WO 2006/081:369 A2 || 0000000 0 000 R0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

72
(19) World Intellectual Property Organization f 5"" | [)

520 | 00 OO0

International Bureau

(43) International Publication Date
3 August 2006 (03.08.2006)

(10) International Publication Number

WO 2006/081369 A2

(51) International Patent Classification:
GOGF 7/00 (2006.01)

(21) International Application Number:
PCT/US2006/002818

(22) International Filing Date: 26 January 2006 (26.01.2006)
English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/043,837 26 January 2005 (26.01.2005) US

(71) Applicant (for all designated States except US): MO-
TOROLA, INC. [US/US]; 1303 East Algonquin Road,
Schaumburg, Illinois 60196 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEE, Hang, S.
[AU/US]; 1486 Evergreen Drive, Palatine, Illinois 60074
(US). THOMPSON, William, K. [US/US]; 550 Sheridan
Square, Apt. 2d, Evanston, Illinois 60202 (US).

(74) Agents: LAMB, James, A. et al.; 1303 East Algonquin
Road, Schaumburg, Illinois 60196 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR QUERY GENERATION IN A TASK BASED DIALOG SYSTEM

START

INTERPRET A USER INPUT

!

GENERATE A QUERY BASED ON THE
INTERPRETATION OF THE USER INPUT

302 —

304 —

306

IS THE GENERATED
QUERY SUITABLE
FOR QUERYING
DATABASE ?

YES

_|CONVERT THE GENERATED QUERY
TO A SUITABLE QUERY

STOP

308

(57) Abstract: A method for querying a database (106) in a
task based dialog system (102) is provided. The task based di-
alog system (102) comprises a task model (110), a user model
(114), a dialog manager (112), a query generator (116), and a
mapper (120). The method interprets a user input required to
complete a task. A query is generated for querying the data-
base (106). If the generated query is not suitable for querying
the database (106) it is converted to a suitable query. The suit-
able query is executed to complete the task.

WO 2006/081369 A2 I} NDVYH) AT YK 00 000 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-

METHOD AND SYSTEM FOR QUERY GENERATION IN
A TASK BASED DIALOG SYSTEM

Field of the Invention

This invention is in the field of dialog system and more specifically is in the

field of query generation in a task based dialog system.

Background

Task based dialog systems are systems that interact with a user to complete
one or more tasks such as retrieving information, conducting transactions, and other
such problem solving tasks. A set of interactions between a user and a task based
dialog system is referred to as a dialog. Each interaction is referred to as a turn of the
dialog. The information provided by either the user or the task based dialog system is
referred to as a context of the dialog. The task based dialog system has a set of pre-
defined task parameters required for completing a task. The user specifies the value
of a task parameter through an input device, such as touch-sensitive screen or
mouse or keypad.

Typically, the task parameters are interdependent based upon their values.
Interdependencies between task parameters are defined in a database.

The task based dialog system discovers these interdependences to complete a task.
The task based dialog system queries the database to discover such
interdependencies.

The task based dialog system uses the values of the task parameters
provided by the user as templates for matching data from the database. For example,
a user wishes to perform a task of searching for hotels by defining the city area and
price range. The task based dialog system then queries the database to obtain the
details of hotels and uses them to complete the task.

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-2-

The conventional task based dialog systems are domain dependent. The
domain dependent task models rely on specific heuristics of the domain of the
application to which the task based dialog system is applied. Conventional task
based dialog systems need to be designed for every application. Therefore,
conventional task based dialog systems cannot be adopted for different application
domains. Further, conventional task based dialog systems are dependent on the
storage format of the database.

Brief Description of the Drawings

The present invention is illustrated by way of example, and not limitation, by
the accompanying figures, in which like references indicate similar elements, and in
which:

FIG.1 is a block diagram of a task based dialog system, in accordance with
some embodiments of the present invention;

FIG. 2 is a block diagram of a dialog manager, in accordance with some
embodiments of the present invention;

FIG. 3 shows a flow chart that illustrates the different steps of the method for
querying a database in the task based dialog system, in accordance with some
embodiments of the present invention; and

FIG. 4 is a block diagram of an electronic equipment for query generation, in
accordance with some embodiments of the present invention. ‘

Those skilled in the art will appreciate that the elements in the figures are
illustrated for simplicity and clarity, and have not been necessarily drawn to scale.
For example, the dimensions of some of the elements in the figures may be
exaggerated, relative to other elements, for improved perception of the embodiments

of the present invention.

