
(19) United States
US 20080016570A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0016570 A1
Capalik (43) Pub. Date: Jan. 17, 2008

(54) SYSTEM AND METHOD FOR ANALYZING
UNAUTHORIZED INTRUSION INTO A
COMPUTER NETWORK

(76) Inventor: Alen Capalik, Los Angeles, CA (US)
Correspondence Address:
MORGAN, LEWIS & BOCKIUS, LLP.
2 PALO ALTO SQUARE
3OOOEL CAMINO REAL
PALO ALTO, CA 94.306 (US)

(21) Appl. No.: 11/788,795

(22) Filed: Apr. 20, 2007

Related U.S. Application Data

(63) Continuation-in-part of application No. 1 1/488,743,
filed on Jul. 17, 2006.

Publication Classification

(51) Int. Cl.
G06F 2/14 (2006.01)

Attacker
10 N- Activity

30 Monitoring/Intercept Module

Decoy OS

42 Processing
Module

40

(52) U.S. Cl. .. 726/23

(57) ABSTRACT

The method analyzes unauthorized intrusion into a computer
network. Access is allowed through one or more open ports
to one or more virtualized decoy operating systems running
on a hypervisor operating system hosted on a decoy network
device. This may be done by opening a port on one of the
virtualized decoy operating systems. A network attack on the
virtualized operating system is then intercepted by an intro
spection module running on the hypervisor operating sys
tem. The attack-identifying information is communicated
through a private network interface channel and stored on a
database server as forensic data. A signature-generation
engine uses this forensic data to generate a signature of the
attack. An intrusion prevention system then uses the attack
signature to identify and prevent Subsequent attacks. A
web-based visualization interface facilitates configuration of
the system and analysis of (and response to) forensic data
generated by the introspection module and the signature
generation engine, as well as that stored in the processing
module’s relational databases.

Protected
Network
Devices

DS/IPS
library of
idnatures

Admin and
Reporting
Interface

07

US 2008/OO16570 A1 Patent Application Publication Jan. 17, 2008 Sheet 1 of 5

09

Patent Application Publication Jan. 17, 2008 Sheet 2 of 5 US 2008/OO16570 A1

Figure 2

200

START

Wait for incoming Intercept

Generate Report from
Monitoring Data

43

44

46

Analyze Data for Patterns

48
Generate End Attack 50

NO Inquiry

52
Create Real-Time Attack

Signature

56
Send Generated Attack
Signature to IDS/IPS

US 2008/OO16570 A1 Jan. 17, 2008 Sheet 3 of 5

g º InõIGH

Patent Application Publication

Patent Application Publication Jan. 17, 2008 Sheet 4 of 5 US 2008/0016570 A1

Figure 4

<item type="STRING TCP"> {- 400
<struct late-'STRING TCP'>
<var name="version" protected="true">4.0</vara
<array name="signatures">
<entry dontDelete="true" nda="false" sfr="85">
<var name="SigName" default="RBOT.CBQ Worm Activity" protected="true" is
<var name="SIGID" default="5571" protected="true"fe
<var name="SubSig" default="0" protected="true" f>
<var name="AlamSeverity" default="high" />
<var name="Enabled" default="True" f>
<var name="EventAction" default="alarm">alarmresets/vars
<var name="SigVersion" default="S185" f>
<var name="SigStringInfo" default="RBOT.CBQ" />
<var name="AlarmThrottle" default="Summarize" f>
<var name="Direction" protected="true" default="ToService" f>
<var name="MinHits" default="1">
Kvar name="Protocol" default="TCP'f-
<var name="RegexString" protected="true"

8W:3 dxf4\xefix51W.92xfSW4fxbc\x46We9\x05\xdc" />
<var name="ServicePorts" default="445" f>
<var name="StorageKey" default="STREAM" f>
<var name="SummaryKey" default="Axxx" f>
<var name="ThrottleInterval" default="15" >

<entrys
<iarrays

</struct
</item

Patent Application Publication Jan. 17, 2008 Sheet 5 of 5

Protected
Network Device

(536)

Protected
Network Device

(536)

Protected
Network Device

(536)

DSIIPS Network (504)
IDS/IPS Library of

System (542) Signatures
(534)

- - - -

Processing Module (508)

Visualization
Interface
(532)

(AJAX-based)

Relational
Database
Server
(528)

Signature
Generation
Engine
(530)

Virtualized OS Module (506)

Hypervisor OS
(510) Virtualized Decoy Virtualized Decoy

(Linux-Based) Operating System Operating System
(512) (512)

Virtual Machine Virtual Machine

Normal Normal Virtual
Hypervisor Hypervisor Machine
Operating Operating Based
System System Rootkit
User User Userland

process process Process

Hypervisor Kernel
(516)

(Linux-based)
Hypervisor

Virtual
Machine

Kernel Module

Virtual-Machine
Based

Rootkit Module
(520) 518

Protected Computer

OS Kernel 526 (Linux-based)

Private Network Interface Communication Channel (524)

US 2008/OO16570 A1

Attacker
Activity
(550)

US 2008/00 16570 A1

SYSTEMAND METHOD FOR ANALYZING
UNAUTHORIZED INTRUSION INTO A

COMPUTER NETWORK

0001. This is a Continuation-In-Part, and claims priority
to and the benefit of: U.S. Ser. No. 1 1/488,743, entitled
“Decoy Network Technology With Automatic Signature
Generation for Intrusion Detection and Intrusion Prevention
Systems' filed on Jul. 17, 2006, the entire disclosure of
which is incorporated herein by reference.

FIELD

0002 The invention relates to the field of methods and
systems for protecting computer networks and is more
particularly, but not by way of limitation, directed to decoy
network technology with automatic signature generation for
intrusion detection and intrusion prevention systems.

