wO 2007/087074 A2 |10 0 00O 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO T R O 00

International Bureau

(43) International Publication Date
2 August 2007 (02.08.2007)

(10) International Publication Number

WO 2007/087074 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2006/049552

(22) International Filing Date:
28 December 2006 (28.12.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/339,127 25 January 2006 (25.01.2006) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: SNOVER, Jeffrey P.; One Microsoft Way,
Redmond, WA 98052-6399 (US). PAYETTE, Bruce, G.;
One Microsoft Way, Redmond, WA 98052-6399 (US).
HUANG, Dana, Jin; One Microsoft Way, Redmond, WA
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,

JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,

LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: EXTERNAL CONFIGURATION OF PROCESSING CONTENT FOR SCRIPT

400
Config . .
:\Ac%esls Igontl_?on?nt g?n?g Filgs Processing Pfgg:f:)‘gg. Adaptation Pfggre\?:)l"tlg invocation
odule
entification [i 413A Det(e:g%}ﬁg%on 47 405 A 406
401 402 Access 404
403 1
Seript Component
M] ; \
Pararﬁeters Component Cnmronem Adapted
2 D D Component
4138 4148 4158

(57) Abstract: Script is accessed and interpreted to identify an executable component. Processing context configuration files may
then be used to identify an appropriate processing context for the identified executable component. Examples of processing context
include, but are not limited to, a process in which the identified executable component is to run, one or more adaptations to perform
on the component prior to running, and/or a security context in which to run the component. Processing context thus need not be
specified in the actual script itself. The identified components may then be executed in the identified processing context.

WO 2007/087074 PCT/US2006/049552

10

15

20

25

EXTERNAL CONFIGURATION OF PROCESSING CONTENT FOR SCRIPT
BACKGROUND

Background and Relevant Art

[0001] Computing systems have revolutionized the way we work and play.
Computing systems come in a wide variety of forms including laptop computers,
desktop computers, personal digital assistants, telephones, and even devices that have
not been conventionally associated with computing systems such as, for example,
refrigerators and automobiles. Computing systems may even comprise a number of
constituent computing systems interconnected via a network. Thus, some computing
systems may be small enough to fit in the palm of the hand, while others are spread
aover much of the globe.

[0002] Regardless of their physical form, computing systems are composed of
hardware and softiware. The hardware includes most fundamentally at least one
processor and memory. The sofiware includes instructions that may be embodied in
the memory or in storage, and that can be accessed and executed by the processor(s)
to direc't the overall functionality of the computing system. Thus, software is critical
in enabling and directing the functionality of the computing system.

[0003]: The software in a typical computing system will typically include an
operating system and application programs. The operating system typically provides
the core functionality common across multiple application programs. For instance,
the operating system provides Application Program Interfaces (often termed “APIs”)
that provide unde;rlying file systems, memory management, security, networking, user
interfacing, and other core functionality to application programs. The operating

system also initiates, manages, and terminates multiple processes on.a single

computing system.

WO 2007/087074 PCT/US2006/049552

10

15

20

.25

[0004] A “process” is a term of art that is used to describe a virtual address space
that includes a collection of resources that may be shared by one or more running
executable components that are included in that process. The re.sources may include a
process identifier, one or more execution threads, file handles, shared memory, and
shared processor time. A process may also impose constraints on the executable
component(s) that are run in that process so that order may be properly maintained.
For instance, a process may expect a data structure or object of a particular type to
have a specific structure, and may require that each component executing in the
process use memory in a consistent manner.

[0005] “Script” is a term used to describe a sequence of commands that may be
interpreted to form computer-executable instructions during run-time immediately
before the computer-executable instructions are acmaliy executed by the processor(s).
Often, the commands will be used to execute specific components. The components
invoked by the script are run in a certain processing context that is implied or
expressed in the script that invokes the component. The processing context may
include the process that the component runs in and the security context in which the
component is run. For instance, the security context may specify that the security
mechanism for the component is to treat the user as a particular entity, and/or to run
the component on a particular machine. It may be needful or advantageous for
components to be run in a particular processing context.

