入層及電洞傳輸層的薄膜。於其上將主體材料與摻雜材料共蒸鍍而形成薄膜作為發光層，於該
發光層上形成電子傳輸層、電子注入層，進而藉由蒸鍍法等形成包含陰極用物質的薄膜作為陰極，藉此可獲得目標有機電場發光元件。再者，於上述有機電場發光元件的製作中，亦可將製作順序顛倒而以陰極、電子注入層、電子傳輸層、發光層、電洞傳輸層、電洞注入層，陽極的順序製作。

【0223】於對此而獲得的有機電場發光元件施加直流電壓的情形時，只要使陽極為正（+）極性，陰極為負（-）極性而施加直流電壓即可，若施加2 V～40 V左右的電壓，則自透明或半透明的電極側（陽極或陰極及兩者）可觀測到發光。另外，該有機電場發光元件於施加脈波電流或交流電流的情形時亦發光。再者，施加的交流波形可為任意。

【0224】＜有機電場發光元件的應用例＞

另外，本發明亦可應用於具備有機電場發光元件的顯示裝置或具備有機電場發光元件的照明裝置等。

具備有機電場發光元件的顯示裝置或照明裝置可藉由將本實施形態的有機電場發光元件與公知的驅動裝置連接等公知的方法來製造，可適當使用直流驅動、脈波驅動、交流驅動等公知的驅動方法來驅動。

【0225】顯示裝置例如可列舉：彩色平板顯示器等面板顯示器、可撓性彩色有機電場發光（EL）顯示器等可撓性顯示器等（例如參照日本專利特開平10-335066號公報、日本專利特開2003-321546號公報、日本專利特開2004-281086號公報等）。另
外，顯示器的顯示方式例如可列舉矩陣及/或區段（segment）方式等。再者，矩陣顯示與區段顯示亦可於同一面板中共存。

【0226】所謂矩陣，是指將用以進行顯示的畫素以格子狀或馬賽克（mosaic）狀等二維地配置，以畫素的集合來顯示文字或影像。畫素的形狀或尺寸是根據用途來決定。例如於個人電腦（personal computer）、監視器（monitor）、電視（television）的影像及文字顯示中，通常使用一邊為 300 μm 以下的四角形的畫素，另外於顯示面板般的大型顯示器的情況下，使用一邊為 mm 級（order）的畫素。單色顯示的情況下只要排列同色的畫素即可，彩色顯示的情況下排列紅色、綠色、藍色的畫素而進行顯示。於該情形時，典型而言有三角型（delta type）與條紋型（stripe type）。而且，該矩陣的驅動方法可為線序驅動方法或主動式矩陣的任一種。線序驅動的情況下有結構簡單的優點，但於考慮到動作特性的情形時，有時主動式矩陣的情況下更優異，因此該驅動方法亦必須根據用途而區分使用。

【0227】於區段方式（型）中，以顯示預先決定的資訊的方式形成圖案，使所決定的區域發光。例如可列舉：數位鐘錶或溫度計的時刻或溫度顯示、音頻設備（audio equipment）或電磁爐等的動作狀態顯示及自動車的面板顯示等。

【0228】照明裝置例如可列舉：室內照明等照明裝置、液晶顯示裝置的背光等（例如参照日本專利特開 2003-257621 號公報、日本專利特開 2003-277741 號公報、日本專利特開 2004-119211 號公報等。）
報等）。背光主要是以提高並不自發光的顯示裝置的視認性為目的而使用，可用於液晶顯示裝置、鐘錶、音頻裝置、自動車面板、顯示板及標識等中。特別作為液晶顯示裝置，其中薄型化成為課題的個人電腦用途的背光，現有方式的背光由於包含螢光燈或導光板故薄型化困難。若考慮到此方面，使用本實施形態的發光元件的背光的薄型且重量輕成為特徵。

【0229】[實施例]

●

首先，以下對實施例中所用的蒽化合物的合成例加以說明。

【0230】＜式（1-1）所表示的化合物的合成例＞

![化合物](image)

(1-1)

●

【0231】＜9-(2,5-二氯苯基)-10-苯基蒽的合成＞

於氮氣環境下，將2-溴-1,4-二氯苯15g、(10-苯基蒽-9-基)硼酸19.8g、四(三苯基膦)鈀(0)(Pd(PPh₃)₄)1.53g、磷酸鉀28.19g及甲苯與乙醇的混合溶劑260ml（甲苯/乙醇=4/1（容量比））加入至燒瓶中，攪拌5分鐘。其後，添加水26ml並回流15小時。加熱結束後將反應液冷卻，添加水50ml。其後，以甲苯萃取反應混合液，以無水硫酸鈉加以乾燥後，去除乾燥剤，將溶劑減壓蒸
齶去除，以矽膠（silica gel）對所得的粗製品進行短管柱純化（溶剤：甲苯）。進而，以甲醇進行再沈澱，獲得作為中間體化合物的
9-(2,5-二氯苯基)-10-苯基蒽 18 g（產率：68%）。

【0232】

【0233】＜9-([1,1':4',1''-聯三苯]-2'-基)-10-苯基蒽的合成＞

於氫氣環境下，將作為中間體化合物的 9-(2,5-二氯苯基)-10-
苯基蒽 5 g，苯基硼酸 4.55 g，雙(二亞苄基丙酮)鈀 (0) (Pd(dba)₂)
0.719 g，三環己基膦 (PCy₃) 0.526 g，磷酸鉀 10.61 g 及甲苯 50 ml
加入至燒瓶中，攪拌 5 分鐘。其後，添加水 10 ml 並回流 15 小時。
加熱結束後將反應液冷卻，添加水，進行過濾而將固體部分作為
粗製品 1。分取濾液部分的有機層，以無水硫酸鈉加以乾燥後，去
除乾燥劑，將溶剤減壓蒸餾去除，將所得的固體作為粗製品 2。繼
而，將粗製品 1 與粗製品 2 合併，以矽膠進行短管柱純化（溶剤：
甲苯）。其後，以甲醇清洗，以甲苯進行再結晶，進而進行昇華純
化而獲得作為式 (1-1) 所表示的目標化合物的 9-([1,1':4',1''-聯三
苯]-2'-基)-10-苯基蒽 2.63 g（產率：44%）。

【0234】
【0235】藉由質譜（Mass Spectrometry，MS）光譜及核磁共振（Nuclear Magnetic Resonance，NMR）測定來確認化合物（1-1）的結構。

\[^1H\text{-NMR (CDCl}_3): \delta = 7.90 \sim 7.88 \text{ (dd, 1H), 7.77 \sim 7.70 \text{ (m, 6H), 7.62 \sim 7.51 \text{ (m, 5H), 7.45 \sim 7.40 \text{ (m, 4H), 7.36 \sim 7.24 \text{ (m, 5H), 7.06 \sim 7.04 \text{ (m, 2H), 6.92 \sim 6.87 \text{ (m, 3H).}}}} \]

【0236】另外，化合物（1-1）的玻璃轉移溫度（Tg）為 97.3°C。

[測定設備：金剛石（Diamond）示差掃描量熱儀（Differential Scanning Calorimetry，DSC）（帕金-艾爾瑪（PERKIN-ELMER）公司製造）；測定條件：冷卻速度 200°C/Min.、升溫速度 10°C/Min.]

再者，以下化合物的玻璃轉移溫度的測定全部是於相同條件下進行。

【0237】＜式（1-301）所表示的化合物的合成例＞
【0238】＜9-(3,4-二氯苯基)-10-苯基葸的合成＞

於氮氣環境下，將4-溴-1,2-二氯苯15.8 g、(10-苯基葸-9-基)
硼酸20.9 g、四(三苯基膦)鉑(0) (Pd(PPh₃)₄) 1.62 g、磷酸鉀29.7
g及甲苯與乙醇的混合溶劑280 ml (甲苯/乙醇=9/1 (容量比)) 加
入至錠瓶中，攪拌5分鐘。其後，添加水28 ml並回流5小時。加
熱結束後將反應液冷卻，添加水100 ml。其後，以甲苯萃取反應
混合液，以無水硫酸鈉加以乾燥後，去除乾燥劑，將溶劑減壓蒸
餾去除，以矽膠對所得的粗製品進行短管柱純化 (溶劑：甲苯)
進而，以甲醇進行再沈澱，獲得作為中間體化合物的 9-(3,4-二氯
苯基)-10-苯基葸12 g (產率：43%)。

【0239】
【0240】＜9-[[1,1':2',1'"-聯三苯]-4'"-基]-10-苯基藤的合成＞

於氫氣環境下，將作為中間體化合物的9-(3,4-二氫苯基)-10-苯基藤5 g、苯基硼酸4.55 g、雙(二亞苄基丙酮)鈀(0)(Pd(dba)_2)0.719 g、三環己基膦(PCy_3)0.526 g、磷酸鉀10.61 g及甲苯50 ml加入至燒瓶中，攪拌5分鐘。其後，添加水5 ml並回流5小時。加熱結束後將反應液冷卻，添加甲醇50 ml，將沈澱過濾。進而以甲醇及水清洗沈澱，獲得式(1-301)所表示的目標化合物的粗製晶。以硅膠對該粗製品進行短管柱純化（溶劑：甲苯）後，以甲苯進行再結晶，進而進行昇華純化，獲得作為式(1-301)所表示的目標化合物的9-[[1,1':2',1'"-聯三苯]-4'"-基]-10-苯基藤4.59 g（產率：76%）。

【0241】

【0242】藉由MS光譜及NMR測定來確認化合物（1-301）的結構。

^1H-NMR (CDCl_3): δ = 7.91～7.89 (m, 2H), 7.72～7.70 (m, 2H), 7.66 (d, 1H), 7.63～7.47 (m, 7H), 7.40～7.18 (m, 14H).

