«» UK Patent Application «GB 2334 116 A

{(43) Date of A Publication 11.08.1999

(21) Application No 9802294.0 (51) INTCL®
GOGF 9/46
(22) Date of Filing 04.02.1998

(52) UKCL (Edition Q)

G4A AFN

{71) Appilicant(s) U1S S2132

International Business Machines Corporation

(Incorporated in USA - New York) (56) Documents Cited

Armonk, New York 10504, United States of America EP 0652513 A1 US 5506987 A
(72) Inventor(s) (58) Field of Search

Thomas Freund UK CL (Edition P) G4A AFN

lain Stuart Caldwell Houston INT CLG GO6F

{74) Agent and/or Address for Service
Kevin J Fournier
IBM United Kingdom Limited, Intellectual Property
Department, Hursley Park, WINCHESTER, Hampshire,
$021 2JN, United Kingdom

(54) Abstract Title
Scheduling and dispatching queued client requests within a server computer

(57) An apparatus for scheduling and dispatching client requests for execution by a server object in a
heterogeneous object-oriented client/server computing environment, comprises a request-holding buffer (in
32) having an input connected to a communications channel which channels the client requests to the
apparatus, and an output connected to a plurality of paraliel execution threads 33a-c; and a scheduling means
for distributing client requests stored in the buffer to the plurality of execution threads, the scheduling means
placing client requests held in the buffer in priority order based on a priority determining rule which takes into
account the state of the plurality of execution threads and the nature of each of the held requests.

Thread Thread l Thread

L | 2 3
B2) N 3B / (3¢
]
< Priorit
32~ A?:I?:f(etr Detenpin?nq
3 3,/ _Unit
To/From D! 1
Client w—— ORB ‘ Re v
Processes ques?
Re-ordering
35./ Unit
FIG. 3

VvV 9LLvEE C 99

113

\ome

Lnn-z

$9sse]) |

_ $33(qQ t_
1 HJOMIWRIS

\ow

sueay

\ow

suealy

Uo1423UU0)

suealy 1607

| 3Aisayo) |

- — o —

3313 3beusoys

Coul

00l

pu0l3g

Co6

wedbodg

uoiyernddy
Amu_?_mm v puU0Jag

Jayndwo) Jandas

0€

CRINER

_
_
|
|
|
_
_
|
_
|

ﬁlco:umccou

\
S sy
i 333(qQ *o_
“ NJomawed 4| suealy 21607
1 SM3%H9)] | {5914
1A abesoys C 05
€09 weJboud
oy | uoyeiddy
§SJ14
ot

Jajndwo) 4ualy)

2/3

233\ 23 b\ 23c\
Thread Thread Thread
1 2 3
Object
_
) 2271 adapter
To / From \ 1
Client =~—* ORB —
Processes
FIG. 2 PRIOR ART
Thread _I Thread ‘} Thread
33a\ 33!3S (33c
1y
Object | Priority
Adapter ~a—— Determining
31 347 Unit
To/ From D 1
(“EHT e OR ‘
Processes 8 Requesf
Re-ordering

3/3

(_START D)

Examine Queued Requests | 41

Examine state of Execution Threads [~ 42

Apply Priority Determining rule to each Queued Request |—~_43

Assign a value fo each Queued Request [—~44

Re-order Queued Requests based on their Priority Values }—45

N FIG. &
32 32
501 4 501 d
\ 502 0 ~ 502
51| request __ one 2 request __ three | 1
S2-— request __ two 3 request __ one 2
53~ request __ three | 1 request __ two 3

FIG. S FIG. 6

10

15

20

25

30

35

40

) 2334116

APPARATUS AND METHOD FOR SCHEDULING AND DISPATCHING

QUEUED CLIENT REQUESTS WITHIN A SERVER IN A CLIENT/SERVER COMPUTER SYSTEM

Field of the Invention

The invention relates to the field of client/server (also known as
"distributed”") computing, where one computing device ("the client")
requests another computing device ("the server®) to perform part of the

client’s work.

Background of the Invention

Client/server computing has become more and more important over the
past few years in the information technology world. This type of
distributed computing allows one machine to delegate some of its work to
another machine that might be, for example, better suited to perform that

work.

The benefits of client/server computing have been even further
enhanced by the use of a well-known computer programming technology
called object-oriented programming (OOP), which allows the client and
server to be located on different (heterogeneous) "platforms". A
platform is a combination of the specific hardware/software/operating
system/communication protocol which a machine uses to do its work. OOP
allows the client application program and server application program to
operate on their own platforms without worrying how the client
application’s work requests will be communicated and accepted by the
server application. Likewise, the server application does not have to
worry about how the OOP system will receive, translate and send the
server application’s processing results back to the reguesting client

application.

Details of how OOP technigues have been integrated with
heterogeneous client/server systems are explained in US Patent No.
5,440,744 and European Patent Published Application No. EP 0 677,943 aA2.
These latter two publications are hereby incorporated by reference.
However, an example, of the basic architecture will be given below for

contextual understanding of the invention’s environment.

10

15

20

25

30

35

40

As shown in Fig. 1, the client computer 10 (which could, for
example, be a personal computer having the IBM 0S/2 operating system
installed thereon) has an application program 40 running on its operating
system ("IBM" and "OS/2" are trademarks of the International Business
Machines corporation). The application program 40 will periodically
require work to be performed on the server computer 20 and/or data to be
returned from the server 20 for subsequent use by the application program
40. The server computer 20 can be, for example, a high-powered mainframe
computer running on IBM’'s MVS operating system ("MVS" is also a trademark
of the IBM corp.). For the purposes of the present invention it is
irrelevant whether the requests for communications services to be carried
out by the server are instigated by user interaction with the first
application program 40, or whether the application program 40 operates
independently of user interaction and makes the reguests automatically

during the running of the program.

When the client computer 10 wishes to make a request for the server
computer 20‘s services, the first application program 40 informs the
first logic means 50 of the service required. It may for example do this
by sending the first logic means the name of a remote procedure along
with a list of input and output parameters. The first logic means 50
then handles the task of establishing the necessary communications with
the second computer 20 with reference to definitions of the available
communications services stored in the storage device 60. All the
possible services are defined as a cohesive framework of object classes
70, these classes being derived from a single object class. Defining the
services in this way gives rise to a great number of advantages in terms

of performance and reusability.

To establish the necessary communication with the server 20, the
first logic means 50 determines which object class in the framework needs
to be used, and then creates an instance of that object, a message being
sent to that object so as to cause that object to invoke one of its
methods. This gives rise to the establishment of the connection with the
server computer 20 via the connection means 80, and the subsequent

sending of a request to the second logic means 90.

The second logic means 90 then passes the request on to the second
application program 100 (nereafter called the service application)
running on the server computer 20 so that the service application 100 can

perform the specific task reguired by that request, such as running a

10

15

20

25

30

35

40

data retrieval procedure. Once this task has been completed the service
application may need to send results back to the first computer 10. The
server application 100 interacts with the second logic means 90 during
the performance of the requested tasks and when results are to be sent
back to the first computer 10. The second logic means 90 establishes
instances of objects, and invokes appropriate methods of those objects,
as and when required by the server application 100, the object instances
being created from the cohesive framework of object classes stored in the

storage device 110.

Using the above technique, the client application program 40 is not
exposed to the communications architecture. Further the service
application 100 is invoked through the standard mechanism for its

environment; it does not know that it is being invoked remotely.

The Object Management Group (OMG) is an international consortium of
organizations involved in various aspects of client/server computing on
heterogeneous platforms as is shown in Fig. 1. The OMG has set forth
published standards by which client computers (e.g. 10) communicate (in
O0P form) with server machines (e.g. 20). As part of these standards, an
Object Request Broker has been defined, which provides the object-
oriented bridge between the client and the server machines. The ORB
decouples the client and server applications from the object oriented
implementation details, performing at least part of the work of the first

and second logic means 50 and 90 as well as the connection means 80.

Fig. 2 shows a conventional architecture for such a system. Once
client requests find their way through the ORB 21 and into the server,
the ORB finds a particular server object capable of executing the request
and sends the request to that server object’s object adapter 22 (also
defined by OMG standard) where it is stored in the object adapter’s
buffer to await processing by the server object. The buffer is a First-
In-First-Out queue, meaning that the first request received in the buffer
at one end thereof is the first to leave out the other end. The server
object has a plurality of parallel execution threads (23a, 23b, 23c) upon
any of which it can run an instance of itself. In this way, the server
object is able to process plural reguests at the same time. The object
adapter 22 looks to see which of the parallel execution threads is ready
to process another request and assigns the request located at the end of

the buffer to the next available execution thread. This is explained in

10

15

20

25

30

35

40

the above-mentioned US Patent as a "dispatching" mechanism whereby the

server dispatches gqueued requests toc execution threads.

One major problem with this prior architecture is that it is not
possible to obtain a predictable response time for the execution of a
client request. That is, a particular client request could be sitting in
a server object’s object adapter queue 22 behind a large number of other
requests, or, at another time, the particular client regquest could be the
only request in the queue. The client that is waiting for an answer
cannot predict when a response will be received from the server object.
Another problem is that a very important client request may have to wait

behind many not so important requests in the object adapter queue.

These predictability problems dissuade the use of heterogeneous
client/server systems to perform distributed processing, leaving such
distributed processing to be carried out on homogeneous client/server
architectures (such as computer terminals accessing host mainframe
computers) especially where a guaranteed, predictable and consistent

execution environment is required.

Disclosure of the Invention

According to one aspect, the present invention provides an
apparatus for scheduling and dispatching client requests for execution by
a server object in a heterogeneous object-oriented client/server
computing environment, the apparatus comprising: a request-holding buffer
having an input connected to a communications channel which channels the
client requests to the apparatus, and an output; a plurality of parallel
execution threads connected to the output of the buffer; and a scheduling
means for distributing client requests stored in the buffer to the
plurality of execution threads, characterized in that: the
scheduling means places client requests held in the buffer in priority
order based on a priority determining rule which takes into account the
state of the plurality of execution threads and the nature of each of the

held requests.

Preferably, the buffer is included within an object adapter.

Preferably, the scheduling means assigns priority values to each

request in the buffer by applying the priority determining rule and

places higher priority valued requests ahead of lower priority valued

10

15

20

25

30

35

40

requests in the buffer so that the highest priority valued request is

scheduled next for execution by the server object.

aAccording to a second aspect, the present invention provides a
method of scheduling and dispatching client requests for execution by a
server object in a heterogeneous object-oriented client/server computing
environment, comprising the steps of: determining information about each
of a plurality of queued incoming client regquests; determining
information about each of a plurality of parallel execution threads of
the server object; applying a priority determining rule to the
information obtained in said determining steps; and scheduling the order
of dispatch from the gueue of the plurality of queued requests based on

the results of said applying step.

According to third aspect, the present invention provides a
computer program product for, when run on a computer, carrying out the

method of the second aspect of the invention.

Thus, with the present invention, queued client requests can be
processed in a much more efficient and controllable manner, greatly
enhancing the predictability of processing result which is returned to
the client. High priority client requests can be processed before lower
priority requests and workload management amongst the execution threads
can be effected, to provide highly efficient and predictable processing

of the queued requests.

Brief Description of the Drawings

The above-described invention will be better understood by
reference to the detailed description of a preferred embodiment presented

below, in conjunction with the following drawing figures:

Figure 1 is a block diagram of a well-known heterogeneous
client/server architecture using object technology, in the context of

which the present invention can be applied;

Figure 2 is a block diagram of a server architecture according to a

conventional design;

Figure 3 is a block diagram of a server architecture according to a

preferred embodiment of the present invention;

10

15

20

25

30

35

40

Figure 4 is a flow chart showing the processing steps involved

according to a preferred embodiment of the present invention;

Figure 5 shows the requests irn the object adapter’s queue after
priorities have been assigned, according to a preferred embodiment of the

present invention; and
Figure 6 shows the requests in the object adapter’s queue after the
requests have been re-ordered according to their assigned priorities,

according to a preferred embodiment of the present invention.

Detailed Description of the Preferred Embodiment

In the preferred embodiment of Fig. 3, requests received at the
server process from client processes are first received by the server’'s
ORB 31. ORB 31 then passes on requests destined to a particular server
object to that server object's object adapter 32. This server object has
a number of parallel execution threads 33a, 33b and 33c where different
instances of the server object can be running in parallel, in order to
execute a large number of client requests. This is all analogous to the

prior art of Fig.2 that was described above.

Extra software units are added to the prior art of Fig. 2,
according to the present invention’s preferred embodiment of Fig. 3.
These extra units are a priority determining unit 34 and a request re-
ordering unit 35. The priority determining unit 34 receives an input
from the object adapter 32 and also receives inputs from each of the
execution threads 33a to 33c and provides an output to the object adapter
32. The request re-ordering unit 35 has an input/output connection

to/from the object adapter 32.

In the example that will be described hereinbelow to illustrate the
operation of this preferred embodiment, the server object will represent
a bank account. Thus, the various requests that are queued in cbject
adapter 32 are reguests to access a particular bank account. One gqueued
request is from a client ATM (automated teller machine) to withdraw
funds from this account. This request is from the person owning the
account who wishes to withdraw some funds. A second gueued reguest is
from a direct deposit salary payer client . This request is from the
account owner's empioyer ard the emplover is adding the employer's

monthly salary into the account owner's bank account. A third gueued

10

15

20

25

30

35

40

request is from another client ATM to check the balance of the account.
This request is from the account owner's wife, who is on the other side
of town from the owner at another client ATM machine. A fourth gueued
request is a direct debit request from the electricity company that
supplies electricity to the account owner's household. The request is a

debit of the account for the amount of the monthly electricity bill.

