(54) 发明名称
一种 5-羟基四氢呋喃衍生物的合成方法

(57) 摘要
本发明公开了一种 5-羟基四氢呋喃衍生物的合成方法，该方法属于有机合成领域。该方法是由式 II 所示的化合物经还原反应生成式 I 所示的化合物。本发明技术方案通过选用特定种类和特定用量的还原试剂、特定的反应溶剂以及特定的反应温度，可以高选择性的将羰基还原成羟基。且本发明方法所需成本低，反应条件温和，副产物少，收率高，对环境污染小，有利于工业化大规模生产。
1. 一种化合物的合成方法，其特征在于：该方法是将式Ⅱ所示的化合物经还原反应生成式Ⅰ所示的化合物，该反应的合成路线如下：

![合成路线图]

其中，该反应的还原试剂为硼氢化物。

2. 根据权利要求1所述化合物的合成方法，其特征在于：所述的硼氢化物为硼氢化钠、硼氢化钾或醋酸硼氢化钠。

3. 根据权利要求1或2所述化合物的合成方法，其特征在于：反应溶剂为四氢呋喃、甲苯和乙酸丁酯中的至少一种。

4. 根据权利要求1或2所述化合物的合成方法，其特征在于：化合物Ⅰ与还原试剂的摩尔比为1:0.5～1。

5. 根据权利要求1或2所述化合物的合成方法，其特征在于：反应温度为-10～10℃。

6. 根据权利要求5所述化合物的合成方法，其特征在于：反应温度为0℃。
一种5-羟基四氢呋喃衍生物的合成方法

技术领域
[0001] 本发明涉及有机合成领域。具体涉及一种2-苯甲酸甲酯基-3-苯甲酰氨基-4-氟-4-甲基-5-羟基-四氢呋喃的合成方法。

背景技术
[0002] 传统的制备化合物II的方法通常具有物料成本高，反应条件高，转化率低等缺陷。
[0003] 化合物II中文名称为2-苯甲酸甲酯基-3-苯甲酰氨基-4-氟-4-甲基-5-羟基-四氢呋喃；化学结构式为：

![化学结构式](attachment:image)

[0006] 在WO 2013/178571 A1公开文献中报道了以二氢双(2-甲氧乙氧基)铝酸钠（又称红铝）为还原剂制备化合物II的合成方法，其制备路线如下：

![合成路线I](attachment:image)

[0007] 这种还原方法反应时需要低温至-30℃左右，条件苛刻，对设备以及能耗的要求都比较高。其次化合物I、红铝摩尔比约为1:2.4,还原剂用量大,且红铝价格较贵,增加了原料成本。最后反应后处理比较复杂，有一定的危险性，增加了工艺成本。
[0009] 在WO 2010/075549 A2公开文献中报道了另一种以LiAlH(t-BuO)3为还原剂，制备化合物II的合成方法，其制备路线如下：

![合成路线II](attachment:image)
发明内容

本发明的目的是针对上述技术问题提供一种合成 2-苯甲酸甲酯基-3-苯甲酰氧基-4-氨-4-甲基-5-氰基-四氢呋喃的新方法，该合成方法所需成本低，反应条件温和，副产物少，收率高，对环境污染小，有益于工业化大规模生产。

一种化合物的合成方法，该方法是将式 I 所示的化合物经还原反应生成式 II 所示的化合物，该反应的合成路线如下：

在一些优选的实施方案中，所述的硼氢化物为硼氢化钠、硼氢化钾或醋酸硼氢化钠。

在一些实施方案中，反应溶剂为四氢呋喃、甲苯和乙酸丁酯中的至少一种。

在一些实施方案中，化合物 I 与还原试剂的摩尔比为 1:0.5～1。

在一些实施方案中，反应温度为 -10～10℃；在一些优选的实施方案中，反应温度为 0℃。

在一些实施方案中，为了使得还原试剂能够充分还原式 I 所示的化合物，可以将还原试剂分多次加入反应体系。在一些优选的技术方案中，将还原试剂分两次加入反应体系中，且加入还原试剂后搅拌 3～8h。

在一些技术方案中，还原反应是在氮气或者惰性气体保护的条件下进行。

本发明的有益效果：

本发明技术方案通过选用特定种类和特定用量的还原试剂、特定的反应溶剂以及特定的反应温度可以高选择性的将羰基还原成羟基。且本发明方法所需成本低，反应条件温和，副产物少，收率高，对环境污染小，有益于工业化大规模生产。

具体实施方式

以下将结合具体实例详细地解释本发明，使得本专业的技术人员可以更全面的理解本专利，具体实施例仅用于本发明的技术方案进行解释说明。

实施例 1

在 500ml 反应瓶中将化合物 I（20g, 53.7mmol）溶于 200mL THF 中，氮气保护下，将体系冷却至 0℃，加入硼氢化钠（0.75g, 19.8mmol），保持滴加过程中温度不超过 0℃，滴
加完毕后，搅拌4h，补加硼氢化钠（0.75g, 19.8mmol），然后继续搅拌4h。点板检测原料完全反应.

