
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0147853 A1

Anderson et al. (43) Pub. Date:

US 2008O147853A1

Jun. 19, 2008

(54)

(76)

(21)

(22)

(63)

REMOTE MONITORING OF COMPUTER
PROGRAMS

Mark D. Anderson, Palo Alto, CA
(US); Evan J. Bigall, Palo Alto, CA
(US); Christine Clifford, Mountain
View, CA (US); Reed Hastings, La
Honda, CA (US); Jon Sorensen,
Sunnyvale, CA (US); Douglas Pan,
Milpitas, CA (US)

Inventors:

Correspondence Address:
HAMILTON, BROOK, SMITH & REYNOLDS,
P.C.
530 VIRGINLA ROAD, P.O. BOX9133
CONCORD, MA 01742-9133

Appl. No.: 11/986,310

Filed: Nov. 20, 2007

Related U.S. Application Data

Continuation of application No. 10/642.387, filed on
Aug. 15, 2003, now Pat. No. 7,299,455, which is a
continuation of application No. 09/907,510, filed on
Jul. 16, 2001, now Pat. No. 6,634,001, which is a

HTTP/EMAIL/LAN/WAN/ETC.

204
CLIENT
(UNIX)

COLLECTED
DATA

SERVER

CLIENT
(WINDOWS)

(51)

(52)

(57)

continuation of application No. 09/340,862, filed on
Jun. 28, 1999, now Pat. No. 6,263,457, which is a
continuation of application No. 08/657,106, filed on
Jun. 3, 1996, now Pat. No. 5,918,004, which is a con
tinuation-in-part of application No. 08/460,516, filed
on Jun. 2, 1995, now abandoned.

Publication Classification

Int. C.
G06F II/30 (2006.01)
G06F 7/30 (2006.01)

U.S. CI. ... 709/224; 707/101: 717/127; 707/E17.044

ABSTRACT

Systems and methods for remotely monitoring the execution
of computer programs are provided. Monitoring instructions
are added the computer program so that during execution of
the program, data may be collected regarding the program
execution. The collected data may be automatically sent to a
remote system or site for analysis. The monitoring instruc
tions create little or no performance impact on the client yet
provide valuable information to the developer of the program.
Additionally, the monitoring instructions may be changes
during computer program development.

COLLECTED
DATA

RECEIVED
DATA

COLLECTED
DATA

Patent Application Publication Jun. 19, 2008 Sheet 1 of 9 US 2008/0147853 A1

108

DISPLAY
ADAPTER

3 112 9 116 118

REMOVABLE FIXED NETWORK
MONITOR DISK KEYBD INTERFACE

PRIOR ART

FIG 2

Patent Application Publication Jun. 19, 2008 Sheet 2 of 9 US 2008/O147853 A1

SERVER
2O2

RECEIVED
DATA

HTTP/EMAIL/LAN/WAN/ETC.

COLLECTED
DATA

COLLECTED
DATA

FIG.3
SYSTEM LIBRARIES

ROUTINE

COLLECTED
DATA

CALL TABLE

ROUTINE

ROUTINE

404

PRIOR ART

FIG. 5

Patent Application Publication Jun. 19, 2008 Sheet 3 of 9 US 2008/O147853 A1

SERVER CLIENT
302

NSTALL PVAP

304

NSTALL PWAP CALLS
INPUT SOURCE CODE

3O6

COMPLE AND LINK PUT

3O8 31 O

SEND PUT TO CLIENT - RUNPUT
312

GET NEXT STATEMENT

314

NO YES

EXECUTE CALL PWAP
PUT (E.G., DATA

STATEMENT COLLECTION)

32O

YES 322
*.

324 326

US 2008/O147853 A1 Jun. 19, 2008 Sheet 4 of 9 Patent Application Publication

39 %)/3/

HON Nm? (Na-A4

Patent Application Publication Jun. 19, 2008 Sheet 6 of 9 US 2008/O147853 A1

502

END HOOK

506

SEND DATA TOSERVER

YES 5 54
CONTINUE PUT

- " - EXECUTION

A/6 s.