[0006] As a specific example, by default, the script may invoke a component that
is run within a particular process. However, the component may not be compatible
with the current process. For instance, the component.may rely on a functions library

that is not available to the process, or perhaps the component may not function as

_intended within the context of that process. ‘A:ltema'ﬁvély or.in addition; the:script -

2

WO 2007/087074 PCT/US2006/049552

10

may have been drafted by an author that is not trusted within the context of that

process. In any of these cases, the script language may be altered to specify that the

. component is to be run in a different process. Furthermore, if the component is to be

run outside of a default security context, that security context would be identified as
well in the script language.

[0007] Thus, whenever a processing context of a script component is outside of
the default processing context, the script is changed as well to reflect the new

processing context. Altering the script in this manner can be a cumbersome process.

WO 2007/087074 PCT/US2006/049552

10

BRIEF SUMMARY

[0008] Script is accessed and interpreted to identify an executable component, Processing
context configuration files may then be used to identify an appropriate processing context for the
identified executable component. Examples of processing context include, but are not limited to, a
process in which the identified executable component is to run, one or more adaptations to perform on
the component prior to running, and/or a security context in which to run the component. Processing
context thus need not be specified in the actual script itself.

[0009] This Summary is provided to introduce a selection of concepts in a simplified form that
are further described below in the Detailed Description. This Summary is not intended to identify key
features or essential features of the claimed subject matter, nor is it intended to be used as an aid in

determining the scope of the claimed subject matter.

WO 2007/087074 PCT/US2006/049552

10

15

20

25

BRIEF DESCRIPTION QF THE DRAWINGS
[0010] In order to describe the manner in which the above-recited and other advantages and

features of the invention can be obtained, a more particular description of the invention briefly
described above will be rendered by reference to specific embodiments thereof which are illustrated in
the appended drawings. Understanding that these drawings depict only typical embodiments of the
invention and are not therefore to be considered to be limiting of its scope, the invention will be
described and explained with additional specificity and detail through the use of the accompanying
drawings in which:

[0011] Figure 1 illustrates a suitable computing environment in which the principles of the
present invention may be employed;

[0012] Figure 2 illustrates a flowchart of a method for identifying a particular processing context
for running script in a computing system;

[0013] Figure 3 illustrates a flowchart of a method for identifying one or more processing
context configuration files associated with the identified executable component;

[0014] Figure 4 illustrates a processing flow associated with the method for. identifying a
particular processing context of Figure 2;

[0015] Figure SA schematically illustrates processing in which multiple components of a script
are run within a single process, but in which the processing context of the second components is
changed to reflect that some adaptation of the second component is to occur prior to execution;

[o016] Figure 5B schematically illustrates processing in which multiple components of a script
are run in separate processes, with potentially some pre-processing adaptation or other processing
context to be enforced on one of the components prior to execution; and

[0017] Figure 5C schematically illustrates processing in which multiple components are run in
separate process, and in which processing control may pass between subsequent components in a child

process without passing control back to a parent process.

WO 2007/087074 PCT/US2006/049552

10

15

20

25

DETAILED DESCRIPTION

[0018] The present invention extends to the identifying of a processing context
associated with one or more components executed by a script, without having to refer
to processing context identification within the script. itself. Thus, if the processing
context changes, the script itself need not change. Instead, one or more processing
context configuration files associated with each component are referred to in
identifying the processing context. Should the processing context for a script
component change, the configuration files are simply altered, rather than changing
any script that invokes tﬁat component.

[0019] First, an example computing system in which the principles of the present
invention may operate will be described with respect to Figure 1. Then, the principles
of the present invention will be described in further detail with respect to the
subsequent Figures 2, 3, 4, 5A, 5B and 5C. The embodiments of the present invention
may comprise a special purpose or general-purpose computer including various
computer hardware, as discussed in greater detail below.