BACKGROUND

0003 Computer networks typically interface with the
Internet or other public computer systems and are thus
Vulnerable to attacks, unwanted intrusions and unauthorized
access. One threat to networks is the so-called Zero-day
attack that exploits security vulnerabilities unknown to the
system operators.

0004 Conventional network security systems include a
firewall that generally prevents unauthorized access to the
network or its computers. Conventional systems also include
intrusion detection systems (IDS) and intrusion prevention
systems (IPS) that typically contain a library of signatures of
malware payloads, which enable them to detect those
defined exploits attempting to access production systems.
When a connection is attempted to a network port, the IDS
or IPS examines the low-level IP data packets and compares
them to its library of signatures for a match. When a match
is identified the IDS or IPS provides notification of the
match.

0005 The problem lies in the static nature of the con
ventional IDS and IPS signatures coupled with the ability of
determined attackers to launch new undefined or Zero-day
automated attacks to gain access to the network. While an
intrusion prevention system (IPS) equipped with behavioral
signatures providing the ability to capture behavioral pat
terns offers a higher level of protection, these have similar
drawbacks in that behavioral signatures are still static in
nature and limited in their ability to stop Zero-day attacks.
0006 Still another type of network security systems
utilizes a honeynet arrangement to attract and then trap a
Suspected attacker. A honeynet is made up of two or more
honeypots on a network. Such measures typically are made
up of a computer, data or network site that appears to be part
of the network and appears to be one or more valuable
targets, but which is actually an isolated component located
away from production networks. These are typically passive
measures effective against spammers and other low-level
attacks. Such systems typically run emulated operating
systems and services and are generally not useful against
sophisticated attackers who can detect and effectively avoid
the honeynet, never unloading their Zero-day attack or
payload for the honeynet to capture and analyze. Also, if the
conventional honeynet configuration is not sufficiently sepa
rated from the network system, an attacker can use the

Jan. 17, 2008

honeynet to gain access to the network. Examples of emu
lated or software based honeypots include “honeyd” which
is a GPL licensed daemon that is utilized to simulate
network structures. Another example of emulated software
based honeypots include “mwcollect” and "nepenthes’
which are also released under the GPL license and which are
utilized to collect malware. The “mwcollect” and "nepen
thes' packages extract information on obtaining the malware
binaries from the exploit payload.

0007 Because each of the problems and limitations dis
cussed above exist in the prior art devices and systems, there
is a need for methods and systems that adequately protect
networks from new and undefined attacks and that allow for
real-time updates to a network’s library of attack signatures.

SUMMARY

0008 One or more embodiments of the invention are
directed to an improved method and system for protecting
computer networks. In one embodiment, the invention com
prises a modular decoy network appliance, which runs fully
functional operating systems on client hardware modules.
The modular arrangement comprises front-end fully func
tional operating system modules and a separate processing
back-end module.

0009. The front-end presents a standard fully functional
operating system, such as Windows(R or a flavor of Linux(R),
or Sun Microsystems Solaris(R that returns a standard oper
ating system fingerprint when it is scanned by tools that
attackers typically use to identify vulnerable systems. The
attacker is thus lured into accessing the identified operating
system and running custom or known exploits on that
system.

0010. The front-end module includes a sentinel kernel
driver (or a more generalized executable module) that is
hidden from system Scanners as it is removed from kernel
module listings or registry in Windows. Thus, the kernel
does not indicate the sentinel kernel driver is running. The
sentinel kernel driver monitors connections to the operating
system as well as activity on the operating system and
activity on services running on the operating system. When
an attacker connects to a port, the sentinel kernel driver
captures the data coming through the Socket. Generally all
relevant data coming through the Socket is captured. In most
cases this means whatever data is received as part of an
incoming attack is captured by the sentinel driver. Captured
data is sent as a slew of common UDP packets to the back
end processing module over the fabric network connection
separate from the Vulnerable front-end modules. In this
manner, there is no way for the intruder to know that his or
her communications with the operating system are being
analyzed.

0011. The captured data, which contains the attack-iden
tifying information, is sent to the back-end or processing
module though the backplane fabric of the appliance using
Layer 2 Ethernet communication protocol. The processing
module is separate and independent from the client operat
ing system modules and communicates the processed infor
mation to security administrators through a network port
connected to the private and secure VLAN. Unbeknownst to
the intruder, the exploit is thus captured, transferred and
analyzed.

US 2008/00 16570 A1

0012. With the received data, the processing module
generates a report of the attack. The report consists of
user-friendly information that paints a picture of the attack
for a system administrator. This may include information on
which Sockets were accessed, what happened at a particular
socket, the key strokes entered or bytes transferred to the
port, what files were transferred, registry changes, how the
attack was run, what happened on the primary network, on
its servers or how the network services were affected. The
report may also include information on the location of the
attacker or the attacker's service provider. Graphical repre
sentations of key information and interactive mapping of the
attack locales by region or country may be utilized in one or
more embodiments of the invention.

0013 The processing module is used to generate an
attack signature by analyzing all the data passed through the
Socket. The signature is generated by analyzing the attack
payload including the keystrokes or transferred bytes and
any files uploaded to the client operating system of an ASCII
or binary nature. The files uploaded are assumed to be of a
malicious nature created to deliver a malicious payload in
the form of a compiled program or an interpreted Script. In
the event that no malicious files are uploaded to the oper
ating system, the signature generation engine analyzes all
the keystrokes or bytes delivered through the socket and
creates a pattern signature which when applied to an IDS or
IPS system, enables the IDS or IPS systems to detect the
attack if repeated on production systems. Once generated,
the attack signatures can be viewed by a system adminis
trator to determine the appropriate course of action. The
system administrator can instruct the signature to be
uploaded to the intrusion detection system (IDS) or intrusion
prevention system (IPS) for the protected network where it
is added to the IDS's or IPS's library of signatures to protect
production systems. In one or more embodiments of the
invention, the signature may be uploaded or saved in a third
party system that maintains all known exploits. In this
manner, other systems may be notified through secure
channels of an impending threat. For example, by transfer
ring the signature to a centralized server that communicates
with multiple installations, the intruder may be thwarted
before attacking other systems in other companies.