Patent Application Publication Jun. 19, 2008 Sheet 7 of 9 US 2008/0147853 A1

SERVER CLET
couple put 552

STORE ODULE AAP 55
-556 558

SENT PUT TO CLIENT H RUN PUT
560

SAVE CAL STACK
AND MODULE LIST

I
|

562
GENERATE MODULE NAME/

RWA LIST - 566.
GENERATE SYABOLIC CAL 564
STACK FROM MODULE MAP SEND MODULE NAME/RWA
AND MODULE NAME/RALIST LIST TO SERVER

, -r568 |
PERFORM REMOTE DEBUCGING

OF PUT

A76 9.
602

RUN PUT ON CLIENT
PUT SENDS VERSION

TO SERVER

604

606 - 608

CURREATYN 0 DOWNLOAD CURRENT
VERSION2 - VERSIOR

60
EXECUTE PUT

A76 /O.

Patent Application Publication Jun. 19, 2008 Sheet 8 of 9 US 2008/0147853 A1

652

SERVER

656

BUG TRACKER

4. 6 65

CLIENT 2 . . . CLENT A

A76 //

CLENT

702

SERVER

TOS

CLIENT CLENT

Patent Application Publication Jun. 19, 2008 Sheet 9 of 9 US 2008/O147853 A1

PUT 752
MGI ()
PW-START () - A

VENDOR A

VENDOR B

VENDORC

VENDOR O

EXPANSION ar ODFILE.0 AEANS REFLE.0

A/ A4.

US 2008/O 147853 A1

REMOTE MONITORING OF COMPUTER
PROGRAMS

COPYRIGHT NOTICE

0001. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the Xerographic
reproduction by anyone of the patent document or the patent
disclosure in exactly the form it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

MICROFICHEAPPENDIX

0002. The Microfiche Appendix (17 fiche with total of
1027 frames) includes source code for implementing an
embodiment of the invention.

BACKGROUND OF THE INVENTION

0003. The present invention is related to remote monitor
ing of computer programs and, more particularly, to a adding
remote monitoring instructions to a computer program so that
the execution of the computer program may be monitored at
a remote site.
0004 As computer systems increasingly become more
powerful and complex, so too do the computer programs that
operate upon these computer systems. The increased com
plexity has resulted in much longer development times. Cur
rently, computer programs take months and sometimes years
to progress from pre-alpha through beta and final release.
0005 Developers have long realized that when a computer
program is very complex, it is more efficient to have custom
ers run the computer program (typically beta versions) so that
the full functionality of the computer program in different
environments may be exercised. Few developers have the
people, machines and time to do the testing that may be
provided by their customers.
0006. There are many problems that are presented with
beta testing computer programs. Many of the problems
revolve around the fact that the developer is at a remote site
from the customers. At the remote site, it is difficult for the
developer to know what is happening on a customer's com
puter system. Most customers do not have the expertise or
resources to effectively convey problems to the developer.
Without adequate information, it may be nearly impossible
for a developer to correct a problem.
0007. The preceding is just one of the problems presented
to a developer that is trying to develop a computer program
that is running at a customer's site. Other problems include
customers having platform differences, dealing with the
evolving computer program through to final release, upgrad
ing customers computer programs, tracking bugs, analyzing
multi-tasking or multi-threaded applications, and developing
multi-vendor applications just to name a few.

SUMMARY OF THE INVENTION

0008. The present invention provides innovative systems
and methods for remotely monitoring the execution of com
puter programs. Monitoring instructions (or data collecting
instructions) are added the computer program so that during
execution of the program, data may be collected regarding the
program execution. The collected data may be automatically
sent to a remote system or site for analysis. The present
invention creates little or no performance impact on the client
yet provides valuable information to the developer of the
program.