【0243】另外，化合物（1-301）的玻璃轉移溫度(Tg)為110.1℃。
【0245】<9-(4,4"-二(萘-1-基)-[1,1′:2′,1"-聯三苯]-4'-基)-10-苯基
苯基蔥的合成>

於氨氣環境下，將作為中間體化合物的9-(3,4-二氯苯基)-10-
苯基蔥3.99g、4-(萘-1-基)苯基硼酸5.46g、雙(二亞氧基丙酮)鈀
(0)(Pd(dbac)2)0.575g、三環己基膦(PCy3)0.421g、磷酸鉀
8.49g及甲苯50ml加入至燒瓶中，攪拌5分鐘。其後，添加水5
ml並回流5小時。加熱結束後將反應液冷卻，添加甲醇50ml，
將沈澱過濾。進而以甲醇及水清洗沈澱，獲得式(1-307)所表示
的目標化合物的粗製品。以硅鍳對該粗製品進行短管柱純化(溶
劑：甲苯)後，以甲苯進行再結晶，進而進行昇華純化，獲得作
為式(1-307)所表示的目標化合物的9-(4,4"-二(萘-1-
基)-[1,1′:2′,1"-聯三苯]-4'-基)-10-苯基蔥5.1g(產率：69.4%)。

【0246】
【0247】藉由 MS 光譜及 NMR 測定來確認化合物（1-307）的結構。

\[
\text{H-NMR (CDCl}_3\text{): } \delta = 7.99 \sim 7.97, 7.92, 7.88, 7.84, 7.75 \sim 7.73, 7.64 \sim 7.61, 7.58 \sim 7.32 \text{ (m, 23H).}
\]

【0248】另外，化合物（1-307）的玻璃轉移溫度（Tg）為 147.6°C。

【0249】＜式（1-3）所表示的化合物的合成例＞

【0250】＜9-([1,1':3',1":4",1":3",1":"-五聯苯]-2"-基)-10-苯基蒽（9-([1,1':3',1":4",1":3",1":"-quinquephenyl]-2"-yl)-10-phenyl anthracene）的合成＞
於氨氣環境下，將作為中間體化合物的 9-(2,5-二氯苯基)-10-苯基蒽 2 g、3-聯苯硼酸 2.98 g、乙酸鈀 (II) (Pd(OAc)₂) 0.11 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.31 g、磷酸三鉀 4.25 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 23 ml（1,2,4-三甲基苯/第三丁醇=10/1（容量比））加入至燒瓶中，攪拌 5 分鐘。其後，添加水 3 ml 並回流 8 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以矽膠對有機層進行短管柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以矽膠進行管柱純化（溶劑：甲苯/庚烷=1/3（容量比））。最後，進行昇華純化，獲得作為式 (1-3) 所表示的目標化合物的 9-[[1,1':3',1":4",1":3",1":"-五聯苯]-2"-基]-10-苯基蒽 1.83 g（產率：57.5%）。

【0251】

![反應示意圖](image)

(1-3)

【0252】藉由 MS 光譜及 NMR 測定來確認化合物 (1-3) 的結構。

\[^1H-NMR \text{ (CDCl}_3\text{): } \delta = 7.98 \text{ (dd, } 1\text{H}), 7.94 \text{ (d, } 1\text{H}), 7.87 \text{ (d, } 1\text{H}), 7.83 \sim 7.79 \text{ (m, } 3\text{H}), 7.73 \sim 7.72 \text{ (m, } 1\text{H}), 7.66 \sim 7.42 \text{ (m, } 12\text{H}), 7.36 \sim 7.23 \text{ (m, } 7\text{H}), 7.16 \sim 7.08 \text{ (m, } 6\text{H}), 6.68 \sim 6.65 \text{ (m, } 2\text{H})\]
【0253】另外，化合物(1-3)的玻璃轉移溫度(Tg)為104.1℃。

【0254】＜式(1-23)所表示的化合物的合成例＞

![化合物的结构式](image)

(1-23)

【0255】＜9-(5-氯-2-甲氧基苯基)-10-苯基蔥的合成＞

於氮氣環境下，將(5-氯-2-甲氧基苯基)硼酸12.59 g、9-溴-10-苯基蔥15 g、四(三苯基膦)鉻(0)(Pd(PPh₃)₄)1.56 g、磷酸三鉀19.11 g及1,2,4-三甲基苯與第三丁醇的混合溶劑182 ml(1,2,4-三甲基苯/第三丁醇=10/1(容量比))加入至燒瓶中，攪拌5分鐘。其後，添加水17 ml並回流15小時。加熱結束後將反應液冷卻，添加水100 ml。其後，進行過濾而將固體部分作為粗製品1。分取濾液部分的有機層，以無水硫酸鈉加以乾燥後，去除乾燥劑，將溶劑減壓蒸餾去除而將所得的固體作為粗製品2。其後，將粗製品1與粗製品2合併，以硅壤進行短管柱純化(溶劑：甲苯)。進而，以庚烷進行再沈澱，獲得中間體化合物9-(5-氯-2-甲氧基苯基)-10-苯基蔥16.5 g(產率：93%)。

【0256】
【0257】<9-(4-甲氧基-[1,1′:3′,1″-聯三苯]-3-基)-10-苯基蔥的合成>

於氮氣環境下，將中間體化合物9-(5-氯-2-甲氧基苯基)-10-苯基蔥5 g·3-聯苯硼酸3.01 g·雙(二亞芐基丙酮)钯(0)(Pd(dba)2)0.36 g·三環己基膦(PCy3)0.27 g·磷酸三鋅5.38 g及鄰二甲苯50 ml加入至燒瓶中，攪拌5分鐘。其後，添加水5 ml並回流8小時。加熱結束後將反應液冷卻，添加水，分取有機層，以無水硫酸鈉加以乾燥後，去除乾燥劑，對溶劑進行減壓蒸餾去除，以砂軒對所得的固體進行管柱純化（溶劑：庚烷/甲苯=2/1（容量比）），獲得中間體化合物9-(4-甲氧基-[1,1′:3′,1″-聯三苯]-3-基)-10-苯基蔥6.3 g（產率：97%）。

【0258】

【0259】<3-(10-苯基蔥-9-基)-[1,1′:3′,1″-聯三苯]-4-醇的合成>
於氨氣環境下，將中間體化合物 9-(4-甲氧基-[1,1':3',1"-聯三苯]-3-基)-10-苯氧基-9H呫啶酰胺 6.3 g、呫啶鹽酸鹽 7.1 g 及 1-甲基-2-吡啶酮 6 ml 加入至燒瓶中，於 175℃下加熱 4 小時。加熱結束後將反應液冷卻，添加水 100 ml，將沈澱過濾。進而以水清洗沈澱，以矽膠對所得的粗製品進行短管柱純化（溶劑：甲苯/乙酸乙酯=2/1（容量比）），獲得中間體化合物 3-(10-苯基蔥-9-基)-[1,1':3',1"-聯三苯]-4-醇 6.1 g（產率：99%）。

【0260】

【0261】<三氟甲磺酸-3-(10-苯基蔥-9-基)-[1,1':3',1"-聯三苯]-4-基酯的合成 >

於氨氣環境下，將中間體化合物 3-(10-苯基蔥-9-基)-[1,1':3',1"-聯三苯]-4-醇 6.1 g 及吡啶 33 ml 加入至燒瓶中，冷卻至 0℃為止後，緩緩滴加三氟甲磺酸酐 6.9 g。其後，將反應液於 0℃下攪拌 30 分鐘，於室溫下攪拌 2 小時。繼而，於反應液中添加水，將沈澱過濾。以矽膠對所得的粗製品進行短管柱純化（溶劑：甲苯）後，以庚烷進行清洗，獲得中間體化合物三氟甲磺酸酯。
-3-(10-苯基蔥-9-基)-[1,1':3',1"-聯三苯]-4-基酯 7.67 g（產率：99%）。