0014) A production network’s library of signatures can be
updated in real-time as the attacker modifies its illicit
activity or a new attack is launched. The embodiment can
also maintain a database of any and all attack signatures
generated. Other and further advantages will be disclosed
and identified in the description and claims and will be
apparent to persons skilled in the art.

0015. Another embodiment provides a system and
method for analyzing unauthorized intrusion into a computer
network. Access is allowed through one or more open ports
to one or more virtualized decoy operating systems running
on a hypervisor operating system hosted on a decoy network
device. This may be done by opening a port on one of the
virtualized decoy operating systems. A network attack on the
virtualized operating system is then intercepted by a virtual
machine-based rootkit module running on the hypervisor
operating system. The attack-identifying information is
communicated through a private network interface channel
and stored on a database server as forensic data. A signature
generation engine uses this forensic data to generate a

Jan. 17, 2008

signature of the attack. An intrusion prevention system then
uses the attack signature to identify and prevent Subsequent
attacks

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 illustrates a block diagram of an embodi
ment of the system;
0017 FIG. 2 illustrates a flow chart of an embodiment of
the processing that occurs on processing module 40;
0018 FIG. 3 illustrates a human readable summary of an
example attack;
0019 FIG. 4 illustrates an XML formatted attack signa
ture generated from the attack summarized in FIG. 3 for
transmittal to an IDS or IPS, and
0020 FIG. 5 illustrates a block diagram of another
embodiment of the system.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0021. The following descriptions of embodiments of the
invention are exemplary, rather than limiting, and many
variations and modifications are within the scope and spirit
of the invention. Although numerous specific details are set
forth in order to provide a thorough understanding of the
present invention, it will be apparent to one of ordinary skill
in the art, that embodiments of the invention may be
practiced without these specific details. In other instances,
well-known features have not been described in detail in
order to avoid unnecessarily obscuring the present inven
tion.

0022. One or more embodiments of the invention are
directed to an improved method and system for protecting
computer networks. One embodiment is illustrated in FIG.
1, which illustrates attacker activity 10 directed at protected
computer network 20. AS in a typical attack, attack 10 is
scanning for an open port on computer network 20 in an
attempt to make a connection and then access one or more
protected network devices 20a on network 20.
0023. Attack 10 is monitored by decoy 100 that includes
at least one monitor/intercept module 30. Monitor/intercept
module 30 comprises fully functioning decoy operating
system32 that monitors each of the access ports for network
20. Any operating system may be used as decoy operating
system 32 including Windows.(R), Sun Microsystems
Solaris(R or any version of LinuxOR known to persons skilled
in the art. All known operating systems are within the scope
of the present invention. FIG. 1 shows one monitoring/
intercept module 30 in the foreground, however any number
of homogeneous or heterogeneous monitoring/intercept
modules may be utilized (shown as a stack behind monitor/
intercept module 30). For example, in one embodiment of
the invention a Windows(R monitoring/intercept module 30
and LINUXOR) monitoring/intercept module 30 may be
employed. There is no limit to the number of monitoring/
intercept modules that may be utilized in the system and
other embodiments may employ homogeneous decoy oper
ating systems 32 that are of the same or of different versions.
Monitoring/intercept module 30 also includes sentinel ker
nel driver 34 which will be described in further detail below.
Protected network devices 20a are accessed through IDS/

US 2008/00 16570 A1

IPS with Library of Signatures 62 in one or more embodi
ments of the invention. The system also includes processing
module 40 for obtaining and analyzing exploits.
0024. When attack 10 connects to an access port of
network 20, the fully functional decoy operating system 32
intercepts the connection and returns a standard operating
system fingerprint. For example when connecting to an
address that does not exist on protected network 20, decoy
30 may be configured to respond to any such incorrect
address since the connection is assumed to be malicious as
there is no hardware on protected network 20 at that address.
The response may be configured to utilize any existing
hardware module having a given operating system and
version within monitoring/intercept module 30. For
example, an FTP port access for Windows(R) may return a
particular character sequence that is different than an FTP
response for LINUX(R). An FTP access to a Windows(R) port
for example may return a response “aftp: connect: Connec
tion refused’. This characters sequence may be slightly
different on LINUXOR) and hence allows the intruder to
determine what type of operating system is at a particular
network address. In addition, different versions of Win
dows(R may respond with slightly different character
sequences which allows the intruder to determine the spe
cific version of the operating system or to determine a
possible range of versions for the responding operating
system. The instigator of attack 10 is thus lured into access
ing decoy 100, which includes monitor/intercept module 30,
and running custom or known exploits for the observed
operating system. When attacker activity proceeds to inter
act with decoy 100, the attacker provides decoy 100 with the
data used to obtain control of decoy 100, which is recorded
and analyzed without knowledge of the attacker.
0.025 All scans by attack 10 receive real-world operating
system information, thus leading the instigator of the attack
10 to believe that there is a potentially vulnerable system
responding and thus luring attack 10 into communicating
with monitor/intercept module 30. Since real hardware is
utilized, the attacker is attacking an actual physical system
and thus has no idea that the system is actually an instru
mented honeypot that monitors the attackers every move.
0026 Monitor/intercept module 30 includes sentinel ker
nel driver 34. In one embodiment, sentinel kernel driver 34
is a combination of custom root-kit code that on Windows.(R)
based operating systems removes pointers from Microsoft(R)
client/server runtime server subsystem (CSRSS.exe). This
coupled with removing sentinel kernel driver 34 from the
Windows(R registry effectively hides sentinel kernel driver
34 and all its drivers from attack 10. On Unix(R) based
operating systems, the kernel pointers are removed making
the kernel unable to link to a running process, effectively
hiding sentinel kernel driver 34 and all its libraries from
attack 10. Sentinel kernel driver 34 monitors all data coming
through the Socket and is derived from an open Source code,
Such as libpcap, known to persons skilled in the art.
0027. When an attacker connects to a port, and begins
interacting with decoy operating system 32, sentinel 34
monitors and captures information from the connection
including port numbers, data streams, keystrokes, file
uploads and any other data transfers.
0028. The captured information, or attack-identifying
information, is then sent for processing to processing mod