Jun. 19, 2008

0009. In one embodiment, the present invention provides a
method of remotely monitoring execution of a computer pro
gram in a computer system, comprising the steps of modify
ing the computer program to include at least one monitoring
instruction; executing the computer program; the at least one
monitoring instruction collecting data regarding the execu
tion of the computer program; and sending the collected data
to a remote system.
0010. In another embodiment, the present invention pro
vides a distributed computer system, comprising: a server
computer, a client computer in communication with the
server computer; and a computer program running on the
client computer that includes monitoring instructions that
collect and send data regarding execution of the computer
program to the server computer.
0011. In another embodiment, the present invention pro
vides a computer program product for remotely monitoring
execution of a computer program, comprising: a computer
readable storage medium storing the computer program com
prising: code that calls at least one monitoring instruction, the
at least one monitoring instruction collecting data regarding
the execution of the computer program; and code that sends
the collected data to a remote system
0012. Other features and advantages of the present inven
tion will become apparent upon a perusal of the remaining
portions of the specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 illustrates an example of a computer system
used to execute the software of the present invention;
0014 FIG. 2 shows a system block diagram of a typical
computer system used to execute the Software of the present
invention;
0015 FIG. 3 is a block diagram of a distributed computer
system where a server computer may remotely monitor
execution of computer programs on client computers;
0016 FIG. 4 is a high level flowchart of a process of
remotely monitoring execution of a computer program;
0017 FIG. 5 illustrates a mechanism operating systems
utilize to access routines in a system library;
0018 FIG. 6 illustrates utilizing hooks to intercept sys
tems calls and PV API calls;
0019 FIG. 7 is a table of types of end-run-conditions for
computer programs and the information that may be avail
able;
0020 FIG. 8 is a high level flowchart of a process of
end-of-run processing of a computer program;
(0021 FIG. 9 is a high level flowchart of a process of
performing remote debugging of a computer program;
0022 FIG. 10 is a high level flowchart of a process of
remotely upgrading the version of a computer program;
0023 FIG. 11 is a block diagram of a bug tracker interfac
ing with a computer system of the present invention;
0024 FIG. 12 is a block diagram of a computer system
remotely monitoring computer programs in a multi-tasking or
multi-threaded environment;
0025 FIG. 13 is a block diagram of a computer system
remotely monitoring computer programs incorporating por
tions from multiple vendors; and
0026 FIG. 14 shows an object code file augmented to
include new data collection instructions.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0027. The present invention provides a remote data col
lection facility that may be utilized for developers to monitor

US 2008/O 147853 A1

a program under test (PUT). A PUT is therefore a computer
program or application that has been distributed to a client (or
other site) for which the developer would like to monitor the
execution remotely. This remote monitoring may be per
formed from pre-alpha through beta and final release. In a
preferred embodiment, the present invention is incorporated
in PureVision (PV) which is available from Pure Software
Inc., Sunnyvale, Calif.
0028. In the description that follows, the present invention
will be described in reference to an IBM compatible com
puter running under one of the Windows family of operating
systems. The present invention, however, is not limited to any
particular computer architecture or operating system. There
fore, the description the embodiments that follow is for pur
poses of illustration and not limitation.
0029 FIG. 1 illustrates an example of a computer system
used to execute the software of the present invention. FIG. 1
shows a computer system 1 which includes a monitor 3.
screen 5, cabinet 7, keyboard 9, and mouse 11. Mouse 11 may
have one or more buttons such as mouse buttons 13. Cabinet
7 houses a CD-ROM drive 15, a system memory and a hard
drive (see FIG. 2) which may be utilized to store and retrieve
Software programs incorporating code that implements the
present invention, data for use with the present invention, and
the like. Although a CD-ROM 17 is shown as an exemplary
computer readable storage medium, other computer readable
storage media including floppy disks, tape, flash memory,
system memory, and hard drives may be utilized. Cabinet 7
also houses familiar computer components (not shown) Such
as a central processor, system memory, hard disk, and the like.
0030 FIG. 2 shows a system block diagram of computer
system 1 used to execute the software of the present invention.
As in FIG. 1, computer system 1 includes monitor 3 and
keyboard 9. Computer system 1 further includes subsystems
such as a central processor 102, system memory 104, I/O
controller 106, display adapter 108, removable disk 112 (e.g.,
CD-ROM drive), fixed disk 116 (e.g., hard drive), network
interface 118, and speaker 120. Other computer systems suit
able for use with the present invention may include additional
or fewer Subsystems. For example, another computer system
could include more than one processor 102 (i.e., a multi
processor system) or a cache memory.
0031 Arrows such as 122 represent the system bus archi
tecture of computer system 1. However, these arrows are
illustrative of any interconnection scheme serving to link the
subsystems. For example, a local bus could be utilized to
connect the central processor to the system memory and
display adapter. Computer system 1 shown in FIG. 2 is but an
example of a computer system suitable for use with the
present invention. Other configurations of Subsystems Suit
able for use with the present invention will be readily apparent
to one of ordinary skill in the art.
0032 FIG. 3 is a block diagram of a distributed computer
system where a server computer may remotely monitor
execution of PUTs on client computers. A server computer
202 is in communication with multiple clients, of which
clients 204, 206 and 208 are shown. The server may commu
nicate with the clients via transport mechanisms known in the
art including HTTP, email, network of LAN or WAN, and the
like. Additionally, the server and clients may communicate
via a media like a floppy or tape as shown between the server
and client 208.
0033. The computer system that monitors a PUT will be
designated a 'server” and a computer system on which the
PUT executes will be designed a "client.” For simplicity, the
server computer will be described as the computer system that
performs development of the PUT and remote monitoring of