[0020] Figure 1 shows a schematic diagram of an example computing system 100

that may be used to implement features of the present invention. The described

_ computing system is only one example of such a suitable computing system and is not

intended to suggest any limitation as to the scope of use or functionality of the
invention. Neither should the invention be interpreted as having any dependency or
requirement rélating to any one or combination of components illustrated in Figure 1.

[0021] Computing systems are now increasingly taking a wide variety of forms.
Computing systems méy, for example, be handheld devices, appliances, laptop
computers, desktop computers, mainframes, or distributed computing systems.. In this

description and in the claims, the term “computing ‘system™ is-defined -broadly as:

P

WO 2007/087074 PCT/US2006/049552

10

15

20

25

including any device or system (or combination thereof) that includes at least one
processor, and a memory capable of having thereon computer-executable instructions
that may be executed by the processor. The memory may take 'any form and may
depend on the nature and form of the computing system. A computing system may be
distributed over a network environment and may include multiple constituent
computing systems.

[0022] Referring to Figure 1, in its most basic configuration, a computing system
100 typically includes at least one processing unit 102 and memory 104. The memory
104 may be volatile, non-volatile, or some combination of the two. An example of
volatile memory includes Random Access Memory (RAM). Examples of non-
volatile memory include Read Only Memory (ROM), flash memory, or the like. The
term “memory” may also be used herein to refer to non-volatile mass storage. Such
storage may be removable or non-removable, and may include (but is not limited to)

PCMCIA cards, magnetic and optical disks, magnetic tape, and the like.

' [0023] As used herein, the term “module” or “component” can refer to software

objects or routines that execute on the computing system. The different components,
modules, engines, and services described herein may be implemented as objects or
processes that execute on the computing system (e.g., as separate threads)'as part of a
protocol. While the system and methods described herein may be implemented in
software, implementations in hardware, and in combinations of software and
hardware are also possible and contemplated.

[0024) In the description that follows, embodiments of the invention are described

with reference to acts that are performed by one or more computing systems. If such

" acts are implemented in software, one or more processors of the associated computing .

. system that performs the act direct the operation of the.computing system in response

7

WO 2007/087074 PCT/US2006/049552

10

15

20

25

to having executed computer-executable- instructions. An example of such an
operation involves the manipulation of data.A The c;)mputer-executable instructions
(and the manipulated data) may be stored in the memory 104 of the computing system
100.

[0025] Computing system 100 may also contain communication channels 108 that
allow the computing system 100 to communicate with other computing systems over,
for example, network 110. Communication channels 108 are examples of
communications media. Communications media typically embody computer-readable
instructions, data structures, program modules, or other data in a modulated data
signal such as ‘a carrier wave or other transport mechanism and include any
information-delivery media. By way of example, and not limitation, communications
media include wired media, such as wired networks and direct-wired connections, and
wireless media such as acoustic, radio, infrared, and other wireless media. The term
computer-readable media as used herein includes both storage media and
communications media.

[0026] Embodiments within the scope of the present invention also include computer-
readable media for carrying or having computer-executable instructions or data
structures stored thereon. Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose computer. By way of
example, and not limitation, such computer-readable media can comprise RAM,
ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to carry or
store desired program code means in the form of computer-executable instructions or
data structures and which can be accessed by a general purpose or special purpose

computer.. .When information is transferred or provided over a network or another. . -

g

WO 2007/087074 PCT/US2006/049552

10

15

20

.25

communications connection (either hardwired, wireless, or a combination of
hardwired or wireless) to a computer, the corﬁputer properly views the connection as a
computer-readable medium. Thus, any such connection is properly termed a
computer-readable medium. Combinations of the above should also be included
within the scope of computer-readable media.

[0027] Computer-executable instructions comprise, for example, instructions and data
which cause a general purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or group of functions.
Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts described above are
disclosed as example forms of implementing the claims.