【0262】

【0263】＜9-([1,1':3',1":4",1"'-聯四苯]-3"-基)-10-苯基蔥的合成＞

於氯氣環境下，將中間體化合物三氯甲磺酸-3-(10-苯基蔥-9-基)-[1,1':3',1"-聯三苯]-4-基酯 1.4 g、苯基硼酸 0.41 g、乙酸鈀（II）（Pd(OAc)₂）0.05 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.14 g、磷酸三鉀 0.94 g、溴化鉀 0.53 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 14 ml（1,2,4-三甲基苯/第三丁醇=10/1（容量比））加入至燒瓶中，攪拌 5 分鐘。其後，添加水 2 ml 並回流 6 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以矽膠對該有機層進行短柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以矽膠進行短柱純化（溶劑：甲苯/庚烷=1/3（容量比））。最後，進行昇華純化，獲得作為式 (1-23) 所表示的目標化合物的 9-([1,1':3',1":4",1"'-聯四苯]-3"-基)-10-苯基蔥 0.57 g（產率：46%）。

第 125 頁，共 162 頁(發明說明書)
【0264】

\[
\text{OTf} + \text{B(OH)}_2 \xrightarrow{\text{Pd(OAc)}_2 / \text{PCy}_3 / K_2 \text{PO}_4} \]

(1-23)

【0265】藉由 MS 光譜及 NMR 測定來確認化合物（1-23）的結構。

\(^1\text{H-NMR (CDCl}_3\): \delta = 7.96 (\text{dd, 1H}), 7.91 (\text{t, 1H}), 7.78 \sim 7.74 \\
(m, 4H), 7.71 \sim 7.69 (m, 1H), 7.64 \sim 7.50 (m, 9H), 7.45 \sim 7.40 (m, 4H), 7.36 \sim 7.25 (m, 5H), 7.07 \sim 7.05 (m, 2H), 6.95 \sim 6.88 (m, 3H).

【0266】另外，化合物（1-23）的玻璃轉移溫度（Tg）為 102.9°C。

【0267】< 式（1-53）所表示的化合物的合成例 >

【0268】< 9-((4-萘-1-基)-[1,1':3',1"-聯三苯]-3-基)-10-苯基蒽的合成 >
於氨氣環境下，將中間體化合物三氟甲磺酸-3-(10-苯基叢-9-基)-[1,1’:3’,1”-聯三苯]-4-基酯 3.2 g、1-萘硼酸 1.31 g、乙酸鈀 (II) (Pd(OAc)$_2$) 0.11 g、2-二環己基膦基-2’,6’-二甲氧基聯苯 0.31 g、磷酸三鉀 2.15 g、溴化鉀 1.21 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 24 ml (1,2,4-三甲基苯/第三丁醇=5/1 (容量比)) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 4 ml 並回流 8 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以硅膠對有機層進行短管柱純化 (溶劑：甲苯)。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以硅膠進行管柱純化 (溶劑：甲苯/庚烷=1/5 (容量比))。最後，進行昇華純化，獲得作為式 (1-53) 所表示的目標化合物的 9-((4-萘-1-基)-[1,1’:3’,1”-聯三苯]-3-基)-10-苯基叢 1.42 g (產率：46%)。

【0269】

![Chemical Structure](image)

【0270】藉由 MS 光譜及 NMR 測定來確認化合物 (1-53) 的結構。

1H-NMR (CDCl$_3$)：δ = 8.13 (d, 1H), 8.02～7.97 (m, 3H), 7.92 (d, 1H), 7.78～7.75 (m, 3H), 7.66～7.27 (m, 20H), 7.03～6.93 (m,
3H), 6.87～6.84 (t, 1H).

【0271】另外，化合物（1-53）的玻璃轉移溫度（Tg）為 122.8℃。

【0272】＜式（1-83）所表示的化合物的合成例＞

(1-83)

【0273】＜9-((4-萘-2-基)-[1,1′:3′,1″-聯三苯]-3-基)-10-苯基蒽的合成＞

於氨氣環境下，將中間體化合物三氟甲磺酸-3-(10-苯基蒽-9-基)-[1,1′:3′,1″-聯三苯]-4-基酯 1.4 g、2-萘硼酸 0.57 g、乙酸鋁 (II) (Pd(OAc)2) 0.05 g、2-二環己基膦基-2′,6′-二甲氧基聯苯 0.14 g、磷酸三鉀 0.94 g、溴化鉀 0.53 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 14 ml (1,2,4-三甲基苯/第三丁醇=10/1 (容量比)) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 2 ml 並回流 6 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以矽膠對有機層進行短管柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以矽膠進行管柱純化（溶劑：甲苯/庚烷=1/5 (容量比))。最後，進行昇華純化，獲得作為式（1-83）所表示的目標
化合物的 9-((4-萘-2-基)-[1,1':3',1"-聯三苯]-3-基)-10-苯基蒽 0.67 g
（產率：50%）。

【0274】

【0275】藉由 MS 光譜及 NMR 測定來確認化合物（1-83）的結構。

1H-NMR (CDCl$_3$) : δ = 7.99 (dd, 1H), 7.94 (t, 1H), 7.85～7.82
(m, 4H), 7.73 (tt, 1H), 7.65～7.50 (m, 11H), 7.46～7.43 (m, 4H),
7.37～7.23 (m, 9H), 7.15 (dd, 1H)。

【0276】另外，化合物（1-83）的玻璃轉移溫度 (Tg) 為 110.2℃。

【0277】<式（1-252）所表示的化合物的合成例>

【0278】<9-(4-甲氧基-[1,1'-聯苯]-3-基)-10-苯基蒽的合成>

於氮氣環境下，將中間體化合物 9-(5-氯-2-甲氧基苯基)-10-
苯基蒽 36.7 g、苯基硼酸 17 g、雙(二亞苄基丙酮)钯 (0) (Pd(dba)$_2$)

第129頁，共162頁(發明說明書)
1.6 g 三環己基膦 (PCy₃) 1.2 g 磷酸三鉀 39.5 g 及鄰二甲苯 400 ml 加入至燒瓶中，回流 10 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以無水硫酸鈉加以乾燥後，去除乾燥劑，將溶劑減壓蒸餾去除，以砂膠對所得的固體進行管柱純化（溶劑：庚烷/甲苯=1/1（容量比）），獲得中間體化合物 9-(4-甲氧基-[1,1'-聯苯]-3-基)-10-苯基蒽 40.5 g（產率：100%）。

【0279】

【0280】<3-(10-苯基蒽-9-基)-[1,1'-聯苯]-4-醇的合成>

於氮気環境下，將中間體化合物 9-(4-甲氧基-[1,1'-聯苯]-3-基)-10-苯基蒽 40.5 g、吡啶鹽酸鹽 53.6 g 及 1-甲基-2-吡咯啶酮 40 ml 加入至燒瓶中，於 175℃下加熱 3 小時。加熱結束後將反應液冷卻，添加水 500 ml，將沈澱過濾。進而以水清洗沈澱，以砂膠對所得的粗製品進行短管柱純化（溶劑：甲苯/乙酸乙酯=2/1（容量比）），獲得中間體化合物 3-(10-苯基蒽-9-基)-[1,1'-聯苯]-4-醇 40 g（產率：100%）。

【0281】
【0282】<三氟甲磺酸-3-(10-苯基蒽-9-基)-[1,1'-联苯]-4-基酯的合成>

於氢气环境下，將中间体化合物 3-(10-苯基蒽-9-基)-[1,1'-联苯]-4-醇 40 g 及吡啶 450 ml 加入至烧瓶中，冷却至 0°C 为止后，缓缓滴加三氟甲磺酸酐 54 g。其後，將反應液於 0°C 下攪拌 30 分鐘，於室溫下攪拌 2 小時。繼而，於反應液中添加水，將沈澱過濾。以砝鏑對所得的粗製品進行短管柱純化（溶劑：甲苯/庚烷=3/1（容量比））後，以庚烷進行清洗，獲得中间体化合物三氟甲磺酸 -3-(10-苯基蒽-9-基)-[1,1'-联苯]-4-基酯 50 g（產率：93%）。

【0283】

【0284】<9-(4-(萘-2-基)-[1,1'-联苯]-3-基)-10-苯基蒽的合成>

於氢气环境下，将中间体化合物三氟甲磺酸 -3-(10-苯基蒽-9-
基)-[1,1'-联苯]-4-基酯 3 g、2-萘磺酸 1.4 g、乙酸钯（II）(Pd(OAc)₂)
0.12 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.33 g、磷酸三鉀 2.3 g、溴化鉀 1.29 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 26 ml（1,2,4-三甲基苯/第三丁醇=10/1（容量比））加入至燒瓶中，攪拌 5 分鐘。其後，添加水 2 ml 並回流 5 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以砂漿對該有機層進行短管柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以砂漿進行管柱純化（溶劑：甲苯/庚烷=1/3（容量比））。最後，進行昇華純化，獲得作為式 (1-252) 所表示的目標化合物的 9-(4-(萘-2-基)-[1,1'-聯苯]-3-基)-10-苯基蒽 1.25 g（產率：44%）。