Jun. 19, 2008

execution of the PUT. However, the development and remote
monitoring may be performed on entirely different computer
systems and at different locations.
0034. A client executes the PUT which includes additional
monitoring instructions for collecting data regarding the PUT
execution. The collected data may be stored locally on the
client until it is transferred to the server for analysis. The
collected data is sent or transferred to the server via a trans
port mechanism.
0035. The present invention provides a platform indepen
dent application programming interface (API) for directing
the data collection for an executing PUT. As shown, client 204
is operating under the Unix operating system. In contrast,
client 206 is operating under one of the family of Windows
operating systems. The API of the present invention (PVAPI)
is portable as a same set of API calls apply to PUTs running on
both operating systems. This functionality allows developers
to create a single source tree across different platforms.
Although platform-specific API calls may be provided, these
calls will be ignored if the platform is incompatible.
0036 FIG. 4 is a high level flowchart of a process of
remotely monitoring execution of a PUT. The flowchart is
divided into a server-side and a client-side to indicate on
which computer systems the steps are performed. At step 302,
the PV API is installed on the server computer for remotely
monitoring the PUT. In a preferred embodiment, the PV API
calls are stored in a dynamic-link library (DLL). As will be
discussed in more detail in reference to FIGS. 5 and 6, hooks
that are available in Windows may be utilized to intercept the
system calls. A similar mechanism may be utilized for Unix
systems.
0037. At least one PVAPI call is placed in the PUT source
code at step 304. The PV Start call may be added to the PUT
source code to start monitoring of the PUT during execution.
Data will be collected regarding the execution and, in a pre
ferred embodiment, the collected data will be automatically
sent to the server. The data is typically collected until the PUT
finishes execution. Other PV API calls may be utilized to
customize the data collection. Thus, developers may dynami
cally change the data that will be collected over the applica
tion development cycle from pre-alpha to beta through final
release.
0038. At step 306, the PUT is compiled and linked into an
executable computer program. After the PUT is a computer
program that incorporates remote monitoring instructions,
the PUT is sent to the client. The PUT may be sent to the client
in any number of ways including networks and magnetic
media like floppies.
0039. Once the PUT is installed on the client, the PUT is
executed at Step 310. Although multi-tasking and multi
threaded applications perform tasks in parallel, each task or
thread essentially operates by executing statements in
sequential order. Accordingly, in discussing this figure, all
applications will be generalized to this sequential execution
of statements.
0040. At step 312, the next statement is retrieved. The
client then determines if the statement is a PVAPI call at step
314. If it is not, the PUT statement is executed at step 316. A
PUT statement is basically any statement that is not a PVAPI
call for remote monitoring.
0041. The client calls the PV API specified by the state
ment at step 318. There are numerous types of PV API calls
that may be called including calls that perform the following:

0.042 starting and ending a PUT run
0.043 controlling the amount of data being collected
0044 logging unstructured data
0.045 inserting simple per-run data

US 2008/O 147853 A1

0046)
0047

inserting complex data fields
platform-specific functions

Thus, there are a variety of PV API calls that may be made at
step 318. However, the goal of most of the calls revolves
around data collection regarding the execution of the PUT.
0048. The PV API calls allow the developer to specify
characteristics of the data that will be collected during a PUT
run. For example, in addition to the developer being able to
turn data collection on and off at locations in the PUT with
PV. On and PV Off, the developer is also able to specify that
data collected under a given type should be discarded (e.g., to
reduce the amount of collected data that is sent to the server).
Additionally, the developer may specify that data collected
will be stored in a database table with the calls
PV DBAddStringToRow and PV DBAddIntToRow. Thus,
the developer is provided great flexibility in specifying what
data will be collected and how the data will be available.
0049. At step 320, it is determined whether the PUT is
finished executing. If it is not, execution resumes at step 312
where the next statement is retrieved. Otherwise, the client
performs END-HOOK data collection at step 322. In a pre
ferred embodiment, END-HOOK is the mechanism in Win
dows through which data is collected after the PUT termi
nates or crashes. In order to aid the developer in tracking
down crashes, information regarding the hardware, operating
system, PUT (e.g., version number), and the like may be
automatically collected to indicate the environment of the
client. In a preferred embodiment, this information is auto
matically collected with a single API call, PV Start.
0050. Once the data is collected regarding the PUT execu

