(19) (10 DE 697 21 381 T2 2004.01.15

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97)EP 0 811 931 B1 1) intc.”: GO6F 13/40

(21) Deutsches Aktenzeichen: 697 21 381.1
(96) Europaisches Aktenzeichen: 97 303 797.1
(96) Europaischer Anmeldetag: 04.06.1997
(97) Erstveroffentlichung durch das EPA: 10.12.1997
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 02.05.2003
(47) Veroffentlichungstag im Patentblatt: 15.01.2004

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
658602 05.06.1996 us DE, FR, GB, IT
(73) Patentinhaber: (72) Erfinder:
Compaq Computer Corp., Houston, Tex., US Culley, Paul R., Cypress, US; Goodrum, Alan L.,
Tomball, Texas 77375, US; Chow, Raymond Y. L.,
(74) Vertreter: Cypress, Texas 77429, US; Basile, Barry S,
Griinecker, Kinkeldey, Stockmair & Houston, Texas 77084, US
Schwanhausser, 80538 Miinchen

(54) Bezeichnung: Einsetzen und Entfernen einer Erweiterungskarte

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte européaische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebuihr entrichtet worden ist (Art. 99 (1) Européisches Patentlibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 697 21 381 T2 2004.01.15

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Einsetzen und Entfernen von Erweiterungskarten.

[0002] Computersysteme besitzen typischerweise Erweiterungskarten-Steckplatze bzw. -Schlitze zum Auf-
nehmen und elektrischen Verbinden von Erweiterungskarten mit einem Erweiterungsbus des Computersys-
tems. Der Erweiterungsbus kann einer von verschiedenen Typen sein, wie beispielsweise ein Industry Stan-
dard Architecture (ISA) Bus, ein Extended Industry Standard Architecture (EISA) Bus oder ein Peripheral Com-
ponent Interconnect (PCI) Bus.

[0003] Die EP-A-0 254 456 offenbart eine elektrische Schaltungsleiterplatte, die elektrisch mit einem Bus ver-
bunden ist, entfernbar von dem System und wieder einsetzbar in das System, ohne die Notwendigkeit, andere
Schaltungen, verbunden mit dem Bus, zu sperren.

[0004] IBM Technical Disclosure Bulletin Vol. 29 No. 7 offenbart eine Schaltung, um zu ermdglichen, dass
eine Datenkassette in ein Betriebsterminal eingesetzt oder davon entfernt werden kann, ohne die Operation
des Terminals zu unterbrechen.

[0005] GemaR der vorliegenden Erfindung wird ein Verfahren zur Verwendung in einem Computersystem ge-
schaffen, das eine zentrale Verarbeitungseinheit besitzt, wobei das Verfahren aufweist: Verwenden einer
Klemme, um selektiv ein Entfernen einer Schaltungskarte von einem Verbinder zu verhindern, wobei der Ver-
binder so konfiguriert ist, um die Schaltungskarte aufzunehmen und elektrisch die Schaltungskarte mit der zen-
tralen Verarbeitungseinheit zu verbinden; Uberwachen des Eingriffszustands der Klemme; und Zufiihren einer
Anzeige bzw. Indikation Gber den Eingriffszustand zu der zentralen Verarbeitungseinheit; und Zufiihren einer
Unterbrechungs-Anforderung zu der zentralen Verarbeitungseinheit, um anzuzeigen, wenn sich der Eingriffs-
zustand andert; und gekennzeichnet durch Trennen einer Taktleitung und von anderen Leitungen des Busses,
wobei die anderen Leitungen des Busses getrennt werden, bevor die Taktleitung getrennt wird und die Energie
weggenommen wird.

[0006] Vorzugsweise weist das Verfahren weiterhin ein Speichern des Eingriffszustands in einem Speicher,
auf den durch die zentrale Verarbeitungseinheit zugreifbar ist, auf.

[0007] Vorzugsweise weist das Verfahren weiterhin ein Uberwachen eines Energie-Zustand-Signals des Ver-
binders; und Zufiihren einer Indikation bzw. Anzeige Uber das Energie-Zustand-Signal zu der zentralen Verar-
beitungseinheit auf.

[0008] Vorzugsweise wird Energie zu dem Verbinder, wenn die Klemme in Eingriff ist, zugeflihrt, und Energie
wird von dem Verbinder weggenommen, wenn die Klemme nicht in Eingriff ist.

[0009] Vorzugsweise weist das Verfahren weiterhin ein Bestimmen auf, ob die zentrale Verarbeitungseinheit
den Verbinder freigegeben hat, um Energie aufzunehmen, und wobei der Schritt eines Zufiihrens Energie nur
dann zufuhrt, wenn die zentrale Verarbeitungseinheit den Verbinder freigegeben hat, um Energie aufzuneh-
men.

[0010] Vorzugsweise umfasst ein Verbinden der zentralen Verarbeitungseinheit ein elektrisches Verbinden ei-
nes Busses mit dem Verbinder, wenn die Klemme in Eingriff ist; und ein elektrisches Isolieren der zentralen
Verarbeitungseinheit umfasst ein elektrisches Isolieren des Busses gegen den Verbinder, wenn die Klemme
nicht in Eingriff ist.

[0011] Vorzugsweise umfasst ein elektrisches Verbinden ein Verbinden einer Taktleitung und von anderen
Leitungen des Busses, wobei die anderen Leitungen des Busses verbunden werden, nachdem die Energie zu-
geflhrt ist und die Taktleitung verbunden ist.

[0012] Vorzugsweise besitzt das Computersystem einen Schalter, betatigt durch die Klemme, was eine An-
zeige der Position des Schalters liefert, und wobei das Verfahren vorzugsweise weiterhin aufweist: Aktualisie-
ren des Eingriffszustands bzw. -status , wenn die Anzeige dieselbe Position fir eine vorbestimmte Dauer an-
zeigt.

[0013] Weiterhin wird gemaR der vorliegenden Erfindung ein System geschaffen, das aufweist: eine zentrale
Verarbeitungseinheit; einen Verbinder zum Aufnehmen einer Schaltungskarte, wobei der Verbinder eine Mehr-
zahl von externen Verbindungen besitzt; eine Klemme, konfiguriert so, um selektiv ein Entfernen der Schal-
tungskarte von dem Verbinder, wenn die Klemme in Eingriff ist, zu verhindern; und eine Schaltung, verbunden
so, um den Eingriffsstatus der Klemme zu tUberwachen, und um eine Zufuhr von Energie zu dem Verbinder
basierend auf dem Eingriffsstatus der Klemme zu regulieren; und dadurch gekennzeichnet, dass die Schaltung
zum Isolieren des Busses Einrichtungen zum Trennen einer Taktleitung und von anderen Leitungen des Bus-
ses umfasst, wobei die anderen Leitungen des Busses getrennt werden, bevor die Taktleitung getrennt ist und
die Energie entfernt ist.

[0014] Die Schaltung umfasst vorzugsweise: einen Schalter, betatigt durch die Klemme, was eine Anzeige
Uber die Position des Schalters liefert; und eine Schaltung, verbunden so, um den Eingriffsstatus zu aktualisie-
ren, wenn die Anzeige dieselbe Position fur eine vorbestimmte Dauer anzeigt.

[0015] Die Schaltung kann vorzugsweise so konfiguriert sein, um eine Unterbrechungsanforderung zu der
zentralen Verarbeitungseinheit zuzufiihren, um anzuzeigen, wenn sich der Eingriffszustand andert. Sie kann

2/215

DE 697 21 381 T2 2004.01.15

auch einen Puffer umfassen, zugreifbar durch die zentrale Verarbeitungseinheit, verbunden so, um die Anzeige
Uber den Eingriffszustand zu speichern.

[0016] Vorzugsweise lberwacht die Schaltung ein Energie-Status-Signal bzw. -Zustands-Signal des Verbin-
ders und liefert eine Anzeige des Energie-Status-Signals zu der zentralen Verarbeitungseinheit.

[0017] Weiterhin weist das Computersystem eine Schaltung auf, die auf die Schaltung anspricht, verbunden
so, um den Eingriffszustand der Klemme zu tuberwachen, verbunden so, um Energie zu dem Verbinder zuzu-
fuhren, wenn die Klemme in Eingriff ist, und so, um Energie von dem Verbinder wegzunehmen, wenn die Klem-
me nicht in Eingriff ist.

[0018] Die zentrale Verarbeitungseinheit kann selektiv den Verbinder freigeben, um Energie aufzunehmen,
und wobei das Computersystem weiterhin aufweisen kann: einen Puffer, verbunden so, um anzuzeigen, wenn
die zentrale Verarbeitungseinheit den Verbinder freigegeben hat, um Energie aufzunehmen, und wobei die
Schaltung, verbunden so, um nur Energie zuzufiihren, Energie dann zufiihrt, wenn die zentrale Verarbeitungs-
einheit den Verbinder freigegeben hat, um Energie aufzunehmen.

[0019] Das Computersystem kann weiterhin einen Bus, vorzugsweise einen PCI-Bus, und eine Schaltung, die
auf die Schaltung zum Uberwachen anspricht, zum Verbinden des Busses mit dem Verbinder, wenn die Klem-
me in Eingriff ist, und zum elektrischen Isolieren des Busses gegen den Verbinder, wenn die Klemme nicht in
Eingriff ist, aufweisen.

[0020] Die zentrale Verarbeitungseinheit kann selektiv den Bus freigeben, um mit dem Verbinder verbunden
zu werden, und das Computersystem kann weiterhin aufweisen: einen Puffer, verbunden so, um anzuzeigen,
wenn die zentrale Verarbeitungseinheit den Bus freigegeben hat, um mit dem Verbinder verbunden zu werden,
und wobei die Schaltung, verbunden so, um nur Energie zuzufihren, den Bus mit dem Verbinder dann verbin-
det, wenn die zentrale Verarbeitungseinheit den Verbinder freigegeben hat, um mit dem Bus verbunden zu wer-
den.

[0021] Vorzugsweise umfasst die Schaltung zum elektrischen Verbinden des Busses mit dem Verbinder eine
Einrichtung zum Verbinden einer Taktleitung und von anderen Leitungen des Busses, wobei die anderen Lei-
tungen des Busses verbunden werden, nachdem die Energie zugefiihrt ist und die Taktleitung verbunden ist.
[0022] Unter den Vorteilen der Erfindung ist einer oder sind mehrere der Folgenden umfasst. Wenn die Er-
weiterungskarte verbunden ist, werden Operationen auf der Erweiterungskarte stabilisiert und erreichen Be-
reitschaftsbedingungen, bevor externe Bussignale zu der Erweiterungskarte zugefiihrt werden. Wenn herun-
tergefahren bzw. getrennt wird, werden Operationen auf der Erweiterungskarte in einer geordneten Art und
Weise gehalten, bevor die Erweiterungskarte von dem Schlitz entfernt wird, was das Auftreten von nicht er-
wiinschten Signalen auf dem Bus minimiert.

[0023] Andere Vorteile und Merkmale werden aus der nachfolgenden Beschreibung und aus den Zeichnun-
gen ersichtlich werden, in denen:

[0024] Fig. 1 zeigt ein Blockdiagramm eines Computersystems.

[0025] Fig. 2 zeigt ein Blockdiagramm eines Erweiterungskastens des Computersystems der Fig. 1.

[0026] Fig. 3 zeigt ein Blockdiagramm der Briicken-Chips in dem Computersystem.

[0027] Fig. 4 zeigt ein Blockdiagramm eines Warteschlangen-Blocks in jedem der Briicken-Chips.

[0028] Fig. 5 zeigt ein Blockdiagramm des Takt-Routing-Schemas in den Briicken-Chips.

[0029] Fig. 6 zeigt ein Blockdiagramm eines Taktgenerators in jedem der Briicken-Chips.

[0030] Fig. 7 zeigt ein Blockdiagramm einer Master-Kabel-Schnittstelle in jedem der Briicken-Chips zum
Ubertragen von Daten (iber ein Kabel, das die Briicken-Chips verbindet.

[0031] Fig. 8 zeigt ein Zeitabstimmungsdiagramm von Signalen in der Master-Kabel-Schnittstelle.

[0032] Fig. 9 zeigt ein Blockdiagramm einer Slave-Kabel-Schnittstelle in jedem der Briicken-Chips zum Auf-
nehmen von Daten, Gbertragen Uber das Kabel.

[0033] Fig. 10 zeigt ein Blockdiagramm von Logik-Erzeugungs-Eingangs- und Ausgangs-Hinweiszeigern fur
die empfangene Logik in der Slave-Kabel-Schnittstelle.

[0034] Fig. 11 zeigt ein Zeitabstimmungsdiagramm von Signalen in der Slave-Kabel-Schnittstelle.

[0035] Fig. 12 zeigt ein Zeitabstimmungsdiagramm der Eingangs- und Ausgangs-Hinweiszeiger und deren
Beziehung zu den aufgenommenen Kabeldaten.

[0036] Fig. 13 zeigt ein Blockdiagramm der Plazierung von Flip-Flop's und Eingangs- und Ausgangsan-
schluBflachen in jedem der Bricken-Chips.

[0037] Fig. 14 zeigt eine Tabelle der Informationen, gefihrt durch das Kabel.

[0038] Fig. 15A zeigt eine Tabelle, die den Typ von Informationen darstellt, gefiihrt durch die Kabelsignale,
die Einzel-Adressenzyklus-Transaktionen zugeordnet sind.

[0039] Fig. 15B zeigt eine Tabelle, die den Typ von Informationen darstellt, geflihrt durch die Kabelsignale,
zugeordnet zu Dual-Adressen-Zyklus-Transaktionen.

[0040] Fig. 16 zeigt eine Tabelle von Parametern, zugeordnet zu dem Kabel.

[0041] Fig. 17 zeigt ein Logikdiagramm einer Fehlererfassungs- und Korrekturschaltung.

[0042] Fig. 18 zeigt eine Paritat-Prif-Matrix zum Erzeugen von Priif-Bits in der Fehlererfassungs- und Kor-

3/215

DE 697 21 381 T2 2004.01.15

rekturschaltung.

[0043] Fig. 19 zeigt eine Syndrom-Tabelle zum Erzeugen von Fix-Bits in der Fehlererfassungs- und Korrek-
turschaltung.

[0044] Fig. 20A zeigt ein Zustand-Diagramm, das ein Round-Robin Arbitrierungs-Schema darstellit.

[0045] Fig. 20B zeigt ein Zustandsdiagramm, dass ein Zwei-Niveau-Entscheidungs-Schema darstellt.
[0046] Fig. 21 zeigt ein logisches Diagramm einer Entscheidungseinrichtung in jedem der Briicken-Chips.
[0047] Fig. 22 zeigt ein Zustandsdiagramm einer Erteilungs-Zustand-Maschine in einer Entscheidungsein-
richtung.

[0048] Fig. 23 zeigt ein Zustandsdiagramm eines Level eins einer Entscheidungs-Zustand-Maschine in der
Entscheidungseinrichtung.

[0049] Fig. 24 zeigt eine Tabelle, die eine Erzeugung von neuen Erteilungs-Signalen basierend auf dem mo-
mentanen Master darstellt.

[0050] Fig. 25 zeigt ein Blockdiagramm einer Logik zum Erzeugen von Masken-Bits und Master-Indikati-
ons-Bits mit Multi-Threading-Fahigkeit.

[0051] Fig. 26A zeigt ein logisches Diagramm von Schaltungen zum Erzeugen der maskierten Bits.

[0052] Fig. 26B zeigt ein Blockdiagramm eines Computersystems mit Mehrfach-Schichten von Bussen.
[0053] Fig. 27A zeigt eine Seitenansicht einer Erweiterungskarte, eingesetzt in einen Schlitz.

[0054] Fig. 27B-C zeigen schematische Diagramme einer Hebel-Schaltung.

[0055] Fig. 28-31 zeigen schematische Diagramme einer Schaltung des Erweiterungskastens.

[0056] Fig. 32A zeigt ein Zustandsdiagramm von der Schaltung des Erweiterungskastens.

[0057] Fig. 32B zeigt Wellenformen fiir die Schaltung des Erweiterungskastens.

[0058] Fig. 33A zeigt ein schematisches Diagramm einer Schaltung des Erweiterungskastens.

[0059] Fig. 33B zeigt Wellenformen fiir die Schaltung des Erweiterungskastens.

[0060] Fig. 33C—H zeigen ein Zustandsdiagramm von der Schaltung des Erweiterungskastens.

[0061] Fig. 34 zeigt ein schematisches Diagramm einer Schaltung des Erweiterungskastens.

[0062] Fig. 35A zeigt ein Zustandsdiagramm von der Schaltung des Erweiterungskastens.

[0063] Fig. 35B zeigt Wellenformen von der Schaltung des Erweiterungskastens.

[0064] Fig. 36 zeigt ein schematisches Diagramm einer Schaltung des Erweiterungskastens.

[0065] Fig. 37 zeigt ein FluRdiagramm eines nicht-maskierbaren Unterbrecher-Handler's, aufgerufen in Ab-
hangigkeit einer Erfassung eines Bus-Hangend-Zustands in dem Computer-System.

[0066] Fig. 38 zeigt ein FluR-Diagramm eine BIOS-Programms, das durch ein Computersystem-Durch-
sichts-Ereignis aufgerufen wird.

[0067] Fig. 39 zeigt ein FluR-Diagramm eines BlIOS-Isolier-Programms, aufgerufen auf einen Bus-Han-
gend-Zustand oder das Computer-Durchsichts-Ereignis hin.

[0068] Fig. 40 zeigt ein Blockdiagramm eines Bus-Watcher's in jedem der Briicken-Chips.

[0069] Fig. 41 zeigt ein Zustandsdiagramm einer Logik in dem Bus-Watcher zum Zurickfihren des Busses
zu einem Leerlaufzustand.

[0070] Fig. 42 zeigt ein logisches Diagramm von Status-Signalen in dem Bus-Watcher. Fig. 43 zeigt ein logi-
sches Diagramm von Bus-Historie-FIFOs und Bus-Zustand-Vektor-FIFOs in der Fehler-Isolations-Schaltung.
[0071] Fig. 44 zeigt ein logisches Diagramm einer Schaltung zum Erzeugen von Bereitschafts-Signalen zum
Anzeigen, wenn die Bus-Historie- und Zustand-Vektor-Informationen verfugbar sind.

[0072] Fig. 45 zeigt ein FluRdiagramm eines Programms zum Zuordnen einer Bus-Zahl zu einem eingeschal-
teten oder leeren Schlitz.

[0073] Fig. 46 zeigt ein Flukdiagramm eines Programms zum Zuordnen von Speicherraum fiir das Compu-
tersystem.

[0074] Fig. 47 zeigt ein FluRdiagramm eines Programms zum Zuordnen eines 1/0-Raums fiir das Computer-
system.

[0075] Fig. 48 zeigt ein Fluidiagramm eines Programms zum Handhaben einer neu eingeschalteten Karte.
[0076] Fig. 49 zeigt ein Blockdiagramm eines Konfigurationsraums fiir eine PCI-Briickenschaltung.

[0077] Fig. 50A zeigt ein Blockdiagramm eines Computersystems.

[0078] Fig. 50B zeigt einen Bus-Zahl-Zuordnungs-Baum.

[0079] Fig. 51 zeigt ein Blockdiagramm, das Konfigurations-Transaktionen vom Typ 0 und Typ 1 darstellt.
[0080] Fig. 52 zeigt eine Tabelle, die eine Auflistung einer Adresse von einem primaren Bus zu einem sekun-
daren Bus aufweist.

[0081] Fig. 53A und 53B zeigen ein logisches Diagramm einer Schaltung zum Handhaben von Konfigurati-
ons-Zyklen vom Typ 0 und Typ 1.

[0082] Fig. 54A zeigt ein Blockdiagramm einer Schaltung zum Speichern von Informationen, um eine Berech-
nung von Bus-Funktions-Parametern zu ermdglichen.

[0083] Fig. 54B zeigt ein Blockdiagramm von Vorabruf-Zahlern.

[0084] Fig. 55 zeigt ein Blockdiagramm eines Computersystems.

4/215

DE 697 21 381 T2 2004.01.15

[0085] Fig. 56 zeigt ein Blockdiagramm eines PCI-Entscheidungs-Schemas.

[0086] Fig. 57 zeigt ein schematisches Diagramm eines Puffer-Entleerungs-Logik-Blocks.

[0087] Fig. 58 zeigt ein schematisches Diagramm eines Kabel-Decodierers.

[0088] Fig. 59-62 zeigen schematische Diagramme einer geposteten Speicher-Schreib-Warteschlange, um-
fassend eine Steuerlogik.

[0089] Fig. 63-65 zeigen schematische Diagramme einer verzégerten Anforderungs-Warteschlange, umfas-
send eine Steuerlogik.

[0090] Fig. 66-69b zeigen schematische Diagramme einer verzdgerten Abschluss-Warteschlange, umfas-
send eine Steuerlogik.

[0091] Fig. 70-74 zeigen schematische Diagramme und eine Tabelle einer Master-Zyklus-Entscheidungsein-
richtung.

[0092] Fig.75-87 zeigen schematische und Zustand-Ubergangs-Diagramme einer Warteschlan-
ge-Block-zu-PCl-Bus-Schnittstelle.

[0093] Fig. 88 zeigt ein schematisches Blockdiagramm, das Bus-Vorrichtungen darstellt, verbunden mit ei-
nem Expansions-Bus.

[0094] Fig. 89 zeigt ein schematisches Blockdiagramm, dass eine Schaltung darstellt, um Unterbre-
chungs-Anforderungen weiterzufiihren.

[0095] Fig. 90 zeigt ein schematisches Diagramm einer Vorrichtungs-Auswahl-Logik.

[0096] Fig. 91-94 zeigen schematische Blockdiagramme von Registern.

[0097] Fig. 95 zeigt eine grafische Darstellung, die Wellenformen fiir das Computersystem darstellt.

[0098] Fig. 96 zeigt ein schematisches Diagramm der im Multiplex-Betrieb arbeitenden Schaltung.

[0099] Fig. 97A-D zeigen schematische Diagramme des Unterbrechungs-Aufnahme-Blocks.

[0100] Fig. 98 zeigt ein schematisches Diagramm des Unterbrechungs-Ausgabe-Blocks.

[0101] Fig. 99 zeigt ein Diagramm, das die Zeitmultiplexverarbeitung von Unterbrechungs-Anforderungs-Si-
gnalen darstellt.

[0102] Fig. 100 zeigt ein Diagramm, das eine Unterbrechungs-Anforderungs-Auflistung darstellt.

[0103] Figur 101 zeigt ein schematisches Blockdiagramm, dass Bus-Vorrichtungen darstellt, verbunden mit
einem Erweiterungsbus.

UBERSICHT

[0104] In der folgenden Beschreibung geben alle Signal-Mnemoniken, gefolgt durch ein ,#", ,_" oder ,!", oder
diesen vorausgehend, invertierte, logische Zustande an.

[0105] Wie in Fig. 1 dargestellt ist, umfasst ein Computersystem 10 einen primaren PCI-Bus 24, der mit ei-
nem Brucken-Chip 26a und einem Briicken-Chip 26b verbunden ist, wobei beide davon von einem gemeinsa-
men Design 26 sind. Der Bricken-Chip 26a ist mit einem Bruicken-Chip 48a Uber ein Kabel 31 verbunden und
der Briicken-Chip 26b ist mit dem Briicken-Chip 48b Uber ein Kabel 28 verbunden. Die Briicken-Chips 48a und
48b sind von einem gemeinsamen Design 48, was gemeinsam zu dem Design 26 ist, mit der Ausnahme, das
das Design 26 ein eingangsseitiger Mode ist und das Design 48 ein ausgangsseitiger Mode ist.

[0106] Der PCI-Bus 24 ist mit einem lokalen Bus 22 iber eine System-Steuereinheit/Host-Bricken-Schaltung
28 schnittstellenmaRig verbunden. Die Systemsteuereinheit/Host-Briicken-Schaltung 18 steuert auch einen
Zugriff zu einem Systemspeicher 20, der auch mit dem lokalen Bus 22 zusammen mit der CPU 14 und einem
Level-2-(L2)-Cachespeicher 16 verbunden ist.

[0107] Eine PCI Extended Industry Standard Architecture (EISA) Briicke 15 verbindet schnittstellenmafig
den PCI-Bus 24 mit einem ISA-Bus 17. Sowohl eine Tastenfeld-Steuereinheit 21 als auch ein Read Only Me-
mory (ROM) 23 sind mit dem ISA-Bus 17 verbunden. Ein nicht-flichtiger Random Access Speicher (NVRAM)
70, verbunden mit dem ISA-Bus 17, speichert Informationen, die das Computersystem Ubernehmen sollte,
wenn es abgeschaltet wird. Ein automatischer Server-Zuriickgewinnungs-Zeitgeber 72 iberwacht das Com-
putersystem hinsichtlich einer Inaktivitat. Falls sich das System verriegelt, wird der ASR-Zeitgeber 72 nach un-
gefahr 10 Minuten ablaufen. Ein Tastenfeld 19 wird durch die Tastenfeld-Steuereinheit 21 hinsichtlich einer Er-
fassung von niedergedriickten Tasten Uberwacht.

[0108] Wie Fig. 2 zeigt, bildet der Briicken-Chip 48a eine Schnittstelle zu einem PCI-Bus 32a und der Bri-
cken-Chip 48b bildet eine Schnittstelle zu einem PCI-Bus 32b. Die PCI-Busse 32a und 32b sind an zwei Ex-
pansionskasten 30a und 30b, mit einem gemeinsamen Design 30, angeordnet, und jeder Expansionskasten
30 besitzt sechs Hot-Plug-Schlitze bzw. Steckplatze 36 (36a—f), die dazu geeignet sind, herkdmmliche Erwei-
terungskarten 807 aufzunehmen (Fig. 27A). Ein Schlitz 34 an dem Expansionskasten nimmt eine Karte 46 auf,
die den Briicken-Chip 26 besitzt. Jeder Hot-Plug-Schlitz 36 besitzt zugeordnet eine Umschalt-Schaltung 41
zum Verbinden und Trennen des Schlitzes 36 mit und von dem PCI-Bus 32. Sechs mechanische Hebel 802
werden dazu verwendet, selektiv die Karten 807 an entsprechenden Schlitzen zu sichern (wenn sie geschlos-
sen oder verriegelt sind), wie weiterhin in der US-Patentanmeldung Serial-Nr. 08/658385, mit dem Titel ,Secu-

5/215

DE 697 21 381 T2 2004.01.15

ring a Card in an Electronic Device", angemeldet an demselben Datum wie diese Anmeldung und hier unter
Bezugnahme darauf eingeschlossen, beschrieben ist. Jeder Erweiterungskasten 30 umfasst Register 52 und
82 zum Uberwachen der Hebel 802 und von Status-Signalen des Erweiterungskastens 30 und ein Register 80
zum Kontrollieren einer Verbindung und einer Trennung von Schlitzen 36 und von dem PCI-Bus 32.

[0109] Wie Fig. 3 zeigt, ist der Briicken-Chip so ausgelegt, um in Paaren 26 und 48 verwendet zu werden,
um eine PCI-PCI-Bricke zwischen dem primaren PCI-Bus 24 und dem sekundaren PCI-Bus 32 zu bilden. Das
Programmiermodel ist dasjenige von zwei hierarchischen Briicken. Zu der Systemsoftware hin erscheint das
Kabel 28 als ein PCI-Bus, der exakt eine Vorrichtung enthalt, und zwar den ausgangsseitigen Bricken-Chip
48. Dies vereinfacht stark die Konfiguration der 2-Chip-PCI-PCI-Brlicke, die den primaren und sekundaren Bus
miteinander verbindet. Der Briicken-Chip 26, der ndher zu der CPU 14 hin liegt, verbindet den primaren
PCI-Bus 24 mit dem Kabel 28. Die zweite PCI-PCI-Briicke 48 istin dem Erweiterungskasten 30 vorhanden und
verbindet das Kabel 28 mit dem sekundaren Bus 32. Ein Mode-Stift-Upstream-Chip bestimmt, ob der Bri-
cken-Chip in dem ausgangsseitigen Mode oder dem eingangsseitigen Mode arbeitet. Einige Nicht-Bri-
cken-Funktionen, wie beispielsweise ein Bus-Monitor 106 und eine Hot-Plug-Logik in einem SIO 50, werden
nur in dem Erweiterungskasten 30 verwendet und sind nicht in dem einlaufseitigen Mode-Chip 26 funktional.
[0110] Ein Taktgenerator 102 in dem Briicken-Chip 26 erzeugt Takte basierend auf dem Takt PCI CLK1 auf
dem primaren PCI-Bus 24, wobei einer der erzeugten Takte Uber das Kabel 28 zu einem Taktgenerator 122 in
dem ausgangsseitigen Briicken-Chip 48 vorgesehen wird. Der Taktgenerator 122 erzeugt die PCI-Takte in dem
Erweiterungskasten 30 bei derselben Frequenz des primaren PCl-Busses 24 und steuert ihn an, was dazu
fuhrt, dass beide Briicken-Chips 26 und 48 unter derselben Frequenz laufen. Der ausgangsseitige Bri-
cken-Chip 48 lauft dem eingangsseitigen Briicken-Chip 24 in der Phase mit der Verzégerung des Kabels 28
hinterher. Eine asymetrische Grenze in dem eingangseitigen Briicken-Chip 26 an dem Punkt, wo Daten von
dem Kabel 28 abgegriffen werden, ermdglicht, dass sich die Phasenverzégerung bei irgendeinem Wert befin-
det (und deshalb soll das Kabel von irgendeiner Lange sein), wobei das einzige Erfordernis dasjenige ist, dass
die Frequenz der zwei Bricken-Chips dieselbe ist.

[0111] Die Kern-Logik jedes Briicken-Chips ist der Briicken-Logik-Block (100 oder 120), der einen PCl-Mas-
ter (101 oder 123) zum Arbeiten als ein Master auf dem jeweiligen PCI-Bus, ein PCI-Target oder eine -Slave
(103 oder 121) zum Arbeiten als eine Slave-Vorrichtung auf dem jeweiligen PCI-Bus, Konfigurations-Register
(105 oder 125), die die Konfigurations-Informationen des entsprechenden Briicken-Chips enthalten, und einen
Warteschlangen-Block (107 oder 127), der verschiedene Warteschlangen enthalt, in denen Daten, zugeordnet
zu Transaktionen zwischen dem primaren PCI-Bus und dem sekundaren PCI-Bus 32, in die Warteschlange
gestellt und gemanagt werden, aufweist. Die Daten, Gibertragen zwischen dem eingangsseitigen Briicken-Chip
26 und dem ausgangsseitigen Briicken-Chip 48, werden durch Kabelschnittstellen 104 und 130 in den Bri-
cken-Chips 26 und 48 jeweils gepuffert.

[0112] Eine Unterbrechungs-Programm-Logik ist auch in jedem Briicken-Chip enthalten. Dabei sind 8 Unter-
brechungen, 6 von den Sekundar-Bus-Schlitzen, 1 von einer SIO-Schaltung 50 und 1 von dem ausgangssei-
tigen Briicken-Chip 48, vorhanden. In dem ausgangsseitigen Chip 48 werden die Unterbrechungen durch ei-
nen Unterbrechungs-Aufnahme-Block 132 aufgenommen und entlang des Kabels 28 als eine serielle Daten-
folge in sequenziellen Zeit-Stiicken geschickt. In dem ausgangsseitigen Briicken-Chip 26 werden die Unter-
brechungen durch einen Unterbrechungs-Ausgangs-Block 114 empfangen, der die Unterbrechungen zu einer
Unterbrechungs-Steuereinheit weiterleitet.

[0113] Die SIO-Schaltung 50 liefert Steuersignale zum Beleuchten von LED's, zum Steuern eines Reset und
fur ein selektives Verbinden der Schlitze 36 mit dem Bus 32. Sie umfasst auch eine Logik zum Lesen des Ein-
griffs-Status der Hebel 802 und des Status-Zustands der Karten 807 in jedem Schlitz 36.

[0114] Die Bricken-Schaltung 26 umfasst einen Support fiir Unterbrechungen in dem Erweiterungskasten 30,
und, wenn sie in dem Host-System mit der anwendereigenen Schnittstelle zu einer Mehrfachkanal-Unterbre-
chungs-Steuereinheit installiert ist, schickt sie die Status-Zustande jeder Unterbrechung in einer seriellen Da-
tenfolge. Die Brickenschaltung 26 kann auch so konfiguriert sein, um standardmafRige PCI-INTA, INTB, INTC
und INTD Signale anzusteuern, falls sie in einem Standard-Schlitz in dem Host-System installiert ist.

[0115] Jeder Bricken-Chip umfasst auch einen PCI-Arbitrierer (116 oder 124) zum Steuern eines Zugriffs auf
bis zu sieben Bus-Master. Da die eingangsseitige Brucke 26 in einem Schlitz installiert ist, wird der PCI-Arbit-
rierer 116 in dem eingangsseitigen Briicken-Chip 26 gesperrt. Jeder Briicken-Chip umfasst auch eine I’C-Steu-
ereinheit (108 oder 126) fiir eine Kommunikation mit Vorrichtungen, wie beispielsweise EEPROMSs, Tempera-
tursensoren, usw., einen JTAG-Master (110 oder 128) zum Durchfiihren von Test-Zyklen, einen Bus-Monitor
(106 oder 127) zum Messen einer Bus-Benutzung und einer Effektivitat und der Effektivitat des Vorabruf-Algo-
rithmus des Briicken-Chips, und einen Bus-Beobachter (Bus-Watcher) (119 oder 129) zum Speichern einer
Bus-Historie und von Status-Vektor-Informationen und zum Informieren der CPU 14 uber einen Bus-Han-
gend-Zustand. Bestimmte Blécke werden in jedem Bricken-Chip gesperrt, wenn sie nicht verwendet werden.
In dem eingangsseitigen Bricken-Chip 26 werden Bus-Watcher 119, der SIO 118, der PCl-Arbitrierer 116 und
der Bus-Monitor 106 gesperrt. Zusatzlich werden der die Unterbrechung aufnehmende Block 112 in dem ein-

6/215

DE 697 21 381 T2 2004.01.15

gangsseitigen Chip 126 und der Unterbrechungs-Ausgangs-Block 134 in dem ausgangsseitigen Chip 48 ge-
sperrt.

UBERSICHT DES WARTESCHLANGEN-BLOCKS

[0116] Wie Fig. 4 zeigt, managen die Warteschlangen-Blécke 107 und 127 Transaktionen, die zwischen dem
primaren PCI-Bus 24 (in dem eingangsseitigen Chip) oder dem sekundaren PCI-Bus 32 (in dem ausgangssei-
tigen Chip) und der Kabel-Schnittstelle 130 flieRen.

[0117] (Von hier an wird auf den ausgangsseitigen Bricken-Chip unter der Annahme Bezug genommen, dass
der eingangsseitige Chip identisch arbeitet, ohne dass dies ansonsten angegeben ist). Der Warteschlan-
gen-Block 127 umfasst einen Kabel-Decodierer 146, der von der Kabel-Schnittstelle 130 Transaktionen auf-
nimmt, die auf dem sekundaren PCI-Bus 32 abgeschlossen werden. Nach einem Decodieren einer Transakti-
on platziert der Decodierer 146 die Transaktionen, zusammen mit allen Informationen, umfasst in der Trans-
aktion, in eine von drei Warteschlangen 140, 142 und 144. Jede Warteschlange enthalt verschiedene Trans-
aktions-Puffer, wobei jeder davon eine einzelne Transaktion speichert, und ist deshalb in der Lage, verschie-
dene Transaktionen simultan zu handhaben.

[0118] Die erste Warteschlange, eine gepostete Speicher-Schreib-Warteschlange (PMBQ) 140, speichert ge-
postete Speicher-Schreib-Zyklen, ausgegeben durch die CPU, auf dem primaren Bus zusammen mit allen In-
formationen, die erforderlich sind, um jeden Zyklus auf dem sekundaren Bus 32 auszufiihren. Die PMWQ 140
besitzt vier Transaktions-Puffer, wobei jeder davon eine gepostete Speicher-Schreib-Transaktion halt, die bis
zu 8 Cache-Linien (256 Bytes) an Daten enthalt. Unter bestimmten Umstanden kann eine gepostete Spei-
cher-Schreib-Transaktion, die mehr als acht Cache-Linien bzw. -Zeilen an Daten besitzt, in einen oder mehrere
darauffolgende Puffer Uberlaufen, wie dies nachfolgend beschrieben ist.

[0119] Die zweite Warteschlange, eine verzdogerte Anforderungs-Warteschlange (Delayed Request Queue —
142), speichert verzogerte Anforderungs-Transaktionen (d. h. verzogerte Lese-Anforderungen (Delayed Read
Requests — DRR), wie beispielsweise ein Speicher-Lesen (Memory Read — MR), eine Speicher-Lese-Linie
(Memory Read Line — MRL), und Speicher-Lese-Mehrfach-(Memory Read Multiple — MRM)-Anforderungen;
und in dem ausgangsseitigen Chip, Eingangs/Ausgangs-(I/O)-Lese-Schreib-Vorgange und Konfigurationen
(config — Lese/Schreib-Vorgange), ausgegeben durch die CPU auf dem primaren Bus, zusammen mit allen In-
formationen, erforderlich dazu, jede Transaktion auf dem sekundaren Bus 32 auszufihren. Die DRQ 142 be-
sitzt drei Transaktions-Puffer, wobei jeder davon in der Lage ist, ein Doppelwort, oder ,dword", an Daten fur
verzogerte Schreibvorgange zu halten.

[0120] Die dritte Warteschlange, eine verzogerte Abschluss-Warteschlange (Delayed Completion Queue
(DCQ) 144, speichert verzogerte Abschluss-Informationen, geliefert durch den eingangsseitigen Chip, in Ab-
hangigkeit von verzégerten Anforderungs-Transaktionen, erzeugt auf dem sekundaren Bus 32. Fur eine ver-
zogerte Lese-Anforderung enthalten die entsprechenden Abschluss-Informationen die Lese-Daten, angefor-
dert durch die initiierende Vorrichtung, und den Lese-Status (d. h. eine Indikation darlber, ob ein Paritats-Feh-
ler auf dem Target-Abort aufgetreten ist). Die verzégerten Abschluss-Informationen, zuriickgefiihrt fir eine ver-
zogerte Schreib-Transaktion, sind dieselben wie diejenigen, zurlickgefiihrt fir eine verzégerte Lese-Anforde-
rung, mit der Ausnahme, dass keine Daten fir verzdogerte Schreibvorgange zurtickgefihrt sind. Da 1/O- und
config-Lese-Schreibvorgange nur auf dem ausgangsseitigen Bus auftreten, wird nur die eingangsseitige DCQ
verzogerte Abschluss-Informationen entsprechend zu einer von diesen Transaktionen enthalten. Die DCQ 144
besitzt acht Abschluss-Puffer, wobei jeder davon bis zu acht Cache-Linien bzw. Zeilen an Abschluss-Informa-
tionen fur eine einzelne, verzégerte Anforderung halten kann. Zuséatzlich zu den Abschluss-Informationen ent-
halt jeder Abschluss-Puffer auch eine Kopie der verzégerten Anforderung, die die Informationen erzeugte. Fir
verzogerte Lese-Transaktionen kann eine Daten-,Folge" zwischen dem primaren Bus 24 und dem sekundaren
Bus 32 eingerichtet werden, wenn die anfordernde Vorrichtung damit beginnt, die angeforderten Daten aufzu-
suchen, bevor die Target-Vorrichtung damit stoppt, sie zu der DCQ 144 zu liefern. Unter bestimmten Umstan-
den wird die DCQ 144 automatisch zusatzliche Daten erneut aufsuchen, oder ,vorababrufen" (,prefetch"),
wenn eine anfordernde Vorrichtung alle die angeforderten Daten von dem entsprechenden Puffer in der DCQ
144 aufsucht. Sowohl ein Streaming als auch ein automatisches Vorababrufen (prefetching) werden in weite-
rem Detail nachfolgend diskutiert.

[0121] Eine Warteschlangen-zu-PCI-Schnittstelle (Queue-to-PClI Interface — QPIF) 148 verwaltet Transaktio-
nen, die von den Warteschlangen 140, 142 und 144 zu dem PCI-Bus 32 und von dem PCI-Bus 32 zu der DCQ
144 und zu dem eingangsseitigen Chip Uber die Kabel-Schnittstelle 130 flieRen. Die QPIF 148 tritt in einen
.Master" Mode ein, um gepostete Speicher-Schreib- und verzégerte Anforderungs-Transaktionen von der
PMWQ 140 und der DRQ 142 auf dem sekundaren Bus laufen zu lassen. Fir sowohl gepostete Spei-
cher-Schreib- als auch verzégerte Lese-Transaktionen kann die QPIF 148 eine Transaktion ,unterstitzen", die
weniger als eine Cache-Zeile an Daten einsetzt (d. h. eine Speicher-Schreib-(Memory Write — MW) oder eine
Speicher-Lese-(Memory Read — MR) Transaktion), gegenlber einersolchen, die eine oder mehrere Cache-Zei-

7/215

DE 697 21 381 T2 2004.01.15

len (d. h. eine Speicher-Schreib- und Unguiltigkeits-(MWI)-Transaktion oder eine Speicher-Lese-Zeile (MRL)
oder eine Speicher-Lese-Mehrfach-(MRM) Transaktion erfordert, falls bestimmte Zustande erfillt werden. Die
QPIF 148 kann auch eine Lese-Transaktion, die eine Einzel-Cache-Zeile von Daten einsetzt (d. h. eine MRL
Transaktion), in eine von mehreren Cache-Zeilen an Daten (d. h. eine MRM-Transaktion) umwandeln. Die
QPIF 148 kann auch eine MRL- oder MRM-Transaktion ,korrigieren", die in der Mitte einer Cache-Zeile be-
ginnt, und zwar durch Lesen der gesamten Cache-Zeile und dann aussondern des nicht angeforderten Teils
der Daten. Eine Transaktion-Unterstiitzung und eine Lese-Korrektur, wobei beide davon in weiterem Detail
nachfolgend beschrieben sind, verbessern eine Systemeffektivitat durch Verringern der Zeit, die dazu erforder-
lich ist, Daten von einer Speichervorrichtung aufzusuchen.

[0122] Die QPIF 148 gibt einen ,Slave" Code ein, um Daten von der DCQ 144 zu einer anfordernden PCI-Vor-
richtung zu liefern oder Transaktionen von dem PCI-Bus 32 zu der DCQ 144 und zu dem eingangsseitigen Chip
Uber das Kabel zu schicken. Wenn die QPIF 148 eine gepostete Schreib-Transaktion von dem Bus 32 emp-
fangt, fuhrt sie die Transaktion weiter zu dem eingangsseitigen Chip, falls eine entsprechende Eine einer Grup-
pe von Transaktionszahlern 159 anzeigt, dass die PMWQ in dem anderen Briicken-Chip nicht voll ist, wie dies
nachfolgend diskutiert ist. Wenn die QPIF 148 eine verzdogerte Anforderung aufnimmt, flhrt sie zuerst die An-
forderung zu der DCQ 144 weiter, um zu bestimmen, ob die Transaktion bereits in der DCQ platziert worden
ist, und, falls dies der Fall ist, ob die entsprechenden, verzégerten Abschluss-Informationen zu der DCQ 144
zuruckgefuhrt worden sind. Falls die verzdgerten Abschluss-Informationen in der DCQ vorhanden sind, wer-
den die Informationen zu der anfordernden Vorrichtung geflihrt und die Transaktion wird beendet. Falls die An-
forderung bereits in eine Warteschlange gestellt ist, allerdings die Verzégerungs-Abschirmungs-Informationen
nicht zurtickgefihrt worden sind, wird die anfordernde Vorrichtung erneut versucht und die Transaktion wird
auf dem PCI-Bus 32 beendet. Falls die Transaktion noch nicht in die Warteschlange gestellt ist, reserviert die
DCQ 144 einen Abschluss-Puffer fur die Transaktion und die QPIF 148 fuhrt die Transaktion zu dem eingangs-
seitigen Chip Uber die Kabel-Schnittstelle 130 weiter, solange wie der entsprechende Transaktionszahler 149
anzeigt, dass der andere Briickenchip nicht voll ist.

[0123] Falls die DCQ 144 bestimmt, dass einer deren Pufferdaten enthalt, vorgesehen fir eine anfordernde
Vorrichtung, allerdings unterschiedlich als die Daten, die in der momentanen Transaktion angefordert sind,
kann der Puffer geleert werden, um zu verhindern, dass der anfordernde Master lberholte Daten empfangt.
Der Puffer wird dann geleert, wenn er Prefetch-Daten enthalt, (d. h. Daten, die in dem Puffer verbleiben, nach-
dem die anfordernde Vorrichtung einige der Daten aufgesucht hat, oder Daten, die nicht spezifisch durch die
Vorrichtung angefordert wurden), allerdings wird er nicht geléscht, wenn er Abschluss-Daten enthalt (d.h. spe-
zifisch angefordert durch eine Vorrichtung, die bis jetzt noch nicht zurtickgekehrt ist, um sie zu empfangen).
Falls der Puffer-Abschluss-Daten enthalt und die anfordernde Vorrichtung eine Anforderung ausgegeben hat,
die nicht den Puffer trifft" (,hit"), versieht die DCQ 144 die Vorrichtung mit einem Zeichen als eine ,Multi-Threa-
ded" Vorrichtung (d. h. eine solche, die in der Lage ist, mehr als eine Transaktion zu einem Zeitpunkt beizube-
halten), und ordnet einen anderen Abschluss-Puffer der neuen Anforderung zu. Die Puffer-Lésch- und Mehr-
fach-Puffer-Zuordnungs-Schemen werden in weiterem Detail nachfolgend beschrieben.

[0124] Ein Master-Zyklus-Arbitrierer (MCA) 150 in dem Warteschlangen-Block 127 halt Standard-Reihenfol-
gen-Einschrankungen zwischen geposteten Speicher-Schreib-, verzégerten Anforderungs- und verzdgerten
Abschluss-Transaktionen bei, wie dies in der PCI Bridge Architecture Specification, Version 2.1, angegeben
ist. Diese Einschrankungen erfordern, dass Bus-Zyklen eine starke Schreib-Reihenfolge beibehalten und dass
Entblockungen (Deadlocks) nicht auftreten. Deshalb bestimmt der MCA 150 die Reihenfolge, in der gepostete
Speicher-Schreib-Transaktionen in der PMWQ 140 und verzégerte Anforderungs-Transaktionen in der DRQ
142 auf dem PCI-Bus 32 laufen. Der MCA 150 steuert auch die Verfiugbarkeit von verzégerten Abschluss-In-
formationen, gespeichert in der DCQ 144. Um eine Ubereinstimmung mit diesen Regeln sicherzustellen, gibt
der ausgangsseitige MCA 150 jedem geposteten Speicher-Schreib-Zyklus eine Gelegenheit, friiher ausgege-
bene, verzoégerte Anforderungs-Zyklen im Bypass zu passieren, wahrend sowohl der eingangsseitige als auch
der ausgangsseitige MCA 150 nicht zulassen, dass verzogerte Anforderungs- und verzdgerte Abschluss-Zy-
klen friher ausgegebene, gepostete Speicher-Schreib-Zyklen im Bypass passieren. Eine Transaktions-Rei-
henfolge durch den MCA 150 wird in weiterem Detail nachfolgend beschrieben.

[0125] Die Transaktions-Zahler 159 in dem ausgangsseitigem Warteschlangen-Block 127 behalten eine Zah-
lung der Zahl von Transaktionen, in dem eingangsseitigen Briicken-Chip in die Warteschlange gestellt, bei. Ein
Zahler 160 fir ein gepostetes Speicher-Schreiben (Posted Memory Write — PMW) zeigt die Zahl von
PMW-Transaktionen, gehalten in der eingangsseitigen, geposteten Speicher-Schreib-Warteschlange, an. Der
PMW-Zahler 160 wird zu jedem Zeitpunkt erhdht, zu dem eine PMW-Transaktion zu der Kabel-Schnittstelle
130 geschickt wird. Der Zahler 160 wird zu jedem Zeitpunkt erniedrigt, zu dem die QPIF 148 ein Signal von
dem Kabel-Decodieren 146 aufnimmt, anzeigend, dass ein PMW-Zyklus auf dem eingangsseitigen PCI-Bus
24 abgeschlossen worden ist. Wenn die eingangseitige PMWQ die maximale Zahl (vier) der PMW Transakti-
onen in die Warteschlange gestellt hat, gibt der PMW-Zahler 160 ein PMW-Voll-Signal (tc_pmw_full) aus, und
teilt der QPIF 148 mit, zusatzliche PMW-Zyklen von dem PCI-Bus 32 erneut zu versuchen. In ahnlicher Weise

8/215

DE 697 21 381 T2 2004.01.15

zahlt ein Zahler 161 fur eine verzdgerte Anforderung (Delayed Request — DR) die Zahl von DR-Transaktionen,
gehalten in der eingangsseitigen, verzdogerten Anforderungs-Warteschlange. Wenn die DRQ die maximale
Zahl (drei) von DR-Transaktionen halt, stellt der DR-Zahler 161 ein DR-Voll-Signal (tc_dr_full) auf, das anzeigt,
dass die QPIF 148 alle darauffolgenden DR-Transaktionen von dem PCI-Bus 32 erneut versuchen muss. Ein
Zahler 162 fur einen verzogerten Abschluss (Delayed Completion — DC), zahlt die Zahl von verzdégerten Ab-
schlissen, die indem eingangsseitigen Master-Zyklus-Arbitrierer in die Warteschlange gestellt sind. Wenn der
MCA die maximale Zahl (vier) von verzdgerten Abschlissen halt, stellt der DC-Zahler 162 ein DC-Voll-Signal
(tc_dc_full) auf, das verhindert, dass die ausgangsseitige QPIF 148 verzogerte Anforderungs-Transaktionen
auf dem sekundaren PCI-Bus 32 laufen lasst. Sobald der Voll-Zustand verschwindet, kdbnnen Informationen
Uber den verzdgerten Abschluss zu der ausgangsseitigen DCQ geschickt werden.

[0126] Ein PCI-Schnittstellen-Block 152 ist zwischen dem PCI-Bus 32 und dem Warteschlangen-Block 127
vorhanden. Die PCI-Schnittstelle 152 umfasst einen Master-Block 123 und einen Slave-(Target)-Block 121.
Der Slave-Block 121 ermoglicht PCI-Vorrichtungen auf dem Bus 32, auf interne Register von Briicken-Chips
(z. B. Target-Speicher-Bereichs-Register 155 und Konfigurations-Register) zuzugreifen, um Abschluss-Infor-
mationen zu beanspruchen, die in der DCQ 144 gespeichert sind, und um auch Transaktionen zu initiieren, die
durch die QPIF 148 und die Kabel-Schnittstelle 130 zu dem priméaren Bus gefuhrt werden. Der Slave-Block 121
steuert die Verflugbarkeit des PCI-Busses 32 zu den PCI-Vorrichtungen auf dem Bus 32 durch Erkennen, wann
jede Vorrichtung auf deren REQ#-Zeile zugreift und die REQ#-Signale zu den PCI-Arbitrierer 124 weiterfiihrt.
Wenn der PCI-Arbitrierer 124 eine anfordernde Vorrichtung auswahlt, um eine Steuerung des Busses zu emp-
fangen, erteilt der Slave-Block 121 den Bus zu der Vorrichtung durch Aufstellen der GNT# Leitung der Vorrich-
tung. Sobald der Bus 32 zu der anfordernden Vorrichtung erteilt ist und die Vorrichtung deren FRAME# Signal
aufstellt, das den Beginn einer Transaktion anzeigt, verriegelt der Slave-Block 121 die Transaktions-Informati-
onen (z. B. Adresse, Befehl, Daten, Byte-Freigaben, Paritat, usw.) in ein Slave-Verriegelungsregister 156. Der
Warteschlangen-Block 127 ist dann in der Lage, die Transaktions-Informationen von dem verriegelnden Re-
gister 156 aufzusuchen und sie zu der DCQ 144 und/oder der Kabel-Schnittstelle 130 zu liefern.

[0127] Transaktionen, unterstutzt durch den PCI-Slave-Block 121, sind in der folgenden Tabelle dargestellt.

Transaktions-Typ Primére Schnittstelle Sekundare Schnittstelle
Unterbrechungs- nicht unterstitzt nicht unterstutzt
Bestatigung
spezieller Zyklus verzégert verzégert
I/O-Lesen ~verzdgert verzégert
I/0-Schreiben verzégert verzégert
Speicher-Lesen verzogert verzogert
Speicher-Schreiben gepostet gepostet
Konfigurations-Lesen sofort nicht unterstutzt
(Typ 0)
Konfigurations- sofort nicht unterstutzt
Schreiben (Typ 0)
Konfigurations-Lesen verzdgert nicht unterstuzt
(Typ 1)
Konfigurations- verzégert nicht unterstitzt
Schreiben (Typ 1)
Speicher-Lese- verzégert (streaming) verzégert (streaming)
Multiple
Dual-Adressen-Zyklus nicht unterstotzt sofort
Speicher-Lese-Zeile verzégert verzégert
Speicher-Schreiben gepostet gepostet
und Ungultigkeit

[0128] Der Master-Block 123 der PCI-Schnittstelle 152 lasst nur einen Zyklus laufen, initiiert durch den War-

PCI-Schnittstellen-Slave-Transaktionen

9/215

DE 697 21 381 T2 2004.01.15

teschlangen-Block 127 (d. h. Transaktionen, gehalten in der PMWQ 140 und der DRQ 142). Der Warteschlan-
gen-Block 127 fordert von dem PCI-Bus durch Senden eines Anforderungs-Signals (g2p_req) zu dem
PCIl-Master 123 an, der dann bestimmt, ob ein entsprechendes Anforderungs-Signal (b1req_) zu dem PCI-Ar-
bitrierer 124 aufgestellt ist. Der Master-Block 123 stellt b1req_ auf, falls der Warteschlangen-Block 127 nicht
einen verriegelten Zyklus 1auft und der PCI-Bus 32 nicht durch eine PCI-Vorrichtung verriegelt ist. Wenn der
PCI-Arbitrierer 124 den Warteschlangen-Block 127 auswahlt, schickt der Master-Block 123 ein Bestati-
gungs-Signal (p2qg_ack), um den Warteschlangen-Block 127 wissen zu lassen, das er eine Kontrolle des Bus-
ses 32 inne hat. Falls der PCI-Arbitrierer 124 keine offenen Anforderungen von anderen Vorrichtungen auf dem
Bus 32 vorliegen hat, schickt der Master-Block 123 automatisch das p2q_ack Erteilungs-Signal zu dem War-
teschlangen-Block 127, sogar dann, wenn der Warteschlangen-Block 127 nicht das q2p_req Signal aufgestellt
hat. Sobald wie der Warteschlangen-Block 127 eine Arbitrierung erhalt (d. h. der Arbitrierer 124 stellt das
b1gnt_ Signal auf) und sein q2p_ frame Signal aufstellt, um den Beginn einer Transaktion anzuzeigen, verrie-
gelt der PCI-Master 123 Informationen Uber abgehende Transaktionen (d. h. Adresse, Befehl, Daten,
Byte-Freigaben, Paritat, usw.) in ein Master-Verriegelungs-Register 158 in der PCI-Schnittstelle 152. Die
Transaktions-Informationen werden dann verwendet, um die Transaktion auf dem PCI-Bus 32 abzuschlief3en.
[0129] Transaktionen, unterstiitzt durch den Master-Block 123, sind in der folgenden Tabelle dargestellt.

Transaktions-Typ Primare Schnittstelie Sekundare Schnittstelle
Unterbrechungs- nicht unterstitzt nicht unterstatzt
Bestatigung
spezieller Zyklus unterstutzt unterstutzt
/O-Lesen unterstatzt unterstitzt
1/0-Schreiben unterstitzt unterstutzt
Speicher-Lesen unterstitzt unterstutzt
Speicher-Schreiben unterstotzt unterstutzt
Konfigurations-Lesen nicht unterstitzt unterstotzt
Konfigurations- nicht unterstitzt unterstutzt
Schreiben
Speicher-Lese- unterstitzt unterstitzt
Multiple .
Dual-Adressen-Zyklus unterstitzt nicht unterstitzt
Speicher-Lese-Zeile unterstitzt unterstitzt
Speicher-Schreiben gepostet gepostet
und Ungliltigkeit

PCI-Schnittstellen-Master-Transaktionen

[0130] Allgemein arbeitet der Master-Block 123 als ein Standard-PCI-Master. Allerdings wird, im Gegensatz
zu Standard-PCI-Briicken, der Master-Block nicht eine MRL, MRM oder MWI Transaktion beenden, bis eine
Cache-Zeilen-Grenze erreicht ist, gerade nachdem der Master-Latenz-Zeitgeber (Master Latency Timer —
MLT) ablauft. Auch stellt der Master-Block 123 nicht ,Initiator Ready" (IRDY) Warte-Zustande auf. Der Mas-
ter-Block 123 lauft einen verriegelten Zyklus auf dem PCI-Bus 32, falls der Warteschlangen-Block 127 sein
LVerriegelungs" Signal (q2p_lock) aufstellt und seine Verriegelung auf dem Bus 32 freigibt, wenn der Warte-
schlangen-Block 127 sein ,Entriegelungs” Signal (q2p_unlock) aufstellt.

[0131] Wie auch Fig. 57 zeigt, enthalt die PCI-Schnittstelle 152 eine Puffer-Entleerungs-Logik 154, die be-
stimmt, wann einer oder alle der DCQ Abschluss-Puffer durch den Warteschlangen-Block 127 geleert werden
sollten. Die PCI-Slave 121 erzeugt zwei Signale, die durch den Warteschlangen-Block 127 verwendet werden,
um die Abschluss-Puffer zu leeren: ein Flush-Signal (p2q_flush), das anzeigt, wann ein Puffer geleert werden
sollte, und ein Schlitz- bzw. Steckplatzauswahl-Signal (p2q_slot[2:0]), das anzeigt, welche PCI-Vorrichtung (d.
h. welcher Einsteckplatz an dem PCI-Bus) hinsichtlich seiner Daten geleert werden sollte. Die folgende Tabelle
stellt die Beziehung zwischen p2q_slot[2:0], und der PCI-Schlitz-Zahl dar.

10/215

DE 697 21 381 T2 2004.01.15

p2q_slot{2:0] Einsteckplatz-Zahl
000 alle
001 1
010
011
100
101
110
111

NP O] O AP WEN

Erzeugung von p2q_slot[2:0]

[0132] Wenn p2q_flush aufgestellt ist, wird der Warteschlangen-Block 127 entweder alle Abschluss-Puffer in
der DCQ 144 entleeren, falls p2q_slot[2:0] gleich zu ,000" ist, oder den entsprechenden Einen der acht Ab-
schluss-Puffer, falls p2q_slot[2:0] irgendeinen anderen Wert hat. Der Warteschlangen-Block 127 behalt ein
Protokoll davon bei, welche Abschluss-Puffer, falls welche vorhanden sind, jedem PCI-Steckplatz zu irgendei-
nem gegebenen Zeitpunkt entsprechen.

[0133] Das p2qg_flush Signal wird an der ansteigenden Flanke des ersten PCI-Takt-(CLK)-Zyklus aufgestellt,
nachdem ein config Schreib-(WR-CFG)-Zyklus auftritt, oder nachdem ein 1/O-Schreib-(iowr)-Zyklus auftritt,
oder ein Speicher-Schreib-(memwr)-Zyklus ein ausgangsseitiges Target (hit_tmem) wahrend eines Be-
fehl-Prif-Zustands (cmd_chk_st) trifft. Gates 2014, 2016, 2018 und 2020 und ein Flip-Flop 2022 sind so ange-
ordnet, um p2q_flush auf diese Art und Weise zu erzeugen.

[0134] In dem eingangsseitigen Briicken-Chip (d.h. wenn das Upstream_chip_i Signal aufgestellt ist) besitzt
p2q_slot[2:0] immer einen Wert von ,,001", da die CPU der einzige Master auf dem primaren PCI-Bus ist. In
dem ausgangsseitigen Chip hangt der Wert von p2q_slot davon ab, ob der Zyklus, der zu einem Flush-Zustand
(Flush Condition) fihrt, ein Zyklus von dem sekundaren Bus 32 zu dem Warteschlangen-Block 127 ist (d. h.
falls p2q_qgcyc aufgestellt ist). Falls das p2g_qgcyc Signal aufgestellt ist, nimmt p2qg_slot[2:0] den Wert des
reg_slot[2:0] Signals an, erzeugt durch die PCI-Slave 121. Das reg_slot[2:0] Signal zeigt an, welcher der sie-
ben Vorrichtungen auf dem sekundaren PCI-Bus 32 eine Kontrolle des Busses 32 erteilt worden ist. Die
PCI-Slave 121 erzeugt das reg_slot[2:0] Signal durch Verriegeln des Werts der GNT# Leitung fiir jeden der
sieben Schlitze bzw. Steckplatze auf dem Bus 32, um ein verriegeltes Erteilungs-Signal mit sieben Bits
(latched_gnt_[7:1]; die achte Erteilungs-Leitung, die zu dem Warteschlangen-Block gehort, wird ignoriert) zu
bilden, und durch Codieren von latched_gnt[7:1] entsprechend einer Durchsichtstabelle 2006, die nachfolgend
angegeben ist.

[0135]

latched_gnt[7:1] reg_slot[2:0]
1111111 000
1111110 001
1111101 010
1111011 01

1110111 100
1101111 101
1011111 110
0111111 111

Erzeugung von req_slot[2:0]

[0136] Falls der Zyklus, der zu dem Entleeren flihrt, nicht ein Sekundar-PCl-zu-Warteschlangen-Block-Zyklus
ist, muss er eine I/0O-Lesung oder eine config-Lesung zu dem Sollspeicherbereich von einem der Steckschlitze
an dem sekundaren Bus 32 sein. Wenn der Zyklus eine I/O-Lesung oder eine config-Lesung ist (d. h. liowr AND
lwr_cfg), nimmt p2q_slot[2:0] den Wert des PCI-Schlitzes an, dessen Speicherbereich getroffen worden ist
(mrange_slot[2:0]). Ansonsten ist der Zyklus ein 1/0O-Schreiben oder ein config-Schreiben und p2q_slot[2:0]

11/215

DE 697 21 381 T2 2004.01.15

wird gleich zu ,,000", so dass alle Abschluss-Puffer geleert werden. Gates 2008 und 2010 und Multiplexer 2002
und 2004 sind so angeordnet, um p2q flush[2:0] auf diese Art und Weise zu erzeugen.

KABEL-DECODIERER

[0137] Wie Fig. 58 zeigt, empfangt der Kabel-Decodierer 146 Transaktionen von der Kabel-Schnittstelle und
wahlt die geeignete Warteschlange so aus, um jede Transaktion zu empfangen. Wenn sich der Kabeldecodie-
rer in der Daten-Phase befindet (d.h. wenn data_phase oder next_data_phase vorliegt, wird ein asynchrones
Signal, das den Wert von data_phase einstellt, an dem nachsten CLK-Zyklus aufgestellt ist), sieht der Ka-
bel-Decodierer 146 an dem Befehl-Code (cd_cmd[3:0]), geschickt liber das Kabel, nach, um zu bestimmen,
welche Warteschlange die Transaktion empfangen sollte. Wie in der Tabelle nachfolgend dargestellt ist, ist,
wenn cd_cmd[3:0] einen Wert von ,1001" hat, die Transaktion ein verzdgerter Abschluss, so dass der Ka-
bel-Decodierer ein cd_dcq_select Signal aufstellt, das der dcq mitteilt, die Transaktion zu beanspruchen. Wenn
die drei LSB des Befehl-Code-Signals (cd_cmd[2:0]) ,111" sind, ist die Transaktion ein gepostetes Spei-
cher-Schreiben, so dass der Kabel-Decodierer ein cd_pmwq_select Signal erzeugt, um die pmwq Uber die an-
kommende Transaktion zu warnen. Wenn die Transaktion weder ein gepostetes Speicher-Schreiben noch ein
verzogerter Abschluss ist und der Befehl-Code nicht ein Streaming-Signal darstellt, stellt der Kabel-Decodierer
ein cd_drq_select Signal auf, das der DRQ mitteilt, die Transaktion zu beanspruchen. Gates 2024, 2026, 2028
und 2030 sind so konfiguriert, um die cd_dcq_select, cd_pmwq_select, und cd_drg_select Signale auf diese
Art und Weise zu erzeugen.

[0138] Die nachfolgende Tabelle stellt die Befehl-Code mit vier Bits, zugeordnet zu jedem Typ einer Transak-
tion, dar.

[0139]

Transaktions-Typ Befehl-Code
I/O-Lesen 0010
I/O-Schreiben 001
Config-Lesen 1010
Config-Schreiben 1011
Speicher-Lesen 0110
MRL 1110
MRM 1100
Speicher-Schreiben 0111
MWI 1111
verzogerter Abschluss 1001
Datenfolge eingereichtet 1000

Transaktions-Befehl-Code

[0140] Wenn der ausgangsseitige Bricken-Chip eine Datenfolge zwischen dem primaren Bus und einem se-
kundéren Bus-Master eingerichtet hat, empfangt der eingangsseitige Kabel-Decodierer einen Befehl-Code von
,1000". Dieser Code stellt ein Streaming-Signal dar, erzeugt durch den ausgangsseitigen Chip, um den ein-
gangsseitigen Chip zu informieren, dass eine Datenfolge eingerichtet worden ist. Wenn der Kabeldecodierer
diesen Befehl-Code empfangt, stellt er ein cd_stream Signal auf, das der QPIF in der eingangsseitigen Vor-
richtung mitteilt, die Transaktion fortzufiihren. Der Kabel-Decodieren erzeugt auch ein cd_stream_next_data
Signal, das den eingangsseitigen Chip instruiert, einen anderen Teil von Daten zu dem sekundéaren Bus zu lie-
fern. Das cd_stream-next_data Signal wird dann aufgestellt, wenn ein cd_stream Signal aufgestellt ist, wobei
sich die Transaktion in der Daten-Phase befindet (d. h. data_phase ist aufgestellt), und ein next_data Signal
ist von dem eingangsseitigen Chip uber die Kabel-Schnittstelle empfangen worden (das next_data Signal er-
scheint auf einer der Leitungen des c2q_buff[3:0] Signals, das, wenn keine Datenfolge auftritt, dem Warte-
schlangen-Block mitteilt, welcher ausgangsseitige DCQ-Puffer der momentanen Transaktion zugeordnet ist).
Das cd_stream_next_data Signal wird zuriickgenommen, wenn entweder das cd_stream Signal zuriickgenom-
men ist oder wenn eine neue Anforderung von der Kabel-Schnittstelle empfangen ist (d. h. c2q_new_req ist
aufgestellt). Gates 2032 und 2034 sind so konfiguriert, um die cd_stream und die cd_stream_next_data Sig-
nale auf diese Art und Weise zu erzeugen.

GESPEICHERTE-SCHREIB-WARTESCHLANGE

[0141] Wie Fig. 59 zeigt, ist die gepostete Speicher-Schreib-Warteschlange (PMWQ) 140 ein Speicherele-
ment, das alle die Befehl-Informationen enthalt, die bendétigt werden, um gepostete Schreib-Transaktionen auf

12/215

DE 697 21 381 T2 2004.01.15

dem Target-Bus auszuflihren. Die PMWQ umfasst einen Zeichen- bzw. Tag-Speicher-Bereich 2036, der Infor-
mationen halt, die jede Transaktion identifizieren, einen Daten-RAM 2038, der die Schreib-Daten halt, die jeder
Transaktion in der PMWQ zugeordnet sind, und verschiedene Steuerblécke, um den Flul von Transaktionen
in die PMWQ hinein und von dieser heraus zu verwalten. Fur jede Transaktion in der PMWQ behalt der Zei-
chen-Speicher 2036 Informationen bei, wie beispielsweise Uber die Adresse, zu der geschrieben werden soll,
den PCI-Befehl-Code (MW oder MWI), ein Adressen-Paritats-Bit, und ,einen verriegelten Zyklus" und einen
~Dual-Adressen-Zyklus" Indikations-Bits, wie in der folgenden Tabelle dargestellt ist. Der Zeichenspeicher
2036 speichert auch einen Hinweiszeiger zu der Daten-RAM-Stelle der Daten entsprechend zu jeder der
Transaktionen in der PMWQ.

