Office de la Propriete Canadian CA 2632076 C 2015/09/08

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 632 076
g[‘ grga”isge ’ f"(‘j age”‘éy of ’ 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
(13) C
(22) Date de depot/Filing Date: 2004/09/10 (51) Cl.Int./Int.Cl. GO6F 21/64 (2013.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2005/03/31 GO6F 21/44 (2013.01)
2 1s , (72) Inventeurs/Inventors:
(45) Date de delivrance/lssue Date: 2015/09/08 KIEHTREIBER PERRY. US
(62) Demande originale/Original Application: 2 531 363 BROUWER, MICHAEL, US
(30) PrlorltéIPrlorlty 2003/09/18 (US1 0/666,847) (73) Propriétaire[oWner:

APPLE INC., US
(74) Agent: RICHES, MCKENZIE & HERBERT LLP

(54) Titre : PROCEDE ET APPAREIL PERMETTANT DE SIGNER UN CODE DE MANIERE INCREMENTIE LE
(54) Title: METHOD AND APPARATUS FOR INCREMENTAL CODE SIGNING

Start

Load the entire program.
210

entire program.,

i 220 L

|

Calculate 2 hash value for the J

e e |

Compare the disital signature of
the program with the calculated :
| hesh value using the public key of | dar~and
the trusted source.
: 230

Signature matches
calculated hash?

240

Program failed authentication,
refuse to execcute.
e 260

Program authentioated,
commence execution.
250

Done —

(57) Abrege/Abstract:
The present invention discloses a method for quickly and easily authenticating large computer program. The system operates by
first sealing the computer program with digital signature in an incremental manner. Specifically, the computer program Is divided

SR VNN
RSN o
N 7 77
-

* . Teven, B
C an adH http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 4% @ 727 CI1pO

AR W NN
) R A R
OPIC - CIPO 191 .




(57) Abrege(suite)/Abstract(continued):

CA 2632076 C 2015/09/08

anen 2 632 076
(13) C

Into a set of pages and a hash value Is calculated for each page. The set of hash values Is formed into a hash value array and then

the hash value array Is then sealed with a digital signature.

he computer program Is then distributed along with the hash value

array and the digital signature. To authenticate the computer program, a recipient first verifies the authenticity of the hash value
array with the digital signature and a public key. Once the hash value array has been authenticated, the recipient can then verify the
authenticity of each page of the computer program by calculating a hash of a page to be loaded and then comparing with an
assoclated hash value In the authenticated hash value array. If the hash values do not match, then execution may be halted.



CA 02632076 2008-05-15

ABSTRACT
The present invention discloses a method for quickly and easily authenticating

large computer program. The system operates by first sealing the computer program with
digital signature in an incremental manner. Specifically, the computer program 1s divided
into a set of pages and a hash value 1s calculated for each page. The set of hash values is
formed 1nto a hash value array and then the hash value array 1s then sealed with a digital
signature. The computer program 1s then distributed along with the hash value array and
the digital signature. To authenticate the computer program, a recipient first verifies the
authenticity of the hash value array with the digital signature and a public key. Once the
hash value array has been authenticated, the recipient can then verify the authenticity of
each page of the computer program by calculating a hash of a page to be loaded and then
comparing with an associated hash value in the authenticated hash value array. If the hash

values do not match, then execution may be halted.



CA 02632076 2008-05-15

METHOD AND APPARATUS FOR INCREMENTAL CODE SIGNING
This application is a divisional of Canadian application serial no. 2531363, which
is the national phase of International application PCT/US2004/029470 filed 10 September
2004 (10.09.2004) and published 31 March 2005 (31.03.2005) under publication number

W02005/029223A2.

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to the field of computer security. In particular, the
present invention discloses a system for verifying that an unauthorized party has not
tampered Title computer program code.

Description of the Related Art

Computer security is one of the most pressing problems facing computer software
makers. With the rise in popularity of the Internet, nearly every personal computer system
1s available on the Internet at one point or another. This great connectivity has provided
many benefits to personal computer users. However, it has also provided a new host of
problems to computer users. One of the biggest problems has been the rise of Internet
transmitted viruses, worms, Trojan horses, and other malevolent programs.