tion, the data is sent to the server at step 324. Once at the
server, the data may be analyzed. The data may be analyzed to
fix bugs in the PUT, track feature utilization, optimize execu
tion of the PUT, and the like.
0051 FIG. 5 illustrates a mechanism operating systems

utilize to access routines in a system library. A call table 402
is kept in memory and associates system calls to routines in a
system library 404. For each call, a pointer indicates the
routine in the system library that should be executed for the
call. For example, one call in the table would be the exit() call
which would then result in executing a routine in the system
library that exits or terminates the current process (with exit
codes). In Windows, the call table is also called the Windows
system table and the system library may be called the Win
dows run-time DLL. These structures are also available in
Unix and other operating systems.
0052 FIG. 6 illustrates utilizing hooks to intercept system
calls and PV API calls. Utilizing hooks, a preferred embodi
ment of the invention intercepts the calls in the call table. A
call table 452 is modified utilizing hooks to redirect the sys
tem calls to a PV library 454. The PV library includes routines
that include statements to facilitate remote monitoring of
PUT execution. The routines in the PV library may also call
routines in a system library 456. In a preferred embodiment,
the PV library is a Windows DLL.
0053 Additionally, PV API calls are also added to call
table 452 so that the appropriate routines in the PV library will
be called. As an example, FIG. 6 shows that a PV API call
PV EndRunNow may cause the execution of the END
HOOK routine in the PV library. The PV EndRunnow ter
minates the data collection on the client but allows the PUT to
continue execution.
0054 FIG. 7 is a table of types of end-run-conditions for
PUTs and the information that may be available in each case.
Correctly identifying and reporting the way a PUT finished
execution provides significant information to a developer. In

Jun. 19, 2008

a preferred embodiment, there are seven ways in which a PUT
may stop execution (which are shown in the table of FIG. 7):
0055 1. PUT Normal Exit exiting by invoking a mem
ber of the exit family of routines or returning from the main
routine
0056 2. PUT exec() invoking a different executable by
Successfully calling exec
0057 3. PUT Exception Caught by Developer catching
an exception or signal in an exception handler and invoking
exit from the handler
0058 4. PUT Exception Uncaught by Developer en
countering an uncaught exception
0059) 5. PUT Dies via uncatchable event encountering
an uncatchable event (e.g., stack overflow or kill process)
0060. 6. Developer ends run before PUT ends PV API
call to stop data collection (PV EndRunnow)
0061 7. PureVision Dies via an unexpected event the
data collection Software of the present invention halts (e.g.,
power off or internal error)
0062 All of the above end-of-run types except for 4.
would pass through the modified call table. The information
available indicates the information the present invention may
analyze and include in the data collected that will be sent to
the server.
0063 FIG. 8 is a high level flowchart of a process of
end-of-run processing of a PUT. When an end-of-run (i.e., the
end of data collection except for the final data collection for
the end-of-run) occurs, the routine END HOOK is executed
in the PV library at step 502. The present invention includes
a default for handing the end of run. By default the present
invention automatically intercepts and reports end-of-run
instances as follows.
0064. At step 504, the PUT run is classified. The PUT run

is classified as either a normal or abnormal run. In Windows,
an abnormal run is defined as a PUT that terminates with an
uncaught exception or with a caught exception followed by a
non-Zero exit code. Similarly, on Unix an abnormal run is
defined as a PUT that terminates with an uncaught signal or
exits with a non-Zero exit code.
0065 Data is collected for the end-of-run at step 506. As
mentioned earlier, information regarding the hardware, oper
ating system, PUT (e.g., version number), user identifier,
PUT start time, PUT execution duration, exit code, exit
exception, and the like may be automatically collected to
indicate the environment of the client at an end-of-run. Addi
tionally, in the event of an abnormal run, Stack information of
the client may be collected for analysis on the server.
0066. At step 508, the collected data is sent to the server.
The server may then remotely analyze the data it receives. If
the end of the PUT is reached at step 510, the PUT is exited at
step 512. Otherwise, the PUT continues execution at step 514.
In a preferred embodiment, the collected data is automatically
transmitted to the server without requiring the client to issue
a command to send the collected data.
0067. Although the present invention provides a default
mechanism for handling end-of-run situations, it also allows
the developer to customize end-of-run processing. The PV
API PV RegisterEndHook allows a callback function to be
defined that will be utilized instead of the default end-of-run
processing. The custom END HOOK processing is shown as
step 516 in FIG.8.
0068 FIG. 9 is a high level flowchart of a process of
performing remote debugging of a PUT on the server. Some
of the steps that may be utilized are not shown in the figure.
For example, it is not shown that the PUT is linked into an
executable program. However, these steps will be readily
apparent to one of skill in the art.