Jan. 17, 2008

ule 40 as illustrated in FIG. 1. Processing module 40 may
optionally include a sentinel server that receives information
from the sentinel kernel driver and deposits the information
in a database for later analysis. In one embodiment, the
monitor/intercept module 30 is a front-end module or series
of modules and the captured data is sent to processing
module 40 though the backplane of the appliance or appli
ances through a layer 2 Ethernet communications link not
available to the attacker Such as an IP connection or any
other hardware dependent custom communication protocol
known to persons skilled in the art. Processing module 40 is
part of a secure and separate administrative network 42. In
one or more embodiments the signature may be sent from
the back end processing module 40 to IDS/IPS 62 through
a second network connection which is used by the process
ing module 40 to directly interact with IDS/IPS 62. The
sentinel kernel driver may utilize replay functionality to
replay the attacks on the operating system in reverse to clean
up the operating system to its pre-attack state. In this
manner, the attack can be thwarted and the operating system
thus does not become a tool of the hacker.

0029. As shown in FIG. 2, processing starts at 200 and
waits for activity from sentinel kernel driver 34 at step 43.
In step 44, processing module 40 generates a report of the
attack that includes attack-identifying information (See FIG.
3). This report is for the use and review by a system
administrator who is responsible for administering protected
network 20. The attack may contain one or more data
transfers or keystrokes for example, which are analyzed at
step 46. By observing whether the attacker is successful in
interacting with the system, i.e., if the system is responding
in a manner that shows that the attacker has gained access,
then determination whether to generate an attack signature is
made at Step 48 and the attack signature is generated at Step
52 (See FIG. 4). If the attacker for example is unsuccessful
at gaining access or if there is no data transfer for example,
then the attack inquiry may be ended at step 50. Any
generated attack signature is sent to the IDS/IPS at step 56
and processing continues at step 43.

0030. In one embodiment of the invention, the report is
written, and is displayed in an web-based visualization
interface and can include information about which sockets
were accessed by attack 10, what happened at a particular
socket, the key strokes entered or data transferred, what files
were transferred, how the attack 10 was run, what happened
on monitor/intercept module 30 and how decoy operating
system 32 and any related network services were affected.
The report may also include information on the location of
the instigator of attack 10 or the service provider used for
attack 10. Graphical representations of key information and
interactive mapping of attack locales by region or country
may also be included in the report.

0031. In step 46, the attack-identifying information is
analyzed for known attack patterns and non-standard pat
terns such as repeating binary patterns, keystroke patterns,
downloaded daemons or errors such as buffer overflow
attempts. By observing the operations performed on decoy
operating system 32 the attack may be categorized and
analyzed to determine for example how an attack gains
control of decoy operating system 32. Any method of
analyzing the incoming data Such as binary matching, neural
network matching or keyword matching or any other method

US 2008/00 16570 A1

of matching attack-identifying information is in keeping
with the spirit of the invention.
0032. In step 48, a decision is made as to whether to
generate an attack signature. If no harmful operations
occurred as a result of attack 10 or when no known attack
patterns are found, then no further attack inquiry would be
needed as shown in step 50. The processing module 40 can
then take on the next input of captured information from the
monitor/intercept module 30.

0033. If a determination is made that attack signature
generation is warranted, an attack signature is generated as
illustrated in step 52. Processing module 40 may generate a
signature whenever data is found to be transferred through
the socket in one or more embodiments of the invention.
Alternatively, if the attack signature already exists or if the
data transfer is of a nature that indicates probing rather than
attack, then the attack signature may not be generated. For
example, processing module 40 may not generate a signa
ture when it is found that no data has been transferred
through the Socket even though the Socket may have been
opened and closed without data transfer. Once the attack
signature is generated, the signature can be reviewed by the
system administrator who decides to send the attack signa
ture, shown in step 56, to the intrusion detection system
(IDS) or intrusion prevention system (IPS) for the protected
network 20 through a standard network connection includ
ing a wireless connection that is generally not sent on
protected network 20 or any other network that the attacker
may observe. This is accomplished by applying the gener
ated attack signature to the IDS/IPS library of signatures to
update the information contained in the library of signatures
to prevent the attacker from accessing the primary network
with a Zero-day attack.
0034 Embodiments of step 56 may save the generated
attack signatures in a database for future use or further
analysis by System administrators. The signatures may also
be sent to a proprietary global database of attack signatures
for further analysis. Any IDS/IPS may be utilized in one or
more embodiments of the invention. Existing IDS/IPS sys
tems for example may be interfaced with in order to inte
grate with existing solutions.

0035 FIG. 3 illustrates a human readable summary of an
example attack. Line 300 shows that the file “msprexe.exe"
is copied into the “System directory. Line 301 shows a first
registry entry created by the attack. Line 302 shows a second
registry entry created by the attack. Any other changes to the
system may be shown, as part of the attack-identifying
information and the information shown in FIG. 3 is exem
plary only.