【0285】

【0286】藉由 MS 光譜及 NMR 測定來確認化合物 (1-252) 的結構。

\[^1H-NMR \text{(CDCl}_3 \text{): } \delta = 7.92 \text{ (dd, 1H), } 7.83 \sim 7.81 \text{ (m, 3H), } 7.76 \sim 7.72 \text{ (m, 3H), } 7.61 \sim 7.49 \text{ (m, 7H), } 7.46 \sim 7.42 \text{ (m, 4H), } 7.37 \sim 7.22 \text{ (m, 9H), } 7.14 \text{ (dd, 1H).} \]

【0287】另外，化合物 (1-252) 的玻璃轉移溫度 (Tg) 為 107.8°C。

【0288】＜式 (1-255) 所表示的化合物的合成例＞
【0289】 <9-((1,2'-聯蔡)-4-基)-(1,1'-聯苯)-3-基)-10-苯基蔥的合成>

於氨氯環境下，將中間體化合物三氯甲磺酸-3-(10-苯基蔥-9-基)-(1,1'-聯苯)-4-基酯 3 g、2-(1,2'-聯蔡)-4-基)-4,4,5,5-四甲基-1,3,2-二氧雜硼烷 2.5 g、乙酸鈀 (II) (Pd(OAc)₂) 0.04 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.10 g、磷酸三鉀 2.3 g、溴化鉀 1.3 g 及 1,2,4-三甲基苯與第三丁醇的混合溶剤 33 ml (1,2,4-三甲基苯/第三丁醇=10/1 (容量比)) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 3 ml 並回流 15 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以砂礫對該有機層進行短管柱純化（溶剤：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而進行昇華純化，獲得作為式 (1-255) 所表示的目標化合物的 9-((1,2'-聯蔡)-4-基)-(1,1'-聯苯)-3-基)-10-苯基蔥 0.1 g (產率：3%)。

【0290】
【0291】藉由 MS 光譜及 NMR 測定來確認化合物 (1-255) 的結構。

\[^1H\text{-NMR (CDCl}_3\text{)}: \delta = 8.20 \text{ (d, 1H)}, 8.03 \text{ (d, 1H)}, 7.95 \text{ (dd, 1H)},
\]
\[7.88 \text{ (d, 1H)}, 7.86 \sim 7.72 \text{ (m, 9H)}, 7.64 \text{ (d, 1H)}, 7.56 \sim 7.27 \text{ (m, 16H)},
\]
\[7.11 \sim 7.01 \text{ (m, 3H)}, 6.91 \text{ (d, 1H)}. \]

【0292】另外，化合物 (1-255) 的玻璃轉移溫度 (Tg) 為 150.3℃。

【0293】＜式 (1-261) 所表示的化合物的合成例＞

【0294】＜9-(4-(菲-9-基)-[1,1'-聯苯]-3-基)-10-苯基蒽的合成＞

於氨氣環境下，將中間體化合物三氟甲磺酸 -3-(10-苯基蒽-9-基)-[1,1'-聯苯]-4-基酯 3 g、9-菲硼酸 1.8 g、乙酸鈹 (II) (Pd(OAc)_2) 0.12 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.33 g、磷酸三鉀 2.3 g、溴化鉀 1.3 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 26 ml
(1,2,4-三甲基苯/第三丁醇=10/1（容量比）) 加入至燒瓶中，攪拌5分鐘。其後，添加水2ml並回流6小時。加熱結束後將反應液冷卻，添加水，分取有機層，以矽膠對該有機層進行短管柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以矽膠進行管柱純化（溶劑：甲苯/庚烷=1/3（容量比））。最後，進行昇華純化，獲得作為式 (1-261) 所表示的目標化合物的9-(4-(菲-9-基)-[1,1'-聯苯]-3-基)-10-苯基蒽 0.57 g（產率：18%）。

【0295】

![化学结构式](1-261)

【0296】藉由 MS 光譜及 NMR 測定來確認化合物（1-261）的結構。

1H-NMR (CDCl$_3$) : δ = 8.49 (d, 1H), 8.43 (d, 1H), 8.16 (d, 1H), 8.07 (d, 1H), 7.95 (dd, 1H), 7.90 (d, 1H), 7.83 ~ 7.77 (m, 4H), 7.58 (d, 1H), 7.51 ~ 7.29 (m, 15H), 7.18 ~ 7.12 (m, 2H), 7.03 ~ 7.00 (m, 2H).

【0297】另外，化合物（1-261）的玻璃轉移溫度 (Tg) 為 136.0°C。

【0298】＜式（1-262）所表示的化合物的合成例＞
【0299】＜9-(4-(三苯并苯-2-基)-[1,1'-聯苯]-3-基)-10-苯基蒽的合成＞

於氮氣環境下，將中間體化合物三氟甲磺酸-3-(10-苯基蒽-9-基)-[1,1'-聯苯]-4-基酯 3 g、2-三苯并苯硼酸 1.8 g、乙酸鋅 (II) (Pd(OAc)₂) 0.04 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.10 g、磷酸三鉀 2.3 g、溴化鉀 1.3 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 33 ml （1,2,4-三甲基苯/第三丁醇=10/1（容量比））加入至燒瓶中，攪拌 5 分鐘。其後，添加水 3 ml 並回流 28 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以砂軀吸附有機層進行
短管柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而進行昇華純化，獲得作為式 (1-262) 所表示的目標化合物的 9-(4-(三苯并苯-2-基)-[1,1'-聯苯]-3-基)-10-苯基蒽 0.75 g
（產率：22%）。

【0300】
【0301】藉由 MS 光譜及 NMR 測定來確認化合物（1-262）的結構。

\[^1H\text{-NMR (CDCl}_3\text{)}: \delta = 8.49 \sim 8.40 \text{ (m, 3H), } 8.30 \text{ (d, 1H), } 8.08 \text{ (d, 1H), } 8.00 \sim 7.88 \text{ (m, 5H), } 7.78 \text{ (d, 2H), } 7.60 \sim 7.27 \text{ (m, 17H), } 7.20 \text{ (t, 1H), } 6.98 \text{ (d, 1H), } 6.80 \text{ (d, 1H).} \]

【0302】另外，化合物（1-262）的玻璃轉移溫度（Tg）為 148.4℃。

【0303】＜式（1-283）所表示的化合物的合成例＞

【0304】＜9-(5',5''-二苯基-[1,1':3',1'':4',1'':3'',1'':-五聯苯]-2''-基)-10-苯基蒽的合成＞

於氨氣環境下，將作為中間體化合物的 9-(2,5-二氯苯基)-10-苯基蒽 2 g、[1,1':3',1''-聯三苯基]-5'-基硼酸 4.12 g、乙酸鈀（II）
(Pd(OAc)$_2$) 0.11 g，2-二環己基膦基-2',6'-二甲氨基聯苯 0.31 g，磷銫三鉀 4.25 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 23 ml (1,2,4-三甲基苯/第三丁醇 = 10/1 (容重比)) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 3 ml 並回流 12 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以矽膠對有機層進行短管柱純化（溶剤：甲苯）。其後，以甲醇進行再沈澱，進而以矽膠進行管柱純化（溶剤：甲苯/庚烷 = 1/4 (容重比)）。最後，進行昇華純化，獲得作為式 (1-283) 所表示的目標化合物的 9-(5',5''-二苯基-[1,1':3',1'':4'',1''':3'',1''''-五聯苯]-2''-基)-10-苯基蒽 1.90 g (產率：48%)。

【0305】

![化合物结构图](1-283)

【0306】藉由 MS 光譜及 NMR 測定來確認化合物 (1-283) 的結構。

1H-NMR (CDCl$_3$): $\delta = 8.08$ (dd, 1H), 7.99 (d, 1H), 7.95 (d, 2H), 7.93 (d, 1H), 7.85 (d, 2H), 7.82 (t, 1H), 7.73 ~ 7.67 (m, 6H), 7.61 ~ 7.59 (m, 1H), 7.55 ~ 7.46 (m, 7H), 7.40 ~ 7.25 (m, 16H), 7.02 ~ 7.01
(m, 4H).