Feld Bits Anmerkungen
Adresse 64 eingangsseitige Transaktionen unterstut-
zende Dual-Adressen-Zyklen
PCI Befehl 1 Speicher-Schreiben 0111

Speicher-Schreiben und Ungdltigkeit 1111
(nur notwendig,um cbe[3] zu speichern)

Byte-Freigaben 0 Speichere BEs an jedem giitigen Ubertra-
' gungs-Takt in dem Daten-RAM
Paritat 1/Adresse muss PAR mit jeder Ubertragung zusammen
0 mit 32-Bit addr/Daten speichern.

muss Daten-Paritats-Bits bei jeder guitigen
Daten-Ubertragung in einem Daten-RAM

speichern
Daten 0 gespeichert in Daten-RAM bis zu 8 Cache-
Zeilen
Verriegelung 1
DAC-Indikation 1 zeigt an, ob Adresse 32 oder 64 Bits ist

Inhalte von PMWQ

[0142] Dadie PCI Spec. 2.1 fordert, dass gepostete Speicher-Schreib-Transaktionen in der Reihenfolge aus-
gefuihrt werden, in der sie empfangen werden, ist der Zeichen- bzw. Tag-Speicher 2036 eine zirkulare
FIFO-Vorrichtung. Die PMWQ, und deshalb der Zeichen-Speicher 2036, konnen bis zu vier gepostete Spei-
cher-Schreib-Transaktionen simultan handhaben.

[0143] Der Daten-RAM 2038, umfasst vier Daten-Puffer 2042, 2044, 2046 und 2048, einen fiir jede Transak-
tion in der PMWQ. Jeder Puffer kann bis zu acht Cache-Zeilen, oder 256 Bytes, an Daten (acht Worte pro Ca-
che-Zeile) speichern. Fir jede Cache-Zeile in einem Puffer speichert der Puffer acht Daten-Paritats-Bits 2040
(eins pro dword) und zweiunddreif’ig Freigabe-Bits 2050 (eines pro Byte).

[0144] Ein Kabel-Schnittstellen-Block 2060 empfangt jede Transaktion und die entsprechenden Daten von
dem Kabel-Codierer und platziert die Transaktion in dem Zeichen-Speicher 2036. Ein Warteschlangen-Schnitt-
stellen-Block 2053 empfangt die Daten von dem Kabel-Schnittstellen-Block 2060 und platziert sie in der geeig-
neten Stelle in dem Daten-RAM 2038. Die Warteschlangen-Schnittstelle 2053 empfangt auch Daten von dem
Daten-RAM 2038 und liefert sie zu der QPIF, wenn die QPIF die entsprechende Transaktion auf dem PCI-Bus
laufen lasst. Ein Eingangs-Hinweis-Zeiger Logik-Block 2054 erzeugt vier Eingangs-Hinweis-Zeiger, einen fir
jeden Puffer, die der Warteschlangen-Schnittstelle 2053 mitteilen, wo das nachste Wort von Daten zu platzie-
ren ist. Ein Gultigkeits(Ausgangs)-Hinweiszeiger-Block 2056 erzeugt vier Ausgangs-Hinweiszeiger, einen flr
jeden Puffer, die die Position des nachsten Worts, das herangezogen werden soll, anzeigen.

[0145] Wie Fig. 60 zeigt, halt ein Giiltigkeits-Flag-Logik-Block 2052 ein Acht-Bit-Giiltigkeits-Zeilen-Register
2062 fiur jeden der vier Puffer in dem Daten-RAM 2038 aufrecht. Das Gilltigkeits-Zeilen-Register 2062 zeigt
an, welche der acht Cache-Zeilen in jedem Puffer giiltige Daten enthalt. Wenn das letzte Wort in einer Ca-
che-Zeile mit Daten geflllt worden ist (d.h. valid_pointer[2:0] entspricht ,111" und cd_next-data wird aufgestellt,
was anzeigt, dass das Wort gefiillt worden ist), wird das entsprechende Bit in einem Acht-Bit-Kabel-Giiltig-
keits-Signal (d. h. q0_cable_valid[7:0], q1_cable_valid[7:0], usw.) eingestellt. Das Bit, das eingestellt werden
soll, wird durch die drei signifikantesten Bits des Giiltigkeits-Hinweiszeigers (valid_pointer[5:3]) bestimmt, die
anzeigen, dass die Cache-Zeile gefiillt ist. Das entsprechende Bit in dem Kabel-Gultigkeits-Signal wird auch
eingestellt, wenn ein Einsteckplatz-Giiltigkeitssignal (validate_slot) von dem Kabel-Decodierer an dem Ende
einer Transaktion empfangen ist. Das Kabel-Giiltigkeits-Signal wird in das Giiltigkeits-Zeilen-Register 2062
entsprechend dem ausgewahlten Daten-Puffer an der ansteigenden Flanke des ersten PCI-Takt-Zyklus (CLK)

13/215

DE 697 21 381 T2 2004.01.15

verriegelt, nachdem das letzte Wort gefilllt ist, oder das valid_slot Signal empfangen ist. Ansonsten halt das
Gliltigkeits-Zeilen-Register seinen momentanen Wert bei. Die Bits in dem Gultigkeits-Zeilen-Register 2062
werden dann geléscht, wenn die entsprechenden Bits eines Acht-Bit-Ungultigkeits-Signals (d.h.
q0_invalid[7:0], q1_invalid[7:0], usw.) aufgestellt sind.

[0146] Der Gultigkeits-Flag-Logik-Block 2052 erzeugt ein pmwq_valid[3:0] Signal, das anzeigt, welcher, falls
irgendeiner vorhanden ist, der vier Daten-Puffer mindestens eine gliltige Zeile an Daten enthalt. Der Giiltig-
keits-Block 2052 erzeugt auch ein pmwq_valid_lines[7:0] Signal, das anzeigt, welche der acht Cache-Zeilen
eines ausgewahlten Daten-Puffers gultig sind. Ein Warteschlangen-Auswahl-Signal von dem QPIF
(p2pif_queue_select[1:0]) wird dazu verwendet, auszuwahlen, welches gultige Zeilen-Register 2062 eines Da-
ten-Puffers verwendet wird, um das pmwq_valid_lines[7:0] Signal zu erzeugen. Wenn der Warteschlan-
gen-Block eine Steuerung des Busses erhalt, um einen geposteten Speicher-Schreib-Zyklus laufen zu lassen,
und zwar von einem ausgewahlten Daten-Puffer, Gbertragt der Warteschlangen-Block alle Daten in jeder Zeile,
deren entsprechendes Bit in dem pewg_valid_lines[7:0] Signal eingestellt ist. Gates 2064, 2066, 2068, 2070
und 2072 und ein Flip-Flop 2074 sind so angeordnet, um die Werte in dem Giiltigkeits-Zeilen-Register 2062
fur den ersten Daten-Puffer (q0_valid[7:0]) einzustellen. Eine &hnliche Schaltung bestimmt die Inhalte der Giil-
tigkeits-Register fur die anderen drei Daten-Puffer. Ein Multiplexer 2076 wahlt den Wert des
pmwg_valid_lines[7:0] Signals aus.

[0147] Wie nun Fig. 61 zeigt, halt ein Voll-Zeilen-Logik-Block 2058 ein Acht-Bit-Voll-Zeilen-Register 2078 fur
jeden der vier Daten-Puffer aufrecht. Die Inhalte jedes Voll-Zeilen-Registers 2078 zeigen an, welche der acht
Cache-Zeilen in dem entsprechenden Daten-Puffer voll sind. Die Bits in jedem Voll-Zeilen-Register 2078 wer-
den durch ein asynchrones next_full_line_bit Signal, erzeugt durch die Voll-Zeilen-Zustand-Maschine 2080,
was nachfolgend beschrieben ist, eingestellt. Wenn ein Warteschlangen-Auswahl-Signal von der QPIF
(select_nex_queue[3:1]) einen der Daten-Puffer auswahlt und das next_full_line_bit Signal aufgestellt ist, wird
das Bitin dem Voll-Zeilen-Register 2078 entsprechend zu der Cache-Zeile, angezeigt durch die drei signifikan-
testen Bits, des Gilltigkeits-Hinweiszeigers (valid_pointer[5:3]) eingestellt. Ein 3x8 Decodierer 2082 wandelt
den Drei-Bit-Gultigkeits-Hinweiszeiger in ein Acht-Bit-Signal um, das bestimmt, welches Bit einzustellen ist. Ein
Acht-Bit-Voll-Zeilen-Signal (q0_full_line) wird fir jeden Daten-Puffer von den Inhalten des entsprechenden
Voll-Zeilen-Registers 2078 erzeugt. Das Voll-Zeilen-Signal zeigt an, welche Zeilen in dem entsprechenden Da-
ten-Puffer voll sind. Der Voll-Zeilen-Logik-Block 2058 erzeugt auch ein pmwg_full_line[7:0] Signal, das anzeigt,
welche Cache-Zeilen eines ausgewahlten Daten-Puffers voll sind. Der Multiplexer 2084 und das
g2pif_queue_select[1:0] Signal werden dazu verwendet, das pmwg_full_line[7:0] Signal zu erzeugen.

[0148] Wie auch Fig. 62 zeigt, wird die Voll-Zeilen-Zustand-Maschine 2080 in einen IDLE Zustand 2086 bei
einem Reset platziert. In dem IDLE Zustand 2086 wird das next_full_line_bit auf Null gesetzt. Wenn eine Trans-
aktion in die PMWQ platziert wird, tritt die Transaktion in zwei Phasen auf, eine Adressen-Phase und eine Da-
ten-Phase. Wenn die Daten-Phase beginnt (d. h. ein clock_second_phase Signal wird aufgestellt) und der Gul-
tigkeits-Hinweiszeiger zu dem ersten Wort in der Cache-Zeile hinweist (valid_pointer[2:0] =,000"), geht die Zu-
stand-Maschine 2080 zu einem DATA Zustand 2088 uber. In dem Datenzustand wird das next_full_line_bit Si-
gnal nur dann aufgestellt, wenn der Giiltigkeits-Hinweiszeiger auf das letzte Wort in der Cache-Zeile hinweist
(valid_pointer[2:0] = "111"), wird das cd_next_data Signal durch den Kabel-Decodierer aufgestellt (anzeigend,
dass das letzte Wort mit Daten geflillt wurde), und das Byte-Freigabe-Signal von dem Kabel-Decodierer
(cd_byte en[3:0]) gleicht ,,0000". Die Zustand-Maschine geht auch zuriick zu dem IDLE Zustand 2086, wenn
diese Zustande auftreten. Falls diese Zustande nicht auftreten, bevor die Transaktion endet (d.h. cd_complete
wird aufgestellt), bleibt das next_full_line_bit Signal nicht aufgestellt und die Zustand-Maschine 2080 geht zu-
rick zu dem IDLE Zustand 2086. Die Zustand-Maschine 2080 geht auch zu dem IDLE Zustand 2086 ohne Auf-
stellen des next_full_line_bit Signals tber, wenn das cd_byte en[3:0] Signal einen Wert, einen anderen als
,0000", annimmt.

[0149] Wie wiederum Fig. 59 und auch Fig. 63 zeigen, muss die PMWQ normalerweise eine Transaktion von
dem Kabel-Decodierer beenden, wenn der Daten-Puffer, der die entsprechenden Daten aufnimmt, voll ist. Al-
lerdings lasst, wenn der Kabel-Decodierer fortfahrt, Daten zu verschicken, nachdem der Puffer voll ist, ein
Uberlauf-Logik-Block 2090 zu, dass die Daten in den nachsten, leeren Puffer (iberlaufen. Der Uberlauf-Lo-
gik-Block 2090 fiihrt ein Uberlauf-Register 2092, das anzeigt, welche, falls irgendwelche vorhanden sind, der
vier Daten-Puffer als Uberlauf-Puffer verwendet werden. Die Inhalte des Uberlauf-Registers 2092 werden dazu
verwendet, ein Vier-Bit-Uberlauf-Signal (pmwq_overflow[3:0]) zu erzeugen. Wenn sich die Transaktion in der
Daten-Phase befindet (d.h. data_phase ist aufgestellt), erreicht der Glltigkeits-Hinweiszeiger das letzte Wort
eines Daten-Puffers (d. h. valid_pointer[5:0] = ,111111"), der Kabel-Decodieren zeigt an, dass mehr Daten an-
kommen (d. h. cd_next_data wird aufgestellt), und der Kabel-Decodierer hat nicht angezeigt, dass die Trans-
aktion abgeschlossen ist (d. h. cd_complete ist nicht aufgestellt), das select_next_queue[3:0] Signal, das auf
den am kiirzesten vorher gefiilliten Daten-Puffer hinweist, wird dazu verwendet, das Uberlauf-Register-Bit ent-
sprechend dem néchsten Daten-Puffer einzustellen. Falls die Bedingungen nicht erfiillt sind, wird das Uber-
lauf-Bit geldscht. Gates 2094 und 2095 werden in Verbindung mit dem select_next_queue[3:0] Signal verwen-

14/215

DE 697 21 381 T2 2004.01.15

det, um die geeigneten Uberlauf-Register-Bits einzustellen und zu léschen, wenn diese Zustande erfiillt sind.
[0150] Eine einzelne Transaktion kann fortfihren, um in zusatzliche Puffer Uberzulaufen, bis der letzte, nicht
benutzte Puffer voll ist. Falls mehr als ein Puffer als ein Uberlauf-Puffer verwendet wird, werden Mehr-
fach-Uberlauf-Register-Bits eingestellt. Aufeinanderfolgende, eingestellte Bits in dem Uberlauf-Register zei-
gen an, dass eine einzelne Transaktion in mehr als einen Puffer libergelaufen ist. Die Uberlauf-Bits werden
entweder eingestellt oder geldscht, wenn die gepostete Schreib-Transaktion in die PMWQ hinein platziert ist.
Auch kann, falls die QPIF beginnt, die PMW-Transaktion auf dem Target-Bus laufen zu lassen und den origi-
nalen Puffer zu entleeren, wahrend sich die Daten noch dabei befinden, in die PMWQ einzutreten, wobei der
Original-Puffer wieder verwendet werden, um die Uberlauf-Transaktion fortzufiihren. Der Uberlauf kann fort-
fuhren, bis alle verfliigbaren Puffer voll sind.

WARTESCHLANGE FUR VERZOGERTE ANFORDERUNG

[0151] Wie Fig. 64 zeigt, speichert die DRQ 142 alle die Informationen, die dazu bendtigt werden, eine ver-
zogerte Lese-Anforderung- (Delayed Read Request — DRR) und eine verzégerte Schreib-Anforderung- (De-
layed Write Request — DRW) Transaktionen auf dem Target-Bus abzuschliel3en. Die DRQ umfasst einen War-
teschlangenspeicher 2100, der Informationen halt, wie beispielsweise die Adresse, die davon gelesen oder
dazu geschrieben werden soll, den PCI-Befehl-Code, Byte-Freigaben, Adressen- und Daten-Paritats-Bits, In-
dikations-Bits Uber einen ,verriegelten Zyklus" und einen ,Dual-Adressen-Zyklus", und die Puffer-Zahl des Puf-
fers fur den verzdgerten Abschluss, reserviert in dem initiierenden Bricken-Chip fur die Abschluss-Informatio-
nen. Der Warteschlangen-Speicher 2100 halt auch bis zu zweiunddreillig Bits (ein Wort) an Daten, die zu dem
Target-Bus in einem verzdgerten Schreib-Zyklus geschrieben werden sollen. Da verzdgerte Schreib-Zyklen
niemals mehr als ein Wort an Daten einsetzen, wird kein Daten-RAM in der DRQ bendétigt. Die DRQ, und des-
halb der Warteschlangen-Speicher 2100, ist in der Lage, bis zu drei verzdgerte Anforderungs-Transaktionen
auf einmal zu halten. Ein Kabel-Schnittstellen-Block 2102 beansprucht verzogerte Anforderungs-Transaktio-
nen von dem Kabel-Decodierer und platziert sie in den Warteschlangen-Speicher 2100. Die folgende Tabelle
zeigt die Informationen, die in dem DRQ-Warteschlangen-Speicher beibehalten werden.

Feld Bits Anmerkungen
Adresse 64 eingangsseitige Transaktionen unterstutzen
Dual-Adressen-Zykien
PCI-Befehl 4 /O-Lesen

I/0-Schreiben
Config-Lesen
Config-Schreiben
Speicher-Lesen
Speicher-Lese-Zeile
Speicher-Lese-Multiple

Byte-Freigaben 4 Byte-Freigaben, nicht notwendig an MRL, MRM
Paritat 1/Adresse
1/Daten-Ubertragung

schicke Daten PAR mit verzégerten Schreib-

Transaktionen
Daten 32 Daten, in die Warteschlange gestelit, bei verzo-
gerten Schreib-Transaktionen
Verriegelung 1
DAC-Indikation 1 zeigt an, ob Adresse 32 oder 64 Bits ist
Buff Num 3 zeigt DCQ-Puffer, zugeordnet fur Abschluss-

Daten, an

Inhalte von DRQ

[0152] Wie auch Fig. 65 zeigt, bestimmt ein Giiltigkeits-Flag-Logik-Block 2104, wann die DRQ alle die Infor-
mationen empfangen hat, die dazu notwendig sind, die Transaktionen in dem Warteschlangen-Speicher 2100
laufen zu lassen. Wenn einer der DRQ-Schlitze durch ein entsprechendes Schlitz-Auswahl-Signal ausgewahit
ist (d.h. select_zero fiir den ersten Schlitz, select_one fir den zweiten Schlitz und select_two fiir den dritten
Schlitz) und der Schlitz durch ein validate_slot Signal fir giltig erklart ist, anzeigend, dass der Kabel-Decodie-
rer ein Zufiihren der Transaktion zu der DRQ abgeschlossen hat, wird ein Giiltigkeits-Signal entsprechend zu

15/215

DE 697 21 381 T2 2004.01.15

dem Schlitz (d.h. g0 _valid, q1_valid oder g2 valid) an der ansteigenden Flanke des nachsten
PCI-Takt-(CLK)-Zyklus aufgestellt. Falls ein Schlitz nicht ausgewahlt ist und durch ein valid_slot Signal fur gul-
tig erklart ist, wird das Guiltigkeits-Signal fir den Schlitz bzw. den Einsteckplatz wieder zurickgenommen, falls
die QPIF den Schlitz ausgewanhlt hat, durch Aufstellen eines DRQ-Auswahl-Signals (q2pif_drq_select) und
durch Identifizieren des Schlitzes bzw. des Einsteckplatzes (q2pif_queue_select = Schlitz-Zahl), allerdings die
Transaktion durch Aufstellen eines Zyklus-Aussonderungs-Signals (g2pif_abort_cycle) ausgesondert hat. Das
Gultigkeits-Signal wird auch zuriickgenommen, falls die DRQ die Transaktion durch Aufstellen eines Zy-
klus-Abschluss-Signals (z. B. q0_cycle_complete) beendet, wahrend die QPIF auf mehr Daten wartet (d. h.
g2pif_next_data ist aufgestellt). Allerdings wird das Zyklus-Abschluss-Signal ignoriert, falls die QPIF momen-
tan Daten zu dem anderen Bricken-Chip (d.h.

[0153] q2pif_streaming ist aufgestellt) als Datenfolge Ubertragt. Ansonsten halt, falls das Giltigkeits-Signal
des Schlitzes nicht spezifisch aufgestellt oder an einem Takt-Zyklus zurlickgenommen ist, er seinen momen-
tanen Wert bei. Der Giultigkeits-Flag-Logik-Block 2104 erzeugt auch ein DRQ Giltigkeits-Signal
(drg_valid[3:0]), das anzeigt, welcher, falls irgendeiner vorhanden ist, der drei DRQ-Schlitze eine giiltige Trans-
aktion enthalt, und zwar durch Kombinieren der Giiltigkeits-Signale fiur jeden individuellen Schlitz (d.h.
drg_valid = {0, g2_valid, q1_valid, q0_valid}). Gates 2106, 2108, 2110, 2112 und 2114, Multiplexer 2116 und
2118 und ein Flip-Flop 2120 sind so angeordnet, um die Schlitz-Giiltigkeits-Signale und die DRQ-Giiltig-
keits-Signale auf diese Art und Weise zu erzeugen.

[0154] Die DRQ umfasst auch Hinweiszeiger-Logik-Blocke, die Hinweiszeiger zu den Speicher-Stellen beibe-
halten, von denen Daten wahrend verzogerter Lese-Anforderungs-Transaktionen gelesen werden sollen.
Wenn die Adresse, an der die verzdgerten Lese-Transaktionen beginnen wird, in den Warteschlangen-Spei-
cher 2100 eingeladen ist, erzeugt ein Glltigkeits-Hinweiszeiger-Logik-Block 2122 einen Sechs-Bit-Giiltig-
keits-Hinweiszeiger, der anzeigt, wo die Transaktion enden wird. Falls die Transaktion ein einzelnes Wort um-
fasst (z. B. ein Speicher-Lesen), stellt die Gultigkeits-Hinweiszeiger-Logik 2122 den glltigen Hinweiszeiger
gleich zu der Adresse, eingeladen in den Warteschlangen-Speicher 2100 hinein, auf. Fur eine Speicher-Le-
se-Zeilen-Transaktion gibt die Giultigkeits-Hinweiszeiger-Logik 2122 dem gultigen Hinweiszeiger einen Wert
von ,000111", was anzeigt, dass der letzte, gliltige Teil der Daten ein acht dwords (d. h. eine Cache-Zeile) tber
den Startpunkt hinaus ist. Fur eine Speicher-Lese-Mehrfach-Transaktion wird der gultige Hinweiszeiger auf
»,111111" gesetzt, was anzeigt, dass der letzte, glltige Teil an Daten vierundsechzig dwords (d. h. acht Ca-
che-Zeilen) uber den Startpunkt ist. Die Glltigkeits-Hinweiszeiger-Logik 2122 behalt einen gultigen Hinweis-
zeiger fur jeden Schlitz in der DRQ (valid_pointer_0[5:0], valid_pointer_1[5:0] und valid_pointer_2[5:0]) bei. Die
Stelle des gultigen Hinweiszeigers wird durch die DRQ dann ignoriert, wenn sie ein Streaming-Signal von der
QPIF (g2pif_streaming) empfangt, wie dies in weiterem Detail nachfolgend beschrieben ist.

[0155] Ein Ausgangs-Hinweiszeiger-Logik-Block 2124 behalt drei Ausgangs-Hinweiszeiger
(output_pointer_0[5:0], output_pointer_1[5:0] und output_pointer_2[5:0]), einen fiir jeden Schlitz in der DRQ,
bei, die das nachste Wort an Daten anzeigen, das von dem Speicher gelesen werden soll, und zugefiihrt zu
dem anderen Brucken-Chip. Der Hinweiszeiger wird dann erhoht, wenn die QPIF anzeigt, dass sie bereit ist,
den nachsten Teil an Daten zu lesen (d.h. sie stellt das g2pif_next_data Signal auf), einmal fur jede Wort-Le-
sung. Mit Ausnahme in Streaming-Situationen, wird eine Transaktion beendet (abgeschlossen), wenn der Aus-
gangs-Hinweiszeiger den glltigen Hinweiszeiger erreicht. Wenn eine Transaktion endet, bevor alle Daten ge-
lesen sind (d. h. bevor der Ausgangs-Hinweiszeiger den Eingangs-Hinweiszeiger erreicht), wird die QPIF an
der Stelle, angezeigt durch den Ausgangs-Hinweiszeiger, aufnehmen, wenn die Transaktion wieder beginnt.
Wenn der Ausgangs-Hinweiszeiger erhdht wird, allerdings die Ausgangs-Hinweiszeiger-Logik 2124 ein Step-
back-Signal (q2pif_step_back) empfangt, was anzeigt, dass die Transaktion an dem PCI-Bus beendet wurde,
bevor die QPIF in der Lage war, den letzten Teil von Daten zu lesen, erniedrigt die Ausgangs-Hinweiszeiger-Lo-
gik 2124 den Zahler einmal, so dass der letzte, nicht gelesene Teil der Daten gelesen werden kann, wenn die
Transaktion wieder beginnt. Ein Warteschlangen-Schnittstellen-Block 2126 liefert Transaktions-Informationen
und den gultigen und Ausgangs-Hinweiszeiger zu der QPIF.

WARTESCHLANGE FUR VERZOGERTEN ABSCHLUSS

[0156] Wie Fig. 66 zeigt, speichert die DCQ 144 verzdgerte Abschluss-Nachrichten, die die Antwort des Tar-
get-Busses auf jede verzogerte Anforderung, ausgegeben zu dem initiierenden Bus hin, enthalten. Verzdgerte
Abschluss-Nachrichten entsprechend zu verzdgerten Lese-Anforderungen umfassen die angeforderten Da-
ten, wahrend verzégerte Abschluss-Nachrichten, entsprechend zu verzégerten Schreib-Anforderungen, keine
Daten umfassen. Ein Kabel-Schnittstellen-Block 2130 beansprucht verzégerte Abschluss-Nachrichten von
dem Kabel-Decodierer und liefert die verzégerten Abschluss-Informationen zu einem Tag-Speicher 2132. Die
DCQ, und deshalb der Tag-Speicher 2132, ist dazu geeignet, bis zu acht verzdgerte Abschluss-Nachrichten
auf einmal zu speichern. Der Tag-Speicher 2132 speichert Informationen, wie beispielsweise den PCl-Befehl
und die Adresse, enthalten in der originalen Anforderung, zu der verzégerten Abschluss-Nachricht fiihrend,

16/215

DE 697 21 381 T2 2004.01.15

Byte-Freigabe-Bits, Adressen- und Daten-Paritats-Bits und Bits fur einen ,verriegelten Zyklus" und einen ,Du-
al-Adressen-Zyklus". Fir verzdgerte Schreib-Transaktionen, die immer nur ein einzelnes Wort an Daten ein-
setzen, speichert der Tag-Speicher 2132 eine Kopie der geschriebenen Daten. Jeder der acht Schlitze bzw.
Steckplatze in dem Tag-Speicher 2132 umfasst einen implizierten Hinweiszeiger zu einem von acht entspre-
chenden Daten-Puffern in einem DCQ-Daten-RAM 2134. Fir verzdgerte Lese-Transaktionen werden die zu-
ruckgefuhrten Daten in einem entsprechenden Daten-Puffer 2135a-h in dem Daten-RAM 2134 gespeichert.
Die folgende Tabelle stellt die Informationen dar, gespeichert in dem Tag-Speicher 2132 fiir jede Transaktion,
gehalten in der DCQ.

Feld Bits Anmerkungen
Adresse 64 eingangsseitige Transaktionen unterstutzen Du-
al-Adressen-Zyklen
PCI-Befehl 4 I/O-Lesen

1/0-Schreiben
Config-Lesen
Config-Schreiben
Speicher-Lesen
Speicher-Lese-Zeile
Speicher-Lese-Multiple

Byte-Freigaben 4 Byte-Freigaben, nicht notwendig an MRL, MRM
Paritat 1/Daten-Ubertragung schicke Daten PAR mit verzégerten Schreib-
Transaktionen
Daten 32 Daten, in die Warteschlange gestellt, bei verzs-
. gerten Schreib-Transaktionen
Verriegelung 1
DAC-Indikation 1 zeigt an, ob Adresse 32 oder 64 Bits ist

Inhalte von DCQ

[0157] Jeder der acht Daten-Puffer in dem DCQ-Daten-RAM 2134 kann bis zu acht Cache-Zeilen (256 Bytes)
an verzogerten Abschlussdaten speichern. Deshalb sind die Puffer gro3 genug, um alle Abschlussdaten fir
sogar die groften, verzdgerten Anforderungs-Transaktionen (Speicher-Lese-Mehrfach-Transaktion) zu spei-
chern. Allerdings kann die Kapazitat jedes Daten-Puffers auf vier Cache-Zeilen durch Einstellen eines Konfi-
gurations-Bits (cfg2q_eight_line_) in den Konfigurations-Registern des Briicken-Chips reduziert werden. Jeder
Daten-Puffer kann durch Daten gefiillt werden, vorgesehen in einer einzelnen, verzdégerten Abschluss-Trans-
aktion, oder falls nicht alle angeforderten Daten in einer einzelnen, verzogerten Abschluss-Transaktion zurlick-
gefihrt werden, durch mehrfache, verzogerte Abschluss-Transaktionen. Allerdings kann jeder Daten-Puffer
Daten entsprechend zu nur einer originalen, verzogerten Anforderung enthalten, ungeachtet davon, wieviele
verzogerte Abschluss-Transaktionen es bendétigt, die angeforderten Daten zu liefern.

[0158] Ein Warteschlangen-Schnittstellen-Block 2136 steuert den Fluss von Abschluss-Daten von der
DCQ-Kabel-Schnittstelle 2130 in den Daten-RAM 2134 hinein und aus dem Daten-RAM 2134 zu der QPIF her-
aus. Drei Logik-Blocke erzeugen Hinweiszeiger, die die Eingabe und die Ausgabe von Daten, gespeichert in
den acht Daten-Puffern, leiten. Der erste Block, ein Eingangs-Hinweiszeiger-Logik-Block 2138, behalt einen
Sechs-Bit-Eingangs-Hinweiszeiger fir jeden der acht Daten-Puffer bei (in_pointer_0[5:0], in_pointer_1[5:0],
usw.). Jeder Eingangs-Hinweiszeiger weist auf die Stelle in dem entsprechenden Daten-Puffer hin, um das
nachste Wort an Daten zu platzieren. Der zweite Block, ein Ausgangs-Hinweiszeiger-Logik-Block 2140, behalt
einen Sechs-Bit-Ausgangs-Hinweiszeiger fur jeden der acht Puffer bei (out_pointer_0[5:0], out_pointer_1[5:0],
usw.). Jeder Ausgangs-Hinweiszeiger weist auf die Stelle des Worts von Daten unmittelbar dem Wort, das als
letztes von der QPIF entfernt ist, hin. Der Ausgangs-Hinweiszeiger fir einen ausgewahlten Daten-Puffer wird
dann erhoht, wenn die QPIF anzeigt, dass sie fir den nachsten Teil von Daten bereit ist (d. h. wenn
g2pif_next_data aufgestellt ist). Falls der Ausgangs-Hinweiszeiger erhoht wird, allerdings der letzte Teil von
Daten nicht die anfordernde Vorrichtung erreicht, da die Transaktion durch eine Vorrichtung, eine andere als
die QPIF, beendet wurde, stellt die QPIF ein Rickschritt-Signal (q2pif_step_back) auf, das bewirkt, dass der
Ausgangs-Hinweiszeiger-Logik-Block 2140 den Ausgangs-Hinweiszeiger um ein Wort erniedrigt.

[0159] Der dritte Hinweiszeiger-Block, ein gulltiger Hinweiszeiger-Logik-Block 2142, behalt fiir jeden der
Acht-Daten-Puffer einen Sechs-Bit-Gliltigkeits-Hinweiszeiger bei (valid_pointer_0(0:5], valid_pointer_1[5:0],
usw.), der das nachste Wort an Daten in dem entsprechenden Daten-Puffer anzeigt, der zu der QPIF verfiigbar

17/215

DE 697 21 381 T2 2004.01.15

ist. Da die PCI Spec. 2.1 erfordert, dass Lese-Abschluss-Daten nicht vor einer friher initiierten, geposteten
Speicher-Schreib-Transaktion zurickgefuhrt werden, kénnen verzdgerte Abschluss-Daten, platziert in die
DCQ hinein, wahrend ein gepostetes Speicher-Schreiben in dem PMWQ anhangig ist, nicht zu der anfordern-
den Vorrichtung verfugbar gemacht werden, bis das gepostete Speicher-Schreiben auf dem PCI-Bus abge-
schlossen ist und von der PMWQ entfernt ist. Deshalb muss, solange wie irgendwelche friiher in die Warte-
schlange gestellten, geposteten Speicher-Schreib-Transaktionen in der PMWQ verbleiben, der glltige Hin-
weiszeiger bei seiner momentanen Position verbleiben. Dann kann, wenn alle friiher in die Warteschlange ge-
stellten, geposteten Speicher-Schreib-Vorgange von der PMWQ entfernt worden sind, der gliltige Hinweiszei-
ger zu derselben Position wie diejenige in dem Hinweiszeiger bewegt werden. Wenn die PMWQ leer ist, sind
alle verzdgerten Abschluss-Daten gliltig (d. h. zu der anfordernden Vorrichtung hin verfiigbar), sobald wie sie
in der DCQ gespeichert sind.

[0160] Wie auch die Fig. 67A und 67B zeigen, muss der Gultigkeits-Hinweiszeiger-Logik-Block 2142 den
Master-Zyklus-Arbitrierer (Master Cycle Arbiter - MCA) fragen, um alle verzégerten Abschluss-Transaktionen
fur gultig zu erklaren, die in die verzégerte Abschluss-Warteschlange eintreten, wahrend ein gepostetes Spei-
cher-Schreiben in der PMWQ anhangig ist. Allerdings kann, da der MCA nicht mehr als vier verzdgerte Ab-
schluss-Transaktionen auf einmal in die Warteschlange stellen kann, wie dies nachfolgend diskutiert ist, der
Gultigkeits-Hinweiszeiger-Logik-Block 2142 eine Gultigkeit von nicht mehr als vier verzdgerten Abschluss-Da-
ten-Puffern auf einmal anfordern. Der Giiltigkeits-Hinweiszeiger-Logik-Block 2142 muss auch eine Protokollie-
rung beibehalten, welche vier verzdgerten Abschluss-Transaktionen in dem MCA zu irgendeinem gegebenen
Zeitpunkt in die Warteschlange gestellt sind. Um dies so vorzunehmen, behalt der Giiltigkeits-Hinweiszei-
ger-Logik-Block 2142 zwei Vier-Schlitz-Register bei: ein DCQ-Puffer-Zahl-Register 2144 und ein Giltig-
keits-Anforderungs-Register 2146. Das Puffer-Zahl-Register 2144 behalt die Drei-Bit-DCQ-Puffer-Zahl bei, wie
dies durch das DCQ-Puffer-Zahl-Signal (cd_dcq_buff_num[2:0]) bestimmt ist, geliefert durch den Kabel-Deco-
dierer, und zwar von jeder verzdgerten Abschluss-Transaktion, in dem MCA in die Warteschlange gestellt. Das
Gultigkeits-Anforderungs-Register 2146 behalt ein Transaktions-Gultigkeits-Anforderungs-Bit fiur jeden der
DCQ-Puffer bei, deren Zahlen in den vier Schlitzen bzw. Einsteckplatzen 2148a-d des Puffer-Zahl-Registers
2144 gespeichert sind. Das Anforderungs-Bit in jedem Schlitz 2150a-d des Gultigkeits-Anforderungs-Regis-
ters 2146 wird aufgestellt, falls eine entsprechende, verzdgerte Abschluss-Transaktion in dem MCA in die War-
teschlange gestellt ist. Die Werte der Bits in den vier Gultigkeits-Anforderungs-Schlitzen 2150a—d werden zu-
sammen mit dem MCA als ein Vier-Bit-Gultigkeits-Anforderungs-Signal (dcq_valid[3:0]) vorgesehen.

[0161] Wenn eine verzdgerte Abschluss-Transaktion in dem MCA in die Warteschlange gestellt werden soll,
wird seine entsprechende DCQ-Puffer-Zahl in einen der Puffer-Zahl-Schlitze bzw. -Einsteckplatze 2148a-d
durch das cd_dcq_buff_num[2:0] Signal eingeladen. Der Schlitz 2148a-d, der beladen werden soll, wird durch
ein Zwei-Bit-Auswahl-Signal (next_valid_select[1:0]) ausgewahlt. Der Wert des Auswahl-Signals hangt von
dem Wert des dcq_valid[3:0] Signals, erzeugt durch das Giiltigkeits-Anforderungs-Register 2146 und die
Durchsichts-Tabelle 2152, ab, wobei die Inhalte davon in der Tabelle nachfolgend gezeigt sind. Der Schlitz wird
dann beladen bzw. belegt, wenn er durch next_valid_select[1:0] ausgewahlt ist, wenn der Kabel-Decodieren
die DCQ ausgewahlt hat und die Transaktion abgeschlossen hat (d. h. cd_dcq_select und cd_complete werden
aufgestellt), und wenn mindestens eine gepostete Speicher-Schreib-Transaktion in der PMWQ anhangig ist
(d.h. pmwqg_no_pmw ist nicht aufgestellt). Gates 2154, 2156, 2158, 2160 und 2162 und ein 2x4 Decodieren
2164 sind so angeordnet, um das Puffer-Zahl-Register 2144 auf diese Art und Weise zu laden. In ahnlicher
Weise wird das entsprechende Bit in dem Glltigkeits-Anforderungs-Register 2146 durch den Ausgang von
Gates 2154, 2156, 2158, 2160 und 2162 und den 2x4 Decodierer 2164 eingestellt.

dcg_valid[3:0] next_valid_select[1:0] Schlitz #
xxx0 00 0
xx01 01 1
x011 10 2
0111 11 3

Puffer-Zahl-Register-Schlitz-Auswabhl

[0162] Aufdas dcq_valid[3:0] Signal hin gibt der MCA ein Vier-Bit-DCQ-Lauf-Signal (mca_run_dcq[3:0]) aus,
das anzeigt, welcher der DCQ-Puffer, auf den durch das Puffer-Zahl-Register hingewiesen ist, seinen Gultig-
keits-Hinweiszeiger aktualisiert haben kann. Das mca_run_dcq[3:0] Signal wird zu einem Gultigkeits-Hinweis-
zeiger-Aktualisierungs-Logik-Block 2166 geliefert, und zwar zusammen mit dem pmwg_no_pmw Signal und

18/215

DE 697 21 381 T2 2004.01.15

den In-Hinweiszeigern flr jeden der acht Daten-Puffer. Falls eine gepostete Speicher-Schreib-Transaktion in
der PMWQ verbleibt, nachdem der MCA eines der mca_run_dcq[3:0] Bits aufstellt (was dann auftreten wird,
wenn eine gepostete Speicher-Schreib-Transaktion in die Warteschlange gestellt wurde, nachdem die verzo-
gerte Abschluss-Transaktion in die Warteschlange gestellt wurde, allerdings bevor der MCA das entsprechen-
de mca_run_cq Bit aufgestellt hat), wird der entsprechende Giiltigkeits-Hinweiszeiger aktualisiert, solange wie
keine anderen, verzégerten Abschluss-Transaktionen entsprechend zu demselben DCQ-Puffer noch in dem
MCA in die Warteschlange gestellt sind. Falls eine verzdgerte Abschluss-Transaktion fur denselben DCQ-Puf-
fer noch in der MCA in die Warteschlange gestellt ist, kann der Gultigkeits-Hinweiszeiger nur aktualisiert wer-
den, wenn das mca_run_dcq Bit entsprechend dieser Transaktion aufgestellt ist. Andererseits werden, sobald
das pmwq_no_pmw Signal weggenommen ist, alle Giiltigkeits-Hinweiszeiger aktualisiert, um die entsprechen-
den In-Hinweiszeiger anzupassen, ungeachtet davon, ob verzdégerte Abschliisse noch in der Warteschlange
in dem MCA gestellt sind. Wenn ein mca_run_dcq Bit aufgestellt ist, wird das entsprechende Bit in dem Gil-
tigkeits-Anforderungs-Register 2146 geldscht. Gates 2168, 2170, 2172, 2174 und 2176 sind so angeordnet,
um die Gultigkeits-Anforderungs-Register-Bits auf diese Art und Weise zu I6schen. Wie wiederum Fig. 66
zeigt, bestimmt ein Hit-Logik-Block 2180, wenn eine verzdgerte Anforderungs-Transaktion von einer anfor-
dernden Vorrichtung auf dem PCI-Bus eine der verzdogerten Abschluss-Nachrichten in der DCQ ,getroffen” hat.
Entsprechend zo der PCI Spec 2.1 mussen die folgenden Attribute identisch fur einen verzégerten Abschluss
sein, um zu einer Anforderung angepasst zu werden: Adresse, PCI Befehl, Byte-Freigaben, Adressen- und Da-
ten-Paritat (falls eine Schreib-Anforderung vorliegt), REQ64# (falls eine 64-Bit-Daten-Transaktion vorliegt),
und LOCK# (falls unterstitzt wird). Falls eine Anforderung durch die PCI-Slave verriegelt ist, sucht die QPIF
die Anforderungs-Informationen auf, schickt sie zu der DCQ und stellt ein Prif-Zyklus-Signal auf
(92pif_check_cyc), das die DCQ-Hit-Logik 2180 instruiert, die Anforderungs-Informationen zu den verzégerten
Abschluss-Nachrichten, gespeichert in dem DCQ-Tag-Speicher 2132, zu vergleichen. Die Hit-Logik 2180 emp-
fangt das 64 Bit-Adressen-Signal (q2pif_addr[63:2]), das Vier-Bit-PCl-Befehls-Signal (q2pif _cmd[3:0]), die vier
Freigabe-Bits (q2pif_byte en[3:0]), das Dual-Adressen-Zyklus-Bit (q2pif_dac), (das dem PCl REQ64# Signal
entspricht), das Verriegelungs-Bit (g2pif_lock) von der QPIF, und, falls die Anforderung eine Schreib-Anforde-
rung ist, die Daten, die geschrieben werden sollen (q2pif_data[31:0]). Obwohl es nicht durch die PCI Spec 2.1
erforderlich ist, liefert die QPIF auch die Schlitz-Zahl (q2pif_slot[2:0]) der anfordernden Vorrichtung, um das
Puffer-Entleerungs-Programm flir den Warteschlangen-Block fortzufiihren, wie dies nachfolgend beschrieben
ist. Die Hit-Logik 2180 vergleicht dann jedes dieser Signale mit verzégerten Abschluss-Informationen, gespei-
chert in den acht DCQ-Puffern. Falls alle Signale die Informationen irgendwelcher der verzdégerten Ab-
schluss-Nachrichten anpassen, identifiziert die Hit-Logik 2180 den Puffer, der die Anpassungs-Ab-
schluss-Nachricht enthalt, durch Aufstellen eines entsprechenden Bits in einem Acht-Bit-Hit-Signal
(dcq_hit(7:0]). Wenn ein Treffer bzw. Hit auftritt, sucht die QPIF die Abschluss-Nachricht auf und liefert sie zu
der anfordernden Vorrichtung. und, falls die Anforderung eine Lese-Anforderung ist, beginnt sie ein Entfernen
der zuriickgefihrten Daten von dem entsprechenden Daten-Puffer in dem Daten-RAM 2134. Falls die ange-
forderten Informationen nicht die Abschluss-Informationen irgendeiner der verzégerten Abschluss-Nachrichten
in der DCQ anpassen, ist die Anforderung in Bezug auf die DCQ ,fehlgeschlagen” (,missed"), und wird in dem
nachsten, verfligbaren DCQ-Puffer gespeichert und Uber das Kabel zu dem anderen Bricken-Chip durch die
QPIF weitergefihrt. Eine PCI-Vorrichtung, die eine Anforderung initiiert, die die DCQ verfehlt hat, kann deren
REQ# Leitung maskiert haben, bis deren Abschluss-Nachricht zuriickgefihrt ist, wie dies in weiterem Detail
nachfolgend beschrieben ist.

[0163] Die Hit-Logik 2180 verbindet sich auch schnittstellenmafig mit einem Multi-Threaded-Master-Erfas-
sungs-Block 2182, um zu erfassen, welche PCI-Schlitze bzw. - Steckplatze, falls welche vorhanden sind, Mul-
ti-Threaded Vorrichtungen enthalten. Multi-Threaded Vorrichtungen sind in der Lage, mehr als eine, verzdgerte
Transaktion zu einem Zeitpunkt beizubehalten, und missen deshalb speziell behandelt werden. Wenn ein Mul-
ti-Threaded-Master erfasst ist, wird ein entsprechendes Bit in den Konfigurations-Registern eingestellt, um an-
zuzeigen, dass die Vorrichtung in der Lage ist, mehrere, offenstehende, verzégerte Transaktionen zu unter-
stltzen, und deshalb sollte deren REQ# Zeile nicht maskiert werden. Eine Multi-Threaded-Master-Erfassung
wird in weiterem Detail nachfolgend diskutiert.

[0164] Eine andere Funktion der DCQ ist diejenige, zu bestimmen, wenn eine Gelegenheit existiert, um eine
Datenfolge von Lese-Daten zwischen dem primaren und dem sekundaren PCI-Bus erzeugen. Eine Strea-
ming-Gelegenheit existiert dann, wenn verzégerte Abschluss-Daten in die DCQ durch den Kabel-Decodierer
platziert werden, wahrend sie noch auf dem Target-Bus durch die Target-Vorrichtung platziert sind. Falls die
PCI-Vorrichtung, die die Transaktion initiierte, wieder deren Anforderung liefert, wahrend die Target-Vorrich-
tung noch Daten auf dem PCI-Bus platziert, wird eine Lese-Datenfolge eingerichtet. Da ein Lese-Streaming
eine effiziente Art und Weise ist, um Daten zwischen dem primaren und dem sekundaren PCI-Bus zu Ubertra-
gen, gibt der PCI-Brticken-Chip nicht nur eine héhere Prioritat in den Bus-Arbitrierungs-Prozess zu einer Vor-
richtung, deren Abschluss-Daten ankommen, sondern wird auch versuchen, eine Nicht-Streaming-Transaktion
zu beenden, um die Méglichkeit zu verbessern, dass eine Datenfolge eingerichtet werden wird. Allerdings ist

19/215

DE 697 21 381 T2 2004.01.15

es, wahrend in der Theorie ein Streaming wahrend irgendeines Lese-Zyklus auftreten kann, in der Praxis wahr-
scheinlich, dass dies nur wahrend Transaktionen auftritt, die eine groRe Menge an Daten umfassen (d.h. Spei-
cher-Lese-Mehrfach-Transaktionen). Deshalb wird der Warteschlangen-Block versuchen, Transaktionen zu-
gunsten von potentiellen Streaming-Gelegenheiten nur dann zu beenden, wenn eine potentielle Strea-
ming-Transaktion eine Speicher-Lese-Mehrfach-Transaktion ist.

[0165] Wie auch Fig. 68 zeigt, bestimmt ein Stream- bzw. Datenfolge-Logik-Block 2184 in der DCQ, ob eine
Streaming-Gelegenheit existiert, und, falls dies der Fall ist, erzeugt er die Signale, erforderlich dazu, die Da-
tenfolge zu unterstitzen. Der Datenfolge-Logik-Block 2184 erzeugt die Signale, erforderlich dazu, eine mo-
mentane Transaktion zugunsten einer potentiellen Datenfolge zu unterbrechen. Wenn der Kabel-Decodieren
eine verzdgerte Abschluss-Transaktion in der DCQ platziert, verwendet die Datenfolge-Logik 2184 das
DCQ-Puffer-Zahl-Signal, geliefert durch den Kabel-Decodieren (cd_dcq_buff_num), um den PCI-Befehl-Code,
gespeichert in dem entsprechenden DCQ-Puffer (q0_cmd[3:0], g1_cmd[3:1] usw.), aufzusuchen. Falls der Be-
fehl-Code eine Speicher-Lese-Mehrfach-Anforderung (d. h. ,1100") darstellt, stellt die Datenfolge-Logik 2184
ein Unterbrechungs-Fir-Datenfolge-Signal (dcq_disconnect for_stream) auf, das die QPIF und die
PCI-Schnittstelle instruiert, die momentane Transaktion aufgrund einer potentiellen Streaming-Gelegenheit zu
beenden. Ein Multiplexer 2186 wund ein Komparator 2188 sind so angeordnet, um das
dcq_disconnect_for_stream Signal zu erzeugen. Dann liefert, solange wie der Kabel-Decodierer fortfahrt, die
Abschluss-Daten zu der DCQ zu liefern (d. h. das cd_dcq_select Signal verbleibt aufgestellt) und keine gepos-
teten Speicher-Schreibvorgange in der PMWQ erscheinen (d. h. pmwqg_no_pmw verbleibt aufgestellt), liefert
die Datenfolge-Logik 2184 ein Streaming-Request-Signal (q2a_stream) direkt zu dem PCI-Arbitrierer. Die Da-
tenfolge-Logik 2184 liefert auch die Schlitz- bzw. Einsteckplatz-Zahl der potentiellen Streaming-Vorrichtung
(q2a_stream_master[2:0]) zu dem PCI-Arbitrierer unter Verwendung des cd_dcq_buff_num[2:0] Signals, um
die PCI-Schlitz-Zahl, gespeichert in dem ausgewahlten DCQ-Puffer (q0_master[2:0] fur DCQ-Puffer-Null
2135a, gq1_master[2:0] fir DCQ-Puffer-Eins 2135b, usw.), auszuwahlen. Der PCI-Arbitrierer hebt dann die
Bus-Arbitrierungs-Prioritat der potentiellen Streaming-Vorrichtung an, wie dies in weiterem Detail nachfolgend
diskutiert ist. Falls dem potentiellen Streaming-Master nicht. der Bus erteilt wird, bevor die Streaming-Gelegen-
heit verschwindet, wird deren Prioritdt zu Normal zurilickgefiihrt. Da der eingangsseitige Bus nur eine Mas-
ter-Vorrichtung (die CPU) besitzt, wird dieses Merkmal in dem eingangsseitigen Chip gesperrt. Das Gate 2190
und der Multiplexer 2192 sind so angeordnet, um die g2a_stream und g2a_stream_master Signale zu erzeu-
gen.

[0166] Wenn eine anfordernde Vorrichtung eine verzdgerte Abschluss-Nachricht, gespeichert in der DCQ,
trifft, wird das entsprechende Bit eines Acht-Bit-Hit-Signals (hit[7:0]) aufgestellt. Das hit[7:0] Signal zeigt an,
welcher der acht DCQ-Puffer durch die momentane Anforderung getroffen ist. Wenn dies auftritt, verriegelt,
falls der entsprechende DCQ-Puffer Daten enthalt (d. h. dcq_no_data wird nicht aufgestellt), die Datenfol-
ge-Logik 2118 den Wert des Hit-Signals fur die Dauer der Transaktion (d. h. solange, wie q2pif_cyc_complete
aufgestellt ist). Die verriegelte Version des Hit-Signals bildet ein ,verzdgertes" Hit-Signal (dly_hit[7:0]). Wenn
entweder das Hit-Signal oder das verzdgerte Hit-Signal anzeigt, dass ein DCQ-Puffer getroffen worden ist, lie-
fert ein Drei-Bit-DCQ-Datenfolge-Puffer-Signal (dcq_stream_buff[2:0]) die Puffer-Zahl des getroffenen bzw.
Hit-DCQ-Puffers. Dann stellt, falls der Kabel-Decodierer verzégerte Abschluss-Daten in den Puffer platziert,
wahrend sich der Zyklus, der den Puffer traf, in Arbeit befindet (d. h. cd_dcq_select wird aufgestellt und
cd_dcq_buff_num[2:0] entspricht dcq_stream_buff[2:0]), der Datenfolge-Logik-Block 2180 ein Datenfolge-Ver-
bindungs-Signal auf (dcg_stream_connect), das der QPIF mitteilt, dass eine Datenfolge eingerichtet worden
ist. Die QPIF informiert dann den Briicken-Chip auf dem Target-Bus, dass eine Datenfolge eingerichtet worden
ist. Falls bestimmte Bedingungen erfiillt sind, wird die Target-QPIF fortfahren im Datenfluss zu arbeiten, bis sie
mitteilt, zu stoppen, durch Initiieren von QPIF, wie dies in weiterem Detail nachfolgend diskutiert ist. Gates 2194
und 2196, Multiplexer 2198 und 2200 und ein Flip-Flop 2202 sind so angeordnet, um das verzdgerte Hit-Signal
zu erzeugen. Gates 2204, 2206 und 2208 und ein Codieren 2210 sind so angeordnet, wie dies dargestellt ist,
um die dcq_stream_connect und dcq_stream_buff[2:0] Signale zu erzeugen.

[0167] Wie wiederum Fig. 66 zeigt, wird die DCQ, unter bestimmten Umstanden, automatisch Daten von dem
Target-Bus zu Lasten eines PCI-Masters bei der Antizipierung automatisch vorab Abrufen, dass der Master zu-
rickkommen wird und die Daten anfordern wird. Ein Prefetch-Logik-Block 2212 in der DCQ stellt Daten vorab
ein, wenn der lesende Master alle die Daten in seinem DCQ-Puffer verbraucht und die Prefetch-Logik 2212
erwartet, dass die anfordernde Vorrichtung mit einer sequenziellen Lese-Anforderung zurtickkehren wird (d. h.
eine Anforderung, die Daten aufnimmt, angeordnet an der nachsten, sequenziellen Stelle in dem Speicher).
Da einige Vorrichtungen, wie beispielsweise Multi-Threaded-Master, routinemaRig alle die Daten lesen, ange-
fordert in einer Transaktion, und dann mit einer unterschiedlichen, nicht-sequenziellen Anforderung zuriickkeh-
ren, umfasst die Prefetch-Logik 2212 eine Vorhersageschaltung, die die Prefetch-Fahigkeiten fir jede Vorrich-
tung auf dem PCI-Bus sperrt, bis die Vorrichtung eine Tendenz dahingehend gezeigt hat, sequenzielle Le-
se-Anforderungen auszugeben. Sobald sie eine Vorrichtung, die vorab eingestellte Daten empfangen hat, mit
einer nicht-sequenziellen Lese-Anforderung zurlickkehrt, wird die Voraussage-Schaltung die Prefet-

20/215

DE 697 21 381 T2 2004.01.15

ching-Funktion fur diesen Master sperren.
[0168] Unter Bezugnahme auch auf die Fig. 69a und 69b umfasst der Prefetch-Logik-Block 2212 ein Pre-
fetch-Vorhersage-Register 2214, wobei der Ausgang davon ein Acht-Bit-Prefetch-Freigabe-Signal
(prefetch_set[7:0]) ist, das beurteilt, ob die Prefetch-Funktion fiir jede der Vorrichtungen auf dem PCI-Bus ver-
fugbar ist. Alle Bits in dem Prefetch-Freigabe-Signal werden bei einem Reset (RST) geldscht und wenn die
QPIF ein allgemeines Loschen aller der DCQ-Register fordert (d. h. general_flush wird aufgestellt und
g2pif_slot [2:0] entspricht ,000"). Das general_flush Signal wird in weiterem Detail nachfolgend diskutiert.
Gates 2216 und 2218 erzeugen das Signal, das die prefetch_set Bits wiedereinstellt.
[0169] Ein individuelles Bit in dem Prefetch-Freigabe-Signal wird dann eingestellt, wenn der entsprechende
PCI-Schlitz bzw. PCI-Einsteckplatz durch das q2pif_slot Signal ausgewahlt ist und die folgenden Zustande auf-
treten: die anfordernde Vorrichtung trifft einen verzégerten Abschluss-Puffer in der DCQ (d. h. eines der Bits in
den cycle_hit[7:0] Signal wird aufgestellt), die momentane Transaktion ist eine Speicher-Lese-Zeile oder ein
Speicher-Lese-Mehrfach-Zyklus (d. h. g2pif_cmd[3:0] entspricht ,1100" oder ,11110"), die QPIF hat angezeigt,
dass der Zyklus vollstandig ist, (d. h. g2pif_cyc_complete wird aufgestellt) und das letzte Wort von Daten wurde
von dem DCQ-Puffer herangezogen (d.h. last_word ist aufgestellt). Gates 2220, 2222, 2224 und 2228a-h und
ein Decodierer 2226 sind so angeordnet, um die Vorhersage-Bits auf diese Art und Weise einzustellen. Das
last word Signal wird durch die Prefetch-Logik 2212 aufgestellt, wenn die anfordernde Vorrichtung versucht,
hinter dem Ende des DCQ-Puffers zu lesen. Dies tritt dann auf, wenn der Out-Pointer (Out-Hinweiszeiger) und
der In-Pointer (In-Hinweizeiger) gleich sind, was anzeigt, dass das Ende des DCQ-Puffers erreicht worden ist
(d. h. fur einen Vier-Cache-Zeilen-Puffer, out_pointer x[4:0] entspricht valid_pointer_x[4:0] oder, flir einen
Acht-Cache-Zeilen-Puffer, out_pointer_x[5:0] entspricht valid_pointer_x[5:0]), und wenn die anfordernde Vor-
richtung versucht, einen anderen Teil von Daten zu lesen (d.h. g2pif_next_data ist aufgestellt). Gates 2230,
2232 und 2234 sind so angeordnet, um das last_word Signal zu erzeugen.
[0170] Ein individuelles Bit in dem Prefetch-Freigabe-Signal wird dann geldscht, wenn der entsprechende
PCI-Schlitz ausgewahlt ist und entweder ein PCI-Lésch-Zustand auftritt (p2q_flush wird aufgestellt), die QPIF
mitteilt der DCQ, den Giiltigkeits-Hinweiszeiger des Puffers zurlickzusetzen (q2p_step_back ist aufgestellt),
oder die anfordernde Vorrichtung eine Transaktion initiiert, die alle der DCQ-Puffer verfehlt (q2pif_check cyc
wird aufgestellt und dcqg_hit wird nicht aufgestellt). Gates 2236, 2238 und 2240a—h und ein Decodierer 2226
sind so angeordnet, um die Vorhersage-Freigabe-Bits in dieser Art und Weise zu I6schen.
[0171] Wenn die Prefetch-Funktion fiir eine Vorrichtung auf dem PCI-Bus freigegeben ist, kann die Pre-
fetch-Logik 2212 zwei Typen von Prefetch-Signalen fir die Vorrichtung erzeugen: ein Prefetch-Zeilen-Signal
(dcq_prefetch_line) und ein Prefetch-Mehrfach-Signal (dcq_prefetch_mul). Das Prefetch-Leitungs-Signal wird
dann erzeugt, wenn der momentane PCI-Befehl von der anfordernden Vorrichtung ein Speicher-Lese-Lei-
tungs-Zeilen-Signal ist, und das Prefetch-Mehrfach-Signal wird dann erzeugt, wenn der momentane PCI-Be-
fehl ein Speicher-Lese-Mehrfach-Signal ist. In jedem Fall wird das entsprechende Prefetch-Signal erzeugt,
wenn die folgenden Zustande auftreten: das prefetch_set Bit fiir den anfordernden PCI-Schlitz wird eingestellt;
ein entsprechendes Prefetch-Freigabe-Bit in den Konfigurations-Registern wird eingestellt
(cfg2g_auto_prefetch_enable); die DRQ in dem eingangsseitigen Chip ist nicht voll (!tc_dc_full); der DCQ-Puf-
fer hat Raum fir die entsprechende Menge an Prefetch-Daten (_!dcq_no_prefetch_room); der momentane Zy-
klus trifft den DCQ-Puffer; und der anfordernde Master hat versucht, hinter das Ende des DCQ-Puffers zu lesen
(last word und g2pif_cyc_complete). Gates 2242, 2244, 2246, 2248, 2250, und 2252, ein Decodierer 2254 und
Multiplexer 2256 und 2258 sind so angeordnet, um die Prefetch-Signale auf diese Art und Weise zu erzeugen.
[0172] Wenn die Prefetch-Logik 2212 ein Prefetch-Signal erzeugt, erzeugt sie ein entsprechendes Pre-
fetch-Adressen-Signal (dcq_prefetch_addr[63:2]) durch Verknipfen der oberen siebenundfiinfzig Bits der
Adresse, gespeichert in dem entsprechenden DCQ-Puffer (q0_addr[63:7] fur Puffer Null, g1_addr[63:7] fur Puf-
fer Eins, usw.) mit den unteren funf Bits des Ausgangs-Hinweiszeigers des Puffers (out_pointer_0[4:0], usw.).
Ein Dual-Adressen-Zyklus Signal (dcq_prefetch_dac) zeigt an, ob die Prefetch-Transaktion ein Dual- oder Ein-
zel-Adressen-Zyklus ist. Das dcq_prefetch_cycle Signal nimmt den Wert des Dual-Adressen-Bits, gespeichert
in dem DCQ-Puffer (q0_dac, q1_dac, usw.), an. Fur sowohl die Prefetch-Adressen- und Dual-Adressen-Zy-
klus-Signale wird der geeignete Wert von einem Multiplexer 2260 oder 2262 ausgegeben und durch das
Drei-Bit-DCQ-Puffer-Zahl-Signal ausgewahlt, anzeigend, welcher DCQ-Puffer durch die momentane Anforde-
rung getroffen wurde.
[0173] Wiederum unter Bezugnahme auf Fig. 66, besitzt jeder DCQ-Daten-Puffer verschiedene mogliche Zu-
stéande, wobei jeder davon durch einen Puffer-Zustand-Logik-Block 2264 in der DCQ bestimmt wird. Das Fol-
gende sind die moglichen Puffer-Zustande.

1. Leer (Empty). Verflgbar fir eine Zuordnung. Ein Puffer ist leer (empty) nach einem Laden bzw. Hochfah-

ren und nachdem er geleert ist.

2. Complete. Der Puffer enthalt Abschluss-Informationen fiir einen verzégerten Abschluss von einer realen,

verzdgerten Anforderung von einer Vorrichtung auf dem PCI-Bus (d.h. keine Prefetch-Anforderung). Die

PCI-Vorrichtung hat noch nicht wieder verbunden und Daten von dem Puffer genommen. Die verzdgerte

21/215

DE 697 21 381 T2 2004.01.15

Abschluss-Transaktion ist abgeschlossen.

3. Prefetch. Der Puffer enthalt Abschluss-Daten fiir eine Prefetch-Anforderung oder angeforderte Daten, die
in dem Puffer belassen wurden, nachdem der anfordernde Master von dem Puffer getrennt ist. Alle Ab-
schluss-Daten sind von dem Target angekommen.

4. PartComplete. Der Puffer ist fir Abschluss-Informationen flr eine reale, verzégerte Anforderung reser-
viert und kann diese enthalten (d.h. keine Prefetch-Anforderung). Der Master hat noch nicht wieder verbun-
den und Daten von dem Puffer genommen, und nicht alle Abschluss-Informationen sind von dem Target
angekommen.

5. PartPrefetch. Der Puffer ist fir Abschluss-Informationen fiir eine Prefetch-Anforderung reserviert oder
enthalt sie, oder der Puffer enthalt angeforderte Daten, die in dem Puffer verblieben, nachdem der anfor-
dernde Master von dem Puffer getrennt ist. Nicht alle Abschluss-Informationen sind von dem Target ange-
kommen.

6. Discard. Der Puffer wurde geldscht, wahrend er in dem PartPrefetch-Zustand war, allerdings sind die letz-
ten Abschluss-Daten bis jetzt noch nicht von dem Target angekommen. Der Puffer wird in den Discard-Zu-
stand versetzt, um zu verhindern, dass er verwendet wird, bis die Transaktion auf dem Target-Bus abge-
schlossen ist und die letzten Daten ankommen.

Wenn die QPIF einen DCQ-Puffer fir eine verzégerte Anforderungs-Transaktion anfordert, ordnet die Puf-
fer-Zustand-Logik 2264 die Puffer in der folgenden Reihenfolge zu. Falls kein Puffer in dem Empty-Zustand
oder dem Prefetch-Zustand vorliegt, muss der anfordernde Master erneut versucht werden.

[0174]

Puffer-Zahl Puffer-Zustand
Qo0 Empty
Q1 Empty
Q2 Empty
Q3 Empty
Q4 Empty
Q5 Empty
Q6 Empty
Q7 Empty
Qo0 Prefetch
Q1 Prefetch
Q2 Prefetch
Q3 Prefetch
Q4 Prefetch
Q5 Prefetch
Q6 Prefetch
Q7 Prefetch

DCQ-Puffer-Zuordnung

[0175] Wenn eine Vorrichtung auf dem PCI-Bus eine verzdgerte Lese-Anforderung initiiert und ein DCQ-Ab-
schluss-Puffer daneben eingestellt ist, andert die Puffer-Zustand-Logik 2264 den Zustand des Puffers zu Part-
Complete. Falls die DCQ eine Prefetch-Lesung initiiert, wird der Puffer-Zustand zu PartPrefetch geandert.
Wenn der letzte Teil von Abschluss-Daten ankommt, wird der Zustand des Puffers von PartComplete oder Part-
Prefetch zu Complete oder Prefetch jeweils hin gedndert. Wenn die anfordernde Vorrichtung wieder eine neu
versuchte Lese-Anforderung zufuhrt und den Puffer trifft, werden irgendwelche gultigen Abschluss-Daten zu
dem Master hin gegeben, falls sich der Puffer in dem Complete, Prefetch, PartComplete oder PartPrefetch-Zu-
stand befindet.

[0176] Wenn der Master nicht alle die Daten vor einer Unterbrechung nimmt, wird der Zustand des Puffers zu
Prefetch oder PartPrefetch hin gedndert, um anzuzeigen, dass nicht beanspruchte Daten dahingehend ange-
sehen werden, dass sie Prefetch-Daten sind. Falls der Master den letzten Teil von Daten heranzieht, wenn sich
der Puffer in dem Complete oder Prefetch-Zustand befindet, wird der Zustand des Puffers zu Empty hin geéan-
dert.

[0177] Falls ein Lésch-Signal empfangen wird, wahrend sich ein Puffer in dem Prefetch-Zustand befindet,
werden die Prefetch-Daten in dem Puffer ausgesondert und der Puffer-Zustand wird zu Empty hin geandert.
Falls ein Lésch-Ereignis auftritt, wahrend sich der Puffer in dem PartPrefetch-Zustand befindet und Ab-
schluss-Daten noch ankommen, wird der Puffer zu dem Discard-Zustand geandert, bis alle Prefetch-Daten an-
kommen. Wenn die Transaktion abgeschlossen ist, werden die Prefetch-Daten ausgesondert und der Puf-

22/215

DE 697 21 381 T2 2004.01.15

fer-Zustand wird zu Empty hin geéndert. Falls sich der Puffer in dem Complete oder Part-Complete-Zustand
befindet, wenn ein Lésch-Signal empfangen wird, werden die Abschluss-Daten in dem Puffer belassen und der
Puffer-Zustand verbleibt ungeandert. Falls das Lésch-Signal auftritt, da die entsprechende PCI-Vorrichtung
eine neue Anforderung ausgegeben hat, d. h. eine Anforderung, die nicht momentan in die Warteschlange ge-
stellt ist, und die alle die Abschluss-Puffer ,verfehlt"), wie dies nachfolgend diskutiert worden ist, ordnet die
DCAQ einen neuen Puffer fir die Transaktion zu, wie dies vorstehend diskutiert ist. Deshalb kann eine PCI-Vor-
richtung mehr als einen Abschluss-Puffer zugeordnet haben. Mehrfach-Puffer kdnnen zu einer PCI-Vorrich-
tung zugeordnet werden, wenn die Vorrichtung einen Puffer besitzt, der Abschluss-Daten enthalt oder erwartet
(d. h. der Puffer befindet sich in dem Complete oder PartComplete-Zustand) und die Vorrichtung eine neue An-
forderung ausgibt. Da Multi-Threaded-Vorrichtungen die einzigen Vorrichtungen sind, die mehrere Transaktio-
nen auf einmal beibehalten kénnen, kdnnen nur Multi-Threaded-Vorrichtungen Mehrfach-Abschluss-Puffer
gleichzeitig reserviert haben.

MASTER-ZYKLUS-ARBITRIERER

[0178] Der Master-Zyklus-Arbitrierer (Master Cycle Arbiter — MCA) bestimmt die Ausfiihrungs-Reihenfolge
von geposteten Speicher-Schreib- und verzégerten Anforderungs-Transaktionen, wahrend die Reihenfol-
gen-Einschrankungen zwischen geposteten Speicher-Schreib-, verzégerten Anforderungs- und verzdgerten
Abschluss-Zyklen beibehalten werden, angegeben in PCI Spec. 2.1. Entsprechend der PCI Spec 2.1 muss der
MCA garantieren, dass ausgefuhrte Zyklen eine starke Schreib-Reihenfolge beibehalten und dass keine Dead-
locks auftreten. Um sicherzustellen, dass keine Deadlocks auftreten werden, muss geposteten Spei-
cher-Schreib-Zyklen ermdglicht werden, friher in die Warteschlage gestellte, verzégerte Anforderungs-Zyklen
zu passieren, und die geforderten Reihenfolgen-Einschrankungen beizubehalten, wobei verzégerten Anforde-
rungs-Zyklen und verzogerten Abschluss-Zyklen niemals erlaubt werden muss, friher in die Warteschlange
gestellte, gepostete Speicher-Schreib-Zyklen zu passieren.