Rogue computer programmers, sometimes known as "crackers", often attempt to
break into computer systems to steal information or make unauthorized changes.
Crackers use many different types of attacks in attempts to break into a computer
system. Common methods employed by computer crackers include Trojan horses (a

seemingly benign computer program that has a hidden agenda), a computer



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

virus (a piece of software that replicates itself from within a host program), a computer

worm (a piece of software that replicates itself across a computer network), and social

10

15

20

engineering (Deceiving a person with authorization codes into giving out those

authorized codes).

These rogue computer programmers often alter existing legitimate
programs by adding program code to perform unauthorized functions. By placing
such authorized program code within legitimate programs, the rogue computer
programmer thereby hides the unauthorized program code. The unauthorized code
may thus dwell within a person’s personal computer system without the person’s
knowledge for a long time. The unauthorized program code may destroy valuable

data, waste computing resources (CPU cycles, network bandwidth, storage space,

etc.), or pilfer confidential information.

In order to protect legitimate programs from such unauthorized
adulteration, some software manufacturers generate a checksum of the program code.

The checksum is a value calculated using the program code as input value such that
each different computer program tends to have a different checksum value. The

software manufacturer then digitally “signs” the checksum with a private key

encryption key. Before running the computer program code, a user should then

authenticate the program code. Specifically, the user has the personal computer

system compute a checksum of the program code and then the computed checksum

values is compared with the checksum calculated by the software manufacturer after



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

decrypting it with the software manufacturer’s public key. If the two checksums

match, then the computer program 1s presumed to be authentic.

These existing checksum based protection systems have been known to
work relatively well. However, these existing checksum based protection systems can
take a long time to authenticate large computer programs. Therefore, it would be

desirable to provide a system faster system for authenticating large computer

programs.



CA 02632076 2008-05-15

SUMMARY OF THE INVENTION

The present invention discloses a method for quickly and easily authenticating
large computer program. The system operates by first sealing the computer program with
digital signature in an incremental manner. Specifically, the computer program is divided
into a set of blocks and a hash value is calculated for each block. The set of hash values is
formed 1nto a hash value array and then the hash value array is then sealed with a digital
signature. The computer program is then distributed along with the hash value array and
the digital signature. To authenticate the computer program, a recipient first verifies the
authenticity of the hash value array with the digital signature and a public key. Once the
hash value array has been authenticated, the recipient can then verify the authenticity of
each block of the computer program by calculating a hash of a block to be loaded and then
comparing with an associated hash value in the authenticated hash value array. If the hash
values do not match, then execution may be halted.

Accordingly, 1in one of its aspects, the present invention provides a method
comprising: a. loading at least one unit of a particular computer program; and b. before
loading all the units of the particular computer program, incrementally authenticating at
least one of the particular computer program.

In a st1ll further aspect, the present invention provides a method comprising: a.

incrementally authenticating a plurality of units of a particular computer program; and

b. after determining that at least one earlier unit of the particular computer program is



CA 02632076 2014-07-14

authentic, executing the earlier unit before authenticating a later unit of the particular
computer program.

In a further aspect, the present invention provides a method comprising: a.
computing a plurality of hash values for the plurality of units; b. storing the plurality of
hash values with the computer program; and c. distributing the computer program and the
plurality of hash values as a single computer program.

In a further aspect, the present invention provides a computer readable medium
storing a first computer program for authenticating a second computer program comprising
a plurality of units, the first computer program executable by at least one processing unit,
the first computer program comprising sets of instructions for: receiving the second
program along with a hash array comprising a plurality of hash values for authenticating the
plurality of units of the second program, each hash value in the hash array computed from a
different unit of the second program; before authenticating any units of the second program,
verifying the authenticity of the hash array; and iteratively, for each unit of the second
program: authenticating the unit of the second program by comparing a hash value from the
hash array to a calculated hash value for the unit; and after determining that the unit of the
second program is authentic, executing the unit before authenticating a next unit of the

second program.

In a still further aspect, the present invention provides a method for executing a
computer program comprising a plurality of executable units, the method comprising:
receiving the computer program along with a hash array comprising a plurality of hash

values for authenticating the plurality of units of the computer program; each hash value 1n

the hash array computed from a different unit of the computer program; before

-- 49 --



CA 02632076 2014-07-14

authenticating any units of the computer program, veritying the authenticity of the hash
array; and iteratively, for each unit of the computer program: authenticating the unit of the
computer program by comparing a hash value from the hash array to a calculated hash
value for the unit; and after determining that the unit of the computer program is authentic,
executing the unit before authenticating a next unit of the computer program.