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-3-

Detailed Description of the Drawings

Before describing in detail a method and system for querying a database in a
task based dialog system, in accordance with embodiments of the present invention,
it should be observed that the embodiments of the present invention reside primarily
in combinations of method steps and apparatus components related to task based
dialog system. Accordingly, the apparatus components and method steps have been
represented, where appropriate, by conventional symbols in the drawings. These
drawings show only the specific details that are pertinent for understanding the
present invention, so as not to obscure the disclosure with details that will be
apparent to those with ordinary skill in the art and the benefit of the description
herein.

Referring to FIG. 1, a block diagram shows a representative environment 100
in which the present invention may be practiced, in accordance with some
embodiments of the present invention. The representative environment 100 includes
a task based dialog system 102, a user 104, a database 106, and an input/output
device 108. The task based dialog system 102 interacts with the user 104 to
complete a task that the user 104 wishes to perform. During the interaction, the user
104 provides input required for completing the task. The user 104 provides the input
through the input/output device 108. The input/output device 108 can be a user
interface, such as a computer monitor, a touch screen, a keyboard, a microphone (for
automatic speech recognition), or a combination thereof. The interaction between the
user 104 and the task based dialog system 102 is referred to as a dialog. Each dialog
comprises a number of interactions between the user 104 and the task based dialog
system 102. Each interaction is referred to as a turn of the dialog. The information
provided by the user 104 or by the task based dialog system 102 at each turn of the
dialog is referred to as a context of the dialog. The task based dialog system 102
maintains and updates the contexts of the dialog. The database 106 stores data for
completion of the task provided by the user 104. Examples of the database 106
include an XML database and a relational database. The task based dialog system
102 queries the database 106 to complete the task. The task based dialog system
102 provides the result of the queries to the user 104. The task based dialog system

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-4-

102 provides the result to the user 104 through the input/output device 108. The task
based dialog system 102 is not dependent on particular information of a domain that
utilizes the task based dialog system 102.

The user 104, for example, wishes to perform a task of booking a hotel room.
The user 104 provides city area and price range as input to the task based dialog
system 102. The task based dialdg system 102 uses these two inputs to query the
database 106 and obtain details of hotels. These details are used to complete the
task through further dialog with the user 104.

FIG. 1 also shows components of the task based dialog system 102. The task
based dialog system 102 comprises a task model 110, a dialog manager 112, a user
model 114, a query generator 116, a means for determining 118, and a mapper 120.
The dialog manager 112 interprets the input provided by the user 104 using the task
model 110, the user model 114 and the context of the dialog. The dialog manager
112 makes a template based on the interpretation of the input provided by the user
104. The template contains input provided by the user 104 in a structural form that
can be used for generating a query. The dialog manager 112 provides the template
to the query generator 116. The query generator 116 generates a first query using
the template provided by the dialog manager 112. In one embodiment of the present
invention, the query generator 116 generates the first query in XQuery. The means
for determining 118 determines whether the first query is suitable for querying the
database 106. A query in a language that can be used for querying a database is
referred to as suitable for querying the database, for example, only a query in SQL
may be used for querying a relational database. Therefore, the query in SQL is
suitable for the relational database. The means for determining 118 can be
implemented as software, hardware, or a combination thereof. If the first query is
suitable for querying the database 106, the database 106 is queried using the first
query. If the first query is not suitable for querying the database 106, in one
embodiment of the present invention, the mapper 120 converts the first query to a
second query, which is suitable for querying the database 106. In one embodiment of
the present invention, the second query is a query in SQL. Examples of the mapper
120 include an XQuery to SQL mapper, and a SQL to XQuery mapper. The database

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-5-

106 is then queried using of the second query. The results obtained by querying the
database 106 are provided to the dialog manager 112.

Referring to FIG. 2, a block diagram shows the dialog manager 112, in
accordance with some embodiments of the present invention. The dialog manager
112 comprises an interpreter 202 and a means for deciding 204. The interpreter 202
accepts and interprets the input provided by the user 104. The interpreter 202 uses
the context of the dialog, the task model 110, and the user model 114 to interpret the
input. The interpreter 202 can use context of the ongoing dialog with the user 104 or
the context of the stored dialogs. The task model 110 is a data structure used to
model a task that the task based dialog system 102 can perform. The user model
114 specifies the relative ranking of the input provided by the user 104. The
interpreter 202 provides the interpretation to the means for deciding 204. The means
for deciding 204, based on interpretation provided by the interpreter 202, performs a
check to decide whether the first query can be generated for querying the database
106. The means for deciding 204 further decides the type of the first query. The first
query can be a parameter completion query or a template search query. The means
for deciding 204 can be implemented as software, hardware, or a combination
thereof.