【0307】另外，化合物（1-283）的玻璃轉移溫度（Tg）為 145.3℃。

【0308】＜式（1-559）所表示的化合物的合成例＞

![化合物结构式](1-559)

【0309】＜2-氯-4-(10-苯基蒽-9-基)苯酚的合成＞

於氫氣環境下，將 4-溴-2-氯苯酚 9 g, (10-苯基蒽-9-基)硼酸 12.93 g, 雙(二亞苄基丙酮)钯 (0) (Pd(db)₂) 0.75 g, 三環己基膦 (PCy₃) 0.55 g, 磷酸三鉀 18.42 g 及甲苯與乙醇的混合溶劑 180 ml (甲苯/乙醇 = 4/1 (容量比)) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 18 ml 並回流 15 小時。加熱結束後將反應液冷卻，添加水 100 ml。其後，以甲苯萃取反應混合液，以無水硫酸鈉加以乾燥後，去除乾燥劑，將溶劑減壓蒸餾去除，以硅膠對所得的粗製品進行管柱純化 (溶劑：庚烷/甲苯 = 1/2 (容量比))，獲得中間體化合物 2-氯-4-(10-苯基蒽-9-基)苯酚 8.3 g (產率：50%)。

【0310】
【0311】<5-(10-苯基蒽-9-基)-[1,1'-聯苯]-2-醇的合成>

於氨氧環境下，將中間體化合物 2-氯-4-(10-苯基蒽-9-基)苯酚 7.9 g、苯基硼酸 3.79 g、雙(二亞苄基丙酮)鉑 (0) (Pd(dba)₂) 0.6 g、三環己基膦 (PCy₃) 0.44 g、磷酸三鉀 8.81 g 及鄰二甲苯 80 ml 加入至遠瓶中，攪拌 5 分鐘。其後，添加水 8 ml 並回流 5 小時。

加熱結束後將反應液冷卻，添加水。其後，進行過濾而將固體部分作為粗製品 1。分取濾液部分的有機層，以無水硫酸鈉加以乾燥後，去除乾燥劑，將溶劑減壓蒸餾去除，將所得的固體作為粗製品 2。其後，將粗製品 1 與粗製品 2 合併，以硅膠進行短管柱純化（溶劑：甲苯）。進而，以庚烷進行再沈澱，獲得中間體化合物 5-(10-苯基蒽-9-基)-[1,1'-聯苯]-2-醇 8.4 g（產率：95.9%）。

【0312】

【0313】<三氟甲磺酸-5-(10-苯基蒽-9-基)-[1,1'-聯苯]-2-基酯的合成>

第 140 頁，共 162 頁（專利說明書）
於氮氣環境下，將中間體化合物 5-(10-苯基葸-9-基)-[1,1'-聯苯]-2-醇 8.4 g 及吡啶 80 ml 加入至燒瓶中，冷卻至 0℃ 為止後，緩緩滴加三氟甲磺酸酐 11.2 g。其後，將反應液於 0℃ 下攪拌 30 分鐘，於室溫下攪拌 2 小時。繼而，於反應液中添加水，將沈澱過濾。以硅藻土的所得的粗製品進行短管柱純化（溶剤：甲苯）後，以庚烷進行清洗，獲得中間體化合物三氟甲磺酸 5-(10-苯基葸-9-基)-[1,1'-聯苯]-2-基酯 11 g（產率：100%）。

【0314】

【0315】<9-(6-(萘-1-基)-[1,1'-聯苯]-3-基)-10-苯基葸的合成>

於氮氣環境下，將中間體化合物三氟甲磺酸 5-(10-苯基葸-9-基)-[1,1'-聯苯]-2-基酯 2.6 g、1-萘磺酸 1.21 g、乙酸鈀（II）（Pd(OAc)₂）0.11 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.29 g、磷酸三鉀 1.99 g、溴化鉀 1.12 g 及 1,2,4-三甲基苯與第三丁醇的混合溶剤 20 ml (1,2,4-三甲基苯/第三丁醇=10/1（容量比）) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 2 ml 並回流 6 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以硅藻土對該有機層進行短管柱純化（溶剤：甲苯）。其後，以甲醇清洗，以乙酸乙酯進
行再結晶，進而以矽膠進行管柱純化（溶劑：甲苯/庚烷=1/3（容
量比））。最後，進行昇華純化，獲得作為式（1-559）所表示的目
標化合物的 9-(6-(萘-1-基)-[1,1'-聯苯]-3-基)-10-苯基蒽 1.2 g （產
率：48%）。

【0316】

【0317】藉由 MS 光譜及 NMR 測定來確認化合物（1-559）的結
構。

\[\text{\(^1\)H-NMR (CDCl\textsubscript{3}) : } \delta = 7.97 \text{(q, 2H)}, 7.94 \sim 7.92 \text{(m, 1H)}, 7.89
\sim 7.87 \text{(m, 1H)}, 7.81 \text{(d, 1H)}, 7.73 \text{(d, 2H)}, 7.71 \text{(d, 1H)}, 7.67 \text{(d, 1H)},
7.64 \sim 7.55 \text{(m, 4H)}, 7.52 \sim 7.35 \text{(m, 10H)}, 7.16 \sim 7.14 \text{(m, 2H)}, 7.03
\sim 7.01 \text{(m, 3H).} \]

【0318】另外，化合物（1-559）的玻璃轉移溫度（Tg）為 126.6°C。

【0319】＜式（1-560）所表示的化合物的合成例＞
【0320】<9-(6-(萘-2-基)-[1,1'-聯苯]-3-基)-10-苯基蔥的合成>

於氫氣環境下，將中間體化合物三氟甲磺酸-5-(10-苯基蔥-9-基)-[1,1'-聯苯]-2-基酯 2.6 g、2-萘磺酸 1.21 g、乙酸鈀（II）（Pd(OAc)₂）0.11 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.29 g、磷釹三鉀 1.99 g、溴化鉀 1.12 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 20 ml（1,2,4-三甲基苯/第三丁醇=10/1（容量比））加入至燒瓶中，攪拌 5 分鐘。其後，添加水 2 ml 並回流 6 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以砂礫對該有機層進行短管柱純化（溶劑：甲苯）。其後，以甲醇清洗，以乙酸乙酯進行再結晶，進而以砂礫進行管柱純化（溶劑：甲苯/庚烷=1/3（容量比））。最後，進行昇華純化，獲得作為式 (1-560) 所表示的目標化合物的 9-(6-(萘-2-基)-[1,1'-聯苯]-3-基)-10-苯基蔥 1.4 g（產率：56%）。

【0321】
【0322】藉由 MS 光譜及 NMR 測定來確認化合物（1-560）的結構。

1H-NMR (CDCl$_3$): $\delta = 7.96$ (s, 1H), 7.92 (d, 2H), 7.85～7.81 (m, 2H), 7.78 (d, 1H), 7.73～7.68 (m, 3H), 7.63～7.54 (m, 5H), 7.51～7.47 (m, 4H), 7.42～7.28 (m, 7H), 7.18～7.16 (m, 3H).

【0323】另外，化合物（1-560）的玻璃轉移溫度 (Tg) 為 116.6°C。

【0324】<式（2-1）所表示的化合物的合成例>

【0325】<9-(2-甲氧基-5(萘-1-基)苯基)-10-苯基蒽的合成>

於氫氣環境下，將中間體化合物 9-(5-氯-2-甲氧基苯基)-10-苯基蒽 6 g、1-萘硼酸 3.14 g、雙(二亞芐基丙酮)鈷 (0) (Pd(dba)$_2$)
0.26 g、三環己基膦 (PCy₃) 0.19 g、磷酸三鉀 6.45 g 及二甲苯 50 ml 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 5 ml 並回流 14 小時。加熱結束後將反應液冷卻，添加水，分取有機層，以無水硫酸鈉加以乾燥後，去除乾燥劑，對溶劑進行減壓蒸餾去除，以矽藻土對所得的固體進行管柱純化 (溶劑：庚烷/甲苯=2/1 (容量比))，獲得中間體化合物 9-(2-甲氧基-5(萘-1-基)苯基)-10-苯基蒽 5.3 g (產率：71.7%)。

【0326】

【0327】 <4-(萘-1-基)-2-(10-苯基蒽-9-基)苯酚的合成>

於氨氣環境下，將中間體化合物 9-(2-甲氧基-5(萘-1-基)苯基)-10-苯基蒽 5.3 g、吡啶鹽酸鹽 6.3 g 及 1-甲基-2-吡咯啶酮 5 ml 加入至燒瓶中，於 175℃ 下加熱 4 小時。加熱結束後將反應液冷卻，添加水 100 ml，將沈澱過濾。進而以水清洗沈澱，以矽藻土對所得的粗製品進行短管柱純化 (溶劑：甲苯/乙酸乙酯=2/1 (容量比))，獲得中間體化合物 4-(萘-1-基)-2-(10-苯基蒽-9-基)苯酚 4.6 g (產率：89%)。

【0328】
【0329】＜三氟甲磺酸-4-(萘-1-基)-2-(10-苯基蒽-9-基)苯酯的合成＞

於氮氣環境下，將中間體化合物 4-(萘-1-基)-2-(10-苯基蒽-9-基)苯酚 4.6 g 及吡啶 25 ml 加入至燒瓶中，冷卻至 0℃ 為止後，緩緩滴加三氟甲磺酸酐 5.5 g。其後，將反應液於 0℃ 下攪拌 30 分鐘，於室溫下攪拌 2 小時。續而，於反應液中添加水，將沈澱過濾。以矽膠對所得的粗製品進行短管柱純化（溶劑：甲苯）後，以庚烷進行清洗，獲得中間體化合物三氟甲磺酸-4-(萘-1-基)-2-(10-苯基蒽-9-基)苯酯 5.95 g（產率：100%）。