In a further aspect, the present invention provides a computer readable medium
storing a first computer program which when executed by at least one processing unit stores
a second computer program for distribution, the first computer program comprising sets of
instructions for: receiving the second computer program; dividing the second computer
program into a plurality of individually executable units to allow for the authentication of
each unit of the second computer program prior to the individual execution of the unit;
computing a hash value for each of the executable units, each hash value for authenticating
a unit of the second computer program; and storing all of the hash values in a hash array tor
distribution along with the second computer program.

In a still further aspect, the present invention provides a method for storing a
computer program for distribution, the method comprising: receiving the computer
program; dividing the computer program into a plurality of individually executable units to

allow for the authentication of each unit of the computer program prior to the individual

execution of the unit; computing a hash value for each of the plurality of executable units,
each hash value for authenticating a unit of the computer program; and storing all of the

hash values in a hash array for distribution along with the computer program.

In a still further aspect, the present invention relates to a computer readable medium

storing a computer program that is executable by at least one processor,

—4b --



CA 02632076 2013-11-21

the computer program comprising sets of instruction for implementing the method

outlined above.

In a further aspect, the present invention provides a computer system
comprising means for implementing steps according to any of the above methods.

Other objects, together with the foregoing are attained in the exercise of the

invention described and illustrated in the accompanying embodiments and drawings.

4o --



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following
detailed description in conjunction with the accompanying drawings, wherein like

reference numerals designate like structural elements, and in which:

5 Figure 1 illustrates a conceptual diagram describing how a computer

program can be sealed with a digital signature. .

Figure 2 illustrates a flow diagram that describes how a computer
system verifies a computer program sealed with a digital signature before executing

the computer program.

10 Figure 3 illustrates a conceptual diagram describing how a computer

program can be sealed with a digital sighatme using incremental code signing.

Figure 4 illustrates a flow diagram that describes how a computer

program can be sealed with a digital signature and a hash array using incremental code

signing.

15 Figure 5 illustrates a flow diagram describes how a compuier system
verifies and executes a computer program that has been digitally sealed with

incremental code signing.



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

10

15

20

DETAILED DESCRIPTION OF THE INVENTION

Notation and Nomenclature

In the following detailed description of the present invention, numerous

specific details are set forth in order to provide a thorough understanding of the

present invention. However, it will become obvious to those skilled in the art that the
present invention may be practiced without these specific details. In other instances,
well known methods, procedures, components, and circuitry have not been described

in detail to avoid unnecessarily obscuring aspects of the present invention.

The detailed description of the present invention in the following is
presented largely in terms of procedures, steps, logic blocks, processing, and other
symbolic representations that describe data processing devices coupled to networks.
These process descriptions and representations are the means used by those
experienced or skilled in the art to most effectively convey the substance of their work
to others skilled in the art. The method along with the apparatus, described in detail
below, is a self-consistent sequence of processes or steps leading to a desired result.
These steps or processes ar'e those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities maj take the form of
electrical signals capable of being stored, transferred, combined, compared, displayed
and otherwise manipulated in computer systems or electronic computing devices. It
proves convenient at times, principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, operations, messages, terms, numbers, or

the like. It should be borne in mind that all of these similar terme are tn he agenriatad

-



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as apparent from the following
description, it is appreciated that throughout the present invention, discussions
utilizing terms such as "processing" or "computing" or "verifying" or "displaying" or
5 the like, refer to the actions and processes of a computing device that manipulates and
transforms data represented as physical quantities within the computing device's
registers and memories into other data similarly represented as physical quantities

within the computing device or other electronic devices.
Computer Program Security with Digital Signatures

10 To protect a computer program from unauthorized tampering, a
software manufacturer may create a special *“seal” for the computer program that
should be tested before the program is executed. If the seal or the computer program

code has been tampered with, then the test will fatl such that the program will then

refuse to execute.

15 A common method of creating such a seal is to use well-known “public

key” encryption technology. Such a system that uses public key encryption

technology will be described with reference to Figures 1 and 2.