[0179] Unter Bezugnahme wiederum auf Fig. 70 verwendet der MCA zwei Transaktions-Warteschlangen,
eine Transaktions-Lauf-Warteschlange (Transaction Run Queue - TRQ) oder (Transaktions-Ausfuh-
rungs-Warteschlangen) 2270 und eine Transaktions-Reihenfolge-Warteschlange (Transaction Order Queue —
TOQ) 2272, um Zyklen, in die, PMWQ, die DRQ und die DCQ warteschlangenmafig gestellt, zu verwalten. Ein
MCA-Steuerblock 2274 nimmt Transaktionen von der PMWQ, DRQ und DCQ in der Form von Vier-Bit-Gliltig-
keits-Anforderungs-Signalen (pmwq_valid [3:0], drq_valid [3:0] und dcq_valid [3:0]) auf und gibt Lauf-Befehle
in der Form von Vier-Bit-Lauf-Signalen (mca_run_pmwq[3:0], mca_run_drq[3:0] und mca_run_dcq[3:0]) aus.
Die Transaktionen werden in die TRQ 2270 und die TOQ 2272 durch einen TRQ-Steuerblock 2276 und einen
TOQ-Steuerblock 2278 jeweils hinein- und herausbewegt.

[0180] Unter Bezugnahme auch auf Fig. 71 ist die TRQ 2270 die Warteschlange, von der der MCA die Trans-
aktions-Ausfihrungs-Reihenfolge bestimmt. Transaktionen in der TRQ 2270 kdnnen in irgendeiner Reihenfol-
ge ausgefihrt werden, ohne die Transaktions-Reihenfolge-Regeln zu verletzten, allerdings kann, wenn einmal
ein geposteter Speicher-Schreib-Zyklus in der TRQ 2270 platziert ist, kein anderer Zyklus in die TRQ 2270 plat-
ziert werden, bis das gepostete Speicher-Schreiben entfernt ist. Transaktionen in der TRQ 270 werden in zir-
kularer Reihenfolge versucht und sind allgemein in der Reihenfolge, in der sie empfangen wurden, abgeschlos-
sen. Allerdings kann, falls eine Transaktion in der TRQ 2270 auf dem PCI-Bus versucht wird, der MCA die
nachste Transaktion in der TRQ 2270 auswahlen, die auf dem PCI-Bus versucht werden soll. Da verzogerte
Abschluss-Transaktionen Slave-Zyklen, im Gegensatz zu Master-Zyklen, sind, werden sie niemals in der TRQ
2270 platziert. Weiterhin werden, da verzdgerte Abschluss-Informationen zu der anfordernden Vorrichtung ver-
fugbar gemacht werden kénnen, sobald sie in die DCQ eintreten, falls keine geposteten Speicher-Schreib-Zy-
klen in der PMWQ anhangig sind, verzégerte Abschluss-Transaktionen in der TOQ 2272 nur dann platziert,
wenn ein geposteter Speicher-Schreib-Zyklus in der TRQ 2270 anhangig ist, wie dies in weiterem Detail nach-
folgend diskutiert ist.

[0181] Die TRQ 2270 ist eine zirkulare Warteschlange, die bis zu vier Transaktionen auf einmal halt. Da die
MCA immer in der Lage sein muss, mindestens eine gepostete Speicher-Schreib-Transaktion laufen zu lassen,
um die erforderlichen Reihenfolgen-Beschrankungen zu wahren, kann die TRQ 2270 niemals mehr als drei
verzdgerte Anforderungs-Transaktionen auf einmal halten. Weiterhin kann die TRQ nur eine gepostete
Schreib-Transaktion zu einem Zeitpunkt halten, da gepostete Schreibvorgange nicht durch irgendeine spater
initiierte Transaktion, umfassend andere gepostete Schreibvorgange, hindurchgefiihrt werden kénnen. Jeder
Schlitz 2280a-d in der TRQ 2270 enthalt drei Bits an Informationen: ein Ein-Bit-Zyklus-Typ-Indikator 2282 (,1"
gleich fiir gepostete Speicher-Schreib-Transaktionen und ,0" gleich fir verzégerte Anforderungs-Transaktio-
nen), und einen Zwei-Bit-Glltigkeits-Hinweiszeiger 2284, wobei die vier moglichen Werte davon identifizieren,
welche der Puffer in der PMWQ oder der DRQ die in die Warteschlangen gestellten Transaktionen belegen.
Die TRQ 2270 umfasst auch einen Eingabe/Ausgabe-Freigabe-Block 2286, der bestimmt, wann eine Transak-
tion in die TRQ 2270 hinein oder aus dieser heraus bewegt werden kann, einen Eingangs-Logik-Block 2288,

23/215

DE 697 21 381 T2 2004.01.15

der die Platzierung einer Transaktion in die TRQ 2270 hinein steuert, und einen Ausgangs-Logik-Block 2290,
der eine Entfernung einer Transaktion von der TRQ 2270 steuert. Diese Logik-Blécke enthalten eine standard-
maRige Warteschlangen-Management-Schaltung.

[0182] Ein zirkularer Eingangs-Hinweiszeiger 2292 wahlt den nachsten, verfiigbaren Schlitz bzw. Einsteck-
platz zur Platzierung einer ankommenden Transaktion aus. Der Eingangs-Hinweiszeiger ist zirkular, um so um-
fangreich wie moglich eine historische Reihenfolge der ankommenden Transaktionen beizubehalten.

[0183] Ein zirkularer Ausgangs-Hinweiszeiger 2294 arbitriert zwischen den Transaktionen in der TRQ 2270
und bestimmt deren Reihenfolge einer Ausfuhrung. Der Ausgangs-Hinweiszeiger 2294 beginnt immer mit dem
oberen Schlitz 2286a in der TRQ 2270 beim Startup und schreitet zirkular durch die TRQ 2270 hindurch. Der
Ausgangs-Hinweiszeiger 2294 kann konfiguriert sein, um in entweder einem infiniten Retry- oder einem
Null-Retry-Mode zu arbeiten, durch Einstellen oder Léschen, jeweils, eines infiniten Retry-Bits in den Konfigu-
rations-Registern (cfg2q_infretry). In einem infiniten Retry-Mode verbleibt der Ausgangs-Hinweiszeiger 2294
auf einer Transaktion, bis die Transaktion erfolgreich auf dem PCI-Bus lauft. In einem Null-Retry-Mode wird der
Ausgangs-Hinweiszeiger 2294 zu jedem Zeitpunkt erhéht, zu dem eine Transaktion auf dem Bus versucht wird
(d. h.

[0184] qg2pif_cyc _complete war dem vorherigen PCI-Takt-Zyklus aufgestellt), ungeachtet davon, ob die
Transaktion erfolgreich abschlie3t oder erneut versucht wird. Da die PCI Spec 2.1 vorschreibt, dass gepostete
Speicher-Schreib-Transaktionen dahingehend zugelassen werden, im Bypass an verzogerten Anforde-
rungs-Transaktionen vorbeizufiihren, muss der Ausgangs-Hinweiszeiger 2294 in mindestens einem der Bri-
cken-Chips so konfiguriert werden, um in einem Null-Retry-Mode zu arbeiten. Hierbei ist der ausgangsseitige
Chip immer so konfiguriert, um in einem Null-Retry-Mode zu arbeiten. Alternativ kann der Ausgangs-Hinweis-
zeiger so konfiguriert sein, um in einem finiten Retry-Mode zu arbeiten, indem jede Transaktion auf dem
PCI-Bus eine vorbestimmte Anzahl (z. B. drei) von Malen versucht werden kann, bevor sich der Ausgangs-Hin-
weiszeiger erhdht. Sowohl der eingangsseitige als auch der ausgangsseitige Chip kdnnen so konfiguriert sein,
um in einem finiten Retry-Mode zu arbeiten, mit einem Verletzen der Reihenfolgen-Beschrankungen der PCI
Spec 2.1. In jedem Fall versucht der Ausgangs-Hinweiszeiger, die historische Reihenfolge von Transaktionen,
gespeichert in der TRQ 2270, beizubehalten, was sich nur dann erhéht, wenn eine Transaktion nicht erfolg-
reich auf dem Target-PCIl-Bus abgeschlossen werden kann.

[0185] Wenn ein geposteter Speicher-Schreib- oder verzdgerter Anforderungs-Zyklus aus der TOQ 2272 aus-
gesondert ist (new_toq_cycle wird aufgestellt), wie dies nachfolgend diskutiert ist, oder wenn die TOQ 2272
nicht freigegeben ist (Itoq_enabled) und ein neuer Zyklus durch die MCA empfangen wird (new_valid_set),
werden das Zyklus-Typ-Bit und die Giltigkeits-Bits flir den neuen Zyklus in den nachsten, leeren Schlitz in die
TRQ eingeladen. Falls der Zyklus von der TOQ 2272 kommt, werden die glltigen Bits und das Zyklus-Typ-Bit
durch die TOQ als giiltig geliefert und Zyklus-Typ-Signale (toq_valid[1:0] und toq_cyctype[0]) jeweils. Ansons-
ten werden die neuen Zyklus-Informationen durch die MCA als giltige und Zyklus-Typ-Signale (d_valido[1:0]
und d_cyctype[0]) geliefert. Gates 2296 und 2298 und Multiplexer 2300 und 2302 sind angeordnet, um die Aus-
wahl von Zyklen zu steuern, die in die TRQ 2270 hineingeladen werden sollen. Wenn ein Zyklus erfolgreich
auf dem PCI-Bus lauft, wird der Zyklus von der Transaktions-Reihenfolge-Warteschlange entfernt und sein Zy-
klus-Typ-Bit und Giiltigkeits-Bits werden zu dem MCA-Steuer-Block 2274 als TRQ-Zyklus-Typ und Gultig-
keits-Signale (trg_cyctype [0]) und trq_valido [1:0]) jeweils geliefert.

[0186] Der TRQ-Steuer-Block 2276 erzeugt ein trq_pmw Signal, das anzeigt, wenn eine gepostete Spei-
cher-Schreib-Transaktion in die TRQ 2270 warteschlangenmaRig gestellt wird. Wenn dieses Signal aufgestellt
ist, missen darauffolgend ausgegebene, verzégerte Anforderungs- und verzégerte Abschluss-Transaktionen
in die TOQ 2272 in die Warteschlange gestellt werden, wie dies nachfolgend diskutiert ist. Das trq_pmw Signal
wird dann aufgestellt, wenn der MCA-Steuer-Block 2274 die TRQ 2270 instruiert hat, einen neuen, geposteten
Speicher-Schreib-Zyklus (trg_slot_valid_set entspricht nicht ,0000" und d_trq_cyctype entspricht ,1") in die
Warteschlange zu stellen, oder, alternativ, wenn irgendeiner der TRQ-Schlitze 2280a—d einen Zyklus
(trg_slot_valid [3:0] entspricht nicht ,0000"), ist mindestens einer der Zyklen ein geposteter Spei-
cher-Schreib-Zyklus (trq_cyctype entspricht ,1 ") und der gepostete Speicher-Schreib-Zyklus ist nicht von dem
entsprechenden Schlitz 2280a-d geldscht worden (!trg_slot_valid_rst [3:0]). Gates 2304, 2306, 2308, 2310,
und 2312 sind so angeordnet, um das trq_pmw Signal in dieser Art und Weise zu erzeugen.

[0187] Wie nun die Fig. 72 zeigt, ist die TOQ 2272 eine First-In-First-Out (FIFO) Warteschlange, die die his-
torische Reihenfolge von Transaktionen enthalt, empfangen durch die Bricke, nachdem eine gepostete Spei-
cher-Schreib-Transaktion in der TRQ 2270 platziert ist. Da alle Transaktionen auf friiher ausgegebene, gepos-
tete Speicher-Schreibvorgange warten missen, damit diese laufen, werden alle Transaktionen, umfassend ge-
postete Speicher-Schreib-, verzdgerte Anforderungs- und verzdgerte Abschluss-Transaktionen, in der TOQ
2270 platziert, wenn ein gepostetes Speicher-Schreiben in die TRQ 2270 warteschlangenmafig gestellt ist.
Transaktionen in der TOQ 2272 missen in der TOQ 2272 verbleiben, bis die gepostete Spei-
cher-Schreib-Transaktion von der TRQ 2270 entfernt ist.

[0188] Die TOQ 2270, die acht Schlitze 2314a-h hat, kann bis zu drei gepostete Speicher-Schreib-Transak-

24/215

DE 697 21 381 T2 2004.01.15

tionen (die vierte wird in der TRQ 2270 gespeichert werden), drei verzdgerte Anforderungs-Transaktionen und
vier verzogerte Abschluss-Transaktionen halten. Jeder der Schlitze 2314a-h in der TOQ 2272 enthalt zwei Zy-
klus-Typ-Bits 2316, die die entsprechende Transaktion (,01" ist ein gepostetes Speicher-Schreiben, ,00" ist
eine verzdgerte Anforderung, und ,1x" ist ein verzégerter Abschluss) identifizieren, und zwei Glltigkeits-Bits
2318, die identifizieren, welcher der Puffer in der PMWQ, DRQ und DCQ die entsprechende Transaktion be-
legt. Die TOQ 2272 umfasst auch Standard-Eingabe- und Ausgabe-Logik-Blécke 2320 und 2322, die die Be-
wegung von Transaktionen in die TOQ 2272 hinein und aus dieser heraus steuern.

[0189] Die Positionen, an denen Transaktionen in die TOQ 2272 hinein platziert und von dieser entfernt wer-
den, werden durch einen Drei-Bit-Eingangs-Zahler 2326 (inputr[2:0]) und einen Drei-Bit-Ausgangszahler 2324
(outputr[2:0]) jeweils bestimmt. Beide Zahler beginnen an dem ersten Schlitz 2314a in der TOQ 2272 und er-
héhen sich durch die Warteschlange hindurch, wenn Transaktionen in die Warteschlange eingegeben und von
dieser entfernt werden. Der Eingangs-Zahler 2326 erhoht sich an der ansteigenden Flanke jedes PCl-Takt-Zy-
klus, wo die TOQ 2272 freigegeben wird (toq_enabled wird aufgestellt), und der MCA-Steuer-Block 2274 liefert
einen neuen Zyklus zu der TOQ 2272 (new_valid_set wird aufgestellt). Die Giltigkeits-Bits und die Zy-
klus-Typ-Bits fur jeden neuen Zyklus werden durch den MCA als glltig und die Zyklus-Typ-Signale
(d_valido[1:0] und d cyctype[1:0]) geliefert. Der Ausgangs-Zahler 2324 erhoht sich an der ansteigenden Flanke
jedes PCI-Takt-Zyklus, an dem der MCA-Steuerblock 2274 die TOQ 2272 instruiert, zu dem nachsten Zyklus
(next_toq_cycle wird aufgestellt) zu gehen, und die TOQ 2272 ist nicht leer: d. h. inputr [2:0] entspricht nicht
outputr [2:0]). Zyklen, die in der TOQ 2272 existieren, werden durch die TOQ-Glltigkeits- und cycletype Sig-
nale (tog_valido[1:0] und toq_cyctypeo [1:0]) dargestellt. Gates 2328 und 2330 und ein Komparator 2332 sind
so angeordnet, um geeignet den Eingangs-Hinweiszeiger 2326 und den Ausgangs-Hinweiszeiger 2324 zu tak-
ten.

[0190] Wenn eine verzdgerte Anforderungs-Transaktion oder eine gepostete Speicher-Schreib-Transaktion
aus der TOQ 2272 ausgesondert ist, wird die Transaktion in die TRQ 2270 platziert, um auf eine Arbitrierung
zu warten. Da allerdings verzdgerte Abschluss-Transaktionen Target-Transaktionen sind und keine Mas-
ter-Transaktionen, werden verzdgerte Abschlisse nicht in die TRQ 2270 platziert. Anstelle davon werden ver-
zogerte Abschlisse einfach aus der TRQ 2272 ausgesondert und dazu verwendet, die entsprechenden Daten
in den DCQ-Daten-Puffern fur gultig zu erklaren. Allerdings missen, solange wie eine gepostete Spei-
cher-Schreib-Transaktion in der TRQ 2270 warteschlangenmalRig hineingestellt ist, alle verzdégerten Abschlis-
se in die TOQ 2272 platziert werden, sogar dann, wenn zwei oder mehr verzdgerte Abschlisse derselben, ver-
zogerten Anforderung entsprechen, und deshalb denselben, verzdégerten Abschluss-Puffer, wie dies vorste-
hend beschrieben ist.

[0191] Wie die Fig. 73A bis 73D zeigen, steuert der MCA-Steuerblock 2274 den Fluss von Transaktionen
Uber den MCA. Wie vorstehend diskutiert ist, wird die PMWQ, DRQ und DCQ Anforderungs-Giiltigkeit von
Transaktionen in den Warteschlangen durch Vorsehen von Vier-Bit-Gililtigkeits-Signalen pmwq_valid[3:0],
drqg_valid[3:0] und dcq_ valid[3:0] jeweils, zu dem MCA, gehalten. Unter diesen Signalen kann sich nur ein Bit
wahrend jedes Takt-Impulses andern, da nur eine einzelne, neue Transaktion in den Warteschlangen-Block bei
jedem Taktimpuls platziert werden kann. Deshalb identifiziert der MCA-Steuer-Block neue Giiltigkeits-Anforde-
rungen durch Uberwachen der sich &ndernden Bits in den pmwq_valid, drq_valid und dcq_valid Signalen. Um
dies zu vorzunehmen, verriegelt der MCA-Steuer-Block jedes Signal und invertiert es an der ansteigenden
Flanke jedes PCI-Takts, um ein verzogertes, invertiertes Signal zu erzeugen, und vergleicht das verzogerte,
invertierte Signal mit dem momentanen Signal (d. h. dem Signal an dem nachsten Taktimpuls). Da nur ein neu
geandertes Bit denselben Wert wie sein verzégertes und invertiertes Gegenstiick haben wird, ist der
MCA-Steuer-Block in der Lage, zu erfassen, welches Bit gedndert ist. Unter Verwendung von Flip-Flops 2340,
2342 und 2344 und Gates 2346, 2348 und 2350, erzeugt die MCA-Steuereinheit new_pmwq_valid(3:0],
new_drqg_valid[3:0] und new_dcq_valid[3:0] Signale, die, bei jedem Taktimpuls, zusammen identifizieren, ob
die DMWQ, DRQ oder DCQ, falls irgendeine vorhanden ist, irgendeine neue Transaktion fiir eine Validitierung
lieferte und welcher Puffer in der entsprechenden Warteschlange die neue Transaktion enthalt. Wie auch
Fig. 74 zeigt, verwendet der MCA-Steuer-Block eine Durchsichts-Tabelle 2352, um die zwdlf Bits der
new_pmwq_valid, new_drqg_valid und new_dcq_valid Signale in die Zwei-Bit d_valid[1:0] und d_cyctype[1:0]
Signale, geliefert zu der TRQ und der TOQ, wie dies vorstehend diskutiert ist, umzuwandeln.

[0192] Die MCA-Steuereinheit gibt die TOQ durch Verriegeln des toq_enabled Signals auf einen Wert von ,1"
frei, wenn entweder das trq_pmw aufgestellt ist, was anzeigt, dass ein geposteter Speicher-Schreib-Zyklus in
der TRQ in die Warteschlange gestellt ist, oder wenn das toq_enable Signal bereits aufgestellt ist und die TOQ
nicht leer ist ('toq_empty). Gates 2354 und 2356 und ein Flip-Flop 2358 sind so angeordnet, um toq_enabled
auf diese Art und Weise zu erzeugen.

[0193] Der MCA-Steuerblock stellt das new_toq_cycle Signal auf, das die TRQ instruiert, den Zyklus in die
Warteschlange zu stellen, der von der TOP ausgesondert ist, wenn dort nicht ein geposteter Spei-
cher-Schreib-Zyklus in TRQ wahrend des vorherigen Takt-Zyklus (!s1_trqg_pmw) vorhanden war, wenn die
TOQ nicht leer ist (1toq_empty), und wenn der Zyklus, der von der TOQ ausgesondert werden soll, nicht eine

25/215

DE 697 21 381 T2 2004.01.15

verzogerte Abschluss-Transaktion ist (I(toq_cyctypeo[1] = ,DC")). Die MCA-Steuereinheit verwendet ein Gate
2360, um das new_toq_cycle Signal zu erzeugen.

[0194] Das next_toq_cycle Signal, das verwendet wird, um den TOQ-Ausgangs-Zahler auf den nachsten Zy-
klus in der TOQ zu erhéhen, wird aufgestellt, wenn die TOQ nicht leer ist ('toq_empty) und entweder wenn kei-
ne geposteten Speicher-Schreib-Zyklen momentan in der TRQ in die Warteschlange gestellt sind (!trg_pmw)
und der nachste Zyklus in der TOQ ein verzogerter Abschluss ist (tog_cyctype[1] = ,DC"), oder wenn der
nachste TOQ-Zyklus ein gepostetes Speicher-Schreiben oder eine verzdgerte Anforderungs-Transaktion ist
((tog_cyctype[1] = ,DC")) und dabei keine geposteten Speicher-Schreib-Transaktionen wahrend des vorheri-
gen Taktzyklus vorhanden waren (!s1_trqg_pmw). Der Steuerblock verwendet Gates 2362, 2364, 2366 und
2368, um das next_toq_cycle Signal zu erzeugen.

[0195] Die MCA-Steuereinheit erzeugt das mca_run_dcq[3:0] Signal, um anzuzeigen, dass eine verzdgerte
Abschluss-Transaktion von der TOQ ausgesondert worden ist. Wenn die TRQ keine geposteten Spei-
cher-Schreib-Zyklen enthalt (trq_pmw), ist die TOQ nicht leer (!toq_empty), und der TOQ-Zyklus ist ein verzo-
gerter Abschluss (tog_cyctype[1] = ,DC"), das mca_run_dcq[3:0] Signal nimmt den Wert des decodierten
tog_valido[1:0] Signals an, was vorstehend diskutiert ist. Ansonsten ist das mca_run_dcq[3:0] Signal gleich
,0000". Das Gate 2370, der Decodieren 2372 und der Multiplexer 2374 sind so angeordnet, um
mca_run_dcq[3:0] auf diese Art und Weise zu erzeugen.

[0196] Der MCA-Steuer-Block erzeugt new_mca_run_dr[3:0] und new_mca_run_pmw[3:0] Signale, um an-
zuzeigen, dass er eine neue, verzdgerte Anforderungs-Transaktion und eine gepostete Speicher-Transaktion
jeweils hat, die in die Warteschlange gestellt werden sollen. Das new_mca_run_dr[3:0] Signal nimmt den Wert
von dem 2x4 decodierten d_valido[1:0] Signal an, was vorstehend diskutiert ist, wenn der neue Zyklus ein ver-
zogerter Anforderungs-Zyklus ist (d_cyctype[0] = ,DR"). Ansonsten werden alle Bits des new_mca_run_dr[3:0]
Signals auf Null gesetzt. Ahnlich nimmt das new_mca_run_pmw[3:0] Signal den Wert des 2x4 decodierten
d_valido[1:0] Signals an, wenn der neue Zyklus eine gepostete Speicher-Schreib-Transaktion ist, und wird an-
sonsten auf ,,0000" eingestellt. Decodieren 2376 und 2380 und Multiplexer 2378 und 2382 sind so angeordnet,
um die new_mca_run_dr und die new_mca_run_pmw Signale auf diese Art und Weise zu erzeugen.

[0197] Die MCA-Steuereinheit erzeugt toq_mca_run_dr[3:0] und toq_mca_run_pmw[3:0] Signale, um anzu-
zeigen, wenn eine neue, verzogerte Anforderungs-Transaktion oder eine gepostete Speicher-Schreib-Trans-
aktion, jeweils, von der TOQ ausgesondert wurde. Das toq_mca_run_dr[3:0] Signal nimmt den Wert des 2x4
decodierten toq_valido[1:0] Signals an, wenn ein verzégerter Anforderungs-Zyklus von der TOQ ausgesondert
ist, und einen Wert von ,0000" ansonsten. In ahnlicher Weise nimmt das tog_mca_run_pmw[3:0] Signal den
Wert des 2x4 decodierten toq_valido[1:0] Signals an, wenn ein geposteter Speicher-Schreib-Zyklus von der
TOQ ausgesondert ist, und einen Wert von ,0000" ansonsten. Decodieren 2384 und 2388 und Multiplexer 2386
und 2390 werden verwendet, um die toq_mca_run_dr und toq_mca_run_pmw Signale auf diese Art und Weise
zu erzeugen. Die MCA-Steuereinheit erzeugt die trq_mca_run_dr[3:0] und trg_mca_run_pmw[3:0] Signale, um
anzuzeigen, wenn eine neue, verzogerte Anforderungs-Transaktion oder eine gepostete Spei-
cher-Schreib-Transaktion jeweils die Arbitrierung in der TRQ erlangt hat, und bereit ist, auf dem PCI-Bus zu
laufen. Das trg_mca_run_dr[3:0] Signal nimmt den Wert des 2x4 decodierten trq_valido[1:0] Signals an, wenn
ein verzogerter Anforderungs-Zyklus die Arbitrierung erlangt hat und die TRQ nicht leer ist. Das
trg_mca_run_dr[3:0] nimmt einen Wert von ,0000" ansonsten an. In &hnlicher Weise nimmt das
trg_mca_run_pmw[3:0] Signal den Wert des 2x4 decodierten trq_valido[1:0] Signals an, wenn ein geposteter
Speicher-Schreib-Zyklus die Arbitrierung erlangt hat und die TRQ nicht leer ist. Das trq_mca_run_pmw[3:0] Si-
gnal wird auf einen Wert von ,0000" ansonsten eingestellt. Die Gates 2392 und 2398, die Decodierer 2394 und
2400 und die Multiplexer 2396 und 2402 werden dazu verwendet, die trq_mca_run_dr und trq_mca_run_pmw
Signale in dieser Art und Weise zu erzeugen.

[0198] Wenn die TRQ leer ist, kann der MCA eine Anforderung ausgeben, um die nachste Transaktion in der
TOQ laufen zu lassen, wahrend die Transaktion in die TRQ platziert wird. Wenn sowohl die TRQ als auch die
TOQ leer sind, kdénnen Transaktionen damit beginnen, zu laufen, sogar bevor sie in die TRQ warteschlangen-
maRig gestellt sind. Deshalb umfasst der MCA-Steuer-Block eine Logik, die bestimmt, wenn die new_mca_run
oder die toq_mca_run Signale asynchron verwendet werden kénnen, um anzuzeigen, dass eine Transaktion
auf dem PCI-Bus versucht werden kann. Durch Umwandeln der new_mca_run oder der der toq_mca_run Si-
gnale in asynchrone Laufsignale, sichert die MCA-Steuereinheit einen PCI-Takt-Warte-Zustand. Wenn das
new_valid_set Signal durch den MCA-Steuerblock aufgestellt ist und die TOQ nicht freigegeben ist
('tog_enabled), nehmen die async_mca_run_dr[3:0] und async_mca_run_pmw[3:0] Signale die Werte der
new_mca_run_dr[3:0] und new_mca_run_pmw[3:0] Signale jeweils an. Ansonsten nehmen die asynchronen
Laufsignale die Werte von toq_mca_run_dr[3:0] und tog_mca_run_pmw][3:0] Signale an. Die MCA-Steuerein-
heit verwendet das Gate 2404 und die Multiplexer 2406 und 2408 dazu, die asynchronen Laufsignale zu er-
zeugen.

[0199] Wenn ein PCI-Bus-Master eine Transaktion abgeschlossen hat (s1_qg2pif cyc _complete ist aufge-
stellt), ist die TRQ nicht leer (Itrq_empty) und ist fir einen Betrieb in dem Null-Retry-Mode konfiguriert

26/215

DE 697 21 381 T2 2004.01.15

('cfg2q_infretry), und irgendeine neue Transaktion ist von der TOQ ausgesondert worden (new_toq_cycle)
oder die TOQ ist nicht freigegeben (!tog_enabled) und die MCA hat einen neuen Zyklus empfangen, der fur
gultig erklart wird (new_valid_set), die MCA kann nicht einen Zyklus auswahlen, um auf dem PCI-Bus zu lau-
fen, so dass sowohl das mca_run_dr[3:0] als auch das mca_run_pmw[3:0] Signal auf ,0000" gesetzt werden.
Ansonsten nehmen, falls die TRQ leer ist (trq_empty) und entweder eine neue Transaktion von der TOQ aus-
gesondert ist (new_toq_cycle) oder die TOQ nicht freigegeben ist (toq_enabled) und die MCA einen neuen
Zyklus empfangen hat, der fir gultig erklart wird (new_valid_set), dann die mca_run_dr[3:0] und
mca_run_pmw[3:0] Signale den Wert der asynchronen Lauf-Signale async_mca_run_dr[3:0] und
async_mca_run_pmw[3:0], jeweils, an. Ansonsten nimmt das mca_run_dr[3:0] Signal den Wert des
trg_mca_run_dr[3:0] Signals an und das mca_run_pmw[3:0] Signal nimmt den Wert des trq_run_pmw[3:0] Si-
gnals an, mit AND mit dem Giiltigkeits-Anforderungs-Signal von der PMWQ verknupft (pmwq_valid[3:0]).
Gates 2410, 2412, 2414, 2416 und 2418 und Multiplexer 2420, 2422, 2424 und 2426 sind so angeordnet, um
die MCA-Lauf-Signale auf diese Art und Weise zu erzeugen.

DIE WARTESCHLANGEN-BLOCK-ZU-PCI-SCHNITTSTELLE (QPIF)

[0200] Wie wiederum die Fig. 4 und 75 zeigen, leitet die QPIF 148 den Fluss von Transaktionen zwischen
dem Warteschlangen-Block 127 und dem PCI-Bus 32. Die QPIF 148 liefert auch Transaktionen, initiiert auf
dem PCI-Bus 32, zu der Kabel-Schnittstelle 130. Die QPIF 148 arbeitet in zwei Moden: einem Master-Mode
und einem Slave-Mode. In dem Master-Mode hat die QPIF 148 eine Kontrolle Gber den PCI-Bus und fiihrt des-
halb Transaktionen, vorgesehen fur Target-Vorrichtungen auf dem Bus, aus. Eine Master-Zustand-Maschine
2500 in der QPIF 148 sucht Transaktionen von der PMWQ und DRQ auf und flhrt sie auf dem PCI-Bus aus,
wenn sich die QPIF in dem Master-Mode befindet. In dem Slave-Mode empfangt die QPIF 148 Transaktionen,
initiiert durch eine Vorrichtung auf dem PCI-Bus, und liefert entweder die angeforderten Informationen zu der
initiierenden Vorrichtung (falls die Informationen verfiigbar sind) oder sucht die initiierende Vorrichtung erneut
auf (falls die Transaktion eine verzdogerte Anforderung ist) und fuhrt die Transaktion weiter zu dem eingangs-
seitigen Chip. Die Transaktion wird auch aufgesucht, wenn der entsprechende eine der Transaktions-Zahler
159 anzeigt, dass der andere Briicken-Chip voll ist, wie dies vorstehend diskutiert ist. Eine Slave-Zustand-Ma-
schine 2502 empfangt eine ankommende Transaktion von dem PCI-Bus und prift dann die DCQ nach einer
entsprechenden Abschluss-Nachricht und/oder fuhrt die Transaktion zu einem Kabel-Nachrichten-Generator
2504 weiter, der wiederum die Transaktion Giber das Kabel zu dem eingangsseitigen Briicken-Chip weiterfiihrt.
[0201] Unter Bezugnahme auch auf die Fig. 76A und 76B umfasst die QPIF eine Adressen- und Daten-Ver-
riegelungs-Logik 2506, die die ankommenden Adressen-Phasen- und Daten-Phasen-Informationen, zugeord-
net zu jeder Transaktion, initiiert durch eine Vorrichtung auf dem PCI-Bus, verriegelt. Die QPIF-Slave-Zu-
stand-Maschine 2502 kontrolliert die Betriebsweise der Adressen- und Daten-Verriegelungs-Logik 2506. Wenn
eine neue Transaktion, initiiert auf dem PCI-Bus, fur die QPIF vorgesehen ist, stellt die Slave-Zustand-Maschi-
ne 2502 ein Adressen-Phasen-Verriegelungs-Signal (reg_latch_first request) auf, das anzeigt, dass die
Adressen-Phasen-Informationen von dem PCI-Bus verriegelt werden sollten. An der nachsten, abfallenden
Flanke des PCI-Takt-Signals bewirkt die Aufstellung des reg_latch_first_request Signals, dass ein verzdgertes
Adressen-Phasen-Verriegelungs-Signal (dly_reg_latch_first_request) aufgestellt werden soll. Wenn sowohl
das originale als auch das verzdgerte Adressen-Phasen-Verriegelungs-Signal aufgestellt sind, erzeugt die Ver-
riegelungs-Logik 2506 ein erstes Verriegelungs-Signal (latch1). Ein Flip-Flop 2508 und ein Gate 2510 sind so
angeordnet, um das erste, verriegelnde Signal auf diese Art und Weise zu erzeugen.

[0202] Die Verriegelungs-Logik 2506 ladt die Adressen-Phasen-Informationen von dem PCI-Bus (Uber die
PCI-Schnittstelle) in drei Adressen-Phasen-Register ein, wenn das erste Verriegelungs-Signal aufgestellt ist.
Das erste Register ist ein dreil3ig-Bit-Adressen-Register 2512, das die Start-Adresse der momentanen Trans-
aktion anzeigt. Wenn das erste Verriegelungs-Signal aufgestellt ist, wird das Adressen-Signal von der
PCI-Schnittstelle (p2g_ad[31:2]) in das Adressen-Register 2512 eingeladen. Das Adressen-Register 2512 gibt
das Adressensignal aus, verwendet durch die QPIF (g2pif_addr[31:2]). Das zweite Register ist ein Vier-Bit-Be-
fehls-Register 2514, das den PCI-Befehl-Code von dem PCI-Bus empfangt (p2q_cmd[3:0]), und das QPIF-Be-
fehls-Signal ausgibt (g2pif_cmd[3:0]). Das dritte Register ist ein Drei-Bit-Schlitz-Auswahl-Register 2516, das
das p2q_slot[2:0] Signal empfangt, das anzeigt, welche PCI-Vorrichtung der momentane Bus-Master ist, und
gibt das QPIF-Schlitz-Auswahl-Signal aus (g2pif_slot[2:0]).

[0203] Wenn die Adressen-Phase der PCIl-Transaktion endet, stellt die Slave-Zustand-Maschine 2502 ein
Daten-Phasen-Verriegelungs-Signal auf (reg_latch_second_request), das anzeigt, dass die Daten-Phasen-In-
formationen von dem PCI-Bus verriegelt werden sollten. An der nachsten, abfallenden Flanke des PCI-Takt-Si-
gnals bewirkt das aufgestellte reg_latch_first request Signal, dass ein verzdgertes Daten-Phasen-Verriege-
lungs-Signal (dly_reg_latch_second_request) aufgestellt wird. Wenn sowohl das originale als auch das verzo-
gerte Daten-Phasen-Verriegelungs-Signal aufgestellt sind, erzeugt die Verriegelungs-Logik 2506 ein zweites
Verriegelungs-Signal (latch2). Ein Flip-Flop 2518 und ein Gate 2520 sind so angeordnet, um das zweite Ver-

27/215

DE 697 21 381 T2 2004.01.15

riegelungs-Signal auf diese Art und Weise zu erzeugen.

[0204] Die Verriegelungs-Logik 2506 |adt dann die Daten-Phasen-Informationen von dem PCI-Bus (Uber die
PCI-Schnittstelle) in drei Daten-Phasen-Register, wenn das zweite Verriegelungs-Signal aufgestellt ist. Das
erste Daten-Phasen-Register ist ein Zweiunddreiig-Bit-Daten-Register 2522, das die Daten empfangt, die der
momentanen Transaktion zugeordnet sind, und zwar auf den PCI-Adressen/Daten-Leitungen (p2q_ad[31:0]),
und gibt das QPIF-Daten-Signal aus (q2pif _data[31:0]). Das zweite Daten-Phasen-Register ist ein
Vier-Bit-Freigabe-Register 2524, das Freigabe-Bits von dem PCI-Bus empfangt (p2q_cbe[3:0]), und das
QPIF-Byte-Freigabe-Signal ausgibt (qg2pif_byte en[3:0]). Das dritte Register ist ein Drei-Bit-Verriege-
lungs-Register 2526, das das PCI-Verriegelungs-Signal empfangt (p2q_lock), das anzeigt, dass die momenta-
ne Transaktion als eine verriegelte Transaktion laufen sollte, und das QPIF-Verriegelungs-Signal ausgibt
(g2pif_lock).

[0205] Wie wiederum die Fig. 75 und auch die Fig. 77 zeigen, umfasst das QPIF einen ,Verriegelungs"-Lo-
gik-Block 2528, der den ,Verriegelungs"-Zustand des QPIF kontrolliert.

[0206] Die QPIF besitzt drei Verriegelungs-Zustande: einen nicht verriegelten Zustand 2530 (lock_state[1:0]
= ,00"), der anzeigt, dass keine verriegelten Transaktionen in der DCQ anhangig sind; einen verriegelten Zu-
stand 2532 (lock_state[1:0] = ,,01"), der anzeigt, dass eine verriegelte Transaktion in der DCQ empfangen wor-
den ist oder sich im Abschluss auf dem PCI-Bus befindet; und einen unlocked-but-retry Zustand 2534
(lock_state[1:0] =,10"), der anzeigt, dass die Verriegelung entfernt worden ist, allerdings eine gepostete Spei-
cher-Schreib-Transaktion, die in dem anderen Briicken-Chip anhangig ist, laufen muss, bevor die nachste
Transaktion angenommen werden kann.

[0207] Bei einem Power-up bzw. Einschalten und einem Reset tritt die Verriegelungs-Logik 2528 in den nicht
verriegelten Zustand 2530 ein und wartet auf eine verriegelte Transaktion, um in die DCQ einzutreten (ange-
zeigt durch die Aufstellung des dcq_locked Signals). Bei dem ersten Takt-Impuls, nachdem das dcq_locked
Signal aufgestellt ist, tritt die Verriegelungs-Logik in den verriegelten Zustand 2532 ein, der die QPIF-Slave-Zu-
stand-Maschine 2502 dazu bringt, alle Transaktions-Anforderungen von dem PCI-Bus erneut zu versuchen.
Die PCI-Schnittstelle stellt auch ein Verriegelungs-Signal (p2qg_lock) auf, das anzeigt, dass sie den PCI-Bus
fur die Transaktion verriegelt hat. Nachdem die Verriegelungs-Transaktion abgeschlossen ist und die anfor-
dernde Vorrichtung die verriegelten Abschluss-Daten von der DCQ aufgesucht hat, wird das dcq_locked Signal
weggenommen. Bei dem ersten Taktimpuls, nachdem das dcq_locked weggenommen ist, wahrend das
p2q_lock Signal noch aufgestellt ist, falls keine geposteten Speicher-Schreib-Vorgéange in dem anderen Bru-
cken-Chip anhangig sind (d. h. das pmw_empty Signal wird durch den Kabel-Decodierer aufgestellt), kehrt die
Verriegelungs-Logik 2528 zu dem nicht verriegelten Zustand 2530 zuriick und die Slave-Zustand-Maschine
2502 ist wieder in der Lage, Transaktions-Anforderungen zu akzeptieren. Allerdings tritt, falls das pwm_empty
Signal nicht bei dem ersten Taktimpuls aufgestellt ist, nachdem das dcq_lock Signal weggenommen ist, die
Verriegelungs-Logik 2528 in den unlocked-but-retry Zustand 2534 ein, der die Slave-Zustand-Maschine 2502
dazu bringt, alle Transaktionen erneut zu versuchen, bis der gepostete Speicher-Schreib-Zyklus auf dem an-
deren PCI-Bus abgeschlossen ist. Nachdem der gepostete Speicher-Schreib-Zyklus abgeschlossen ist, wird
das pmw_empty Signal aufgestellt, und die Verriegelungs-Logik 2528 kehrt zu dem nicht verriegelten Zustand
2530 zurtick.

[0208] Wie wiederum die Fig. 75 und auch die Fig. 78 zeigen, umfasst die QPIF eine Puffer-Flush-Logik
2536, die bestimmt, wann die die DCQ Daten von einem oder allen deren Daten-Puffer entleeren sollte. Wie
vorstehend diskutiert ist, erzeugt die PCI-Schnittstelle in dem ausgangsseitigen Chip ein p2q_flush Signal,
wenn der eingangsseitige Chip ein I/O oder config Schreiben oder ein Speicher-Schreiben ausgibt, das das
Soll-Speicher-Bereichs-Register (Target Memory Range Register — TMRR) einer ausgangsseitigen Vorrich-
tung trifft. Die QPIF-Puffer-Flush-Logik 2536 stellt ein QPIF-Flush-Signal auf (general_flush), das den entspre-
chenden Daten-Puffer oder alle Daten-Puffer entleert (in Abhangigkeit von dem Wert des p2q_slot Signals, wie
dies vorstehend diskutiert ist), wenn das p2q_flush Signal empfangen ist. Ansonsten stellt die Puffer-Flush-Lo-
gik 2536 das allgemeine Flush-Signal nur dann auf, wenn eine Vorrichtung auf dem sekundaren Bus eine ver-
zogerte Anforderung ausgibt, die alle der DCQ-Puffer verfehlt, wenn durch die DCQ-Steuer-Logik geprift ist
(d. h. !dcq_hit und g2pif_check_cyc sind aufgestellt). In jedem Fall wird das general_flush Signal dazu verwen-
det, nur Puffer zu entleeren, die sich in dem ,prefetch" Zustand befinden, wie dies vorstehend diskutiert ist.
Deshalb werden Prefetch-Daten in der DCQ gehalten, bis die PCI-Schnittstelle ein Entleeren verlangt oder bis
die entsprechende PCI-Vorrichtung eine nicht-sequenzielle Anforderung ausgibt (d. h. verfehlt die DCQ).
Gates 2538 und 2540 sind so angeordnet, um das general_flush Signal auf diese Art und Weise zu erzeugen.
[0209] Wenn eine Multi-Threaded-Vorrichtung mehr als einen Abschluss-Puffer zugeordnet besitzt, wobei
mindestens einer davon Prefetch-Daten enthalt, verbleiben die Prefetch-Daten in dem entsprechenden Puffer
so lange, wie die Vorrichtung nicht eine Anforderung ausgibt, die alle die DCQ-Puffer verfehlt. Sobald die Vor-
richtung eine neue Anforderung ausgibt, werden alle deren Prefetch-Puffer entleert. Alternativ kénnte ein Pre-
fetch-Puffer, zugeordnet einer Multi-Threaded-Vorrichtung, entleert werden, sobald die Vorrichtung eine Anfor-
derung ausgibt, die einen anderen DCQ-Pulffer trifft.

28/215

DE 697 21 381 T2 2004.01.15

[0210] Wie wiederum Fig. 75 zeigt, umfasst die QPIF einen Lese-Befehl-Logik-Block 2542, der Lese-Befehle
von der PCI-Schnittstelle und Prefetch-Befehle von der DCQ empfangt und ein abgehendes Nachrichten-Be-
fehl-Signal (message_cmd) zu dem Kabel zufiihrt. In Nicht-Streaming-Situationen kann der abgehende Nach-
richten-Befehl derselbe wie der Befehl sein, der von dem PCI-Bus oder der DCQ empfangen ist, oder die Le-
se-Befehl-Logik 2542 kann den Befehl in einen solchen umwandeln, der eine gréRere Menge an Daten ein-
setzt. Da Transaktionen, ausgefiihrt dword-by-dword, langer bendtigen, um auf dem Host-Bus abzuschlie3en,
als Transaktionen, die eine gesamte Cache-Zeile von Daten einsetzen, und da einzelne Cache-Zeilen-Trans-
aktionen langer benétigen, um auf dem Host-Bus abzuschlief3en, als Mehrfach-Cache-Zeilen-Transaktionen,
unterstutzt die Lese-Befehl-Logik oft ,kleinere" Befehle zu ,gréReren” solchen, um die Zahl von Takt-Zyklen,
verbraucht durch die Transaktion, zu reduzieren (,read promotion"). Zum Beispiel ist, wenn eine Vorrichtung
auf dem sekundaren PCI-Bus einen Speicher-Lese-Befehl ausgibt und dann nach jedem dword von Daten in
einer Cache-Zeile fragt, die Lese-Befehl-Logik 2542 in der Lage, die Host-Latenzzeit durch Unterstltzen des
PCI-Befehls zu einer Speicher-Lese-Zeile zu reduzieren, was ermdglicht, dass der eingangsseitige Chip die
gesamte Cache-Zeile an Daten auf einmal liest anstelle davon, jedes dword individuell zu lesen.

[0211] Wie auch Fig. 79 zeigt, erzeugt, wenn die DCQ anzeigt, dass eine Lese-Datenfolge eingerichtet wor-
den ist (d. h. dcq_stream_connect ist aufgestellt), wie dies vorstehend diskutiert ist, die Lese-Befehl-Logik
2542 einen Nachrichten-Befehl von ,1000", was den eingangsseitigen Chip dartiber informiert, dass eine Da-
tenfolge auftritt. Wenn keine Datenfolge eingerichtet worden ist, muss die Lese-Befehl-Logik 2542 entschei-
den, ob ein Speicher-Lese-, ein Speicher-Lese-Zeilen- oder ein Speicher-Lese-Mehrfach-Befehl zu verschi-
cken ist. Falls der Befehl, empfangen von dem PCI-Bus, ein Speicher-Lese(MR)-Befehl ist (q2p_CMD[2:0] ent-
spricht ,0110") und das entsprechende Speicher-Lesezu-Speicher-Lese-Zeilen-Unterstitzungs-Bit
(cfg2q_mr2mr1) in den Konfigurations-Registern eingestellt ist, erzeugt die Lese-Befehl-Logik 2542 einen
Speicher-Lese-Zeilen-Befehl (,1110"). Andererseits erzeugt, falls der PCI-Befehl ein Speicher-Lese-Befehl ist,
und das entsprechende Speicher-Lese-zu-Speicher-Lese-Mehrfach-Bit (cfg2g_mr2mrm) eingestellt ist, oder
falls der Befehl ein Speicher-Lese-Zeilen-Befehl (q2pif_cmd[3:0] gleich zu ,1110") von dem PCI-Bus ist oder
ein Prefetch-Zeilen-Befehl (dcq_prefetch_linie ist aufgestellt) von der DCQ ist und das entsprechende Spei-
cher-Lese-Zeilen-zu-Speicher-Mehrfach-Bit (cfg2g_mrl2mrm) eingestellt ist, oder falls der Befehl ein Pre-
fetch-Mehrfach-Befehl (dcq_prefetch_mu1) von der DCQ ist, die Lese-Befehl-Logik 2542 einen Speicher-Le-
se-Mehrfach-Befehl (d. h. message _cmd entspricht ,1100"). Falls der Befehl ein Prefetch-Zeilen-Befehl ist und
das entsprechende Speicher-Lese-Zeilen-zu-Speicher-Lese-Mehrfach-Bit nicht eingestellt ist, erzeugt die Le-
se-Befehl-Logik 2542 einen MRL-Befehl (,1110"). Ansonsten gibt die Lese-Befehl-Logik 2542 den empfange-
nen PCI-Befehl (q2pif_cmd[2:0]) als das Nachrichten-Befehl-Signal aus. Gates 2544, 2546, 2548, 2550, 2552,
2554, 2556 und 2558 und Multiplexer 2560, 2562 und 2564 sind so angeordnet, um das message_cmd Signal
auf diese Art und Weise zu erzeugen.

[0212] Wie wiederum Fig. 75 zeigt, erzeugt, wenn die QPIF im Master-Mode arbeitet und eine Steuerung
Uber den Bus empfangen hat, um eine Transaktion, gespeichert in der PMWQ, laufen zu lassen, ein
Schreib-Befehl-Logik-Block 2566 den Befehl-Code, der auf dem PCI-Bus ausgefuhrt wird. Um Transakti-
ons-Zeit zu reduzieren, wie dies vorstehend diskutiert ist, kann eine Schreib-Befehl-Logik Spei-
cher-Schreib-(MW)-Befehle umwandeln, was Daten-Ubertragungen ein dword zu einem Zeitpunkt in Spei-
cher-Schreib- und Ungiiltigkeits-Befehle (MWI) hinein einsetzt, was Ubertragungen von mindestens einer ge-
samten Cache-Zeile an Daten einsetzt. Der Schreib-Befehl-Logik-Block 2566 kann einen Befehl-Midstream
umwandeln, wenn z. B. die Transaktion als ein Speicher-Schreiben in der Mitte einer Cache-Zeile beginnt und
Daten enthalt, die die nachste Cache-Zeilen-Grenze kreuzt und alle acht dwords an Daten in der nachsten Ca-
che-Zeile umfasst. In dieser Situation beendet die Schreib-Befehl-Logik 2566 die Speicher-Schreib-Transakti-
on, wenn sie die erste Cache-Zeilen-Grenze erreicht, und initiiert ein Speicher-Schreiben und erklart eine
Transaktion fur ungultig, um nachste, volle Cache-Zeilen an Daten zu ubertragen. Die Schreib-Befehl-Logik
2566 kann auch einen MWI-Transaktions-Midstream zugunsten einer MW-Transaktion beenden, falls weniger
als eine Cache-Zeile an Daten zu dem Target-Bus hin geschrieben werden soll, nachdem eine Cache-Zei-
len-Grenze gekreuzt wird.

[0213] Wie wiederum Fig. 75 und auch Fig. 80 zeigen, halt die Slave-Zustand-Maschine 2502 auch zwei
Zahler aufrecht, die anzeigen, wenn eine gepostete Schreib-Transaktion, initiiert auf dem PCI-Bus, beendet
werden sollte. Ein 4K Seiten-Grenzen-Zahler (Page Boundary Counter) 2594 erzeugt ein Seiten-Zahl-Signal
(page_count_reg[11:2]), das anzeigt, wenn Daten, tbertragen von dem PCI-Bus, eine 4K Seiten-Grenze errei-
chen. Da ein einzelner Speicher-Zugriff nicht erlaubt ist, um eine 4K Seiten-Grenze zu Uberqueren, muss die
gepostete Schreib-Transaktion auf dem initiierenden Bus beendet werden, wenn eine Grenze erreicht ist. Der
4K Seiten-Grenzen-Zahler 2594 wird mit dem dritten bis zwdlften Bit der Transaktions-Adresse
(g2pif_addr[11:2]) geladen, wenn die Zustand-Maschine ein load_write_counter Signal aufstellt (die Umstande,
die eine Aufstellung von diesem Signal mit sich bringen, werden in weiterem Detail nachfolgend diskutiert). Der
Zahler 2594 erhoht sich dann um eins an der ansteigenden Flanke jedes Takt-Impulses, nachdem das
load_write_counter Signal weggenommen ist. Der Zahler 2594 wird nicht bei Takt-Impulsen erhéht, wahrend

29/215

DE 697 21 381 T2 2004.01.15

denen die initiierende Vorrichtung einen Initiator-Warte-Zustand eingesetzt hat (d.h. p2q_irdy aufgestellt). Der
Ausgang von Gate 2592 bestimmt, wann dem Zahler erlaubt wird, sich zu erhéhen. Wenn alle Bits in dem
page_count_reg[11:2] Signal hoch sind, ist eine 4K Seiten-Grenze erreicht worden und die Slave-Zustand-Ma-
schine muss die gepostete Schreib-Transaktion beenden und erneut die initiierende Vorrichtung versuchen.
[0214] Ein dword Zahler 2598 erzeugt ein pmw_counter[5:0] Signal, das die Zahl von dwords, geschrieben
von dem initiierenden Bus, wahrend einer geposteten Schreib-Transaktion anzeigt. Das pmw_counter[5:0] Si-
gnal wird dann verwendet, um anzuzeigen, wann ein Uberlauf aufgetreten ist oder wann die letzte Zeile der
Transaktion erreicht worden ist, wie dies nachfolgend diskutiert ist. Wenn die Slave-Zustand-Maschine 2503
das load_write_counter Signal aufstellt, werden die dritten bis fiinften Bits des Adressen-Signals
(g2pif_addr[4:2]) in die unteren drei Bits des Zahlers 2598 eingeladen, wahrend die oberen drei Bits auf Null
gesetzt werden. Dieses Adressen-Offset zeigt an, an welchem dword in einer Cache-Zeile eine gepostete
Schreib-Transaktion gestartet wurde. Der Zahler 2598 erh6ht sich dann um eins an der ansteigenden Flanke
jedes Takt-Impulses, nachdem das load_write_counter Signal weggenommen ist. Der Zahler 2598 wird nicht
bei Takt-Impulsen erhdht, wahrend denen die initiierende Vorrichtung einen Initiator-Warte-Zustand eingesetzt
hat (d. h. p2q_irdy ist aufgestellt). Der Ausgang des Gates 2596 bestimmt, wann dem Zahler erlaubt wird, sich
zu erhéhen. Wenn alle Bits in dem pmw_counter[5L0] Signal hoch sind, hat das gepostete Schreiben das Ende
der achten Cache-Zeile erreicht.

[0215] Wie wiederum die Fig.81A bis 81C zeigen, erzeugt der Schreib-Befehl-Logik-Block 2566 ein
Vier-Bit-Schreib-Befehl-Signal (write_cmd[3:0]), das den Befehl-Code der geposteten Schreib-Transaktion an-
zeigt, die auf dem PCI-Bus ausgefuhrt werden soll. Falls der Befehl-Code, gespeichert in der PMWQ, einen
Speicher-Schreib- und Unglltigkeits-Befehl darstellt (pmwq_cmd[3] = ,1"), erzeugt die Schreib-Befehl-Logik
2566 einen Schreib-Befehl-Code von ,1111". Falls der PMWQ-Befehl-Code einen Speicher-Schreib-Befehl
darstellt, verriegelt sich die Schreib-Befehl-Logik 2566 an dem Speicher-Schreibzu-Speicher-Schreib- und Un-
gultigkeits-Konfigurations-Bit (cfg2g_mw2mwi) entsprechend dem Target-PCl-Schlitz. Falls das
cfg2g_mw2mwi Bit nicht eingestellt ist, erzeugt die Schreib-Befehl-Logik 2566 einen Speicher-Schreib-Befehl
(,0111"). Falls das Konfigurations-Bit eingestellt ist, erzeugt die Schreib-Befehl-Logik 2566 einen MWI-Befehl,
falls die nachste Zeile in dem PMWQ-Daten-Puffer voll ist (pmwg_full_line ist aufgestellt), und erzeugt einen
MW-Befehl ansonsten. Die Multiplexer 2568 und 2570 sind so angeordnet, um das write_cmd Signal auf diese
Art und Weise zu erzeugen.

[0216] Wenn die QPIF eine Transaktion auf dem PCI-Bus ausfuhrt und eine Cache-Zeilen-Grenze erreicht
hat, kann die Schreib-Befehl-Logik 2566 ein new_write_cmd Signal aufstellen, das anzeigt, dass die momen-
tane Transaktion zugunsten eines neuen Schreib-Befehls beendet werden muss. Falls die Transaktion die letz-
te Cache-Zeile in dem PMWQ-Daten-Puffer erreicht hat (d. h. pmwq_pointer[5:3] entspricht ,111"), wird das
new_write Befehl-Signal aufgestellt, um anzuzeigen, dass die Transaktion beendet werden sollte, falls der
néchste PMWQ-Puffer nicht ein Uberlauf-Puffer ist, giiltige Daten enthaltend, falls das entsprechende
cfg2g_mw2mwi Bit nicht eingestellt ist, oder falls die full_line Bits entsprechend zu der momentanen Ca-
che-Zeile und der nachsten Cache-Zeile unterschiedlich sind (d.h. pmwq_full_line[7] entspricht nicht
pmwqg_next_full_line). Falls die Transaktion nicht das Ende des PMWQ-Puffers erreicht hat, wird das
new_write_cmd Signal aufgestellt, entweder falls die nachste Zeile in dem PMWQ-Puffer nicht gliltige Daten
enthalt (lpmwq_valid_lines[x + 1]), oder falls das cdfg2q_mw2mwi Bit eingestellt ist und die Voll-Zeilen-Bits fur
die momentane Zeile und die nachste Zeile unterschiedlich sind (d. h. pmwq_full_line[x] entspricht nicht
pmwq_full_line[x + 1]). Gates 2572, 2474, 2576, 2578 und 2580 und ein Multiplexer 2582 sind so angeordnet,
um das new_write Befehl-Signal auf diese Art und Weise zu erzeugen.

[0217] Nachdem das new_write_cmd Signal aufgestellt ist, wird die Transaktion nicht beendet, bis der
Schreib-Befehl-Logik-Block 2566 ein synchrones, neues Schreib-Befehl-Signal aufstellt
(held_new_write_cmd). Das held_new_write_cmd Signal wird an dem ersten Taktimpuls aufgestellt, nachdem
das new_write_cmd Signal aufgestellt ist und das end_of line Signal aufgestellt ist, was anzeigt, dass das
Ende der Cache-Zeile erreicht worden ist, so lange wie die PCI-Schnittstelle nicht die Transaktion beendet hat
(d. h. p2q_start_pulse ist aufgestellt). Der held_new_write Befehl wird bei einem Reset und bei dem ersten
Takt-Impuls weggenommen, nachdem die new_write_cmd, end_of-line und p2q_start_pulse Signale wegge-
nommen sind und die QPIF die Transaktion beendet (d. h. das asynchrone early_cyc_complete Signal ist auf-
gestellt). Ansonsten behalt das held_new_write_cmd Signal seinen momentanen Wert. Gates 2584 und 2586,
ein Invertieren 2588 und ein Flip-Flop 2590 sind so angeordnet, um das held_new_write_cmd Signal auf diese
Art und Weise zu erzeugen.

[0218] Wie wiederum Fig. 75 und auch Fig. 82A zeigen, umfasst die QPIF einen Uber-lauf-Logik-Block 2600,
der der Master-Zustand-Maschine 2500 ermdglicht, Uberlauf-Daten zu verwalten, falls irgendwelche vorhan-
den sind, wenn eine gepostete Schreib-Transaktion auf dem Target-Bus ausgefihrt wird. Wenn die QPIF ein
Transaktions-Lauf-Signal (mca_run_pmw oder mca_run_dr, wie vorstehend diskutiert ist) von dem MCA emp-
fangt, erzeugt die Uberlauf-Logik 2600 ein Zwei-Bit-Initial-Warteschlangen-Auswahl-Signal
(start_queu_select[2:0]), was anzeigt, welcher der Puffer in der PMWQ oder der DRQ ausgewahlt werden soll-

30/215

DE 697 21 381 T2 2004.01.15

te, um die momentane Transaktion laufen zu lassen. Die folgende Tabelle stellt dar, wie das start_queue_select
Signal erzeugt wird.

[0219]

MCA Run Code start_queue_select
00000001 00

00000010 01

00000100 10

00001000 11

00010000 00

00100000 01

01000000 10

10000000 11

Erzeugung eines start_queue_select Signals

[0220] Wenn die QPIF eine gepostete Schreib-Transaktion auf dem Target-Bus ausfuhrt, wird ein
Zwei-Bit-QPIF-Warteschlangen-Auswahl-Signal (q2pif_queue_select[1:0]) verwendet, um den geeigneten
Puffer in der PMWQ auszuwahlen. Wenn die Transaktion initiiert wird, stellt die Master-Zustand-Maschine
2500 ein Warteschlangen-Auswahl-Signal auf (initial_queue_select), das bewirkt, dass das
g2pif_queue_select Signal den Wert des anfanglichen Warteschlangen-Auswahl-Signals annimmt
(start_queue_select). Zu demselben Zeitpunkt wird ein Warteschlangen-Auswahl-Zahler 2602 mit dem Wert
des start_queue_select Signals geladen. Nachdem das initial_queue_select Signal weggenommen ist, nimmt
das g2pif_queue_select Signal den Wert des count_queue_select Signals an, erzeugt durch den Zahler 2602.
Wenn die gepostete Speicher-Schreib-Transaktion in den nachsten PMWQ-Puffer Gberlauft, stellt die Mas-
ter-Zustand-Maschine 2500 ein Erhéhungs-Warteschlangen-Auswahl-Signal (inc_queue_select) auf, das be-
wirkt, dass sich der Zahler 2602 um Eins erhoht. Als Folge wird das q2pif_select_signal erhéht und der nachste
Puffer in der PMWQ wird ausgewahlt, um die Transaktion fortzufihren. Ein Mulitplexer 2604 bestimmt den
Wert des g2pif_queue_select Signals.

[0221] Wie auch Fig. 82B zeigt, stellt die Uberlauf-Logik 2600 ein overflow_next_queue Signal auf, wenn die
Master-Zustand-Maschine 2500 fortfihren sollte, Informationen von dem nachsten PMWQ-Puffer wahrend ei-
ner geposteten Speicher-Schreib-Transaktion zu sammeln. Unter Verwendung des q2pif_queue_select[1:0]
Signals um zu bestimmen, welche PMWQ momentan ausgewahlt ist, stellt die Uberlauf-Logik 2600 das
overflow_next_queue Signal auf, wenn das giiltige Bit (pmwq_valid) und ein Uberlauf-Bit (pwq_overflow) ent-
sprechend zu dem nachsten PMWQ-Puffer eingestellt sind. Die pmwq_valid und die pmwq_overflow Zeichen
werden nachfolgend diskutiert. Gates 2606, 2608, 2610 und 2612 und ein Multiplexer 2614 sind so angeordnet,
um das overflow_next_queue Signal auf diese Art und Weise zu erzeugen.

[0222] Wie wiederum Fig. 75 zeigt, umfasst die QPIF einen Lese-Ausrichtungs-Logik-Block 2616, der der
QPIF ermoglicht, fehlausgerichtete Speicher-Lese-Zeilen- und Speicher-Lese-Mehrfach-Transaktionen zu kor-
rigieren. Eine Lese-Zeilen Korrektur tritt dann auf, wenn die QPIF, wahrend sie in dem Master-Mode arbeitet,
eine MRL- oder MRM-Transaktion empféngt, die in der Mitte einer Cache-Zeile beginnt. Um Transaktions-Zeit
zu reduzieren, beginnt die QPIF die Lese-Transaktion an der Cache-Zeilen-Grenze und ignoriert die nicht an-
geforderten dwords anstelle eines individuellen Lesens nur der angeforderten dwords von Daten.

[0223] Unter Bezugnahme auch auf Fig. 83 aktiviert die Lese-Ausrichtungs-Logik 2616 das Lese-Ausrich-
tungs-Merkmal durch Aufstellen eines align_read Signals. Dieses Signal wird dann aufgestellt, wenn der Be-
fehl, gespeichert in dem entsprechenden DRQ-Puffer, ein Speicher-Lese-Zeilen oder ein Speicher-Lese-Mehr-
fach-Befehl ist (d. h. drq_cmd [3:0] entspricht ,1110" oder ,1100" jeweils), und wenn das Lese-Ausrich-
tungs-Konfigurations-Bit (cfg2q_read_align) entsprechend zu der Target-PCI-Vorrichtung eingestellt ist. Gates
2618 und 2620 sind so angeordnet, um das align_read Signal auf diese Art und Weise zu erzeugen.

[0224] Wie wiederum die Fig. 84A bis 84C zeigen, umfasst die Lese-Ausrichtungs-Logik 2616 einen Le-
se-Ausrichtungs-Abwarts-Zahler 2622, der die dwords von jeder Cache-Zeilen-Grenze zahlt und anzeigt, wenn
die Master-Zustand-Maschine 2500 das erste, angeforderte dword erreicht. Der Zahler 2622 umfasst eine Zu-
stand-Maschine 2624, die die Betriebsweise des Zahlers 2622 steuert.

[0225] Bei einem Reset tritt der Zahler 2622 in einen IDLE CNT Zustand 2626 ein, in dem keine Zahlung auf-
tritt. Wenn der MCA die QPIF dahingehend instruiert, eine verzdgerte Anforderungs-Transaktion auf dem
PCI-Bus laufen zu lassen (d. h. wenn irgendwelche Bits in dem mca_run_dr[3:0] aufgestellt sind), stellt die
QPIF ein verzogertes Anforderungs-Lauf-Signal auf (any_drg_run), was anzeigt, dass sie versucht, eine ver-
zbgerte Anforderungs-Transaktion laufen zu lassen. Wahrend sich der Zahler in dem IDLE_CNT Zustand 2622
befindet, wird sein Drei-Bit-Ausgangs-Signal (throw_cnt[2:1]) mit dem dword offset der Transaktion-Adresse
(drg_addr[4:2]) geladen, wenn das any_run_drg Signal aufgestellt ist und die QPIF die Steuerung des

31/215

DE 697 21 381 T2 2004.01.15

PCI-Busses erhalt (d. h. p2q_ack wird aufgestellt). Das Gate 2623 erzeugt das Lade-Freigabe-Signal. Dann
tritt, an der ansteigenden Flanke des nachsten PCI-Takt-Zyklus, der Zahler 2622 in den COUNT Zustand 2628
ein. Falls die Transaktion an einer Cache-Zeilen-Grenze beginnt, gleicht das dword offset ,,000" und keine Zah-
lung wird benétigt. Wenn eine Lese-Ausrichtung aktiviert wird, beginnt die Master-Zustand-Maschine 2500
jede MRL- und MRM-Transaktion an der Cache-Zeilen-Grenze, ungeachtet der tatsachlichen Start-Adresse.
[0226] Wahrend sich der Zahler 2622 in dem COUNT Zustand 2628 befindet, verringert er sich um Eins bei
jedem Takt-Impuls, solange wie das p2q_ack Signal aufgestellt ist, throw_cnt nicht Null erreicht hat, sich die
Transaktion in der Daten-Phase befindet (d. h. das asynchrone Signal eary_data_phase ist aufgestellt) und die
Target-Vorrichtung nicht einen Target-Ready-Warte-Zustand (!p2q_trdy) ausgegeben hat. Das Gate 2625 be-
stimmt, wann der Zahler erniedrigt wird. Falls die PCI-Schnittstelle den Bus von der QPIF wegnimmt (p2q_ack
wird weggenommen) oder falls die Daten-Phase endet (early_data_phase wird weggenommen), beendet der
Zahler 2622 ein Erniedrigen und tritt erneut in den IDLE_CNT Normalzustand 2626 ein. Falls das throw_cnt
Signal ,000" erreicht, wahrend das p2q_ack Signal noch aufgestellt ist, stoppt der Zahler 2622 ein Zahlen und
tritt in den DONE Zustand 2630 ein. Ansonsten verbleibt der Zahler in dem COUNT Zustand 2628.

[0227] Wenn der Zahler ,000" erreicht, stellt die Lese-Ausrichtungs-Logik 2616 ein read_data_start Signal
auf, das die Master-Zustand-Maschine 2500 instruiert, ein Lesen von Daten von der Target-Vorrichtung zu be-
ginnen. Ein Komparator 2632 erzeugt das read_data_start Signal. Nachdem das read_data_start Signal auf-
gestellt ist, verbleibt der Zahler 2622 in dem DONE Zustand 2630 bis die Daten-Phase endet
(early_data_phase, wird weggenommen).

[0228] Wie Fig. 85 zeigt, steuert die Master-Zustand-Maschine die Betriebsweise der QPIF, wenn die QPIF
in dem Master-Mode arbeitet. In dem Master-Mode fiihrt die QPIF gepostete Schreib-Transaktionen und ver-
zbgerte Anforderungs-Transaktionen auf dem PCI-Bus aus. Die folgende Tabelle stellt die Ereignisse dar, die
Zustand-Ubergénge in der Master-Zustand-Maschine bewirken.