[0028] Figure 2 illustrates a flowchart of a method 200 for identifying a particular
processing context for running script in a computing system. The computing system
may be structured as described above for the computing system 100 of Figure 1,
although any computing system that is capable of executing script and otherwise
being adaptable to perform the principles of the present invention will suffice. Figure
4 illustrates a processing flow 400 including various components and data that may be
used to implement the method 200 of Figure 2. Accordingly, the method 200 of
Figure 2 will be described with frequent reference to the pfocessing flow 400 of
Figure 4.

[0029] First, the script to be executed is accessed (act 201). 'The script may be

accessed by receiving the script from another computing system, or by accessing the

. script. from a‘sour}ceei‘nte;mal ;toﬂ}iei compytihg‘ syStém; For instance, if the method 200 :

9

WO 2007/087074 PCT/US2006/049552

10

15

20

25"

is performed in the context of the computing system 100 of Figure 1, the script may
be accessed from the memory 104. Referring to Figure 4, an access rﬁodule 401
accesses script 411 and provides the script 411 to components further along the
processing flow 400. Mechanisms for accessing script are known in the art and thus
will not bq described in detail here. The script 411 may include a script command
line, multiple script command lines and/or perhaps even just a portion of one or more
command lines. For instance, the script 411 may be just a portion of a script pipeline

command.

- [0030] Next, the script is interpreted (act 202) to identify one or more executable

components to invoke (act 203). There are a number of conventional ways to
interpret script to thereby identify one or more components to invoke. The principles
of the present invention are consistent with any of those conventional methods and are
also likely compatible with script interpretation technology that is yet to be developed
so long as that script interpretation allows for the identification of components being
invoked by that script. Referring to Figure 4, the component identification module
402 receives control of the script 411 from the script access module 401 to permit the
component identifiers and associated parameters (collectively referred to as element
412) to be provided further along the processing flow 400.

{0031] Referring back to Figure 2, for each identified executable component, a
functional, result-oriented step for discovering a processing context in which the
script should be executed at least based on one or more processing context
configuration files (step 210) is performed. While this step may be performed by
using any combination of corresponding acts that accomplished this purpose, the step
2101is illustrated as being accomplished using constituent acts 211 and 212 in Figure
2.

10

WO 2007/087074 PCT/US2006/049552

10

15

20

25

[0032] Specifically, one or more processing context configuration files associated
with the identified executable component are identified (act 211). Figure 3 illustrates
one contemplated method 300 for identifying one or more processing context
configuration files associated with an identified executable component. A correlation
is identified between one or more properties of the identified executable component
and one or more configuration files (act 301). Then, the correlated one or more
configuration files are identified as being the one or more processing context
configuration files (act 302).

[0033] For instance, perhaps the name of the executable components alone is
sufficient to identify one or more associated processing context configuration files.
Component dependencies may also be useful in identifying associated processing
context configuration files. For instance, a component may depend on a particular
functions library for proper execution. The author, creation date, version number, and
the like may also be relevant properties used to identify one or more associated
configuration files. Referring to Figure 4, the processing context identifying and
access module 403 uses the component identifier and parameter(s) provided by the
component, identification module 402 to provide the configuration files 413A and
associated component identifier 413B (which in some embodiments may be included
within the configuration file(s)) further down the processing ﬂoQ 400.

[0034] The processing context configuration files are then used to identify the
processing context of the associated component. The processing context of the
component may include, for example, any one or more of the following: an
identification of a process in which to run the identified executable component, one or
more adaptations to perform on‘the, identified executable component prior to being
run (e.g., c}}ange the name or type of a ﬁgld,_or:pérfOM‘l"sfbme C‘éilculafiﬁn); @ securify)

11

WO 2007/087074 PCT/US2006/049552

10

15

20

25

context in which to run the identified executable component (e.g., an identification of
a user security context, or an identification of a machine on which to run the
component). Referring to Figure 4, the processing context determination module 404
uses the configuration files 413A and' component identifiers 413B to identify the
processing context 414A for each component.