US 2008/O 147853 A1

0069. At step 552, the PUT is compiled with the source
code including PVAPI calls to collect data for remote debug
ging. A module map is created during compilation and it is
stored at step 554. The module map is essentially a table that
for each module in the PUT source code contains the address
and offset of every function in the module. Typically, the
module map is stored on nonvolatile storage (e.g., a hard
drive) on the server.
0070. The executable PUT is sent to the client at step 556.
On the client-side, the PUT is executed at step 558. When an
end-of-run is encountered, the END HOOK directs the client
save both the call stack and the module list at step 560. call
stack is a list of addresses of function calls that were sequen
tially invoked during the PUT execution. The call stack is
therefore generated while the PUT runs.
0071. The module list is a list of modules, including mod
ules in the executable and any DLLS, along with the base
address and size of each module. The module list is also
created while the PUT runs.

0072 At step 562, the client generates a module name/
relative virtual address (RVA) list. The module name/RVA list
is generated from the call stack and the module list. The
module name/RVA list shows the sequence of function calls
as a list of module names and relative offsets into each mod
ule. Typically, the module name/RVA list is generated during
end-of-run processing.
0073. The module name/RVA list is sent to the server
along with any other collected data at step 564. On the server,
a symbolic call Stack is generated from the module map and
the module name/RVA list at step 566. The symbolic call
stack is the sequence of functions calls including the module
name, function name, and offset into the function for each
call. Utilizing the symbolic call stack, the PUT may be
remotely debugged on the server at step 568. In a preferred
embodiment, the present invention also reports uniqueness of
the call stacks so that a developer may more quickly deter
mine if the same problem is occurring on other clients’ com
puters.
0074 FIG. 10 is a high level flowchart of a process of
remotely upgrading the version of a PUT. The present inven
tion also provides bidirectional communication between the
server and the client. The developer may inform the client of
upgrades and/or automatically have new software (e.g., new
products, versions or patches) downloaded onto the client's
machine.
0075. As an example, step 602 shows a PUT running on
the client computer. During execution, a PV API call (e.g.,
PV Start) sends the PUT version number to the server at step
604. The server receives the PUT version number and deter
mines if the version is current at step 606. If the version is not
current, the current version (or a patch) may be downloaded to
the client at step 608. Additionally, the client may be queried
as to whether it is desirable to get an upgrade in the event that
they would prefer to retain the older version for any number of
reasons (e.g., stability).
0076. Whether a new version is downloaded or not, the
PUT continues execution at step 610. Utilizing this process,
the developer is able to accurately track which clients are
running what versions of software. Additionally, as the devel
oper is able to more quickly upgrade older versions, the
testing of the program is more efficient as clients do not
continue to run older versions reporting old problems or bugs.
0077 FIG. 11 is a block diagram of a bug tracker interfac
ing with a computer system of the present invention. The
present invention may also interface with commercially avail
able (or ones created by the developer) bug tracking software.