Digitally Sealing a Computer Program

Referring now to the drawings, in which like numerals refer to like

20  parts throughout the several views, Figure 1 conceptually illustrates a process for

creating a digital seal or digital signature for a computer program 100. First, a hash is

i



CA 02632076 2008-05-15

PCT/US2004/029470

WO 2005/029223

10

15

20

calculated for the entire computer program 100 using a hash function 110 to calculate
a program hash value 120, The program hash value 120is a small representation
derived from the computer program 100 such as a checksum. The program hash value
120 is then digitally signed with the private key 140 of a trusted entity using a digital
signature function 130 to create a digital signature for the program hash 150. The
digital signature for the program hash 150 is the digital seal (or digital signature) that

accompanies the program when it is distributed.

Verifving the Authenticity of a Digitall ealed.Cornuter Progran

Figure 2 illustrates a flow diagram that describes how the digital

signature for the program hash 150 of Figure 1 is used to verify a program’s
authenticity. Referring to Figure 2, a computer system using computer program 100
ﬁrst loads the entire computer program 100 at step 210. Then, in step 220, the
computer sysiem calculates a program hash value for the entire computer program 100

(just as was done by the hash function 110 in Figure 1).

Next, in steps 230 and 240, the computer system compares the digital
signature for the program hash 150 that accompanied the computer program 100 with
the calculated program hash value from step 220 using a well-known public key 235
of the trusted entity that created the digital signature. Specifically, the digital
signature for the program hash 150 is processed by the digital signature function with

the public key 235 and the result may then be compared with the calculated program

hash value from step 220.



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

10

15

20

If the calculated hash function from step 220 matches the digital
signature for the program hash 150 after being processed with the public key 235, then
the computer system proceeds to step 250 where program execution commences.
However, if the célculated hash function from step 220 fails to match the digital

signature for the program hash 150 after being processed with the public key 235, then

the computer system proceeds to step 260 and refuses to execute the computer

program 100.

The authentication system of Figures 1 and 2 works satisfactorily for
small programs, however it is ill suited for large computer programs. One signiﬁéant
problem with the authentication system of Figures 1 and 2 can be found in steps 210
and 220 in the flow diagram of Figure 2. Steps 210 and 220 require that the entire
computer program 100 be loaded into memory and then a hash value calculated across
the entire computer program 100. With a large program, this process can take a very
long time. Thus, the user is forced wait for this entire time-consuming load and

calculation process. Today’s impatient computer users will simply not tolerate such

long load times.

One particular large computer program that needs to be protected is the

operating system for a computer system. The operating system has the authority to

control all of the computers input/output devices such as disk drives, network
connections, displays, back-up systems, etc. Thus, it would be very desirable to have

a computer program authentication system that could quickly and efficiently protect a

computer operating system.



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

Incremental Code Signing

The present invention introduces an improved method of digitally
signing computer programs for security without introducing long load times present in
existing systems. The present invention operates by breaking up the computer

S  program into smaller units that are individually verified.

Digitally Sealing a Computer Program with Incremental Code Signing

Figures 3 and 4 illustrate how the system of the present invention
creates a digital seal for a program that can be used in a faster and more efficient
manner. Figure 3 presents a conceptual diagram of how the digital seal is created.

10  Figure 4 illustrates a detailed flow diagram that describes the method used to create

the digital seal.

Referring to Figures 3 and 4, the present invention first divides the
computer program 300 into a number of “pages” (380 to 389) in step 410. Most
cornputer systems already use a paged memory organization to implement a virtual

15 memory system. Thus, the present invention can use the existing memory paging

systems offered by a particular processor and/or operating system. Memory pages are

typically 4 kilobytes (“k”) or 8k in size.

Next, in steps 420 and 430, the system calculates a hash value for each

memory page of the computer program 300 using a hash function 310. The hash
20  function 310 may be any hash function such as the well-known SHA or MD5 has

functions. As set forth in Figure 3, the hash function 310 will create an associated

10 --



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

hash value (390 to 389) for each memory page (380 to 389) of the computer prograzm

300. The size of the output hash values in one embodiment are 20 bytes. However,

many different sizes of hash values may be used.

In step 440, the system of the present invention arranges the calculated

5  hash values (390 to 389) into an array of hash values known as the hash array 373.
The system then calculates an array hash value 360 for the entire hash array 373 using
a hash function 370 in step 450. In one embodiment, hash function 370 is the same as

hash function 310. However, a different hash function inay be used.