Referring to FIG. 3, a flow chart shows some steps of a method for querying
the database 106 in the task based dialog system 102, in accordance with some
embodiments of the present invention. The method is not dependent on particular
information of a domain that utilizes the method. At step 302, the dialog manager 112
accepts and interprets input provided by the user 104 for a task selected by the user
104. The user 104 selects the task from a task model schema. The task model
schema specifies tasks that the user 104 can perform. Examples of the task include
retrieving information, conducting a transaction, and other such problem solving
tasks. The task model schema also specifies task parameters required to complete
each of the tasks. Examples of the task model schema include, but are not limited to,
an Extensible Markup Language (XML) schema and a Document Type Definition
(DTD) schema. The user 104 interacts with the task based dialog system 102 to
provide input about the task. Further, the user 104 provides values of the task
parameters required to complete the task. The dialog manager 112 interprets the

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-6-

input using the context of the dialog, the task model 110, and the user model 114.
Context of the current dialog or the context of the stored dialogs can be used by the
dialog manager 112 for interpreting the input provided by the user 104.

The task model 110 is a data structure used to model a task that the task
based dialog system 102 can perform. The task model 110 is developed using the
task model schema. The task model 110 consists of a number of tasks that an
application using the task based dialog system 102 can perform. For each task,
there are one or more plans that can be used by the application. A plan for a task is
also referred to as a recipe. Each recipe in turn comprises a number of steps that
needs to be performed for completing the task. Each step of a recipe is also referred
to as a task act. Further, the recipe contains constraints on the execution of the task
acts, such as their temporal order and whether a task act can be repeated or not.
Each task act in turn comprises a number of task parameters that have to be
specified for completing the task. Each task parameter corresponds to an instance of
an object in the domain to which the task based dialog system 102 is applied. A task
parameter can be classified as an atomic parameter or as a complex parameter. A
task parameter that has only one attribute attached to it is classified as an atomic
parameter. A parameter that has a number of attributes attached to it is classified as
a complex parameter. Task model domain objects in the task model 110 have
structure that is isomorphic to the structure of the database 106.

The user model 114 specifies the relative ranking of the parameters of the
task model 110, which have values specified by the user 104. It provides information
to the dialog manager 112 on what task parameters need to be requested from a
given user during a dialog before a query is generated, based on user preferences
and profiles built from previous dialogs.

The dialog manager 112, based on the interpretation of the input provided by
the user 104, performs a check to determine whether a first guery can be generated
for querying the database 106. For example, the dialog manager 112 can decide to
ask the user 104 for more parameter values, based on the user model 114, before
generating the first query to the database 106. Further, the dialog manager 112,
based on the interpretation of the input provided by the user 104, decides the type of

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-7-

the first query to generate. The first query generated by the dialog manager 112 can
be a parameter completion query or a template search query.

A query generated to complete a partially specified parameter of a task act is
referred to as the parameter completion query. A query generated to complete a
task, based on the parameters that are completely specified by the user 104, is
referred to as the template search query.

The dialog manager 112 makes a template based on the values of the
parameters of the task model 110 provided by the user 104. The template is used to
generate the first query for querying the database 106. The dialog manager 112,
after deciding the type of the first query to generate for querying the database 106,
invokes the query generator 116. The dialog manager 112 provides the template to
the query generator 116.

At step 304, the query generator 116 generates the first query of the type
decided by the dialog manager 112. The query generator 116 generates the first
query by using the template provided by the dialog manager 112.

At step 306, the means for determining 118 determines whether the first
query is suitable for querying the database 106. A query in a language that can be
used for querying a database is considered as suitable for querying the database, for
example, only a query in SQL can be used for quetying a relational database.
Therefore, the query in SQL is suitable for the relational database. If the first query is
suitable for querying the database 106, the database 106 is queried using the first
query. If the first query is not suitable for querying the database 106, at step 308, the
mapper 120 converts the first query to a second query, which is suitable for querying
the database 106. The query generator 116, for example, generates the first query in
XQuery and the database 106 is a relational database. The mapper 120 converts the
first query to the second query. The second query is a query in a language that can
be used for querying the relational database, for example, the second query is a
query in SQL. The database 106 is then queried using the second query. The results
obtained by querying the database 106 are returned to the dialog manager 112 for
completing the task. The dialog manager 112 completes the task and provides the
result to the user 104 through input/output device 108.