[0035] Several concrete examples will now be provided to clarify the principles more
generally described above. In a first example, consider a script that includes the
sequential execution of three components, C1 followed by C2 followed by C3. This
may be represented by the following sequence: C1|C2|C3. - Now suppose that there
has been some change to component C2 which no longer makes it advisable or
possible to have the component run in the same process as components Cl1 and C3. In
that case, the processing coniext configuration file might read as follows for

component C2 if represented in one eXtenstible Markup Language (XMML) format.

<CMD Name = “C2">
<QutOfProcess>True</QutOfProcess>

</CMD>

[0036] The use of such a configuration file makes it much easier to change the
processing context of the configuration file. For instance, if the component C2 were
changed such that it is once again advantageous to run the component C2 in the same

process with components C1 and C3, the processing context configuration file may

" once again be changed to reflect this change as opposed to changing all. script that
~ references component C2. For instance, the configuration file may be changed to read

" as fbllqws; /

12

WO 2007/087074 PCT/US2006/049552

10

15

20

25

<CMD Name = “C2”>
<QutOfProcess>False</OQutOfProcess>

</CMD>

[0037] In this example, the configuration file is identifiable by the name of the
component. However, as previously mentioned, the configuration file(s) may be
identified by other properties of the component such as author, creation date, or
others.

[0038] As mentioned above, the processing context may involve much more than
whether or not the component is run in-process or out-of-process. Take, for example,
the following configuration file specifying a far more complex processing context for

component C2:

<CMD Name = “C2”>"
<Version>V2</Version>
<Adaptor>LMD=>MD</Adaptor>
<OutOfProcess>True</OutOfProcess>
<RunAsUser>Bob</RunAsUser>
<HostComputer>Bobs</HostComputer>

</CMD>

[0039] Here, the processing context configuration file for component Cc2 specifies

what version of interpreter is required to run in the process. Thus, if the component

2 réduixes a different version of the interpreter than components C1 and C3, the

13

WO 2007/087074 PCT/US2006/049552

10

15

20

25

component C2 would be run out-of-process unless different versions of the interpreter
were possible in the same process.

[0040] The “Adaptor™ element specifies an adaptatidn that is to be performed prior to
execution of the component. Here, the LMD (Last Modified Date) Field is changed to
the MD (Modified Date) field. This allows the component C2 to be modified in a
manner that allows the component to be éxecuted within the component execution
sequence. Referring to Figure 4, the adaptation component 405 may modify the
component identified by the component identifier 414B according to any adaptations
specified in the processing context 414A. The adaptation module 405 then provides
the processing context 415A and the adapted component 415B to the invocation
component 406.

[0041] The “OutOfProcess” field specifies that the component C2 is to be run out-of-
process. The “RunAsUser” filed specifies that the component C2 is to have the same
security context as is pern'aissible should the identified user be making the same
requests. In the example case, the system will permit all operations being performed
by component C2 so long as the system would permit that operation if requested by
Bob. |

[0042] The “HostComputer” field specifies the host computer on which the
component C2 is to be executed. In this case, the component C2 is to run on the host
computer identified as “Bobs”. As previously mentioned, the execution is performed .
using the security context for Bob on that host computer since the “RunAsUser” field

specifies “Bob”.

' [0043] Referring back to Figure 2, the invocation component then invokes the
' identified executable component in the identified processing context (act 213). This

_invocation may be performed on thé same computing system as or’on a ‘different’

14

WO 2007/087074 PCT/US2006/049552

10

15

20

25

computing system than the computing system that intefpreted the script. For instance,
in the above example, if the host computer “Bobs” is not the same co£nputer that runs
the invocation module 406, then the invocation module 406 may perform any actions
helpful to remote the component C2 on the proper host computer identified as “Bobs”.
Whether the component is remotely invoked or not, the invocation module 406 may
return the results of the component C2 execution.

[0044] Figure 5A illustrates an example in which all three components C1, C2 and C3 are run in the
same process, but with component C2 being adapted to be compatible with running in the same process
as components C1 and C3. Each process instantiates its own 'interpreter for interpreting the script.
Figure 5B illustrates an example in which component C2 is run out-of-process. In this case, the
component C2 may alsp be adapted as specified in the configuration file.