The trusted entity that is sealing the bmgram then digttally signs the
10  array hash value 360 with its private key 340 using a signature function 330 in step
460 to create a digital signature for the hash array 350. Finally, at step 470, the hash
array 373 and the digital signature for the hash array 350 are stored along the
computer program 300. The hash array 373 and the digital signature for the hash array
350 are also distributed along with the computer program 300 such that any recipient

15 of computer program 300 can verify its authenticity.

Verifving the Authenticity of a Digitally Sealed Computer Progr:

Once a hash array 373 and a digital signature for the hash array 350
have been created for a computer program, that computer program may be distributed
to user that may quickly and efficiently authenticate the computer program. Figure 5
20 illustrates a flow diagram describes how the recipient of a computer program that has

been digitally sealed with incremental code signing verifies and executes the digitally

sealed computer program.

w11 -



10

15

20

CA 02632076 2008-05-15

PCT/US2004/029470

WO 2005/029223

Referring to Figure 5, the recipient’s personal computer system first

loads the hash array that accompanies the computer program in step 510. The

computer system then calculates a hash value for the entire hash array at step 515.

Since the array of hash values is not very large, this particular hash computation may

be completed very quickly.

Next, at steps 520 and 525, the computer system then compares the
calculated hash value with digital signature of the hash array that accompanied the

computer program using the well-known public key of the trusted entity that sealed the

computer program.,

If the digital signature fails to match the hash value calculated from the
hash array, then computer system proceeds to step 580 where it refuses the execute the
computer program. Execution is refused since the digital signature and/or the hash

array have been tampered with by an unauthorized entity.

Referring back to step 528, if the digital signature matches the hash

value calculated from the hash array then the computer system proceeds to step 530

where 1t loads a page of the computer program. The computer system then calculates

a hash value for the loaded computer program page at step 540. This calculation may
be performed within the memory paging mechanism of the computer’s operating

system. At steps 550 and 5585, the calculated hash value for the loaded computer

program page is compared with hash value in the hash array that is associated with

that particular memory page.

-172 --



10

15

20

CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470

If the calculated hash value for the loaded computer program page does

not match the associated hash value from the hash array, then the computer system
proceeds to step 580 where it refuses to continue execution. This refusal to continue
execution may be implemented as a page fault within the virtual memory system of
the computer system. Other possible methods of signaling the failure could be to

indicate that the page is not readable, there has been a verification error, or simply

abort.

Referring back to step 5585, if the calculated hash value for the loaded
computer program page matches the associated hash value from the hash array, then
the computer system proceeds to step 560 where commences execution of the loaded
page of the program. Eventually, the program will complete execution of the code in
that loaded page (and previously loaded pages) and will either totally complete
execution or need another page of the computer program, as set forth in step 570. If

the program is completely done, then the computer simply proceeds to step 590 where

it is done.

If another page of the computer program is needed at step 570, then the
computer system proceeds back to step 530 to load the needed page of the computer

program. The newly loaded page will have to be authenticated by steps 540, 550, and

4

53S.

Note that the previously authenticated hash array is used by the

computer system to further authenticate each memory page that is loaded. Thus,

computer must ensure that the authenticated hash array is not tampered with during

—13 -



CA 02632076 2012-08-31

program execution. For example, if the operating system swaps the authenticated hash

array out of protected memory, the hash array should be re-authenticated once 1t is loaded

back in to ensure its authenticity.

This written specification and the accompanying drawings have disclosed the
present invention in sufficient detail with a certain degree of particularity. The scope of the
claims should not be limited by the preferred embodiments set forth in the examples, but

should be given the broadest interpretation consistent with the specification as a whole.

- 14 --



CA 02632076 2014-07-14

The embodiments of the invention in which an exclusive property or privilege i1s

claimed are defined as follows:

1. A computer readable medium storing a first computer program for
authenticating a second computer program comprising a plurality of units, the first computer
program executable by at least one processing unit, the first computer program comprising
sets of instructions for:

receiving the second program along with a hash array comprising a plurality
of hash values for authenticating the plurality of units of the second program, each hash
value in the hash array computed from a different unit of the second program;
before authenticating any units of the second program, veritying the
authenticity of the hash array; and
iteratively, for each unit of the second program:
authenticating the unit of the second program by comparing a hash
value from the hash array to a calculated hash value for the unit; and
after determining that the unit of the second program is authentic,
executing the unit before authenticating a next unit of the second program:.