32/215

DE 697 21 381 T2 2004.01.15

MASTER STATE MACHINE

IOLE A-(u:y rund&icable busyksiiplq master_dphase) . - - IDLE
| (eny _run_drg &t te_de_gull)
IDLE B: p2q_sck && q2p dac_fisg MASTER_DAC

IDLE . C: p2q_sck &4& any_drg_run RDATAL
IDLE D: p2q_sck && 1q2p_dac_fisg |] soy drq fun) WDATA1L
MASTER_DAC | E:p2q sck &% any_drq_run&Z p2q_stact pulse RDATAL
: P: p2q ack &k ph_mpdu&&hny_dq_m WDATAL

G: p2q ack IDLE

RDATAL H: tp2q ack ' DLE
E p2q-ack && p2q_sart_pulss. RBURST
| 3: p2q_eck &4& 1p2q_san-puise . ~ RDATAL

RBURST Khzq.“klpkmlﬂtmml , IDLE

(queve_sye_complete &l (1p2q_las_dphase 28
p2q_mester_dpbase&& cd_stream &k strosm_miacch &&
lcfg2q_nream_disable) && tp2q _trdy) |
(read_page_disconnoct&& Ip2q_trdy)

L: p2q_sck && fp2q_reury && lp2q mrgek_sbort && : . RBURST
((read_page_discomnect&& p2g_trdy) | (queve_cyo_ '
compiets && ((1p2q_lan_dphase && p2q_maser_dphese
&8 cd_streatn && sream_match && Icfa2q_syeam_disable)
1 52q trdy) | tp2q wrdy] othecwise)

. WDATA1L M: Ip2q_ack | p2q_rotey | p2g_target_sbort | IDLE

((qmcyueomplunlhddu'mendl
end_of_tine && new, -nuemdlpzq_hndph-u
" | o_p2q_lum_dphase) &4 Yp2q_trdy)

N: p2q_sck && lp2q _rery && 1p2q_target_sbore WDATAL
&& (qusue_cye_complets | hold_new_write_cd |
ead_of fine &4& new_writs_cmd | p2q_last_dphase |

d Jast_d, &&
o"{i'-. phase) &4 p2q_trdy WDATAZ
WDATA2 P: 192q_sck | (24_reuydiliip2a_trdy) | p2q_targwe_sboct © DLE
Q: p2q_sck && p2q_rery && p2q tdy ‘ WRETRY
R: p2q_sck && lp2q_retry && Ip2q_targee_sbon & WSHORT_BURST
(quous_cyc_compiets | end_of line && new_write_
K cmd) &S start puln)
) S: oﬁmﬂl’kﬂ! ! sz ’ WDATA2
'L " WRETRY T: Always ' - A) . - IDLE
WSHORT_BURST | U: lp2q_sck | p2q_recry | p2q_targes_sboer IDLE
V: p2q_sck &2 lplq retry && lp2q_targe_sbart WCOMPLETE
&&((overflow_next queus&& inew_write cmd :
&& 1p2q_trdy) | 1p2q_tdy) :
A] o:b:-u; l . WSHORT_BURST
WCOMPLETE { X: p2q_reery | p2q targes_sbort | (Hoverfiow_next_ . IDLE
quous && Inow_write_cod && Ip2q_las_dpbase) &L .
152q_trdy)
Y: Ip2q_rowry &&lp2q target_sbort && ((ovecfiow . WDATAL
. next_Quens &&lnew_write_cmd &4& 1p2q_last_dphase) ‘
N &Xip2q_tedy) 4
o Z: otherwise . L . WCOMPLETE -

Master-Zustand-Transaktionen

[0229] Bei einem Reset tritt die Master-Zustand-Maschine in einen IDLE Zustand 2700 ein, in dem die QPIF
auf Instruktionen wartet, um eine Transaktion auf dem PCI-Bus laufen zu lassen. Wenn die QPIF ein Lauf-Si-
gnal von dem MCA empfangt (any_run wird aufgestellt, wenn irgendein Bit in dem mca_run_pmw Signal oder
dem mca_run_dr Signal aufgestellt ist), ist das Kabel nicht belegt, eine Nachricht weiterleitend (!cable_busy),
und die PCI-Schnittstelle versucht nicht, die vorherige Transaktion zu beenden (p2q_master_dphase), die
Master-Zustand-Maschine versucht, die Transaktion auf dem PCI-Bus laufen zu lassen. Falls die Transaktion
eine verzogerte Anforderungs-Transaktion ist (any_run_drq ist aufgestellt) und der andere Chip keinen Raum

33/215

DE 697 21 381 T2 2004.01.15

fur einen verzdgerten Abschluss hat (tc_dc_full ist aufgestellt), ist die Master-Zustand-Maschine nicht in der
Lage, die Anforderung laufen zu lassen, und fuhrt den MCA zu der nachsten Transaktion weiter. Ansonsten
beginnt, falls die PCI-Schnittstelle die QPIF Steuerung des Busses (p2q_ack ist aufgestellt) gegeben hat, die
Master-Zustand-Maschine damit, die Transaktion auf dem PCI-Bus auszufiihren. In dem IDLE Zustand 2700
liefert der Master die Adressen-Phasen-Informationen, die vorstehend diskutiert sind, zu dem PCI-Bus. Falls
die Transaktion, die laufen soll, ein Dual-Adressen-Zyklus ist (q2pif_dac_flag ist aufgestellt), tritt die Master-Zu-
stand-Maschine in einen MASTER_DAC Zustand 2702 ein, in dem die zweite Halfte der Adressen-Informatio-
nen geliefert wird. Falls die Transaktion nicht ein Dual-Adressen-Zyklus ist und eine verzdgerte Anforde-
rungs-Transaktion ist (any_run_drq ist aufgestellt), dann tritt die Master-Zustand-Maschine in einen RDATA1
Lese-Zustand 2704 ein, indem die Master-Zustand-Maschine die Datenphase der verzdgerten Anforde-
rungs-Transaktion beginnt. Falls die Transaktion nicht ein Dual-Adressen-Zyklus ist und nicht eine verzoégerte
Anforderung ist, ist sie eine gepostete Speicher-Schreib-Transaktion, so dass die Master-Zustand-Maschine
in einen WDATA1 Schreib-Zustand 2706 eintritt, indem die Master-Zustand-Maschine in die Datenphase der
geposteten Speicher-Schreib-Transaktion eintritt.

[0230] In dem MASTER_DAC Zustand 2704 = 2 liefert die Master-Zustand-Maschine die zweite Halfte der
Adressen-Phasen-Informationen. Dann tritt, falls das p2q_ack Signal noch aufgestellt ist und die Transaktion
eine verzogerte Anforderung ist, die Master-Zustand-Maschine in den RDATA1 Zustand 2704 ein, wenn sie
das Start-Signal (p2q_start_pulse) von der PCI-Schnittstelle empfangt. Falls die Transaktion nicht eine verzo-
gerte Anforderung ist, tritt die Master-Zustand-Maschine in den WDATA1 Zustand 2706 ein, wenn sie den
PCI-Start-Impuls empfangt. Die Master-Zustand-Maschine initiiert auch eine verzdégerte Abschluss-Nachricht
auf dem Kabel, wenn der PCI-Start-Impuls empfangen ist, durch Aufstellen eines Asynchron-Abschluss-Nach-
richten-Signals (early_master_send_message). Falls das p2q_ack Signal durch die PCI-Schnittstelle wegge-
nommen worden ist, kehrt die Master-Zustand-Maschine zu dem IDLE Zustand 2700 zurtick und wartet darauf,
erneut die Transaktion zu versuchen.

[0231] Der RDATA1 Zustand 2704 ist der Anfangs-Zustand fiir verzogerte Lese- und verzdgerte Schreib-An-
forderungen. In diesem Zustand wartet die Master-Zustand-Maschine auf den PCI-Start-Impuls, und zwar vor
Eintreten in eine RBURST Burst-Daten-Phase 2708. Wenn die Zustand-Maschine zuerst in den RDATA1 Zu-
stand 2704 eintritt, initiiert sie eine Abschluss-Nachricht auf dem Kabel, falls dies nicht schon bereits in dem
MASTER_DAC Zustand 2702 vorgenommen ist. Dann beendet, falls das p2q_ack durch die PCI-Schnittstelle
weggenommen ist, die Master-Zustand-Maschine die Transaktion, fihrt den MCA zu der nachsten Transaktion
weiter, und tritt erneut in den IDLE Zustand 2700 ein. Ansonsten prapariert, wenn der PCI-Start-Puls erscheint,
sich die Master-Zustand-Maschine so, um in den RBURST Zustand 2708 einzutreten. Falls die QPIF das Ende
der Transaktion anzeigt (queue_cyc_complete) oder falls die Transaktion eine 4K Seiten-Grenze erreicht hat
(read_page_disconnect ist aufgestellt, da alle Bits in dem drg_addr [11:2] Signal hoch sind), entfernt die Mas-
ter-Zustand-Maschine das frame__ signal von der QPIF und zeigt an, dass der nachste Teil an Daten der letzte
Teil ist (asynchrones Signal early_last_master_data ist aufgestellt), bevor in den RBURST Zustand 2708 ein-
getreten wird. Die Master-Zustand-Maschine stellt auch ein asynchrones early_master_lastline Signal auf, das
anzeigt, dass die letzte Zeile von Daten erreicht worden ist, falls das read_page_disconnect_lastline Signal
aufgestellt ist oder falls das DRQ-Last-Zeilen-Signal (drq_lastline) aufgestellt ist und die QPIF nicht ein Strea-
ming-Signal von dem anderen Briicken-Chip empfangen hat (cd_stream oder stream_match sind nicht aufge-
stellt oder cfq2q_stream_disable ist nicht eingestellt). Falls der PCI-Start-Impuls nicht aufgestellt ist, verbleibt
die Master-Zustand-Maschine in dem RDATA1 Zustand 2704, bis die QPIF die Transaktion beendet oder eine
4K Seiten-Grenze erreicht ist, was die Zustand-Maschine zu dem IDLE Zustand 2700 zuriickfiihren wird, oder
bis der PCI-Start-Impuls erscheint, was die Zustand-Maschine dazu bringt, in den RBURST Zustand 2708 ein-
zutreten.

[0232] In dem RBURST Zustand 2708 fuhrt die Master-Zustand-Maschine burstmaRig Daten zu dem
PCI-Bus. Falls eine Abschluss-Nachricht bis jetzt noch nicht initiiert worden ist, initiiert die Master-Zustand-Ma-
schine eine Abschluss-Nachricht unter Eintreten in den RBURST Zustand 2708. Dann beendet, falls das
p2q_ack Signal weggenommen ist, oder falls die QPIF Transaktion erneut durch die PCI-Schnittstelle versucht
wird (p2q_retry ist aufgestellt), oder falls die PCI-Schnittstelle die Transaktion aussondert (p2q_target_abort ist
aufgestellt), beendet die Master-Zustand-Maschine die Transaktion auf dem PCI-Bus, sondert die Ab-
schluss-Nachricht auf dem Kabel aus und kehrt zu dem IDLE Zustand zuriick. Wenn das p2q_ack Signal weg-
genommen ist, fhrt der Master-Zyklus-Arbitrierer fort, die momentane Transaktion auszuwahlen. Wenn aller-
dings die Transaktion erneut aufgesucht oder ausgesondert ist, fihrt die Master-Zustand-Maschine den MCA
zu der nachsten Transaktion weiter.

[0233] Wahrend das p2q_ack Signal noch aufgestellt ist und die QPIF-Transaktion nicht erneut versucht oder
ausgesondert wird, beendet die Master-Zustand-Maschine niemals die Transaktion und kehrt zu dem IDLE Zu-
stand 2700 zurtick, falls eine 4K Seiten-Grenze erreicht ist und die PCI-Schnittstelle anzeigt, dass die Tar-
get-Vorrichtung aufgehért hat, Daten aufzunehmen (p2q_trdy ist nicht Ianger aufgestellt). Falls die Target-Vor-
richtung den letzten Teil von Daten nimmt, verbleibt die Zustand-Maschine in dem RBURST Zustand 2708.

34/215

DE 697 21 381 T2 2004.01.15

[0234] Falls die QPIF das queue _cyc _complete Signal aufstellt, was anzeigt, dass die Transaktion abge-
schlossen ist, wird der Master allgemein die Transaktion beenden und zu dem IDLE Zustand 2700 zuriickkeh-
ren, falls das p2q_trdy Signal weggenommen ist oder in dem RBURST Zustand 2708 verbleibt, bis das letzte
dword an Daten Ubertragen wird, falls das p2q_trdy Signal aufgestellt verbleibt. Falls sich allerdings die Trans-
aktion in der Daten-Phase befindet und sich nicht in der letzten Daten-Phase befindet (p2g_master_dphase
und !p2q_last_dphase) und eine Datenfolge mit dem anderen Bricken-Chip eingerichtet worden ist
(cd_stream und stream_match und !cfg2q_stream_disable), wird die Master-Zustand-Maschine in der
RBURST-Phase indefinit verbleiben. Wenn sich die QPIF in einem Streaming-Vorgang befindet, stellt die Mas-
ter-Zustand-Maschine ein Streaming-Signal auf (q2pif_streaming), das die QPIF dazu bringt, fortzufahren, Da-
ten zu der anfordernden Vorrichtung auf dem anderen PCI-Bus zu liefern, bis die Vorrichtung die Transaktion
beendet.

[0235] Falls das p2q_ack Signal aufgestellt verbleibt und weder das p2q_retry, das p2q_target_abort oder das
queue_cyc_complete Signal aufgestellt ist, sieht die Master-Zustand-Maschine bei dem p2q trdy Signal nach.
Falls das Signal nicht aufgestellt ist, was anzeigt, dass die Target-Vorrichtung den letzten Teil von Daten ge-
nommen oder geliefert hat, stellt die Master-Zustand-Maschine deren nachstes Daten-Signal auf
(early_next_data), das anzeigt, dass die QPIF bereit ist, einen anderen Teil von Daten zu libertragen. Das
nachste Daten-Signal wird nur dann aufgestellt, falls die Transaktion nicht eine korrekte Lesung ist (align_read
ist nicht aufgestellt) oder falls die Transaktion eine korrekte Lesung ist und das read_data_start Signal aufge-
stellt worden ist. Falls das p2q_trdy Signal aufgestellt ist, was anzeigt, dass das Target nicht die letzte Da-
ten-Ubertragung durchgefiihrt hat, verbleibt die Zustand-Maschine in dem RBURST Zustand 2708.

[0236] In dem WDATA1 Zustand 2706 beginnt die Master-Zustand-Maschine die Daten-Phase einer gepos-
teten Speicher-Schreib-Transaktion. Falls das p2q_ack Signal weggenommen ist oder die p2q_retry oder das
p2q_target_abort Signal aufgestellt ist, wahrend sich die Master-Zustand-Maschine in diesem Zustand befin-
det, wird die Transaktion auf dem PCI-Bus beendet und die Zustand-Maschine kehrt zu dem IDLE Zustand
2700 zurtck. Wenn das p2q_ack Signal weggenommen ist, verbleibt der MCA bei dem momentanen Zyklus;
ansonsten fihrt die Master-Zustand-Maschine die MCA schrittmaf3ig zu der nachsten Transaktion weiter.
[0237] Falls das p2q_ack Signal aufgestellt verbleibt und die Transaktion weder erneut aufgesucht noch aus-
gesondert wird, muss die Master-Zustand-Maschine bestimmen, ob der Schreibvorgang ein einzelnes dword
oder mehr als ein dword einsetzt. Falls in dem WDATA1 Zustand das queue_cyc_complete Signal aufgestellt
ist, wird das neue Halte-Schreib-Befehl-Signal aufgestellt, die end_of line und new_write_cmd Signale werden
aufgestellt, oder die Transaktion hat das letzte dword von Daten erreicht, die Transaktion setzt ein einzelnes
dword ein. In dieser Situation endet die Transaktion und die Zustand-Maschine kehrt zu dem IDLE Zustand
2700 nur dann zurtick, wenn das Target den letzten Teil von Daten nahm (Ip2q_trdy). Ansonsten verbleibt die
Zustand-Maschine in dem WDATA2 Zustand 2710. Falls die Transaktion mehr als ein dword von Daten ein-
setzt, tritt die Master-Zustand-Maschine in einen WDATA2-Burst-Daten-Phasen-Zustand 2710 ein. Unmittelbar
vor einem Eintreten in den WDATA2 Zustand setzt die Master-Zustand-Maschine einen g2p_irdy Warte-Zu-
stand ein, falls das overflow_next_queue Signal aufgestellt worden ist.

[0238] In dem WDATA2 Zustand 2710 leitet die Master-Zustand-Maschine die Daten burstmafRig zu dem
PCI-Bus weiter. Falls das p2q_ack Signal weggenommen ist oder die Transaktion durch die PCI-Schnittstelle
ausgesondert ist, wird die Transaktion in der QPIF beendet und die Master-Zustand-Maschine tritt erneut in
den IDLE Zustand 2710 ein. Falls die Transaktion erneut durch die PCI-Schnittstelle versucht wird, allerdings
die PCI-Schnittstelle die Daten nahm, die geliefert sind (Ip2q_trdy), tritt die Master-Zustand-Maschine erneut
in den IDLE Zustand 2700 ein. Ansonsten tritt die Zustand-Maschine in einen WRETRY-Stepback-Zustand
2712 ein, der die PMWQ aulierhalb des Hinweiszeigers zurtick zu dem vorherigen Teil von Daten durch Erzeu-
gen des Ruckschreit-Signals, das vorstehend diskutiert ist, fihrt. Von dem WRETRY Zustand 2712 tritt die Zu-
stand-Maschine immer wieder in den IDLE Zustand 2700 ein.

[0239] Falls das p2q_ack Signal aufgestellt verbleibt und die Transaktion weder erneut versucht noch ausge-
sondert ist, bestimmt die Master-Zustand-Maschine, ob die Transaktion abgeschlossen ist. Falls die QPIF das
Ende der Transaktion anzeigt (queue_cyc_complete ist aufgestellt) oder das Ende einer Cache-Zeile erreicht
ist und ein neuer Schreib-Befehl bendtigt wird (end_of line und new_write_command sind aufgestellt), tritt die
Zustand-Maschine in einen WSHORT_BURST Zustand 2714 ein, wenn entweder der letzte Teil der Daten ge-
nommen wurde (!p2qg_trdy) oder der PCI-Start-Impuls empfangen ist. In jedem Fall missen nur zwei dwords
an Daten zu dem PCI-Bus hingeschrieben werden. Ansonsten verbleibt die Zustand-Maschine in dem
WDATA2 Zustand 2710. Wenn die Zustand-Maschine in den WSHORT_BURST Zustand 2714 eintritt, ver-
bleibt das QPIF frame_signal aufgestellt, falls die Transaktion in die nachste Warteschlange tberlaufen kann,
und ein neuer Schreib-Befehl wird nicht bendtigt.

[0240] In dem WSHORT_BURST Zustand 2714 prapariert sich die Master-Zustand-Maschine, um die ab-
schlieRenden zwei dwords Daten zu dem PCI-Bus zu schreiben. Falls das p2q_ack Signal weggenommen ist
oder der Zyklus erneut versucht wird oder durch die PCI-Schnittstelle ausgesondert wird, beendet die Zu-
stand-Maschine die Transaktion und kehrt zu dem IDLE Zustand 2700 zurtick. Wenn das PCI-Kenntnis-Signal

35/215

DE 697 21 381 T2 2004.01.15

verschwindet oder der Zyklus ausgesondert wird, stellt die Master-Zustand-Maschine das Stepback-Signal auf,
um anzuzeigen, dass der PMWQ-Out-Pointer zurtick zu dem vorherigen dword schrittmaRig gefuhrt werden
sollte. Wenn die Transaktion erneut durch die PCI-Schnittstelle versucht wird, wird der Out-Pointer zurlick nur
dann schrittmaRig gefiihrt, falls die Target-Vorrichtung nicht den letzten Teil an Daten nahm (p2q_trdy ist auf-
gestellt). Wenn die Transaktion nicht beendet ist und sie in den nachsten PMWQ-Puffer Uberlaufen kann
(overflow_next_cueue ist aufgestellt) und ein neuer Schreib-Befehl nicht bendtigt wird, behalt die Master-Zu-
stand-Maschine das QPIF-Frame-Signal, das aufgestellt ist, bei, und tritt dann in einen WCOMPLETE Zustand
2716 ein, falls die Target-Vorrichtung den letzten Teil an Daten genommen hat oder in dem WSHORT_BURST
Zustand 2714 hat, oder verbleibt ansonsten in dem WSHORT-BURST Zustand 2714. Falls die Transaktion
nicht in die nachste Warteschlange berlaufen kann oder ein neuer Schreib-Befehl benétigt wird, nimmt die
Zustand-Maschine das Frame-Signal weg, um das Ende der QPIF-Transaktion anzuzeigen, und tritt dann in
den WCOMPLETE Zustand 2716 ein, falls der letzte Teil von Daten durch die Target-Vorrichtung genommen
wurde, oder verbleibt in dem WSHORT_BURST Zustand 2714 ansonsten.

[0241] In dem WCOMPLETE Zustand 2716 beendet die Master-Zustand-Maschine die gepostete Spei-
cher-Schreib-Transaktion. Die Zustand-Maschine tritt in den IDLE Zustand 2700 ein, wenn die Transaktion er-
neut versucht oder durch die PCI-Schnittstelle ausgesondert ist. Falls die Transaktion erneut versucht wird,
wird der PMWQ-Out-Pointer nur dann erhoht, falls die Target-Vorrichtung den letzten Teil an Daten nahm. Falls
die Transaktion in die nachste Warteschlange berlaufen kann, wird ein neuer Schreib-Befehl nicht bendétigt,
und die Transaktion befindet sich nicht in der letzten Daten-Phase, die Master-Zustand-Maschine erhéht den
Warteschlangen-Auswahl-Zahler und kehrt zu dem WDATA1 Zustand 2706 zurtick, um die Transaktion von der
Uberlauf-Warteschlange fortzufiihren, solange wie die Target-Vorrichtung den letzten Teil an Daten nahm. Falls
die Target-Vorrichtung nicht den letzten Teil an Daten nahm, verbleibt die Master-Zustand-Maschine in dem
WCOMPLETE Zustand 2716.

[0242] Falls die Transaktion nicht in den nachsten PMWQ-Puffer Uberlaufen wird, beendet die Master-Zu-
stand-Maschine die Transaktion und kehrt zu dem IDLE Zustand 2700 zurick, falls das Target den letzten Teil
an Daten nahm. Ansonsten verbleibt die Zustand-Maschine in dem WCOMPLETE Zustand 2716, bis eines der
beendenden Ereignisse, diskutiert vorstehend, auftritt.

[0243] Wie die Fig. 86 zeigt, steuert die Slave-Zustand-Maschine die Operation der QPIF, wenn die QPIF in
dem Slave-Mode arbeitet. In dem Slave-Mode empfangt die QPIF gepostete Schreib-Transaktionen und ver-
zbgerte Anforderungs-Transaktionen von Vorrichtungen auf dem PCI-Bus und flhrt die Transaktionen weiter
zu dem Target-Bus (iber das Kabel. Die folgende Tabelle stellt die Ereignisse dar, die Zustand-Ubergénge in
der Slave-Zustand-Maschine verursachen.

36/215

DE 697 21 381 T2 2004.01.15

SLAVE STATE MACHINE

SLAVE_IDLE A: p2q_qeyo && p2q dac_fhag && p2q_pere SLAVE_DAC
. B: p2q_qeyc && Ip2q_dac_flag && pmw_request && PMW]
lp2q_perr &&(ltc_pmw_full && !deg_locked .
&& llock _stats{1] .
C: p2q_geye && Ip2q_dac_f &g&ﬂpmw _tequest STEP_AHEAD

&i lp2q_perr &8:(mem_read_live | mem_read_mwul)
&L (deq_hit Z&1deq_no_dan &&llock_saw{l])

D: p2q_qeye &&ip2a_dao_flag L&lpmw_roquest . SECOND_CHECK
&& lp2q porr &&Nmom_read linelm read_mul)
E: [p2q_qcyc &Xlp2q_dac_flag && pmw_request && SLAVE_IDLE

1p2q_perr &&i(lic_pmw_full&srideg locked &&llock
sata{1D]] (p2q_qoycselip2q_dac_flag&p2q_perv]

| tp2q_geye 2&1p2q deo_flag&&ipmw_requestdele
(p2q_pero) | ((meen_resd_fine | mem_read_malds

1(deq_hit&&ldeq_no_data&&Mtock. mdlD))
. :] otherwise
SLAVEDAC | F: p2q_qcychapmw_request&d lp2q_per && ' MW
. Cte_pmw_full &&1deq Jocked &&llock_stae{1])
Q: p2q_geyc &&ipmw_roquent && lp2q perc && STEP_AHEAD

(roam_read_fine | mem_read_mui) && (deq_hic
&& ldeq no_dats && § lock_statof1]) -

H: p2q_geye&&ipmw_request&i !quJnrrM "] SECOND_CHECK -
Hem_road_lins | mem_read_muf) i
I: otherwise SLAVE_IDLE
SECOND_CHECK | I: fio_write &2 iconfig_write && lp2q_perr && STEP_AHEAD
‘ (deq_hit £& Ideq_no_ data &b llock_suts{1] && dwr_check_ok)_
K: otherwise .
. SLAVE_IDLE
STEP_AHEAD | L: deq_no_daa 4 { =IT_DOQ_FINAL
: M: otherwise _ , HIT_DCQ
HIT_DCQ N: Ip2q _geye SLAVE_[DLE
] O:p2q goyck&(deq no_data&& tp2q_irdy | (pmaw_counter(2] HIT_DCQ_FINAL
&&pmyw_counter(l} ’ :
&& pow_ m@]&&. read_disconnect_for_stresm)
P: otherwise
4 HIT_DCQ
| HIT_DCQ_FINAL | Q: tp2q_gcye | lp2q_indy . _ SLAVE IDLE
R: otherwise : HIT_DCQ_FINAL
PMW] 8: tp2q_geye ' SLAVE _IDLE
! T: otherwise PMWI

Slave-Zustand-Ubergénge

[0244] Bei einem Reset tritt die Slave-Zustand-Maschine in einen IDLE Zustand 2720 ein, in dem die QPIF
auf eine Transaktion wartet, die initiiert werden sollte, und zwar durch eine Vorrichtung auf dem PCI-Bus. Falls
eine Transaktion, initiiert auf dem Bus, nicht die QPIF als Ziel trifft (g2p_qgcyc ist nicht aufgestellt), fahrt die Sla-
ve-Zustand-Maschine in dem IDLE Zustand 2720 fort. Wenn eine Transaktion auf dem PCI-Bus nicht die QPIF
als Ziel trifft, tritt die Slave-Zustand-Maschine in einen SLAVE_DAC-Dual-Adressen-Zyklus-Zustand 2722 ein,
falls das p2q_dac_flag aufgestellt ist und ein Adressen-Paritats-Fehler nicht aufgetreten ist (p2q_perr_ist nied-
rig). Falls die Transaktion nicht ein Dual-Adressen-Zyklus ist und eine gepostete Speicher-Schreib-Anforde-
rung ist, und falls ein Paritats-Fehler nicht in der Adressen-Phase aufgetreten ist, I1&dt die Slave-Zustand-Ma-
schine die Schreib-Zahler (d. h. stellt load_write_counter auf) und bestimmt, ob sie die Transaktion akzeptieren
kann. Falls die PMWQ in dem anderen Briicken-Chip voll ist (tc_dc_full ist durch den DC-Transaktions-Zahler
aufgestellt) oder die DCQ verriegelt ist (dcg_locked ist aufgestellt) oder sich die QPIF-Verriegelungs-Logik in
dem unlocked-but-retry Zustand befindet (lock_state [1] entspricht ,1"), dann beendet die Slave-Zustand-Ma-
schine die Transaktion durch Aufstellen eines asynchronen Retry-Signals (early_retry), das zu der PCI-Schnitt-
stelle als g2pif_retry zugefiihrt wird, und verbleibt in dem IDLE Zustand 2720. Falls die QPIF die Transaktion
annehmen kann, initiiert die Slave-Zustand-Maschine die gepostete Speicher-Schreib-Nachricht auf dem Ka-
bel und tritt in einen PMW1 Zustand 2724 ein, in dem die Transaktion weiter zu dem Kabel gefuhrt wird.

[0245] Falls die Transaktion nicht ein Dual-Adressen-Zyklus oder eine gepostete Speicher-Schreib-Anforde-

37/215

DE 697 21 381 T2 2004.01.15

rung ist, ladt die Slave-Zustand-Maschine den dword Zahler (stellt load_write_counter auf), und, falls nicht ein
Paritats-Fehler aufgetreten ist, analysiert sie die verzdgerte Anforderungs-Transaktion. Falls die Transaktion
eine MRL- oder eine MRM-Transaktion ist und die QPIF-Verriegelungs-Logik sich nicht in dem unlocked-bu-
tretry Zustand befindet, stellt die Slave-Zustand-Maschine das QPIF-Prif-Zyklus-Signal (q2pif_check_cyc)
auf, was die DCQ instruiert, die verriegelte Anforderung zu den verzdgerten Abschluss-Nachrichten in den
DCQ-Puffern zu vergleichen. Falls die Anforderung einen DCQ-Puffer trifft, der nicht leer ist (dcq_hit und
ldcqg_no_data), tritt die Slave-Zustand-Maschine in einen STEP_AHEAD Zustand 2726 ein, in dem die QPIF
beginnt, die angeforderten Informationen zu dem PCI-Bus zuzufiihren. Falls die MRL- oder MRM-Anforderung
alle die DCQ-Daten-Puffer verfehlt (Idcq_hit), ist die DCQ nicht voll (Idcq_full), die verzdgerte Anforde-
rungs-Warteschlange in dem anderen Briicken-Chip ist nicht voll ('tc_dr_full) und die DCQ und QPIF sind nicht
verriegelt (Idcq_locked und !lock_state [1]) stellt die Slave-Zustand-Maschine das g2pif_retry Signal auf, fihrt
die Anforderung weiter zu dem Kabel, und verbleibt in dem IDLE Zustand 2720. Falls die Anfor- derung die
DCQ verfehlt und die Anforderung nicht entlang des Kabels geschickt werden kann, versucht die QPIF einfach
erneut die anfordernde Vorrichtung und verbleibt in dem IDLE Zustand 2720.

[0246] Falls die verzogerte Anforderung nicht eine MRL- oder MRM-Transaktion ist, wird ein zweiter Takt-Zy-
klus bendtigt, um die Anforderung zu prifen, da die Daten- oder Byte-Freigaben mit den Inhalten der DCQ-Puf-
fer verglichen werden mussen, so dass die Slave-Zustand-Maschine in einen SECOND CHECK Zustand 2728
eintritt. Falls ein Paritats-Fehler auftritt oder falls sich die Verriegelungs-Logik in dem unlocked-but-retry Zu-
stand befindet, versucht die Zustand-Maschine erneut die anfordernde Vorrichtung und verbleibt in dem IDLE
Zustand 2720.

[0247] In dem SLAVE_DAC Zustand 2722 empfangt die Slave-Zustand-Maschine die zweite Halfte der
Adressen-Phasen-Informationen. Falls die anfordernde Vorrichtung nicht target-mafig die QPIF getroffen hat,
ignoriert die Slave-Zustand-Maschine die Transaktion und verbleibt in dem IDLE Zustand 2720. Wenn die QPIF
die Target-Vorrichtung ist, sind die Zustand-Ubergangs-Ereignisse dieselben wie solche in dem IDLE Zustand
2720. Genauergesagt ladt, falls die Transaktion eine gepostete Speicher-Schreib-Anforderung ist und ein Pa-
ritats-Fehler nicht aufgetreten ist, die Slave-Zustand-Maschine die Schreib-Zahler und bestimmt, ob sie die
Transaktion annehmen kann. Falls die PMWQ in dem anderen Bricken-Chip voll ist (tc_pmw_full ist aufge-
stellt), wird die DCQ verriegelt, oder die QPIF-Verriegelungs-Logik befindet sich in dem unlocked-but-retry Zu-
stand, die Slave-Zustand-Maschine versucht erneut die anfordernde Vorrichtung und kehrt zu dem IDLE Zu-
stand 2720 zurtick. Falls die QPIF die Transaktion annehmen kann, initiiert die Slave-Zustand-Maschine die
gepostete Speicher-Schreib-Nachricht auf dem Kabel und tritt in den PMW1 Zustand 2724 ein.

[0248] Falls die Transaktion nicht eine gepostete Speicher-Schreib-Anforderung ist, 1adt die Slave-Zu-
stand-Maschine den dword Zahler, und, falls kein Paritats-Fehler aufgetreten ist, analysiert sie die verzdgerte
Anforderungs-Transaktion. Falls die Transaktion eine MRL- oder MRM-Transaktion ist und sich die QPIF-Ver-
riegelungs-Logik nicht in dem unlocked-but-retry Zustand befindet, stellt die Slave-Zustand-Maschine das
QPIF-Prif-Zyklus-Signal auf. Falls die Anforderung einen DCQ-Puffer trifft, der nicht leer ist, tritt die Slave-Zu-
stand-Maschine in den STEP ADHEAD Zustand 2726 ein. Falls die MRL- oder MRM-Anforderung alle die
DCQ-Daten-Puffer verfehlt, ist die DCQ nicht voll, die verzégerte Anforderungs-Warteschlange in dem anderen
Briicken-Chip ist nicht voll (tc_dr_full ist nicht aufgestellt) und die DCQ und die QPIF sind nicht verriegelt, stellt
die Slave-Zustand-Maschine stellt das q2pif_retry Signal auf, fuhrt die Anforderung weiter entlang des Kabels
und kehrt zu dem IDLE Zustand 2720 zuriick. Falls die Anforderung die DCQ verfehlt und die Anforderung nicht
entlang des Kabels geschickt werden kann, versucht die QPIF einfach erneut die anfordernde Vorrichtung und
kehrt zu dem IDLE Zustand 2720 zurtick.

[0249] Falls die verzogerte Anforderung nicht eine MRL- oder MRM-Transaktion ist, wird ein zweiter Takt-Zy-
klus bendtigt, um die Anforderung zu prifen, da die Daten- oder Byte-Freigaben mit den Inhalten der DCQ-Puf-
fer verglichen werden missen, so dass die Slave-Zustand-Maschine in den SECOND CHECK Zustand 2728
eintritt. Falls ein Paritat-Fehler auftritt oder falls sich die Verriegelungs-Logik in dem unlocked-but-retry Zustand
befindet, versucht die Zustand-Maschine erneut die anfordernde Vorrichtung und kehrt zu dem IDLE Zustand
2720 zurtick.

[0250] In dem PMW1 Zustand 2724 fihrt die Slave-Zustand-Maschine eine gepostete Spei-
cher-Schreib-Transaktion tber das Kabel zu der Target-Vorrichtung weiter. Wenn die Zustand-Maschine zuerst
in den PMW1 Zustand 2724 eintritt, nimmt sie das load_write_counter Signal weg. Falls der dword Zahler an-
zeigt, dass die gepostete Speicher-Schreib-Transaktion die letzte Cache-Zeile ist (pmw_counter [5:3] ent-
spricht ,111") und die PMWQ in der anderen Briicke voll ist (tc_pmw_full) und das Schreib-Uberlauf-Merkmal
gesperrt ist (Icfg2q_write_overflow), oder falls das write_page_disconnect Signal aufgestellt ist, da die Trans-
aktion eine 4K Seiten-Grenze erreicht hat, oder falls die DCQ das dcq_disconnect_for_stream Signal aufge-
stellt hat und das Schreib-Unterbrechungs-Merkmal nicht gesperrt ist (Icfg2q_wr_discnt_disable), stellt die Sla-
ve-Zustand-Maschine das slave_lastline Signal auf, das anzeigt, dass die momentane Cache-Zeile die letzte
sein wird, die Ubertragen werden soll. Die Slave-Zustand-Maschine verbleibt dann in dem PMW1 Zustand
2724, bis das p2q_gcyc Signal weggenommen ist, was anzeigt, dass die Transaktion auf dem PCI-Bus abge-

38/215

DE 697 21 381 T2 2004.01.15

schlossen wurde. Nach Verlassen des PMW1 Zustands 2724, tritt die Slave-Zustand-Maschine wieder in den
IDLE Zustand 2720 ein.

[0251] In dem SECOND_CHECK Zustand 2728 hat die Slave-Zustand-Maschine die DCQ die zweite Phase
der Anforderungs-Informationen zu den verzégerten Abschluss-Informationen in den DCQ-Puffern vergleichen
lassen. Falls die Transaktion nicht eine verzdgerte Schreib-Anforderung ist (lio_write und !config_write) oder
dabei ein Paritats-Fehler vorhanden ist (p2g_perr) und falls die DCQ nicht verriegelt ist und das dwr_check_ok
Signal aufgestellt ist, stellt die Slave-Zustand-Maschine das g2pif_check_cyc auf. Das dwr_check_ok Signal
wird entweder dann aufgestellt, wenn die Transaktion nicht eine verzégerte Schreib-Anforderung ist oder wenn
sie eine verzogerte Schreib-Anforderung ist und ein p2q_irdy Warte Zustand nicht eingesetzt worden ist. Falls
die Anforderung einen der DCQ-Puffer trifft und der Puffer nicht leer ist, tritt die Slave-Zustand-Maschine in den
STEP_AHEAD Zustand 2726 ein. Falls die Anforderung alle der DCQ-Puffer verfehlt, allerdings die QPIF die
Nachricht entlang des Kabels schicken kann, versucht die Slave-Zustand-Maschine die anfordernde Vorrich-
tung erneut, fiihrt die Transaktion entlang des Kabels weiter und tritt erneut in den IDLE Zustand 2720 ein. An-
sonsten wird, falls die Anforderung alle der DCQ-Puffer verfehlte, und die QPIF nicht die Transaktion entlang
des Kabels schicken konnte, oder falls ein Paritats-Fehler an einer verzégerten Schreib-Anforderung auftritt,
die Zustand-Maschine erneut die anfordernde Vorrichtung versuchen und wieder in den IDLE Zustand 2720
eintreten.

[0252] In dem STEP_AHEAD Zustand 2726 erhoht die Slave-Zustand-Maschine den DCQ-Ausgangs-Hin-
weiszeiger zu dem nachsten dword. Dieser Zustand ist notwendig, unmittelbar nachdem ein DCQ-Puffer ge-
troffen wird, da die PCI-Schnittstelle das erste dword von Daten ohne Zugreifen auf das !p2q_trdy Signal ver-
riegelt. Von dem STEP_AHED Zustand 2726 tritt die Zustands Maschine in einen HIT_DCQ Zustand 2730 ein,
in dem Daten von dem geeigneten DCQ-Puffer zu der anfordernden Vorrichtung geliefert werden, falls das letz-
te dword von Daten nicht genommen worden ist. Ansonsten tritt die Zustand-Maschine in einen
HIT_DCQ_FINAL Zustand 2732 ein, in dem die anfordernde Vorrichtung erneut versucht wird, da der
DCQ-Puffer keine weiteren Daten enthalt.

[0253] Von dem HIT_DCQ Zustand 2730 beendet, wenn die verzogerte Anforderungs-Transaktion auf dem
PCI-Bus endet, bevor sie in der QPIF endet (d. h. p2q_qgcyc wird weggenommen), die Zustand-Maschine die
Transaktion in der QPIF und stellt das Stepback-Signal auf, das anzeigt, dass der DCQ Out-Pointer verringert
werden sollte, da der letzte Teil von Daten nicht durch die anfordernde Vorrichtung genommen wurde. Die Zu-
stand-Maschine tritt dann erneut in den IDLE Zustand 2720 ein. Falls der DCQ-Puffer ,Out-Of-Data" lauft, wah-
rend die anfordernde Vorrichtung fortfahrt, ihn anzufordern (dcq_no_data und !p2q_irdy), oder falls der
pmw_counter anzeigt, dass das letzte dword erreicht worden ist und das read_disconnect_for_stream Signal
aufgestellt worden ist, versucht die Slave-Zustand-Maschine erneut die anfordernde Vorrichtung und tritt in den
HIT_DCQ_FINAL Zustand 2732 ein. Falls die Transaktion endet, um eine Datenfolge einzurichten, wird das
Stepback-Signal aufgestellt und der Ausgangs-Hinweiszeiger des geeigneten DCQ-Puffers wird erniedrigt. In
irgendeiner anderen Situation fahrt die Slave-Zustand-Maschine fort, Daten in dem HIT_DCQ_FINAL Zustand
2732 vorzusehen.

[0254] Indem HIT_DCQ_FINAL Zustand 2732 besitzt die Slave-Zustand-Maschine ein dword an Daten Ubrig,
um sie zu Ubertragen. Falls der PCI-Bus die Transaktion beendet, bevor die anfordernde Vorrichtung den letz-
ten Teil von Daten nimmt (d. h. p2g_qgcyc wird weggenommen), stellt die Slave-Zustand-Maschine das Step-
back-Signal auf und kehrt zu dem IDLE Zustand 2720 zuruck. Falls das p2q_qgcyc Signal aufgestellt verbleibt
und die anfordernde Vorrichtung nicht einen Initiator-Warte-Zustand aufgestellt hat (!p2qg_irdy), wird die anfor-
dernde Vorrichtung erneut versucht, da der letzte Teil an Daten genommen worden ist. Die Zustand-Maschine
tritt dann erneut in den IDLE Zustand 2720 ein. Ansonsten verbleibt die Slave-Zustand-Maschine in dem HIT
DCQ FINAL Zustand 2732.

[0255] Wie die Fig. 87 zeigt, ist der Kabel-Nachrichten-Generator eine Zustand-Maschine, die Kabel-Nach-
richten von Transaktions-Informationen erzeugt, erhalten von der Master- und der Slave-Zustand-Maschine.
Zusatzlich zu einem IDLE Zustand 2740 umfasst der Nachrichten-Generator auch einen Dual-Adressen-Zy-
klus-(CABLE_DAC) Zustand 2742, einen Master-Daten-Phasen-(MASTER_DPHASE) Zustand 2744 und ei-
nen Slave-Daten-Phasen-(SLAVE_DPHASE) Zustand 2746. Die folgende Tabelle stellt die Ereignisse dar, die
Zustand-Ubergénge in dem Kabel-Nachrichten-Generator zu erzeugen.

39/215

DE 697 21 381 T2 2004.01.15

A: (scnd_messago &bk q2pif_dac) | ((doq_prefecch_mui |
deq_proferch_line) && dog prefewh_dac) .
B: (se0d_messego && 1q2pif_dac) | ((deq_preferch mut | SLAVE DPHASE
doq_prefecch_line) && ldeq_profeich_dac) | (deq_sream
connsct u.h) dq_v:lid[S:O]))l &8 (dq_nux:;m coanect |
: 1p2q_eck | deg_preferch_Eine | deq_prefewch z
d C: (send_message && Iq2pif_dac) | ((deq_prefetch_soul | MASTER _DPHASE
deq_prefetch_line) && 1dcq_profech_dac) | (doq_stream_connect
f . && I(]drq_vaEd[3:0])) && Ideq_mream_connoct &l
] 10p2q_sck] dog_prefeech_mul] deq_prefetch_fine)

D: otherwise CABLE_IDLE :
CABLE_DAC E: lp2q_sck | doq prefeech_mwil | deq_prefech _fine SLAVE_DPHASE
: ' MASTER_DPHASE
MASTER_DPHASE | G: send_message &2£q2pif_dac : _ CABLE DAC
H: vend_measage && 1q2pif dac . ‘ SLAVE_DPHASE
L: lscnd_mossage &ic(eardy_last mastar_data && Ip2q_trdy) . CABLE_IDLE
master_sbors_cable)
I: otheswise :
' MASTER_DPHASE
SLAVE_DPHASE | K: [(drq_stream_connect &&!(]drq_vslid{3:0D&&p2q_geyo)] CABLE_IDLE

22{(dly_read_request| dly_single_write_roquast |
doq_prefotch_mut | deq_profech_tine)} |
L: early_last_slave_dsta |

sream_coanect &&1(]drg_vaEdB:0D&&p: sod
:::;win = (4 veSi0 aar < SLAVE_DPHASE !

Kabel-Nachrichten-Generator-Zustand-Ubergange

[0256] Bei einem Reset tritt der Kabel-Nachrichten-Generator in den IDLE Zustand 2740 ein, in dem er auf
Transaktions-Informationen wartet, damit sie von der Master- oder Slave-Zustand-Maschine ankommen. Von
dem IDLE Zustand 2740 entspricht, falls der Kabel-Nachrichten-Generator ein Prefetch-Mehrfach-Signal
(dcq_prefetch_mul) oder ein Prefetch-Leitungs-Signal (dcq_prefetch_line) empfangt, das Kabel-Adressen-Si-
gnal (ear-ly_cad [31:2]) dem Prefetch-Adressen-Signal (dcq_prefetch_addr [31:2]). Ansonsten nimmt das
early_cad [31:2] Signal den Wert des QPIF-Adressen-Signals (g2pif_addr [31:2]) an. Wenn die Kabel-Nach-
richt durch die Master-Zustand-Maschine initiiert wird, ist die Nachricht eine verzégerte Abschluss-Nachricht,
so dass der Befehl-Code (early_ccbe [3:0]) "1001" entspricht. Wenn die Kabel-Nachricht durch die Slave-Zu-
stand-Maschine initiiert wird, nimmt der Befehl-Code den Wert des message_cmd [3:0] Signals an, wie dies
vorstehend diskutiert ist.

[0257] Falls das send_message Signal aufgestellt ist, anzeigend, dass entweder die Master-Zustand-Maschi-
ne oder die Slave-Zustand-Maschine eine Nachricht initiiert hat, und die entsprechende Transaktion nicht ein
Dual-Adressen-Zyklus ist, oder falls der Kabel-Nachrichten-Generator eine Prefetch-Anforderung empfangt,
die nicht ein Dual-Adressen-Zyklus ist, oder falls der Kabel-Nachrichten-Generator ein Datenfolgen-Verbin-
dungs-Signal empfangt und keine verzégerten Anforderungen von der CPU in der ausgangsseitigen DRQ an-
hangig sind, stellt der Kabel-Nachrichten-Generator ein sent_pmw Signal auf, das anzeigt, dass eine gepos-
tete Speicher-Schreib-Anforderung von dem PCI-Bus entlang des Kabels geschickt werden wird. Das
sent_pmw Signal wird nicht aufgestellt, falls eine Datenfolge durch die DCQ eingerichtet worden ist. Der Ka-
bel-Nachrichten-Generator stellt ein sent_dr Signal auf, wenn eine Lese-Anforderung oder eine verzogerte
Schreib-Anforderung von der Slave-Zustand-Maschine empfangen ist oder ein Prefetch-Signal emfpangen ist,
und wenn eine Datenfolge nicht durch die DCQ eingerichtet worden ist.

[0258] Falls die DCQ eine Datenfolge eingerichtet hat (dcg_stream_connect ist aufgestellt), nimmt die Puffer-
zahl fur das Kabel-Signal (early_cbuff [2:0]) den Wert des DCQ-Datenfolge-Puffers an (dcq_stream_buff [2:0]),
der Kabel-Befehl-Code (early_ccbe [3:0]) wird gleich zu ,,1000" eingestellt, und der Kabel-Nachrichten-Gene-
rator tritt in den SLAVE_DPHASE Zustand 2746 ein. Ansonsten nimmt, falls sich die QPIF in dem Slave-Mode
befindet und der Kabel-Nachrichten-Generator entweder ein Prefetch-Mehrfach- oder ein Prefetch-Lei-
tungs-Signal empfangt, das Kabel-Puffer-Signal den Wert der DCQ-Pufter-Zahl an (dcq_buff [2:0]) und der Ka-
bel-Nachrichten-Generator trittin den SLAVE_DPHASE Zustand 2746 ein. Ansonsten arbeitet die QPIF in dem
Master-Mode und der Kabel-Nachrichten-Generator tritt in den MASTER DPHASE Zustand 2744 ein.

[0259] Wenn der Kabel-Nachrichten-Generator das send_message Signal und eine Transaktion, die ein Du-

40/215

DE 697 21 381 T2 2004.01.15

al-Adressen-Zyklus ist, empfangt, oder wenn er eine Prefetch-Anforderung empfangt, die ein Dual-Adres-
sen-Zyklus ist, tritt der Nachrichten-Generator in den CABLE_DAC Zustand 2742 ein. Fir ein Prefetch-Signal
wird das Kabel-Adressen-Signal gleich zu den oberen zweiunddreifRig Bits des dcq_prefetch_addr [63:0] Sig-
nals eingestellt; ansonsten entspricht die Kabel-Adresse den oberen zweiunddreillig Bits des q2pif _addr[63:0]
Signals. Auch entspricht, falls der Kabel-Nachrichten-Generator die Transaktion von der Slave-Zustand-Ma-
schine empfangt, die Kabel-Puffer-Zahl der DCQ-Puffer-Zahl; ansonsten entspricht die Kabel-Puffer-Zahl der
DRQ-Puffer-Zahl (keine Abschluss-Nachrichten werden fiir gepostete Speicher-Schreib-Transaktionen er-
zeugt).

[0260] In dem CABLE_DAC Zustand 2742 erzeugt der Kabel-Nachrichten-Decodieren die zweite Halfte der
Adressen-Phasen-Informationen. Wie in dem IDLE Zustand 2740 nimmt das Kabel-Adressen-Signal den Wert
der Prefetch-Adresse an, wenn die empfangene Transaktion eine Prefetch-Leitungs- oder Prefetch-Mehr-
fach-Anforderung ist, und nimmt den Wert von g2pif_addr[31:2] ansonsten an. Das sent_pmw Signal wird dann
aufgestellt, wenn der Nachrichten-Generator eine gepostete Speicher-Schreib-Transaktion von der Slave-Zu-
stand-Maschine empfangt, und das sent_dr Signal wird dann aufgestellt, wenn sie eine Prefetch-Anforderung
oder eine verzogerte Anforderung von der Slave-Zustand-Maschine empfangt. Falls eine Prefetch-Anforde-
rung oder eine Anforderung von der Slave-Zustand-Maschine empfangen wird, tritt der Kabel-Nachrichten-Ge-
nerator in den SLAVE_DPHASE Zustand 2746 ein. Ansonsten tritt der Nachrichten-Generator in den
MASTER_DPHASE Zustand 2744 ein.

[0261] Indem MASTER_DPHASE Zustand 2744 versucht der Kabel-Nachrichten-Generator, eine verzogerte
Abschluss-Nachricht entlang des Kabels zu schicken. Allerdings muss, falls die PCI-Schnittstelle den Bus zu
einer Vorrichtung auf dem PCI-Bus erteilt, bevor die QPIF eine Kontrolle des Busses erhalt, der Kabel-Nach-
richten-Generator den MASTER_DPHASE Zustand 2744 verlassen, um die neu empfangene Nachricht zu
schicken. Deshalb wird, falls das send_message Signal aufgestellt ist, wahrend sich der Nachrichten-Genera-
torin dem MASTER_DPHASE Zustand 2744 befindet, das g2c_new_req Signal aufgestellt, um den Start einer
neuen Nachricht anzuzeigen. Falls das q2pif_dac_flag aufgestellt ist, ist die neue Transaktion ein Dual-Adres-
sen-Zyklus und der Kabel-Nachrichten-Generator tritt in den CABLE_DAC Zustand 2742 ein. Ansonsten tritt
der Nachrichten-Generator in den SLAVE_DPHASE Zustand 2746 ein.

[0262] Falls das send_message Signal nicht aufgestellt ist, schickt der Kabel-Nachrichten-Generator eine
verzogerte Abschluss-Nachricht von der Master-Zustand-Maschine aus. Wenn die Master-Zustand-Maschine
die letzte Daten-Ubertragung mit dem PCI-Bus abgeschlossen hat und die Target-Vorrichtung die Ubertragung
bestatigt hat (Ip2q_trdy), oder wenn der Master die Transaktion auf dem Kabel ausgesondert hat, stellt der Ka-
bel-Nachrichten-Generator ein sent_dc Signal auf, das anzeigt, dass die verzégerte Abschluss-Nachricht ent-
lang des Kabels geschickt worden ist, und tritt erneut in den IDLE Zustand 2740 ein. Ansonsten verbleibt der
Nachrichten-Generator in dem MASTER DPHASE Zustand 2744 und fahrt fort, die verzogerte Ab-
schluss-Nachricht zu erzeugen.

[0263] Von dem SLAVE_DPHASE Zustand 2746 sind, solange wie eine Datenfolge mit dem eingangsseitigen
Chip eingerichtet wird, keine verzdgerten Anforderungen von der CPU in der ausgangsseitigen DRQ anhangig,
und die anfordernde Vorrichtung fahrt fort, Daten zu der QPIF zu schicken (q2p_qcyc ist aufgestellt), der Ka-
bel-Nachrichten-Generator verbleibt in dem SLAVE_DPHASE Zustand 2746 und fahrt fort, die Transaktion von
der anfordernden Vorrichtung weiterzufiihren. Ansonsten fiihrt, falls der Kabel-Nachrichten-Generator eine
verzogerte Anforderung oder eine Prefetch-Anforderung empfangt, der Kabel-Nachrichten-Generator die An-
forderung weiter, und, in dem Fall einer verzdégerten Schreib-Anforderung, das eine dword an Daten zu der ein-
gangsseitigen Vorrichtung weiter, und tritt dann in den IDLE Zustand 2740 ein. Ansonsten hat der Kabel-Nach-
richten-Generator eine gepostete Speicher-Schreib-Anforderung empfangen. In dieser Situation verbleibt der
Kabel-Nachrichten-Generator in dem SLAVE_DPHASE Zustand 2746 und fahrt fort, die geposteten Spei-
cher-Schreib-Informationen entlang des Kabels weiterzufiihren, bis das early last_slave data Signal aufge-
stellt ist, was anzeigt, dass der letzte Teil an Daten durch die Slave-Zustand-Maschine geschickt worden ist.
Der Nachrichten-Generator beendet dann die Kabel-Transaktion und tritt erneut in den IDLE Zustand 2740 ein.

KABEL-SCHNITTSTELLE

[0264] Um die giiltige Ubertragung von Daten zwischen den zwei Briicken-Chips sicherzustellen, miissen Da-
ten, geschickt Gber das Kabel 28, geeignet zu den Takten von den Takt-Generatoren 102 und 122 synchroni-
siert werden. Der ausgangsseitige Takt-Generator 122 legt seine Takte basierend auf einem eingangsseitigen
Takt (der wiederum auf dem PCI-Bus-Takt PCICLK1 basiert) fest, ibertragen entlang des Kabels 28 mit den
Daten. Als Folge werden eingangsseitige Daten, Ubertragen zur Ausgangsseite hin, zu den Takten synchroni-
siert, erzeugt in dem ausgangsseitigen Briicken-Chip 48. Allerdings ist die Phasen-Verzégerung, zugeordnet
zu dem Kabel 28, zwischen den Haupt-Takten, erzeugt in dem eingangsseitigen Chip 26, und die Daten, Uber-
tragen zurlick eingangsseitig von dem ausgangsseitigen Chip 48, unbekannt. Die Lange des Kabels 28 reicht
von 10 bis zu 100 FuB (falls eine geeignet Schnittstellen-Technologie verwendet wird). Die empfangende Logik

41/215

DE 697 21 381 T2 2004.01.15

in der eingangsseitigen Kabel-Schnittstelle 104 ist effektiv eine asynchrone Grenze in Bezug auf den eingangs-
seitigen Takt. Demzufolge muss die empfangende Logik die eingangsseitigen-zu-ausgangsseitigen Daten zu
dem Takt von dem eingangsseitigen Takt-Generator 102 erneut synchronisieren.

[0265] In Fig. 5 nun ist das Takt-Verteilungs-Schema in dem 2-Chip in der 2-Chip-PCI-PCI-Briicke dargestellt.
Transaktionen, die nach vorne zwischen den Briicken-Chips 46 und 48 gefiihrt werden, werden zu mehrfa-
chen, zeit-multiplexierten Nachrichten codiert. Das Format der Nachrichten ist ahnlich zu dem PCI-Transakti-
ons-Format (mit der Ausnahme eines Zeit-Multiplexing) und umfasst eine Adresse und eine oder mehrere Da-
ten-Phasen und modifizierte Handshake-Signale zusétzlich zu den Signalen, die hinzugefugt sind, um eine
Puffer-Zahl und spezielle Bricken-Funktions-Befehle anzuzeigen. Jede Kabel-Schnittstelle 104 oder 130 um-
fasst eine Master-Kabel-Schnittstelle (192 oder 194) und eine Slave-Kabel-Schnittstelle (196 oder 198). Die
Master-Kabel-Schnittstelle 192 oder 194 Ubertragt Nachrichten weiter zu dem Kabel 28 und die Slave-Ka-
bel-Schnittstelle 196 oder 198 empfangt Nachrichten von dem Kabel 28.

[0266] Der Takt-Generator 102 oder 122 in jedem Briicken-Chip umfasst zwei sich auf dem Chip befindliche
PLLs fiur eine Takt-Erzeugung. Eine PLL 184 in dem eingangsseitigen Briicken-Chip 26 verriegelt sich auf dem
Primar-PCl-Bus-Eingangs-Takt PCICLK1. In dem ausgangsseitigen Briicken-Chip 48 verriegelt sich die PLL
180 auf einem ankommenden Takt PCICLK2 von einem Takt-Puffer 181.

[0267] In der nachfolgenden Beschreibung bezieht sich ein ,1X Takt" auf einen Takt, der dieselbe Frequenz
wie der Takt PCICLK1 besitzt, wahrend sich ein ,3X Takt" auf einen Takt bezieht, der dreimal die Frequenz des
Takts PCICLK1 besitzt. Ein 1X Takt PCLK, erzeugt durch die PLL 184 oder 180 (in dem Brticken-Chip 26 oder
48 jeweils), wird fur die PCI-Bus-Schnittstellen-Logik 188 oder 190 fiir den Briicken-Chip verwendet, und der
3X Takt PCLK3 wird dazu verwendet, die Kabel-Nachrichten-Erzeugungs-Logik in der Master-Kabel-Schnitt-
stelle 192 oder 194 laufen zu lassen. Die andere PLL 186 oder 182 wird dazu verwendet, sich auf einen Ka-
bel-Eingangs-Takt CABLE_CLK1 (von Eingangsseite) oder einen CABLE_CLK2 (von Ausgangsseite) zu ver-
riegeln, und um einen 1X Takt CCLK und einen 3X Takt CCLK3 zu erzeugen, um ankommende Kabel-Daten
zu erfassen. Die Taktausgange der PLL 186 und 182 werden zu der Slave-Kabel-Schnittstelle 196 und 198
jeweils weitergefihrt.

[0268] Die PLLs sind in dem Layout so angeordnet, um die 1X und 3X Takte so nahe wie mdéglich auszuba-
lancieren, um die Verschiebung dazwischen zu minimieren.

[0269] Die PLL 184 oder 180 erzeugt ein Phasen-Indikator-Signal PCLKPHI1, das der Master-Kabel-Schnitt-
stelle 192 oder 194 anzeigt, wenn die erste Phase von Daten zu dem Kabel 28 vorhanden sein sollte. Auf der
Eingangsseite ist das Signal PCLKPHI1 auf dem PCI-Takt PCICLK1 basierend; auf der Ausgangsseite ist das
Signal PCLKPHI1 auf dem PCI-Takt PCICLK2 basierend. Die PLL 186 oder 182 erzeugt ein Phasen-Indika-
tor-Signal CCLKPHI1, basierend auf dem Kabel-Takt CABLE_CLK1 oder CABLE_CLK2, um zu der Slave-Ka-
bel-Schnittstelle 196 oder 198 anzuzeigen, wenn die erste Phase von Daten entlang des Kabels 28 angekom-
men ist. Der PCI-Takt PCICLK2 fiir den sekundaren PCI-Bus 32 wird auRerhalb eines 1X Takts BUFCLK der
PLL 182 in dem ausgangsseitigen Brucken-Chip 48 erzeugt. Der Takt BUFCLK steuert den Takt-Puffer 181
Uber einen Treiber 179 an. Der Puffer 181 gibt ein separates Taktsignal fir jeden der sechs Schlitze auf dem
sekundaren PCI-Bus 32 ebenso wie den Takt PCICLK2 aus, was zurlick zu dem Bus-Eingangs-Takt zu dem
ausgangsseitigen Briicken-Chip 48 gefiihrt wird. Indem der Takt PCLK auf dem Takt PCICLK2 von dem
Takt-Puffer 181 basierend ist, werden die Takt-Schemen der eingangsseitigen und ausgangsseitigen Chips so
gestaltet, um ahnlicher zu erscheinen, da beide auf dem externen Bus-Takt basierend sind.

[0270] Der Kabel-Takt CABLE_CLK1 ist ein 33% Taktzyklus. Die PLL 182 wandelt erst den 33% Taktzyklus
zu einem 50% Taktzyklus zur Ausgabe als BUFCLK um.

[0271] Die PCI-Spezifikation, Version 2.1, fordert, dass der PCI-Bus-Takt die folgenden Erfordernisse erflllen
muss: Takt-Zyklus-Zeit gréRer als oder gleich zu 30 ns; Takt-Hoch-Zeit grof3er als 11 ns; Takt-Niedrig-Zeit gro-
Rer als oder gleich zu 11 ns und Taktanstiegsrate zwischen 1 und 4 ns.

[0272] Wenn das Computersystem hochgefahren wird, wird der eingangsseitige Chip zuletzt hochgefahren,
die eingangsseitige PLL 184 schickt den Takt CABLE_CLK1 (Uber die Master-Schnittstelle 122) nach unten
entlang des Kabels 28, das dann durch die ausgangsseitige PLL 182 und PLL 180 verriegelt wird. Die aus-
gangsseitige PLL 180 schickt dann den Takt CABLE_CLK2 zurilick eingangsseitig, um durch die PLL 186 ver-
riegelt zu werden. Das System ist nicht vollstandig betriebsfahig, bis alle vier PLLs eine Verriegelung erhalten
haben.

[0273] Falls der eingangsseitige Briicken-Chip 26 hochfahrt und der ausgangsseitige Briicken-Chip 48 noch
nicht eingeschaltet ist, verhalt sich der eingangsseitige Briicken-Chip 26 als eine PCI-PCI-Briicke, wobei nichts
mit dem ausgangsseitigen Bus (das Kabel 28) verbunden ist. Als Folge nimmt der eingangsseitige Bri-
cken-Chip 26 nicht irgendwelche Zyklen an, bis der ausgangsseitige Briicken-Chip 48 hochgefahren bzw. ein-
geschaltet ist und die ausgangsseitige PLL 186 eine ,Verriegelung" von dem Kabel-Takt CABLE_CLK2 erhal-
ten hat.

[0274] Der eingangsseitige Briicken-Chip 26 floatiert alle seiner PCI-Ausgangs-Puffer und Zustand-Maschi-
nen asynchron mit einem Aufstellen des PCI-Reset-Signals PCIRST1_ auf dem primaren Bus 24. Wahrend

42/215

DE 697 21 381 T2 2004.01.15

eines Resets kann die PLL 184 versuchen, eine Verriegelung auf dem PCI-Bus-Takt PCICLK1 zu erhalten. Da
die PCI Spezifikation garantiert, dass das Signal PCIRST1_ aktiv flir mindestens 100 us verbleiben wird, nach-
dem der PCI-Bus-Takt stabil wird, hat die PLL 184 ungefahr 100 ps, um eine Verriegelung zu erhalten.

[0275] Der ausgangsseitige Briicken-Chip 48 setzt alle internen Zustand-Maschinen beim Erfassen des Sig-
nals PCIRST1_ fur den primaren Bus zurtck. Daraufhin stellt der ausgangsseitige Bricken-Chip ein
Schlitz-spezifisches Reset zu jedem Schlitz auf dem sekundaren PCI-Bus 32 ebenso wie ein Reset-Signal
PCIRST2_ fur einen sekundaren PCI-Bus auf.

[0276] Wie Fig. 6 zeigt, umfasst jede PLL einen spannungs-gesteuerten Oszillator (VCO) 200, der einen Aus-
gang 201 (den 3X Takt) zwischen 75 Mhz (fiir einen 25-Mhz PCI-Bus) und 100 Mhz (fur einen 33-Mhz PCI-Bus)
erzeugt. Der VCO 200 empfangt einen Referenz-Takt 197, der der PCI-Bus-Takt ist. Jede PLL besitzt eine Ver-
riegelungs-Erfassungs-Schaltung 205, die durch ein Verriegelungs-Indikations-Bit anzeigt, dass die PLL-Pha-
se auf deren Referenz genau genug verriegelt ist, um deren vorgesehene Funktion durchzufiihren.

[0277] Die Verriegelungs-Anzeige-Bits werden zu einem Status-Register in dem Konfigurations-Raum 105
oder 125 jedes Briicken-Chips geschrieben. Auf der Ausgangsseite wird ein power-good/lock-Status-Bit zu
dem eingangsseitigen Briicken-Chip 26 Uibertragen, um anzuzeigen, dass die Hauptelemente des ausgangs-
seitigen Bricken-Chips 48 stabil sind (Energie ist stabil) und die ausgangsseitigen PLLs verriegelt sind (Ver-
riegelungs-Anzeige-Bits der zwei PLLs sind aktiv). Das Verriegelungs-Anzeige-Bit wird auch tormafig mit den
EDC-Status-Bits gesteuert, so dass EDC-Fehler nicht als solche berichtet werden, bis die PLLs verriegelt sind.
Demzufolge kann das Briicken-Chip-Paar zu einem fehlerfreien-Kommunikations-Zustand ohne eine Softwa-
re-Intervention gelangen. Das Verriegelungs-Anzeige-Bit liefert auch bestimmte, diagnostische Informationen,
die zwischen einem PLL-Verriegelungs-Fehler und anderen Daten-Fehlern unterscheiden kénnen. Die Takt-Er-
zeugungs-Schaltung umfasst eine Vier-Zustand-Maschine 202, um einen durch 3 geteilten Takt (1X Takt) des
VCO Ausgangs 201 zu erzeugen. Der 1X Takt wird zurlick zu der PLL an dem Eingang 203 gefhrt.

[0278] Daten werden entlang des Kabels 28 unter einer 3X Takt (PCLK3) Rate in drei Zeit-multiplexierten
Phasen gefiihrt, um eine 1X Takt Nachrichten-Ubertragungs-Rate zu erzeugen. Wie Fig. 7 zeigt, umfasst die
Schaltung in der Master-Kabel-Schnittstelle 192 oder 194 zum Zerlegen und Ubertragen der Kabel-Nachricht
ein Register 204, das die abgehende Nachricht unter einer lokalen PCLK-Grenze abtastet. Das Flip-Flop 208
liefert eine zusatzliche Zone fir eine Halte-Zeit in der dritten Phase der Gibertragenden Nachricht durch Halten
dieser Phase fur eine zusatzliche Halfte eines PCLK. Da das Ausgangs-Register 212 mit dem 3X Takt PCLK3
getaktet ist, verringert dies das Erfordernis fiir eine enge Kontrolle in Bezug auf den Versatz zwischen den 1X
und 3X Takten. Von dem Phasen-Indikations-Signal PCLKPHI1 erzeugt ein Satz von drei Flips-Flops 210 auf-
einanderfolgende PHI1, PHI2 und PHI3 Signale, die Phasen 1, 2 und 3 jeweils darstellen, was wiederum einen
60:20 Multiplexer 206 steuert. Die drei Phasen von Daten (LMUXMSG [19:0], LMUXMSG [39:20], {LMUXMSG
[61:40], EDC [7:0]}) werden aufeinanderfolgend in das Register 212 multiplexiert und Gber das Kabel 28 ange-
steuert. Die dritte Phase an Daten umfasst Fehler-Korrektur-Bits EDC [7:0], erzeugt durch einen ECC-Gene-
rator 206 (Fig. 17), von den Ausgangs-Bits LMUXMSG [51:0] des Registers 204. Das Flip-Flop 214, getaktet
durch PCLK3, empfangt das PHI1 Signal und taktet es als den Kabel-Takt CABLE_CLK1 oder CABLE_CLK2
heraus.

