A2 IO 0 A

WO 2006/115

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 November 2006 (02.11.2006)

lﬂb A 00O 0

(10) International Publication Number

WO 2006/115654 A2

(51) International Patent Classification:
GOGF 17/30 (2006.01)

(21) International Application Number:
PCT/US2006/010663

(22) International Filing Date: 22 March 2006 (22.03.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/111,735 22 April 2005 (22.04.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: SHUR, Andrey; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). MACKENZIE,
Bruce, A.; One Microsoft Way, Redmond, Washington
98052-6399 (US). VOPILOY, Alexei, Vladimirovich;
One Microsoft Way, Redmond, Washington 98052-6399
(US). ORNSTEIN, David, B.; One Microsoft Way,
Redmond, Washington 98052-6399 (US). DUNIETZ,
Jerry, J.; One Microsoft Way, Redmond, Washington
98052-6399 (US). KIM, Young, Gah; One Microsoft
Way, Redmond, Washington 98052-6399 (US). SHETH,
Sarjana, B.; One Microsoft Way, Redmond, Washington
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PACK URI SCHEME TO IDENTIFY AND REFERENCE PARTS OF A PACKAGE

= pack:// http:,,www.my.com,packages.aspx%3fmy.package/a/foo.xaml

Package URI = http://www.my.com/my.package

Relative reference = ./a/foo.xaml

Pack URI = pack:// http:,,www.my.com,my.package/a/foo.xaml
Package URI = http://www.my.com/packages.aspx?my.package

Relative reference =, /a/foo.xaml

Pack URI

Package URI = sql:/ /serro:47serrol1@locathost/ser

Relative reference = /a/b/foo.xaml

Pack UR = pack://sql:,,serro:47serro11%40locathost,ser/a/b/foo.xaml

(57) Abstract: The present invention is directed to a system and method for providing access to individual resources stored within
a package. The system enables a client to access the resources without having to access the entire package. The system allows a
I client to reference the different resources within the package through use of a URI scheme. The URI scheme of the present invention
\& is composed through a method of combining the URI for the package and the URI for the resource. The URI scheme of the present
invention is able to work with any scheme, thereby enabling the URI scheme to be universal and not protocol-specific.

10

15

20

23

30

WO 2006/115654 PCT/US2006/010663

PACK URI SCHEME TO IDENTIFY AND REFERENCE PARTS OF A
PACKAGE
FIELD OF THE INVENTION

[oo001] Embodiments of the present invention relate to a system and method

for selectively identifying and accessing a resource within a package, without
having to access the entire construct. More particularly, embodiments of the
present invention relate to a system and method for composing a URI scheme that
identifies a resource within a package that is consistent with present URI formats,
rules, and standards.

BACKGROUND OF THE INVENTION
[0002] A Uniform Resource Identifier (URI) is a compact string of

characters for identifying an abstract or physical resource. A URI provides a
simple and extensible means for identifying a resource for a client’s need. A URI
can be further classified as a name, a locator, or both. A Uniform Resource Name
(URN) is a subset of URI that is required to remain globally unique and persistent
even when the resource ceases to exist or becomes unavailable. A Uniform
Resource Locator (URL) is also a subset of URI, and identifies resources through a
representation of their primary access mechanism (location) rather than identifying
the resource by name. URIs, URNs, and URLs are described further in detail in
“Request for Comments: 2396” (RFC 2396).

[0003] When accessing information over a network, current technology
utilizing URIs only provide a client the ability to access a package as a whole.
Therefore, a client is forced to retrieve an entire package even when the client
desires to have only one particular part of the package. For example, for the given
URI “www.microsoft.com/sample.package,” using existing URI schemes like
Hypertext Transfer Protocol (HTTP), there is no current method to retrieve
individual parts within the package, “sample.package,” without having to access
the entire package and then extracting the specific part on the client side.

[0004] Technology is needed among other things for enabling clients to
address specific resources within packages, without a necessity to access the entire

package. This method should be universal and flexible, thereby able to coexist and

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

stay consistent with the current URI formats, rules, and standards. The present
invention addresses and solves these needs.
SUMMARY OF THE INVENTION

[0005] The present invention is directed to a system and method of accessing

resources over a network. According to embodiments of the invention, a client
may request a resource from a data store, wherein the resource is an individual part
a package. A method according to embodiments of the invention may additionally
include composing a pack URI, and requesting the resource by identifying it
through the pack URI. Methods according to embodiments of the invention may
further include retrieving the resource and storing the pack URI, along with the
resource, in a cache within the client.