Jun. 19, 2008

A distributed system including a server computer 652 and
multiple client computers 654 are shown.
0078. A bug tracking application 656 is designed to track
the bugs that are found in the PUT and other information
regarding the bug. When an event occurs during execution of
the PUT that necessitates reporting (e.g., a bug), a PVAPI call
is utilized to collect the data for reporting the event to the bug
tracking application.
007.9 The bug tracking application may receive the infor
mation it requires directly from the clients or the clients may
send information to the server with the server collecting the
information. The server may then format the collected bug
information and sends it to the bug tracking application.
Additionally, a PV API call may send collected data to more
than one server if this is desirable for the developer.
0080 FIG. 12 is a block diagram of a computer system
remotely monitoring PUTs in a multi-tasking or multi
threaded environment. It is desirable for developers to know
how two or more programs (or threads) interact in a multi
tasking (or multi-threaded) environment. For example, it may
be useful to know which application is the bottleneck, the
sequence of application calls or what percentage of processor
time is consumed by each application.
I0081. As shown, a server computer 702 is in communica
tion with a client computers 704 and 706. Programs A and B
are running on one client and program C is running on another
client. Although A and B are described as programs, they may
also be threads of the same program. Programs A, B and Care
running concurrently and separate data is collected for each
program (although the data may be stored on the same hard
driver, it is shown separate for clarity). In a preferred embodi
ment, PV Start returns a handle that may be utilized to
uniquely identify a program or thread. The other PV API calls
may receive this handle as a parameter so that data for each
program or thread is collected together.
I0082 In a preferred embodiment, the data collected for
each program includes timestamps as to when the program
began running. Additionally, information that indicates what
program invoked another program may be collected. Once
this collected data is received by the server, the server will be
able to reconstruct the sequence of program execution on the
clients.
I0083 FIG. 13 is a block diagram of a computer system
remotely monitoring computer programs incorporating code
portions from multiple vendors. A PUT may include code
portions or sections from multiple vendors. However, each
vendor should receive information specific to the code that
they produced. As shown a PUT 752 includes code portions
from vendors A, B, C, and D. When the code for a specific
vendor is entered, a PV Start call is made which returns a
handle specifying the appropriate vendor (e.g., A). Other PV
API calls may then be sent to the appropriate handle specify
ing which vendors code has generated the call and in which
file the collected data should be stored. Thus, data for each
Vendor may be collected and stored separately (although, of
course, it may be on the same hard drive).
I0084. Although the above has described modifying the
source code to include PV API calls for data collection, the
present is not limited to any specific method. For example, the
present invention may utilize object code processing that
inserts the data collection instructions into the object code of
the PUT.
I0085 FIG. 14 shows an object code file augmented to
include new data collecting instructions. A preexisting object
code file 802 (“OLDFILE.O”) is augmented by an expansion
means 804 to include data collecting instructions for the
present invention. An augmented object code file 806

US 2008/O 147853 A1

(“NEWFILE.O”). Typically, the expansion means is a general
purpose computer like the one shown in FIG.1. As the expan
sion means operates on object code, remote monitoring may
be performed on the final executable product, not just those
portions for which source code is available.
I0086. The Microfiche Appendix includes source code for
implementing an embodiment of the invention. The Source is
written in C++ and is designed for an IBM compatible com
puter running under one of the Windows family of operating
systems.
I0087. Appendix A, a PureVision Unix & Windows API
Specification, and Appendix B, a PureVision Programmers’
Guide, are filed herewith as part of the application and are
incorporated by reference for all purposes.
0088 While the above is a complete description of the
preferred embodiments of the invention, various alternatives,
modifications and equivalents may be used. It should be evi
dent that the present invention is equally applicable by mak
ing appropriate modifications to the embodiments described
above. Therefore, the above description should not be taken
as limiting the scope of the invention which is defined by the
metes and bounds of the appended claims.

1-39. (canceled)
40. A method of remotely monitoring execution of a com

puter program, the method comprising:
compiling a computer program to include at least one

monitoring instruction, the at least one monitoring
instruction directing collection of data regarding execu
tion of the computer program;

transmitting the computer program to a remote computer
system; and

receiving the data collected at the remote computer system,
the data regarding execution of the computer program at
the remote computer system.

41. The method of claim 40, further comprising storing the
collected data to a computer-readable medium, the computer
readable medium being one of a CD-ROM, floppy drive, tape,
flash memory, system memory, and hard drive.

42. The method of claim 40, wherein the monitoring
instruction directs the remote computer system to collect the
data regarding execution of the computer program.

43. The method of claim 40, wherein the monitoring
instruction directs the remote computer system to transmit the
data to a server.

44. The method of claim 43, wherein the monitoring
instruction directs the remote computer system to transmit the
data automatically upon completion of execution of the pro
gram.

45. The method of claim 43, wherein the remote computer
system executes the program implementing a first computing
platform, and the server collects the data implementing a
second platform, the first and second platforms being distinct.