[0279] Da die Master-Kabel-Schnittstelle 192 oder 194 eine 1X-zu-3X Kommunikations-Schnittstelle ist, wird
eine EIN-3X-Takt-Latenz hervorgerufen, die zu einer einzelnen 3X Takt-Phasen-Verschiebung der ibertragen-
den Kabel-Nachricht von dem PCI-Bus-Takt fiihrt, wie dies in Fig. 8 dargestellt ist. In der Periode TO wird eine
Nachricht A dem Eingang des Registers 204 prasentiert und der erste Phasen-Takt-Indikator PCLKPHI1 wird
auf hoch gesetzt. Das Signal PHI1 wird auf hoch von einem vorherigen Zyklus gesetzt. In der Periode P1 wird
der Kabel-Takt CABLE_CLK1 oder CABLE_CLK2 auf hoch in Abhangigkeit des Signals PHI1, das zu hoch
Ubergeht, angesteuert. Der PCLKPHI1 Impuls bewirkt, dass das Signal PHI2 auf hoch in der Periode T1 ge-
pulst wird. Als nachstes wird, in der Periode T2, das Signal PHI3 in Abhangigkeit des Signals PHI2 gepulst. In
der Periode T3 wird das Signal PHI1 auf hoch in Abhangigkeit des Signals PHI3, das hoch ist, gepulst. Eine
Nachricht A wird auch in das Register 204 an der ansteigenden Flanke des Takts PCLK in der Periode T3 ein-
geladen. Als nachstes bewirkt, in der Periode T4, das Signal PHI1, dass der Multiplexer 206 die ersten Pha-
sen-Daten A1 zum Einladen in das Register 212 auswahilt. Als nachstes werden, in der Periode T5, die zweiten
Phasen-Daten A2 ausgewabhlt und in das Register 212 eingeladen. Dann werden, in der Periode T6, die dritten
Phasen-Daten A3 in das Register 212 eingeladen. Dieser Prozess wird fur die Nachrichten B, C, D und E in
den darauffolgenden Takt-Perioden wiederholt.

[0280] Wie in Fig. 8 dargestellt ist, besitzt der Kabel-Takt CABLE_CLK einen 33% Taktzyklus. Alternativ kann
der Kabel-Takt CABLE_CLK so ausgelegt werden, um einen durchschnittlichen Taktzyklus von 50% zu haben,
was, zum Beispiel, durch Abschicken des Kabel-Taktes als 33% hoch — 66% niedrig — 66% hoch — 33% niedrig
vorgenommen werden kann. In dem man einen durchschnittlichen 50% Taktzyklus hat, kdnnte dies zu besse-
ren Durchgangscharakteristika in dem Kabel 28 fiihren.

[0281] Wie Fig. 9 zeigt, stellt ein Slave-Kabel-Schnittstellen-First-in-First-out-Puffer (FIFO) 216 ankommen-
den Daten von dem Kabel 28 zusammen und Ubertragt die zusammengestellten Daten zu den Warteschlangen

43/215

DE 697 21 381 T2 2004.01.15

und den PCI Zustand-Maschinen in dem empfangenden Briicken-Chip. Der FIFO 216 ist 4 Eintritte tief, wobei
jeder Eintritt in der Lage ist, eine vollstdndige Kabel-Nachricht zu halten. Die Tiefe des FIFO 216 ermdglicht,
dass Kabel-Daten zu dem Takt des lokalen Bricken-Chips ohne Verlieren irgendeiner effektiven Bandbreite in
der Kabel-Schnittstelle synchronisiert werden kdnnen. Zusatzlich ist, auf der Eingangsseite, der FIFO 216 eine
asynchrone Grenze fir die Kabel-Daten, die von dem ausgangsseitigen Bricken-Chip 48 ankommen. Der
FIFO 216 stellt sicher, dass die Kabel-Daten geeignet in Bezug auf PCLK synchronisiert sind, bevor sie zu dem
Rest des Chips ausgegeben werden.

[0282] Die Eintritte des FIFO 216 werden durch einen Eingangs-Hinweiszeiger INPTR[1:0] von einem Ein-
gangs-Hinweiszeiger-Zahler 226 ausgewahlt, der durch das Signal CCLK3 getaktet wird, geléscht wird, wenn
ein Signal EN_INCENT niedrig ist, und durch den Phasen-Indikator CCLKPHI1 freigegeben wird. Die negative
Flanke des 3X Takts CCLK3 von der PLL 186 oder 182 wird dazu verwendet, ankommende Daten von dem
Kabel 28 zu verriegeln, zuerst in ein 20-Bit Register 218 hinein und dann in ein Register 220 hinein, falls ein
Phasen-Ein-Indikations-Signal PHI1_DLY aufgestellt ist, oder in ein Register 222 hinein, falls ein Phasen-2-In-
dikationssignal PHI2_DLY aufgestellt ist. Die Phase-1-Daten, die Phase-2-Daten und die Phase-3-Daten von
den Registern 220, 222 und 218 jeweils werden in den ausgewahlten Eingang des FIFO 216 an der negativen
Flanke von CCLK3 ausgewahlt, wenn das Phasen-3-Indikations-Signal PHI3_DLY aufgestellt ist. Die vier Sat-
ze von Ausgangen von dem FIFO 216 werden durch einen 240:60 Multiplexer 228 empfangen, der durch einen
Ausgangs-Hinweiszeiger OUTPTR [1:0] von einem Ausgangs-Hinweiszeiger-Zahler 224, getaktet durch PCLK
und geldscht dann, wenn ein Signal EN_OUTCNT niedrig ist, ausgewahlt wird.

[0283] Wie die Fig. 10 zeigt, laufen die Eingangs-Hinweiszeiger- und Ausgangs-Hinweiszeiger-Zahler 226
und 224 kontinuierlich durch den FIFO 216, was Daten fillt und leert. Die Zahler 226 und 224 sind in einer
solchen Art und Weise versetzt, um glltige Daten in einer Stelle zu garantieren, bevor sie ausgelesen werden.
Die Initialisierung der Hinweiszeiger ist unterschiedlich fiir einen eingangsseitigen Briicken-Chip 26 gegenliber
einem ausgangsseitigen Briicken-Chip 48, aufgrund von Synchronisierungsunsicherheiten.

[0284] Flip-Flops 236 und 238 synchronisieren das Reset-Signal C_CRESET, das synchron zu den Takten in
dem Brucken-Chip ist, zu der CLK-Takt-Grenze. Das Signal EN_INCNT wird durch das Flip-Flop 238 erzeugt.
Der Eingangs-Hinweiszeiger wird an der ansteigenden Flanke des Takts CCLK3 erhéht, wenn das erste Pha-
sen-Indikations-Signal CCLKPHI1 und das Signal EN_INCNT vorliegen. Der Ausgangs-Hinweiszeiger wird
dann an einer spateren, lokalen PCLK-Takt-Grenze PCLK gestartet, wenn garantiert werden kann, dass die
Daten in dem FIFO 216 giltig sein werden. Der eingangsseitige und der ausgangsseitige Briicken-Chip miis-
sen das Starten des Ausgangs-Hinweiszeigers unterschiedlich handhaben, da die Phasen-Beziehung des Ka-
bel-Taktes zu dem lokalen Takt nicht fiir den eingangsseitigen Briicken-Chip 26 bekannt ist, sondern fir den
ausgangsseitigen Briicken-Chip 48 bekannt ist.

[0285] In dem ausgangsseitigen Briicken-Chip 48 ist die Phasen-Beziehung zwischen dem ankommenden
Kabel-Takt CABLE_CLK1 und dem sekundaren PCI-Bus-Takt PCICLK2 bekannt, da der PCI-Takt PCICLK2
von dem Kabeltakt erzeugt wird. Als Folge existiert keine Synchronisations-Strafe fiir den Ausgangs-Hinweis-
zeiger OUTPTR][1:0] in dem ausgangsseitigen Briicken-Chip 48, und der Ausgangs-Hinweiszeiger kann den
Eingangs-Hinweiszeiger INPTR[1:0] so nahe wie mdglich nachfiihren. Ein Flip-Flop 230, das an der negativen
Flanke des Takts PCLK getaktet wird, wird dazu verwendet, irgendwelche Taktverschiebungsprobleme zwi-
schen dem Takt CCLK, erzeugt durch die PLL 182, und dem Takt PCLK, erzeugt durch die PLL 180, zu ver-
meiden. Obwohl diese zwei Takte identische Frequenzen haben und in Phase miteinander sein sollten, ist da-
bei eine unbekannte Verschiebung zwischen den zwei Takten vorhanden, da sie von zwei unterschiedlichen
PLLs erzeugt werden. Auf der Ausgangsseite ist das Signal EN_OUTCNT das Signal EN_INCNT, verriegelt
auf der negativen Flanke des Signals PCLK durch das Flip-Flop 230. Ein Multiplexer 234 wahlt den Ausgang
des Flip-Flops 230 aus, da das Signal UPSTREAM_CHIP niedrig ist.

[0286] In dem eingangsseitigen Briicken-Chip 26 wird die Kabel-Schnittstelle bzw. das Kabel-Interface als
vollstandig asynchron behandelt. Die Phasen-Unsicherheit erfolgt aufgrund der unbekannten Phasenverschie-
bung des Kabels 28 selbst. Das Auslegen in Bezug auf diese Unsicherheit flihrt zu einer vollstandigen Freiheit
in Bezug auf die Lange des Kabels 28. Dasjenige, was bekannt ist, ist das, dass die Takte in den eingangssei-
tigen und ausgangsseitigen Briicken-Chips dieselbe Frequenz haben, da sie beide deren Ursprung in dem ein-
gangsseitigen PCI-Bus-Takt PCICLK1 haben. In dem eingangsseitigen Bricken-Chip 26 ist das Signal
EN_OUTCNT das Signal EN_INCNT verriegelt auf der postiven Flanke des Takts PCLK durch ein Flip-Flop
232. Der Multiplexer 234 wahlt den Ausgang des Flip-Flops 232 aus, da das Signal UPSTREAM_CHIP hoch
ist. Das Flip-Flop 232 garantiert, dass gerade fir das ,Lineup" im schlechtesten Fall des Kabel-Taktes
CABLE_CLK2 und des lokalen PCI-Taktes PCLK (eine vollstandige PCLK Periode-Phasen-Verschiebung) gul-
tige Daten in dem FIFO 216 vorhanden sind, bevor die Daten zu dem Rest des Chips Ubertragen werden.
[0287] Wie Fig. 11 zeigt, werden die Kabel-Daten durch die Slave-Kabel-Schnittstelle 196 oder 198 als
Drei-Phasen-, in der Zeit multiplexierte, Signale A1, A2 und A3; B1, B2 und B3; C1, C2 und C3; usw., empfan-
gen. Eine vorherige Transaktion wird in den Perioden TO, T1 und T2 abgeschlossen. Beginnend in der Periode
T3 werden die ersten Phasen-Daten A1 dem Register 218 prasentiert und der erste Phasen-Indikator

44/215

DE 697 21 381 T2 2004.01.15

CCLKPHI1 wird auf hoch gepulst. An der abfallenden Flanke von CCLK3 in der Periode T3 werden die Daten
A1 in das Register 218 eingeladen und das Indikations-Signal PHI_DLY der lokalen Phase 1 wird auf hoch ge-
pulst. In der Periode T4 werden, an der abfallenden Flanke des Takts, die Daten A1 der Phase 1 in das Register
220 eingeladen, die Daten A2 der Phase 1 werden in das Register 218 eingeladen und das Indikations-Signals
PHI2_DLY der Phase 2 wird auf hoch gepulst. In der Periode T5 werden, an der abfallenden Flanke von
CCLKS3, die Daten der Phase 2 in das Register 222 eingeladen, die Daten A3 der Phase 3 werden in das Re-
gister 218 eingeladen und das Indikations-Signal PHI3_DLY der Phase 3 wird auf hoch gepulst. In der Periode
T6 werden die Inhalte der Register 220, 222 und 218 in den ausgewahlten Eingang des FIFO 216 an der fol-
genden Flanke CCLKS eingeladen. Auch werden in der Periode T6 die Daten B1 dem Register 218 zusammen
mit dem Indikations-Signal CCLKPHI1 prasentiert. Nachrichten B und C werden in das FIFO 216 in derselben
Art und Weise wie eine Nachricht A in darauffolgenden Perioden eingeladen.

[0288] Wie Fig. 12 zeigt, beginnt der Eingangs-Hinweiszeiger INPTR[1:0] bei dem Wert O in der Periode TO
an der ansteigenden Flanke des Takts CCLK3. Auch wird, in einer Peridoe TO, eine Nachricht A in das FIFO 0
an der abfallenden Flanke des Takts CCLK3 eingeladen. In dem ausgangsseitigen Brucken-Chip 48 wird der
Ausgangs-Hinweiszeiger OUTPTR [1:0] auf den Wert 0 an der nachsten, ansteigenden Flanke des Takts PCLK
in der Periode T3 erhéht. Auch wird, in der Periode T3, der Eingangs-Hinweiszeiger INPTR[1:0] auf den Wert
1 an der ansteigenden Flanke des Takts CCLK3 erhéht, und die Nachricht B wird in den FIFO 1 an der abfal-
lenden Flanke von CCLK3 eingeladen. Kabel-Daten werden demzufolge in FIFOO, FIFO1, FIFO2 und FIFO3
in einer zirkularen Weise eingeladen.

[0289] Auf der Ausgangsseite wird, falls der Eingangs-Hinweiszeiger INPTR[1:0] in der Zeitperiode TO den
Wert 0 hat, der Ausgangs-Hinweiszeiger OUTPTR[1:0] auf den Wert 0 in der Periode T6 erhoht, zwei PCLK
Perioden nach dem Eingangs-Hinweiszeiger INPTR[1:0]. Die zwei PCLK Perioden-Verzégerungen in dem
ausgangsseitigen Briicken-Chip 26 ermdglicht, dass die Phasenverschiebung in dem Kabel 28 irgendein Wert
ist, was den Vorteil hat, dass die Kabellange nicht von einem spezifischen, festgelegten Wert sein muss.
[0290] Wie Fig. 13 zeigt, werden die Eingangs- und Ausgangs-Flips-Flops an der Kabel-Schnittstelle kunden-
seitig durch den Hersteller der Chips platziert, um die Verschiebung zwischen den Kabeldaten und dem Takt,
der dadurch hindurchgefiihrt wird, zu minimieren.

[0291] Die Menge an Draht zwischen jedem Flip-Flop und der I/O wird als so konsistent wie méglich zwischen
allen Kabel-Schnittstellen-Signalen beibehalten.

KABEL-NACHRICHT

[0292] Sechzig Bits an Kabel-Daten bilden eine Nachricht. Die 60 Bits werden auf 20 Kabel-Zeilen multiple-
xiert und werden alle 10 ns Uber das Kabel 28 iibertragen. Die Tabelle in Fig. 14 stellt die Bits dar und die Pha-
se jedes Bits ist zugeordnet. Die ersten drei Spalten stellen das eingangsseitige-zu-ausgangsseitige Da-
ten-Format dar, und die letzten drei Spalten stellen das ausgangsseitig-zu-eingangsseitig Daten-Ubertra-
gungs-Format dar. Das Folgende ist eine Beschreibung der Signale.

[0293] EDCJ7:0]: Die Signale sind die acht Syndrom-Bits, verwendet dazu, Fehler zu erfassen und zu korri-
gieren, die beim Ubertragen von Daten (iber das Kabel 28 vorgefunden werden.

[0294] CADI[31:0]: Die Signale sind die 32 Adressen- oder Daten-Bits.

[0295] CFRAME_: Das Signal wird dazu verwendet, den Beginn und das Ende einer Kabel-Transaktion zu
signalisieren, ahnlich zu dem PCI FRAME_ Signal.

[0296] CCBE[3:0]_: Die vier Bits bilden Byte-Freigaben in einigen PCI-Takt-Phasen und entweder einen
PCI-Befehl oder einen Nachrichten-Code in anderen PCI-Takt-Phasen.

[0297] CBUFF[3:0]: In der Adressen-Phase zeigen die Signale eine Puffer-Zahl zum Initialisieren der verzé-
gerten Abschluss-Warteschlange (DCQ) des Briicken-Chips, 148, an, um einen eingangsseitigen und aus-
gangsseitigen, verzogerten Lese-Abschluss (Delayed Read Completion — DRC) und eine verzdgerte Lese-An-
forderung (Delayed Read Request — DRR) Transaktionen festzulegen. Nach der Adressen-Phase enthalten die
Signale das Paritats-Bit, eine Paritats-Fehler-Indikation und das Daten-Bereitschafts-Signal.

[0298] COMPLETION REMOVED: Das Bit wird dazu verwendet, zu signalisieren, dass ein verzogerter Ab-
schluss von der Transaktions-Reihenfolge-Warteschlange (Transaction Ordereing Queue — TOC) auf der an-
deren Seite des Kabels 28 entfernt worden ist.

[0299] PMW ACKNOWLEDGE: Das Bit wird dazu verwendet, zu signalisieren, dass ein gepostetes Spei-
cher-Schreiben (PMW) auf der anderen Seite abgeschlossen worden ist und von der Transaktions-Lauf-War-
teschlange (Transaction Run Queue — TRQ) entfernt worden ist.

[0300] LOCK _: Das Bit wird zum Ausgang (allerdings nicht zum Eingang) hin Ubertragen, um verriegelte Zy-
klen zu identifizieren.

[0301] SERR_: Das Bit wird dazu verwendet, eine SERR_ Indikation zur Eingangsseite hin zu tUbertragen,
wird allerdings nicht zur Ausgangsseite hin Ubertragen.

[0302] INTSYNC und INTDATA: Die Bits fuhren die acht Unterbrechungen von der Ausgangsseite zu der Ein-

45/215

DE 697 21 381 T2 2004.01.15

gangsseite in einem seriell multiplexierten Format. Das Signal INTSYNC ist das Synchronisations-Signal, das
den Start fO der Unterbrechungs-Sequenz anzeigt, und das Signal INTDATA ist das serielle Daten-Bit. Die Si-
gnale INTSYNC und INTDATA werden auf separaten Leitungen (Lines) tiber das Kabel 28 gefiihrt.

[0303] RESET SECONDARY BUS: Das Bit wird dann aufgestellt, wenn die CPU 14 zu dem sekundaren Re-
set-Bit in einem Briicken-Steuer-Register in dem eingangsseitigen Briicken-Chip 26 schreibt. Es bewirkt, dass
sich der ausgangsseitige Briicken-Chip 48 auf einen Power-Up Zustand zurlicksetzt. Die Reset Signale fir die
Schlitze werden auch aufgestellt. Das Signal RESET fur den sekundaren Bus wird auf einer separaten Leitung
Uber das Kabel 28 weitergefiihrt.

[0304] Da die Adresse und die Daten in jeder PCI Transaktion tber dieselben Leitungen multiplexiert werden,
umfasst jede PCI-Transaktion eine Adressen-Phase und mindestens eine Daten-Phase (mehr als eine fur
Burst-Transaktion). Die PCI-Spezifikation unterstitzt auch Einzel-Adressen-Transaktionen (ein 32-Bit Adres-
sieren) und Dual-Adressen-Transaktionen (ein 64-Bit Adressieren).

[0305] InFig. 15A stellt eine Tabelle dar, welche Informationen an jedem Bereich des Busses wahrend Adres-
sen und Daten-Phasen der Einzel-Adressen-Transaktionen erscheinen. Fir eine Einzel-Adressen-Transaktion
ist die erste Phase die Adressen-Phase und die zweite und die darauffolgenden Phasen sind Daten-Phasen.
In der Adressen-Phase einer verzdgerten Lese/Schreib-Anforderungs-Transaktion zeigen die Signale
CBUFF[3:0] die DCQ-Puffer-Zahl zum Initialisieren des Briicken-Chips DCQ 148 an, um eingangsseitige und
ausgangsseitige DRC- und DRR-Transaktionen festzulegen. Nach der Adressen-Phase enthalt das Signal
CBUFF[3:0] das Paritats-Bit. Die Signale CCBE[3:0]_ enthalten den PCI-Befehl in der Adressen-Phase und
die Byte-Freigabe-Bits in den Daten-Phasen.

[0306] Fur gepostete Speicher-Schreib-Transaktionen sind die Signale CBUFF[3:0] ,nicht sicher" in der
Adressen-Phase und enthalten die Data-Ready-Indikation, die Paritat-Fehler-Indikation und ein Paritat-Bit in
den Daten-Phasen.

[0307] In einer verzdgerten Lese/Schreib-Abschluss-Transaktion enthalten die Signale CBUFF[3:0] die
DCQ-Puffer-Zahlen in der Adressen-Phase und die End-Completion-Indikation, eine Daten-Ready-Indikation,
eine Paritat-Fehler-Indikation und ein Paritat-Bit in den Daten-Phasen. Die Signale CCBE[3:0]_ enthalten ei-
nen Code, der eine DRC-Transaktion in der Adressenphase und die Status-Bits der DRC-Transaktion in den
Daten-Phasen darstellen. Verzdogerte Abschluss-Transaktionen fiihren den Status des Bestimmungs-Busses
fur jede Daten-Phase zurlick. Das Daten-Paritat-Bit wird auf CCBE[3]_ Ubertragen. Andere Status-Zustande
werden auf den CCBE[2:0]_BUS codiert, wobei ein binarer Wert 000 einen normalen Abschluss anzeigt und
ein binarer Wert 001 einen Target-Aussonderungs-Zustand anzeigt. Die Adressen/Daten-Bits CAD[31:0] sind
snicht sicher" in der Adressen-Phase und enthalten Daten wahrend der Daten-Phasen.

[0308] In der Datenfolge-Verbindungs-Transaktion enthalten die Signale CBUFF[3:0] eine Puffer-Zahl in der
Adressen-Phase und das Signal CBUFF[2] enthalt die Daten-Ready-Indikation in den Daten-Phasen. Die Sig-
nale CCBE[3:0] enthalten einen Code, der eine Datenfolge-Verbindungs-Transaktion in der Adressen-Phase
darstellt, und sind nicht in den Daten-Phasen ,sicher". Die Adressen-Daten-Bits CAD[31:0] werden nicht wah-
rend einer Datenfolge-Verbindungs-Transaktion verwendet.

[0309] Die Tabelle in Fig. 15B stellt das Codieren der Signale fir Dual-Adressen-Transaktionen dar. In verzo-
gerten Lese/Schreib-Anforderungs-Transaktionen enthalten die Signale CBUFF[3:0] eine Puffer-Zahl in der
ersten und der zweiten Adressen-Phase und das Signal CBUFF[0] enthalt das Paritats-Bit in der Daten-Phase.
Die Signale CCBE[3:0]_ enthalten einen Code, der einen Dual-Adressen-Zyklus in der ersten Adressen-Phase
darstellt, den PCI-Befehl in der zweiten Phase und die Byte-Freigabe-Bits in der Daten-Phase. Die Signale
CAD[31:0] enthalten die signifikantesten Adressen-Bits in der ersten Adressen-Phase, die am wenigsten sig-
nifikanten Adressen-Bits in der zweiten Adressen-Phase und die Daten-Bits in der Daten-Phase. In einer ge-
posteten Dual-Adressen-Speicher-Schreib-Transaktion sind die Signale CBUFF[3:0] ,nicht sicher" in den ers-
ten zwei Adressen-Phasen, allerdings enthalten die Signale CBUFF[1:0] das Paritats-Fehler-Indikations-Bit
und das Paritats-Bit in den Daten-Phasen. Die Signale CCBE[3:0]_ enthalten einen Code, der einen Du-
al-Adressen-Zyklus in der ersten Adressen-Phase darstellt, die PCI-Befehl-Bits in der zweiten Adressen-Phase
und die Byte-Freigabe-Bits in den Daten-Phasen. Die Signale CAD[31:0] enthalten die signifikantesten Adres-
sen-Bits in der ersten Adressen-Phase, die verbleibenden Adressen-Bits in der zweiten Adressen-Phase und
die Daten-Bits in den Daten-Phasen.

[0310] Dabei sind drei mégliche Zustéande fiir die Daten-Ubertragung vorhanden: nicht-letzte (not-last), letzte
einer Kabel-Ubertragung (last-of-cable-transfer) und letzte von (lastof) Anforderung. Der nicht-letzte Zustand
wird durch Aufstellen des Bits CBUFF[2] angezeigt, wahrend FRAME_ aktiv ist, was anzeigt, dass ein anderes
Wort von Daten vorhanden ist. Der last-of-cable Ubertragungs-Zustand wird durch Aufstellen des Bits
CBUFF[2] angezeigt, wahrend das Signal CFRAME_ inaktiv ist. Der last-of-request Zustand wird durch Auf-
stellen der Bits CBUFF[3] und CBUFF[2] angezeigt, wahrend das Signal CFRAME__ inaktiv ist.

[0311] Die folgenden vier IEEE 1149.1 Boundary-Scan (JTAG) Signale sind in dem Kabel 48 umfasst, um eine
JTAG-Test-Kette zu bewirken: TCK (der Test-Takt), TDI (Test-Daten-Eingang), TDO (Test-Daten-Ausgang) und
TMS (Test-Mode-Auswahl). Das optimale TRST_ wird nicht entlang des Kabels Ubertragen, allerdings kann

46/215

DE 697 21 381 T2 2004.01.15

TRST _ aus ,powergood" erzeugt werden.

[0312] Die JTAG Signale werden von dem System-PClI-Verbinder iber den eingangsseitigen Bricken-Chip
26, umfassend JTAG Master 110, entlang des Kabels 28 zu dem ausgangsseitigen Brucken-Chip 28 zu dem
JTAG Master 128 ubertragen, was die JTAG Signale zu jedem der sechs PCI-Schlitze auf dem sekundaren
PCI-Bus 32 verteilt. Der Ruckfuhrpfad reicht von dem JTAG Master 128 bis zum Kabel 28 zuriick zu dem ein-
gangsseitigen Bricken-Chip 26 und dann zu dem PCI-Schlitz auf dem primaren PCI-Bus 24. Die Signale TDO;
TCK und TMS sind ausgangsseitige Bound-Signale. Das Signal TDI ist ein eingangsseitiges Bound-Signal.
[0313] Ein Typ eines Kabels 28, das verwendet werden kann, ist ein zylindrisches 50-Paar abgeschirmtes Ka-
bel, ausgelegt dazu, einen High Performance Parallel Interface (HIPPI) Standard zu unterstltzen. Ein zweiter
Typ eines Kabels ist ein abgeschirmtes funf-Paar Band-Kabel. Die Vorteile des ersten sind Standardisierung,
Robustheit und zuverlassige, gleichférmige Herstellung. Die Vorteile des zweiten sind gréRere, mechanische
Flexibilitdt, automatisches Verbinden mit dem Verbinder bei der Montage und mdéglicherweise geringere Kos-
ten.

[0314] Die Tabelle der Fig. 16 stellt einige der HIPPI Kabel-Spezifikationen dar. Die Erdungs-Abschirmung
besteht aus einem umwickelten Aluminium-Band und fiihrt nur minimal DC-Stréme aufgrund der unterschied-
lichen Art der Puffer, die verwendet werden sollen. Das Verfahren eines Signalisierens ist tatsachlich differen-
ziell, was verschiedene Nachteile liefert, wobei die differenziellen Puffer verwendet werden, um Signale tber
das Kabel 28 zu verschicken und zu empfangen. Zunachst ist das einzige, differenzielle Verfahren weniger
kostspielig als Faseroptiken fur diese kurze Distanz und weniger komplex, um sich schnittstellenmaRig zu ver-
binden, als andere, serielle Verfahren. Ein differenzielles Signalisieren liefert eine wesentliche Rausch-Immu-
nitat fir einen Ublichen Mode und einen Betriebsbereich fiir einen tblichen Mode, ist in ASICs verfiigbar und
schneller als TTL. Wenn Twisted Pair und eine Abschirmung verwendet werden, minimiert dies die elektroma-
gnetische Strahlung. Wenn niedrige Spannungsschwingungen verwendet werden, minimiert es eine Energie-
abnahme.

[0315] Die signalisierenden Pegel, die als ein Target ausgewahlt werden, sind in dem IEEE Draft Standard fur
Low-Voltage Differential Signals (LVDS) fir Scaleable Coherent Interface (SCI), Draft 1.10 (5. Mai 1995) be-
schrieben.

[0316] Der Kabel-Verbinder ist ein AMP-Metall-Mantel-Verbinder mit 100 Stiften, mit zwei Reihen von Stiften.
Die Reihen sind 100 mils voneinander beabstandet und die Stifte sind bei 50 mil zentriert. Die Metallhdille liefert
eine EMI-Abschirmung und gibt Verbindungen mit dem Massepfad von der Kabelabschirmung zu dem Leiter-
plattenverbinder. Der passende, rechtwinklige Leiterplattenverbinder passt nur zu einem PCI-Trager. Der Ver-
binder ist so, dass er einen Stab besitzt, der zwischen den zwei Reihen und Stiften verlauft, um elektrostatische
Entladungen von Signalstiften abzuleiten, wenn der Verbinder getrennt wird. Ein Paar Fligelschrauben, befes-
tigt an dem Kabelverbinder, wird die passenden Verbinder sichern.

FEHLER-ERFASSUNG UND -KORREKTUR

[0317] Ein Fehlererfassungs- und Korrektur-(EDC)-Verfahren wird an jedem Briicken-Chip ausgefiihrt, um
eine Kommunilkation Uber das Kabel 28 zu schitzen. Da die Daten in drei 20-Bit-Gruppen zeit-multiplexiert
werden, um Uber 20 Paare von Drahten verschickt zu werden, ist jedes Triplet von ,angrenzenden" Bits (d. h.
Bits, die demselben Draht in dem Kabel 28 zugeordnet sind) so angeordnet, um auf einem einzelnen
Draht-Paar Ubertragen zu werden. Das EDC-Verfahren kann Einzel-Bit-Fehler und Mehrfach-Bit-Fehler korri-
gieren, die in derselben Bit-Position in jeder der drei zeit-multiplexierten Phasen auftreten. Die Multi-Bit-Fehler
sind typischerweise einem Hardware-Fehler zugeordnet, z. B. einem gebrochenen oder defekten Draht oder
einem fehlerhaften Stift an den Briicken-Chips 26, 48.

[0318] Zwanzig Draht-Paare des Kabels 28 werden fir eine ausgangsseitige Kommunikation verwendet und
20 weitere fur eine eingangsseitige Kommunikation. Fir die verbleibenden 10 Paare in dem 50-Paar-HIP-
Pl-Kabel 28 (das solche Informationen, wie die Takt-Signale CABLE_CLK1 und CABLE_CLK2, Reset-Signale
und das Power Good/PLL-Lock Signal durchlasst), wird eine Fehler-Erfassung und -Korrektur nicht durchge-
fuhrt.

[0319] Das Folgende sind die Hintergrundannahmen fiir den EDC-Algorithmus. Die meisten Fehler sind Ein-
zel-Bit-Fehler. Die Wahrscheinlichkeit, zuféllige Mehrfach-Bit-Fehler in derselben Transaktion zu haben, ist ex-
trem weit weg, da das Kabel 28 nicht fur eine Interferenz von internen oder externen Quellen anfallig ist. Fehler,
verursacht durch einen defekten Draht, kbnnen bewirken, dass ein einzelnes Bit oder eine Gruppe von Bits auf
diesem Draht Gibertragen wird. Wenn ein Hardware-Fehler auftritt, ist der logische Zustand des entsprechen-
den, differenziellen Puffers ein Einzel-Giiltigkeits-Logik Zustand.

[0320] Wie Fig. 17 zeigt, werden die Ausgangs-Signale FIFOOUT[59:0] von dem Multiplexer 228 in der Sla-
ve-Kabel-Schnittstelle 196 oder 198 zu dem Eingang eines Priif-Bit-Generators 350 zugeflihrt, der Prif-Bits
CHKBIT[7:0] erzeugt. Die Pruf-Bits werden entsprechend der Paritat-Prif-Matrix, dargestellt in Fig. 18, er-
zeugt, in der die erste Reihe zu CHKBIT[0] entspricht, die zweite Reihe zu CHKBIT[1] entspricht, usw.. Die Bits

47/215

DE 697 21 381 T2 2004.01.15

Uber eine Reihe entsprechen Daten-Bits FIFOOUT[0:59].

[0321] Die Pruf-Bits werden durch ein Exklusiv-ODER aller der Daten-Bits FIFOOUTI[X] (X ist gleich zu 0-59)
erzeugt, die einen Wert von ,1" in der Paritat-Prif-Matrix haben. Demzufolge ist das Prif-Bit CHKBIT[0] ein
Exklusiv-ODER von Daten-Bits FIFOOUT[7], FIFOOUTI[8], FIFOOUT[9], FIFOOUT[12], FIFOOUT[13],
FIFOOUT[16], FIFOOUT[22], FIFOOUT[23], FIFOOUT[24], FIFOOUTI[26], FIFOOUT[32], FIFOOUT[33],
FIFOOUT[34], FIFOOUT[35], FIFOOUT[38], FIFOOUT[39], FIFOOUTI[45], FIFOOUTI[46], FIFOOUT[48],
FIFOOUTI[49], FIFOOUT[51] und FIFOOUT[52]. Ahnlich ist das Priif-Bit CHKBIT[1] ein Exklusiv-ODER von
Bits 0, 2, 4, 5, 9, 10, 12, 14, 15, 16, 23, 27, 35, 37, 38, 40, 43, 46, 47, 48, 50 und 53. Prif-Bits CHKBIT[2:7]
werden in einer ahnlichen Art und Weise entsprechend der Paritat-Prif-Matrix von Fig. 18 erzeugt. Die Pari-
tat-Praf-Matrix ist auf den 20 Unterkanalen oder Drahten pro zeit-multiplexierter Phase, und einer Wahrschein-
lichkeit, dass mehrere Fehler in den akkumulierten Daten einem fehlerhaften Unterkanal oder Draht zuzu-
schreiben sind, der dieselbe Daten-Position in jeder zeit-multiplexierten Phase beeinflusst, basierend.

[0322] In der Master-Kabel-Schnittstelle 192 oder 194 werden die Prif-Bits CHKBIT[7:0] als Fehlererfas-
sungs- und Korrektur-Bits EDC[7:0] zusammen mit anderen Kabel-Daten geliefert, um einer Fehler-Korrek-
tur-Logik in der Slave-Kabel-Schnittstelle 196 oder 198 zu ermdglichen, Daten-Fehler zu erfassen und zu kor-
rigieren.

[0323] Die Prif-Bits CHKBIT[7:0] werden zu einem Fix-Bit-Generator 352 zugefiihrt, der Fix-Bits FIXBIT[59:0]
entsprechend der Syndrom-Tabelle, dargestellt in Fig. 19, erzeugt. Die Prif-Bits CHKBIT[7:0] besitzen 256 (2°)
mogliche Werte. Die Syndrom-Tabelle in Fig. 19 enthalt 256 mdgliche Positionen. Jede der 256 Positionen in
der Syndrom-Tabelle enthalt zwei Eintritte, wobei der erste Eintritt der hexadezimale Wert der Prif-Bits CH-
KBIT[7:0] ist und der zweite Eintritt den Kabel-Daten-Status anzeigt, der dieser Position zugeordnet ist. Dem-
zufolge zeigt, zum Beispiel, ein hexadezimaler Wert von 00 einen Nicht-Fehler-Zustand an, ein hexadezimaler
Wert von 01 zeigt einen Fehler in einem Daten-Bit 52 an, ein hexadezimaler Wert von 02 zeigt einen Fehler in
dem Daten-Bit 53 an, ein hexadezimaler Wert von 03 zeigt einen nicht-korrigierbaren Fehler (UNCER) an,
USw..

[0324] Die EDC-Logik ist dazu geeignet, bis zu drei fehlerhafte Bits zu erfassen, so lange wie diese Daten-Bits
benachbart zueinander sind, d. h. demselben Draht zugeordnet sind. Demzufolge sind, zum Beispiel, falls die
Pruf-Bits CHKBIT[7:0] einen hexadezimalen Wert 3D enthalten, dann die Daten-Bits 3, 23 und 43 fehlerhaft.
Das Kabel 28 flihrt Kabel-Daten CABLE_DATA[19:0]. Demzufolge sind die Daten-Bits FIFOOUT[3],
FIFOOUT[23] und FIFOOUTI[43] der vierten Position der Kabel-Daten zugeordnet, d. h. CABLE DATA[3]. Das
EDC-Verfahren kann auch Zwei-Bit-Fehler korrigieren, die demselben Kabel-Draht zugeordnet sind. Demzu-
folge zeigt, zum Beispiel, ein hexadezimaler Pruf-Bit-Wert von OF Fehler in Daten-Bits FIFOOUT[4] und
FIFOOUT[24] an, beide dem CABLE_DATA[4] zugeordnet.

[0325] Der Fix-Bit-Generator 352 erzeugt auch Signale NCERR (nicht-korrigierbarer Fehler) und CRERR
(korrigierbarer Fehler). Falls kein Fehler durch die Pruf-Bits angezeigt wird, dann sind die Signale CRERR (kor-
rigierbarer Fehler) und NCERR (nichtkorrigierbarer Fehler) beide auf niedrig zurickgenommen. In diesen Po-
sitionen in der Syndrom-Tabelle, die den nicht-korrigierbaren Zustand UNCER enthalt, wird das Signal NCERR
auf hoch gesetzt und das Signal CRERR wird auf niedrig zurickgenommen. Ansonsten wird dort, wo ein kor-
rigierbarer Daten-Fehler angezeigt wird, das Signal NCERR auf niedrig zurickgenommen und die Signale
CRERR werden auf hoch zurlickgesetzt.

[0326] Die unteren 52 Bits der Fix-Bits FIXBIT[51:0] werden zu einem Eingang von 52 Exklusiv-ODER-Gates
354 zugeflhrt, deren anderer Eingang eines von jedem der unteren 52 Bits der FIFO-Daten FIFOOUT[51:0]
empfangt. Die oberen 8 FIFO-Bits FIFOOUT[59:52], zugeordnet zu der Fehler-Erfassung und den Korrek-
tur-Bits EDCJ[7:0], werden dazu verwendet, die Prif-Bits und die Syndrom-Bits zu erzeugen, werden allerdings
nicht einer Fehlerkorrektur unterworfen. Die Exklusiv-ODER-Gates 354 fiihren eine Bit-weise Exklu-
siv-ODER-Operation der festgelegten Bits FIXBIT[51:0] und der Daten-Bits FIFOOUT[51:0] aus. Falls die Da-
ten-Signale FIFOOUT[51:0] korrigierbare, fehlerhafte Daten-Bits enthalten, werden diese Daten-Bits durch die
Exklusiv-ODER-Operation ,geflipped". Die Exklusiv-ODER-Gates 354 liefern die korrigierten Daten
CORRMSG[51:0] zu dem 1-Eingang eines Multiplexers 360. Der 0-Eingang des Multiplexers 360 nimmt die
Daten-Bits FIFOOUT[51:0] auf und der Multiplexer 360 wird durch ein Konfigurations-Signal
CFG2C_ENABLE_ECC ausgewanhlt. Der Ausgang des Multiplexers 360 erzeugt Signale MUXMSGI[51:0].
Falls die System-Software eine Fehler-Erfassung und eine Korrektur durch Einstellen des Signals
CFG2C_ENABLE_ECC auf hoch freigibt, dann wahlt der Multiplexer 360 die korrigierten Daten
CORRMSG[51:0] fur eine Ausgabe aus. Ansonsten werden, falls die Fehler-Erfassung und -Korrektur gesperrt
ist, die Daten-Bits FIFOOOT[51:0] verwendet.

[0327] Die nicht-korrigierbaren und die korrigierbaren Fehler-Indikatioren NCERR und CRERR werden zu
Eingangen von UND-Gates 356 und 358 jeweils geliefert. Die UND-Gates 356 und 358 werden durch das Si-
gnal CFG2C_ENABLE_ECC freigegeben. Die Ausgange der UND-Gates 356 und 358 erzeugen Signale
C_NLERR und C_CRERR jeweils. Die Signale C_NLERR und C_CRERR kénnen nur dann aufgestellt wer-
den, wenn eine Fehler-Erfassung und eine Korrektur freigegeben ist. Wenn ein Fehler erfasst ist, werden die

48/215

DE 697 21 381 T2 2004.01.15

festgelegten Bits (Fix-Bits) verriegelt und fiir diagnostische Zwecke verwendet.

[0328] Falls ein korrigierbarer Fehler angezeigt wird (das Signal C_CRERR ist hoch), dann wird eine Unter-
brechung zu dem Unterbrechungs-Empfangs-Block 132 hin erzeugt, weitergefihrt zu dem Unterbre-
chungs-Ausgangs-Block 114, und dann zu der System-Unterbrechungs-Steuereinheit Gbertragen, und dann
zu der CPU 14, um einen Unterbrechungs-Handler aufzurufen. Die nicht-korrigierbaren Fehler, angezeigt
durch das Signal C_NCERR, werden bewirken, dass der System-Fehler SERR _ aufgestellt wird, was wieder-
um bewirkt, dass die System-Unterbrechungs-Steuereinheit (nicht dargestellt) die nichtmaskierbare Unterbre-
chung (Non-Maskable Interrupt — NMI) zu der CPU 14 hin aufstellt. In dem ausgangsseitigen Briicken-Chip 48
werden nicht-korrigierbare Fehler bewirken, dass das Power-Good/PLL-Lock-Indikations-Bit weiter zu dem Ka-
bel 28 geschickt wird, um vernachlassigt zu werden, so dass der eingangsseitige Bricken-Chip 26 keine Zy-
klen zur Ausgangsseite hin schickt.

[0329] Um zufallige Unterbrechungen wahrend und nach einem Power-up-Vorgang zu verhindern, wird eine
Fehlererfassung und -korrektur an sowohl dem eingangsseitigen als auch dem ausgangsseitigen Bri-
cken-Chip wahrend eines Power-up-Vorgangs gesperrt, bis sich die eingangsseitige PLL 186 und die aus-
gangsseitige PLL 182 auf den Takt CABLE_CLK1 oder CABLE_CLK2 verriegelt haben.

[0330] Eine System-Mangament-Software, die auf die Unterbrechung fiir korrigierbare Fehler anspricht, be-
stimmt die Ursache durch Lesen der verriegelten Fix-Bits. Falls ein Hardware-Fehler bestimmt wird (z. B. Mehr-
fach-Daten-Fehler-Bits, zugeordnet demselben Kabel-Draht), dann kann die System-Management-Software
den Benutzer auf den Zustand hinweisen, um den Hardware-Fehler zu beseitigen. Die System-Manage-
ment-Software spricht auf SERR _ an, verursacht durch einen nicht-korrigierbaren Fehler, unter Abschalten des
Systems oder unter Durchfihren von anderen Funktionen, die durch den Benutzer programmiert sind.

SEKUNDAR-BUS-ARBITRIERER

[0331] Wie die Fig. 3 zeigt, umfasst jeder Briicken-Chip einen PCI-Arbitrierer 116 oder 124. Da der eingangs-
seitige Briicken-Chip 26 normalerweise in einem Schlitz installiert ist, wird der PCI-Arbitrierer 116 gesperrt. Der
PCI-Arbitrierer 124 unterstitzt 8 Master: 7 allgemeine PCI-Master (REQ[7:1]_, GNT[7:1]_), umfassend die
sechs PCI-Schlitze und die Hot-Plug-Steuereinheit in der SIO 50, und den Briicken-Chip selbst (BLREQ_,
BLGNT_). Die Signale BLREQ_ und BLGNT_ werden von und zu dem PCI-Master-Block 123 gefiihrt. Der Bru-
cken-Chip stellt das Signal BLREQ__ auf, falls eine Transaktion von der CPU 14, zielmaRig vorgesehen fir den
sekundaren PCI-Bus 32, durch den eingangsseitigen und ausgangsseitigen Briicken-Chip 26 und 48 empfan-
gen ist. Die Anforderungs- und Erteilungs-Leitungen REQ[1]_ und GNT[1]_ fir die SIO 50 werden intern in den
ausgangsseitigen Briicken-Chip 48 weitergeleitet. Der PCI-Arbitrierer 124 setzt eine PCICLK2 Verzdgerung
zwischen einer Negation eines GNT _ Signals fiir einen Master und das Aufstellen eines GNT _ Signals fur ei-
nen anderen Master ein.

[0332] In dem ausgangsseitigen Briicken-Chip 48 wird der PCI-Arbitrierer 124 freigegeben oder gesperrt, und
zwar basierend auf dem abgetasteten Wert von REQ[7]_ an der ansteigenden Flanke des Signals PCIRST2_.
Falls der Briicken-Chip 48 REQ[7]_ niedrig auf PCIRST2_ abtastet, wird er den PCI-Arbitrierer 124 sperren.
Falls der PCI-Arbitirierer 124 gesperrt ist, dann wird ein externer Arbitrierer (nicht dargestellt) verwendet, und
die Hot-Plug-Anforderung wird auf dem REQ[1]_ Stift angesteuert und die Hot-Plug-Erteilung wird auf dem
GNTI[1]_ Stift eingegeben. Die Briicken-PCI-Bus-Anforderung ist auf dem REQ[2]__ Stift angesteuert und deren
Erteilung wird auf dem GNT[2]_ Stift eingegeben. Falls der Briicken-Chip 48 REQ[7]_ auf hoch auf PCIRST2_
abtastet, wird er den PCI-Arbitrierer 124 freigeben.

[0333] Der PCl-Arbitrierer 124 negiert ein GNT__ Signal des Masters, entweder um einen Initiator mit héherer
Prioritat zu bedienen, oder auf das REQ_ Signal des Masters hin, das negiert werden soll. Wenn einmal sein
GNT_ Signal negiert ist, halt der momentane Bus-Master den Besitz tber den Bus bei, bis der Bus zu seinem
Leerlauf zuriickkehrt.

[0334] Falls keine PCI-Agenten momentan den Bus verwenden oder anfordern, nimmt der PCI-Arbitrierer 124
eines von zwei Dingen in Abhangigkeit von dem Wert eines PARKMSTRSEL Konfigurations-Registers in dem
Konfigurations-Raum 125 vor. Falls das Register den Wert von 0 enthalt, verwendet der PCI-Arbitrierer 124
den letzten, aktiven Master, um auf dem Bus 32 zu parken; falls er den Wert 1 enthalt, dann wird der Bus an
dem Bruicken-Chip 48 geparkt.

[0335] Der PCI-Arbitrierer 124 umfasst einen PCI-Minimal-Erteilungs-Zeitgeber 304 (Fig. 21), der die mini-
male, aktive Zeit aller der GNT_Signale steuert. Der Fehler-Wert flir den Zeitgeber 304 ist der hexadezimale
Wert 0000, der anzeigt, dass dort kein minimales Erteilungszeit-Erfordernis vorhanden ist. Der Zeitgeber 304
kann mit einem Wert von 1 bis 255 programmiert sein, um anzuzeigen, dass die Zahl von PCICLK2 Taktperi-
oden der GNT_Leitung aktiv ist. Alternativ kann der individuelle, Minimum-Erteilungs-Zeitgeber jedem
PCIl-Master auf dem sekundaren Bus 32 zugeordnet sein, um eine gréRere Flexibilitdt zu erzielen. Die Mini-
mum-Erteilungs-Zeit ist nur dann anwendbar, wenn der momentane Master sein REQ_ Signal aufstellt. Wenn
einmal das REQ__ Signal weggenommen ist, kann das GNT_Signal ungeachtet des minimalen Erteilungs-Zeit-

49/215

DE 697 21 381 T2 2004.01.15

werts erteilt werden.

[0336] Wie Fig. 20A zeigt, flhrt, in einem normalen Betrieb, der PCI-Arbitrierer 124 ein Round-Robin-Priori-
tats-Schema (Arbitrierungs-Schema auf dem zweiten Niveau) aus. Die acht Master in dem Round-Robin-Sche-
ma umfassen Vorrichtungen, die mit den sechs Schlitzen bzw. Einsteckplatzen des Erweiterungskastens 30,
dem SIO 50 und einer geposteten Speicher-Schreib-(PMW)-Anforderung von dem eingangsseitigen Bri-
cken-Chip 26 verbunden sind. Alle Master auf dem PCI-Bus 32 in diesem Schema besitzen dieselbe Prioritat
wie der Bricken-Chip 48. Nachdem der Master den sekundaren PCI-Bus 32 erteilt hat und der Master das
FRAME_ Signal aufgestellt hat, wird der Bus erneut arbitriert und der momentane Master wird an die Unterseite
des Round-Robin-Stapels gesetzt. Falls der Master diese Anforderung negiert oder der Minimum-Ertei-
lungs-Zeitgeber 304 ablauft, wird der PCI-Bus 32 dem Master mit der nachsten, hdchsten Prioritat erteilt. Ver-
riegelte Zyklen werden nicht in irgendeiner Weise unterschiedlich durch den PCI-Arbitrierer 124 behandelt.
[0337] Auf bestimmte Ereignisse hin wird das Arbitrierungs-Schema so modifiziert, um eine System-Funktion
zu optimieren. Die Ereignisse umfassen: 1) eine eingangsseitig-zuausgangsseitig verzogerte Lese- oder ver-
zogerte Schreib-Anforderung ist anhangig, 2) eine ausgangsseitig-zu-eingangsseitig verzégerte Lese-Anfor-
derung ist anhéngig, ohne dass eine Lese-Abschluss-Indikation geliefert wird, und 3) eine Streaming-Mdglich-
keit existiert, wahrend der Briicken-Chip 26 der momentane Master auf dem eingangsseitigen Bus 24 ist.
[0338] Wenn eine verzogerte Anforderung erfasst ist, wird der Briicken-Chip 48 der nachste Master, der dem
sekundaren PCI-Bus 32 erteilt werden soll. Wenn einmal dem Briicken-Chip 48 der Bus 32 erteilt ist, behalt er
einen Besitz Uber den Bus 32 bei, bis er alle offenstehenden, verzégerten Anforderungen abschlieft oder einer
seiner Zyklen erneut versucht wird. Falls der Briicken-Chip 48 erneut versucht wird, wird ein Zwei-Level-Arbi-
trierungs-Schema durch den Arbitrierer 124 ausgefiihrt. Eine primare Ursache dafir, dass der Bru-
cken-Chip-Lese-Zyklus erneut versucht wird, ist diejenige, dass die Target-Vorrichtung eine Briicke mit einem
geposteten Schreib-Puffer ist, der geldscht werden muf3. In diesem Fall ist die optimale Operation diejenige,
den Bus 32 zu dem erneut versuchenden Target zu erteilen, um ihm zu ermdglichen, seinen geposteten
Schreib-Puffer zu entleeren, so dass er die Bruicken-Chip-Lese-Anforderung annehmen kann.

[0339] Wie Fig. 20B zeigt, umfasst ein Zwei-Level-Arbitrierungs-Protokoll ein Arbitrierungs-Schema auf dem
ersten Level, das ein Round-Robin-Schema ist, und zwar unter drei moglichen Mastern: die verzégerte Anfor-
derung von der CPU 14, eine Anforderung von dem erneut versuchenden Master und ein Master, der durch
das Arbitrierungs-Schema auf dem zweiten Level ausgewahlt ist. Jeder dieser drei Master in dem Arbitrie-
rungs-Schema unter dem ersten Level wird jedem dritten Arbitrierungs-Schlitz erteilt. Fir Speicher-Zyklen
kann der Schlitz, der dem erneut versuchenden Target zugeordnet ist, von den Target-Speicher-Bereich-Kon-
figurations-Registern in dem Konfigurations-Raum 125 des Briicken-Chips 48 bestimmt werden, der den
Speicherbereich speichert, der jeder PCI-Vorrichtung zugeordnet ist. Falls der erneut versuchende Master
nicht bestimmt werden kann (wie in dem Fall einer I1/O-Lesung), oder falls der erneut versuchende Master nicht
den sekundaren Bus 32 anfordert, dann wiirde das Arbitrierungs-Schema auf dem ersten Level zwischen dem
Briicken-Chip 48 und einem Level-Two-Master vorliegen.

[0340] Der erneut versuchende Master wird nicht von der Level-Zwei-Arbitrierung maskiert. Demzufolge ist
es fir ihn moglich, zwei Back-to-Back-Arbitrierungs-Gewinne zu haben, falls er der ndchste Master in dem Le-
vel-Two-Arbitrierungs-Schema ist.

[0341] Zum Beispiel wirde, falls eine Eingangs-zu-Ausgangs-Lesung erneut versucht wird und der Master C
(der erneut versuchende Master) den Bus 32 ebenso wie einen Master B und einen Master E anfordert, die
Reihenfolge der Bus-Erteilungen wie folgt in einer absteigenden Reihenfolge sein: der Briicken-Chip 48, der
erneut versuchende Master (Master C), der Master C, der Briicken-Chip 48, der erneut versuchende Master
C, der Master E, der Briicken-Chip 48, usw., bis der Briicken-Chip 48 in der Lage ist, seine Transaktion abzu-
schliel3en, und der PCI-Arbitrierer 152 zuriick zu seinem Level-Two-Arbitrierungs-Schema fiir einen normalen
Betrieb kehrt.

[0342] Falls, als ein anderes Beispiel, die Briicken-Chip-Lesung erneut versucht wird und die einzigen ande-
ren die anfordernden Master Master A und Master D sind (d. h. der erneut versuchende Master fordert nicht
den Bus an, oder er kdnnte nicht identifiziert werden, da er auf einen 1/O-Raum gerade zugreift), ist die Rei-
henfolge der Bus-Erteilungen wie folgt: der Briicken-Chip 48, der Master A, der Briicken-Chip 48, der Master
D, usw..

[0343] Das Zwei-Level-Arbitrierungs-Schema gibt verzégerten Anforderungen von der CPU 14 die hochste
Prioritat. Obwohl dieses Arbitrierungs-Verfahren stark die CPU 14 favorisiert, wird jeder anfordernden Vorrich-
tung auf dem Bus 32 schlielich der PCI-Bus 32 erteilt. Indem dies so vorgenommen wird, ist dabei eine ge-
ringere Chance vorhanden, dass die anderen, sekundaren Bus-Master vernachlassigt werden wurden, wenn
eine PCI-Briicken-Chip-Anforderung erneut versucht wird.

[0344] Unter Bezugnahme auf Fig. 21 umfasst der PCI-Arbitrierer 124 eine L2 Zustand-Maschine 302, um
das Level-Two-Round-Robin-Arbitrierungs-Schema auszufiihren. Die L2 Zustand-Maschine 302 empfangt Si-
gnale RR_MAST[2:0], die den momentanen Round-Robin-Master anzeigen. Die L2 Zustand-Maschine 302
empfangt auch Anforderungs-Signale RR_REQ[7:0], entsprechend zu den 8 mdglichen Mastern des sekunda-

50/215

DE 697 21 381 T2 2004.01.15

ren PCI-Busses 32. Basierend auf dem momentanen Master und dem Zustand der Anforderungs-Signale, er-
zeugt die L2 Zustand-Maschine 302 einen Wert, der den nachsten Round-Robin-Master darstellt. Der Ausgang
der L2 Zustand-Maschine 302 wird zu dem 0-Eingang eines 6:3 Multiplexers 306 geliefert, dessen 1-Eingang
Signale Q2A_STRMAST[2:0] empfangt. Der Auswahl- bzw. Select-Eingang des Multiplexers 306 empfangt ein
Signal STREAM_REQ, das auf hoch durch ein UND-Gate 308 gesetzt wird, wenn eine Streaming-Gelegenheit
existiert (Q2A_STREAM ist hoch), der Streaming-Master auf dem sekundéaren PCI-Bus 32 seine Anforde-
rungs-Zeile (MY_REQ[Q2A_STRMASTI[2:0]] ist hoch) und eine verzdgerte Anforderung nicht anhéngig ist
(BAL_DEL_REQ ist niedrig).

[0345] Der Ausgang des Multiplexers 306 steuert Signale N_RR_MAST[2:0] an, die den nachsten Round-Ro-
bin-Master in dem Level-Two-Arbitrierungs-Schema darstellen. Die Signale N_RR_MAST[2:0] werden durch
eine L1 Zustand-Maschine 300 empfangen, die auch die folgenden Signale empfangt: ein Signal
RTRYMAST_REQ (das die Anforderung des erneut versuchenden Bus-Masters darstellt); ein Signal
MIN_GRANT (das dann aufgestellt wird, wenn der Minimal-Erteilungs-Zeitgeber 304 zeitmalig ablauft); das
verzdgerte Anforderungs-Signal BAL_DEL_REQ; das Datenfolge-Anforderungs-Signal STREAM_REQ); ein
Signal CURMAST_REQ (das anzeigt, dass der momentane Master ein Aufstellen seines Anforderungs-Sig-
nals beibehalt); ein Signal ANY_SLOT_REQ (das auf hoch gestellt wird, falls irgendeines der Anforderungs-Si-
gnale REQ[7:0]_ auf hoch, allerdings nicht die Briicken-Chip-Anforderung BLREQ_ umfassend, aufgestellt ist);
und Signale L1STATE[1:0] (die den momentanen Zustand der L1 Zustand-Maschine 300 darstellt). Die L1 Zu-
stand-Maschine 300 wahlt eine von drei moglichen L1-Mastern aus, umfassend den erneut versuchenden
Master (RTRYMAST_REQ), die verzdgerte Anforderung von dem Briicken-Chip 48 (BAL_DEL_REQ) und den
Level-Two-Master (ANY_SLOT_REQ).

[0346] Das Anforderungs-Signal des erneut versuchenden Master RTRYMAST _REQ wird durch ein
UND-Gate 312 erzeugt, das das Signal BAL_DEL_REQ, das Signal MY_REQ[RTRY_MAT[2:0]] (das anzeigt,
ob der erneut versuchende Master seine Anforderung aufstellt) und den Ausgang eines ODER-Gates 310
empfangt. Die Eingange des ODER-Gates 310 nehmen die Signale RTRY_MAST[2:0] auf. Demzufolge ist,
falls ein erneut versuchender Master identifiziert worden ist (RTRY_MAST[2:0] ist Nicht-Null), eine verzdgerte
Anforderung vorhanden ist (BAL_DEL_REQ ist hoch) und ein erneut versuchender Master seine Anforderung
aufgestellt hat, dann das Signal RTRYMAST_REQ aufgestellit.

[0347] Die L1 Zustand-Maschine 300 erzeugt Signale N_L1STATE[2:0] (die den nachsten Zustand der L1 Zu-
stand-Maschine 300 darstellen), ebenso wie Signale N_CURMAST[2:0] (die den nachsten Master gemal dem
Level-Two-Arbitrierungs-Schema darstellen). Die L1 Zustand-Maschine 300 erzeugt auch ein Signal
OPEN_WINDOW, das anzeigt, wenn ein erneut arbitrierendes Fenster fur eine Erteilungs-Zustand-Maschine
306 existiert, um Master auf dem sekundaren PCI-Bus 32 zu andern. Ein Signal ADV_RR_MAST, geliefert
durch die L1 Zustand-Maschine 300, zeigt zu der Erteilungs-Zustand-Maschine 306 hin an, wenn der Wert der
Signale N_RR_MAST[2:0] in die Signale RR_MAST[2:0] zu laden sind, um den nachsten Le-
vel-Two-Round-Robin-Master weiterzufiihren.

[0348] Die Erteilungs-Zustand-Maschine 306 gibt Erteilungs-Signale GNT[7:0] ebenso wie ein Signal
CHANGING_GNT aus, um anzuzeigen, dass die Inhaberschaft des Busses 32 geandert wird. Die Ertei-
lungs-Signale GNT[7:1]_ werden von den GNT[7:1] Signalen invertiert, und das Erteilungs-Signal BLGNT _
wird von dem GNT[0] Signal invertiert. Die Erteilungs-Zustand-Maschine 306 erzeugt auch Signale
L1STATE[1:0] und Signale RR_MAST[2:0].

[0349] Der Minimum-Erteilungs-Zeitgeber 304 wird durch das Signal PCLK getaktet und erzeugt das Signal
MIN_GRANT. Der Minimum-Erteilungs-Zeitgeber 304 empfangt auch das Signal CHANGING_GNT und
NEW_FRAME (anzeigend, dass ein neues FRAME_ Signal aufgestellt worden ist). Der Anfangs-Wert des Mi-
nimum-Erteilungs-Zeitgebers 304 wird als ein Wert geladen {CFG2A_MINGNT[3:0], 0000}, wobei die Signale
CFG2A_MINGNTI3:0] gespeicherte Konfigurations-Bits in dem Konfigurations-Raum 125 sind, die den An-
fangs-Wert des Minimum-Erteilungs-Zeitgebers 304 definieren. Der Minimum-Erteilungs-Zeitgeber 304 wird
erneut geladen, nachdem er herunter auf Null gezahlt hat, und das Signal CHANGING_GNT wird auf hoch ge-
setzt. Nachdem der Minimum-Erteilungs-Zeitgeber 304 mit einem neuen Wert geladen ist, beginnt er sich zu
erniedrigen, wenn das Signal NEW_FRAME auf hoch gesetzt ist und das Signal CHANGING_GNT auf niedrig
durch die Erteilungs-Zustand-Maschine 306 zuriickgenommen ist, was anzeigt, dass eine neue Transaktion
auf dem PCI-Bus 32 begonnen hat.

[0350] Signale MY_REQ[7:1] werden durch ein NOR-Gate 314 erzeugt, dessen Eingange die Anforde-
rungs-Signale REQ[7:1]_ und Maskierungs-Signale Q2AMASKREQ[7:1] empfangen. Ein Aufstellen des Mas-
kierungs-Bits Q2AMASKREQ[X], X = 1-7, maskiert die Anforderung REQ[X]_ des entsprechenden Masters,
was verhindert, dass der PCI-Arbitrierer 124 auf das Anforderungs-Signal anspricht. Ein Signal MY_REQ]0]
wird durch einen Invertierer 316 angesteuert, der die Briicken-Anforderung BLREQ empfangt.

[0351] Wie Fig. 22 zeigt, umfasst die Erteilungs-Zustand-Maschine 306 vier Zustande: PARK, GNT,
IDLE4AGNT und IDLE4PARK. Beim Aufstellen eines RESET-Signals (erzeugt von dem PCI-Reset-Signal
PCIRST2_), tritt die Erteilungs-Zustand-Maschine 306 in einen Zustand PARK ein, wo sie verbleibt, wahrend

51/215

DE 697 21 381 T2 2004.01.15

ein Signal ANY_REQ weggenommen wird. Das Signal ANY_REQ wird auf hoch gesetzt, falls irgendeine der
Anforderungs-Zeilen zu dem PCI-Arbitrierer 124 aufgestellt ist. In dem PARK Zustand wird die PCI-PCI-Brucke
48 als der Inhaber des PCI-Busses 32 geparkt, wenn eine andere Anforderung nicht vorhanden ist.

[0352] Falls das Signal ANY_REQ aufgestellt ist, geht die Erteilungs-Zustand-Maschine 306 von dem Zu-
stand PARK zu dem Zustand IDLE4GNT uber, und das Signal CHANGING_GNT wird auf hoch gesetzt, um
anzuzeigen, dass der PCI-Arbitrierer 124 Master andert. Die Erteilungs-Signale GNT[7:0] werden alle auf
Null'en geléscht, und die Signale CURMAST[2:0] werden mit dem Wert des nachsten Master
N_CURMAST[2:0] aktualisiert. Zusatzlich werden die Round-Robin-Master-Signale RR_MAST[2:0] mit dem
nachsten Round-Robin-Master-Wert N_RR_MAST[2:0] aktualisiert, wenn das Signal ADV_RR_MAST durch
die L1 300 aufgestellt ist. Das Signal ADV_RR_MAST zeigt, wenn es hoch ist, an, dass der nachste L1-Master
einer der L2 Master ist.

[0353] Von einem Zustand IDLE4AGNT geht die Erteilungs-Zustand-Maschine 306 als nachstes zu dem GNT
Zustand Uber, und die Signale GNT[7:0] werden auf den Zustand von neuen Erteilungs-Signalen NEW-
GNTI[7:0] eingestellt und das Signal CHANGING_GNT werden auf niedrig gesetzt. Die Signale NEWGNT[7:0]
sind auf dem Zustand der momentanen Master-Signale CURMAST[2:0] basierend, wie dies in Fig. 24 darge-
stellt ist.

[0354] Von dem Zustand GNT sind drei Ubergénge méglich. Die Erteilungs-Zustand-Maschine 306 kehrt zu
dem PARK Zustand zurlick, falls ein Arbitrierungs-Fenster offen ist (OPEN_WINDOW ist hoch), keine Anfor-
derung anhangig ist (ANY_REQ ist niedrig), der PCI-Bus 32 leer ist (BUS_IDLE ist hoch) und der nachste Mas-
ter der momentane Master ist (d.h. der momentane Master ist der parkende Master). Bei dem Ubergang zuriick
von dem GNT Zustand zu dem PARK Zustand werden die Signale L1STATE[1:0] mit den Signalen
N_L1STATE[1:0] aktualisiert. Allerdings wird, falls keine Anforderungen anhangig sind und der Bus leer ist,
aber der momentane Master nicht der parkende Master ist (d. h. die Signale N_CURMAST[2:0] sind nicht
gleich zu dem Wert der Signale CURMASTI[2:0]), ein Leerlauf-Zustand bendtigt und die Erteilungs-Zu-
stand-Maschine 306 geht von dem GNT Zustand zu dem IDLE4PARK Zustand uber. Die L1 Zustand-Werte
L1STATE[1:0] werden aktualisiert. Von dem IDLE4PARK Zustand geht die Erteilungs-Zustand-Maschine 306
zu dem PARK Zustand uber, die Erteilungs-Signale GNT[7:0] gleich zu den neuen Erteilungs-Signalen NEW-
GNT[7:0] einstellend, um den PCI-Bus 32 dem neuen Master zu erteilen. Das Signal CHANGING_GNT wird
auch auf niedrig gesetzt.

[0355] Falls sich das Arbitrierungs-Fenster 6ffnet (OPEN_WINDOW ist hoch) und der nachste Master nicht
der momentane Master ist (die Signale N_CURMAST[2:0] sind nicht gleich zu den Signalen CURMAST[2:0]),
dann geht die Erteilungs-Zustand-Maschine 306 zu dem Leerlauf Zustand IDLE4GNT tber, um Bus-Master-Er-
teilungen zu andern. Bei dem Ubergang wird das Signal CHANGING_GNT hoch gesetzt, die Signale GNT[7:0]
werden alle auf Null'en geldscht, die Signale CURMAST[2:0] werden mit dem nachsten Master-Wert
N_CURMASTI[2:0] aktualisiert, und die L1 Zustand-Signale L1 STATE[1:0] werden mit dem nachsten Zu-
stand-Wert N_L1STATE[1:0] aktualisiert. Zusatzlich werden die Round-Robin-Master-Signale RR_MAST[2:0]
mit dem nachsten Round-Robin-Master RR_MAST[2:0] aktualisiert, falls das Signal ADV_RR_MAST auf hoch
gesetzt ist. Die Erteilungs-Signale GNT[7:0] werden dann auf den Wert NEWGNT[7:0] bei dem Ubergang von
dem IDLE4GNT Zustand zu dem GNT Zustand gesetzt.

[0356] Wie Fig. 23 zeigt, startet die L1 Zustand-Maschine 300 (Fig. 21) in eine, Zustand RR unter Aufstellen
des RESET-Signals, wo die Zustand-Maschine 300 verbleibt, wahrend ein verzdgertes Anforderungs-Signal
BAL_DEL_REQ auf niedrig gesetzt wird (anzeigend, dass dort keine verzdogerte Anforderung anhangig ist). In
dem RR Zustand wird das Signal ADV_RR_MAST auf hoch gesetzt, um der Erteilungs-Zustand-Maschine 300
zu ermoglichen, den Round-Robin-Master zu aktualisieren (d. h. Einstellen von Signalen RR_MAST[2:0] gleich
zu dem Wert N_RR_MASTI[2:0]). Der RR Zustand ist der Round-Robin Zustand, in dem das Level-Two-Arbit-
rierungs-Schema verwendet wird. In dem RR Zustand werden die nachsten Master-Signale N_CURMAST[2:0]
gleich zu dem nachsten Round-Robin-Master N_RR_MAST[2:0] gesetzt, und das Signal OPEN_WINDOW
wird auf hoch gesetzt, falls die Datenfolge-Anforderungs-Gelegenheit existiert (STREAM_REQ ist hoch), oder
der Minimum-Erteilungs-Zeitgeber 304 abgelaufen ist (MIN_GRANT ist hoch), oder der momentane Master
seine Anforderung aufgestellt hat (CURMAST_REQ geht auf niedrig). Wenn hoch aufgestellt ist, ermoglicht
das Signal OPEN_WINDOW, dass eine neue Arbitrierung stattfindet.