[6045] Figure 5C illustrates another exarnple in which four components are executed in sequence as
represented by the sequence C1|C2|C3|C4. In this case, components C1 and C4 are run in Process A,
whereas components C2 and C3 are run in Process B. In this case, the processing context
determination module 404 may use the processing context configuration files for components C2 and
C3 to identify that the components should not be run in-process within Process A. The processing
context determination module 404 then makes another determination as to whether or not the
components C2 and C3 are compatible such that they may run in the same process outside of Process
A. For instance, if components C2 and C3 depend on different functions libraries that cannot be run in
the same process, components C2 and C3 would have to run in different processes outside of Process
A,

[0046] In this case, however, the processing context determination module 404 has decided that
components C2 and C3 can run in the same process within Process B. In such a case, there are
processing efficiencies since processing control does not need to be returned from component C2 back
to Process A, before i:assing processing control back to Process B for execution of component C3.
Instead, execution of component C2 may smoothly transition to execution of component C3 within the

same Process B.

15

WO 2007/087074 PCT/US2006/049552

10

[0047] Accordingly the principles of the present invention provide a flexible mechanism for

specifying and altering the processing context in which a script component is to be executed, without

. requiring that the script itself be altered to specify the processing context.

[0048] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are
to be considered in all respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims rather than by the
foregoing description. All changes which come within the meaning and range of

equivalency of the claims are to be embraced within their scope.

WO 2007/087074 PCT/US2006/049552

10

15

20

25

CLAIMS

‘What is claimed is:

1. A method for identifying a particular processing context for running script in a
computing system, the method comprising;

an act of interpreting script to identify an executable component to invoke;

an act of identifying one or more processing context configuration files associated with the
identified executable component; and

an act of using the one or more processing context configuration files to identify a processing
context for the identified executable component.

2. A method in accordance with Claim 1, wherein the processing context includes an

identification of a process in which to run the identified executable component.

3. A-method in accordance with Claim 1, wherein the processing context includes one

or more adaptations to perform on the identified executable component prior to being run.

4, A method in accordance with Claim 1, wherein the processing context includes a

security context in which to run the identified executable component.

5. A method in accordance with Claim 4, wherein the security context includes an

identification of a user security context.

6. A method in accordance with Claim 1, wherein the act of interpreting is performed

by an executable interpretation component.

7. A method in accordance with Claim 1, wherein the act of identifying one or more

processing context configuration files associated with the idéntified execiitable component cornprises:

17

WO 2007/087074 PCT/US2006/049552

10

15

20

an act of identifying a correlation between one or more properties of the identified executable
component and one or more configuration files; and
an act of identifying the correlated one or more configuration files as being the one or more

processing context configuration files.

8. A method in accordance with Claim 7, wherein the one or more properties includes at

least a name of the idenﬁ'ﬁed executable component.

9. A method in accordance with Claim 7, wherein the one or more properties includes at

least a dependency of the identified executable component.

10. A method in accordance with Claim 1, further comprising:

an act of invoking the identified executable component in the identified processing context.

11. A method in accordance with Claim 10, wherein the act of invoking the identified
executable component in the identified processing context is performed on a computing system that is

different than the computing system that performed the act of interpreting.
12, A method in accordance with Claim 10, wherein the act of invoking the identified

executable component in the identified processing context is performed on a computing system that is

the same as the computing system that performed the act of interpreting.

18

WO 2007/087074 PCT/US2006/049552

10

15

20

25

13. A computer program product comprising one or more computer-readable media
having thereon computer-executable instructions for perform a method for identifying a particular
processing context for running script in a computing system, the computer-executable instructions
comprising:

at least one computer-executable instruction for accessing script;

at least one computer-executable instruction for interpreting the script to identify an
executable component; and

at least one computer-executable instruction for discovering a processing context in which the
script should be executed at least based on one or more processing context configuration files.