2. The computer readable medium of claim 1, wherein the set of instructions for
verifying the authenticity of the hash array comprises a set of instructions for calculating a
hash value for the hash array and determining whether the calculated hash value matches a
previously generated digital signature for the hash array.

3. The computer readable medium of claim 1, wherein the set of instructions for

authenticating a particular unit of the second computer program comprises sets of

instructions for:

15 --



CA 02632076 2014-07-14

computing a hash value for a particular unit; and

determining whether the computed hash value matches a hash value
associated with the particular unit before computing another hash value for a different
particular unit.

4. The computer readable medium of claim 1, wherein the first computer
program comprises a set of instructions for stopping said authentication when a particular
unit is determined not to be authentic.

J. The computer readable medium of claim I, wherein the authentication of a
particular unit of the second computer program starts before loading the entire program in a
memory system.

6. The computer readable medium of claim 1, wherein the first computer
program further comprises a set of instructions for loading, for each unit of the second
computer program the unit of the second computer program in a memory system.

7. The computer readable medium of claim I, wherein only a particular set ot
units required for execution by the second program 1s authenticated.

8. The computer readable medium of claim 1, wherein the first computer
program further comprises a set of instructions for generating an error when at least one unit

is determined not to be authentic.
9. The computer readable medium of claim 1, wherein a size of at least one
particular unit of the second program is based on a size of memory in a memory system.

10.  The computer readable medium of claim 1, wherein the set of instructions for

authenticating a particular unit comprises sets of instructions for:

- 16 --



CA 02632076 2014-07-14

calculating a hash value for the particular unit of the second computer
program; and

determining whether the calculated hash value for the unit matches a
particular hash value associated with the unit from the hash array.

11.  The computer readable medium of claim 1, wherein the first computer
program fturther comprises a set of instructions for loading the hash array in a protected
memory system.

12.  The computer readable medium of claim 1, wherein the set of instructions for
authenticating the hash array comprises a set of instructions for using a digital signature for
the hash array.

13. The computer readable medium of claim 12, wherein the digital signature is
an encrypted hash vaiue for the hash array.

14.  The computer readable medium of claim 13, wherein the set of instructions
for using the digital signature comprises a set of instructions for decrypting the encrypted
hash value for the array of hash values.

15. A method for executing a computer program comprising a plurality of
executable units, the method comprising:

receiving the computer program along with a hash array comprising a
plurality of hash values for authenticating the plurality of units of the computer program,
each hash value in the hash array computed from a different unit of the computer program;

before authenticating any units of the computer program, verifying the
authenticity of the hash array; and

iteratively, for each unit of the computer program:

17 --



CA 02632076 2014-07-14

authenticating the unit of the computer program by comparing a hash
value from the hash array to a calculated hash value for the unit; and
after determining that the unit of the computer program is authentic,
executing the unit before authenticating a next unit of the computer program.
16.  The method of claim 15, wherein authenticating the unit of the computer
program comprises:
calculating a hash value for the unit of the computer program; and
determining whether the calculated hash value matches a particular hash
value associated with the unit from the hash array.
17.  The method of claim 16 further comprising, before calculating the hash
value, loading the unit into a memory system.
18.  The method of claim 135, wherein the authentication of a particular unit of the
computer program starts before loading the entire computer program in a memory system.
19. A computer readable medium storing a first computer program which when
executed by at least one processing unit stores a second computer program for distribution,
the first computer program comprising sets of instructions for:
receiving the second computer program;

dividing the second computer program into a plurality of individually

executable units to allow for the authentication of each unit of the second computer program

prior to the individual execution of the unit;

computing a hash value for each of the executable units, each hash value for

authenticating a unit of the second computer program; and

- 18 --



CA 02632076 2014-07-14

storing all of the hash values in a hash array for distribution along with the
second computer program.

20.  The computer readable medium of claim 19, wherein a size of at least one
unit 1s based on a size of memory in a memory system.

21.  The computer readable medium of claim 19, wherein the first computer
program further comprises a set of instructions for digitally signing the hash array with a
private key signature function.