0.036 FIG. 4 illustrates an XML formatted attack signa
ture generated from the attack summarized in FIG. 3 for
transmittal to an IDS or IPS. XML block 400 includes tags
that define the attack signature in the format of the particular
IDS or IPS. Any tags used by any IDS or IPS are in keeping
with the spirit of the invention and the tags shown in FIG.
4 are exemplary only. For example any ports, protocols,
severity levels, alarm levels, signature name or any other
quantity may be utilized to inform an IDS or IPS of an attack
signature.

0037 Another embodiment of a system for analyzing and
preventing unauthorized intrusion into a computer network

Jan. 17, 2008

is shown in FIG. 5. This embodiment is directed to an
improved method and system for analyzing unauthorized
intrusion into a decoy computer network, the analysis of
which is used to prevent unauthorized access into a pro
tected computer network. An embodiment of Such a system
is illustrated in FIG. 5, while the method remains as shown
in the flowchart in FIG. 2 above.

0038. The system 500, as shown in FIG. 5, includes a
decoy computer network 502 and a protected computer
network 504, each comprising one or more separate com
puting devices. The decoy computer network 502 includes a
virtualized operating system module 506 for monitoring the
decoy network 502, and a processing module 508 for
obtaining, analyzing, and responding to exploits.
0039 These modules may be hosted on the same com
puting device or on separate computing devices. However,
for ease of explanation, these modules will be described
below as being hosted on separate computing devices.
Furthermore, although not shown, one skilled in the art will
appreciate that each of these computing devices may include
one or more processors, input/output devices, communica
tion circuitry, power sources, memory (both physical, e.g.,
RAM, and disks, e.g., hard disk drives), and any other
physical hardware necessary for hosting and running the
aforementioned modules. In some embodiments, the mod
ules 506 and 508 are as present in physical memory once the
system has been booted and is operational.
0040. The virtualized operating system module 506
includes a hypervisor operating system 510 (also known as
a virtual machine monitor operating system) that provides a
virtualization platform that allows multiple virtual operating
systems to be run on a host computing device at the same
time. In some embodiments, the hypervisor operating sys
tem 510 is a LINUX-based system. One or more fully
functioning 'guest Virtualized operating systems 512 are
run on the hypervisor operating system 510 at a level above
the hardware. As will be described in detail below, these
virtualized operating systems 512 act as decoy operating
systems to attract attacker activity 550. Any operating sys
tem may be used as guest decoy operating system 512,
including but not limited to WINDOWS, SUN MICROSYS
TEMS, SOLARIS, or any version of LINUX known to
persons skilled in the art, as well as any combination of the
aforementioned. It should be appreciated that all known
operating systems are within the scope of the present inven
tion. There is also no limit to either the number of virtualized
guest decoy operating systems 512 or the number of virtu
alized guest operating system modules 506 that may be
utilized.

0041 Also running on the hypervisor operating system
510 are normal hypervisor operating system userland pro
cesses 514. The hypervisor operating system 510 includes a
hypervisor kernel 516, which in some embodiments is also
Linux-based. The hypervisor kernel 516 is that part of the
hypervisor operating system 510 that resides in physical
memory at all times and provides the basic services to the
hypervisor operating system 510. The hypervisor kernel 516
is the part of the operating system that activates the hardware
directly or interfaces with another software layer that, in
turn, drives the hardware. The virtualized decoy operating
systems 512 access the physical memory assigned to them
by the hypervisor operating system via the hypervisor kernel
516.

US 2008/00 16570 A1

0042. The hypervisor kernel 516 includes a hypervisor
virtual machine kernel module 518 that supports virtualiza
tion of the “guest' decoy operating systems 512. The
hypervisor kernel 516 also includes virtual-machine-based
rootkit module 520 coupled to the hypervisor virtual
machine kernel module 516. The virtual-machine-based
rootkit module 520 is a set of software tools that conceal
running processes, files or system data from the virtualized
decoy operating systems 512. As described in further detail
below, the virtual-machine-based rootkit module 520 is part
of introspection module 538, which performs introspection
into the physical memory segments assigned to each of the
virtualized decoy operating systems 512.
0.043 Virtual-machine-based rootkit userland processes
522 run on top of the virtual-machine-based rootkit module
520. Together, the rootkit module 520 and its associated
userland processes 522 constitute the systems introspection
module 538 (described further below). Virtual-machine
based rootkit userland processes 522 also pass data from the
introspection module 538 to the processing module 508.
0044) In use, attacker activity 550 is directed at the decoy
computer network 502 through one or more ports of each of
the virtualized decoy operating systems 512 that are left
open as a gateway for attacker activity 550. For example, the
decoy network 502 can be configured to respond to connec
tion attempts made at network addresses that do not exist on
the protected network 504. Connections to these non-exis
tent network addresses are assumed to be malicious, since no
production hardware exists on the protected network 504 at
these addresses. Decoys 512 (in the form of a virtualized
operating system) may be configured to respond to any Such
non-existent network address. As in a typical attack, the
attacker activity 550 scans for an open port, ostensibly in an
attempt to make a network connection and then access one
or more computing devices on the protected computer
network 504. When the attacker activity 550 scans for open
ports at non-existent network addresses, however, the
attacker is presented with a virtualized decoy operating
system 512 instead.
0045. When the attacker activity 550 connects to a vir
tualized decoy operating system 512 through an open port,
the attacker sees a fully-functional standard operating sys
tem fingerprint. Since the virtualized operating system mod
ule 506 can be configured to present any operating system as
a fully-functional virtualized decoy 512, responses to con
nection requests from attacker activity 550 are guaranteed to
be authentic for the operating system running on that decoy.
For example, an FTP port access request for WINDOWS
may return a specific character sequence that differs from an
FTP response for LINUX. Similarly, an FTP access request
to a WINDOWS port may return a response">ftp: connect:
Connection refused.” This character sequence may be
slightly different from that generated by LINUX. Further,
different versions of WINDOWS may respond with slightly
different, version-specific character sequences. Since attack
ers often use these sequences to identify what type of
operating system is at a particular network address and the
version (or range of possible versions) for that operating
system, the fact that virtualized decoy operating systems 512
generate authentic responses makes them realistic decoys
and encourages intruders to access them. The instigator of
the attack 550 is thus lured into accessing the decoy 512,
which is overseen by the hypervisor operating system 510