[0357] Falls eine verzogerte Anforderung erfasst wird (BAL_DEL_REQ geht zu hoch Uber), geht die L1 Zu-
stand-Maschine 300 von dem RR Zustand zu dem BAL Zustand Uber, den nachsten Master Zustand
N_CURMAST[2:0] als den Bricken-Chip 48 einstellend und das Signal ADV_RR_MAST wegnehmend, um die
Level-Two-Round-Round-Arbitrierung zu sperren. In dem BAL Zustand wird das Signal OPEN_WINDOW auf
hoch gesetzt, falls die verzégerte Anforderung weggenommen ist (BAL_DEL_REQ geht zu niedrig Uber), oder
die verzdgerte Anforderung erneut versucht worden ist (BAL_RETRIED geht zu hoch (ber). Falls das Signal
BAL_DEL_REQ auf niedrig gesetzt ist oder falls die verzégerte Anforderung BAL_DEL_REQ auf hoch gesetzt
ist, allerdings die Anforderung des erneut versuchenden Masters auf niedrig gesetzt wird (RTRYMAST_REQ
ist niedrig) und die Schlitz-Anforderung ANY_SLOT_REQ auf hoch gesetzt wird, dann geht die L1 Zustand-Ma-

52/215

DE 697 21 381 T2 2004.01.15

schine 300 zurlick zu dem RR Zustand. Bei dem Ubergang wird das Signal ADV_RR_MAST auf hoch gesetzt
und die nachsten Master-Signale N_CURMAST[2:0] werden gleich zu dem nachsten Round-Robin-Master
N_RR_MAST[2:0] gesetzt. Falls das Signal BAL_DEL_REQ weggenommen ist, zeigt dies an, dass der Arbit-
rierer 124 zuriick zu dem Level-Two-Round-Robin-Schema kehren sollte. Falls das Signal der verzégerten An-
forderung aufgestellt ist, allerdings die Anforderung des erneut versuchenden Masters weggenommen wird,
dann ist das Level-One-Arbitrierungs-Schema zwischen den Schlitzen auf dem PCI-Bus 32 und dem Bru-
cken-Chip 48.

[0358] Falls sowohl die verzogerte Anforderung BAL_DEL_REQ als auch die Anforderung des erneut versu-
chenden Masters RTRYMAST_REQ aufgestellt sind, dann geht die L1 Zustand-Maschine 300 von dem Zu-
stand BAL zu dem Zustand RETRY_MAST (ber, und der erneut versuchende Master wird als der nachste
Master eingestellt (N_CURMAST[2:0] wird gleich zu RTRY_MAST[2:0]) eingestellt. Das Signal
ADV_RR_MAST wird auf niedrig beibehalten. In dem RETRY_MAST Zustand ist, falls keiner der
PCI-Schlitz-Master eine Anforderung aufstellt (ANY_SLOT_REQ ist niedrig), dann das Level-One-Arbitrie-
rungs-Schema zwischen dem erneut versuchenden Master und dem Briicken-Chip 48, und die L1 Zu-
stand-Maschine 300 geht zurlick zu dem BAL Zustand. Der Briicken-Chip 48 wird als der nachste Master ein-
gestellt (N_CURMAST[2:0] ist gleich zu dem Zustand BALBOA), und das Signal ADV_RR_MAST wird auf
niedrig beibehalten. Allerdings geht die L1 Zustand-Maschine 300 von dem RETRY_MAST Zustand zu dem
RR Zustand uber, falls irgendeiner der Schlitz-Master eine Anforderung aufstellt (ANY_SLOT_REQ ist hoch).
Bei dem Ubergang wird das Signal ADV_RR_MAST auf hoch gesetzt, und der nachste Round-Robin-Master
wird als der nachste Master eingestellt (N_CURMASTI[2:0] wird gleich zu N_RR_MAST[2:0] eingestellt).
[0359] Um von dem Vorteil der Streaming-Fahigkeiten des Briicken-Chips Gebrauch zu machen, wenn Daten
fur eine DRC damit beginnen, von dem Kabel 28 anzukommen, wird der Master, zugeordnet zu dieser DRC,
die Vorrichtung mit der héchsten Prioritat (unter der Annahme, dass deren REQ_ aufgestellt ist). Dies ermdg-
licht dem Master, die Daten-Folge, von dem Kabel 28 ankommend, aufzunehmen, wahrend das Aus-
wahl-Fenster dort fir ein Streaming vorhanden ist. Falls der Briicken-Chip 48 nicht den Master verbinden kann,
bevor die DRC-Warteschlange aufgefiillt ist, dann wird sich der eingangsseitige Briicken-Chip 24 trennen, und
nur ein Teil der Daten wirde zu dem anfordernden Master hindurchgefiihrt werden, was erfordert, dass der
Master eine andere Lese-Anforderung auf den eingangsseitigen Bus 24 abgibt. Der Streaming-Master behalt
die hdchste Prioritat bei, so lange wie DRC-Daten fortfahren, von dem Kabel 28 anzukommen. Falls der Master
eine unterschiedliche Zyklus-Adresse wiederholt, wird dies erneut versucht werden, allerdings wird er den Be-
sitz Uber den sekundaren PCI-Bus 32 beibehalten, bis seine Anforderung weggeht oder die Gelegenheit fur
ein Streaming voruber ist.

ERNEUT VERSUCHENDE ANFORDERUNGEN UND MULTI-THREADED MASTER

[0360] Da jeder Briicken-Chip eine Vorrichtung mit verzdgerter Transaktion ist, falls eine Vorrichtung auf dem
ausgangsseitigen Bus 32 eine Lese-Anforderung abgibt, bestimmt fir ein eingangsseitiges Target, wird der
ausgangsseitige Briicken-Chip 48 eine Wiederversuch-Transaktion (beschrieben in der PCI Spezifikation) auf
dem sekundéaren Bus 32 ausgeben und die Anforderung weiter zu dem Kabel 28 fuihren. Die Wiederver-
such-Transaktion bewirkt, dass der anfordernde Master die Steuerung von dem PCI-Bus 32 aufgibt und seine
REQ_ Zeile wegnimmt. Nach Wegnehmen seiner REQ__ Zeile wird der erneut versuchende Master wieder eine
Anforderung fir denselben Zyklus zu einer spateren Zeit aufstellen, was dazu fihrt, dass seine GNT _ aufge-
stellt wird (falls seine REQ_ Zeile nicht maskiert ist) und der Bus-Master erneut versucht, bis die Lese-Ab-
schluss-Indikation in dem ausgangsseitigen Briicken-Chip 48 aufgestellt ist.

[0361] Wie die Fig. 25 zeigt, wird, um die unnétige Bearbeitung von Wiederversuch-Anforderungen zu ver-
meiden, die REQ_ Zeile einen sekundaren Bus-Master, er eine erneut versuchte, verzdgerte Lese- oder
Schreib-Anforderung ausgibt, durch Aufstellen des geeigneten einen der Signale Q2A_MASK_REQ[7:1] (An-
forderung von dem Briicken-Chip 48, die erneut versucht sind, werden nicht maskiert), maskiert, bis der ver-
zogerte Abschluss zurtckfihrt. Auf diese Art und Weise wird anderen, anfordernden Mastern eine Prioritat ge-
geben, um deren Anforderungen hineinzubringen. Sobald die ersten Informationen, zugeordnet dem verzdger-
ten Abschluss, zuriickgefihrt werden, wird die REQ_ Zeile des entsprechenden Masters von der Maskierung
befreit und der erneut versuchende Master ist in der Lage, in eine Arbitrierung erneut einzutreten.

[0362] Allerdings existiert ein spezieller Fall fir Multi-Threaded- (oder Multi-Headed) Master auf dem aus-
gangsseitigen Bus 32 (Fig. 26B), die in der Lage sind, eine erste Anforderung aufzustellen, erneut versucht zu
werden und zuriickzukommen mit einer unterschiedlichen Anforderung. Eine solche Multi-Threaded-Bus-Vor-
richtung ist eine PCI-PCI-Bricke 323, die den sekundaren PCI-Bus 32 und einen untergeordneten PCI-Bus
325 verbindet. Der Bus 325 ist mit Netzwerk-Schnittstellen-Karten (Network Interface Cards — NICs) 327A und
327B verbunden, die mit zwei unterschiedlichen Netzwerken verbunden sind. Demzufolge kann, falls die An-
forderung von der NIC 327A fir den primaren PCI-Bus 32 erneut durch den Bricken-Chip 48 versucht wird,
die NIC 327B eine unterschiedliche Anforderung erzeugen. In diesem Fall werden die REQ_ Zeilen der Mul-

53/215

DE 697 21 381 T2 2004.01.15

ti-Threaded-Master nicht maskiert, wie dies durch das Signal CFG2Q_MULTI_MASTER[X], das auf hoch ge-
setzt wird, angezeigt ist.

[0363] Ein Status-Register 326 bestimmt, ob ein Schlitz ein einzelner oder ein Multi-Threaded ist. Bei einem
Reset wird das Register 326 geléscht, um anzunehmen, dass jede sekundare Bus-Vorrichtung Einzel-Threa-
ded ist. Der Schlitz wird dann Uiberwacht, um zu bestimmen, ob er einen unterschiedlichen Zyklus anfordert,
wahrend ein anderer Zyklus von demselben Master anhangig ist. Falls ein Multi-Threaded-Verhalten in einem
Master beobachtet wird, dann wird ein solcher durch Einstellen des entsprechenden Bits
CFG2Q_MULTI_MASTER[X] auf hoch markiert.

[0364] Der Eingang des Status-Registers 326 wird mit dem Ausgang eines 14:7 Multiplexers 328 verbunden,
dessen 0-Eingang mit dem Ausgang eines 14:7 Multiplexers 330 verbunden ist, dessen 1-Eingang mit Adres-
sen-Bits P2Q_AD[22:16] verbunden ist. Ein Auswahl-Signal CFGWR_MM wahlt die 0- und 1-Eingénge des
Multiplexers 328 aus. Wenn hoch aufgestellt ist, bewirkt das Signal CFGWR_MM ein Konfigurations-Schreiben
des Status-Registers 326 von den Daten-Bits P2Q_AD[22:16], was eine Software-Steuerung der Bits in dem
Register 326 ermdglicht. Der 1-Eingang des Multiplexers 330 nimmt Multi-Master-Signale
MULTI_MASTER][7:1] auf, der 0-Eingang empfangt den Ausgang des Registers 326 und der Multiplexer 330
wird durch ein Signal MULTI SEL ausgewahlt. Das Signal MULTI_SEL wird durch ein UND-Gate 338 erzeugt,
dessen erster Eingang ein Signal Q2PIF_CHECK_CYC aufnimmt (gesetzt auf hoch, um anzuzeigen, dass die
momentanen Transaktions-Informationen gegenuber von Informationen gepruft werden sollten, die in dem
Warteschlangen-Block 127 gespeichert sind, und zwar hinsichtlich einer Anpassung, wie beispielsweise wah-
rend einer verzégerten Speicher-Lese- oder Schreib-Anforderung von einer Bus-Vorrichtung auf dem sekun-
daren PCI-Bus 32), und der andere Eingang nimmt den invertierten Zustand des Signals DCQ_HIT auf (was
anzeigt, dass die momentenen Adressen-Informationen nicht die Adressen-Informationen anpassen, die einer
anhangigen Anforderung des anfordernden Master in der DCQ 148 zugeordnet sind). Demzufolge wird, falls
ein fehlerhafter Vergleich auftrat, der Wert der Signale CFG2Q_MULTI_MASTER([7:1] aktualisiert.

[0365] Ein Bit MULTI_MASTER[X] wird auf hoch gesetzt, falls der Master X eine anhangige Anforderung hat,
die erneut versucht worden ist, und der Master X darauffolgend zuriick zu einer unterschiedlichen Anforderung
kommt. Dies wird durch Vergleichen der Transaktions-Informationen (z. B. Adresse, Byte-Freigaben, Daten fur
ein Schreiben) der anhangigen Anforderung mit der Adresse der neuen Anforderung geprift. Ein fehlgeschla-
gener Vergleich zeigt an, dass der Master im Multi-Threaded-Betrieb ist. Wenn einmal ein Multi-Master-Konfi-
gurations-Bit CFG2Q_MULTI_MASTER[X] (X = 1-7) auf hoch gesetzt ist, wird das Bit auf hoch beibehalten.
[0366] Die Signale MULTI_MASTER([7:1] werden durch einen Decodierer 336 erzeugt. Der Decodierer 336
nimmt Signale Q2PIF_SLOT[2:0] (Schlitz-Zahl fir die momentane, verzégerte Anforderung von einem Master),
Q[7:0]_MASTER][2:0] (der Master, zugeordnet zu jedem der acht Puffer in der DCQ 148), Q[7:0]_COMPLETE
(der Abschluss-Status jeder der acht Warteschlangen), und Q[7:0] PART_COMPLETE (der Teil-Ab-
schluss-Status jedes der Puffer in der verzogerten Abschluss-Warteschlange) auf. Zum Beispiel zeigt dann,
falls das Signal Q0_MASTER[2:0] den Wert 4 enthalt, dies an, dass der DCQ-Puffer 0 die Transations-Infor-
mationen einer verzdgerten Anforderung von der Bus-Vorrichtung in dem Schlitz 4 speichert. Das Signal
QY_COMPLETE, Y = 0-7, zeigt an, falls ,hoch" aufgestellt ist, ob der DCQ-Puffer Y alle die Daten empfangen
hat, die der verzdgerten Anforderungs-Transaktion zugeordnet sind. Das Signal QY_PART_COMPLETE, Y =
0-7, zeigt an, falls hoch aufgestellt ist, dass der DCQ-Puffer Y als der DCQ-Puffer fir eine verzdgerte Trans-
aktion von einem der Master zugeordnet worden ist, allerdings alle die Daten, die der verzdogerten Transaktion
zugeordnet sind, noch nicht empfangen worden sind.

[0367] Falls die momentane Schlitz-Zahl Q2PIF_SLOT[2:0] gleich zu dem Wert irgendeines der acht Warte-
schlangen-Master-Indikations-Signale Q[7:0] MASTER[2:0] ist, und sich der entsprechende DCQ-Puffer in
dem Abschluss- oder Teil-Abschluss-Zustand befindet, dann wird das entsprechende eine der Bits
MULTI_MASTER][7:1] auf hoch gesetzt, falls das Signal DCQ HIT niedrig ist, und das Signal
Q2PIF_CHECK_CYCJ2:0] hoch ist. Demzufolge wird, zum Beispiel, falls das Signal Q2PIF_SLOT[2:0] den
Wert 2 enthalt, was anzeigt, dass die Vorrichtung im Schlitz 2 der momante Master der verzdgerten Anforde-
rung ist, und der DCQ-Puffer 5 eine anhangige Anforderung flr den Schlitz-2-Master speichert
(Q5_MASTER[2:0] = 5), und irgendeines der Signale Q5_COMPLETE oder Q5_PART_COMPLETE hoch ist,
und falls das Signal Q2PIF_CHECK_CYC hoch ist und das Signal DCQ_HIT niedrig ist, dann das Bit
MULTI_MASTER[2] auf hoch gesetzt, um so anzuzeigen, dass die Schlitz-2-Vorrichtung ein Multi-Threa-
ded-Master ist.

[0368] Ein Maskierungs-Anforderungs-Erzeugungs-Block 332 erzeugt Signale Q2A_MASK_REQ[X] (X =
1-7) in Abhangigkeit von Signalen Q[7:0] MASTER][2:0], Q[7:0]_STATE[3:0], (was den Zustand von verzdger-
ten Abschluss-Warteschlangen 0-7 anzeigt), SLOT_WITH_DATA[7:0] (was anzeigt, ob ein verzégerter Ab-
schluss Qs 0-7 guiltige Daten enthalt), CFG2Q_MULTI_MASTER[X] (X = 1-7), CFG2Q_ALWAYS_MASK und
CFG2Q_NEVER_MASK.

[0369] Wie Fig. 26A zeigt, umfasst der Masken-Anforderungs-Erzeugungs-Block 332 einen 2:1 Multiplexer
320 zum Erzeugen des Signals Q2A_MASK_REQ[X] (X = 1-7). Der 1-Eingang des Multiplexers 320 ist mit

54/215

DE 697 21 381 T2 2004.01.15

dem Ausgang eines ODER-Gates 322 verbunden und der 0-Eingang ist auf niedrig gesetzt. Der Auswahl-Ein-
gang des Multiplexers 320 wird durch ein Signal MASK_MUXSEL angesteuert. Ein Eingang des ODER-Gates
322 ist mit dem Ausgang eines NOR-Gates 324 verbunden, der ein Signal CFG2Q_MULTI_MASTER[X] auf-
nimmt (anzeigend einen Multi-Threaded-Master), und der andere Eingang empfangt ein Signal
CFG2Q_NEVER_MASK (ein Konfigurations-Bit, das anzeigt, dass die Anforderungs-Zeile nicht maskiert wer-
den sollte, falls ein Multi-Threaded-Master erfasst ist). Der andere Eingang des ODER-Gates 322 empfangt
ein Signal CFG2Q_ALWAYS_MASK, das ein Konfigurations-Bit ist, das anzeigt, dass das entsprechende Mas-
ken-Bit Q2A_MASK_REQ[X] immer maskiert werden sollte, falls das Signal MUXSEL auf hoch gesetzt ist. Das
Signal MASK_MUXSEL wird auf hoch gesetzt, falls die Anforderung von dem sekundaren Bus-Master nicht zu
Daten vorliegt, die bereits in dem Warteschlangen-Block 127 existieren, d. h. die Anforderung muss zu dem
primaren PCI-Bus 24 (ibertragen werden. Demzufolge wird, zu jedem Zeitpunkt, zu dem eine Anforderung von
einer Vorrichtung auf dem sekundaren PCI-Bus 32 eingangsseitig zu dem primaren PCI-Bus 24 (ibertragen
wird, eine Prifung in Bezug auf Bits CFG2Q_MULTI_MASTER([7:1] durchgefiuhrt werden, um zu bestimmen,
ob ein Multi-Threaded-Master erfasst worden ist.

[0370] Die Maskierung von Anforderungen kann durch Einstellen der geeigneten Bits in den Konfigurati-
ons-Registern 125 Gibergangen werden. Die verfligbaren Moden umfassen: 1) normaler Mode, in dem die An-
forderungs-Maskierung freigegeben ist, mit der Ausnahme, falls ein Multi-Threaded-Master
(CFG2Q_NEVER_MASK = 0, CFG2Q_ALWAYS_MASK = 0), 2) immer ein Maskierungs-Mode, in dem Anfor-
derungen von erneut versuchenden Mastern maskiert werden, gerade wenn Multi-Threaded (CFG2Q_
ALWAYS_MASK = 1) vorliegt, und 3) niemals Maskierungs-Mode, in dem die Anforderungen niemals maskiert
sind (CFG2Q_NEVER_MASK =1, CFG2Q_ALWAYS_MASKED = 0).

ERWEITERUNGS-KARTEN-EINSETZEN UND ENTFERNEN VON VERBINDUNGS-EXPANSIONS-KARTEN

[0371] Wiein den Fig. 1 und 27A dargestellt ist, besitzen die zwei Expansionskasten 30a und 30b, von einem
gemeinsamen Design 30, jeweils die sechs Hot-Plug-Schlitze 36 (36a—f), in denen die herkémmlichen Erwei-
terungskarten 807 eingesetzt und entfernt werden kénnen (Hot-Plugged), wahrend das Computersystem 10
hochgefahren bzw. eingeschaltet verbleibt. Die sechs mechanischen Hebel 802 werden dazu verwendet, se-
lektiv die Expansionskarten 807 zu sichern (wenn geschlossen, oder verriegelt, ist), die in die entsprechenden
Hot-Plug-Schlitze 36 eingesetzt werden. Zu Zwecken eines Entfernens oder eines Einsetzens der Expansions-
karten 807 in einen der Schlitze 36 muss der entsprechende Hebel 802 gedffnet werden, oder entriegelt wer-
den, und so lange wie der Hebel 802 gedffnet ist, verbleibt der entsprechende Schlitz 36 abgeschaltet.

[0372] Wenn der Hebel 802, der die Expansionskarte 807 an seinem Schlitz 36 sichert, gedffnet ist, erfasst
das Computersystem 10 dieses Auftreten und fahrt die Karte 802 herunter (und den entsprechenden Schlitz
36), bevor die Karte 807 von deren Schlitz bzw. Einsteckplatz 36 entfernt werden kann. Schlitze bzw. Einsteck-
platze 36, die heruntergefahren sind, dhnlich anderen Schlitzen 36, die keine Karten 807 halten, verbleiben
heruntergefahren bzw. abgeschaltet, bis eine Software des Computersystems 10 selektiv die Schlitze bzw. Ein-
steckplatze 36 hochfahrt.

[0373] Die Karte 46, eingesetztin den Kartenschlitz 34, besitzt den Briicken-Chip 48, der den Sicherungs-Sta-
tus (offen oder geschlossen) der Hebel 802 tiberwacht und irgendeine Karte 807 (und einen entsprechenden
Schlitz 36) herunterfahrt, der nicht durch seinen Hebel 802 gesichert ist. Eine Software des Computersystems
10 kann auch selektiv irgendeinen der Schlitze 36 herunterfahren.

[0374] Die Karten 807 werden durch eine Hochfahrsequenz hochgefahren und durch eine Herunterfahrse-
quenz heruntergefahren. In der Hochfahrsequenz (the power up sequence) wird Energie zuerst zu der Karte
807 zugeflhrt, die hochgefahren werden soll, und danach wird ein PCI-Takt-Signal (von dem PCI-Bus 32) zu
der Karte 807 geliefert, die hochgefahren wird. Verbleibende PCI-Bus-Signal-Leitungen der Karte 807 werden
dann mit entsprechenden Leitungen des PCI-Busses 32 verbunden. Zuletzt wird das Reset-Signal fur die Karte
807, die hochgefahren wird, weggenommen, was die Karte 807 auf3erhalb eines Reset-Zustands bringt.
[0375] Die Hochfahrsequenz ermoglicht der Schaltung der Karte 807, dass sie hochgefahren wird, um voll-
standig funktional mit dem PCI-Takt-Signal zu werden, bevor die verbleibenden PCI-Bus-Signale geliefert wer-
den. Wenn das Taktsignal und die verbleibenden PCI-Bus-Signale mit der Karte 807 verbunden werden und
bevor die Karte 807 zurtickgesetzt wird, besitzt der Briicken-Chip 48 eine Kontrolle des PCI-Busses 32. Da der
Briicken-Chip 48 eine Kontrolle tber den PCI-Bus 32 wahrend dieser Zeiten besitzt, storen potentielle Defekte
auf dem PCI-Bus 32 von der Power-up-Sequenz nicht die Operationen der Karten 807, die hochgefahren sind.
[0376] In der Herunterfahr- bzw. Power-Down-Sequenz wird die Karte 807, die heruntergefahren werden soll,
zuerst zurtickgesetzt. Als nachstes werden die PCI-Bus-Signale, ohne das PCI-Takt-Signal, von der Karte 807
entfernt. Der Bruicken-Chip 48 unterbricht darauffolgend das PCI-Takt-Signal von der Karte 807, bevor Energie
von der Karte 807 entfernt wird. Die Herunterfahr- bzw. Power-Down-Sequenz minimiert die Propagation von
falschen Signalen von der Karte 807, die heruntergefahren werden soll, zu dem Bus 32, da die Schaltung auf
der Karte 807 deren vollstandige Funktion beibehalt, bis die PCI-Bus-Signal-Leitungen entfernt sind.

55/215

DE 697 21 381 T2 2004.01.15

[0377] Wenn das PCI-Taktsignal und die verbleibenden PCI-Bus-Signale unterbrochen werden, und wenn die
Karte 807 zuriickgesetzt bzw. in einen Reset-Zustand versetzt wird, besitzt der Briicken-Chip 48 eine Kontrolle
des PCI-Busses 32. Da der Briicken-Chip 48 eine Kontrolle tber den PCI-Bus 32 wahrend dieser Zeitpunkte
besitzt, storen potentielle Defekte auf dem PCI-Bus 32 von der Power-Down- bzw. Herunterfahr-Sequenz nicht
die Operationen der Karten 807, die sie hochgefahren haben.

[0378] Der Briicken-Chip 48 umfasst die Seriell-Eingangs/Ausgangs-(SIO)-Schaltung 50, die die Hochfahr-
und Herunterfahr-Sequenzen der Schlitze bzw. Einsteckplatze 36 uUber vierundzwanzig Steuersignale
POUT[39:16] steuert. Die Steuersignale POUT[39:16] sind ein Untersatz von vierzig Ausgangs-Steuersignalen
POUT[39:0], erzeugt durch die SIO-Schaltung 50. Die Steuersignale POUT[39:16] sind verriegelte Versionen
von Schlitz-Bus-Freigabe-Signalen =~ BUSEN#[5:0], Schlitz-Energie-Freigabe-Signalen = PWREN[5:0],
Schlitz-Takt-Freigabe-Signalen CLKEN#[5:0] und Schlitz-Reset-Signalen RST#[5:0], alle internen Signale der
S10-Schaltung 50, wie weiter nachfolgend beschrieben ist. Die Steuersignale POUT[39:0] und deren Bezie-
hung zu den Signalen BUSEN#[5:0], PWREN[5:0], CLKEN#[5:0] und RST#[5:0] sind in der nachfolgenden Ta-
belle beschrieben:

PARALLEL-AUSGANGS-STEUER-SIGNALE (POUT[39:01])

SIGNAL- , ZUGEORDNETE WENN EIN
POSITION BESCHREIBUNG STEUER- SIGNAL AKTIV
SIGNALE IST
0-11 Steuersignale fur LEDs 54
12-15 Ausgangssignale fur aligemeine Zwecke GPOA[3:0]
16 Reset-Signal fir Schlitz 36a (RST#[0] niedrig
17 Reset-Signal fur Schiitz 36b RST#[1] niedrig
18 Reset-Signal fir Schiitz 36¢ (RST#[2] niedrig
19 Reset-Signal fur Schiitz 36d RST#[3] niedrig
20 Reset-Signal fur Schlitz 36e (RST#[4] niedrig
21 Reset-Signal fur Schlitz 36f RST#[5] niedrig
22 Takt-Freigabe-Signal fur Schlitz 36a (CLKEN#[0] niedrig
23 Takt-Freigabe-Signal fur Schlitz 36b (CLKEN#[1] niedrig
24 Takt-Freigabe-Signal fur Schiitz 36¢ (CLKEN#[2] niedrig
25 Takt-Freigabe-Signal fur Schlitz 36d (CLKEN#[3] niedrig
26 Takt-Freigabe-Signal fur Schlitz 36e (CLKEN#[4] niedrig
27 Takt-Freigabe-Signal fur Schlitz 36f (CLKEN#[5] niedrig
28 Bus-Freigabe-Signal fur Schlitz 36a (BUSEN#[0] niedrig
29 Bus-Freigabe-Signal fur Schlitz 36b (BUSEN#[1] niedrig
30 Bus-Freigabe-Signal fur Schiitz 36¢ (BUSEN#[2] niedrig
31 Bus-Freigabe-Signal fur Schlitz 36d (BUSEN#[3] niedrig
32 Bus-Freigabe-Signal fur Schlitz 36e (BUSEN#{4] niedrig
33 Bus-Freigabe-Signal fiir Schlitz 36f (BUSEN#[5] niedrig
34 Power-Freigabe-Signal fur Schlitz 36a (PWREN[0] hoch
35 Power-Freigabe-Signal fur Schlitz 36b (PWREN[1] hoch
36 Power-Freigabe-Signal fur Schlitz 36¢ (PWREN[2] hoch
37 Power-Freigabe-Signal fur Schlitz 36d (PWREN(3] hoch
38 Power-Freigabe-Signal fur Schlitz 36e (PWRENI[4] hoch
39 Power-Freigabe-Signal fur Schlitz 36f (PWREN[5] hoch

56/215

DE 697 21 381 T2 2004.01.15

[0379] Wie in den Fig. 2 und 28 dargestellt ist, besitzt jeder Hot-Plug-Schlitz 36 die zugeordnete Um-
schalt-Schaltung 41 zum Verbinden und Trennen des Schlitzes 36 mit und von dem PCI-Bus 32. Die Um-
schalt-Schaltung 41 fir jeden Schlitz 36 empfangt vier der Steuersignale POUT[39:16]. Als ein Beispiel wird,
fur den Schlitz 36a, wenn das Steuersignal POUT[28] aufgestellt ist, oder niedrig ist, der Schlitz 36a mit den
Bus-Signal-Leitungen des PCI-Busses 32 durch eine Umschalt-Schaltung 47 verbunden. Wenn das Steuersi-
gnal POUT[28] weggenommen ist, oder hoch ist, wird der Schlitz 36a von den Bus-Signal-Leitungen des
PCI-Busses 32 getrennt.

[0380] Wenn das Steuersignal POUT[22] aufgestellt ist, oder niedrig ist, wird der Schlitz 36a mit einem
PCI-Takt-Signal CLK Uber eine Umschalt-Schaltung 43 verbunden. Wenn das Steuersignal POUT[22] wegge-
nommen ist, oder hoch ist, wird der Schlitz 36a von dem Taktsignal CLK getrennt.

[0381] Wenn das Steuersignal POUT[34] aufgestellt ist, oder hoch ist, wird der Schlitz 36a mit einem Kar-
ten-Spannungs-Versorgungs-Pegel V4 liber eine Umschalt-Schaltung 45 verbunden. Wenn das Steuersignal
POUT[34] weggenommen ist, oder niedrig ist, wird der Schlitz 36a von dem Karten-Spannungs-Versor-
gungs-Pegel V44 getrennt.

[0382] Wenn das Steuersignal POUT[16] aufgestellt ist oder niedrig ist, wird der Schlitz 36a zuriickgesetzt,
und wenn das Steuersignal POUT[16] weggenommen ist, oder hoch ist, gelangt der Schlitz 36a aus seinem
Reset-Zustand.

[0383] Wiein Fig. 2 zu sehen ist, kann die SIO-Schaltung 50 selektiv bis zu einhundertachtundzwanzig (sech-
zehn Bytes) von verriegelten Status-Signalen STATUS[127:0], geliefert durch den Erweiterungskasten 30,
Uberwachen. Die Status-Signale STATUS[127:0] bilden einen ,Snapshot" von ausgewahlten Zustanden des
Erweiterungskastens 30. Die Status-Signale STATUS[127:0] umfassen sechs Status-Signale STATUS[5:0], die
den Sicherungs-Status (geoffnet oder geschlossen) jedes der Hebel 802 anzeigen. Die SIO-Schaltung 50
Uiberwacht die Status-Signale STATUS[31:0] hinsichtlich Anderungen in deren logischen Spannungspegeln.
Die SIO-Schaltung 50 verschiebt seriell die Status-Signale STATUS[127:32] in die SIO-Schaltung 50 hinein,
wenn durch die CPU 14 angewiesen ist, dies so vorzunehmen.

[0384] Die SIO-Schaltung 50 empfangt seriell die Status-Signale STATUS[127:0], das am wenigsten signifi-
kanteste Signal zuerst, und zwar Uber ein serielles Daten-Signal NEW_CSID. Das Daten-Signal NEW_CSID
wird durch den seriellen Ausgang des parallelen Eingangs-Verschieberegisters 82 mit zweiunddreifig Bits, an-
geordnet auf einer Leiterplatte des Erweiterungskastens 30, zusammen mit den Schlitzen bzw. Einsteckplat-
zen 36, geliefert.

[0385] Das Register 82 empfangt, tGber dessen parallele Eingdnge, vierundzwanzig Parallel-Status-Signale
PIN[23:0], vier zugeordnet zu jedem der Hot-Plug-Schlitze 36, die in den zweiunddreilig am wenigsten signi-
fikanten Status-Signalen STATUS[31:0] umfasst sind. Wenn sich der Status, angezeigt durch eines oder meh-
rere der Status-Signale STA-TUS[31:0], andert (der logische Spannungs-Pegel andert sich), erzeugt der Bru-
cken-Chip 48 eine Unterbrechungs-Anforderung zu der CPU 14 durch Aufstellen, oder Ansteuern auf niedrig,
eines seriellen Unterbrechungs-Anforderungs-Signals S| _INTR#, das uber einen Unterbrechungs-Emp-
fangs-Block 132 empfangen wird. Die Status-Signale PIN[23:0] umfassen zwei PCl-Karten-Prasenz-Signale
(PRSNT1# und PRSNT2#), zugeordnet zu jedem Schilitz 36.

[0386] Sechs Status-Signale PIN[5:0], entsprechend zu deren verriegelten Versionen, Status-Signale STA-
TUS[5:0], zeigen den Sicherungs- oder Eingriffs-Status (offen oder geschlossen) jedes der Hebel 802 an.
Sechs Gleit-Schalter 805 (Fig. 27A-27C) werden durch die Bewegung deren entsprechender Hebel 802 beta-
tigt und werden dazu verwendet, elektrisch den Sicherungs-Status des entsprechenden Hebels 802 anzuzei-
gen. Jeder Schalter 805 besitzt ein erstes Terminal, verbunden mit Masse, und ein zweites Terminal, das das
entsprechende eine der Status-Signale PIN[5:0] zufihrt. Das zweite Terminal ist mit einem Versorgungs-Span-
nungs-Pegel V, tber einen von sechs Widerstanden 801 verbunden.

[0387] Falls sich einer der Hebel 802 6ffnet und die Karte 807, gesichert durch den Hebel 802, entsichert wird,
wird das entsprechende eine der Status-Signale PIN[5:0] aufgestellt, oder auf hoch angesteuert. Als ein Bei-
spiel wird, fir den Schlitz 36a, das Status-Signal PIN[0] weggenommen oder auf niedrig angesteuert, wenn der
entsprechende Hebel 802 geschlossen ist. Wenn der Hebel 802 fiir den Schlitz 36a gedffnet ist, wird das Sta-
tus-Signal PIN[0] aufgestellt, oder auf hoch angesteuert.

[0388] Das Register 82 empfangt auch eine serielle Datenfolge von verriegelten Status-Signalen STA-
TUS[127:32], die keine Unterbrechungen verursachen, wenn sich der logische Spannungs-Pegel eines der Si-
gnale STATUS[127:32] andert. Die Status-Signale STATUS[127:32] werden durch das Verschiebe-Register 52
mit sechzehn Bits, angeordnet auf der Leiterplatte des Expansionskastens 30, mit den Schlitzen 36, gebildet.
Das Verschiebe-Register 52 empfangt Status-Signale an seinen parallelen Eingdngen und verriegelt die Sta-
tus-Signale STATUS[127:32], wenn durch die SIO-Schaltung 50 instruiert ist, dies so vorzunehmen. Das Ver-
schiebe-Register 52 serialisiert die Status-Signale STATUS[127:32] und liefert die Signale STATUS[127:32] zu
dem seriellen Eingang des Registers 82 (iber ein serielles Daten-Signal CSID_|.

[0389] Wenn durch die SIO-Schaltung 50 instruiert ist, verriegelt das Register 82 Status-Signale PIN[23:0],
bildet die Status-Signale STATUS[31:0], liefert die Status-Signale STATUS[31:0] und liefert ein Byte oder mehr

571215

DE 697 21 381 T2 2004.01.15

der Status-Signale STATUS[127:32] (wenn dies durch die CPU 14 angefordert ist), in einem am wenigsten si-
gnifikanten Signal einer ersten Art, zu der SIO-Schaltung 50, und zwar Uber das serielle Daten-Signal
NEW_CSID. Die Status-Signale STATUS[127:0] werden durch die nachfolgende Tabelle beschrieben:

[0390]

STATUS[127:0]

BIT BESCHREIBUNG

0 Status-Signal von Hebel 802 fiir Schlitz 36a (PIN[0])

1 Status-Signal von Hebel 802 fiir Schlitz 36b (PIN[1])

2 Status-Signal von Hebel 802 fiir Schlitz 36¢ (PIN[2])

3 Status-Signal von Hebel 802 fiir Schlitz 36d (PIN[3])

4 Status-Signal von Hebel 802 fiir Schlitz 36e (PIN[4])

5 Status-Signal von Hebel 802 fiir Schlitz 36f (PIN[5])

6 reserviert flr Status-Signal von Hebel 802 fiir einen zusatzlichen
Hot-Plug-Schlitz

7 reserviert flr Status-Signal von Hebel 802 fiir einen zusatzlichen
Hot-Plug-Schlitz

8 PRSNT2# Signal fur Schlitz 36a (PIN[6])

9 PRSNT2# Signal fur Schlitz 36b (PIN[7])

10 PRSNT2# Signal furr Schlitz 36¢ (PIN[8])

11 PRSNT2# Signal fiir Schlitz 36d (PIN[9])

12 PRSNT2# Signal fur Schlitz 36e (PIN[10])

13 PRSNT2# Signal fir Schlitz 36f (PIN[11])

14 reserviert fir PRSNT#2 Signal fir einen zusatzlichen Hot-Plug-Schlitz 36

15 reserviert fir PRSNT#2 Signal fir einen zusatzlichen Hot-Plug-Schlitz 36

16 PRSNT1# Signal fur Schlitz 36a (PIN[12])

17 PRSNT1# Signal fur Schlitz 36b (PIN[13])

18 PRSNT1# Signal furr Schlitz 36c (PIN[14])

19 PRSNT1# Signal fur Schlitz 36d (PIN[15])

20 PRSNT1# Signal fur Schlitz 36e (PIN[16])

21 PRSNT1# Signal fiir Schlitz 36f (PIN[17])

22 reserviert fir PRSNT#1 Signal fir einen zusatzlichen Hot-Plug-Schlitz 36

23 reserviert fir PRSNT#1 Signal fir einen zusatzlichen Hot-Plug-Schlitz 36

24 Power-Fehler-Status fir Schlitz 36a (PIN[18))

25 Power-Fehler-Status fur Schlitz 36b (PIN[19])

26 Power-Fehler-Status flir Schlitz 36¢ (PIN[20])

27 Power-Fehler-Status fur Schlitz 36d (PIN[21])

28 Power-Fehler-Status flr Schlitz 36e (PIN[22])

29 Power-Fehler-Status fur Schlitz 36f (PIN[23])

30 reserviert fir Power-Fehler-Status fiur zusatzlichen Hot-Plug-Schlitz 36

31 reserviert fir Power-Fehler-Status fur zusatzlichen Hot-Plug-Schlitz 36

32-127 Status-Signale, die keine nterbrechungs-Anforderungen verursachen, wenn

sich deren Status andert

[0391] Wie in den Fig. 2 und 30 dargestellt ist, verriegelt, wenn eine SIO-Schaltung 50 ein Register-Lade-Si-
gnal CSIL_O_ aufstellt, oder auf niedrig ansteuert, das Schiebe-Register 52 die Status-Signale STA-
TUS[127:32] und das Schiebe-Register 82 verriegelt die Status-Signale STATUS[31:0]. Wenn die SIO-Schal-
tung 50 das Signal CSIL_O_ wegnimmt, oder auf hoch ansteuert, verschieben beide Register 52 und 82 seriell
deren Daten zu der SIO-Schaltung 50 an der positiven Flanke des Taktsignals CSIC_O, geliefert durch die
S10-Schaltung 50. Das Taktsignal CSIC_O wird zu der und auf einem Viertel der Frequenz des PCI-Taktsignals
CLK synchronisiert.

[0392] Wie in Fig. 29 dargestellt ist, verwendet, zu Zwecken einer Uberwachung, oder fiir ein Abtasten, der
Status-Signale STATUS[31:0], die SIO-Schaltung 50 ein 32-Bit-Unterbrechungs-Register 800, dessen Bit-Po-
sitionen den Signalen STATUS [31:0] entsprechen. Die SIO-Schaltung 50 aktualisiert die Bits des Unterbre-
chungs-Registers 800, um die entsprechenden Status-Signale STATUS[31:0] anzugleichen, die entprellt (de-
bounced) worden sind, wie weiter nachfolgend beschrieben ist. Zwei Status-Signale STATUS[7:6] werden fur
zuséatzliche Hot-Plug-Schlitze 36 reserviert, und das siebte und achte, signifikanteste Bit des Unterbre-
chungs-Registers 800 werden auch fur die zusatzlichen Schlitze 36 reserviert. Das Unterbrechungs-Register
800 ist ein Teil eines Register-Logik-Blocks 808 der SIO-Schaltung 50, die mit dem PCI-Bus 32 gekoppelt ist.

58/215

DE 697 21 381 T2 2004.01.15

[0393] Eine serielle Abtast-Eingangs-Logik 804 der SIO-Schaltung 50 tastet sequenziell, oder Uberwacht, die
Status-Signale STATUS[31:0], das am wenigsten signifikante Signal zuerst, hinsichtlich Anderungen, wie dies
durch Ubergéange in deren logischen Spannungs-Pegeln angezeigt ist. Falls sich der Status von einem oder
mehr der Status-Signale STATUS[5:0], zugeordnet den Hebeln 802, andert, tritt die Seriell-Abtast-Ein-
gangs-Logik 804 in einen langsamen Abtast-Mode ein, so dass die Status-Signale STATUS[5:0] zweiunddrei-
Rigmal innerhalb eines vorbestimmten Entprell- bzw. Debounce-Zeit-Intervalls abgetastet werden. Falls sich
eines oder mehrere der Status-Signale STATUS[5:0] andert, aktualisiert die serielle Abtast-Eingangs-Logik
804 das Unterbrechungsregister 800 (und stellt das serielle Unterbrechungs-Signal SI_INTR# auf), falls das
geanderte Status-Signal STATUS[5:0] auf demselben, logischen Spannungsniveau fiir zumindest ein vorbe-
stimmtes Entprell-Zeit-Intervall verbleibt. Die Seriell-Abtast-Eingangs-Logik 804 ist mit programmierbaren Zeit-
gebern 806 gekoppelt, die das Ende des Entprell-Verzégerungs-Intervalls erzeugen und anzeigen, initiiert
durch die Seriell-Abtast-Logik 804. Unter Fordern des Status, stabil fir die Entprell-Zeit zu bleiben, minimiert
das Intervall das unbeabsichtigte Power-Down von einem der Hot-Plug-Schlitze 36 aufgrund eines falschen
Werts (d. h. eines ,Defekts"), angezeigt durch eines der Status-Signale STATUS[5:0]. Wenn alle der Status-Si-
gnale STATUS[5:0] auf demselben, logischen Spannungspegel fir mindestens das Entprell-Zeit-Intervall ver-
bleiben, dann schreitet die Seriell-Abtast-Eingangs-Logik 804 fort, um noch einmal erneut alle zweiunddreilig
Status-Signale STATUS[31:0] in dem schnelleren Abtast-Mode abzutasten.

[0394] Falls die Seriell-Abtast-Eingangs-Logik 804 eine Anderung in einem der Status-Signale STATUS[31:6]
erfasst, instruiert die Seriell-Abtast-Eingangs-Logik 804 die Zeitgeber 806, ein anderes Debounce- bzw. Ent-
prell-Verzdégerungs-Intervall zu messen, stellt darauf das Seriell-Unterbrechungs-Signal SI_INTR# auf, aktua-
lisiert das Unterbrechungs-Register 800 mit den Signalen STATUS[31:6], die sich geandert haben, und igno-
riert weitere Anderungen in den Status-Signalen STATUS[31:6], bis das Entprell-Zeit-Intervall ablauft. Nach
Ablaufen des Entprell-Zeit-Intervalls schreitet die Seriell-Abtast-Eingangs-Logik 804 fort, um Anderungen in
den zweiunddreif3ig Status-Signalen STATUS[31:0] zu erkennen.

[0395] Wenn das Seriell-Unterbrechungs-Signal SI_INTR# aufgestellt ist, liest die CPU 14 darauffolgend das
Unterbrechungs-Register 800, bestimmt, welche (es kbnnen mehr als eins sein) Status-Signale STATUS[3:0]
die Unterbrechung verursachten, und nimmt das Seriell-Unterbrechungs-Signal SI_INTR# durch Schreiben ei-
ner ,1" zu dem Bit oder den Bits des Unterbrechungs-Registers 800, die sich geandert haben, weg.

[0396] Die CPU 14 kann selektiv Unterbrechungs-Anforderungen, verursacht durch die Status-Signale STA-
TUS[31:0], durch Schreiben einer ,1" zu einem entsprechenden Bit eines Unterbrechungs-Maskierungs-Re-
gisters 810 mit zweiunddreif3ig Bits maskieren. Die CPU 14 kann auch selektiv irgendein Byte der Status-Sig-
nale STATUS[47:0] durch Schreiben einer Byte-Zahl des ausgewahlten Bytes zu einem Seriell-Ein-
gangs-Byte-Register 812 lesen. Die SIO-Schaltung 50 Uibertragt dann das erwiinschte Byte in ein Seriell-Da-
ten-Register 815 hinein.

[0397] Zum Beispiel schreibt, um das dreiigste Byte (Byte-Zahl zwei) der Status-Signale STATUS[23:16] zu
lesen, die CPU 14 eine ,2" in das Seriell-Eingangs-Byte-Register 812. Die Seriell-Abtast-Eingangs-Logik 804
verschiebt dann seriell Byte zwei der Status-Signale STATUS[23:16] in das Seriell-Daten-Register 815 hinein.
Ein Busy-Status-Bit BS des Seriell-Eingangs-Byte-Registers 812 ist gleich zu ,,1", wenn die CPU 14 zu Anfang
die erwlinschte Byte-Zahl zu dem Seriell-Eingangs-Byte-Register 812 schreibt. Das Bit BS wird durch die
S10-Schaltung 50 geldscht, nachdem das angeforderte Byte in das Seriell-Daten-Register 815 hinein verscho-
ben worden ist.

[0398] Die CPU 14 kann einen der Schlitze 36 durch Schreiben einer ,1" zu einem entsprechenden Bit eines
Schlitz-Freigabe-Registers 817 hochfahren und den Schlitz 36 durch Schreiben einer ,0" zu diesem Bit sper-
ren. Weiterhin kann die CPU 14 einen der Schlitze 36 durch Schreiben einer ,1" zu einem entsprechenden Bit
eines Schlitz-Reset-Registers 819 zurlicksetzen. Die Inhalte der Schlitz-Freigabe- 817 und der Schlitz-Re-
set-819 Register sind durch Signale SLOT_EN[5:0] und SLOT_RST_[5:0] jeweils dargestellt.

[0399] Um die Anforderung zu initiieren, angezeigt durch das Schlitz-Freigabe- 817 und Reset- 819 Register,
zu initiileren, schreibt die CPU 14 eine ,1" zu einem SO-Bit eines Steuer-Registers 814. Nachdem das SO-Bit
aufgestellt ist (was ein GO_UPDATE Signal aufstellt, oder auf hoch ansteuert), initiiert die SIO-Schaltung 50
die erforderlichen Powerdown- und/oder Power-up-Sequenzen und steuert sie.

[0400] Die Seriell-Abtast-Eingangs-Logik 804 ist mit einer EIN/AUS-Steuer-Logik 820 verbunden, die die Po-
wer-up- und Power-down-Sequenzen steuert. Die EIN/AUS-Steuer-Logik 820 liefert die Signale BUSEN#[5:0],
CLKEN#[5:0], RST#[5:0] und PWREN[5:0] zu einer Seriell-Ausgangs-Logik 824.

[0401] Jede Power-up- und Power-down-Sequenz umfasst vier Verschiebe-Phasen, wahrend denen ein an-
derer Schritt der Power-down- oder Power-up-Sequenz durchgefihrt wird. Wahrend jeder Verschiebe-Phase
instruiert die EIN/AUS-Steuer-Logik 820 die Seriell-Ausgangs-Logik 824, die Steuer-Signale BUSEN#[5:0],
CLKEN#[5:0], RST#[5:0] und PWRENT[:0] zu kombinieren; diese Signale zu verriegeln; und liefert seriell diese
Signale (Uber ein serielles Daten-Signal CSOD_O) zu dem seriellen Eingang eines Ausgangs-Verschiebe-Re-
gisters 80. An dem Ende jeder Verschiebe-Phase instruiert die EIN/AUS-Steuer-Logik 820 das Verschiebe-Re-
gister 80, die Steuersignale POUT[35:12] zu aktualisieren.

59/215

DE 697 21 381 T2 2004.01.15

[0402] Die EIN/AUS-Steuer-Logik 820 wird auch schnittstellenmafig mit der Register-Logik 808 und einer
Steuer-Logik 822 fiir eine Licht emittierende Diode (Light Emitting Diode — LED) verbunden. Die LED-Steu-
er-Logik 122 steuert den Ein/Aus-Status der sechs LEDs 54, die visuell anzeigen, ob die entsprechenden He-
bel 802 verriegelt sind oder entriegelt sind. Die LEDs 54 kénnen so programmiert werden, um dann zu blinken,
wenn sie eingeschaltet sind, und zwar tber LED-Steuerregister (nicht dargestellt) der Register-Logik 808.
[0403] Wie in Fig. 31A dargestellt ist, umfasst die Seriell-Abtast-Eingangs-Logik 804 eine Abtast-Zu-
stand-Maschine 840, die das Abtasten der Status-Signale STATUS[31:0] hinsichtlich Anderungen steuert und
das Verschieben eines ausgewahlten Bytes der Status-Signale STATUS[47:0] in das Seriell-Ein-
gangs-Byte-Register 815 hinein steuert.

[0404] Die Abtast-Zustand-Maschine 840 wird an der negativen Flanke eines Takt-Signals DIV2CLK getaktet,
das zu einem PCI-Taktsignal CLK synchronisiert ist, und von einer Hélfte der Frequenz des PCI-Taktsignals
CLKist. Die Last- und Taktsignale, CSIL_O_und CSIC_O, jeweils, werden durch die Abtast-Zustand-Maschine
840 geliefert. Das Taktsignal wird, wenn es freigegeben wird, zu dem Taktsignal CSIC_O synchronisiert.
[0405] Ein Bit/Byte-Zahler 841 zeigt, Uber ein ZweiunddreiRig-Bit-Signal BIT_ACTIVE[31:0] an, welches Bit
der Status-Signale STATUS[3:0] momentan durch das Seriell-Daten-Signal NEW_CSID reprasentiert wird.
Das aufgestellte Bit des Signals BIT_ACTIVE[31:0] besitzt dieselbe Bit-Position wie das Status-Signal STA-
TUS[31:0], dargestellt durch das Daten-Signal NEW_CSID.

[0406] Der Zahler 841 liefert auch ein Drei-Bit-Signal BIT[2:0], das darstellt, welches Bit des momentanen
Bytes der Status-Signale STATUS[31:0] momentan durch die Abtast-Zustand-Maschine 840 abgetastet wird.
Der Zahler 841 wird an der negativen Flanke eines Signals SHIFT_ENABLE getaktet. Die Ausgange des Zah-
lers 841 werden zurlickgesetzt, oder geldscht, wenn der Ausgang eines UND-Gates 842, verbunden mit dem
Lésch-Eingang des Zahlers 840, negiert wird.

[0407] Die Abtast-Zustand-Maschine 840 liefert ein Signal SCAN_IN_IDLE, das, wenn es aufgestellt wird,
oder auf hoch gesetzt wird, anzeigt, dass sich die Abtast-Zustand-Maschine 840 in einem IDLE Zustand befin-
det, und momentan nicht irgendeines der Status-Signale STATUS[127:0] abtastet. Das Signal SCAN_IN_IDLE
wird ansonsten weggenommen.

[0408] Das Signal SCAN_IN_IDLE wird zu einem Eingang des UND Gates 842 geliefert. Der andere Eingang
des UND-Gates 842 ist mit dem Ausgang eines ODER-Gates 843 verbunden. Ein Eingang des ODER-Gates
843 empfangt ein invertiertes HOLD_OFF Sinal, und der andere Eingang des ODER-Gates 843 empfangt ein
Signal GETTING_BYTE.

[0409] Das Signal HOLD_OFF zeigt, wenn es aufgestellt ist, oder auf hoch angesteuert ist, an, dass eine An-
derung in dem einen der Status-Signale STATUS[5:0] erfasst worden ist, und die Seriell-Abtast-Logik 804 in
den Langsam-Abtast-Mode eingetreten ist. In diesem Langsam-Abtast-Mode bzw. Slow-Scan-Mode wartet die
Seriell-Abtast-Eingangs-Logik 804 auf ein vorbestimmtes Langsam-Abtast-Intervall, bevor die Status-Signale
STATUS[31:0] erneut weitergefiihrt werden. Die Seriell-Abtast-Eingangs-Logik 804 zahlt die Zahl von Malen,
fur die die Seriell-Abtast-Signale STATUS[5:0] wahrend des Langsam-Abtast-Modes abgetastet werden, und
verwendet diese Zahlung, um zu bestimmen, wenn eines von dem Status-Signal STATUS[5:0] unverandert fur
das Entprell-Verzégerungs-Intervall verblieb, wie weiterhin nachfolgend beschrieben werden wird.

[0410] Deshalb werden, wenn sich die Abtast-Zustand-Maschine 840 in dem IDLE Zustand befindet und ent-
weder das HOLD_OFF Signal weggenommen ist oder sich die Abtast-Zustand-Maschine 840 beim Lesen ei-
nes ausgewahlten Bytes (ausgewahlt durch die CPU 14) der Status-Signale STATUS[47:0] befindet, alle Aus-
gange des Zahlers 841 geldscht oder gleich zu Null gesetzt.

[0411] Das Signal SHIFT_ENABLE wird durch den Ausgang eines UND-Gates 844 geliefert. Ein Eingang des
UND-Gates 844 nimmt das Takt-Signal CSIC_O auf. Ein anderer Eingang des UND-Gates 844 nimmt ein Si-
gnal DIV2CLK# auf. Das Signal DIV2CLK# wird aufgestellt, oder auf niedrig angesteuert, an der negativen
Flanke des Signals CLKDIV4. Der dritte Eingang des UND-Gates 844 empfangt ein Signal
SCAN_IN_PROGRESS, das, wenn es aufgestellt wird, oder auf hoch angesteuert ist, anzeigt, dass die Ab-
tast-Zustand-Maschine 840 momentan die Status-Signale STATUS[127:0] abtastet, und das Signal
SCAN_IN_PROGRESS wird ansonsten weggenommen.

[0412] Deshalb wird, wenn die Abtast-Zustand-Maschine 840 nicht die Status-Signale STATUS[127:0] ver-
schiebt, der Zahler 841 gesperrt. Weiterhin wird, wenn freigegeben ist, der Zahler 841 an der negativen Flanke
des Taktsignals DIV2CLK getaktet.

[0413] Das Unterbrechungs-Register 800 empfangt Eingangs-Signale D_INTR_REG[31:0] an deren entspre-
chenden zweiunddreillig Eingangen. Die Last-Freigabe-Eingange des Unterbrechungs-Registers 800 nehmen
entsprechende Last-Freigabe-Signale UPDATE_IRQ[31:0] auf. Das Unterbrechungs-Register 800 wird an der
positiven Flanke des PCI-Taktsignals CLK getaktet.

[0414] Fur die Zwecke, ein Protokoll Uiber die Status-Signale STATUS[5:0] nach jeder Abtastung beizubehal-
ten, liefert ein Mehrfach-Bit, D-Typ-Flip-Flop 836 Status-Signale SCAN_SW][5:0]. Der Ldsch-Eingang des
Flip-Flops 836 nimmt das Reset-Signal RST auf, und das Flip-Flop 836 wird an der positiven Flanke des Takt-
signals CLK getaktet. Der Eingang des Flip-Flops 836 ist mit dem Ausgang eines Mehrfach-Bit-ODER-Gates

60/215

DE 697 21 381 T2 2004.01.15

850 verbunden, das einen Eingang mit dem Ausgang eines Multi-Bit-UND-Gates 846 verbunden und einen
Eingang mit dem Ausgang eines Multi-Bit-UND-Gates 847 verbunden besitzt. Ein Eingang des UND-Gates
846 nimmt sechs Bit-Freigabe-Signale BIT_ENABLE[5:0] auf (nachfolgend beschrieben) und der andere Ein-
gang des UND-Gates 846 nimmt das Seriell-Daten-Signal NEW_CSID auf. Ein Eingang des UND-Gates 847
nimmt invertierte Bit-Freigabe-Signale BIT_ENABLE[5:0] auf, und der andere Eingang des UND-Gates 847
nimmt die Signale SCAN_SW([5:0] auf.

[0415] Nur eines der Bit-Freigabe-Signale BIT_ENABLE[5:0] wird zu einem Zeitpunkt aufgestellt (wenn die
Abtast-Zustand-Maschine 840 abtastet), und das aufgestellte Bit zeigt an, welches eine der entsprechenden
Status-Signale STATUS[31:0] durch das Signal NEW_CSID dargestellt wird. Demzufolge werden, wenn die
Abtast-Zustand-Maschine 840 abtastet, und zwar an jeder positiven Flanke des Taktsignals CLK, die Signale
SCAN_SWI[5:0] aktualisiert.

[0416] Die Bit-Freigabe-Signale BIT_ENABLE[31:0] werden durch den Ausgang eines Mehrfach-Bit-Multiple-
xers 832 geliefert, der die Bits BIT_ACTIVE[31:0] an seinem einen Eingang empfangt. Der Null-Eingang des
Multiplexers 832 empfangt ein ZweiunddreiRig-Bit-Signal, das flr eine logische Null Indikativ ist. Der Aus-
wahl-Eingang des Multiplexers 832 empfangt das Signal SHIFT_ENABLE.

[0417] Zu Zwecken einer Erfassung einer Anderung in den Status-Signalen STATUS[5:0], liefert ein Multi-Bit-,
Exklusiv-Oder-(XOR)-Gate 848 Umschalt-Anderungs-Signale SW_CHG[5:0]. Wenn eines der Signale
SW_CHG[5:0] aufgestellt ist oder hoch ist, anderte sich die logische Spannung des entsprechenden Status-Si-
gnals STATUS[5:0] wahrend aufeinanderfolgender Abtastungen. Ein Eingang des XOR-Gates 848 ist mit dem
Eingang des Flip-Flops 836 verbunden, und der andere Eingang des XOR-Gates 848 empfangt die Signale
SCAN SWI[5:0].

[0418] Wie in Fig. 31 D dargestellt ist, besitzt, zu Zwecken eines Anzeigens, wenn der logische Span-
nungs-Pegel eines ausgewahlten Status-Signals STATUS[5:0] bei einem logischen Spannungs-Pegel fir min-
destens die Dauer des Debounce-Verzégerungs-Intervalls verblieben war, die Abtast-Eingangs-Logik 804
sechs Signale LSWITCH[5:0]. Der nichtinvertierende Eingang eines Flip-Flops 900 vom D-Typ liefert das Sig-
nal LSWITCH[5] an seinem nicht-invertierenden Ausgang. Das Signal LSWITCH[5] wird aufgestellt oder auf
hoch angesteuert, um den vorstehend beschriebenen Zustand anzuzeigen, und wird ansonsten weggenom-
men. Das Flip-Flop 900 wird an der positiven Flanke des Taktsignals CLK getaktet, und der Ldsch-Eingang des
Flip-Flops 900 nimmt das RST-Signal auf.

[0419] Der Eingang des Flip-Flops 900 ist mit dem Ausgang eines Multiplexers 902 verbunden, der ein
D_LSWITCH[5] Signal liefert. Der Auswahl-Eingang des Multiplexers 902 ist mit dem Ausgang eines
UND-Gates 903 verbunden, der ein MAX5 Signal und ein SCAN_END Signal aufnimmt. Das SCAN_END Si-
gnal zeigt, wenn es aufgestellt ist, an, dass die Abtast-Zustand-Maschine 840 deren momentane Abtastung
abgeschlossen hat. Finf Signale (MAX5, MAX4, MAX3, MAX2, MAX1 und MAXO0) zeigen an, ob das entspre-
chende Status-Signal STATUS[5], STATUS[4], STATUS[3], STATUS|[2], STATUS[1] oder STATUSIO], jeweils,
auf demselben, logischen Spannungs-Niveau fir mindestens die Dauer des Debounce-Zeit-Intervalls verblie-
ben ist. Der Null-Eingang des Multiplexers 902 empfangt das Signal LSWITCHI[5], und der eine Eingang des
Multiplexers 902 empfangt das Signal SCAN_SW(/5]. Das Signal SCAN_END wird durch den Ausgang eines
UND-Gates 851 geliefert (Fig. 31B). Das UND-Gate 851 empfangt ein Signal STOP_SCAN und ein Signal
SCAN_DONE. Das Signal STOP_SCAN wird aufgestellt, oder auf hoch angesteuert, wenn Zusténde zum Be-
enden des Abtastens durch die Abtast-Zustand-Maschine 840 vorhanden sind, wie weiter nachfolgend be-
schrieben ist. Das Signal SCAN_END ist eine gepulste Version (fiir einen Zyklus des CLK-Signals) des Signals
STOP_SCAN. Die Signale LSWITCH[4]-LSWITCH[0] und D_LSWITCH[4]-D_LSWITCHI[0] werden in einer
ahnlichen Weise aus den jeweiligen SCAN_SW[4]-SCAN_SWI[0] Signalen und den jeweiligen Signalen
MAX4-MAXO erzeugt.

[0420] Zu Zwecken einer Aktualisierung wird der logische Spannungspegel der Status-Signale STATUS[31:6]
als diese Signale eingetastet, ein Multi-Bit-D-Typ-Flip-Flop 905 (Fig. 31D) liefert sechsundzwanzig Signale
SCAN_NSWI[31:6]. Eines der Signale SCAN_NSW][31:6] wird aufgestellt, oder auf hoch angesteuert, um die-
sen Zustand anzuzeigen, und wird ansonsten weggenommen. Das Flip-Flop 905 wird an der positiven Flanke
des Taktsignals CLK getaktet und der Léscheingang des Flip-Flops 905 nimmt das RST-Signal auf.

[0421] Der Eingang des Flip-Flops 905 ist mit dem Ausgang eines Multi-Bit-Multiplexers 906 verbunden. Der
Auswahl-Eingang des Multiplexers 906 nimmt ein invertiertes CHECK_SWITCH_ONLY Signal auf. Das
CHECK_SWITCH_ONLY Signal wird aufgestellt, oder auf hoch angesteuert, wenn die Abtast-Zustand-Maschi-
ne 850 nur die Status-Signale STATUSI[5:0] oder die Status-Signale STATUS[127:32] abtastet (d. h. Anderun-
gen in den Signalen STATUS[31:6] ignorieren), und sie ansonsten wegnimmt. Der Null-Eingang des Multiple-
xers 906 empfangt die Signale SCAN_NSW][31:6], und der eine Eingang des Multiplexers 906 ist mit dem Aus-
gang eines Multi-Bit-ODER-Gates 907 verbunden. Ein Eingang des ODER-Gates 907 ist mit dem Ausgang ei-
nes Multi-Bit-UND-Gates 908 verbunden, und der andere Eingang des ODER-Gates 907 ist mit dem Ausgang
eines Multi-Bit-UND-Gates 872 verbunden.

[0422] Ein Eingang des UND-Gates 908 empfangt die Signale BIT_ENABLE[31:6]. Der andere Eingang des

61/215

DE 697 21 381 T2 2004.01.15

UND-Gates 908 ist mit dem Ausgang eines Multi-Bit-Multiplexers 909 verbunden. Falls das NEW_CSID Signal
aufgestellt ist, oder hoch ist, liefert der Multiplexer 909 ein Signal mit sechsundzwanzig Bits gleich zu
,/H3FFFFFF". Ansonsten liefert der Multiplexer ein Signal mit sechsundzwanzig Bits gleich zu ,0". Ein Eingang
des UND-Gates 872 ist mit dem invertierten Ausgang des UND-Gates 908 verbunden und der andere Eingang
des UND-Gates 872 nimmt die Signale SCAN_NSW/[31:6] auf.

[0423] Zu Zwecken eines Speicherns des logischen Spannungs-Pegels der Status-Signale STATUS[31:6]
nach jeder Abtastung liefert ein Multi-Bit-D-Typ-Flip-Flop 871 sechsundzwanzig Signale LNON_SW][31:6]. Ei-
nes der Signale LNON_SW[31:6] wird aufgestellt, oder auf hoch gesetzt, um diesen Zustand anzuzeigen, und
wird ansonsten weggenommen. Das Flip-Flop 871 wird auf der positiven Flanke des Taktsignals CLK getaktet,
und der Lésch-Eingang des Flip-Flops 871 empfangt das RST-Signal.

[0424] Der Eingang des Flip-Flops 871 ist mit dem Ausgang eines Multi-Bit-Multiplexers 870 verbunden, der
die Signale D_LNON_SWT[31:6] liefert. Der Auswahl-Eingang des Multiplexers 870 empfangt das Signal
SCAN_END. Der Null-Eingang des Multiplexers 870 empfangt die Signale LNON_SW/[31:6], und der eine Ein-
gang des Multiplexers 807 empfangt die Signale SCAN_NSWI[31:6].

[0425] Wiein Fig. 31B dargestelltist, umfasst, zu Zwecken eines Erzeugens der MAX0, MAX1, MAX2, MAXS3,
MAX4 und MAXS Signale, die Seriell-Eingangs-Logik 804 sechs Zahler 831a—f, jeweils, von einem gemeinsa-
men Design 831. Jeder Zahler 831 wird initialisiert (auf einen vorbestimmten Zahl-Wert), wenn ein UND-Gate
892 seinen Ausgang aufstellt, oder auf hoch ansteuert. Fir den Zahler 831a empfangt das UND-Gate 892 das
Signal BIT_ENCABLEJ[0], das Signal SW_CHGI0] und ein invertiertes Signal QUICK_FILTER. Das Signal
QUICK_FILTER kann, wenn es aufgestellt ist, oder hoch ist, dazu verwendet werden, das Debounce-Zeit-In-
tervall zu umgehen. Das QUICK_FILTER Signal wird normalerweise weggenommen oder auf niedrig gesetzt.
Der Takt-Eingang des Zahlers 831 ist mit dem Ausgang eines UND-Gates 893 verbunden. Fur den Zahler 831a
empfangt das UND-Gate 893 das BIT ENABLE[Q] Signal, das invertierte SW_CHGJ0] Signal, das invertierte
GETTING_BYTE Signal und das invertierte MAXO0 Signal. Deshalb wird, fir den Zahler 831a, wenn sich einmal
die logische Spannung des Status-Signals STATUS[0] andert, zu jedem Zeitpunkt, zu dem die Seriell-Ab-
tast-Logik 804 das Status-Signal STATUS[0] abtastet, der Zahler 831a erh6ht. Wenn der Zahler 831a seinen
maximalen Wert erreicht, wird das Signal MAXO0 aufgestellt, was anzeigt, dass das Debounce-Zeit-Intervall ab-
gelaufen ist. Falls sich die logische Spannung des Status-Signals STATUS[0] wahrend der Zahlung andert,
wird der Zahler 831a reinitialisiert, und die Zahlung beginnt erneut. Die anderen Zahler 831b—f arbeiten in einer
ahnlich Weise in Bezug auf deren entsprechende Status-Signale STATUSI[5:1].

[0426] Das HOLD_OFF Signal instruiert, wenn es aufgestellt ist, einen der Zeitgeber 806, ein vorbestimmtes
Langsam-Abtast-Intervall zu messen, das die serielle Abtast-Zustand-Maschine 840 in den Langsam-Ab-
tast-Mode versetzt. Wenn der Zeitgeber 806 eine Messung dieses Verzdogerungs-Intervalls abschlief3t, stellt
der Zeitgeber 806 ein FTR_TIMEOUT Signal auf, oder steuert es auf hoch an, das ansonsten weggenommen
wird, oder negiert wird. Das Produkt dieses Langsam-Abtast-Intervalls und der Zahl von Zahlungen fiir den
Zahler 831, um seinen maximalen Wert zu erreichen, ist gleich zu dem Debounce-Zeit-Intervall (8 ms).
[0427] Das HOLD_OFF Signal wird durch den Ausgang eines JK-Flip-Flops 885 geliefert. Das Flip-Flop 885
wird an der positiven Flanke des CLK Signals getaktet, und der Lésch-Eingang des Flip-Flops 885 empfangt
das RST-Signal. Der J-Eingang ist mit dem Ausgang eines UND-Gates 883 verbunden und der K-Eingang ist
mit dem Ausgang eines UND-Gates 884 verbunden. Ein Eingang des UND-Gates 884 ist mit dem Ausgang
eines Flip-Flops 896 vom JK-Typ verbunden, und der andere Eingang des UND-Gates 893 empfangt das
SCAN_END Signal. Ein Eingang des UND-Gates 884 ist mit dem invertierten Ausgang des UND-Gates 883
verbunden, ein Eingang des UND-Gates 884 empfangt das FTR_TIMEOUT Signal, und ein anderer Eingang
des UND-Gates 884 empfangt ein SCAN_IN_IDLE Signal, das aufgestellt wird, wenn sich die Abtast-Zu-
stand-Maschine 840 in deren IDLE Zustand befindet, wie dies weiter nachfolgend beschrieben ist.