22.  The computer readable medium of claim 21, wherein the set of instructions
for digitally signing the hash array comprises a set of instructions for creating a digital
signature with a private key and a public key encryption key function.

23. A method for storing a computer program for distribution, the method
comprising:

receiving the computer program;

dividing the computer program into a plurality of individually executable
units to allow for the authentication of each unit of the computer program prior to the
individual execution of the unit;

computing a hash value for each of the plurality of executable units, each
hash value for authenticating a unit of the computer program; and

storing all of the hash values in a hash array for distribution along with the
computer program.

24.  The method of claim 23 further comprising distributing the computer

program and the plurality of hash values.

19 --



CA 02632076 2014-07-14

25.  The method of claim 23, wherein each unit of the computer program has an
equal size.
26. A device comprising:

a set of processing units; and
a computer readable medium storing a computer program that is executable
by at least one processor, the computer program comprising sets of mstructions for

implementing the method according to any one of claims 15-18 and 23-23.

- 20 --



CA 02632076 2008-05-15

PCT/US2004/029470

WO 2005/029223

1/5

0S1
ysep urerdor

10,] IMBUIIG

0Ll
uondun,J ameusdiQ

vl
Aoy eALry

0c1

N[BA Usey
wre1doig

[ 9I31,]

011l
uonouMy Ysey]

001
urexdoxry

yondmon)



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470
2/8

Start

Load the entire program.
210

Calculate a hash value for the

entire program.
220

Figure 2

Compare the digital signature of

the program with the calculated
hash value using the public key of
the trusted source.
230
Signature matches No

calculated hash?
240

Program failed authentication,
refuse to execute.
260

Yes

Program authenticated,

commence execution.
250




CA 02632076 2008-05-15

PCT/US2004/029470

WO 2005/029223

3/8

0Pt
Ao sreAuy
Injeusiq
09¢
0LE
€LE
Aemry ysey

£ 931y

66¢ OI¢
SN[BA USeH uonoun,y gsey
86¢ 0I¢
M[BA Ysely qonouny ysey
L6E 01¢
MEA YseH JoRoun,J gsey
J6¢ 01t
SU[EA YSeH qonoun,f ysey
S6¢ 01€
M[eA ysey | \\UOBoun, ysey
b6t 01€
Sn[eA gsey uonoun,j ysery
13133 01I€
AMJeA Ysey uonouny ysey
c6t 0It
M[EA Yse | "\ UoHouny yseyy
I6¢ 0I€
M[EA Ysey uonoun,| ysey
06¢ 0I¢
M[BA Ysely aonoun,J yseyry

68¢€ 93eg

88¢€ 28eg

L8E 33eq
8¢ 23eq
p8E 38eg
£8€ adeq

78€ 93eq

I8€ 98eyg
08¢ 93eq

00€ werdory 1andwon



CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470
4/8

Divide program into pages.
410

Calculate a hash value for a
page of the program.
420

Figure 4

Done with
all the pages?
430

Create an array of the
hash values.

440

Calculate a hash value for
the array of the hash values.
450

Digitally sign the hash value
for the array of hash values.
460

Store the hash array and digital signature

for hash array with the program.
470




CA 02632076 2008-05-15

WO 2005/029223 PCT/US2004/029470
S/8

Load the hash array for the program. 510

Calculate a hash value for the array of the hash values, 515

Compare the calculated hash value with the
digital signature of the hash array using the
public key of the trusted source. 520

Figure 5

Signature matches No

calculated hash? 525

Yes
Load a page of the program. 530
Calculate a hash value for the loaded page. 540

Compare the caiculated hash value with the hash
value from the array of the hash values. 550

Calculated hash matches
hash in hash array? 555

No

Yes
Execute loaded page (and other loaded pages). 560

Another
Page Needec

Done or another
page needed? 570

Authentication failure,
refuse execution. 580

Done

Done 590



Start

L

Load the entire program.
210

|

b ———. - o |

Caleutate a hash value for the
entire Progra,

0

¥

Compare the digital signature of
the program with the calculated
hash value using the public key of | / Rublio K"

the trusted source.
230

o

Signature matches
calonlated hash?

240

No

I S

Program failed guthentication,
refuss to execute.
260
Program authenttoated,
commencs execution,
240

Done —




	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