【0330】[化 139]

【0331】＜9-(4-(萘-1-基)-([1,1'-聯苯]-2-基))-10-苯基蒽的合成＞

於氮氣環境下，將中間體化合物三氟甲磺酸-4-(萘-1-
基)-2-(10-苯基蔥-9-基)苯酯 4.7 g、苯基硼酸 1.42 g、乙酸鋅 (II)
(Pd(OAc)$_2$) 0.09 g、2-二環己基膦基-2',6'-二甲氧基聯苯 0.27 g、
磷酸三鉀 1.65 g、溴化鈉 0.80 g 及 1,2,4-三甲基苯 33 ml 加入至燒
瓶中，攪拌 5 分鐘。其後，添加水 3 ml 並回流 8 小時。加熱結束
後將反應液冷卻，添加水，分取有機層，以矽膠對該有機層進行
短管柱純化（溶劑：甲苯）。其後，以甲醇進行再沈澱，進而以矽
膠進行管柱純化（溶劑：甲苯/庚烷=1/6（容量比））。最後，進行
昇華純化，獲得作為式（2-1）所表示的目標化合物的 9-(4-(萘-1-
基)-[1,1'-聯苯]-2-基)-10-苯基蔥 1.68 g（產率：40.5%）。

【0332】[化 140]

【0333】藉由 MS 光譜及 NMR 測定來確認化合物 (2-1) 的結構。
1H-NMR (CDCl$_3$) : $\delta = 8.21 \sim 8.19$ (m, 1H), 7.91 \sim 7.84$ (m, 4H),
7.79 (q, 2H), 7.62 \sim 7.46$ (m, 10H), 7.41 \sim 7.38$ (m, 2H), 7.35 \sim 7.32
(m, 2H), 7.27 \sim 7.24$ (m, 2H), 7.11$ (dd, 2H), 6.95 \sim 6.93$ (m, 3H).

【0334】另外，化合物 (2-1) 的玻璃轉移溫度（Tg）為 106.4°C。

【0335】＜比較例化合物（A）的合成例＞
化合物（A）
【0336】<9-([1,1':3,1"-聯三苯]-5'-基)-10-苯基蔥的合成>

於氯氛環境下，將 3,5-二苯基溴苯 3.87 g、(10-苯基蔥-9-基)硼酸 4.1 g、四(三苯基膦)鎵 (0) (Pd(PPh₃)₄) 0.29 g、磷酸鉀 5.31 g 及甲苯與乙醇的混合溶剤 50 ml (甲苯/乙醇=3/1(容量比)) 加入至燒瓶中，攪拌 5 分鐘。其後，添加水 5 ml 並回流 7 小時。加熱結束後將反應液冷卻，添加水 50 ml。其後，以甲苯萃取反應混合液，以無水硫酸鈉加以乾燥後，去除乾燥劑，將溶剤進行減壓蒸餾去除，以砂壇對所得的粗製品進行短管柱純化（溶剤：甲苯）。以甲苯進行再結晶，進而進行昇華純化，獲得目標的作為比較例化合物（A）的 9-([1,1':3,1"-聯三苯]-5'-基)-10-苯基蔥 3.3 g (產率：54.7%)。再者，比較例化合物（A）為於上述專利文獻 1（日本專利特開 2000-273056 號公報）中記載的合成例的化合物 E87。

【0337】
【0338】藉由 MS 光譜及 NMR 測定來確認比較例化合物（A）的結構。

1H-NMR (CDCl$_3$): δ = 8.03 (t, 1H), 7.88 ~ 7.86 (m, 2H), 7.77 ~ 7.71 (m, 8H), 7.63 ~ 7.55 (m, 3H), 7.51 ~ 7.45 (m, 6H), 7.39 ~ 7.33 (m, 6H).

【0339】另外，比較例化合物（A）的玻璃轉移溫度（Tg）為 104.9℃。

【0340】＜比較例化合物（B）的合成例＞

化合物（B）

【0341】＜9-([1,1'-聯苯]-2-基)-10-苯基蒽的合成＞

於氮氣環境下，將 9-溴-10-蒽 3 g、2-聯苯硼酸 2.14 g、雙(二亞芐基丙酮)鉑 (0) (Pd(dba)$_2$) 0.16 g、三環己基膦 (PCy$_3$) 0.11 g、磷酸三鉀 3.82 g 及 1,2,4-三甲基苯與第三丁醇的混合溶劑 36 ml (1,2,4-三甲基苯/第三丁醇=10/1（容量比）) 加入至燒瓶中，攪拌
5 分鐘。其後，添加水 3 ml 並回流 8 小時。加熱結束後，將反應液冷卻，添加水，分取有機層，以砂漿對有機層進行短管柱純化（溶劑：甲苯）。其後，以甲醇進行再沈澱，進而以乙酸乙酯進行再結晶。最後，進行昇華純化，獲得目標的作為比較例化合物（B）的 9-([1,1'-聯苯]-2-基)-10-苯基蒽 1.99 g（產率：54%）。

【0342】

![反應物質和反應方程式](image)

【0343】藉由 MS 光譜及 NMR 測定來確認比較例化合物（B）的結構。

\[\text{H-NMR (CDCl}_3\text{)}: \delta = 7.68 (dd, 2H), 7.63 (d, 2H), 7.60 \sim 7.50 (m, 6H), 7.44 \sim 7.38 (m, 3H), 7.30 \sim 7.23 (m, 4H), 7.01 \sim 6.99 (m, 2H), 6.90 \sim 6.84 (m, 3H). \]

【0344】另外，比較例化合物（B）的玻璃轉移溫度（Tg）為 65.1 °C。

【0345】<有機 EL 元件的評價>

以下，為了對本發明加以更詳細說明，而示出使用本發明的化合物的有機 EL 元件的實施例，但本發明不限定於該些實施例。

【0346】製作實施例 1、實施例 2 及比較例 1 的有機 EL 元件，分別測定作為 1000 cd/m² 發光時的特性：電壓（V）、EL 發光波長（nm）、外部量子效率（%），繼而測定以下時間（小時）：以可獲
得 2000 cd/m² 的亮度的電流密度進行恆定電流驅動時保持初始亮度的 90% (1800 cd/m²) 以上的亮度的時間（小時）。以下，對實施例及比較例加以詳細說明。

【0347】再者，發光元件的量子效率中，有內部量子效率與外部量子效率，表示以下比例者為內部量子效率：將於發光元件的發光層中作為電子（或電洞）而注入的外部能量純粹地轉變成光子的比例。另一方面，根據將該光子釋放至發光元件的外部的量而算出者為外部量子效率，發光層中產生的光子的一部分於發光元件的內部繼續被吸收或被反射，而不釋放至發光元件的外部，故外部量子效率低於內部量子效率。

【0348】外部量子效率的測定方法如下。使用愛德萬測試（Advantest）公司製造的電壓 / 電流產生器 R6144，施加元件的亮度達到 1000 cd/m² 的電壓而使元件發光。使用拓普康（TOPCON）公司製造的分光方法亮度計 SR-3AR，對發光面自垂直方向測定可見光區域的分光方法亮度。假定發光面為完全擴散面，所測定的各波長成分的分光方法亮度的值除以波長能量並乘以 π 所得的數值為各波長下的光子數。繼而，於觀測的整個波長域將光子數累計，作為自元件放出的總光子數。將施加電流值除以基本電荷所得的數值作為對元件注入的載子數，自元件放出的總光子數除以對元件注入的載子數所得的數值為外部量子效率。

【0349】將所製作的實施例 1、實施例 2 及比較例 1 的有機 EL 元件中的各層的材料構成示於下述表 1 中。
【表 1】

<table>
<thead>
<tr>
<th>實施例</th>
<th>電導注入層 (40 nm)</th>
<th>電導傳輸層 (30 nm)</th>
<th>發光層 (35 nm)</th>
<th>電子傳輸層 (15 nm)</th>
<th>陰極 (1 nm/100 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>實施例 1</td>
<td>HI</td>
<td>NPD</td>
<td>化合物 (1-1)</td>
<td>BD1</td>
<td>ET1</td>
</tr>
<tr>
<td>實施例 2</td>
<td>HI</td>
<td>NPD</td>
<td>化合物 (1-301)</td>
<td>BD1</td>
<td>ET1</td>
</tr>
<tr>
<td>比較例 1</td>
<td>HI</td>
<td>NPD</td>
<td>化合物 (A)</td>
<td>BD1</td>
<td>ET1</td>
</tr>
</tbody>
</table>