46. The method of claim 40, further comprising classifying
execution of the program as normal or abnormal.

47. The method of claim 40, further comprising analyzing
the data.

48. The method of claim 40, further comprising providing
the collected data to an application programming interface.

49. The method of claim 48, wherein the application pro
gramming interface is platform independent.

50. The method of claim 40, further comprising installing
the monitoring instruction into source code of the computer
program.

51. The method of claim 50, wherein installing the moni
toring instruction includes installing a plurality of calls into

Jun. 19, 2008

the Source code, the calls controlling data collection during
execution of the computer program.

52. The method of claim 40, further comprising generating
and storing a module map, the module map indicating func
tions in each module in the computer program.

53. The method of claim 52, wherein the monitoring
instruction directs the remote computer system to generate a
module name and relative virtual address list.

54. The method of claim 53, wherein receiving the col
lected data includes collecting the module name and relative
virtual address list from the remote computer system.

55. The method of claim 54, further comprising generating
a symbolic call stack from the module map and module name
and relative virtual address list.

56. The method of claim 55, further comprising debugging
the computer program using the symbolic call stack.

57. A computer-readable medium storing computer read
able code that, when executed by a computer system, cause
the system to:

install a monitoring instruction into Source code of a com
puter program;

compile the computer program based on the source code,
the computer program incorporating the monitoring
instruction;

transmit the computer program to a remote computer sys
tem; and

collect data from the remote computer system, the data
regarding execution of the computer program at the
remote computer system.

58. A distributed computing system comprising:
a server computer configured to install a monitoring

instruction into a computer program, the monitoring
instruction instructing a computer to collect data regard
ing execution of the computer program; and

a client computer configured to execute the computer pro
gram and transmit the data to the server computer.

59. An apparatus for remotely monitoring execution of a
computer program, the apparatus comprising:
means for compiling a computer program to include at

least one monitoring instruction, the at least one moni
toring instruction directing collection of data regarding
execution of the computer program;

means for transmitting the computer program to a remote
computer system; and

means for receiving the data collected at the remote com
puter system, the data regarding execution of the com
puter program at the remote computer system.

60. An apparatus for remotely monitoring execution of a
computer program, the apparatus comprising:

a processor for compiling a computer program to include at
least one monitoring instruction, the at least one moni
toring instruction directing collection of data regarding
execution of the computer program;

a network interface for transmitting the computer program
to a remote computer system; and

a storage device for storing the data collected at the remote
computer system, the data regarding execution of the
computer program at the remote computer system.

61. The apparatus of claim 60, wherein the storage device
is a computer-readable medium, the computer-readable
medium being one of a CD-ROM, floppy drive, tape, flash
memory, system memory, and hard drive.

US 2008/O 147853 A1

62. The apparatus of claim 60, wherein the monitoring
instruction directs the remote computer system to collect the
data regarding execution of the computer program.

63. The apparatus of claim 60, wherein the monitoring
instruction directs the remote computer system to transmit the
data to a server.

64. The apparatus of claim 63, wherein the monitoring
instruction directs the remote computer system to transmit the
data automatically upon completion of execution of the pro
gram.

65. The apparatus of claim 63, wherein the remote com
puter system executes the program implementing a first com
puting platform, and the server collects the data implement
ing a second platform, the first and second platforms being
distinct.

66. The apparatus of claim 60, wherein the processor clas
sifies execution of the program as normal or abnormal.

67. The apparatus of claim 60, wherein the processor ana
lyzes the data.

68. The apparatus of claim 60, wherein the processor oper
ates an application programming interface.

69. The apparatus of claim 68, wherein the application
programming interface is platform independent.

Jun. 19, 2008

70. The apparatus of claim 60, wherein the processor
installs the monitoring instruction into source code of the
computer program.

71. The apparatus of claim 70, wherein the monitoring
instruction includes a plurality of calls into the Source code,
the calls controlling data collection during execution of the
computer program.

72. The apparatus of claim 60, wherein the processor gen
erates and stores a module map, the module map indicating
functions in each module in the computer program.

73. The apparatus of claim 72, wherein the monitoring
instruction directs the remote computer system to generate a
module name and relative virtual address list.

74. The apparatus of claim 73, wherein the collected data
includes the module name and relative virtual address list
from the remote computer system.

75. The apparatus of claim 74, wherein the processor gen
erates a symbolic call stack from the module map and module
name and relative virtual address list.

76. The apparatus of claim 75, wherein the processor
enables debugging of the computer program using the sym
bolic call stack.