[0006] In further embodiments, a system may include at least one data store
for storing a plurality of packages. The system may additionally include at least
one resource stored within each package, and at least one pack URI for identifying
the resources within each package.

[0007] In further embodiments of the present invention, a resource identifier
scheme may provide a method of composing a pack URI using an algorithm,
wherein the pack URI identifies a resource within a package. The resource
identifier scheme may include composing a pack URI that is able to work with any
scheme and is not protocol-specific. ~The resource identifier scheme may

additionally include an algorithm for decomposing the pack URI into its main

components.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Fig. 1 illustrates a block diagram that illustrates a computing
environment adapted to implement the present invention.
[0009] Fig. 2 illustrates a package of the present invention.
[0010] Fig. 3 illustrates the general form of a pack URL |
[0011] Fig. 4 illustrates examples of different pack URIs and the resources

that each one addresses.

[0012] Fig. 5 illustrates examples of pack URIs composed from package

URIs and relative references.

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

[0013] Fig. 6A illustrates an example of a pack URI being decomposed and
converted into a package URI and a part URI.
[0014] Fig. 6B illustrates an algorithm that describes decomposing a pack
URI into its main components.
[0015] Fig. 7 illustrates how to compose a pack URI from an absolute
package URI and a relative reference.
[0016] Fig. 8 illustrates a method of comparing pack URIs.

DETAILED DESCRIPTION OF EMBODIMENTS
[0017] FIG. 1 is a block diagram that illustrates a computing environment in

which a system and method for a pack URI scheme may operate according to
embodiments of the present invention. The computing system environment 100 is
only one example of a suitable computing or network environment and is not
intended to suggest any limitation as to the scope, use or functionality of the
invention. Neither should the computing environment 100 be interpreted as having
any dependency or requirement relating to any one or combination of components
illustrated in the exemplary operating environment 100.

[0018] The invention is operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of
well known computing systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not limited to, personal
computers, server computers, hand-held or laptop devices, multiprocessor systems,
microprocessor-based systems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, distributed computing
environments that include any of the above systems or devices, and the like.

{0019] The invention may be described in the general context of computer-
executable instructions, such as program modules, being executed by a computer.
Generally, program modules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement particular abstract data
types. The invention may also be practiced in distributed computing environments
where tasks are performed by remote processing devices that are linked through a

communications network. In a distributed computing environment, program

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

modules may be located in both local and remote computer storage media including
memory storage devices. ‘

[0020] With reference to FIG. 1, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer
110. Components of computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121 that couples
various system components including the system memory to the processing unit
120. The system bus 121 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus
also known as Mezzanine bus.

[0021] Computer 110 typically includes a variety of computer readable
media. Computer readable media can be any available media that can be accessed
by computer 110 and includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limitation, computer readable
media may comprise computer storage media and communication media.
Computer storage media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program
modules or other data.

[0022] Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to store the desired information and which can accessed by
computer 110. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a modulated data

signal such as a carrier wave or other transport mechanism and includes any

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of the any of the above should also be included within the scope of
computer readable media.

[0023] The system memory 130 includes computer storage media in the form
of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and
random access memory (RAM) 132. A basic input/output system 133 (BIOS),
containing the basic routines that help to transfer information between elements
within computer 110, such as during start-up, is typically stored in ROM 131.
RAM 132 typically contains data and/or program modules that are immediately
accessible to and/or presently being operated on by processing unit 120. By way of
example, and not limitation, FIG. 1 illustrates operating system 134, application
programs 135, other program modules 136, and program data 137.

[0024] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1
illustrates a hard disk drive 140 that reads from or writes to non-removable,
nonvolatile magnetic media, 2 magnetic disk drive 151 that reads from or writes to
a removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that
reads from or writes to a removable, nonvolatile optical disk 156 such as a CD
ROM or other optical media. Other removable/non-removable, volatile/nonvolatile
computer storage media that can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tape, solid state RAM, solid state ROM, and the like.
The hard disk drive 141 is typically connected to the system bus 121 through an
non-removable memory interface such as interface 140, and magnetic disk drive
151 and optical disk drive 155 are typically connected to the system bus 121 by a

removable memory interface, such as interface 150.