An exemplary task model is illustrated below.

10

15

20

25

30

WO 2006/081369

<IDOCTYPE AlMModel SYSTEM "../resources/AimModel.dtd">
<AlMModel>
<DomainModel>
<PrimitiveType type="string"></Primitive Type>
<DomainObject type="Flight" >
<Attribute name="deptCity" type="City"></Attribute>
<Attribute name="deptTime" type="City"></Attribute>
<Attribute name="arrCity" type="Date"></Attribute>
<Attribute name="arrTime" type="Date"></Attribute>
<Constraint type="not"
<Constraint type="and"
<Constraint type="equals”
arg="deptCity.name"
arg="arrCity.name">
</Constraint>
<Constraint type="equals"
arg="deptCity.state"
arg="arrCity.state">
</Constraint>
</Constraint>
</Constraint>
<Constraint type="precedes"
arg="deptDate.time"
arg="arrDate.time">
</Constraint>
</DomainObject>
<DomainObject type="City">
<Attribute name="name" type="string"></Attribute>
<Attribute name="state" type="string"></Attribute>

PCT/US2006/002818

WO 2006/081369 PCT/US2006/002818

</DomainObject>
<DomainObject type="Date">
<Attribute name="time" type="string"></Attribute>
<Attribute name="day" type="string"></Attribute>
<Attribute name="month" type="string"></Attribute>
<Attribute name="year" type="string"></Attribute>
</DomainObject>
</DomainModel>
<TaskModel name="LookupFlightTaskModel">
<TaskAct isa="complex" type="LookupFlight">
<TaskParam name="flight" type="Flight"/>
</TaskAct>
<TaskAct isa="complex" type="SpecifyDeptCity">
<TaskParam name="deptCity" type="City"/>
</TaskAct>
<TaskAct isa="complex" type="SpecifyDeptDate">
<TaskParam name="deptDate" type="Time"/>
</TaskAct>
<TaskAct isa="complex" type="SpecifyArrCity">
<TaskParam name="arrDate" type="Time"/>
</TaskAct>
<Recipe achieves="LookupFlight"
name="LookupFlightRecipe" >
<step name="step1" type="SpecifyDeptCity "/>
<step name="step2" type="SpecifyDeptDate"/>
<step name="step3" type="SpecifyArrCity"/>
<step name="step4" type="SpecifyArrTime"/>
<step name="step5" type="FindMatchingFlights"/>
</Recipe>
</TaskModel>
</IAMModel>

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-10-

The task specified in the above task model is ‘LookupFlight’, i.e. the user 104
wants information about a flight. The ‘LookupFlightRecipe’ recipe is used to perform
the ‘LookupFlight’ task. The ‘LookupFlightRecipe’ comprises ‘SpecifyDeptCity’,
‘SpecifyDeptDate’, ‘SpecifyArrCity’, ‘SpecifyArrDate’, and ‘FindMatchingFlights’ as
task acts. The task acts ‘SpecifyDeptCity’, ‘SpecifyDeptDate’, ‘SpecifyArrCity’,
‘SpecifyArrDate’ and ‘FindMatchingFlights’ are respectively used for specifying
departure city, specifying departure date, specifying arrival city, specifying arrival
date, and finding the matching flight respectively. The ‘LookupFlightRecipe’ has
constraints on the departure date, the arrival date, a set of values for the parameters
of the task act ‘SpecifyDeptCity’, a set of values for the parameters of the task act
‘SpecifyArrCity’, and the order in which the task acts are to be performed. In the
‘LookupFlightRecipe’, the departure date always precedes the arrival date, the set of
values for the parameters of the task act ‘SpecifyDeptCity’ cannot be same as the set
of values for the parameters of the task act ‘SpecifyArrCity’, and the task acts are to
be performed in the order specified in ‘LookupFlightRecipe’. The task act
‘SpecifyDeptCity’ requires the name of the departure city and name of the departure
state as values for the parameters. The task act ‘SpecifyDeptDate’ requires
departure time, departure day, departure month, and departure year as values for the
parameters. The task act ‘SpecifyArrCity’ requires the name of the arrival city and the
arrival state as values for the parameters. The task act ‘SpecifyArrDate’ requires
arrival time, arrival day, arrival month, and arrival year as values for the parameters.
The task act ‘FindMatchingFlights’ uses the values of the parameters specified for
the task acts ‘SpecifyDeptCity’, ‘SpecifyDeptDate’, ‘SpecifyArrCity’, and
‘SpecifyArrDate’ to find the matching flight. Exemplary data for completing the ‘Flight’
object of the above task model, stored in the database 106 is shown below.