Jan. 17, 2008

running on the hardware-based, virtualized operating system
module 506. Attacker activity 550 may then initiate custom
or known exploits for the observed operating system. When
the attacker activity 550 proceeds to interact with the decoy
512, the attacker provides the decoy 512 with the data used
to obtain control of the decoy 512. These data are recorded
and analyzed without the knowledge of the attacker, as
described further below.

0046) All scans by the attacker activity 550 receive
real-world operating system and service information, lead
ing the instigator of the attack 550 to believe that there is a
potentially Vulnerable system responding. The attacker is
thus lured into communicating with virtualized operating
system module 506 and its virtualized decoy operating
systems and services. Since real hardware is utilized, the
attacker is essentially attacking an actual physical system
and, therefore, cannot tell that the system is actually an
instrumented honeypot that monitors the attacker activity
550 from the introspection module 538 described below.

0047 As described above, the virtualized guest operating
system module 506 includes the virtual machine-based
rootkit module 520 and its associated userland processes
522. Since both the virtual machine-based rootkit module
520 and its associated userland processes 522 run com
pletely outside the virtualized decoy operating systems 512,
they remain hidden from the instigator of the attack, with no
discoverable impact on the decoy operating systems 512
performance. In one embodiment, the virtual machine-based
rootkit module 520 and its associated userland processes 522
constitute an introspection module 538 (also known as a
virtual machine-based memory introspection analysis tool)
that monitors and introspects into the virtualized decoy
operating systems memory segments. This occurs from
within the hypervisor operating system 510. The introspec
tion module 538 introspects and gathers information on any
virtualized operating system supported by the hypervisor
operating system 510.

0048. The introspection module 538 comprising the vir
tual-machine-based rootkit module 520 and its associated
userland processes 522 examines the memory assigned to
virtualized decoy operating systems 512 in order to acquire
low-level data about the interaction between the decoy
operating systems and attack activity 500. The introspection
module 538 examines the memory of virtualized decoy
operating systems 512 by means of three functional com
ponents: a code region selector, a trace instrumentor, and a
trace analyzer. Regular expressions (also known as regex')
are used throughout the process to identify, describe, and
profile the contents of the virtualized decoy's memory
segments. The code selector identifies regions of code in
memory that are of interest for further introspection.
Regions of interest may include, but are not limited to,
system calls, the arguments of system calls, the returns of
system calls, device and memory input-output, driver infor
mation, library calls, branching information, instruction
pointer jumps, and raw network information. The instru
mentor copies the memory traces of interest identified by the
code selector and then profiles and instruments them. The
trace analyzer takes the instrumented traces and uses them to
replay the memory behavior of the decoy operating system
512. In this manner, the introspection module 538 examines
the contents of the decoy operating systems 512 memory

US 2008/00 16570 A1

segments in an instrumented context that generates and
retrieves forensic data for analysis by the processing module
SO8.

0049. When an attacker connects to a network port and
begins interacting with a virtualized decoy operating system
512, the introspection module 538 monitors and captures
information from the connection, including port numbers,
data streams, file uploads, keystrokes, ASCII or binary files,
malicious payloads, memory manipulation attempts, and
any other data transfers or malicious attempts.
0050. The captured information, containing attack-iden
tifying information, is then sent from the introspection
module 538 to the processing module 508 by means of a
virtual machine-based rootkit userland process 522.
0051. The processing module 508 includes an operating
system kernel 526, which in some embodiments is also
LINUX based. The processing module 508 also includes a
database, such as a relational database server 528, and a
signature-generation engine 530. In some embodiments, the
signature-generation engine 530 communicates with the
introspection module 538 over a private network interface
communications channel 534 and accepts custom-formatted
protocol packets named BAT (Blade Activity Transfer). The
private network interface communications channel 524 may
be a persistent Layer 3 TCP socket communications link that
cannot be seen or accessed by the attacker (such as an IP
connection or any other hardware-dependent custom com
munication protocol known to persons skilled in the art).
Thus, the processing module 508 is part of a secure and
separate administrative network.
0.052 In use, the introspection module 538 captures
(through introspection) attack information. The attack infor
mation is then communicated through the private network
interface channel 524 and stored on the relational database
server 528 as forensic data for later analysis. The signature
generation engine 530 then uses this forensic data to gen
erate a signature of the attack. The entire process from attack
detection through signature generation may occur automati
cally, i.e., without any human intervention, at a timescale
ranging from nearly immediate to several minutes. The
intrusion prevention system (described below) uses the
attack signature to identify and prevent Subsequent attacks.

0053. The protected computer network 504 includes an
IDS/IPS library of signatures 534 and an IDS/IPS system
542 coupled to multiple protected network devices 536.
Suitable IDS/IPS systems 542 include Cisco Systems’ IPS
4200 Series, Juniper's IDP 200, and Enterasys' Dragon IDS
Network Sensor.

0054. In one or more embodiments, the signature may be
sent from the back-end processing module 508 to the
intrusion detection and/or prevention (IDS/IPS) signature
library 534 through a second network connection 540, which
is used by the processing module 508 to directly interact
with the IDS/IPS system 542. The virtual-machine-based
rootkit module 520 may easily clean the virtualized decoy
operating system 512 at any time by removing the running
system image of the compromised virtualized decoy oper
ating system and replacing it with a pre-attack system image.
Thus the virtual-machine-based rootkit module 520 can
cleanse or reset the virtualized decoy operating system of
any malicious Software or payload, removing the possibility

Jan. 17, 2008

that attacker(s) can use that virtualized decoy operating
system 512 for further attacks on other networks. In this
manner, the attack can be thwarted, and the operating system
does not become a tool of the attacker(s). This procedure
may also be automated, i.e., may occur without further
human intervention.

0055 As shown in FIG. 2, processing starts at Step 200
and waits for activity from the introspection module 538 at
Step 43. At Step 44, the processing module 508 generates a
report of the attack that includes attack-identifying informa
tion (See FIG. 3). This report is for review and use by a
system administrator responsible for the security of a pro
tected network 504. The attack may contain, but is not
limited to, one or more data transfers or keystrokes, which
are analyzed at Step 46. By observing whether the attacker
is Successful in interacting with the system (i.e., if the
system is responding in a manner that shows that the attacker
has gained access), a determination can be made at Step 48
as to whether an attack signature should be generated, and
the attack signature is created at step 52 (See FIG. 4). If the
attacker, for example, is unsuccessful at gaining access, or if
there is no data transfer, the attack inquiry may be ended at
Step 50. Any attack signature generated is sent to the
IDS/IPS signature library 534 at Step 56, and processing
continues at Step 43.
0056. In one embodiment of the invention, the report of
the attack is written and then displayed via a visualization
interface 532 and can include information about which
sockets were accessed by the attack 550, what happened at
a particular socket, the keystrokes entered or data trans
ferred, what files were transferred, how the attack 550 was
run, what happened on the virtualized operating system
module 506, and how the virtualized decoy operating sys
tems 512 running on the hypervisor operating system 510
and any related network services were affected. In some
embodiments, the visualization interface 532 is AJAX
and/or FLASH-based. The report may also include informa
tion on the location of the instigator of the attack 550 or the
service provider used for the attack. Graphical representa
tions of key information and interactive mapping of attack
locales by region or country may also be included in the
report. The visualization interface may also be used to
analyze, configure, and automate the system's response to
attack activity 550 on timescales ranging from near-imme
diate to several minutes from the initiation of an attack.

0057. At Step 46, the attack-identifying information is
analyzed for known attack patterns as well as non-standard
patterns, such as repeating binary patterns, keystroke pat
terns, downloaded daemons, or errors (such as buffer over
flow attempts, malicious payloads attempting to execute
arbitrary code on the system, memory overwriting attempts,
stack attacks, and heap attacks). By observing the operations
performed on the decoy operating system(s) 512, the attack
550 may be categorized and analyzed to determine, for
example, how an attack gained control of the decoy oper
ating system(s) 512. Any method of analyzing the incoming
data such as binary matching, neural-network matching,
keyword matching, or any other method of matching attack
identifying information is in keeping with the spirit of the
invention. Pattern-matching techniques involving neural
networks, for example, are characterized in Carl Looney's
Pattern Recognition Using Neural Networks. Theory and
Algorithms for Engineers and Scientists (Oxford University

US 2008/00 16570 A1

Press USA, New York, N.Y., 1997) and Christopher Bish
op’s Neural Networks for Pattern Recognition (Oxford
University Press USA, New York, N.Y., 1995), among other
sources familiar to those skilled in the art.

0.058 At Step 48, a decision is made as to whether to
generate an attack signature. If no harmful operations
occurred as a result of an attack, or when no known attack
patterns are found, then no further attack inquiry would be
needed (as shown at Step 50). The processing module 508
may then take on the next input of captured information
from the introspection module 538 running on the hardware
based, virtualized operating system module 506.
0059. If a determination is made that attack signature
generation is warranted, an attack signature is generated as
illustrated in Step 52. In one or more embodiments of the
invention, the processing module 508 may generate a sig
nature whenever data is found to be transferred through the
Socket. Alternatively, if the attack signature already exists, or
if the data transfer is of a nature that indicates probing rather
than attack, then the attack signature may not be generated.
For example, the processing module 508 may not generate
a signature when it is found that no data has been transferred
through the Socket, even though the Socket may have been
opened and closed. The conditions under which the process
ing module 508 generates an attack can be configured and
automated by an administrator. Once the attack signature is
generated, the signature can be reviewed by the system
administrator, who decides whether to send the attack sig
nature (shown at Step 56) to the intrusion detection system
(IDS) or intrusion prevention system (IPS) for the protected
network 504. The attack signature is sent through a standard
network connection or via a wireless connection and is
generally sent on a private portion of the protected network
504 that the attacker cannot observe. The generated attack
signature is thus applied to the IDS/IPS library of signatures
534, thereby updating the information contained in the
signature library and preventing the attacker from accessing
the protected network 504.
0060 Embodiments of the invention may save the attack
signatures created at Step 52 in a relational database server
528 for future use or analysis by system administrators. The
signatures may also be sent to a proprietary global database
of attack signatures for further analysis, Storage, and distri
bution. Any IDS/IPS system may be utilized in one or more
embodiments of the invention. The invention may be inter
faced with existing IDS/IPS systems, for example to inte
grate it with existing Solutions.
0061 As explained above, FIG. 3 illustrates a human
readable summary of an example attack. Line 300 shows
that the file “msprexe.exe' is copied into the “System
directory. Line 301 shows a first registry entry created by the
attack. Line 302 shows a second registry entry created by the
attack. Any other changes to the system may be shown as
part of the attack-identifying information, and the informa
tion shown in FIG. 3 is exemplary only.
0062. As explained above, FIG. 4 illustrates an attack
signature generated from the attack Summarized in FIG. 3
and formatted in XML for transmission to an IDS or IPS.
XML Block 400 includes tags that define the attack signa
ture in the format of the particular IDS or IPS. Any tags used
by any IDS or IPS are in keeping with the spirit of the
invention, and the tags shown in FIG. 4 are exemplary only.

Jan. 17, 2008

For example, any ports, protocols, severity levels, alarm
levels, signature name, or any other quantity, may be utilized
to inform an IDS or IPS of an attack signature.
0063. While embodiments and alternatives have been
disclosed and discussed, the invention herein is not limited
to the particular disclosed embodiments or alternatives but
encompasses the full breadth and scope of the invention
including equivalents, and the invention is not limited
except as set forth in and encompassed by the full breadth
and scope of the claims herein.

What is claimed is:
1. A method for analyzing unauthorized intrusion into a

computer network, the method comprising:
allowing access to an apparently Vulnerable virtualized

decoy operating system running on a hypervisor oper
ating system hosted on a decoy network device;

using an introspection module comprising a virtual-ma
chine-based rootkit module and its associated userland
processes running on the hypervisor operating system
to intercept a network attack on the virtualized oper
ating system, wherein the network attack includes
attack-identifying information; and

generating forensic data on the network attack from the
attack-identifying information.

2. The method of claim 1, further comprising:
generating an attack signature from the forensic data; and
providing the attack signature to an intrusion prevention

system configured to control access to a protected
network using the attack signature to identify Subse
quent attacks.

3. The method of claim 2, further comprising controlling
access to the protected network using the attack signature.

4. The method of claim 2, wherein the attack signature is
automatically generated by the system without human inter
vention.

5. The method of claim 1, further comprising, before the
allowing, opening a port on the virtualized decoy operating
system through which the network attack is made.

6. The method of claim 1, further comprising:
allowing access to an additional virtualized decoy oper

ating system running on the hypervisor operating sys
tem;

using the virtual-machine-based rootkit module to inter
cept an additional network attack on the additional
virtualized operating system, wherein the additional
network attack includes additional attack-identifying
information; and

generating additional forensic data on the additional net
work attack from the additional attack-identifying
information.

7. The method of claim 6, further comprising:
generating an additional attack signature from the addi

tional forensic data; and

providing the additional attack signature to an intrusion
prevention system configured to control access to a
protected network using the attack-identifying infor
mation.

US 2008/00 16570 A1

8. The method of claim 1, wherein the virtualized decoy
operating system and the additional virtualized decoy oper
ating system are different types of operating systems.

9. The method of claim 1, wherein said forensic data is
generated based on an attack payload including keystrokes,
ASCII, or binary files.

10. The method of claim 1, wherein the attack forensics
are generated if an attacker is able to Successfully gain
access to the virtualized decoy operating system.

11. The method of claim 1, further comprising providing
a report of said network attack to a network administrator.

12. The method of claim 1, further comprising storing the
attack forensics in a database.

13. A system for analyzing unauthorized intrusion into a
computer network, the system comprising:

a virtualized operating system module comprising:
a hypervisor operating system comprising:

at least one virtualized decoy operating system;
a virtual-machine-based rootkit configured to inter

cept a network attack on the virtualized operating
system, wherein the network attack includes trans
mission of attack-identifying information; and

a processing module electrically coupled to the introspec
tion module via a network interface communication
channel, wherein the processing module comprises: a
database configured to store forensic data on the net
work attack.

14. The system of claim 13, wherein the processing
module further comprises an attack signature-generation
engine configured to generate an attack signature from the
forensic data on the network attack, wherein attack signa
tures may be generated on a timescale ranging from near
immediate to several minutes after initiation of an attack.

15. The system of claim 14, wherein the processing
module further comprises a web-based visualization inter
face that facilitates configuration of the system and forensic
analysis of captured attack information by administrators.

16. The system of claim 15, further comprising an intru
sion prevention system electrically coupled to the signature
generation engine.

17. The system of claim 13, wherein the intrusion detec
tion system is configured to prevent unauthorized intrusion
into a protected computer network.

18. The system of claim 13, wherein the network interface
communication channel is a private channel.

Jan. 17, 2008

19. The system of claim 13, wherein the virtualized
operating system module includes multiple virtualized
decoy operating systems on the hypervisor operating sys
tem.

20. The system of claim 13, wherein the attack forensics
are based on an attack payload including keystrokes or
ASCII or binary files.

21. The system of claim 13, wherein the virtualized
operating system module and the processing module are
contained in memory on the same or separate computing
devices that each includes a processor.

22. A computing device configured for analyzing unau
thorized intrusion into a computer network, the device
comprising:

a processor; and

memory coupled to the processor, wherein the memory
comprises procedures for:

allowing access to a virtualized decoy operating system
running on a hypervisor operating system hosted on a
decoy network device;

using an introspection module running on the hypervisor
operating system to intercept a network attack on the
virtualized operating system, wherein the network
attack includes attack-identifying information; and

generating forensic data on the network attack from the
attack-identifying information.

23. The computing device of claim 22, further comprising
a web-based visualization module comprising procedures
for:

analyzing forensic data generated by the introspection
module and the signature generation engine, as well as
that stored in the processing module’s relational data
bases; and

configuring the system, wherein an administrator can tune
the systems behavior, including its pattern matching
facilities, as well as automate the system's response to
attack-identifying information captured by the intro
spection module and automate its response to forensic
data generated by the signature-generation engine and
any information stored on the processing module's
relational databases.