[0428] Das Flip-Flop 895 wird an der positiven Flanke des CLK Signals getaktet und der Lésch-Eingang des
Flip-Flops 895 empfangt das RST-Signal. Der J-Eingang ist mit dem Ausgang eines NAND-Gates 894 verbun-
den, der die MAXO0, MAX1, MAX2, MAX3, MAX4 und MAX5 Signale aufnimmt. Der K-Eingang ist mit dem Aus-
gang eines UND-Gates 826 verbunden, der mit dem invertierten J-Eingang des Flip-Flops 895 verbunden ist,
und empfangt ein invertiertes SCAN_IN_PROGRESS Signal, das dann aufgestellt wird, wenn die Abtast-Zu-
stand-Maschine 840 die Status-Signale STATUS[31:0] abtastet.

[0429] Zu Zwecken einer Erzeugung des CHECK_SWITCH_ONLY Signals umfasst die Seriell-Abtast-Ein-
gangs-Logik 804 ein Flip-Flop 864 vom JK-Typ, das das CHECK_SWITCH_ONLY Signal an dem nicht-inver-
tierendem Ausgang liefert, und wird an der positiven Flanke des CLK-Signals getaktet. Der L6sch-Eingang des
Flip-Flops 864 empfangt das RST-Signal, und der J-Eingang des Flip-Flops 864 empfangt ein DEBOUNCE Si-
gnal, das, wenn es aufgestellt, oder auf hoch angesteuert, ist, anzeigt, dass sich einer des logischen Span-
nungs-Pegels eines oder mehrere der Status-Signale STATUS[31:6] geandert hat. Der K-Eingang des
Flip-Flops 864 ist mit dem Ausgang eines UND-Gates 865 verbunden. Ein Eingang des UND-Gates 865 nimmt
das invertierte DEBOUNCE Signal auf und ein Eingang des UND-Gates 865 nimmt das SCAN_IN_IDLE Signal
auf.

62/215

DE 697 21 381 T2 2004.01.15

[0430] Wie in Fig. 31C dargestellt ist, wird das Debounce-Signal DEBOUNCE durch den nicht-invertierenden
Ausgang eines Flip-Flops 860 vom JK-Typ geliefert. Das Flip-Flop 860 wird durch die positive Flanke des Takt-
signals CLK getaktet, und der Losch-Eingang des Flip-Flops 860 empfangt das Reset-Signal RST. Der J-Ein-
gang des Flip-Flops 860 empfangt ein Signal CHANGE_ON_INPUT. Das Signal CHANGE_ON_INPUT wird
aufgestellt, oder auf hoch angesteuert, wenn eine Anderung in einem der Status-Signale STATUS[31:6] an
dem Ende einer Abtastung durch die Seriell-Eingangs-Logik 804 erfasst wird, und wird ansonsten weggenom-
men. Der K-Eingang ist mit dem Ausgang eines UND-Gates 861 verbunden, das ein DB_TIMEOUT Signal an
einem seiner Eingange aufnimmt. Der andere Eingang des UND-Gates 861 nimmt das invertierte
CHANGE_ON_INPUT Signal auf. Das DB TIMEOUT Signal wird durch die Zeitgeber 106 fur einen Zyklus des
CLK-Signals aufgestellt, wenn die Debounce-Zeit-Verzégerung (initiiert durch das Aufstellen des DEBOUNCE
Signals) abgelaufen ist. Das Aufstellen des DB_TIMEOUT Signals negiert das DEBOUNCE Signal an der
nachsten, positiven Flanke des CLK-Signals.

[0431] Das CHANGE_ON_INPUT Signal wird durch den nicht-invertierenden Ausgang eines Flip-Flops 866
vom JK-Typ geliefert, das an der positiven Flanke des CLK-Signals getaktet wird. Der Lésch-Eingang des
Flip-Flops empfangt das RST-Signal. Der J-Eingang des Flip-Flops 866 ist mit dem Ausgang eines UND-Gates
869 verbunden, das das SCAN END Signal aufnimmt, und der andere Eingang des UND-Gates 869 ist mit dem
Ausgang eines ODER-Gates 867 verbunden. Das ODER-Gate 867 verknipft logisch ODER-maRig alle eines
Satzes von NSW_CHGJ[31:6] Signalen. Die Bit-Positionen der Signale NSW_CHG[31:6] entsprechen den
Bit-Positionen der Status-Signale STATUS[31:6] und zeigen an, durch deren Aufstellen, ob sich das entspre-
chende Status-Signal STATUS[31:6] nach der letzten Abtastung geandert hat. Das UND-Gate 869 nimmt wei-
terhin das SCAN_END Signal auf. Der K-Eingang des Flip-Flops 866 ist mit dem Ausgang eines UND-Gates
868 verbunden, der das invertierte SCAN_IN_PROGRESS Signal und den invertierten Ausgang des
UND-Gates 869 aufnimmt. Die Signale NSW_CHG[31:6] werden durch den Ausgang eines Mul-
ti-Bit-XOR-Gates 862 geliefert, das die Signale D_LNON_SW/[31:6] und LNON_SW][31:6] aufnimmt.

[0432] Der nicht-invertierende Ausgang eines Multi-Bit-D-Typ-Flip-Flops 912 liefert Bits SI_DATA[7:0] fur das
Seriell-Daten-Register 815. Der Lsch-Eingang des Flip-Flops 912 empfangt das Signal RST und das Flip-Flop
912 wird an der positiven Flanke des CLK-Signals getaktet. Der Signal-Eingang des Flip-Flops 912 ist mit dem
Ausgang eines Multi-Bit-Multiplexers 916 verbunden. Der Auswahl-Eingang des Multiplexers 916 ist mit dem
Ausgang eines UND-Gates 914 verbunden, und der Null-Eingang des Multiplexers 916 nimmt die Bits
SI_DATA[7:0] auf. Das UND-Gate 914 nimmt die Signale GETTING_BYTE und SHIFT_ENABLE auf. Demzu-
folge werden, wenn die Seriell-Abtast-Logik 804 nicht ein angefordertes Byte der Status-Signale STATUS[47:0]
verschiebt, die Werte der Bits SI_DATA[7:0] bewahrt.

[0433] Der eine Eingang des Multiplexers 916 ist mit dem Ausgang eines Multi-Bit-Multiplexers 910 verbun-
den. Der eine Eingang des Multiplexers 910 ist mit dem Ausgang eines Multi-Bit-ODER-Gates 911 verbunden,
und der Null-Eingang des Multiplexers ist mit dem Ausgang eines Multi-Bit-UND-Gates 915 verbunden. Der
Auswahl-Eingang des Multiplexers 910 empfangt das Signal NEW_CSID.

[0434] Ein Eingang des UND-Gates 915 empfangt die Bits SI_DATA[7:0], und ein invertierender Eingang des
UND-Gates 915 ist mit dem Ausgang eines 3X8 Decodierers 913 verbunden. Der Decodieren 913 empfangt
das Signal BIT[2:0]. Ein Eingang des ODER-Gates 911 empfangt die Bits SI_DATA[7:0], und der andere Ein-
gang des ODER-Gates 911 empfangt den Ausgang des Decodierers 913.

[0435] Die Seriell-Eingangs-Logik 804 liefert finf Signale RST_SWITCHI5:0] (entsprechend den Bit-Positio-
nen der Status-Signale STATUS[5:0]) zu der EIN/AUS-Steuer-Logik 820, was, durch deren Aufstellen, anzeigt,
ob der entsprechende Schlitz 36a—f heruntergefahren werden sollte. Die EIN/AUS-Steuer-Logik 820 zeigt an,
wenn der Schlitz 36 (angezeigt durch die RST_SWITCH]I5:0] Signale) durch das darauffolgende Einstellen ei-
nes von funf Signalen CLR_SWITCH[5:0] heruntergefahren worden ist, deren Bit-Positionen den Signalen
RST_SWITCH[5:0] entsprechen. Nach Empfangen der Anzeige, dass der Schlitz bzw. Einsteckplatz 36 herun-
tergefahren worden ist, nimmt die serielle Logik 804 dann das entsprechende RST_SWITCHI[5:0] Signal zu-
ruck.

[0436] Die Signale RST_SWITCH[5:0] werden durch den nicht-invertierenden Ausgang eines Mul-
ti-Bit-Flip-Flops 891 vom D-Typ (Fig. 31B) geliefert. Der Lésch-Eingang des Flip-Flops 891 empfangt das Re-
set-Signal RST und das Flip-Flop 891 wird an der positiven Flanke des Taktsignals CLK getaktet. Der Eingang
des Flip-Flops 891 ist mit dem Ausgang eines Multi-Bit-ODER-Gates 857 verbunden, der einen Eingang mit
dem Ausgang eines Multi-Bit-UND-Gates 859 verbunden besitzt und einen Eingang mit dem Ausgang eines
Multi-Bit-UND-Gates 855 verbunden besitzt. Ein Eingang des UND-Gates 859 ist mit dem Ausgang eines Mul-
tiplexers 853 verbunden, und der andere Eingang des UND-Gates 859 empfangt verriegelte Schlitz-Freiga-
be-Signale LSLOT_EN[5:0], die anzeigen, durch deren Aufstellen, ob der entsprechende Schlitz bzw. Ein-
steckplatz 36a—f hochgefahren ist. Ein Eingang des UND-Gates 855 nimmt die Signale CLR_SWITCH_[5:0]
auf. Ein anderer Eingang des UND-Gates 855 nimmt die Signale RST_SWITCHI5:0] auf. Ein anderer Eingang
des UND-Gates 855 ist mit dem invertierten Ausgang des Multiplexers 853 verbunden.

[0437] Der Null-Eingang des Multiplexers 853 empfangt ein Sechs-Bit-Signal, das fur Null Indikativ ist. Der

63/215

DE 697 21 381 T2 2004.01.15

eine Eingang des Multiplexers 853 ist mit dem Ausgang eines Multi-Bit-UND-Gates 849 verbunden. Ein Ein-
gang des UND-Gates 849 empfangt die Signale D_LSWITCHI[5:0], und der andere Eingang des UND-Gates
849 empfangt die invertierten Signale L_SWITCHI[5:0]. Der Auswahl-Eingang des Multiplexers 853 empfangt
das SCAN_END Signal.

[0438] Zu Zwecken einer Erzeugung des SI_INTR# Signals umfasst die Seriell-Abtast-Logik 804 ein Flip-Flop
882 vom D-Typ, das das Seriell-Unterbrechungs-Signal SI_INTR# an seinem invertierenden Ausgang liefert.
Das Flip-Flop 882 wird an der positiven Flanke des CLK-Signals getaktet, und der L6scheingang des Flip-Flops
882 empfangt das RST-Signal. Der Eingang des Flip-Flops 882 ist mit dem Ausgang eines ODER-Gates 881
verbunden, der zweiunddreiflig anhangige Unterbrechungs-Signale PENDING_IRQ[31:0] aufnimmt, die, durch
deren Aufstellen, oder Ansteuern auf hoch, anzeigen, ob eine Unterbrechung fiir das entsprechende eine der
Status-Signale STATUS[31:0] anhangig ist. Die Signale PENDING_IRQ[31:0] werden ansonsten weggenom-
men.

[0439] Wie in Fig. 31E dargestellt ist, liefert ein Multi-Bit-Flip-Flop 979 vom D-Typ die Signale
PENDING_IRQ[31:0] an seinem nicht-invertierenden Ausgang. Das Flip-Flop 979 wird an der positiven Flanke
des Signals CLK getaktet und empfangt das Signal RST an seinem Ldsch-Eingang. Der Eingang des
Flip-Flops 979 ist mit dem Ausgang eines Multi-Bit-UND-Gates 981 verbunden, das invertierte Unterbre-
chungs-Maskierungs-Signale INTR_MASK[31:0] an einem Eingang aufnimmt. Die Signale INTR_MASK][31:0]
sind fur ein entsprechendes Bit des Unterbrechungs-Masken-Registers 810 Indikativ. Der andere Eingang des
UND-Gates 981 ist mit dem Ausgang eines Multi-Bit-ODER-Gates 835 verbunden. Ein Eingang des
ODER-Gates 835 ist mit dem Ausgang eines Multi-Bit-UND-Gates 862 verbunden und der andere Eingang des
ODER-Gates 835 ist mit dem Ausgang eines Multi-Bit-UND-Gates 834 verbunden.

[0440] Das UND-Gate 862 nimmt invertierte PENDING_IRQ[31:0] Signale auf und signalisiert
SET_IRQ[31:0]. Die Signale SET_PIRQ[31:0] werden aufgestellt, um anzuzeigen, dass eine Unterbre-
chungs-Anforderung flir das entsprechende eine der Status-Signale STATUS[31:0] erzeugt werden sollte.
Deshalb werden die Signale PENDING_IRQ[31:0] mit den Signalen SET_PIRQ[31:0] aktualisiert, falls sie nicht
durch die Signale INTR_MASK][31:0] maskiert sind.

[0441] Das UND-Gate 834 empfangt die Signale PENDING_IRQ[31:0], invertierte Signale SET_PIRQ[31:0]
und invertierte WR_INTR_REGJ31:0] Signale. Die Signale WR_INTR_REG[31:0] zeigen die Schreib-Daten an,
geliefert durch die CPU 14, und zwar zu dem Unterbrechungs-Register 800 hin. Die CPU lIéscht eine Unterbre-
chung durch Schreiben einer ,1" zu dem entsprechenden Bit des Unterbrechungs-Registers 800. Deshalb
wird, falls dies auftritt, und keine neuen Unterbrechungs-Anforderungen fiir das entsprechende eine der Sta-
tus-Signale STATUS[31:0] angezeigt werden, das entsprechende eine der Signale PENDING_IRQ[31:0] ge-
I6scht.

[0442] Die Signale SET_PIRQ[31:0] werden durch den Ausgang eines Multi-Bit-UND-Gates 839 geliefert. Ein
Eingang des UND-Gates 839 empfangt die Signale UPDATE_IRQ[31:0]. Der andere Eingang des UND-Gates
839 ist mit dem Ausgang eines Multi-Bit-XOR-Gates 837 verbunden. Ein Eingang des XOR-Gates 837 emp-
fangt die Signale D_INTR_REG[31:0], der andere Eingang des XOR-Gates 837 empfangt die Signale
INTR_REGJ31:0]. Deshalb wird, wenn die Bits des Unterbrechungs-Registers 800 von einem logischen Zu-
stand zu einem anderen Ubergehen, eine Unterbrechungs-Anforderung erzeugt.

[0443] Zu Zwecken einer Aktualisierung der Bits des Unterbrechungs-Registers 800 werden die Signale
UPDATE_IRQJ[31:0] zu den entsprechenden Last-Eingdngen des Registers 800 geliefert. Wenn eines der Si-
gnale UPATE_IRQ[31:0] aufgestellt ist, oder auf hoch angesteuert ist, wird das entsprechende Bit mit dem ent-
sprechenden einen der Signale D_INTR_REGJ[31:0] geladen.

[0444] Die Signale UPDATE IRQ[31:0] werden durch den Ausgang eines Multi-Bit-ODER-Gates 971 geliefert.
Ein Eingang des ODER-Gates 971 ist mit dem Ausgang eines Multi-Bit-UND-Gates 973 verbunden. Ein Ein-
gang des UND-Gates 973 ist mit dem Ausgang eines Multi-Bit-Multiplexers 977 verbunden, und der andere
Eingang des UND-Gates 973 nimmt invertierte PENDING_IRQ[31:0] Signale auf. Der Auswahl-Eingang des
Multiplexers 977 empfangt das Signal SCAN_END, der eine Eingang des Multiplexers 977 empfangt ein Zwei-
unddreiRig-Bit-Signal, indikativ fur ,hFFFFFFFF", und der Null-Eingang des Multiplexers 977 empfangt ein
Zweiunddreifig-Bit-Signal, indikativ fur ,0". Deshalb ermdéglichen, an dem Ende einer Abtastung, die Signale
UPDATE_IRQ[31:0], dass die Bits des Unterbrechungs-Registers 800 aktualisiert werden, die den aufgestell-
ten PENDING_IRQ[31:0] Signalen entsprechen.

[0445] Ein anderer Eingang des ODER-Gates 971 ist mit dem Ausgang eines Multi-Bit-UND-Gates 975 ver-
bunden. Ein Eingang des UND-Gates 975 empfangt die invertierten INTR_MASK][31:0] Signale, ein anderer
Eingang des UND-Gates 975 empfangt die Signale PENDING_IRQ[31:0], und der andere Eingang des
UND-Gates 975 empfangt die Signale WR_INTR_REG[31:0]. Deshalb kann die CPU 14 selektive Bits der Si-
gnale PENDING_IRQ[31:0] I6schen.

[0446] Die Signale D_INTR_REGJ5:0] werden durch den Ausgang eines Multi-Bit-Multiplexers 830 geliefert.
Wenn das SCAN_END Signal aufgestellt ist, sind die Signale D_INTR_REG[5:0] gleich zu den Signalen
D_LSWITCH[5:0]. Wenn das SCAN_END Signal weggenommen ist, sind die Signale D_INTR_REG[5:0]

64/215

DE 697 21 381 T2 2004.01.15

gleich zu den Signalen LSWITCH[5:0].

[0447] Die Signale D_INTR_REG[31:6] werden durch den Ausgang eines Multi-Bit-Multiplexers 845 geliefert.
Wenn das SCAN_END Signal aufgestellt ist, sind die Signale D_INTR_REG[31:6] gleich zu den Signalen
D_LNON_SWI[31:6]. Wenn das SCAN_END Signal weggenommen ist, sind die Signale D_INTR_REG[5:0]
gleich zu den Signalen LNON_SW/[31:6]. Das Unterbrechungs-Register 800 nimmt neue Werte nur dann auf,
wenn das Signal SCAN END aufgestellt ist.

[0448] Wie in den Fig. 32A-B dargestellt ist, tritt die Abtast-Zustand-Maschine 840 in einen IDLE Zustand
nach dem Aufstellen des RESET-Signals RST ein. Wenn sie sich nicht in dem IDLE Zustand befindet, toggelt
die Abtast-Zustand-Maschine 840 die Zustdnde des Seriell-Eingangs-Taktsignals CSIC_O, um das Schie-
be-Register 82 zu takten. Weiterhin stellt, wenn sie sich nicht in einem ersten Lade-Zustand LD1 befindet, die
Abtast-Zustand-Maschine 840 das Lade-Signal CSIL_O_ auf oder steuert es auf hoch an, um die Register 82
und 52 freizugeben, um seriell die Status-Signale STATUS[127:0] zu der SIO-Schaltung 50 zu verschieben. In
dem IDLE Zustand setzt die Abtast-Zustand-Maschine 840 das Signal SCAN_DONE gleich zu Null.

[0449] Die Abtast-Zustand-Maschine 840 geht von dem IDLE Zustand zu dem Zustand LD1 Gber, wenn ent-
weder das Signal GETTING_BYTE aufgestellt ist oder das Signal HOLD_OFF weggenommen ist. Ansonsten
verbleibt die Abtast-Zustand-Maschine 840 in dem IDLE Zustand. In dem LD1 Zustand stellt die Abtast-Zu-
stand-Maschine 840 das Lade-Signal CSIL_O_ auf oder steuert es auf niedrig an, das die Register 82 und 52
freigibt, um zu verriegeln und damit zu beginnen, die Status-Signale STATUS[127:0] aufzunehmen.

[0450] Die Abtast-Zustand-Maschine 840 geht von dem LD1 Zustand zu einem Lade-Zwei-Zustand LD2 tber.
In dem LD2 Zustand wird das Lade-Signal CSIL_O__ aufgestellt beibehalten, was den Registern 82 und 52 er-
moglicht, seriell die Status-Signale STATUS[127:0] zu verschieben.

[0451] Die Abtast-Zustand-Maschine 840 geht darauffolgend zu einem Abtast-Zustand SCAN Uber. In dem
SCAN Zustand tastet die Seriell-Abtast-Eingangs-Logik 804 die Status-Signale STATUS[127:0] an jeder nega-
tiven Flanke des Takt-Signals DIV2CLK ab.

[0452] Wenn das Signal STOP_SCAN aufgestellt ist, geht die Abtast-Zustand-Maschine 840 zurlick zu dem
IDLE Zustand. Das STOP_SCAN Signal wird aufgestellt, wenn entweder das erwlinschte Byte der Status-Si-
gnale STATUS[127:0] in das Seriell-Daten-Register 815 hinein verschoben worden ist; die Hebel-Status-Sig-
nale STATUS[5:0] eingetastet worden sind und das Seriell-Unterbrechungs-Signal SI_INTR# aufgestellt wor-
den ist; oder alle Status-Signale STATUS[31:0] hinein verschoben worden sind. In dem SCAN Zustand wird
das SCAN_DONE Signal gleich zu dem STOP_SCAN Signal gesetzt.

[0453] Wiein Fig. 33A dargestellt ist, umfasst die EIN/AUS-Steuer-Logik 820 eine EIN/AUS-Zustand-Maschi-
ne 998, die die RST_SWITCHI5:0] Signale, SLOT_ENI[5:0] und SLOT_RST _[5:0] empfangt. Basierend auf den
Zustanden, angezeigt durch diese Signale, zeigt die EIN/AUS-Zustand-Maschine 998 die geeigneten Hoch-
fahr- und Herunterfahr-Sequenzen an und steuert sie. Die EIN/AUS-Zustand-Maschine 998 liefert Steuersig-
nale zu der Steuer-Logik 999.

[0454] Die EIN/AUS-Zustand-Maschine 998 liefert ein Seriell-Ausgangs-Aktualisierungs-Signal SO_UPDATE
zu der Seriell-Ausgangs-Logik 824. Wenn das Signal SO_UPDATE aufgestellt ist, oder auf hoch angesteuert
ist, beginnt die Seriell-Ausgangs-Logik 824 die Verschiebe-Phase und verschiebt Seriell-Steuer-Daten, tber
das Signal CSOD_0O, zu dem Register 80. Die Seriell-Ausgangs-Logik 824 zeigt einen Abschluss der Verschie-
be-Phase durch Aufstellen eines Signals SO_UPDATE_DONE an, das durch die EIN/AUS-Zustand-Maschine
998 empfangen wird. Die EIN/AUS-Zustand-Maschine 998 aktualisiert darauffolgend die Steuersignale
POUT[39:0] durch Negieren, oder Takten, des Verriegelungs-Signals CSOLC_O, das durch das Register 80
empfangen wird.

[0455] Die Steuer-Logik 999 liefert die Signale PWREN][5:0], CLKEN#[5:0], BUSEN#[5:0] und RST#[5:0] zu
der Seriell-Ausgangs-Logik 824. Die Steuer-Logik 999 liefert auch ein PCI-Bus-Anforderungs-Signal CAY-
REQ# zu dem und empfangt ein PCI-Bus-Erteilungs-Signal CAYGNT# von dem Arbitrierer 124. Die
EIN/AUS-Steuer-Logik 820 stellt das Signal CAYREQ# auf, oder steuert es auf niedrig an, um den PCI-Bus 32
anzufordern, wenn der Arbitrierer 124 das Signal CAYGNT# aufstellt, oder auf niedrig ansteuert, hat der Arbi-
trierer 124 eine Steuerung Uber den PCI-Bus 32 zu der EIN/AUS-Steuer-Logik 820 erteilt.

[0456] Wie in den Fig. 33B-G dargestellt ist, tritt die EIN/AUS-Zustand-Maschine 998 in einen Idle-Zustand
IDLE unter Aufstellen des Reset-Signals RST ein. Falls kein Leerlauf vorliegt, steuert die EIN/AUS-Zu-
stand-Maschine 998 eine von drei Sequenzen: die Power down-Sequenz, die Power-on-Sequenz oder die eine
Durchgangs-Sequenz, verwendet dazu, die Steuer-Signale POUT[39:0] zu aktualisieren, wie dies durch das
Schlitz-Freigabe- 817 und das LED-Steuer- (nicht dargestellt) Register angezeigt ist. Die EIN/AUS-Zu-
stand-Maschine 998 stellt das Lade-Signal CSOLC_O fiir einen Zyklus des Taktsignals CLK des Registers 80
auf, oder steuert es auf hoch, bis die EIN/AUS-Zustand-Maschine 998 bestimmt, dass die Steuer-Signale
POUT[39:0] aktualisiert werden missen. Wenn die Steuer-Signale POUT[39:0] aktualisiert sind, negiert die
EIN/AUS-Zustand-Maschine 998 das Signal CSOLC_O, was die Steuer-Signale POUT[39:0] aktualisiert.
[0457] Die EIN/AUS-Zustand-Maschine 998 beginnt die Power-down-Sequenz, wenn entweder die Software
ein energiemalliges Herunterfahren bzw. Power-down mindestens eines der Schlitze bzw. Einsteckplatze 36

65/215

DE 697 21 381 T2 2004.01.15

anfordert, wie dies durch das Wegnehmen der Signale SLOT_ENI[5:0] angezeigt ist; oder die Seriell-Ab-
tast-Eingangs-Logik 804 bestimmt, dass mindestens einer der Schlitze bzw. Einsteckplatze 36a—f der Po-
wer-down-Sequenz unterworfen werden sollte, wie dies durch das Aufstellen der Signale RST_SWITCH[5:0]
angezeigt ist. Um die Power-down-Sequenz zu beginnen, stellt die EIN/AUS-Zustand-Maschine 998 das
SO_UPDATE Signal auf, um eine Verschiebe-Phase und Ubergénge von dem IDLE Zustand zu einem RSTON
Zustand zu beginnen.

[0458] Wahrend des RSTON Zustands negiert die Steuer-Logik 999 die Reset-Signale RST#[5:0] fur die
Schlitze 36, die energiemalig heruntergefahren werden sollen, und die Seriell-Ausgangs-Logik 824 verschiebt
seriell die Reset-Signale RST#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998 ne-
giert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuer-Signale durch die Seriell-Ausgangs-Logik
824 zu dem Register 80 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE an-
gezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem RSTON Zustand zu einem OFF_ARB1 Zustand
Uber.

[0459] In dem OFF_ARB1 Zustand fordert die EIN/AUS-Zustand-Maschine 998 eine Steuerung Uber den se-
kundaren PCI-Bus 32 durch Aufstellen des Anforderungs-Signals CAYREQ# an. Die EIN/AUS-Zustand-Ma-
schine 998 geht dann zu einem OFF_WGNT1 Zustand Uber, wo sie auf die Erteilung des sekundaren PCI-Bus-
ses 32 wartet. Wenn der Arbitrierer 124 eine Steuerung Uber den Bus 32 erteilt, wie dies durch das Aufstellen
des CAYREQ# Signals angezeigt ist, negiert die EIN/AUS-Zustand-Maschine 998 das Signal CSOLC_O fur
einen Zyklus des Signals CLK, um die Steuer-Signale POUT[39:0] zu aktualisieren, und geht zu einem
OFF_LCLK1 Zustand Uber.

[0460] Indem OFF_LCLK1 Zustand stellt die EIN/AUS-Zustand-Maschine 998 das Signal SO_UPDATE auf,
um so eine andere Verschiebe-Phase zu beginnen. Die EIN/AUS-Zustand-Maschine 998 geht von dem
OFF_LCLK1 Zustand zu einem Bus-off-Zustand BUSOFF ulber. Wahrend des BUSOFF Zustands nimmt die
Steuer-Logik 999 die BUS-Freigabe-Signale BUSEN#[5:0] fiir die Schlitze 36 weg oder steuert sie auf hoch an,
die energieBmaRig heruntergefahren werden sollen, und die Seriell-Ausgangs-Logik 824 verschiebt seriell die
Bus-Freigabe-Signale BUSEN#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998 ne-
giert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuer-Signale durch die Seriell-Ausgangs-Logik
824 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE angezeigt ist, geht die
EIN/AUS-Zustand-Maschine 998 von dem BUSOFF Zustand zu einem OFF_ARB2 Zustand tber, wo die Zu-
stand-Maschine 998 wieder erneut eine Kontrolle des sekundaren PCI-Busses 32 anfordert. Die Zustand-Ma-
schine 998 geht dann zu einem OFF_WGNT2 Zustand Uber, wo sie auf die Erteilung des PCI-Busses 32 war-
tet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998 zu einem OFF_LCLK2 Zustand
Uber, wo die Steuer-Signale POUT[39:0] durch Negieren des Signals CSOLC_O fiir einen Zyklus des Signals
CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zu einem Takt-Off-Zustand CLKOFF Uber.
[0461] Wahrend des CLKOFF Zustands nimmt die Steuer-Logik 999 die Takt-Freigabe-Signale CLKEN#[5:0]
fur die Schlitze 36 weg, oder steuert sie auf hoch an, die energiemaRig heruntergefahren werden sollen. Die
Bus-Freigabe-Signale BUSEN#[5:0] andern sich nicht, und die Seriell-Ausgangs-Logik 824 verschiebt seriell
die Takt-Freigabe-Signale CLKEN#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998
negiert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuer-Signale durch die Seriell-Ausgangs-Lo-
gik 824 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE angezeigt ist, geht
die EIN/AUS-Zustand-Maschine 998 von dem CLKOFF-Zustand zu einem OFF_ARB3 Zustand Uber, wo die
Zustand-Maschine 998 erneut eine Steuerung bzw. Kontrolle tGiber den PCI-Bus 32 anfordert. Die Zustand-Ma-
schine 998 geht dann zu einem OFF_WGNT3 Zustand Uber, wo sie auf die Erteilung des PCI-Busses 32 war-
tet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998 zu einem OFF_LCLK3 Zustand
Uber, wo die Steuersignale POUT[39:0] durch Negieren des Signals CSOLC_O fiir einen Zyklus des Signals
CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zu einem Power-Off-Zustand PWROFF Uber.
[0462] Wahrend des PWROFF Zustands nimmt die Steuer-Logik 999 die Energie-Freigabe-Signale PW-
RENT[5:0] fiir die Schlitze 36 weg oder setzt sie auf niedrig, die energiemalig heruntergefahren werden sollen.
Die Signale REST#[5:0], BUSEN#[5:0] und CLKEN#[5:0] andern sich nicht, und die Seriell-Ausgangs-Logik
824 verschiebt seriell die Energie-Freigabe-Signale PWREN[5:0] zu dem Ausgangs-Register 80. Die
EIN/AUS-Zustand-Maschine 998 negiert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuersig-
nale durch die Seriell-Ausgangs-Logik 824 verschoben sind, wie dies durch das Aufstellen des Signals
SO_UPDATE_DONE angezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem PWROFF Zustand zu
einem OFF_LCLK4 Zustand Gber, wo die Signale POUT[39:0] durch Negieren des Signals CSOLC_O fiir einen
Zyklus des Signals CLK aktuallisiert werden. Die Zustand-Maschine 998 geht dann zu dem IDLE Zustand Uber,
der die Power-Down-Sequenz abschlief3t.

[0463] Falls eine Power-Down-Sequenz nicht erforderlich ist, dann bestimmt die EIN/AUS-Zustand-Maschine
998, ob die Power-Up-Sequenz erforderlich ist. Falls entweder die Software mindestens angefordert hat, dass
mindestens einer der Schlitze 36 energiemallig hochgefahren werden soll, oder ein Hochfahren des Erweite-
rungskastens 30 anhangig ist, dann geht die EIN/AUS-Zustand-Maschine 998 von dem IDLE Zustand zu ei-

66/215

DE 697 21 381 T2 2004.01.15

nem Power-On-PWRON Zustand tber, um die Power-On-Sequenz zu beginnen. Um die Power-On-Sequenz
zu beginnen, stellt die EIN/AUS-Zustand-Maschine 998 das SO_UPDATE Signal auf, um eine Verschie-
be-Phase zu beginnen, und geht von dem IDLE Zustand zu einem Power-On-Zustand PWRON (ber.

[0464] Wahrend des PWRON Zustands stellt die Steuer-Logik 999 die Power-Freigabe-Signale PWREN[5:0]
fur die Schlitze 36 auf, die energiemafig hochgefahren werden sollen, und die Seriell-Ausgangs-Logik 824 ver-
schiebt seriell die Power-Freigabe-Signale PWRENJ[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zu-
stand-Maschine 998 negiert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuersignale durch die
Seriell-Ausgangs-Logik 824 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE
angezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem PWRON-Zustand zu einem Initialisie-
rungs-Zustand LDCNT1 eines Zeitgebers 806 Uiber und negiert das Lade-Signal CSOLC_O, um die Steuersi-
gnale POUT[39:0] zu aktualisieren.

[0465] In dem LDCNT1 Zustand initialisiert die EIN/AUS-Zustand-Maschine 998 die Zeitgeber 806 so, dass
die Zeitgeber 806 eine Indikation liefern, wenn ein vorbestimmtes Stabilisierungs-Verzégerungs-Intervall ab-
gelaufen ist. Das Stabilisierungs-Verzdgerungs-Intervall ermdglicht eine ausreichende Zeit fur die Karte 807,
die energiemafig hochgefahren werden soll, um sich zu stabilisieren, wenn einmal der Spannungspegel Vg
zu der Karte 807 zugefihrt ist. In dem LDCNT1 Zustand stellt die EIN/AUS-Zustand-Maschine, 998 auch das
Signal CSOLC_O auf. Die EIN/AUS-Zustand-Maschine 820 geht von dem LDCNT1 Zustand zu einem CLKON
Zustand uber.

[0466] Wahrend des CLKON Zustands stellt die Steuerlogik 999 die Taktfreigabesignale CLKEN#[5:0] fir die
Schlitze bzw. Einsteckplatze 36 auf oder steuert sie auf niedrig an, die energiemalig hochgefahren werden
sollen. Die PWREN(5:0] Signale verbleiben unverandert, und die Seriell-Ausgangs-Logik 824 verschiebt seriell
die Taktfreigabesignale CLKEN#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998 ne-
giert auch das Signal SO_UPDATE. Wenn einmal das Stabilisierungs-Verzégerungs-Intervall abgelaufen ist,
geht die EIN/AUS-Zustand-Maschine 998 von dem CLKOFF Zustand zu einem ON_ARB1 Zustand uber.
[0467] In dem ON_ARB1 Zustand fordert die EIN/AUS-Zustand-Maschine 998 eine Steuerung bzw. Kontrolle
Uber den sekundaren PCI-Bus 82 durch Aufstellen des Anforderungs-Signals CAYREQ# an. Die EIN/AUS-Zu-
stand-Maschine 998 geht dann zu einem ON_WGNT1 Zustand Uber, wo sie auf die Erteilung des sekundaren
PCI-Busses 32 wartet. Wenn einmal die Kontrolle bzw. Steuerung des Busses 32 erteilt ist, wie dies durch das
Aufstellen des CAYGNT Signals angezeigt ist, negiert die EIN/AUS-Zustand-Maschine 998 das Signal
CSOLC_O, um die Steuer-Signale POUT[39:0] zu aktualisieren, und geht zu einem ON_LCLK1 Zustand Uber,
wo die Signale POUT[39:0] aktualisiert werden.

[0468] Die EIN/JAUS-Zustand-Maschine 998 geht von dem ON_LCLK1 Zustand zu einem LDCNT2 Zustand
Uber, wo die Zeitgeber 806 so initialisiert werden, dass die Zeitgeber 806 eine Indikation liefern, wenn ein an-
deres, vorbestimmtes Stabilisierungs-Verzdgerungs-Intervall abgelaufen ist. Dieses Verzdgerungsintervall
wird dazu verwendet, dem Takt-Signal an der Karte 807 zu ermdglichen, energiemafig hochgefahren zu wer-
den, um sich zu stabilisieren, bevor die Power-Up-Sequenz fortfahrt. Die EIN/AUS-Zustand-Maschine 998 geht
von dem LDCNT2 Zustand zu einem Bus-Ein-Zustand BUSON (iber.

[0469] Wahrend des BUSON Zustands stellt die Steuerlogik 999 die Bus-Freigabe-Signale BUSEN#[5:0] fir
die Schlitze 36 auf, oder steuert sie auf niedrig an, die energiemaRig heruntergefahren werden sollen. Die Si-
gnale CLKEN#[5:0] und PWREN[5:0] verbleiben unverandert, und die Seriell-Ausgangs-Logik 824 verschiebt
seriell die Bus-Freigabe-Signale BUSEN#[5:0] zu dem Ausgangsregister 80. Die EIN/AUS-Zustand-Maschine
998 negiert auch das Signal SO_UPDATE. Wenn einmal das Stabilisierungs-Verzégerungs-Intervall abgelau-
fen ist, geht die EIN/AUS-Zustand-Maschine 998 von dem BUSON Zustand zu einem ON_ARB2 Zustand Uber,
wo die Zustand-Maschine 998 erneut wieder eine Kontrolle des PCI-Busses 32 anfordert. Die Zustand-Maschi-
ne 998 geht dann zu einem ON_WGTN2 Zustand Uber, wo sie auf die Erteilung des Busses 32 wartet. Wenn
einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998 zu einem ON_CLK2 Zustand uber, wo die
Signale POUT[39:0] durch Negieren des Signals CSOLC_O fir einen Zyklus des Signals CLK aktualisiert wer-
den. Die Zustand-Maschine 998 geht dann zu einem Reset-Off-Zustand RSTOFF (ber.

[0470] Wahrend des RESTOFF Zustands stellt die Steuerlogik 999 die Reset-Signale RST#[5:0] fur die Schlit-
ze 36 auf, oder negiert sie, die energiemalig hochgefahren werden sollen, und zwar in Abhangigkeit von deren
jeweiligen SLOT_RST_[5:0] Signalen. Die Signale CLKEN#[5:0], PWREN][5:0] und BUSEN#[5:0] verbleiben
unverandert, und die Seriell-Ausgangs-Logik 824 verschiebt seriell die Reset-Signale RST#[5:0] zu dem Aus-
gangsregister 80. Die EIN/AUS-Zustand-Maschine 998 negiert auch das Signal SO_UPDATE. Wenn einmal
alle vierzig Steuersignale durch die Seriell-Ausgangs-Logik 824 verschoben sind, wie dies durch das Aufstellen
des Signals SO_UPDATE_DONE angezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem RSTON
Zustand zu einem ON_ARB3 Zustand uber, wo die Zustand-Maschine 998 erneut wieder eine Kontrolle des
Busses 32 anfordert. Die Zustand-Maschine 998 geht dann zu einem ON_WGTNS3 Zustand uber, wo sie auf
die Erteilung des Busses 32 wartet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998
zu einem ON_CLK3 Zustand uber, wo die Signale POUT[39:0] durch Negieren des Signals CSOLC_O fiir ei-
nen Zyklus des Signals CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zurtick zu dem IDLE

67/215

DE 697 21 381 T2 2004.01.15

Zustand.

[0471] Falls weder die Power-Up-Sequenz noch die Power-Down-Sequenz erforderlich ist, dann bestimmt die
EIN/AUS-Zustand-Maschine 998, ob eine Ein-Durchgang-Sequenz benétigt wird, um ausgewahlte solche der
Signale POUT[39:0] zu aktualisieren. Falls die GO_UPDATE Signal aufgestellt ist und falls sich irgendwelche
Bits des Schlitz-Freigabe-Registers 817 oder des Schlitz-Reset-Registers 918 andern, dann geht die EIN/AUS
Zustand-Maschine 998 zu einem ONEPASS Zustand lber und stellt das SO_UPDATE Signal auf.

[0472] Die EIN/AUS Zustand-Maschine 998 verbleibt in dem ONEPASS Zustand, bis die vierzig Steuer-Sig-
nale zu dem Register 80 verschoben worden sind. Die EIN/AUS-Zustand-Maschine 998 geht dann zu einem
OP_ARB Zustand uber, wo die Zustand-Maschine 998 eine Kontrolle des PCI-Busses 32 durch Aufstellen des
Signals CAYREQ# anfordert. Die Zustand-Maschine 998 geht dann zu einem OP_WGNT Zustand Gber, wo sie
auf die Erteilung des Busses 32 wartet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine
998 zu einem OP_LCLK Zustand uber, wo die Signale POUT[39:0] durch Negieren des Signals CSOLC_O fur
einen Zyklus des Signals CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zurtick zu dem IDLE
Zustand.

[0473] Wie in Fig. 34 dargestellt ist, umfasst die Seriell-Ausgangs-Logik 824 einen Verschiebe-Aus-
gangs-Bit-Zahler 921, der ein Sechs-Bit-Zahler-Ausgangs-Signal BIT_CNTR[5:0] liefert, das das Steuer-Signal
protokolliert, aus der Seriell-Ausgangs-Logik 824 tiber das Signal CSOD_O heraus verschoben. Wenn das Si-
gnal BIT_CNTRI[5:0] gleich zu einer Zahl mit sechs Ziffern gleich zu ,39" ist, dann wird ein Signal MAX_CNT
aufgestellt. Das Signal MAX_CNT wird zu dem Eingang eines UND-Gates 922 geliefert. Das UND-Gate 922
empfangt weiterhin ein Signal SHIFT4, das aufgestellt wird, wenn die Ausgangs-Verschiebe-Zustand-Maschi-
ne 920 in der SHIFT4 Zustand eintritt, der weiter nachfolgend beschrieben wird. Der Ausgang des UND-Gates
922 liefert das Signal SO_UPDATE_DONE.

[0474] Die Ausgangs-Verschiebe-Zustand-Maschine 920 liefert ein Erhéhungs-Zahler-Signal INC_CNTR zu
dem Bit-Zahler 921. Wenn das INC_CNTR-Signal aufgestellt ist, erhdht der Bit-Zahler 921 den Wert, darge-
stellt durch das Signal BIT_CNTR[5:0]. Wenn ein Lade-Zahler-Signal LOAD_CNTR aufgestellt ist oder wenn
das RST-Signal aufgestellt ist, dann léscht der Ausgang eines ODER-Gates 925, verbunden mit einem
Lésch-Eingang des Bit-Zahlers 921, das Signal BIT_CNTR[5:0].

[0475] Das Signal BIT CNTR[5:0] wird zu dem Auswahl-Eingang eines Multi-Bit-Multiplexers 924 geliefert, der
das Signal CSOD_QO liefert. Der nullte bis elfte Eingang des Multiplexers 924 empfangen die LED-Steuer-Sig-
nale LEDS[11:0]. Der zwdlfte bis flinfzehnte Eingang des Multiplexers 924 empfangen Ausgangs-Signale
GPOA[3:0] fir allgemeine Zwecke. Der sechszehnte bis einundzwanzigste Eingang empfangen die Reset-Si-
gnale RST#[5:0]. Der zweiundzwanzigste bis siebenundzwanzigste Eingang empfangen die Takt-Freigabe-Si-
gnale CLKEN#[5:0]. Der achtundzwanzigste bis dreiunddreifligste Eingang empfangen die Bus-Freigabe-Sig-
nale BUSEN([5:0]. Der vierunddreiRigste bis neununddreifligste Eingang empfangen die Energie-Freigabe-Si-
gnale PWREN[5:0].

[0476] Wie in den Fig. 35A-B dargestellt ist, tritt die Ausgangs-Verschiebe-Zustand-Maschine 920 in einen
IDLE Zustand ein, wenn das Signal RST aufgestellt ist. Falls das Signal SO_UPDATE aufgestellt ist, dann geht
die Ausgangs-Verschiebe-Zustand-Maschine 920 von dem IDLE Zustand zu einem SHIFT1 Zustand uber.
[0477] Da die Ausgangs-Verschiebe-Zustand-Maschine 920 an der positiven Flanke des PCI-Takt-Signals
CLK getaktet wird, geht die Ausgangs-Verschiebe-Zustand-Maschine 920 tber einen SHIFT1 Zustand, einen
SHIFT2 Zustand, einen SHIFT3 Zustand und einen SHIFT4 Zustand hindurch, um das Takt-Signal CSOSC_O
zu erzeugen, das ein viertel der Frequenz des Takt-Signals CLK ist. Wahrend des SHIFT1- und SHIFT2-Zu-
stands wird das Takt-Signal CSOSC_O negiert und auf niedrig gesetzt, und wahrend des SHIFT3 und SHIFT4
Zustands wird das Taktsignal CSOSC_O aufgestellt oder auf hoch gesetzt. Wenn die momentane Verschie-
be-Phase abgeschlossen ist, wie dies durch das Aufstellen des Signals MAXCNT angezeigt ist, kehrt die Ver-
schiebe-Zustand-Maschine 920 zu dem IDLE Zustand zurtick und das Takt-Signal CSOSC_0O wird, bis zu dem
Beginn der nachsten Verschiebe-Phase, aufgestellt.

[0478] Wie in Fig. 36 dargestellt ist, wird ein Signal HANG_PEND durch den Lésch-Eingang des Registers
80 empfangen. Das Aufstellen, oder Ansteuern auf hoch, des HANG_PEND Signals asynchron I6scht die ge-
eigneten Ausgangs-Steuer-Signale POUT[39:0], um alle Schlitze 36 energiemalig herunterzufahren, wenn
sich der PCI-Bus 32 in einem verriegelten Zustand befindet, wie dies weiter nachfolgend beschrieben ist.

FEHLER-ISOLATION

[0479] Der Bus-Beobachter bzw. Watcher 129 kann einen fehlerhaften bzw. hdngenden Zustand auf dem se-
kundaren PCI-Bus 32 erfassen. Falls ein hangender Zustand erfasst wird, stellt der Bus-Beobachter 129 ein
Bus-Hangend-Anhangigkeits-Bit ein, das bewirkt, dass die SIO 50 die Schlitze bzw. Einsteckplatze auf dem
sekundaren PCI-Bus 32 energiemalig herunterfahrt, und eine nicht-maskierbare Unterbrechung (Non-Masca-
ble Interrupt — NMI) wird zu der CPU 14 Ubertragen. Die CPU 14 spricht auf die NMI durch aufrufen eines
NMI-Programms an, um den Schlitz (die Schlitze), die den hdngenden Zustand verursachen, zu isolieren.

68/215

DE 697 21 381 T2 2004.01.15

Wenn einmal der defekte Schlitz bzw. die defekten Schlitzen identifiziert sind, werden sie gesperrt oder ener-
giemaRig abgeschaltet.

[0480] Fur Software-Diagnostik-Zwecke umfasst der Bus-Beobachter 129 in dem ausgangsseitigen Bru-
cken-Chip 48 einen Bus-Historie-FIFO und einen Bus-Vektor-FIFO. Wenn der sekundare PCI-Bus 32 geeignet
funktioniert, werden die Bus-Historie-Informationen, die eine Adressen-Gruppe (umfassend die PCI-Adresse,
die PCI-Befehls-Signale, die PCI-Master-Zahl und das Adressen-Paritats-Bit) und eine Daten-Gruppe (umfas-
send die PCI-Daten, die Byte-Freigabe-Signale C/BE[3:0]_, ein Paritats-Fehler-Signal PERR _, das Daten-Pa-
ritats-Bit, ein Burst-Zyklus-Indikations-Bit und ein Daten-Gliltigkeits-Zeichen) durch den Bus-Beobachter 129
bei jeder Transaktion aufgezeichnet. Wenn das PCI-Signal FRAME_ auf dem sekundaren PCI-Bus 32 aufge-
stellt ist, um eine Bus-Transaktion zu starten, werden die Adressen-Gruppe und jede darauffolgende Da-
ten-Gruppe in dem Bus-Hinstorie-FIFO gespeichert. Wenn die Transaktion eine Burst-Transaktion ist, dann
wird das Burst-Zyklus-Indikations-Bit auf aktiv in der zweiten Daten-Phase gesetzt. Nach der ersten Datenpha-
se wird das Adressen-Feld in der Adressen-Gruppe, zugeordnet der darauffolgenden Datengruppe in der
Burst-Transaktion, um vier erhéht, und die neue Adressen-Gruppe und die Datengruppe werden in der nachs-
ten Stelle des Bus-Hinstorie-FIFO gespeichert. Falls Daten nicht tibertragen werden, da ein Zustand eines er-
neuten Versuchs oder ein Zustand einer Unterbrechung ohne Daten vorliegt, wird das Giiltigkeits-Daten-Indi-
kations-Bit auf niedrig gesetzt.

[0481] Sowohl die Adressen-Gruppe als auch die Daten-Gruppe flie3en durch eine 2-Stufen-Pipeline, um Zeit
fur die Daten-Gruppe zuzulassen, um das Daten-Paritats-Bit und das Daten-Paritats-Fehler-Bit zu sammeln,
und den Aufzeichnungsvorgang zu stoppen, wenn ein Daten-Paritats-Fehler auftritt, bevor die nachste Adres-
sen-Gruppe gespeichert wird. Falls der Bus in der Mitte einer Schreib-Daten-Phasen hangt, werden die Daten
gespeichert, und ein Bus-Hangend-Status-Bit wird in einem Bus-Hangen-Indikations-Register 482 (Fig. 42),
zuganglich Uber einen Konfigurations-Raum, eingestellt. Falls der Bus in der Mitte einer Lese-Daten-Phase
hangt, werden die Daten als nicht glltig markiert, und das Bus-Hangend-Bit wird eingestellt.

[0482] Bus-Zustands-Vektoren werden in dem Bus-Vektor-FIFO zusammengestellt und gespeichert, umfas-
send die folgenden PCI-Steuer-Signale: Schlitz-Anforderungs-Signale REQ[7:0]_; Schlitz-Erteilungs-Signale
GNT[7:0]_; das FRAME_ Signal; das PCI-Vorrichtungs-Auswahl-Signal DEVSEL_; das PCl-Initiator-Bereit-
schafts-Signal TRDY _; das PCI-Target-Bereitschafts-Signal TRDY _; das Stopp_ Signal; das PCI-Paritats-Feh-
ler-Signal PERR _; das PCI-System-Fehler-Signal SERR _; und das LOCK Signal. An jedem PCI-Takt, in dem
sich der Bus-Zustands-Vector andert, d. h. irgendeines der aufgelisteten Signale andert einen Zustand, wird
der neue Vector in den Bus-Vektor-FIFO hineingespeichert.

[0483] Der Bus-Beobachter 129 umfasst einen Watch-Dog-Zeitgeber 454 (Fig. 40), um zu bestimmen, ob
sich der sekundare Bus 32 verriegelt hat. Falls der Watch-Dog-Zeitgeber 554 ablauft, dann hat der Bus 32 ge-
hangen. Das folgende sind Beispiele von Bus-Hangend-Zusténden, die durch den Watch-Dog-Zeitgeber 454
erfasst werden kénnen: Das FRAME_ Signal wird auf hoch oder niedrig gesetzt; das Signal TRDY_ wird nicht
in Abhangigkeit von IRDY _ aufgestellt; der PCI-Arbitrierer 124 erteilt nicht den Bus zu irgendeinem Master; und
ein Master, der den Bus 32 anfordert, behalt bei, es zu versuchen.

[0484] Wenn der Watch-Dog-Zeitgeber 454 ablauft, wird das Bus-Hangend-Anhangigkeits-Bit auf aktiv in
dem Bus-Hangend-Indikations-Register 482 gesetzt. Wenn das Bus-Hangend-Anhangigkeits-Bit auf aktiv ge-
setzt ist, gibt es den Bus-Beobachter 129 frei. Als nachstes werden die Schlitz-Freigabe-Bits in der SIO 50 ge-
I6scht, was bewirkt, dass die Schlitze energiemafig heruntergefahren werden. Die S1O 50 stellt dann das Sys-
tem-Fehler-Signal SERR _ auf.

[0485] Um die Ursache eines Bus-Hangend-Zustands zu isolieren, bewirkt das System-Fehler-Signal
SERR _, dass die Unterbrechungs-Logik in dem System die NMI zu der CPU 14 ausgibt. Wie Fig. 37 zeigt, be-
stimmt der NMI-Handler zuerst, 400, ob das Bus-Hangend-Anhangigkeits-Bit eingestellt ist, durch Lesen des
Bus-Hangend-Indikations-Registers 482. Falls dies der Fall ist, ruft der NMI-Handler, 401, einen BIOS-Isolati-
ons-Handler zum Isolieren des defekten Schlitzes bzw. Einsteckplatzes oder der defekten Schlitze auf. An-
sonsten werden andere NMI-Prozeduren aufgerufen, 402.

[0486] Als ein Fehler-Sicherheits-Mechanismus umfasst das Computersystem auch den Automatik-Ser-
ver-Wiederherstellungs- (Automatic Server Recovery — ASR) Zeitgeber 72, der geldscht wird, wenn bestimmte
Software-Programme durch das Betriebssystem ausgefihrt werden. Falls der ASR-Zeitgeber ablauft (z. B.
nach 10 Minuten), zeigt dies an, dass sich das Betriebssystem verriegelt hat. Der sekundare PCI-Bus 32, der
hangt, kann die Ursache der System-Verriegelung sein, wobei in einem solchen Fall der NMI niemals zu der
CPU 14 gehen kann. Falls der ASR-Zeitgeber ablauft, dann tritt ein ASR-erzeugtes Reboot auf. Der ASR-Zeit-
geber stellt auch sicher, dass, falls sich der BIOS-Isolations-Handler in der Mitte einer Isolation eines Feh-
ler-Schlitzes auf dem PCI-Bus 32 befindet, und das Computer-System hangt, um ein ASR-Reboot zu verursa-
chen, das Isolations-Programm dort weiterfahren kann, wo es unmittelbar vor dem ASR-Time-Out-Ereignis ge-
lassen wurde.

[0487] Wie Fig. 38 zeigt, wird ein BIOS ASR Handler in Abhangigkeit eines ASR-Reboot Zustands aufgeru-
fen. Der ASR-Handler priift zuerst, 444, um zu bestimmen, ob eine Isolations-In-Progress-Ereignis-Variable

69/215

DE 697 21 381 T2 2004.01.15

(EV) aktive Informationen enthalt, die anzeigen, dass der Isolations-Prozess vor dem ASR-Time-Out-Ereignis
im Fortschreiten war. Das Isolations-In-Progress-EV wird in einem nicht-flichtigen Speicher (NVRAM) 70 ge-
speichert und umfasst Header-Informationen, die auf aktiv gesetzt werden, um anzuzeigen, dass der Isolati-
ons-Prozess gestartet wurde. Das Isolations-In-Progress-EV wird auch mit dem momentanen Zustand des Iso-
lations-Prozesses aktualisiert, umfassend die Schlitze bzw. Einsteckplatze, die gepruft worden sind, die Schlit-
ze, die defekt sind, und die Schlitze, die freigegeben worden sind.

[0488] Falls der Isolations-Prozess im Fortschreiten war, gibt der BIOS-ASR-Handler wieder alle Schlitze frei,
448, mit Ausnahme solcher, die unmittelbar vor dem ASR-Ereignis freigegeben wurden, was aus dem Isolati-
ons-In-Progress-EV bestimmt wird. Die freigegebenen Schlitze vor dem ASR-Reboot waren wahrscheinlich die
Ursache der ASR-Durchsicht. Als Folge werden diese Schlitze gesperrt (d. h. energiemalig heruntergefahren).
Als nachstes werden die Zahlen der gesperrten Schlitze als Fehler-Status-Informationen protokolliert, 450, ge-
speichert in dem NVRAM, und das Isolations-In-Progress-EV wird geléscht. Der BIOS-ASR-Handler prift
dann, 452, um zu bestimmen, ob das Bus-Hangend-Anhangigkeits-Bit eingestellt ist. Falls dies der Fall ist, wird
das Bus-Hangend-Anhangigkeits-Bit geldéscht (unter Durchflihren eines I/O-Zyklus auf dem sekundaren
PCI-Bus 32), um den Bus-Beobachter 129 wieder freizugeben.

[0489] Falls das Isolations-In-Progress-EV nicht in den aktiven Zustand eingestellt ist, 444, anzeigend, dass
der Isolations-Prozess nicht lief, als das ASR-Ereignis auftrat, priift das Programm, 446, um zu bestimmen, ob
das Bus-Hangend-Anhangigkeits-Bit eingestellt ist. Falls nicht, dann wird der BIOS-ASR-Handler vorgenom-
men. Falls das Bus-Hangend-Anhangigkeits-Bit eingestellt ist, 446, was anzeigt, dass ein Bus-Hangend-Zu-
stand aufgetreten ist, und zwar vor dem ASR-Ereignis, ruft der BIOS-ASR-Handler den BIOS-Isolations-Hand-
ler auf, um den Fehler-Schlitz oder Schlitze zu isolieren.

[0490] Wie Fig. 39 zeigt, protokolliert der Isoaltions-Handler zuerst, 408, zu dem Fehler-Status-Informati-
ons-Bereich des NVRAM die Bus-Historie- und Bus-Zustand-Vektor-Informationen, gespeichert in den Histo-
rie- und Vektor-FIFOs, in dem Bus-Monitor 127. Die Bus-Historie- und Bus-Zustand-Vektor-FIFOs werden ge-
lesen und deren Inhalte werden zu dem NVRAM Uubertragen. Als nachstes werden die Header-Informationen
der Isolation-In-Progress-Ereignis-Variable eingestellt, 410, um anzeigen, dass sich der Isoaltions-Prozess
beim Fortschreiten befindet. Das Bus-Hangend-Anhangigkeits-Bit wird geléscht (durch Schreiben zu einer vor-
bestimmten Konfigurations-Adresse), um den Bus-Watcher bzw. -Beobachter 129 wieder freizugeben. Als
nachstes gibt das Isolations-Programm den zuerst belegten Schlitz bzw. Einsteckplatz (d. h. ein Schlitz, mit
dem eine PCI-Vorrichtung verbunden ist) wieder frei (d. h. fahrt es energiemallig hoch), 412, und liest und
schreibt von dem PCI-Konfigurations-Raum der Vorrichtung. Ein Schlitz wird durch Schreiben zu dem
Schlitz-Freigabe-Register 817 (Fig. 29) wieder freigegeben. Als nachstes bestimmt das Programm 414, ob das
Bus-Hangend-Anhangigkeits-Bit auf aktiv gesetzt ist, was anzeigt, dass die Vorrichtung, verbunden mit dem
Schlitz, verursachte, dass der Bus hangt, wahrend davon gelesen wurde. Falls dies nicht der Fall ist, bestimmt
das Programm, 416, ob alle belegten Schlitze geprift worden sind. Falls dies nicht der Fall ist, wird der erste,
belegte Schlitz, gesperrt, 418, und das Isolation-In-Progress-EV wird aktualisiert, 420, um anzuzeigen, dass
der erste, belegte Schlitz erneut durch den BIOS-Isolations-Handler versucht worden ist. Falls das Programm
bestimmt, 414, dass das Bus-Hangend-Anhangigkeits-Bit auf aktiv gesetzt ist, wird der Schlitz als ausgefallen
angezeigt (z. B. durch Einstellen auf aktiv eines Ausfall-Zeichens fiir diesen Schlitz), und zwar in dem Aus-
fall-Status-Informations-Bereich des NVRAM. Als nachstes wird die Schleife, die aus den Schritten 412, 414,
416, 418 und 420 besteht, durchgefiihrt, bis alle belegten Schlitze geprift worden sind.

[0491] Falls alle belegten Schlitze gepruft worden sind, 416, nimmt das Programm eine Priifung vor, 424, um
zu bestimmen, ob irgendein Schlitz als ausgefallen in dem Ausfall-Status-Informations-Bereich des NVRAM
angezeigt ist. Falls dies der Fall ist, gibt das Programm 398 erneut nur die nicht ausgefallenen Schlitze frei,
426. Dann wird das Isolation-In-Progress-EV geldscht, 428, und das BIOS-Isolations-Programm wird abge-
schlossen.

[0492] Falls keiner der Schlitze als ausgefallen angezeigt ist, 424, dann zeigt dies an, dass der Bus-Han-
gend-Zustand nicht durch einen einzelnen Schlitz verursacht worden ist, sondern kann durch mehr als eine
Vorrichtung, die zu diesem selben Zeitpunkt aktiv sind, verursacht sein. Um dies zu bestatigen, sperrt der
BIOS-Isolations-Handler zuerst alle Schlitze (d. h. fahrt sie energiemaflig herunter), 430, und aktualisiert das
Isolation-In-Progress-EV mit diesen Informationen. Als nachstes I6scht der BIOS-Isolations-Handler 431 eine
Zahl-Variable N auf 0 und stellt eine Zahl-Variable | auf den Wert von N ein. Die Zahl-Variable N stellt die Zah-
lung der belegten Schlitze dar.

[0493] Der BIOS-Isolations-Handler gibt wieder den belegten Schlitz | (der zu Anfang Schilitz N ist) frei (d. h.
fahrt ihn energiemaRig hoch), 432, und liest und schreibt zu diesem PCI-Konfigurations-Raum. Der Handler
pruft dann, 438, um zu bestimmen, ob das Bus-Hangend-Anhangigkeits-Bit eingestellt ist. Falls dies nicht der
Fall ist, verringert der Handler 433 die variable | und prift, 434, ob die Variable | gréRer als oder gleich zu null
ist. Falls dies der Fall ist, aktualisiert der Handler 435 das Isolations-In-Progress-EV und gibt wieder den nachs-
ten, belegten Schlitz | frei, 432, und liest und schreibt mit diesem. Der Handler pruft dann, 438, ob das
Bus-Hangend-Anhangigkeits-Bit fir diesen nachsten Schlitz eingestellt ist. Auf diese Art und Weise werden,

70/215

DE 697 21 381 T2 2004.01.15

fur jeden Schlitz N, der freigegeben werden soll, die vorher freigegebenen Schlitze auch energiemalig, einer
zu einem Zeitpunkt, hochgefahren, um zu bestimmen, ob eine Kombination von Schlitzen den Fehler verur-
sacht.

[0494] Falls die Variable | dahingehend bestimmt ist, 434, dass sie geringer als Null ist, dann priift der Handler
436, um zu bestimmen, ob alle belegten Schlitze freigegeben worden sind. Falls dies nicht der Fall ist, wird die
Variable N erhéht, 437, das Isolation-In-Progress-EV wird aktualisiert, 439, und die Variable | wird wieder ein-
gestellt, 441, und zwar gleich zu dem Wert von N.

[0495] Falls das Bus-Hangend-Anhangigkeits-Bit auf aktiv gesetzt ist, 438, dann werden potentiell zwei
Schlitze gesperrt, 440: Schlitz N (der der Schlitz ist, der momentan freigegeben ist), und Schlitz | (der der
Schlitz ist, von dem momentan gelesen und zu dem momentan geschrieben wird). Falls die Werte von | und N
dieselben sind, dann wird nur Schlitz N gesperrt.

[0496] Falls der Handler bestimmt, 436, dass alle belegten Schlitze freigegeben worden sind (und ein Fehler
nicht identifiziert werden konnte), dann lockt der Handler den NVRAM seine Unfahigkeit ein, 442, um den Feh-
ler zu isolieren. Als nachstes I6scht der Handler 428 das Isolation-In-Progress-EV.

[0497] Wie Fig. 40 zeigt, liefert der Watch-Dog-Zeitgeber 454 Ausgangs-Signale WD_TMR_OUT[17:0] (Zeit-
geber-Zahl-Wert), HANG_PEND (Bus-Hangend-Zustand ist vorhanden), EN_CAP (die Software einer Erfas-
sung der Bus-Vektor-Historie-Information ist freigegeben), TIME_OUT (der Watch-Dog-Zeitgeber 454 ist ab-
gelaufen), ein Signal HANG_RCOVR _EN (eingestellt auf Hoch durch die Software, um die Hang-Recovery-Lo-
gik in dem Bus-Watcher 129 und in dem SIO 50 freizugeben), und ein Signal CAP_ILLEG_PROT (um einen
illegalen Zyklus auf dem PCI-Bus 32 anzuzeigen).

[0498] Das Signal HANG_PEND wird zu der SIO 50 geliefert, um die Sekundar-Bus-Schlitze zu schlie3en.
Die Eingangs-Signale zu dem Watch-Dog-Zeitgeber 454 umfassen einige der PCI-Bus-Signale, ein Signal
WRT_EN_CAP_1 (gepulst auf Hoch durch die Software, um erneut die Erfassung der Bus-Historie- und
Bus-Vektor-Informationen durch den Fehler-Isolations-Block 129 freizugeben), und ein Energie-Good-Indika-
tor-Signal SYNC_POWEROK (was anzeigt, dass Energie zu dem Computer-System stabil ist).

[0499] Eine Bus-Hangend-Zuriickgewinnungs-Zustand-Maschine 456 empfangt die Signale HANG_PEND,
TIME_OUT und HANG_RCOVR_EN von dem Watch-Dog-Zeitgeber 454. Die Zuriickgewinnungs-Zu-
stand-Maschine 456 empfangt auch einige der PCI-Signale. Die Ausgangs-Signale von der Bus-Hangend-Zu-
rickgewinnungs-Zustand-Maschine 456 umfassen ein Vorrichtungs-Auswahl-Signal DEVSEL_O zum Ansteu-
ern des PCI-Signal DEVSEL _, ein Signal STOP_O zum Ansteuern des PCI-Signal STOP_, ein Signal
SERR_EN, das ein Aufstellen des System-Fehler-Signals SERR _ freigibt, ein Signal BR_M_ABORT (was an-
zeigt, dass sich der Bus-Watcher 129 mit einem Master-Abort wieder hergestellt hat) ein Signal BR_T_ABORT,
das anzeigt dass sich der Bus-Watcher 129 mit einem Target-Abort wieder hergestellt hat), und ein Signal
RCOVR_ACTIVE (zum Anzeigen, wenn die Bus-Hangend-Zurickgewinnungs-Zustand-Maschine 456 aktiv
ist). Die Bus-Hangend-Zuruckgewinnungs-Zustand-Maschine 456 stellt sicher, dass der sekundare PCI-Bus
32 zurlck zu dem Leerlauf- bzw. IDLE Zustand gebracht wird, um der Software zu ermdglichen, den Feh-
ler-Schlitz bzw. -Einsteckplatz zu isolieren. Wenn der Hang-Zustand erfasst ist, fahrt die ISO 50 die sekundaren
Bus-Schlitze herunter, was automatisch den Bus 32 in den Leerlauf-Zustand versetzten wirde, falls einer der
Schlitz-Vorrichtungen der Bus-Master war, wenn der Hang-Zustand auftrat. Allerdings wiirde dann, wenn eine
der Schlitz-Vorrichtungen das Target war (und der Briicken-Chip 48 der Master war), wenn das Bus-Hangen
auftrat, dann der Briicken-Chip 48 an dem Bus verbleiben. Um den Briicken-Chip aus dem Bus herauszuneh-
men, erzwingt die Zurlickgewinnungs-Zustand-Maschine 456 einen Zyklus fur einen erneuten Versuch auf
dem PCI-Bus 32 durch Aufstellen des Signals STOP_.

[0500] Ein Bus-Historie-Erfassungs-Block 458 tiberwacht den PCI-Bus 32 hinsichtlich Transaktionen und lie-
fert die Bus-Historie-Informationen (umfassend die Adresse und die Daten) weiter zu Ausgangs-Signalen
BUS_HIST_DATA3[31:0] (die Bus-Historie-Adresse), BUS_HIST_DATA2[31:0] (die Bus-Historie-Daten) und
BUS_HIST_DATA1[15:0] (Paritats-Fehler-Signal IPERR _, Paritats-Bit-PAR, Giiltigkeits-Daten-Bit VALID_DAT,
Adressen-Paritats-Bit ADDRPAR, Burst-Indikator BURST, Master-Zahl MASTERI[2:0], Byte-Freigabe-Bits
CBE[3:0]_, und Befehl-Bits CMD[3:0]). Der Bus-Historie-Erfassungs-Block 458 stellt ein Signal HIS_RDY auf,
wenn Daten auf den BUS_HIST_DATA Signalen verflgbar sind, was der Fall an dem Ende jeder Daten-Phase
in einer normalen Transaktion ist, oder falls die Transaktion mit einer Master-Aussonderung, einem erneuten
Versuch, beendet wird, und zwar wahrend des Aufstellens des Time-Out- Signals TIME_OUT.