[0027] 将体系加入200ml冰甲醇中，搅拌30min，减压回收于甲醇和THF。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 19.7g，收率98%。

[0028] 实施例2

[0029] 在500ml反应瓶中将化合物I（20g, 53.7mmol）溶于200mlTHF中，氮气保护下，将体系冷却至0℃，加入醋酸硼氢化钠（5.69g, 19.8mmol），保持滴加过程中温度不超过0℃，滴加完毕后，搅拌4h，补加醋酸硼氢化钠（5.69g, 19.8mmol），然后继续搅拌16h。点板检测原料完全反应。

[0030] 将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和THF。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 19.1g，收率95%。

[0031] 实施例3

[0032] 在500ml反应瓶中将化合物I（20g, 53.7mmol）溶于200ml甲苯中，氮气保护下，将体系冷却至0℃，加入硼氢化钠（1.07g, 19.8mmol），保持滴加过程中温度不超过0℃，滴加完毕后，搅拌4h，补加硼氢化钠（1.07g, 19.8mmol），然后继续搅拌4h。点板检测原料完全反应。

[0033] 将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和甲苯。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 19.3g，收率96%。

[0034] 实施例4

[0035] 在500ml反应瓶中将化合物I（20g, 53.7mmol）溶于200ml甲苯中，氮气保护下，将体系冷却至0℃，加入硼氢化钠（0.5g, 13.2mmol），保持滴加过程中温度不超过0℃，滴加完毕后，搅拌4h，补加硼氢化钠（0.5g, 13.2mmol），然后继续搅拌4h。点板检测原料完全反应。

[0036] 将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和甲苯。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 18.3g，收率91%。

[0037] 实施例5

[0038] 在500ml反应瓶中将化合物I（20g, 53.7mmol）溶于200mL乙酸丁酯中，氮气保护下，将体系冷却至0℃，加入硼氢化钠（1g, 26.4mmol），保持滴加过程中温度不超过0℃，滴加完毕后，搅拌4h，补加硼氢化钠（1g, 26.4mmol），然后继续搅拌4h。点板检测原料完全反应。

[0039] 将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和乙酸丁酯。向残余物
中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 19.7g，收率98%。

【0040】实施例6
【0041】在500ml反应瓶中将化合物I（20g,53.7mmol）溶于200ml乙酸丁酯中，氨气保护下，将体系冷却至-10℃，加入硼氢化钠（0.75g,19.8mmol），保持滴加过程中温度不超过-10℃，滴加完毕后，搅拌4h，补加硼氢化钠（0.75g,19.8mmol），然后继续搅拌4h。点板检测原料完全反应。

【0042】将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和乙酸丁酯。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 18.9g，收率94%。

【0043】实施例7
【0044】在500ml反应瓶中将化合物I（20g,53.7mmol）溶于200mL THF中，氨气保护下，将体系冷却至10℃，加入硼氢化钠（0.75g,19.8mmol），保持滴加过程中温度不超过10℃，滴加完毕后，搅拌4h，补加硼氢化钠（0.75g,19.8mmol），然后继续搅拌4h。点板检测原料完全反应。

【0045】将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和THF。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 18.7g，收率93%。

【0046】对比例1
【0047】在500ml反应瓶中将化合物I（20g,53.7mmol）溶于200ml丙酮中，氨气保护下，将体系冷却至0℃，加入硼氢化钠（0.75g,19.8mmol），保持滴加过程中温度不超过0℃，滴加完毕后，搅拌4h，补加硼氢化钠（0.75g,19.8mmol），然后继续搅拌4h。点板检测原料完全反应。

【0048】将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和丙酮。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 13g，收率65%。且得到的化合物II含有大量的副产物，该副产物是还原了苯甲酰基上的羰基。

【0049】对比例2
【0050】在500ml反应瓶中将化合物I（20g,53.7mmol）溶于200ml乙酸丁酯中，氨气保护下，将体系保持20℃，加入硼氢化钠（1g,26.4mmol），保持滴加过程中温度不超过20℃，滴加完毕后，搅拌4h，补加硼氢化钠（1g,26.4mmol），然后继续搅拌4h。点板检测原料完全反应。

【0051】将体系加入200ml冰甲醇中，搅拌30min，减压回收干甲醇和乙酸丁酯。向残余物中加入200ml二氯甲烷，搅拌溶解，控制温度低于10℃。向有机相中加入250ml冰的氯化铵溶液洗涤一次，再用250ml饱和食盐水洗涤一次，有机相干燥浓缩，得到化合物II 14.2g，收率71%。且得到的化合物II含有大量的副产物，该副产物是还原了苯甲酰基上的羰基。