<Flight>
<deptCity>
<City>
<name>Portland</name>
<state>Oregon</state>
</City>

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-11-

</deptCity>

<deptDate>

<Date>
<time>3PM</time>
<day>13</day>
<month>October</month>
<year>2004</year>

</Date>

</deptDate>

<arrCity>

<City> ’

<name>Portland</name>

<state>Maine</state>

</arrCity>
<arrDate>
<Date>
<time>9PM</time>
<day>13</day>
<month>October</month>
<year>2004</year>
</Date>
</arrDate>
</Flight>

Task model domain objects in the above task model have structure that is
isomorphic to the structure of the database 106. For example, the information stored
in the database 106 is in XML format, then each parameter type and each of its

attributes is matched to an XML element. Further, for the atomic type parameters,

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-12-

i.e., those containing string values such as the name of a departure city, the value is
stored in the text of the XML element. For the complex type parameters, i.e. those
containing another domain objects such as the departure time, the XML element
corresponding to the object that has a value is used as the child element of the
element corresponding to the complex type parameter. Another exemplary task
model is illustrated below.

<IDOCTYPE AlMModel SYSTEM "../resources/AimModel.dtd">
<AlMModel>
<DomainModel>
<PrimitiveType type="string"></PrimitiveType>
<DomainObject type="PhoneBookEntry" >
<Attribute name="firstname" type="string"></Attribute>
<Attribute name="lastname" type="string"></Attribute>
<Attribute name="homephone" type="string"></Attribute>
<Attribute name="address" type="Address"></Attribute>

<Attribute name="number"
type="string"></Attribute> <Attribute
name="street" type="string"></Attribute>
<Attribute name="city" type="string"></Attribute>

</DomainObject>

</DomainModel>

<TaskModel name="PhoneBookTaskModel">
<TaskAct isa="objective">

</TaskAct>

<TaskAct isa="complex" type="AddEntry">

</TaskAct>

<TaskAct isa="complex" type="FindEntry" >

<TaskParam name="field" type="PhoneBookEniry"/>

</TaskAct>

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-13-

<TaskAct isa="atomic" type="FindField" >

<TaskParam name="field" type="PhoneBookEntry">

</TaskParam>

</TaskAct>

<Recipe achieves="FindEntry" name="FindEntryRecipe" >
<step name="FindEntryStep1" type="FindField"/>
<step name="FindEntryStep2" type="Finish"/>

</Recipe>

</TaskModel>
</IAMModel>

The tasks specified in the above task model are ‘Add Entry’ and ‘Find Entry’,
i.e., the user 104 either wants to add or wants to find an entry in a phonebook. The
‘FindEntryRecipe’ recipe is used to perform the ‘Find Entry’ task. The
‘FindEntryRecipe’ recipe has ‘Find Field’, and ‘Finish’ as task acts. The task acts
‘Find Field’ and ‘Finish’ are respectively used for specifying data about the entry that
is to be found in the phonebook, and for completing the task. The ‘FindEntryRecipe’
has a constraint on the order in which the task acts are to be performed. As a
constraint, the task acts are to be performed in the order specified in the
‘FindEntryRecipe’. The ‘Find Entry’ is of the complex type and requires first name,
last name, home phone number, and address as values for the parameters. Further,
the address is of the complex type and requires house number, street name, and city
name as values of the parameters. Exemplary data for completing the
‘PhoneBookEntry’ object of the above task model, stored in the database 106 is

shown below.

<PhoneBookEntry>
<firsthame>raymond</firsthame>
<lasthame>lee</lastname>

<homephone>1234567890</homephone>

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-14-

<address>
<Address>
<number>1295</number>
<street>Algonquin Rd.</street>
<city>Schaumburg</city>
</Address>
</address>
</PhoneBookEntry>

The user 104 sometimes partially specifies a parameter during a dialog, for
example, for the ‘LookupFlight’ task, the task based dialog system 102 in a dialog
with the user 104 asks the user 104 ‘What is the departure city?’ and the user 104
responds with ‘Portland’. The task act ‘SpecifyDeptCity’ requires the name of the
departure city and the name of the departure state as values for the parameters. The
input provided by the user 104 specifies only the name of the departure city and
hence partially specifies the values for the parameters of the task act
‘SpecifyDeptCity’. A partially specified parameter for the task model corresponding
to the “LookupFlight’ task updated with input provided by the user 104 is shown
below.