【0350】於表 1 中，「HI」為 N₄,N₄'-二苯基-N₄,N₄'-二(9-苯基-9H-咔唑-3-基)-[1,1'-聯苯]-4,4'-二胺，「NPD」為 N,N'-二苯基-N,N'-二苯基-4,4'-二胺基聯苯，「BD1」為 7,7'-二甲基-N₅,N₅'-二苯基-N₅,N₅'-雙(4-(三甲基硅烷基)苯基)-7H-苯并[c]誇-5,9-二胺，「ET1」為 4,4'-(2-苯基蒽-9,10-二基)雙(4,1-伸苯基))二吡啶。而且，「Liq」為 8-羥喹啉鈣。以下示出化學結構。

【0351】

![化學結構](image)

【0352】＜實施例 1＞
＜將化合物（1-1）用於發光層的主體材料的元件＞

將藉由濺鍍而製成厚度為 180 nm 的膜的 ITO 研磨至 150 nm 為止，將 26 mm×28 mm×0.7 mm 的玻璃基板（光電子科學（Optoscience）（股）製造）作為透明支持基板。將該透明支持基板固定於市售的蒸鍍裝置（昭和真空（股）製造）的基板固定器上，安裝放入有 HI 的鋁製蒸鍍用舟皿，放入有 NPD 的鋁製蒸鍍用舟皿、放入有本發明的化合物（1-1）的鋁製蒸鍍用舟皿，放入有 BD1 的鈦製蒸鍍用舟皿，放入有 ET1 的鈦製蒸鍍用舟皿，放入有 Liq 的鈦製蒸鍍用舟皿，放入有鎳的鈦製蒸鍍用舟皿及放入有銀的鈦製蒸鍍用舟皿。

【0353】於透明支持基板的 ITO 膜上依序形成下述各層。將真空槽減壓至 5×10⁻⁴ Pa 為止，首先對放入有 HI 的蒸鍍用舟皿進行加熱，以膜厚成為 40 nm 的方式進行蒸鍍而形成電洞注人層，繼而，對放入有 NPD 的蒸鍍用舟皿進行加熱，以膜厚成為 30 nm 的方式進行蒸鍍而形成電洞傳輸層。繼而，對放入有化合物（1-1）的蒸鍍用舟皿與放入有 BD1 的蒸鍍用舟皿同時進行加熱，以膜厚成為 35 nm 的方式進行蒸鍍而形成發光層。以化合物（1-1）與 BD1 的重量比大致成為 95 比 5 的方式調節蒸鍍速度。繼而，對放入有 ET1 的蒸鍍用舟皿進行加熱，以膜厚成為 15 nm 的方式進行蒸鍍，形成電子傳輸層。各層的蒸鍍速度為 0.01 nm/s～1 nm/s。

【0354】其後，對放入有 Liq 的蒸鍍用舟皿進行加熱，以膜厚成為 1 nm 的方式以 0.01 nm/s～0.1 nm/s 的蒸鍍速度進行蒸鍍。继
而，對放人有鎂的舟皿與放人有銀的舟皿同時進行加熱，以膜厚成為 100 nm 的方式進行蒸鍍，形成陰極。此時，以鎂與銀的原子數比成為 10 比 1 的方式調節蒸鍍速度，以蒸鍍速度成為 0.01 nm/s ～2 nm/s 的方式獲得有機 EL 元件。

【0355】若將 ITO 電極作為陽極，Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光時的特性，則驅動電壓為 5.87 V，外部量子效率為 5.85%（波長為約 459 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 50 小時。

【0356】＜實施例 2＞

＜將化合物（1-301）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-301）以外，利用依據實施例 1 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極，將 Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光時的特性，結果驅動電壓為 5.78 V，外部量子效率為 5.70%（波長為約 459 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 85 小時。

【0357】＜比較例 1＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物(A)以外，利用依據實施例 1 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極，將 Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光
時的特性，則驅動電壓為 6.35 V，外部量子效率為 5.02%（波長為約 464 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m²的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90% （1800 cd/m²）以上的亮度的時間為 10 小時。

【0358】將以上結果匯總於表 2 中。

<table>
<thead>
<tr>
<th>表 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>發光層的主體材料</td>
</tr>
<tr>
<td>實施例 1</td>
</tr>
<tr>
<td>實施例 2</td>
</tr>
<tr>
<td>比較例 1</td>
</tr>
</tbody>
</table>

【0359】將所製作的實施例 3～實施例 10、比較例 2 及比較例 3的有機 EL 元件中的各層的材料構成示於下述表 3 中。

<table>
<thead>
<tr>
<th>表 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>電洞注入層 (40 nm/5 nm)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>實施例 3</td>
</tr>
<tr>
<td>實施例 4</td>
</tr>
<tr>
<td>實施例 5</td>
</tr>
<tr>
<td>實施例 6</td>
</tr>
<tr>
<td>實施例 7</td>
</tr>
<tr>
<td>實施例 8</td>
</tr>
<tr>
<td>實施例 9</td>
</tr>
<tr>
<td>實施例 10</td>
</tr>
<tr>
<td>比較例 2</td>
</tr>
<tr>
<td>比較例 3</td>
</tr>
</tbody>
</table>

【0360】於表 3 中，「HI2」為 1,4,5,8,9,12- 六氮雜三苯并苯-2,3,6,7,10,11- 六甲腈。以下示出化學結構。

【0361】
【0362】<實施例 3>

＜將化合物（1-1）用於發光層的主體材料的元件＞

將藉由濺鍍而製成厚度為 180 nm 的膜的 ITO 研磨至 150 nm 為止，將 26 mm×28 mm×0.7 mm 的玻璃基板（光電子科學（Optoscience）（股）製造）作為透明支持基板。將該透明支持基板固定於市售的蒸鍍裝置（昭和真空（股）製造）的基板固定器上，安裝放入有 HI 的鈦製蒸鍍用舟皿、放入有 HI2 的鈦製蒸鍍用舟皿、放入有 NPD 的鈦製蒸鍍用舟皿、放入有本發明的化合物（1-1）的鈦製蒸鍍用舟皿、放入有 BD1 的鈦製蒸鍍用舟皿、放入有 ET1 的鈦製蒸鍍用舟皿、放入有 Liq 的鈦製蒸鍍用舟皿，放入有鎂的鈦製蒸鍍用舟皿，及放入有銀的鈦製蒸鍍用舟皿。

【0363】於透明支持基板的 ITO 膜上依序形成下述各層。將真空槽減壓至 5×10⁻⁴ Pa 為止，首先，對放入有 HI 的蒸鍍用舟皿進行加熱，以膜厚成為 40 nm 的方式進行蒸鍍，形成第 1 層電洞注入層，進而對放入有 HI2 的蒸鍍用舟皿進行加熱，以膜厚成為 5 nm 的方式進行蒸鍍，形成第 2 層電洞注入層，繼而，對放入有 NPD 的蒸鍍用舟皿進行加熱，以膜厚成為 20 nm 的方式進行蒸鍍，形成電洞傳輸層。然後，對放入有化合物（1-1）的蒸鍍用舟皿與放
人有 BD1 的蒸鍍用舟皿同時進行加熱，以膜厚成為 25 nm 的方式進行蒸鍍，形成發光層。以化合物（1-1）與 BD1 的重量比大致成為 95 比 5 的方式調節蒸鍍速度。繼而，對放入有 ET1 的蒸鍍用舟皿進行加熱，以膜厚成為 15 nm 的方式進行蒸鍍，形成電子傳輸層。各層的蒸鍍速度為 0.01 nm/s～1 nm/s。

【0364】其後，對放入有 Liq 的蒸鍍用舟皿進行加熱，以膜厚成為 1 nm 的方式以 0.01 nm/s～0.1 nm/s 的蒸鍍速度進行蒸鍍。繼而，對放入有鍍的舟皿與放入有銀的舟皿同時進行加熱，以膜厚成為 100 nm 的方式進行蒸鍍，形成陰極。此時，以鍍與銀的原子數比成為 10 比 1 的方式調節蒸鍍速度，以蒸鍍速度成為 0.01 nm/s～2 nm/s 的方式獲得有機 EL 元件。

【0365】若將 ITO 電極作為陽極、將 Liq/鍍+銀電極作為陰極來測定 1000 cd/m²發光時的特性，則驅動電壓為 4.34 V，外部量子效率為 5.08%（波長為約 457 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m²的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%(1800 cd/m²)以上的亮度的時間為 198 小時。

【0366】＜實施例 4＞

＜將化合物（1-3）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-3）以外，利用依據實施例 3 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極、將 Liq/鍍+銀電極作為陰極來測定 1000 cd/m²發光時的特性，則驅動電壓為 4.39 V，外部量子效率為 4.85%
（波長為約 457 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 140 小時。

【0367】＜實施例 5＞

＜將化合物（1-23）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-23）以外，利用依據實施例 3 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極、將 Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光時的特性，則驅動電壓為 4.31 V，外部量子效率為 4.57%（波長為約 455 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 135 小時。