14. A computer program product in accordance with Claim 13, wherein the processing
context includes at least one of the following:

an identification of a process in which to run the identified executable component;

one or more adaptations to perform on the identified executable component prior to being run;
or

a security context in which to run the identified executable component.

15. A computer program product in accordance with Claim 13, wherein the processing
context includes at least two of the following:

an identification of a process in which to run the identified executable component;

one or more adaﬁtations to perform on the identified executable component prior to being run;
or

a security context in which to run the identified executable component.

16. A computer program product in accordance with Claim 13, wherein the computer-
executable instructions further comprise:

at least one computer-executable instructions for invoking the identified executable

" component in the discovered processing context.

19°

WO 2007/087074 PCT/US2006/049552

10

15

20

17. A computer program product in accordance with Claim 13, wherein the one or more

computer-readable media are physical memory and/or storage media.

18. One or more computer readable media having thereon computer-executable
instructions that, when executed by a processor of a computing system, cause the computing system to
instantiate the following in system memory of the computing system:

an interpretation component configured to access and interpret script to identify an executable
component; and

a processing context determination module configured to using one or more processing
context configuration files correlated to the identified executable component to thereby identify a .

processing context for the identified executable component.

19. One or more computer-readable media in accordance with Claim 18, wherein the
processing context includes at least one of the following:

an identification of a process in which to run the identified executable component;

one or more adaptations to perform on the identified executable component prior to being run;
or

a security context in which to run the identified executable component.

20. One or more computer-readable media in accordance with Claim 18, wherein the one

or more computer-readable media are physical memory and/or storage media.

20

PCT/US2006/049552

WO 2007/087074

1/4

b Old

SJE[OA-UON

S[HEIoA

80}
sjauueyn

UOEIUNUILIOY

0l
Kiowsy

00}
wajsAg bunndwos

20F
(s)iossanoid

WO 2007/087074 PCT/US2006/049552

2/4

200

Access Script ——201

I

Interpret Script f~—202

:

* Invoke Component In
Processing Context 213

P — £
| ach Detecte Identify Executable

; Component Component To Invoke 203
!

)

|

! Y

! Identify Configuration .

| Step For File(s) Associated ~ |~—211
! Discovering With Components

i A Processing

l Context In l

! Which To Run

i Component Use Configuration

! 210 File(s) To Identify ~ p~—212
| Processing Context

|

| y

i

I

|

I

]

!

I

]

— — D T —— . ————— ————— — — T - it — —— — ———— VT — T S_ W —————- —

Identify A (%o)rrglfagon Betweten
Property(s omponen
And Processing Context 301
Configuration Files

y

Identify Correlated
Configuration File(s) As 302
Being Associated With

The Component

FIG. 3

PCT/US2006/049552

WO 2007/087074

3/4

907
UOIJBI0AY|

asly
Jusuodwio)

pejdepy

VGiy
JXejuo)
Bjssaoold

G0y
uoljeldepy

1434

N
Jusuoduion)

Yhiy
Pejuo)
‘Buissanold

70p

uoneuLIS}a(
Xajuon)

Buisssaoid

p "Old

gely

aj
JusUodwon

vely
solld
Byuon

oy
$S800Y
k'
aleid
byuo)

chy
siaeliesed
8

al
Jusuodwo?)

207
uoneaynuspl
Jusuoduwio?)

L
1duog

1oy

SINPO
$5900Y

PCT/US2006/049552

WO 2007/087074

4/4

o ——— . G ————— —— — — " Yt} VRS G it T T G S (T et et S SRS S S G (e S p TS P i it

- —— ——— T T - ot ey S i g S

C3

G2

C1

Process A
Interpreter

FIG. 5A

—— ————— ——— ——— o —— iy P T

Process B
Interpreter

Process A
Interpreter

FIG. 5B

——————— —— S — —— —— " A? o t—

Process B
Interpreter

——— AN S G S S . — — ——

C4

Process A
Interpreter

FIG. 5C

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings