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

[0025] The drives and their associated computer storage media discussed
above and illustrated in FIG. 1, provide storage of computer readable instructions,
data structures, program modules and other data for the computer 110. In FIG. 1,
for example, hard disk drive 141 is illustrated as storing operating system 144,
application programs 145, other program modules 146, and program data 147.
Note that these components can either be the same as or different from operating
system 134, application programs 135, other program modules 136, and program
data 137. Operating system 144, application programs 145, other program modules
146, and program data 147 are given different numbers here to illustrate that, at a
minimum, they are different copies. A user may enter commands and information
into the computer 110 through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or touch pad. Other input
devices (not shown) may include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often connected to the
processing unit 120 through a user input interface 160 that is coupled to the system
bus, but may be connected by other interface and bus structures, such as a parallel
port, game port or a universal serial bus (USB). A monitor 191 or other type of
display device is also connected to the system bus 121 via an interface, such as a
video interface 190. In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer 196, which may be
connected through a output peripheral interface 190.

[0026] The computer 110 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer
180. The remote computer 180 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node, and typically includes
many or all of the elements described above relative to the computer 110, although
only a memory storage device 181 has been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide computer networks,

intranets and the Internet.

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

[0027] When used in a LAN networking environment, the computer 110 is
connected to the LAN 171 through a network interface or adapter 170. When used
in a WAN networking environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the WAN 173, such as
the Internet. The modem 172, which may be internal or external, may be connected
to the system bus 121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules depicted relative to the
computer 110, or portions thereof, may be stored in the remote memory storage
device. By way of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181. It will be appreciated
that the network connections shown are exemplary and other means of establishing
a communications link between the computers may be used.
[0028] Fig. 2 illustrates a package construction according to embodiments of
the present invention. A package 201 is a logical entity that holds a collection of
resources 202-204. Resources are different parts within package 201 that could be
or include, for example, individual files such as image, audio, HTML, and XML
files, or other files, objects, or content. The package 201 may be stored at a data
store, such as an external server, in which a client could download or access the
package 201 over a network. The present invention allows a client to access the
different resources 202-204 without needing to access the entire package 201. A
client may address the different parts of the package 201 through the pack Uniform
Resource Identifier (URI) schemes of the present invention as shown in Fig. 3.
[0029] The pack URI uses a technique of combined addressing that is
consistent with known URI formatting. The pack URI is designed to be consistent
with the standards set for in the “Request for Comments: 2396” (RFC 2396). The
URI syntax is dependent upon the scheme. In general, absolute URI are written as
follows:

<scheme>:<scheme-specific-part>
An absolute URI contains the name of the scheme being used (<scheme>) followed
by a colon (":") and then a string (the <scheme-specific- part>) whose interpretation

depends on the scheme. The URI syntax does not require that the scheme-specific-

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

part have any general structure or set of semantics which is common among all
URI. However, a subset of URI do share a common syntax for representing
hierarchical relationships within the namespace. This “generic URI” syntax
consists of a sequence of four main components:
<scheme>://<authority><path>?<query>
each of which, except <scheme>, may be absent from a particular URL
[0030] RFC2396 provides an extensible mechanism for defining new kinds
of URIs based on new “schemes.” Schemes are the prefix in a URI before the
colon (e.g., “hitp”, “fip”, “file”). The present invention, defines a specific URI
scheme used to refer to parts in a package. The scheme name used in the present
invention is “pack.” A URI using the pack scheme is called a pack URI.
[0031] Fig. 3 illustrates a general form of a pack URI. The pack URI
scheme is defined using the “generic URI” pattern from RFC2396 as shown in Fig.
3. In a pack URI, the authority component will contain an embedded URI that
points to a package. The embedded URI should meet the requirements defined in
RFC2396 for a valid absolute URI. The absolute path (abs_path) can be used to
identify a particular part within the package identified by the embedded URIL
When provided, the abs_path component describes a path to a part in the package.
In order to identify a part, abs path component must be an ASCII part name.
When the <abs path> is empty, the resource identified by the pack URI is the
package as a whole.
[0032] A pack URI is composed of at least two main components: a package
URI and a part URL. A part URI may be a resource within a given package that a
client is interested in retrieving. The package URI is in one regard the package,
container or object that contains the resource. In the format of a pack URI, the
package URI takes the place of the authority component, and the part URI takes the
place of the abs_path component. By remaining consistent with the generic URI
format, and not deriving a specific approach or other syntax, the invention in one
regard may enable applications to resolve relative references in a well known and
defined fashion. Thus, the pack URI is universal and is not protocol-specific, and

is able to work with a package URI of any scheme (http, ftp, file, etc.).

10

15

20

25

30

WO 2006/115654

PCT/US2006/010663

[0033] Fig. 4 illustrates examples of different pack URIs and the resources
that each one addresses. In example 401, the first line illustrates the actual pack
URI, while the second line identifies the part within the package of the third line.
Note that the first “/” after the scheme delimiter “://” separates the package URI
(authority component) from the part URI (abs_path component). As mentioned
previously, a pack URI may address the entire package or a part within the
package, and a pack URI with an empty path identifies the package as a whole.
Example 402 illustrates this feature. Both pack URIs identify the same package as
a whole. The second pack URI has a “/”, however, the path is empty, therefore, the
pack URI identifies the entire package.

[0034] With reference to FIGS. 5 and 7, the following section will describe
an algorithm for composing a pack URI from an absolute URI of a whole package
and a relative reference. The relative reference may be considered to be the part
component/URI before it is in absolute form. Absolute URI of a package resource
to be suitable for composing a pack URI must fit RFC2396 requirements for valid
absolute URIs.

[0035] Fig. 7 illustrates composition of a pack URI from an absolute package
URI and a relative reference using syntactical conversions. In the composition of a
pack URI, at least the following steps may be performed: In step 701, the fragment
identifier is removed from the package URI, if it is present. Fragment identifiers
are described more in detail in section 4.1 of RFC2396. In step 702, characters
such as “%”, “?”, “@”, “#” and “,” are escaped in the package URI. In step 703,
all “/” are replaced with “,” in the resulting string. In step 704, the resulting string
is appended to a “pack:/” string. In step 705, “/” is appended to the resulting
string. Constructed string represents a pack URI with blank abs_path component.
In step 706, relative reference are resolved against constructed pack URI as a Base
to a target absolute pack URL. Resolving is accomplished through an exemplary
technique outlined in section 5.2 of RFC2396. Examples of pack URIs composed
from package URIs and relative references are illustrated in Fig. 5.

[0036] The present invention also allows for pack URIs, that have been

previously composed, to address another relative reference that may be a part of the

10

15

20

25

30

WO 2006/115654

PCT/US2006/010663

same package. In order to accomplish this method, the present invention utilizes an
exemplary resolving technique outlined in RFC2396 and referenced above. An
example of composing a new pack URI, that addresses another package part, from
an old pack URI is as follows: if a client has a pack URI -
pack://http:,,www.microsoft.com,my.container/a/b/foo.xaml
and it wants to obtain another URI —
/images/picl.jpg
after resolving the two URIs, it will get the pack URI
pack://http:,,www.microsoft.com,my.container/images/picl.jpg
[0037} Once the pack URI is composed, a piece of code, software or other
resource may be utilized in order to retrieve the resource from the data store that
the pack URI addresses. This software or logic processes the pack URI to get the
requested resource back to the client. In the processing step, the software may
decompose the pack URI into its at least two main components, package URI and
part URI, and will extract the requested part/resource from the package.
[0038] With reference to FIGS. 6A and 6B, the following will describe a
technique of decomposing pack URIs. Fig. 6A illustrates an example of a pack URI
being decomposed and converted into a package URI and a part URIL. Fig. 6B
illustrates an algorithm that describes decomposing a pack URI into certain
components. Fig. 6B begins at step 601 wherein the pack URI is parsed into four
potential components: scheme, authority, abs_path, and fragment identifier. The
next step, 602, replaces all ,” with “/” in the authority component. Next, the
resulting authority component is un-escaped 603, and access to the package
resource by the absolute URI represented by the converted authority component is
given 604. Finally, the part resource is accessed in the package resource using
abs_path as a part name 605.
[0039] Once a pack URI is composed and used to retrieve the given resource,
the pack URI and resource may be stored in the client’s cache for subsequent use.
If a client requests a resource by composing a pack URI, an application running on
the client may first compare the composed pack URI with previously-composed

pack URIs stored within the cache. If the requested pack URI for the given

10

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

resource is found within the cache, the application may retrieve the resource from
the cache instead of unnecessarily retrieving it from the data store that the pack
URI addresses.

[0040] Fig. 8 illustrates the method of comparing pack URIs. In step 801, a
pack URI is composed in order to retrieve a requested resource. Step 802 compares
the composed URI with the list of previously-composed pack URIs stored in the
client’s cache. In the comparison step, the application checks for syntactical
equivalence between the composed pack URI and the previously-composed pack
URIs stored in the cache. In step 803, the scheme components of the pack URIs are
first compared to determine if they are equivalent. The scheme components are
equivalent if they are octet-by-octet identical after they are converted to lowercase.
If at this point it is determined that the scheme components are not equivalent for
any of the URIs stored in the cache, the application will proceed to retrieve the
resource from the data store that the composed pack URI addresses 807. If it is
determined that the scheme components are equivalent for any of the pack URIs,
the application continues the comparison analysis by moving to step 304.

[0041] In step 804, the authority components of the pack URIs are next
compared to check for equivalence. The rules for determining equivalence among
authority components vary by scheme and may be similar to the rules outlined in
RF(C2396. If it is deemed that the authority components are not equivalent for any
of the pack URIs stored in the cache, the application will proceed to retrieve the
resource from the data store that the composed pack URI addresses 807. If it is
determined that the authority components are equivalent for any of the pack URIs,
the application continues the comparison analysis by moving on to step 805.

[0042] In step 805, the abs_path components of the pack URIs are compared
to test for equivalence. The abs_path components are equivalent if they are octet-
by-octet equivalent after being converted into Normalized Unicode Part names. If
after the comparison analysis it is determined that the abs_path are not equivalent
for any of the pack URISs stored in the cache, the application will proceed to retrieve
the resource from the data store that the composed pack URI addresses. If it is

determined that the abs_path components are equivalent for any of the pack URIs,

11

10

15

WO 2006/115654 PCT/US2006/010663

the application determines that there is an equivalent pack URI stored in the cache
and will proceed to retrieve the resource from the cache 806.

[0043] While particular embodiments of the invention have been illustrated
and described in detail herein, it should be understood that various changes and
modifications might be made to the invention without departing from the scope and
intent of the invention. The embodiments described herein are intended in all
respects to be illustrative rather than restrictive. Alternate embodiments will
become apparent to those skilled in the art to which the present invention pertains

without departing from its scope.

- [0044] From the foregoing it will be seen that this invention is one well

adapted to attain all the ends and objects set forth above, together with other
advantages, which are obvious and inherent to the system and method. It will be
understood that certain features and sub-combinations are of utility and may be
employed without reference to other features and sub-combinations. This is

contemplated and within the scope of the appended claims.

12

10

15

20

25

WO 2006/115654 PCT/US2006/010663

CLAIMS
We claim:

L. A method to access resources over a network, comprising:

requesting a resource from a data store, wherein the resource
comprises an individual part stored within a package at the data store;

composing a URI scheme;

requesting the resource by identifying the resource through the URI
scheme; and

retrieving the resource.

2. The method according to claim 1, further comprising accessing at
least one of the resource and the package by utilizing the URI scheme to identify
the resource or the package.

3. The method according to claim 1, wherein composing the URI
scheme comprises combining a first URI and a second URI.

4. The method according to claim 3, wherein the first URI identifies the
package, and the second URI identifies the resource within the package.

5. The method according to claim 1, further comprising storing the URI
scheme, the resource, and a plurality of previously-composed URI schemes in a
cache within the client.

6. The method according to claim 5, further comprising:

determining syntactical equivalence by comparing the plurality of
previously-composed URI schemes stored in the cache to the URI scheme.

7. The method according to claim 6, wherein the resource is accessed
from the cache if there is syntactical equivalence between the URI scheme and one
of the previously-composed URI schemes; and

the resource is accessed from the data store that the URI scheme
addresses if there is no syntactical equivalence between the URI scheme and
any of the previously-composed URI schemes.

8. A system to access resources over a network comprising:

13

10

15

20

25

30

WO 2006/115654 PCT/US2006/010663

at least one data store storing a plurality of packages, at least one
resource stored within each package, and a plurality of URI schemes that are
composed for identifying the resources within each package.
9. The system according to claim 8, wherein a client accesses the
resource through the composed URI scheme, that addresses the data store of the
packages and resources, without having to access the entire package.

10. The system according to claim 8, wherein a client composes the URI

scheme by combining a first URI and a second URI.

11. The system according to claim 9, wherein the client includes a cache
for storing the composed URI schemes, resources, and a plurality of previously-
composed URI schemes.

12, The system according to claim 11, wherein the client includes an
application for comparing at least one of the composed URI schemes against all of
the previously-composed URI schemes stored in the cache to test for syntactical
equivalence.

13. The system according to claim 12, wherein the resource is accessed
from the cache if there is syntactical equivalence between the at least one
composed URI scheme and one of the previously-composed URI schemes, and is
accessed from the data store that the at lest one composed URI scheme addresses if
there is no syntactical equivalence between the at least one URI scheme and any of
the previously-composed URI schemes.

14. A resource identifier scheme, the scheme being generated by a
method comprising:

requesting a resource from a data store, wherein the resource
comprises an individual part stored within a package at the data store;

composing a URI scheme;

requesting the resource by identifying the resource through the URI
scheme; and

retrieving the resource.
15. The resource identifier scheme according to claim 14, wherein the

URI scheme is able to work with any scheme and is not protocol-specific.

14

10

15

WO 2006/115654 PCT/US2006/010663

16. The resource identifier scheme according to claim 14, wherein the
resource is retrieved from the data store that the URI scheme addresses.

17. The resource identifier scheme according to claim 16, wherein the
URI scheme, through use of an algorithm, is decomposed into its main components
before retrieving the resource.

18. The resource identifier scheme according to claim 14, further
comprising: determining syntactical equivalence by comparing a plurality of
previously-composed URI schemes stored in the cache to the URI scheme.

19. The resource identifier scheme according to claim 18, wherein
comparing the URI scheme to the previously-composed URI schemes involves
comparing a scheme, an authority, and an abs_path component to determine
equivalence.

20. The resource identifier scheme according to claim 14, wherein a
previously-composed URI scheme can be used to compose a new URI scheme that

will identify a new resource.

15

PCT/US2006/010663

WO 2006/115654

Ggl SWVHS0YHd 001 _\ .mu _ u_
NOILYOITddY \
e (ER _ _ _ —
- 17t orl Gl vl
e 3ISNON V1vQ STINAOW SINYH90Yd WNILSAS
q\/\ 18l o, \1@ AVEO0Yd |WYMO0Yd YIHLIO| NOILYOIddY | ONILYEIdO
QUYOgAI -
¥3LNdNoo . ([F=39852s oL 1 9sl Nm:) -7
ALOW3d e Gepuonuoay -7
\ —\ OO0 onooooocoao O /M@/J \\\
P # ﬂ ~ -
WIAOW « o)) LGl LD
AN - -
YHOMIIN Y2V SAM ™"~ T mj P |
LLL IJ _ I/ J_ M.W|—\ v1ivd "
! e ZNEI] ERANEN] FOVASTLNI WYHI90Md _
va JOVAILINI 1NdNI AHOWAN TOA-NON| IAHOWIN TOA-NON |
SRIOMLIN vy vo07Y ! [HOMLAN RER F18YAONZY || 319YAONTY-NON !
i |
! omlﬁﬁ b2l _ _ _ _ 9T émm%:aoz !
NYNO0Hd ¥FHLO
| SNg WALSAS | JV “
| |
L8} ~_{Syapvads f Gel SWVHEO0Hd !
_ €l _
| NOILYOITddY !
I NN ! FOVUILNI FOV-HILNI — _
s ! REREEE O3aI pEL WALSAS "
961 ! 1NdINO 1INN ONILVH3dO _
| Y os1 /| onissao0ud — |
| G6l 61 0zl zer (avd) |
N T |
t
HOLINOW ; i o€t 2o |
5 |] Ler (Wow) | |
161 oLl ~_ AHOWIAWAISAS | |

1/6

WO 2006/115654 PCT/US2006/010663

201
PACKAGE
202 203 204
RESOURCE RESOURCE RESOURCE

FIG. 2

2/6

PCT/US2006/010663

WO 2006/115654

¥ Old

* JauLejuod A /Wod oS0 MMM/ 7 :d1ay,, AJ1IUSPL Ylog siyn asay3 -
oy —> /J2ute1u0d* AU ‘W02 140501 MMM :d11Y/ / Moed
JaULRIU0D " AW W02 1JOSOIDIL MMM :dau/ / »¥pded

*20.1nosal ageyoed ,Jaurejuod Al /Wod3J0soIdW MMM/ /:d13y,,
UlYIM ped | jwex-0oy/q/e/,, SSLIIIUSPL [N SHY3 -
LO¥ —> JWex 00} /q /e /Jaurejuod AW ‘wod 1Josodlw MMM :d1ay/ / poed

3/6

¢ 9ld

(ol Sul ol m b Ba @] | padedss | paAdssalun), = <juswigass>
(<quawisass> . /,,), JUSWSaS <SjuawWsas yyeds

<SjuaWsas” Yyyeds ,./,, = <yied sqe>

(atm e LB i Ll | a'n | &S, | padessa | paatssalun), = <Ayioyine>
alaym

<yjedsqes><Ajlioyines/ /ed = N Yoed

WO 2006/115654 PCT/US2006/010663

Package URI = http://www.my.com/my.package
Relative reference = ./a/foo.xaml
Pack URI = pack:// http:,,www.my.com,my.package/a/foo.xamt
Package URI = http://www.my.com/packages.aspx?my.package
Relative reference =,/a/foo.xaml
Pack URI = pack:// http:,,www.my.com,packages.aspx%3fmy.package/a/foo.xaml
Package URI = sql:/ /serro:47serrol1@localhost/ser
Relative reference =,/a/b/foo.xaml
Pack UR = pack://sql:,,serro:47serro11%40localhost,ser/a/b/foo.xaml
Pack URI = pack:/ /http:,,www.my.com,packages.aspx%3fmy.package/a/b/foo.xaml
components:
authority = http:,,www.my.com,packages.aspx%3fmy.package
path = /a/b/foo.xaml
converted to:
Package URI = http://www.my.com/packages.aspx?my.package
Part name = /a/b/foo.xaml

FIG. 6A

f 601 [602 / 603 / 604 f 605

] REPLACE ", UN-ESCAPE
PARSE PACK WITH ** IN | RESULTING | | A\CCESS .| ACCESS
» PACKAGE » PART
URI AUTHORITY AUTHORITY vt REaOSRCE
COMPONENT COMPONENT

FIG. 6B

4/6

WO 2006/115654

REMOVE FRAGMENT
IDENTIFIER

701
/‘

ESCAPE CHARACTERS

/- 702

REPLACE /"
WITH *,”

/- 703

APPEND RESULTING
STRING TO “PACK://"
STRING

/- 704

/- 705

APPEND /" TO
RESULTING STRING

PCT/US2006/010663

FIG. 7

706

L~

RESOLVE RELATIVE
REFERENCE AGAINST
CONSTRUCTED PACK

URI

5/6

END

PCT/US2006/010663

WO 2006/115654

8 Old

IHOVD WOYA
304UNOSIY IATMLTY 908

S3A

508

LINTFTVAINDE
SINAaNOd4WOD

ON <yjed sge>

¥08

SANATYAINDA

SININOJINOD
<fApouynes

ON

€08

SINTTVAINDZ
SLN3INOJINOD

Y

08

JYOLS V.Iva IHL 1\
NOYH FOUNOST

ANTIELTY

ON <3WIBYoS>

JHOVO NI

MOVd d3183n03d
<08 I\ FHYAINOD

SIIN MOV HLIM RN | o

3oYNOS3H
d31s3N03d ¥Ood
1N MOV ASOdINOD

108

6/6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