<Flight>
<deptCity>
<City>
<name>Portland</name>
</City>
</deptCity>
</Flight>

To complete the values of the parameters of the task act ‘SpecifyDeptCity’,
the dialog manager 112 decides to generate a parameter completion query. The

10

15

20

25

30

WO 2006/081369

-15-

PCT/US2006/002818

parameter completion query would retrieve the states of the cities named ‘Portland’ in

the database 106.

A query can be generated for completing a task if the user 104 provides

completely specified parameters, for example, for the task model corresponding to

the ‘LookupFlight’ task, the values for the parameters of the ‘LookupFlight’ task are

completely specified by the user 104. An exemplary input that is fully specified by the

user 104 for the ‘LookupFlight’ task is shown below.

<Flight>

<deptCity>
<City>
<name>Portland</name>
<state>Oregon</state>
</City>
</deptCity>
<deptDate>
<Date>
<time>3PM</time>
<day>13</day>
<month>QOctober</month>
<year>2004</year>
</Date>
</deptDate>
<arrCity>
<City>
<name>Portland</name>
<state>Maine</state>
</City>
</arrCity>
<arrDate>
<Date>

<time>9PM</time>

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-16-

<day>13</day>
<month>QOctober</month>
<year>2004</year>
</Date>
</arrDate>
</Flight>

To complete the ‘LookupFlight’ task, the dialog manager 112 decides to
generate a template search query. The template search query would retrieve all the
flights from the database 106 that have ‘Portland’ as departure city, ‘Oregon’ as
departure state, ‘Portland’ as arrival city, ‘Maine’ as arrival state, departure time ‘3
PM’, departure day ‘13, departure month ‘October’, departure year ‘2004’ arrival
time ‘9 PM’, arrival day ‘13’ arrival month ‘October’, arrival year 2004’.

The query generator 116 generates the query decided by the dialog manager
112. An exemplary parameter completion query generated to complete the partially
specified values of the parameters of the task act ‘SpecifyDeptCity’ of the above

example is illustrated below.

for $eity in document("flights.xml")/deptCity

where $city/name="Portland"

return $city

An exemplary template search query generated to complete the
“LookupFlight’ task of the above example is illustrated below.

for $flight in document("flights.xml")
where $deptCity/name="Portland"
AND $flight/deptCity/state="Oregon"
AND $flight/deptDate/time="3PM"

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-17-

AND $flight/deptDate/day="13"

AND $flight/deptDate/month="October"
AND $flight/deptDate/year="2004"
AND $flight/arrCity/name="Portland"
AND $flight/arrCity/state="Maine"

AND $ilight/arrDate/time="9PM"

AND $flight/arrDate/day="13"

AND $flight/arrDate/month="October"
AND $flight/arrDate/year="2004"
return $flight

If the query generated by the query generator 116 is suitable for querying the
database 106, the database 106 is queried using the query. The result obtained by
querying an XML database with the above parameter completion query of the above

example is shown below.

<City>
<name>Portland</name>
<state>Oregon</state>

</City>

<City>
<name>Portland</name>
<state>Maine</state>

</City>

The above parameter completion query has resulted in two values for the
name of the departure state. The two values for the name of the departure city are
obtained because there are two states in the database that have a city with the name
‘Portland’. An additional constraint on the name of the departure state can be put in

the ‘LookupFlightRecipe” recipe to get only one result. An exemplary parameter

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-18-

completion query to complete the partially specified values of the parameters for the
task act ‘SpecifyDeptCity’ with constraint on the name of the departure state in the

above example is illustrated below.

for $city in document(*flights.xmi")/deptCity

where $city/name="Portland"

AND (not(and ($city/name="Portland") ($city/state="Maine"))
return $city

The result obtained by querying the XML database with above parameter

completion query is shown below.

<City>
<name>Portland</name>
<state>Oregon</state>
</City>

A relational database cannot be queried with the above parameter completion
guery and the template search query as these are in XQuery. The above parameter
completion query and the template search query are then converted to a suitable
query by the mapper 120, for example, the above parameter completion query for the
‘LookupFlight’ task is converted by the mapper 120 to a query in SQL. An exemplary
template search query in XQuery after conversion into the query in SQL is illustrated

below.