The priority determining unit 34 operates according to a programmed
rule in order to determine the priority of the queued regquests in object
adapter 32 that are awaiting execution by the server object. For
example, one part of the rule is that requests to check the balance of
the account should be given a low priority value, since the reply to this
request will be more informative to the client if other pending requests
are executed first. That is, if a large amount of money is going to be
debited from the account by a direct debit, it is better that the person
requesting the balance of the account be given the balance after the
direct debit rather than before the direct debit. This gives a more

current version of the balance to the person requesting the balance.

Another part of the rule is that if threads 33a, 33b and 33c are
heavily loaded (are performing a high level of processing as compared to
normal) requests which involve an easier processing load are given a
higher priority value. For example, the request to add the account
owner's salary may not involve much client interaction, such as a PIN
(personal identification number) checking routine to authenticate the
client, since this is a request to add money to an account, not a reguest
to withdraw money. Thus, this request may involve a lighter processing
load and should be given a higher priority during a time when the

execution threads are heavily loaded.

Another part of the rule could be that a request from a certain
client should be given priority over other clients in the queue. For
example, the owner of the bank account that is waiting at the ATM machine
can be given priority over the direct debit and direct deposit requests.
Alternatively, a direct deposit request can be given priority over any
debit request so as to increase the chances that there will be enough

funds in the account to cover the debits.

The exact details of the rule can be set in the specific way the
programmer wants them, thus allowing very flexible control over the

priority determination carried out by the priority determining unit 34.

10

15

20

25

30

35

40

The priority determining unit 34, thus, takes inputs from the
queued requests in object adapter 32 in order to determine the nature of
each of the queued requests. The priority determining unit 34 also takes
inputs from each of the execution threads 33a, 33b and 33c in order to
determine the current state thereof. The priority determining unit 34
then assigns to each queued request a priority value from a range of

priority values, ranging from a highest value to a lowest value.

Request re-ordering unit 35 then examines the priority values
assigned to each of the queued requests and re-orders the queued requests
according to their priority values so that the highest priority valued
request is at the top of the queue to be next dispatched to an execution
thread, and the other requests are placed in descending order according

to descending priority values.

It should be noted that the order of the gueued requests can be
dynamically changed, that is, the order can be changed even after the
request re-ordering unit 35 has re-ordered the requests, if the state of
the system has changed. For example, if thread 33b suddenly becomes free
after the request re-ordering unit 35 has re-ordered the queued requests,
priority determining unit 34 now follows a part of the programmed rule
that states that if thread 33b becomes free then a computation-intensive
request (e.g., the request of the account owner to withdraw funds from
the ATM, which involves PIN checking and other client interaction) should
be given a high priority value. This may be, for example, that thread
33b is particularly well adapted for handling heavy processing loads, so
if it becomes free, an appropriate request should be scheduled as soon as
possible for execution on thread 33b in order to provide as efficient a
workload balancing amongst threads as possible. In this regard, the
frequency with which the priority determining unit applies the rule to
its inputs can also be set by the programmer. One choice might be each
time a new request is received in the gueue. Another may be each time a
request is dispatched from the gueue. A third choice may be after a

predetermined time period (e.g., 5 seconds) has elapsed.

Again, the rule followed by priority determining unit 34 can be
programmed to suit the exact concerns of the programmer. For example,
the exact levels of priority can be set to give higher priority to a
heavy processing request when thread 33b becomes free as compared to an

account balance inguiry request, if the programmer decides that it is

10

15

20

25

30

35

40

more important to efficiently balance the workload as compared to giving

a most recent account balance to a client.

The steps carried out by the preferred embodiment of the present

invention are illustrated in the flowchart of Fig. 4.

At step 41, the priority determining unit 34 examines each of the
requests sitting in the queue of the object adapter 32. At step 42, the
priority determining unit 34 examines the state of each of the execution
threads 33a, 33b and 33c. At step 43, the priority determining unit uses
the information that it has gathered from steps 41 and 42 as inputs to a
priority determination rule. As stated above, this rule has been pre-
programmed to reflect the priority determinations desired by the

programmer.

At step 44, the priority determining unit 34 assigns a value to
each of the gueued requests based on the results of having applied the
priority determination rule to each queued request at step 43.
Specifically, each request sitting in the gqueue of the object adapter 32
is assigned a numerical value, such a value being dependent on the
results of the application of the priority determining rule for that

request.

For example, as shown in Fig. 5, there are three requests sitting
in the gueue of the object adapter 32: request__ one (which would be the
next request to leave the queue, if the FIFO system of the prior art were
used), request__two (sitting immediately behind request__one) and
request__three (sitting immediately behind request_ _two). If, when the
rule is applied at step 43, request__ one is assigned the priority wvalue
2, reguest_ _two is assigned the priority value 3 and request__three is
assigned the priority value 1, then these numerical values are stored in
column 502 which is alongside column 501 which lists each of the queued

requests.

At step 45, the request re-ordering unit 35 examines column 502 of
the object adapter 32’s queue and re-orders the requests in column 501 so
that the highest priority request (request_three) is placed at the top of
column 501 (see Fig. 6), and the other two reguests are placed in order

behind this first request according toc their assigned priority.

10

10

The present invention thus provides, to the distributed
heterogeneous processing platform context, the highly predictable and
efficient results required by today’s commercial processing
environments. A large number of clients can thus be given efficient
usage of the available server resources through system-wide workload
balancing. Also, clients are provided with consistent and highly
predictable results from the server, in terms of a guaranteed processing
time each time a client invokes a server object located on a

heterogeneous platform.

10

15

20

25

30

35

40

11

CLAIMS

1. An apparatus for scheduling and dispatching client requests for
execution by a server object in a heterogeneous object-oriented

client/server computing environment, the apparatus comprising:

a request-holding buffer having an input connected to a
communications channel which channels the client requests to the

apparatus, and an output;

a plurality of parallel execution threads connected to the output

of the buffer; and

a scheduling means for distributing client requests stored in the

buffer to the plurality of execution threads, characterized in that:

the scheduling means places client requests held in the buffer in
priority order based on a priority determining rule which takes into
account the state of the plurality of execution threads and the nature of

each of the held requests.

2. The apparatus of claim 1 wherein said buffer is included within an

object adapter.

3. The apparatus of claim 1 wherein the scheduling means assigns
priority values to each request in the buffer by applving the priority
determining rule and places higher priority valued requests ahead of
lower priority valued requests in the buffer so that the highest priority

valued request is scheduled next for execution by the server object.

4. A method of scheduling and dispatching client requests for
execution by a server object in a heterogeneous object-oriented

client/server computing environment, comprising the steps of:

determining information about each of a plurality of queued

incoming client requests;

determining information about each of a plurality of parallel

execution threads of the server object;

10

15

20

25

30

35

12

applying a priority determining rule to the information obtained in

said determining steps; and

scheduling the order of dispatch from the qQqueue of the plurality of

queued requests based on the results of said applying step.

S. The method of claim 4 wherein said buffer is included within an

object adapter.

6. The method of claim 4 wherein the applying step results in the
assignment of priority values to each gueued request by applying the
priority determining rule and the scheduling step places higher priority
valued requests ahead of lower priority valued requests in the queue so
that the highest priority valued request is scheduled next for execution

by the server object.

7. The method of claim 4 wherein the frequency with which said

applying step is carried out is selected by the programmer.

8. A computer program product stored on a computer readable storage
medium for, when run on a computer, carrying out a method of scheduling
and dispatching client requests for execution by a server object in a
heterogeneocus object-oriented client/server computing environment,

comprising the steps of:

determining information about each of a plurality of queued

incoming client reqguests;

determining information about each of a plurality of parallel

execution threads of the server object;

applving a priority determining rule to the information obtained in

said determining steps; and

scheduling the order of dispatch from the queue of the plurality of

queued requests based on the results of said applying step.

GB 9802294.0
1-8

Application No:
Claims searched:

Patents Act 1977
Search Report under Section 17

Databases searched:

ratent
Ofhce

13

Mike Davis
23 July 1998

Examiner:
Date of search:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK CI (Ed.P): G4A (AFN)
Int Cl (Ed.6): GO6F
Other:

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
X | EP 0652513 Al (IBM) 1,4,8 at
least
X | US 5506987 (ABRAMSON ET AL) "

X Document indicating lack of novelty or inventive step
Y Document indicating lack of inventive step if combined
with one or more other documents of same category.

& Member of the same patent family

A
P

E

Document indicating technological background and/or state of the art.
Document published on or after the declared priority date but before
the filing date of this invention.

Patent document published on or after, but with priority date earlier
than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