【0368】＜實施例 6＞

＜將化合物（1-53）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-53）以外，利用依據實施例 3 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極、將 Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光時的特性，則驅動電壓為 4.52 V，外部量子效率為 4.80%（波長為約 457 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 70 小時。

【0369】＜實施例 7＞
＜將化合物（1-83）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-83）以外，利用依據實施例3的方法而獲得有機EL元件。若將ITO電極作為陽極、將LiQ/鎂+銀電極作為陰極來測定1000 cd/m²發光時的特性，則驅動電壓為4.16 V，外部量子效率為4.62%（波長為約456 nm的藍色發光）。另外，藉由用以獲得初始亮度2000 cd/m²的電流密度來實施恆定電流驅動試驗，結果保持初始值的90%（1800 cd/m²）以上的亮度的時間為97小時。

【0370】＜實施例8＞

＜將化合物（1-261）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-261）以外，利用依據實施例3的方法而獲得有機EL元件。若將ITO電極作為陽極、將LiQ/鎂+銀電極作為陰極來測定1000 cd/m²發光時的特性，則驅動電壓為4.43 V，外部量子效率為4.91%（波長為約457 nm的藍色發光）。另外，藉由用以獲得初始亮度2000 cd/m²的電流密度來實施恆定電流驅動試驗，結果保持初始值的90%（1800 cd/m²）以上的亮度的時間為83小時。

【0371】＜實施例9＞

＜將化合物（1-262）用於發光層的主體材料的元件＞

除了將作為發光層的主體材料的化合物（1-1）換成化合物（1-262）以外，利用依據實施例3的方法而獲得有機EL元件。若將ITO電極作為陽極、將LiQ/鎂+銀電極作為陰極來測定1000 cd/m²發光時的特性，則驅動電壓為4.54 V，外部量子效率為5.01%（波長為約457 nm的藍色發光）。另外，藉由用以獲得初始亮度2000 cd/m²的電流密度來實施恆定電流驅動試驗，結果保持初始值的90%（1800 cd/m²）以上的亮度的時間為83小時。
<實施例 10>

<將化合物 (2-1) 用於發光層的主體材料的元件>

除了將作為發光層的主體材料的化合物 (1-1) 換成化合物 (2-1) 以外，利用依賴實施例 3 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極，將 Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光時的特性，則驅動電壓為 4.24 V，外部量子效率為 4.92%（波長為約 456 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 68 小時。

【0373】 <比較例 2>

除了將作為發光層的主體材料的化合物 (1-1) 換成化合物 (A) 以外，利用依賴實施例 3 的方法而獲得有機 EL 元件。若將 ITO 電極作為陽極，將 Liq/鎂+銀電極作為陰極來測定 1000 cd/m² 發光時的特性，則驅動電壓為 4.55 V，外部量子效率為 4.14%（波長為約 456 nm 的藍色發光）。另外，藉由用以獲得初始亮度 2000 cd/m² 的電流密度來實施恆定電流驅動試驗，結果保持初始值的 90%（1800 cd/m²）以上的亮度的時間為 6 小時。

【0374】 <比較例 3>
除了將作為發光層的主體材料的化合物(1-1)換成化合物(B)以外，利用依據實施例3的方法而獲得有機EL元件。若將ITO電極作為陽極，將Liq/鎳+銀電極作為陰極來測定1000 cd/m²發光時的特性，則驅動電壓為4.56 V，外部量子效率為4.74%（波長為約455 nm的藍色發光）。另外，藉由用以獲得初始亮度2000 cd/m²的電流密度來實施恆定電流驅動試驗，結果保持初始值的90%（1800 cd/m²）以上的亮度的時間為28小時。

【0375】將以上結果匯總於表4中。

[表4]

<table>
<thead>
<tr>
<th>實施例</th>
<th>發光層的主體材料</th>
<th>1000 cd/m²發光時的驅動電壓(V)</th>
<th>外部量子效率(%)</th>
<th>亮度保持初始亮度的90%以上的時間(小時)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>化合物(1-1)</td>
<td>4.34</td>
<td>5.08</td>
<td>198</td>
</tr>
<tr>
<td>4</td>
<td>化合物(1-3)</td>
<td>4.39</td>
<td>4.85</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>化合物(1-23)</td>
<td>4.31</td>
<td>4.57</td>
<td>135</td>
</tr>
<tr>
<td>6</td>
<td>化合物(1-53)</td>
<td>4.52</td>
<td>4.80</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>化合物(1-83)</td>
<td>4.16</td>
<td>4.62</td>
<td>97</td>
</tr>
<tr>
<td>8</td>
<td>化合物(1-261)</td>
<td>4.43</td>
<td>4.91</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>化合物(1-262)</td>
<td>3.82</td>
<td>4.94</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>化合物(2-1)</td>
<td>4.24</td>
<td>4.92</td>
<td>171</td>
</tr>
<tr>
<td>比較例2</td>
<td>化合物(A)</td>
<td>4.55</td>
<td>4.14</td>
<td>6</td>
</tr>
<tr>
<td>比較例3</td>
<td>化合物(B)</td>
<td>4.56</td>
<td>4.74</td>
<td>28</td>
</tr>
</tbody>
</table>

【產業上之可利用性】

【0376】根據本發明的較佳實施方式，可提供一種驅動電壓、發光效率及元件壽命優異的有機電場發光元件，具備其的顯示裝置及具備其的照明裝置等。

【符號說明】

【0377】
100：有機電場發光元件
101：基板
102：陽極
103：電洞注入層
104：電洞傳輸層
105：發光層
106：電子傳輸層
107：電子注入層
108：陰極
【發明申請專利範圍】

【第1項】一種發光層用材料，含有下述通式（1）所表示的誘化合物：

\[
(Ar^1)_m \quad \text{(1)}
\]

於式（1）中，

\(Ar \) 為萘基、菲基或三苯並苯基且其可經苯基、萘基或聯苯基取代，

\(Ar^1 \) 為可經取代的芳基，m 為 0～5 的整數，於 m 為 2 以上的情形時 \(Ar^1 \) 的結構可分別相同亦可不同，

R 分別獨立地為烷基或環烷基，a 為 0～2 的整數，而且，

式（1）所表示的誘化合物中的至少一個氫可經氫取代。

【第2項】如申請專利範圍第1項所述的發光層用材料，其中 \(Ar \) 為萘基、菲基或三苯並苯基且其可經苯基、萘基或聯苯基取代，

\(Ar^1 \) 為碳數 6～18 的芳基且其可經碳數 6～18 的芳基取代，m 為 0～2 的整數，於 m 為 2 的情形時 \(Ar^1 \) 的結構分別相同，

R 分別獨立地為碳數 1～4 的烷基或碳數 3～6 的環烷基，a 為 0～2 的整數，而且，
式（1）所表示的化合物中的至少一个氢可经氘取代。

【第3項】如申请专利范围第1项所述发光层用材料，其中Ar为苯基、菲基或三苯并苯基且其可经苯基、菲基或联苯基取代，

Ar¹为苯基、菲基、联苯基、菲基或三苯并苯基且其可经苯基、

菲基或环己基取代，m为0～2的整数，而且，

R分别独立地为甲基、乙基、正丙基、异丙基、第三丁基或

环己基，a为0或1。

【第4項】如申请专利范围第1项所述发光层用材料，其为下述式

(1-53)、式(1-83)、式(1-252)、式(1-255)、式(1-261)或式

(1-262)所表示的化合物：
【第5項】一種有機電場發光元件，包括：

包含陽極及陰極的一對電極、及配置於該一對電極間且含有
如申請專利範圍第1項至第4項中任一項所述的發光層用材料的
發光層。

【第6項】如申請專利範圍第5項所述的有機電場發光元件，其中
於上述發光層中含有選自由具有叢結構的胺、芳香族胺衍生物及
香豆素衍生物所組成的組群中的至少一種。

【第7項】如申請專利範圍第5項所述的有機電場發光元件，其中
更具有配置於上述陰極與上述發光層之間的電子傳輸層及/或電子
注入層，該電子傳輸層及電子注入層的至少一者含有選自由烴喹
啉系金屬錯合物、吡啶衍生物、啡啉衍生物、硼烷衍生物及苯并
喀唑衍生物所組成的組群中的至少一種。

【第8項】如申請專利範圍第7項所述的有機電場發光元件，其中
上述電子傳輸層及電子注入層的至少一者更含有選自由鹼金屬、
鹼土金屬、稀土金屬、鹼金屬的氧化物、鹼金屬的鹵化物、鹼土
金屬的氧化物、鹼土金屬的鹵化物、稀土金屬的氧化物、稀土金
屬的鹵化物、鹼金屬的有機錯合物、鹼土金屬的有機錯合物及稀土金屬的有機錯合物所組成的組群中的至少一種。

【第9項】一種顯示裝置，具備如申請專利範圍第5項至第8項中任一項所述的有機電場發光元件。

【第10項】一種照明裝置，具備如申請專利範圍第5項至第8項中任一項所述的有機電場發光元件。