SELECT DEPCITY.STATE

FROM FLIGHT, CITY, STATE

WHERE DEP.CITY.NAME="Portland"

AND (NOT(AND (DEP.CITY.NAME="PORTLAND")

(DEP.CITY.STATE="MAINE"))
The

results obtained by querying the database 106 are provided to the user 104 through

the input/output device 108, for example, ‘Oregon’ will be obtained as a result of
querying the database 106 and will be provided to the user 104.

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-10-

Referring to FIG. 4, a block diagram shows an electronic equipment 402 for
query generation, in accordance with some embodiments of the present invention.
The electronic equipment 402 comprises a means for interpreting 404, a means for
generating 406, and a means for converting 408. The means for interpreting 404
accepts and interprets input provided by the user 104. The means for interpreting
404 performs a check to decide whether the first query can be generated based on
the input. Further, the means for interpreting 404 decides the type of first query. The
means for interpreting 404 provides the interpretation to the means for generating
406. The means for generating 406 generates the first query based on the
interpretation. The means for converting 408 performs a check to decide whether the
first query is suitable for querying the database 106. If the first query is suitable for
querying the database 106, the database 106 is queried using the first query. If the
first query is not suitable for querying the database 106, in one embodiment of the
present invention, the means for converting 408 converts the first query to a second
query, which is suitable for querying the database 106. The database 106 is then
queried using the second query. The results obtained by querying the database 106
are provided to the electronic equipment 402.

It should to be noted that all the codes shown are only for illustrative
purposes. The codes may be represented in other formats without deviating from the
spirit and scope of the present invention.

It will be appreciated that the method for querying a database in a task based
dialog system described herein, may comprise one or more conventional processors
and unique stored program instructions that control the one or more processors to
implement some, most, or all of the functions described herein; as such, the functions
of determining whether a query is suitable for querying a database may be
interpreted as being steps of the method. Alternatively, the same functions could be
implemented by a state machine that has no stored program instructions, in which
each function or some combinations of certain portions of the functions are
implemented as custom logic. A combination of the two approaches could be used.
Thus, methods and means for performing these functions have been described

herein.

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-20-

The method for querying a database as described herein can be used in
embedded devices and enterprise applications. For example, a handset where a user
can input with speech, keypad, or a combination of both. The method can also be
used in embedded devices for personal communication systems (PCS). The method
can be used in commercial equipments ranging from extremely complicated
computers to robots to simple pieces of test equipment, just to name some types and
classes of electronic equipment. Further, the range of applications extends to all
areas where access to information and browsing takes place with a multi-modal
interface.

In the foregoing specification, the invention and its benefits and advantages
have been described with reference to specific embodiments. However, one of
ordinary skill in the art appreciates that various modifications and changes can be
made without departing from the scope of the present invention as set forth in the
claims below. Accordingly, the specification and figures are to be regarded in an
illustrative rather than a restrictive sense, and all such modifications are intended to
be included within the scope of present invention. The benefits, advantages,
solutions to problems, and any element(s) that may cause any benefit, advantage, or
solution to occur or become more pronounced are not to be construed as a critical,
required, or essential features or elements of any or all the claims.

As used herein, the terms "comprises”, "comprising," or any other variation
thereof, are intended to cover a non-exclusive inclusion, such that a process,
method, article, or apparatus that comprises a list of elements does not include only
those elements but may include other elements not expressly listed or inherent to
such process, method, article, or apparatus.

A “set” as used herein, means a non-empty set (i.e., for the sets defined
herein, comprising at least one member). The term “another”, as used herein, is
defined as at least a second or more. The term “having”, as used herein, is defined
as comprising. The term “coupled”, as used herein with reference to electro-optical
technology, is defined as connected, although not necessarily directly, and not
necessarily mechanically. The term “program”, as used herein, is defined as a
sequence of instructions designed for execution on a computer system. A “program”,

or “computer program”, may include a subroutine, a function, a procedure, an object

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

21-

method, an object implementation, an executable application, an applet, a servlet, a
source code, an object code, a shared library/dynamic load library and/or other
sequence of instructions designed for execution on a computer system. It is further
understood that the use of relational terms, if any, such as first and second, top and
bottom, and the like are used solely to distinguish one entity or action from another
entity or action without necessarily requiring or implying any actual such relationship

or order between such entities or actions.

10

15

20

25

30

WO 2006/081369 PCT/US2006/002818

-20.

What is claimed is:

CLAIMS

1. A method for querying a database, the database storing data for completion of a
task in a task based dialog system, the method comprising:

interpreting a user input based on a task model and a dialog context to form
an interpretation of the user input, the dialog context comprising information provided
by at least one of the user and the task based dialog system;

generating a first query based on the interpretation of the user input; and

when the first query is not directly suitable for querying the database,
converting the first query to a second query that is directly suitable for querying the

database.

2. The method for querying a database according to claim 1 wherein the method is

domain independent.

3. The method for querying a database according to claim 1 wherein the first query is
in XQuery.

4. The method for querying a database according to claim 1 wherein the second

query is in Structured Query Language (SQL.).

5. The method for querying a database according to claim 1 wherein interpreting the
user input further comprises:

checking whether the first query can be generated based on the user input;
and

deciding the type of the first query to generate based on the user input.

10

15

20

25

WO 2006/081369 PCT/US2006/002818

23-

6. A method for querying a database, the database storing data for completion of a
task in a task based dialog system, the method comprising:

interpreting a user input based on a task model and a dialog context to form
an interpretation of the user input, the dialog context comprising information provided
by at least one of the user and the task based dialog system; and

generating a query in XQuery based on the interpretation of the user input.

7. A task based dialog system, the task based dialog system querying a database,
the task based dialog system comprising:

a task model, the task model modeling a task in the task based dialog
system;

a dialog manager, the dialog manager managing a dialog;

a query generator, the query generator generating a first query for the dialog;
and

a mapper, the mapper converting the first query to a second query.

8. The task based dialog system according to claim 7 further comprising means for
determining whether the first query is suitable for querying the database.

9. The task based dialog system according to claim 7 wherein the dialog manager
further comprises:

an interpreter, the interpreter interpreting a user input based on a task model
and a dialog context to form an interpretation of the user input, the dialog context
comprising information provided by at least one of the user and the task based dialog
system; and

means for deciding when to generate the first query and what type of the first

query to generate.

WO 2006/081369 PCT/US2006/002818

-24-

10. An electronic equipment for querying a database, the database storing data for
completion of a task in a task based dialog system, the electronic equipment
comprising:

means for interpreting a user input based on a task model and a dialog
context to form an interpretation of the user input, the dialog context comprising
information provided by at least one of the user and the task based dialog system;

means for generating a first query based on the interpretation of the user
input; and

means for converting the first query to a second query.

PCT/US2006/002818

WO 2006/081369

1/4

90—

L "OId

0cl
AN

A\ 4

d3addvVIN

8L
\

ONINIWH3130d HOd4 SNVIN

_

asvav.iva o |—|8OLvEANIOf [13d0on | o,
AHINDO MSVL
"I HIOVNYIWN
DLl — 13A0N b—| DOTVId
43asn _
ZLL
50T INILSAS DOIVIA A3ASVd MSVY.L

12

/
cOl

3TNAOW L
1Nd.LNO fe={basn
/LOdNI

|

801

PCT/US2006/002818

WO 2006/081369

2/4

901}

—

asvav.ivda

¢ 9l

¥0¢

ONIdIO3d HO4 SNV

D

!

d3134d431NI

A 4

dO1VHaINIO
Ad3NoO

— 91

13dON
ASV.L

— 0L}

A

_
c0¢

A

A 4

oLl
80 I

3TNAON
1NdLNno
/1NdNI

13dON
d3SN

— Vi

—p{ HISN

— V0l

WO 2006/081369 PCT/US2006/002818

3/4

(START)

v

302 —] INTERPRET A USER INPUT

!

GENERATE A QUERY BASED ON THE
INTERPRETATION OF THE USER INPUT

304 —

306

IS THE GENERATED
QUERY SUITABLE
FOR QUERYING
DATABASE ?

YES

CONVERT THE GENERATED QUERY

308 — TO A SUITABLE QUERY

PCT/US2006/002818

WO 2006/081369

901 —

4/4

v "Old

¢0v

dSvdavlivd

—

807 —| DNILHIANOD HO4 SNYIN
ONILYHINID HO-4 SNVIW| 90¥ ol
i IINAOW A
0¥ — DNILIHJHILNI HO4 SNV | »| LNdLNO H3sN
. /LNdNI
NOILVYHINID AHINO HO4 i
INIWINDI OINOHLOF 13 201

1

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