[0501] Ein Bus-Vektor-Erfassungs-Block 460 erfasst die Zustande von bestimmten PCI-Steuersignalen,
wenn irgendeines dieser Steuersignale seinen Zustand andert. Der Vektor wird erfasst und als Signal
BUS_VECT_DATA[20:0] ausgegeben, die die Anforderungs-Signale !REQ[7:0] , Erteilungs-Signale
IGNT[7:0]_, ein Time-Out-Signal TIME_OUT, ein Verriegelungs-Signal LOCK_, ein System-Fehler-Signal
SERR_, ein Paritats-Fehler-Signal PERR_, ein Stop-Signal STOP_, ein Target-Ready-Signal TRDY_, ein Ini-
tiator-Ready-Signal IRDY_, ein Vorrichtungs-Auswahl-Signal DEVSEL_ und ein Frame-Signal FRAME__ ent-
halten. Der Bus-Vektor-Erfassungs-Block 460 stellt ein Signal VECT_RDY auf, falls sich irgendein Bus-Vektor
BUS_VECT_DATA[24:0] geandert hat oder der Watch-Dog-Zeitgeber 454 abgelaufen ist (TIME_OUT ist

71/215

DE 697 21 381 T2 2004.01.15

hoch).

[0502] Die Bus-Historie- und Bus-Vektor-Signale werden den Eingadngen eines Bus- Watcher FIFOs prasen-
tiert, das einen 2-Deep-Bus-Historie-FIFO und einen 4-Deep-Vektor-Historie-FIFO umfasst. Die Ausgange der
Bus-Historie-FIFOs werden als Signale BUS_HIST_REG1[31:0], BUS_HIST_REG2[31:0] und
BUS_HIST_REG3[31:0] prasentiert. Die Ausgange des Vektor-Historie-FIFOs werden als Signale
BUS_VECT_REG[3:0] prasentiert. Die System-Software liest die Ausgange des Bus-Historie-FIFO durch Er-
zeugen eines I/O-Lese-Zyklus, der bewirkt, dass ein Signal BUS_HIST_RD1 aufgestellt wird, und liest die Aus-
gange des Vektors FIFO durch Erzeugen eines 1/0-Lese-Zyklus, der bewirkt, dass ein Signal BUS_VECT_RD
aufgestellt wird.

[0503] Wie Fig. 41 zeigt, beginnt die Zurlickgewinnungs-Zustand-Maschine 456 in einem Zustand IDLE,
wenn das Signal SYNC_POWEROK auf niedrig gesetzt wird, was anzeigt, dass Energie bis jetzt noch stabil
ist. Die Zustand-Maschine verbleibt in einem Zustand IDLE, wahrend das Signal HANG_PEND niedrig ist. In
dem Zustand IDLE werden Signale BR_M_ABORT, BR_T_ABORT und RCOVR_ACTIVE auf niedrig gesetzt.
Das Signal RCOVR_ACTIVE ist aktiv hoch in den anderen Zustanden WAIT, ABORT und PEND_OFF. Falls
das Signal SET_HANG_PEND auf hoch gestellt ist, geht die Zustand-Maschine zu einem Zustand WAIT Uber.
Bei dem Ubergang wird das Signal DEVSEL_O gleich zu dem invertierten Zustand des Vorrichtungs-Aus-
wahl-Signals DEVSEL_ gesetzt. Dies stellt sicher, dass dann, wenn das Vorrichtungs-Auswahl-Signal
DEVSEL_ durch ein Target vor dem Bus-Hangend-Zustand aufgestellt wird, die Zuriickgewinnungs-Zu-
stand-Maschine 456 das Signal DEVSEL _ aufgestellt beibehalt. In dem Zustand WAIT wird das Signal
DEVSEL_O gleich zu dem Zustand des Signals DEV_SEL WAS gesetzt, was auf hoch gesetzt wird, falls das
Signal DEVSEL_ durch ein Target aufgestellt ist, bevor die Zustand-Maschine zu dem WAIT Zustand Gibergeht.
[0504] Von dem Zustand WAIT geht die Bus-Hangend-Zuriickgewinnungs-Zustand-Maschine 456 zu dem
PEND_OFF Zustand Uber, falls ein Signal PCI_IDLE aufgestellt ist, was anzeigt, dass der PCI-Bus 32 zu einem
Leerlauf iibergegangen ist (d. h. Signale FRAME_ und IRDY _ sind beide auf hoch gesetzt). Bei dem Ubergang
wird das Signal BR_M_ABORT auf hoch gesetzt, um anzuzeigen, dass eine der Schlitz-Vorrichtungen der
Master vor dem Hang-Zustand war, und die Schlitz-Vorrichtung wird energiemaflig heruntergefahren, verur-
sacht dadurch, dass der PCI-Bus zu einem Leerlauf bergeht. Ein Signal SERR_EN wird auch auf hoch ge-
setzt, um ein Aufstellen des System-Fehler-Signals SERR _ freizugeben oder falls INTA_ freigegeben ist.
[0505] Falls eine Schlitz-Vorrichtung ein Target war, und zwar vor dem Bus-Hangend-Zustand, dann wird der
Bus-Master auf dem PCI-Bus 32 verbleiben. Um den Bus-Master aus dem PCI-Bus 32 herauszubringen, gibt
die Bus-Hangend-Zuriickgewinnungs-Zustand-Maschine 456 einen erneuten Versuch auf dem PCI-Bus 32
heraus. Ein Zahler 457 zahlt eine vorbestimmte Zahl von PCLK-Perioden (z. B. 15 PCLK-Perioden), nachdem
das Signal HANG_PEND auf hoch gesetzt ist. Die 15 PCLK-Perioden stellen eine ausreichende Anstiegszeit
auf FRAME_ und IRDY_ sicher, um den Signalen Zeit zu geben, zuriick zu deren Leerlauf-Zustdnden zu ge-
hen. Wenn 15 PCLK-Perioden abgelaufen sind, stellt der Zahler 457 das Signal TIME_OUT15 auf. Falls das
Signal TIME_OUT15 auf hoch gesetzt ist, und das Signal PCI_IDLE niedrig verbleibt, dann geht die Zu-
stand-Maschine von einem Zustand WATT zu einem Zustand ABORT Uber. Bei dem Ubergang wird das Signal
STOP_O auf hoch gesetzt, um das PCI STOP__ Signal auf aktiv anzusteuern, um den Bus-Master erneut zu
versuchen. Die Zustand-Maschine verbleibt in einem Zustand ABORT, wahrend der Bus-Master das Signal
FRAME_ auf niedrig aufgestellt beibehalt. In dem Zustand ABORT wird das Signal STOP_O auf hoch beibe-
halten. Wenn einmal der Bus-Master das FRAME _ Signal in Abhangigkeit des Wiederversuch-Zustands zu-
rucknimmt, geht die Zustand-Maschine von einem Zustand ABORT zu einem Zustand PEND_OFF uber. Bei
dem Ubergang wird das Signal BR_T_ABORT auf hoch gesetzt, um anzuzeigen, dass das Target-Abort bzw.
die Ziel-Aussonderung notwendig war, und zwar nach dem Bus-Hangend-Zustand, um den Bus 32 in den Leer-
lauf-Zustand zu platzieren. Das Signal SERR_EN wird auch auf hoch gesetzt, um ein Aufstellen des Signals
SERR_ zu ermdglichen, oder falls INTA_ freigegeben ist. Die Zustand-Maschine verbleibt in dem Zustand
PEND_OFF, bis das Signal WRT_EN_CAP_1 auf hoch gesetzt worden ist, wobei es zu diesem Zeitpunkt zu-
ruck zu dem Zustand IDLE Ubergeht.

[0506] Die System-Software kann den Wert von BR_M_ABORT und BR_T_ABORT Signalen lesen, um zu
bestimmen, ob die Schlitz-Vorrichtung, eingeschlossen in dem Bus-Hangend-Zustand, eine Master-Vorrich-
tung oder eine Slave-Vorrichtung war.

[0507] Wie Fig. 42 zeigt, umfasst der Watch-Dog-Zeitgeber 454 einen 18-Bit-LSFR-Zahler 464, der durch das
Signal PCLK getaktet wird. Der Zahler 464 wird dann freigegeben, wenn der Ausgang eines UND-Gates 467
auf hoch gesetzt ist, was dann auftritt, wenn ein neuer Master eine Anforderung (ANY_REQ ist hoch) ausgibt,
der Bus-Zyklus gestartet ist (Signale FRAME_ und IRDY _ sind beide aufgestellt), das Freigabe-Erfassungs-Si-
gnal EN_CAP aufgestellt ist, und das Signal TIME_OUT niedrig ist. Ein ODER-Gate 466 empfangt das Signal
ANY_REQ und die invertierten Zustande von Signalen FRAME_ und IRDY _. Das UND-Gate 467 empfangt den
Ausgang fo des ODER-Gates 466, das Signal EN_CAP und den invertierten Zustand des Signals TIME_OUT.
Der Ausgang des Zahlers steuert Signale WD_TMR_OUT[17:0] und wird geldscht, wenn ein Time-Out-Zu-
stand erfasst ist (TIME_OUT ist hoch), eine Datenlibertragung stattgefunden hat (beide Signale IRDY_ und

72/215

DE 697 21 381 T2 2004.01.15

TRDY_ sind auf niedrig gesetzt), oder alle Ausgangs-Bits des Zahlers 464 hoch sind (was ein illegaler Zustand
ist). Der Losch-Zustand wird durch ein ODER-Gate 470 angezeigt, das das Signal TIME_OUT empfangt, das
bit-weise AND (UND) der Signale WD_TMR_OUT[17:0] und den Ausgang eines UND-Gates 472. Die Eingan-
ge des UND-Gates 472 nehmen den invertierten Zustand des Signals IRDY_ und den invertierten Zustand des
Signals TRDY_ auf.

[0508] Das Signal TIME_OUT wird auf hoch durch einen Time-Out-Detektor 474 gesetzt, wenn die Zeitge-
ber-Signale WD_TMR_OUT[17:0] zu dem binaren Wert 1000000000000000. Das Signal TIME_OUT wird zu
einem Eingang eines ODER-Gates 476 geliefert, dessen Ausgang mit dem Eingang eines UND-Gates 478 ver-
bunden ist. Der andere Eingang des UND-Gates 478 nimmt den invertierten Zustand eines Signals
WRT_EN_CAP_1 auf (gesteuert durch eine Software, um erneut die Bus-Historie und Bus-Vektor-Erfassung
zu ermdglichen), und sein Ausgang wird mit dem D Eingang eines Flip-Flops 488 vom D-Typ verbunden. Das
Flip-Flop 488 wird durch das Signal PCLK getaktet und steuert ein Ausgangs-Signal WD_TIME_OUT an, das
zurlick zu dem anderen Eingang des ODER-Gates 476 zugefiihrt wird. Das Flip-Flop 488 wird dann gel6scht,
wenn das Power-Good-Signal SYNC_POWEROK negiert wird. Demzufolge 16scht ein ASR-Reset nicht das
Signal WD_TIME_OUT.

[0509] Das HANG PEND Signal wird durch ein Flip-Flop 482 vom D-Typ auf hoch gesetzt, dessen D-Eingang
mit dem Ausgang eines UND-Gates 484 verbunden wird und der durch das Signal PCLK getaktet wird. Ein
Eingang des UND-Gates 484 ist mit dem Ausgang eines ODER-Gates 486 verbunden, und sein anderer Ein-
gang nimmt den invertierten Zustand des Signals WRT_EN_CAP_1 auf. Ein Eingang des ODER-Gates 486 ist
mit dem Signal HANG PEND verbunden, und der andere Eingang ist mit dem Ausgang eines UND-Gates 488
verbunden. Die Eingdnge des UND-Gates 488 nehmen das Signal TIME_OUT und das Freigabe-Signal
HANG_RCOVR_EN auf. Demzufolge wird, falls die System-Software eine Bus-Hangend-Wiederherstellung
freigibt (HANG_RCOVREN ist hoch), dann wird ein Time-out-Zustand bewirken, dass das Signal
HANG_PEND auf hoch gesetzt wird. Das Signal HANG_PEND wird dann geléscht, wenn die System-Software
bewirkt, dass das Signal WRT_EN_CAP_1 aufgestellt wird (unter Durchfihren eines I/O-Zyklus auf dem Bus
32), oder wenn das Signal SYNC_POWEROK negiert wird. Das Bit HANG_PEND wird nicht negiert durch ei-
nen ASR-Reboot.

[0510] Das Freigabe-Erfassungs-Signal EN_CAP wird durch ein Flip-Flop 490 vom D-Typ erzeugt, dessen
D-Eingang den Ausgang eines UND-Gates 492 aufnimmt. Ein Eingang des UND-Gates 492 ist mit dem Aus-
gang eines ODER-Gates 494 verbunden, und sein anderer Eingang ist mit dem invertierten Zustand eines Si-
gnals CLR_EN_CAP verbunden. Ein Eingang des ODER-Gates 494 wird zurtick zu dem Signal EN_CAP ge-
fuhrt und der andere Eingang nimmt das Signal WRT_EN_CAP_1 auf. Das Flip-Flop 490 wird durch das Signal
PCLK getaktet und auf hoch gesetzt, wenn das Signal SYNC_POWEROK auf niedrig gesetzt wird. Wenn ein-
mal das Signal EN_CAP auf hoch durch die Software Uber das Signal WRT_EN_CAP_1 gesetzt wird, wird es
auf hoch beibehalten. Das Signal CLR_EN_CAP wird aufgestellt, um das Signal EN_CAP zu |6schen (Disable
Capture of Information — Sperren einer Erfassung von Information), was dann auftritt, wenn ein Zeitablauf bzw.
Time-Out aufgetreten ist (TIME_OUT ist hoch), ein System-Fehler aufgetreten ist (SERR _ ist niedrig), ein Pa-
ritdts-Fehler aufgetreten ist (PERR_ ist niedrig), oder ein illegales Bus-Protokoll erfasst worden ist
(CAP_ILLEG_PROT ist hoch).

[0511] Das Signal CAP_ILLEG_PROT wird durch ein Flip-Flop 483 vom D-Typ erzeugt, dessen D-Eingang
den Ausgang eines UND-Gates 485 aufnimmt. Ein Eingang des UND-Gates nimmt den invertierten Zustand
des Signals WRT_EN_CAP_1 auf, und der andere Eingang empfangt den Ausgang eines ODER-Gates 487.
Das ODER-Gate 487 empfangt die Signale CAP_ILLEG_PROT und SET_ILLEG_PROT. Das Signal
SET_ILLEG_PROT wird dann aufgestellt, wenn ein Protokollieren (capture) freigegeben ist (EN_CAP ist
hoch), die Zustand-Maschine 456 nicht aktiv ist (RCOVR_ACTIVE ist niedrig), der Bus leerlauft und irgendwel-
che Signale DEVSEL_, TRDY_ oder TRDY_ auf niedrig gesetzt sind. Dieser Zustand ist ein illegaler Zustand,
der eine Protokollierung der Bus-Historie und von Bus-Vektor-Informationen triggert.

[0512] Wie Fig. 43 zeigt, wird das Bus-Historie-Bereitschaft-Signal HIST_RDY durch ein Flip-Flop 502 vom
D-Typ erzeugt, das durch das Signal PCLK getaktet und durch das Signal RESET geldscht wird. Der D-Ein-
gang des Flip-Flops 502 ist mit dem Ausgang eines ODER-Gates 504 verbunden, dessen Eingange das Signal
TIME_OUT, ein Signal M_ABORT (Master-Abort-Signal, verzdgert durch eine PCLK), den Ausgang eines
UND-Gates 506 und den Ausgang eines UND-Gates 508 aufnehmen. Das UND-Gate 506 stellt seinen Aus-
gang auf, falls ein erneuter Versuch, C zu trennen, oder ein Target-Abort-Zyklus auf dem sekundéaren Bus 32
vorhanden ist (das Signal FRAME_, der invertierte Zustand des Signals IRDY_, der invertierte Zustand des
Signals STOP_, und der invertierte Zustand des Signals DSC_A_B sind alle wahr). Das UND-Gate 508 stellt
seinen Ausgang auf, wenn eine abgeschlossene Daten-Ubertragung aufgetreten ist (die Signale TRDY_ und
TRDY _ sind beide niedrig). Demzufolge werden die Bus-Historie-Informationen in die Bus-Historie-FIFOs ein-
geladen, wenn der Watch-Dog-Zeitgeber 554 zeitmalig ablauft, ein erneuter Versuch, C zu unterbrechen, oder
ein Target-Abort-Zustand vorhanden ist, der Master den Zyklus ausgesondert hat oder ein Zyklus erfolgreich
abgeschlossen wurde.

73/215

DE 697 21 381 T2 2004.01.15

[0513] Das Giltigkeits-Daten-Indikations-Signal VALID_DATA wird durch einen Flip-Flop 510 vom D-Typ er-
zeugt, das durch das Signal PCLK getaktet wird und durch das Signal RESET geldscht wird. Der D-Eingang
des Flip-Flops 510 wird mit dem Ausgang eines NOR-Gates 512 verbunden, das das Signal TIME_OUT, das
Master-Abort-Signal M_ABORT und den Ausgang des UND-Gates 506 aufnimmt. Demzufolge sind Daten gil-
tig, ohne dass ein Zeitablauf erfasst ist, ein Master-Abort-Zyklus ausgegeben ist, oder ein erneuter Versuch, C
zu trennen, oder ein Target-Abort-Zyklus, vorhanden ist.

[0514] Das Signal VECT_RDY wird durch ein Flip-Flop 514 vom D-Typ erzeugt, das durch das Signal PCLK
getaktet wird und durch das Signal RESET geldscht wird. Der D-Eingang des Flip-Flops 514 wird mit dem Aus-
gang eines ODER-Gates 516 verbunden, der das Zeitablaufsignal TIME_OUT und ein Signal
CHANGE_STATE aufnimmt, was anzeigt, dass eines der PCI-Steuer-Signale in dem Bus-Vector seinen Zu-
stand geéandert hat. Demzufolge werden die Zustands-Vektor-Informationen in die Vektor-FIFOs immer dann
eingeladen, wenn Steuersignale auf dem PCI-Bus 32 einen Zustand &ndern oder wenn ein Zeitablauf aufge-
treten ist.

[0515] Wie Fig. 44 zeigt, werden die Bus-Historie-Daten {BUS_HIST_DATA3[31:0],
BUS_HIST_DATAZ2[31:0], BUS HIST_DATA1[15:0]} zu dem Eingang des Bus-Historie-Registers 540 geliefert,
das die erste Stufe des Bus-Historie-FIFO's ist. Die Bus-Historie 501 liefert Ausgangs-Signale
BUS_HIST_FIFO1[79:0] zu dem Register 542 (der zweite Zustand der Pipeline), was Ausgangs-Signale
BUS_HIST_FIFOO0[79:0] liefert. Beide Bus-Historie-Register 540 und 542 werden durch das Signal PCLK ge-
taktet und geldscht, wenn das Power-Good-Signal SYNC POWEROK niedrig ist.

[0516] Die Bus-Historie-Register 540 und 542 werden dann geladen, wenn der Ausgang des UND-Gates 518
auf hoch angesteuert wird. Das UND-Gate 518 empfangt das Freigabe-Erfassungs-Bit EN_CAP und das
ODER des Bus-Historie-Bereitschafts-Signals HIST_RDY und des CAP_ILLEG_PROT Signals (ODER-Gate
519). Die Ausgangs-Signale BUS_HIST_FIFOO0[79:0] und BUS_HIST_FIFO1[79:0] werden zu den 0- und
1-Eingangen jeweils von Multiplexern 520, 522 und 524 geliefert. Jeder der Multiplexer 520, 522 und 524 wird
durch ein Lese-Adressen-Signal HIST_FIFO_RD_ADDR ausgewahlt (das mit niedrig startet, um den Ausgang
des Bus-Registers 502 auszuwahlen, und bei jeder darauffolgenden Lesung getoggelt wird). Die Multiplexer
520, 522 und 524 steuern Ausgangs-Signale BUS_HIST_REG3[31:0], BUS_HIST_REG2[31:0],
BUS_HIST_REG1[15:0] jeweils an.

[0517] Die Bus-Vektor-Daten-Signale BUS_VECT_DATA[24:0] werden zu den Eingangen eines Bus-Vek-
tor-Registers 544 geliefert, dessen Ausgang zu dem Eingang eines Bus-Vektor-Registers 546 weitergefiihrt
wird. Der Ausgang des Bus-Vektor-Registers 546 wird zu dem Eingang eines Bus-Vektor-Registers 548 wei-
tergefiihrt, dessen Ausgang wiederum zu dem Eingang eines Bus-Vektor-Registers 550 zurtickgefiihrt wird.
Jedes der Bus-Vektor-Register 0-3 wird durch das Signal PCLK getaktet und dann geléscht, wenn die Signale
SYNC_POWEROK niedrig sind. Die Bus-Vektor-Register werden dann geladen, wenn der Ausgang des
UND-Gates 521 auf hoch gesetzt wird. Das UND-Gate 521 empfangt das Signal EN_CAP und das ODER von
Signalen VECT_RDY und CAP_ILLEG_PROT (ODER-GATE 523). Die Bus-Vektor-Register 550, 548, 546 und
544 erzeugen Ausgangs-Signale BUS_VECT_FIFOO0[24:0], BUS_VECT_FIFO1[24:0],
BUS_VECT_FIFOO0[24:0] und BUS_VECT_FIFO3[24:0] jeweils, die wiederum zu den 0-, 1-, 2- und 3-Eingan-
gen eines Multiplexers 526 jeweils eingegeben werden. Der Ausgang des Multiplexers 526 liefert Signale
BUS_VECT_REGJ[31:0], wobei der Multiplexer 526 einen seiner Eingdnge basierend auf dem Zustand von
Adressen-Signalen VECT_FIFO_RD_ADDRJ[1:0] auswahlt (was mit einem binaren Wert 00 beginnt und bei je-
der darauffolgenden Lesung erhdht wird).

[0518] Demzufolge werden die Bus-Historie- und Bus-Zustand-Vektor-Informationen in Abhangigkeit eines
Aufstellens von Signalen HIST_RDY oder VECT_RDY jeweils protokolliert, oder in Abhangigkeit eines Aufstel-
lens des Signals CAP_ILEG_PROT, falls ein illegaler Bus-Protokoll-Zustand erfasst ist.

ERWEITERUNGS-KARTEN-RAUM-RESERVIERUNG

[0519] Im Gegensatz zu herkémmlichen Computersystemen reserviert, in der Anfangs-Konfiguration des
Computersystems 10, bei einem Einschalten, die CPU 14 einen Speicherraum und PCI-Bus-Zahlen fir die
Schlitze bzw. Eisteckplatze 36, die leer sind (keine Karte 807 ist eingesetzt) oder abgeschaltet sind bzw. her-
untergefahren sind.

[0520] Die CPU 14 ordnet, wie dies typischerweise vorgenommen wird, Bus-Zahlen fiir PCI-Busse (z. B.
PCI-Busse 24, 32a-b und PCI-Bus(e) der Karten 807, die in Schlitze 36 eingesetzt sind und eingeschaltet sind)
zu, die dann vorhanden sind, wenn das Computersystem 10 zuerst eingeschaltet bzw. hochgefahren wird.
[0521] Jede PCI-PCI-Briicken-Schaltung (z. B. PCI-PCI-Briicke 26, 48) in diesem Konfigurations-Regis-
ter-Raum 1252 (Fig. 49) besitzt ein Neben-Bus-Zahl-Register 1218 und ein Sekundar-Bus-Zahl-Register
1220. Das Neben-Bus-Zahl-Register 1218 enthalt eine Neben-Bus-Zahl, die die héchste PCI-Bus-Zahl aus-
gangsseitig der PCI-PCI-Briicken-Schaltung ist, und das Sekundar-Bus-Zahl-Register 1220 enthalt eine Se-
kundar-Bus-Zahl, die die PCI-Bus-Zahl des PCI-Busses unmittelbar ausgangsseitig der PCI-PCI-Bri-

74/215

DE 697 21 381 T2 2004.01.15

cken-Schaltung ist. Demzufolge definieren die Werte, gespeichert in dem Neben- 1218 und dem Sekundar-
1220 Bus-Zahl-Register, den Bereich von PCI-Bus-Zahlen, die ausgangsseitig der PCI-PCI-Briicken-Schal-
tung vorhanden sind.

[0522] Der Konfigurations-Register-Raum 1252 besitzt auch ein Primar-Bus-Zahlen-Register 1222. Das Pri-
mar-Bus-Zahl-Register 1222 enthalt die Zahl des PCI-Busses, angeordnet unmittelbar eingangsseitig der
PCI-PCI-Briicken-Schaltung.

[0523] Die System-Steuereinheit/Host-Briicken-Schaltung 18 besitzt auch das Neben- 1218 und Sekundar-
1220 Bus-Zahl-Register. Nach einer Konfiguration enthalt das Neben-Bus-Zahl-Register 1218 der Schaltung
18 die maximale PCI-Bus-Zahl, die in dem Computersystem vorhanden ist. Das Sekundar-Bus-Zahl-Register
1220 der Schaltung 18 enthalt die Bus-Zahl Null, da dem PCI-Bus unmittelbar ausgangsseitig der Schaltung
18 (PCI-Bus 24) immer die Bus-Zahl Null zugeordnet wird.

[0524] Im Gegensatz zu dem bekannten System erkennt die CPU 14, dass einer der Schlitze 36, der zu An-
fang eingeschaltet bzw. hochgefahren ist oder leer ist, einen oder mehrere zusatzliche PCI-Buse) (vorhanden
auf der Karte 802, eingesetzt in dem Schlitz 36, zu Anfang heruntergefahren) in das Computersystem 10 hinein
einflihren kann, nachdem das Computersystem 10 bereits eingeschaltet bzw. hochgefahren und konfiguriert
ist. Dementsprechend reserviert, wahrend einer anfanglichen Konfiguration, die CPU 14 Speicherraum,
I/O-Raum und eine vorbestimmte Zahl (z. B. eins oder drei) von PCI-Bus-Zahlen fir irgendeinen Schlitz 36, der
heruntergefahren oder leer ist.

[0525] Demzufolge missen die PCI-PCI-Briicken-Schaltungen des Computersystems 10 nicht rekonfiguriert
werden, um die Karte 807 aufzunehmen, die vor kurzem eingeschaltet worden ist. Nur die PCI-PCI-Bri-
cken-Schaltungen der Karte 807, die vor kurzem eingeschaltet wurde, muss konfiguriert werden. Der Rest des
Computersystems 10 verbleibt unverandert.

[0526] Als ein Teil des Resource-Reservierungs-Prozesses baut ein Basic-Input/Output-System (BIOS), ge-
speichert in dem ROM 23 und verdeckt in den Speicher 20 eingegeben (und schreibgeschitzt), eine Tabelle
auf, die Resource-Bereiche spezifiziert, die fir die Schlitze 36 reserviert werden. Diese Tabelle umfasst eine
Bus-Zahl, Speicher und I/0O-Resource-Bereiche zur Verwendung beim Konfigurieren einer PCI-Vorrichtung, die
neu zu dem System 10 hinzugefligt worden ist. Das Betriebssystem verwendet diese Tabelle, um zu bestim-
men, welche Resourcen reserviert worden sind und welche Resourcen fiir eine Konfigurierung der neu hinzu-
gefugten PCI-Vorrichtung verfugbar sind.

[0527] Wie in Fig. 45 dargestellt ist, ordnet, in einem rekursiven PCI-Konfigurations-Programm, bezeichnet
als BUS_ASSIGN, die CPU 14 Konfigurations-Register 1252 fir PCI-Bus-Zahlen und -Programme der
PCI-PCI-Brucken-Schaltungen entsprechend zu. Die CPU 14 nimmt dies durch Abtasten eines PCI-Busses zu
einem Zeitpunkt fir PCI-Vorrichtungen vor. Das BUS_ASSIGN Programm ist Teil des BIOS, gespeichertin dem
ROM 23, und wird dazu verwendet, zu Anfang das Computersystem 10, nach einem Einschalten, zu konfigu-
rieren.

[0528] Die CPU 14 setzt zuerst 1000, der Wert eines Such-Parameters PCI-Bus, gleich zu dem Wert eines
anderen Such-Parameters CURRENT_PCI_BUS, und initialisiert 1000 Such-Parameter FCN und DEV. Der
Parameter PCI-Bus zeigt die Bus-Zahl des PCI-Busses an, der momentan durch die GPU 14 abgetastet wird,
und wenn das BUS_ASSIGN Programm zuerst durch die CPU 14 ausgeflihrt wird, zeigt der Parameter
PCI-Bus die Bus-Zahl Null an.

[0529] Der Parameter CURRENT_PCI_BUS zeigt die nachste PCI-Bus-Zahl an, die zum Zuordnen durch die
CPU verfugbar ist, und wenn das Programm BUS_ASSIGN zuerst durch die CPU 14 ausgefuhrt wird, zeigt der
Parameter CURRENT _PCI_BUS eine Bus-Zahl Null an. Die Parameter FCN und DEV zeigen die momentane
PCI-Funktion und die PCI-Vorrichtung, jeweils, an, die momentan durch die CPU 14 abgetastet werden.
[0530] Die CPU 14 bestimmt, 1001, ob der Parameter PCl_BUS eine Bus-Zahl Null anzeigt, und falls dies der
Fall ist, stellt die CPU 14 das Sekundar-Bus-Zahl-Register 1220 der System-Steuereinheit/Host-Bru-
cken-Schaltung 18 gleich zu Null ein. Die CPU 14 findet dann, 1004, die nachste PCI-PCI-Briicken-Schaltung
oder den Schlitz 36, der heruntergefahren bzw. ausgeschaltet ist oder leer ist, auf dem PCI-Bus, angezeigt
durch den Parameter PCI_BUS. Zu Zwecken einer Bestimmung, ob die nachste, gefundene PCI-Vorrichtung
eine PCI-PCI-Briicken-Schaltung ist oder nicht existiert (ein abgeschalteter oder leerer Schlitz), versucht die
CPU 14, von einem Wert eines EIN-Wort-Vendor-ID-Register, angeordnet in dem Konfigurations-Raum jeder
PCI-Vorrichtung, zu lesen. Ein Wert von ,hFFFF" (wobei die Vorsilbe ,h" eine hexadezimale Darstellung be-
zeichnet) wird reserviert und nicht durch irgendeinen Vendor bzw. Lieferanten verwendet. Falls die versuchte
Lesung von dem Vendor-ID-Register zu einem Wert ,HFFFF" zurlckkehrt, dann zeigt dies an, dass keine
PCI-Vorrichtung vorhanden ist.

[0531] Falls die CPU 14 bestimmt, 1006, dass dort keine weiteren, nicht vorgefundenen PCI-PCI-Bri-
cken-Schaltungen oder Schlitze 36 vorhanden sind, die heruntergefahren sind oder leer sind, und zwar auf
dem PCI-Bus, angezeigt durch den Parameter PCl_BUS, wird eine Zurtickfihrung von dem letzten Aufruf, vor-
genommen zu dem BUS_ASSIGN Programm, vorgenommen. Ansonsten bestimmt die CPU 14, 1008, ob eine
andere PCI-PCI-Briicken-Schaltung vorgefunden wurde, und falls nicht, erhéht die CPU 14, 1010, den Para-

751215

DE 697 21 381 T2 2004.01.15

meter CURRENT_PCI_BUS, da ein Schlitz bzw. Einsteckplatz 36, der eingeschaltet oder leer ist, gefunden
wurde, und findet, 1004, die nachste PCI-PCI-Briicken-Schaltung oder einen Schlitz 36, der abgeschaltet oder
leer ist. Demzufolge reserviert, durch Erhéhen, 1010, des Parameters CURRENT_PCI_BUS, die CPU 14 ef-
fektiv eine Bus-Zahl fir den Schlitz 36, der abgeschaltet oder leer ist. Alternativ kann die CPU 14 mehr als eine
Bus-Zahl fir den Schlitz 36 reservieren, der abgeschaltet oder leer ist.

[0532] Falls die CPU 14 eine PCI-PCI-Bricken-Schaltung fand, dann stellt die CPU 14, 1012, die Pri-
mar-Bus-Zahl der PCI-PCI-Briicken-Schaltung gleich zu dem Parameter CURRENT_PCI_BUS ein. Die CPU
14 erhéht dann, 1014, den Parameter CURRENT_PCI_BUS und stellt, 1016, die sekundare Bus-Zahl der
PCI-PCI-Bricke gleich zu der neuen Bus-Zahl, angezeigt durch den Parameter CURRENT_PCI_BUS, ein.
[0533] Die CPU 14 stellt dann, 1018, die Neben-Bus-Zahl der gefundenen PCI-PCI-Briicken-Schaltung gleich
zu der maximalen, mdglichen Zahl von PCI-Bussen ein, und zwar durch Schreiben zu dem Ne-
ben-Bus-Zahl-Register 1218. Dieser Wert fir das Neben-Bus-Zahl-Register 1218 ist temporar und ermdglicht
der CPU 14, zusatzliche, ausgangsseitige PCI-PCI-Briicken-Schaltungen oder Schlitze 36 zu finden und zu
programmieren, die abgeschaltet oder leer sind.

[0534] Die CPU 14 findet zusatzliche, ausgangsseitige PCI-PCI-Briicken-Schaltungen oder Schlitze 36, die
abgeschaltet oder leer sind, durch Aufbewahren, 1022, der Parameter PCI_BUS, DEV und FCN und jeweils
aufrufen, 1022, des BUS ASSIGN Programms. Die CPU 14 speichert dann wieder, 1024, die Werte fiir die Pa-
rameter PCI_BUS, DEV und FCN, und kehrt zu dem letzten Aufruf des BUS_ASSIGN Programms zurtick, um
den Parameter CURRENT_PCI_BUS mit der nachsten PCI-Bus-Zahl zu aktualisieren, die durch die CPU 14
zugeordnet werden sollen.

[0535] Die CPU 14 aktualisiert dann, 1026, die Neben-Bus-Zahl der aufgefundenen PCI-PCI-Briicke durch
Einstellen, 1026, der Neben-Bus-Zahl gleich zu dem Parameter CURRENT_PCI_BUS. Demzufolge schlief3t
dies die Zuordnung der PCI-Bus-Zahl zu der gefundenen PCI-PCI-Briickenschaltung und zusatzlichen, aus-
gangsseitigen PCI-PCI-Bricken-Schaltungen und Einsteckplatzen bzw. Schlitzen 36 ab, die abgeschaltet oder
leer sind. Die CPU 14 findet dann, 1004, die nachste PCI-PCI-Briicken-Schaltung oder den Schlitz 36, die ab-
geschaltet oder leer sind, und zwar auf dem PCI-Bus, angezeigt durch den Parameter PCI_BUS.

[0536] Wie in Fig. 46 dargestellt ist, fuhrt, nachdem die PCI-Bus-Zahlen zugeordnet sind, die CPU 14 ein
Speicher-Raum-Zuordnungs-Programm, bezeichnet als MEM_ALLOC, aus, um Speicher-Raum fir die
PCI-Funktionen und Schlitze 36 zuzuordnen, die abgeschaltet oder leer sind. Die CPU 14 initialisiert zuerst,
1028, Such-Parameter, verwendet beim Unterstitzen der CPU 14 beim Auffinden der angeordneten PCI-Funk-
tionen und Schlitze 36, die abgeschaltet oder leer sind.

[0537] Die CPU 14, findet dann, 1030, die nachste PCI-Funktion oder die Schlitze 36, die abgeschaltet oder
leer ist. Falls die CPU 14 bestimmt, 1032, dass alle PCI-Funktionen und alle Schlitze bzw. Einsteckplatze 36,
die abgeschaltet oder leer sind, einem Speicherraum zugeordnet worden sind, kehrt die CPU 14 von dem Pro-
gramm MEM_ALLOC zurtick. Ansonsten bestimmt die CPU 14, 1032, ob eine PCI-Funktion gefunden wurde.
[0538] Falls dies der Fall ist, ordnet die CPU 14 Speicher-Resourcen zu, 1038, wie dies durch die PCI-Funk-
tion spezifiziert ist. Ansonsten wird einer der Schlitze bzw. Einsteckplatze 36, der abgeschaltet ist oder leer ist,
vorgefunden, und die CPU 14 ordnet eine Fehler-Speicher-Gré3e und eine Speicher-Ausrichtung fir den
Schlitz 36 zu, 1036. Die Fehler-Speicher-Grofe kann entweder eine vorbestimmte GrofRe sein, bestimmt vor
einem Einschalten des Computersystems 10, oder eine Grofe, die nach einer Bestimmung der Speicher-Re-
sourcen, erforderlich durch das Computersystem 10, bestimmt ist.

[0539] Wenn Speicherraum zugeordnet wird, programmiert die CPU 14 Speicher-Basis- 1212 und Spei-
cher-Grenzen- 1214 Register der PCI-PCI-Bricken-Schaltungen, die eingangsseitig der gefundenen
PCI-Funktion vorhanden sind. Die CPU 14 programmiert geeignet auch Basis-Adressen-Register der entspre-
chenden PCI-Vorrichtungen. Die CPU 14 findet dann, 1030, die ndchste PCI-Funktion oder den Schlitz 36, der
abgeschaltet oder leer ist.

[0540] Wie in Fig. 47 dargestellt ist, fuhrt, nachdem die PCI-Bus-Zahlen zugeordnet sind, die CPU 14 ein
I/O-Raum-Zuordnungs-Programm, bezeichnet als I/O_ALLOC, aus, um |[/O/Raum fir PCI-Funktionen und
Schlitze 36, die leer sind, zuzuordnen. Die CPU 14 initialisiert zuerst, 1040, Such-Parameter, verwendet beim
Unterstlitzen der CPU 14, die zugeordneten PCI-Funktionen und Schlitze 36, die abgeschaltet oder leer sind,
zu finden.

[0541] Die CPU 14 findet, 1042, die nachste PCI-Funktion oder den Schlitz 36, der abgeschaltet oder leer ist.
Falls die CPU 14 bestimmt, 1044, dass alle PCI-Funktionen und Schlitze 36, die abgeschaltet oder leer sind,
einem |/O/Raum zugeordnet worden sind, kehrt die CPU 14 von dem I/O_ALLOC Programm zurtick. Ansons-
ten bestimmt die CPU 14, 1044, ob eine PCI-Funktion gefunden wurde. Falls dies der Fall ist, ordnet die CPU
14, 1050, 1/0O-Resourcen zu, wie dies durch die PCI-Funktion spezifiziert ist. Ansonsten ordnen ein Schlitz 36,
der heruntergefahren ist oder leer vorgefunden wurde, und die CPU 14 eine Fehler-I/O-Grélke und eine
I/O-Ausrichtung fir den Schlitz 36 zu, 1048. Die Fehler-I/O-Grof3e kann entweder eine vorbestimmte GroRe,
bestimmt vor einem Abschalten des Computersystems 10, oder eine GréRRe, bestimmt nach einer Bestimmung
der I/O-Ressourcen, erforderlich durch das Computersystem 10, sein.

76/215

DE 697 21 381 T2 2004.01.15

[0542] Wenn ein I/O/Raum zugeordnet wird, dann programmiert die CPU 14 die 1/0-Basis 1208 und begrenzt,
1012, Register der PCI-PCI-Briicken-Schaltungen, eingangsseitig der PCI-Funktion oder des Schlitzes 36. Die
CPU 14 programmiert auch Basis-Adressen-Register der entsprechenden PCI-Vorrichtungen geeignet. Die
CPU 14 findet dann, 1042, die nachste PCI-Funktion oder den Schlitz 36, der abgeschaltet oder leer ist.
[0543] Wie in Fig. 48 dargestellt ist, fihrt, nach einer anfanglichen Konfiguration, wenn eine Unterbrechung
erzeugt ist, die anzeigt, dass einer der Hebel 802 gedffnet oder geschlossen ist, die CPU 14 ein Unterbre-
chungs-Service-Programm, bezeichnet als CARD_INT, aus. Die CPU 14 liest, 1052, die Inhalte des Unterbre-
chungs-Registers 800, um zu bestimmen, 1053, ob der Hebel 802 gedffnet oder geschlossen worden ist. Falls
die CPU 14 bestimmt, 1053, dass der Hebel 802, der die Unterbrechung verursacht, gedffnet wurde, kehrt die
CPU 14 von dem Programm CARD_INT zurtck.

[0544] Ansonsten schreibt die CPU 14, 1054, zu dem Schlitz-Freigabe-Register 817 und stellt, 1054, das
SO-Bit ein, um das Einschalten des Schlitzes 36 und der Karte 807, eingesetzt in dem Schlitz 36, zu initiieren.
Die CPU 14 wartet dann (nicht dargestellt) auf die Karte 807, um einzuschalten. Die CPU 14 greift dann, 1055,
auf den PCI-Bus auf der Karte zu, falls vorhanden. Die CPU 14 bestimmt dann, 1056, ob die Karte 807, die
gerade eingeschaltet wurde, einen PCI-Bus besal} (und eine PCI-PCI-Briicken-Schaltung). Falls dies der Fall
ist, bestimmt, 1057, die CPU 14 die primaren, sekundaren und Unterprogramm-Bus-Zahlen, reserviert fir den
Schlitz 36, in dem die Karte 807 eingeschaltet wurde. Die CPU 14 konfiguriert darauffolgend, 1058, die
PCI-PCI-Briicken-Schaltung auf der Karte 807, die eingeschaltet wurde.

[0545] Die CPU 14 bestimmt dann, 1060, die Stelle und die Grofe von I/O-und Speicher-Raumen, reserviert
fur den Schlitz 36. Die CPU 14 schreibt darauffolgend, 1062, zu Basis-Adressen-Registern in dem PCI-Konfi-
gurations-Header-Raum der Karte 807, die eingeschaltet wurde. Die CPU 14 liest dann, 1064, ein Unterbre-
chungs-Stift-Register in dem Konfigurations-Raum der Karte 807, um zu bestimmen, 1066, ob die Karte 807
Unterbrechungs-Anforderungen verwendet. Falls dies der Fall ist, schreibt die CPU 14, 1068, ein Unterbre-
chungs-Zeilen-Register in den Konfigurations-Raum der Karte 807 mit einer zugeordneten IRQ-Zahl.

[0546] Die CPU gibt dann, 1070, Befehls-Register der Karte 870 frei, die in dem Konfigurations-Raum der
Karte 807 angeordnet sind, und erméglicht der Karte 807, auf Speicher- und I/O-Zugriffe auf den PCI-Bus 32
anzusprechen. Die CPU 14 schreibt darauffolgend, 1072, zu dem Unterbrechungs-Register 800, um die Un-
terbrechungs-Anforderung zu I6schen, und ladt, 1074, einen Software-Vorrichtungs-Treiber fiir die Karte 807.
Die CPU 14 kehrt dann von dem Programm CARD_INT zurtck.

BRUCKEN-KONFIGURATION

[0547] Funktional bilden Briicken-Chips 26 und 48 eine PCI-PCI-Briicke zwischen PCI-Bussen 24 und 32. Al-
lerdings umfasst jeder Bricken-Chip einen Konfigurations-Raum, der unabhangig konfiguriert werden muss.
Eine LOsung ist diejenige, zwei Briicken als unabhangige Vorrichtungen, eine Briicke bildend, zu behandeln,
allerdings wirde dies eine Modifikation des BIOS-Konfigurations-Programms erfordern. Die andere Lésung ist
diejenige, das Kabel 28 als einen Bus zu definieren, so dass das Konfigurations-Programm den eingangssei-
tigen Briicken-Chip 26 als eine PCI-PCI-Briicke zwischen dem PCI-Bus 24 und dem Kabel 28 und dem aus-
gangsseitigen Bruicken-Chip 48 als eine PCI-PCI-Briicke zwischen dem Kabel 28 und dem PCI-Bus 32 konfi-
gurieren kann. Ein Vorteil dieser zweiten Losung ist derjenige, dass Standard-PCIl-Konfigurations-Zyklen lau-
fen kénnen, um die Briicken-Chips 26 und 48 zu konfigurieren, falls sie zwei PCI-PCI-Briicken waren, wenn
tatsachlich die zwei Briicken-Chips eine PCI-PCI-Briicke bilden.

[0548] Dabei sind zwei Typen von Konfigurations-Transaktionen auf dem PCI-Bus vorhanden: Typ 0 und Typ
1. Ein Konfigurations-Zyklus vom Typ 0 ist fur Vorrichtungen auf dem PCI-Bus vorgesehen, auf dem der Kon-
figurations-Zyklus erzeugt ist, wahrend ein Konfigurations-Zyklus vom Typ 1 flr Vorrichtungen auf einem se-
kundaren PCI-Bus, auf den lber eine Briicke zugegriffen wird, vorgesehen ist. Fig. 51 stellt das Adressen-For-
mat von Konfigurations-Zyklen vom Typ 0 und Typ 1 dar. Ein Konfigurations-Befehl vom Typ 0 wird durch Ein-
stellen von PCI-Adressen-Bits AD[1:0] auf 00 wahrend eines Konfigurations-Zyklus spezifiziert. Ein Konfigura-
tions-Zyklus vom Typ 0 wird nicht Uber eine PCI-PCI-Briicke weitergefiihrt, sondern verbleibt lokal auf dem
Bus, auf dem die Konfigurations-Transaktion vom Typ 0 erzeugt wurde.

[0549] Ein Kofigurations-Befehl vom Typ 1 wird durch Einstellen von Adressen-Bits AD[1:0] auf einen binaren
Wert 01 spezifiziert. Konfigurations-Befehle vom Typ 1 kénnen durch eine PCI-PCI-Briicke zu irgendeinem Le-
vel in der PCI-Bus-Hierarchie weitergeflihrt werden. SchlieRlich wandelt eine PCI-PCI-Briicke einen Befehl
vom Typ 1 zu einem Befehl vom Typ 0 um, um Vorrichtungen zu konfigurieren, die mit der sekundaren Schnitt-
stelle der PCI-PCI-Brucke verbunden sind.

[0550] Konfigurations-Parameter, gespeichert in den Konfigurations-Registern 105 oder 125 der Briicke,
identifizieren die Bus-Zahlen fir deren primare PCI-Schnittstelle (Primar-Bus-Zahl) und sekundaren
PCI-Schnittstelle (Sekundar-Bus-Zahl) und eine nebengeordnete Bus-Zahl, die die hdochste, nummerierte
PCI-Bus-Unterordnung der Bricke angibt. Die Bus-Zahlen werden durch ein PCI-Konfigurations-Programm
BUS_ASSIGN (Fig. 45) eingestellt. Zum Beispiel ist, in dem eingangsseitigen Briicken-Chip 26, die Pri-

771215

DE 697 21 381 T2 2004.01.15

mar-Bus-Zahl des Busses 24, die Sekundar-Bus-Zahl ist die Zahl des Kabels 28 und die Neben-Bus-Zahl ist
die Zahl des Sekundar-PCI-Busses 32 oder die Zahl eines tieferen PCI-Busses, falls ein solcher existiert. In
dem ausgangsseitigen Briicken-Chip 48 ist die Primar-Bus-Zahl die Zahl des Kabel-Busses 28, die Sekun-
dar-Bus-Zahl ist die Zahl des PCI-Busses 32 und die nebengeordnete Bus-Zahl ist die Zahl eines PCI-Busses,
angeordnet tiefer in der PCI-Bus-Hierarchie, falls eine solche existiert.

[0551] Wie Fig. 53A zeigt, wird eine Erfassung von Konfigurations-Zyklen durch eine Logik in dem PCI-Tar-
get-Block 103 oder 121 in dem eingangsseitigen Briicken-Chip 26 oder dem ausgangsseitigen Briicken-Chip
48 jeweils behandelt. Ein Konfigurations-Zyklus vom Typ 0, erfasst auf dem eingangsseitigen Bus 24, wird
durch Aufstellen eines Signals TYPO_CFG_CYC_US, erzeugt durch ein UND-Gate 276, angezeigt. Das
UND-Gate 276 empfangt Signale UPSTREAM_CHIP, IDSEL (Chip-Select wahrend einer Konfigurati-
ons-Transaktion), CFGCMD (Konfigurations-Befehl-Zyklus, der erfasst ist) und ADDROO (Bits 1 und 0 sind bei-
de 0'en). Ein Konfigurations-Zyklus vom Typ 0, erfasst durch den ausgangsseitigen Briicken-Chip 48, wird
durch ein Signal TYPO _CFG_CYC_DS, erzeugt durch ein UND-Gate 278, angezeigt, das ein Signal
S1_BL_IDSEL (IDSEL Signal fir den ausgangsseitigen Briicken-Chip 48), das Signal CFGCMD, das Signal
ADDROO, ein Signal MSTR_ACTIVE (anzeigend, dass der Bricken-Chip 48 der Master auf einem sekundéaren
PCI-Bus 32 ist), und den invertierten Zustand eines Signal UPSTREAM_CHIP empfangt.

[0552] Eine Erfassung eines Konfigurations-Zyklus vom Typ 1 durch das PCI-Target 103 in dem eingangssei-
tigen Brucken-Chip 26 wird durch Aufstellen eines Signals TYP1_CFG_CYC_US von einem UND-Gate 280
angezeigt, das Signale CFGCMD, ADDRO1 (Bits 1 und O sind niedrig und hoch jeweils) und
UPSTREAM_CHIP empfangt. Eine Erfassung eines Konfigurations-Zyklus vom Typ 1 auf dem ausgangsse:iti-
gen Bus 32 wird durch Aufstellen eines Signals TYP_CFG_CYC_DS von einem UND-Gate 282, das die Sig-
nale CFGCMD, ADDRO1 empfangt, und dem invertierten Zustand des Signals UPSTREAM_CHIP angezeigt.
[0553] Der Bricken-Chip, der eine Transaktion vom Typ 0 aufnimmt, verwendet das Register-Zahl-Feld 250
in der Konfigurations-Transaktions-Adresse, um auf das geeignete Konfigurations-Register zuzugreifen. Das
Funktions-Zahl-Feld 252 spezifiziert eine von acht Funktionen, die in einer multi-funktionalen Vorrichtung wah-
rend der Konfigurations-Transaktion durchgeflihrt werden soll. Eine PCI-Vorrichtung kann multi-funktional sein
und kann solche Funktionen haben, wie eine Festplatten-Laufwerksteuereinheit, eine Speicher-Steuereinheit,
eine Brucke, usw.

[0554] Wenn der Briicken-Chip 26 eine Konfigurations-Transaktion vom Typ 1 auf seinem eingangsseitigen
Bus 26 sieht, kann er die Transaktion entweder ausgangsseitig weiterfiihren, die Transaktion zu einer Trans-
aktion vom Typ 0 translatieren, die Transaktion zu einem speziellen Zyklus konvertieren oder die Transaktion
ignorieren (basierend auf den Bus-Zahl-Parametern, gespeichert in den Konfigurations-Registern 105 oder
125). Falls eine Transaktion weitergeflihrt wird, gelangt sie bis zu dem PCI-Master des Bestimmungs-Bri-
cken-Chips, um die Transaktion vom Typ 1 zu der entsprechenden, geeigneten Transaktion zu konvertieren.
Falls ein Bricken-Chip die Transaktion selbst handhabt, dann spricht er durch Aufstellen des Signals
DEVSEL_ auf den PCI-Bus an, und handhabt die Transaktion als eine normale, verzdgerte Transaktion.
[0555] In einer Konfiguration-Transaktion vom Typ 1 wahlt das Bus-Zahl-Feld 260 einen eindeutigen PCI-Bus
in der PCl-Hierarchie aus. Ein PCI-Target-Block 103 fuhrt einen Konfigurations-Zyklus vom Typ 1 von dem ein-
gangsseitigen Chip 26 zu dem ausgangsseitigen Briicken-Chip 48 hindurch, falls ein Signal PASS_TYP1_DS
durch ein UND-Gate 284 aufgestellt ist. Das UND-Gate 284 empfangt das Signal TYP1_CFG_CYC_US und
ein Signal IN_RANGE (das Bus-Zahl-Feld 260 ist grof3er als oder gleich zu der gespeicherten, sekundaren
Bus-Zahl und geringer als oder gleich zu der gespeicherten Neben-Bus-Zahl). Der andere Eingang des
UND-Gates 284 ist mit dem Ausgang eines ODER-Gates 286 verbunden, der einen Eingang mit dem Ausgang
eines UND-Gates 288 verbunden besitzt, und wobei der andere Eingang den invertierten Zustand eines Sig-
nals SEC_BUS_MATCH aufnimmt. Demzufolge wird, falls ein Zyklus vom Typ 1 erfasst wird, das Signal
IN_RANGE aufgestellt ist, und wenn das Bus-Zahl-Feld 260 nicht die gespeicherte, sekundare Bus-Zahl an-
passt, das Signal PASS TYP1_DS aufgestellt. Falls das Bus-Feld 260 nicht die gespeicherte Sekun-
dar-Bus-Zahl anpasst, dann werden die Bus-Vorrichtungen auf oder nach dem ausgangsseitigen Bus 32
adressiert. Das UND-Gate 288 wird auf hoch gesetzt und das Vorrichtungs-Zahl-Feld 258 zeigt an, dass das
Target des Konfigurations-Zyklus vom Typ 1 der Konfigurations-Raum des ausgangsseitigen Briicken-Chips
48 ist. Falls dies wahr ist, wird die Konfigurations-Transaktion vom Typ 1 entlang des Kabels 28 zu dem aus-
gangsseitigen Brucken-Chip 48 fur eine Translation einer Konfigurations-Transaktion vom Typ 0 weitergefthrt.
Das PCI-Target 121 in dem ausgangsseitigen Briicken-Chip 48 spricht auf die Transaktion an und liest von den
und schreibt in die ausgangsseitigen Briicken-Konfigurations-Register 125 entsprechend zu der Transaktion
vom Typ 0. Die Steuer-Stifte des ausgangsseitigen Chips werden angesteuert und Lese- und Schreib-Daten
erscheinen auf dem ausgangsseitigen PCI-Bus 32, falls eine Transaktion vom Typ 0 auf dem ausgangsseitigen
Bus lauft (fir Debug-Zwecke), obwohl jedes IDSEL auf dem ausgangsseitigen Bus 32 so blockiert wird, das
keine Vorrichtung tatsachlich auf eine Transaktion vom Typ 0 anspricht.

[0556] Falls der PCI-Target-Block 103 in dem eingangsseitigen Briicken-Chip 26 eine Konfigurations-Trans-
aktion vom Typ 1 auf seinen eingangsseitigen Bus 24 erfasst, mit einem Bus-Zahl-Feld gleich zu der gespei-

781215

DE 697 21 381 T2 2004.01.15

cherten Sekundar-Bus-Zahl (der Kabel-Bus 28), allerdings nicht eine Vorrichtung 0 adressierend (suchen nach
anderen Vorrichtungen auf dem Kabel-Bus 28), dann irgnoriert der Target-Block 103 die Transaktion auf dem
primaren Bus 26.

[0557] Falls das PCI-Target 121 eine Konfigurations-Schreib-Transaktion vom Typ 1 (WR_hoch) auf dem se-
kundaren PCI-Bus 32 erfasst, der ein Bus-Zahl-Feld auRRerhalb des Bereichs der Sekundar-Bus-Zahl und der
Neben-Bus-Zahl besitzt (IN_RANGE niedrig), und falls die Vorrichtungs-Zahl 258, die Funktions-Zahl 256 und
die Register-Zahl 254 einen speziellen Zyklus anzeigen (SP_MATCH hoch), dann wird ein Signal
PASS_TYP1_US durch ein UND-Gate 290 aufgestellt. Das UND-Gate 290 empfangt das Signal
TYP1_CFG_CYC_DS, das Signal SP_MATCH, das Schreib/Lese-Strobe WR_ und den invertierten Zustand
des Signal IN_RANGE. Wenn der PCI-Master 101 in dem eingangsseitigen Briicken-Chip 26 einen solchen
Zyklus empfangt, lasst er einen speziellen Zyklus auf dem primaren PCI-Bus 24 laufen.

[0558] Konfigurations-Transaktionen werden durch einen Bricken-Chip unter bestimmten Bedingungen igno-
riert. Falls der Target-Block 103 in dem eingangsseitigen Briicken-Chip 26 eine Konfigurations-Transaktion
vom Typ 1 auf dem PCI-Bus 24 erfasst (sein eingangsseitiger Bus) und das Bus-Zahl-Feld 260 geringer als die
Sekundar-Bus-Zahl oder gréRer als die Neben-Bus-Zahl, gespeichert in dem Konfigurations-Raum des Bri-
cken-Chips, ist, dann ignoriert der Target-Block 103 die Transaktion.

[0559] Falls der Target-Block 121 in dem ausgangsseitigen Briicken-Chip 48 eine Konfigurations-Transaktion
vom Typ 1 auf dem sekundaren PCI-Bus 32 erfasst (sein ausgangsseitiger Bus), und das Bus-Zahl-Feld 260
gréRer als oder gleich zu der Sekundar-Bus-Zahl oder geringer als oder gleich zu der Neben-Bus-Zahl, gespei-
chertin dem Konfigurations-Raum des Briicken-Chips, ist, dann ignoriert der Target-Block 121 die Transaktion.
Zusatzlich werden Konfigurations-Befehle vom Typ 1, die zu der Eingangsseite hin gehen, ignoriert, falls ein
Befehl vom Typ 1 nicht eine Konversion zu einer speziellen Zyklus-Transaktion spezifiziert, ungeachtet der
Bus-Zahl, spezifiziert in dem Befehl vom Typ 1.

[0560] Wie Fig. 53B zeigt, Uiberwacht der PCI-Master 101 oder 123 einen Konfigurations-Zyklus, tibertragen
Uber das Kabel 28. Falls der PCI-Master 123 in dem ausgangsseitigen Briicken-Chip 48 eine Konfigurati-
ons-Transaktion vom Typ 1 von dem eingangsseitigen Briicken-Chip 26 erfasst, vergleicht das Bus-Zahl-Feld
260 mit der Primar-Bus-Zahl und der Sekundar-Bus-Zahl, gespeichert in dem Konfigurations-Raum des Bri-
cken-Chips 48. Falls das Bus-Zahl-Feld 260 entweder die gespeicherte Primar-Bus-Zahl (d. h. Kabel 28) oder
die gespeicherte Sekundar-Bus-Zahl (Adressieren einer Vorrichtung direkt, verbunden mit dem ausgangssei-
tigen Bus 23) anpasst, dann translatiert der ausgangsseitige Briicken-Chip 48 die Transaktion zu einer Trans-
aktion vom Typ 0 (durch Einstellen von AD[1:0] = 00), wenn er die Konfigurations-Transaktion auf dem Bus
weiterfihrt. Die Transaktion vom Typ 0 wird auf dem PCI-Bus 32 durch den PCl-Master-Block 123 durchge-
fuhrt.

[0561] Das nachfolgende sind Translationen, durchgefiihrt von Feldern in der Konfigurations-Transaktion
vom Typ 1. Das Vorrichtungs-Zahl-Feld 258 in der Konfigurations-Transaktion vom Typ 1 wird durch den
PCI-Master 123 decodiert, um eine eindeutige Adresse in der translatierten Transaktion vom Typ 0 auf dem
sekundaren Bus 32 zu erzeugen, wie dies in der Tabelle der Fig. 52 definiert ist. Die Sekundar-Adressen-Bits
AD[31:16], decodiert von dem Vorrichtungs-Zahl-Feld 258, werden durch den PCI-Master 123 verwendet, um
die geeigneten Chip-Auswahl-Signale IDSEL fiir die Vorrichtungen auf dem sekundéaren PCI-Bus 32 zu erzeu-
gen. Wenn das Adressen-Bit AD[15] gleich zu 1 ist, dann behalt der Briicken-Chip 48 alle Adressen-Bits
ADI[31:16], gesetzt auf niedrig (kein IDSEL ist aufgestellt), bei. Das Register-Zahl-Feld 254 und das Funkti-
ons-Zahl-Feld 256 des Konfigurations-Befehls vom Typ 1 werden nicht modifiziert zu dem Konfigurations-Be-
fehl vom Typ O hindurchgefliihrt. Das Funktions-Zahl-Feld 256 wahlt acht Funktionen aus, und das Regis-
ter-Zahl-Feld 254 wahlt ein Doppel-Wort in dem Konfigurations-Register-Raum der ausgewahlten Funktion
aus.

[0562] Fur eine Konfigurations-Transaktion vom Typ 1, zielmafig vorgesehen zu dem ausgangsseitigen Bri-
cken-Chip 48, wandelt der Briicken-Chip 48 die Transaktion vom Typ 1 zu einer Transaktion vom Typ 0 um,
als wirde sie eine Vorrichtung auf dem ausgangsseitigen Bus 32 adressieren, allerdings werden die AD[31:16]
Stifte auf 0'en gesetzt, so dass keine Sekundar-PCl-Bus-Vorrichtung ein IDSEL aufnimmt. Die PCI-Master-Lo-
gik 123 erfasst dies durch Aufstellen eines Signals TYP1_TO_INTO, angesteuert durch ein UND-Gate 262. Das
UND-Gate 262 empfangt ein Signal CFG_CMD (einen Konfigurations-Befehl-Zyklus anzeigend), den Ausgang
eines ODER-Gates 264 und den invertierten Zustand des Signals UPSTREAM_CHIP (Translation Ty-
pe-1-zu-Type-0 wird in dem eingangsseitigen Briicken-Chip 26 gesperrt). Das ODER-Gate 264 stellt seinen
Ausgang auf hoch, falls ein Signal PRIM_BUS_MATCH aufgestellt ist (das Bus-Zahl-Feld 260 passt die ge-
speicherte, primare Bus-Zahl an), oder falls die gespeicherte, primare Bus-Zahl
CFG2P_PRIM_BUS_NUM([7:0] gleich zu null ist (anzeigend, dass die Primar-Bus-Zahl in dem Konfigurati-
ons-Raum des Briicken-Chips 48 nicht durch das System BIOS bis jetzt konfiguriert worden ist und der mo-
mentane Konfigurations-Zyklus vom Typ 1 zu dem internen Konfigurations-Raum geht, um die Pri-
mar-Bus-Zahl des Briicken-Chips 48 zu programmieren).

[0563] Ein Signal TYP1_TO_EXTO0 wird durch ein UND-Gate 266 aufgestellt und spricht auf eine Anpassung

79/215

DE 697 21 381 T2 2004.01.15

zu einer gespeicherten Sekundar-Bus-Zahl an. Die Eingange des UND-Gates 266 empfangen das Signal
CFG_CMD, das Signal SEC_BUS_MATCH, den invertierten Zustand des Signals UPSTREAM_CHIP und den
invertierten Zustand eines Signals SP_MATCH (nicht ein spezieller Zyklus). Das Signal TYP1_TO_EXTO zeigt
an, dass die konvertierte Konfigurations-Transaktion vom Typ 0 zu einer Vorrichtung zielmafRig auf dem sekun-
daren PCI-Bus 32 gefihrt wird.

[0564] Das Signal TYP1_TO_INTO wird zu dem 1-Eingang eines 4:1 Multiplexers 274 geliefert. Der 2-Eingang
wird auf niedrig gelegt und der 0- und 3-Eingang des Multiplexers 274 nehmen ein Signal LTYP1_TO_INTO
von einem Flip-Flop 270 vom D-Typ auf. Der Auswahl-Eingang S1 des Multiplexers 274 empfangt ein Signal
CMD_LATCH (FRAME_, aufgestellt fur einen neuen Zyklus auf dem PCI-Bus 32), und der Auswahl-Eingang
S0 empfangt ein Signal P2Q_START_PULSE (das anzeigt, wenn es hoch ist, dass eine Adresse zu dem
PCI-Bus 32 geschickt worden ist). Der Ausgang des Multiplexers 274 wird mit dem D-Eingang eines Flip-Flops
270 verbunden, das mit dem Signal PCLK getaktet wird und durch das Signal RESET geldscht wird. Die ID-
SEL-Signale zu den Sekundar-Bus-Vorrichtungen werden durch Aufstellen eines Signals BLOCK_IDSEL von
einem ODER-Gate 272 blockiert, das an seinen Eingangen Signale Q2P_AD[15] (keine Konversion wird ent-
sprechend Tabelle 1 der Fig. 6 bendtigt), TYP1 _TO_INTO und LTYP1_TO_INTO empfangt. Das Signal
LTYP1_TO_INTO erweitert das Aufstellen des Signals BLOCK IDSEL.

[0565] Wenn der PCI-Master 123 in dem ausgangsseitigen Briicken-Chip 48 eine Konfigurations-Transaktion
vom Typ 1 von dem eingangsseitigen Briicken-Chip 26 empfangt, in dem das Bus-Zahl-Feld 260 groRer als die
gespeicherte, Sekundar-Bus-Zahl und geringer als oder gleich zu der gespeicherten Neben-Bus-Zahl ist, dann
fuhrt der PCl-Master-Block 123 die Transaktion vom Typ 1 zu dem Sekundar-PCI-Bus 32 unverandert weiter.
Eine bestimmte andere Vorrichtung auf dem Sekundar-PCI-Bus 32, z. B. eine andere Bricken-Vorrichtung 323
(Fig. 26B), wird die Konfigurations-Transaktion vom Typ 1 aufnehmen und sie zu dem sekundaren Bus
(PCI-Bus 325) weiterfiihren.

[0566] Eine Konfigurations-Transaktion vom Typ 1 zu einer speziellen Zyklus-Translation wird dann durchge-
fuhrt, wenn der PCl-Master 123 eine Konfigurations-Schreib-Transaktion vom Typ 1 von dem eingangsseitigen
Briicken-Chip 26 empfangt und das Bus-Zahl-Feld 260 die gespeicherte Sekundar-Bus-Zahl anpasst und falls
das Vorrichtungs-Zahl-Feld 258, das Funktions-Zahl-Feld 256 und das Register-Zahl-Feld 254 einen speziel-
len Zyklus anzeigen (SP_MATCH ist hoch). Dies wird durch ein UND-Gate 268 angezeigt, das ein Signal
TYP1_TO_SPCYC auf hoch setzt. Das UND-Gate 268 empfangt SP_MATCH, und Q2P_CBE_[0] (Befehl-Bit
fur einen speziellen Zyklus). Die Daten von der Konfigurations-Transaktion vom Typ 1 werden die Daten fir
den speziellen Zyklus an dem Bestimmungs-Bus. Die Adresse wahrend eines speziellen Zyklus wird ignoriert.

BUS-FUNKTIONS-MONITOR

[0567] Der Bus-Monitor 127 (Fig. 3) umfasst eine Schaltung zum Speichern von Informationen, um bestimm-
te Bus-Funktions-Parameter zu berechnen. Die Parameter umfassen eine Bus-Nutzung, eine Bus-Effektivitat
und eine Lese-Daten-Effektivitat. Eine Bus-Nutzung ist das Verhaltnis der Zeit, die der Bus belegt ist, unter
Durchfuhren einer Transaktion, zu einer vorgegebenen, globalen Zeitperiode. Eine Bus-Effektivitat ist das Ver-
héltnis der Zahl von PCI-Takt-Perioden, die tatséchlich fiir eine Daten-Ubertragung verwendet werden, zu der
gesamten Zahl von Taktperioden wahrend der Bus-Beleg-Periode. Eine Lese-Daten-Effektivitat ist das Verhalt-
nis der Zahl der Lese-Daten-Bytes, auf die durch eine Vorrichtung auf dem Sekundar-PCI-Bus 32 zugegriffen
ist, und zwar von der verzogerten Abschluss-Warteschlange (DCQ) 144 (Fig. 4), zu der gesamten Zahl von
Daten-Bytes, abgerufen fiir diesen Master durch den Briicken-Chip 48. Die Informationen, gespeichert in dem
Bus-Monitor 127, werden durch die System-Software wieder aufgesucht, um die erwiinschten Parameter zu
berechnen.

[0568] Wie Fig. 54A zeigt, zahlt ein Global-Periode-Zeitgeber 1300 (der 32 Bits breit sein kann) eine gesamte
Zeitperiode, wahrend der die verschiedenen Parameter berechnet werden sollen. Der Zeitgeber 1300 wird auf
den hexadezimalen Wert FFFFFFFF programmiert. Falls der PCI-Takt PCICLK2 bei 33 MHz lauft, dann betragt
die Zeitgeberperiode ungefahr 2 Minuten. Wenn sich der Zeitgeber 1300 auf 0 verringert, stellt er ein Signal
GL_TIME_EXPIRE auf.

[0569] Der Bus-Monitor 127 umfasst 7 schlitz-spezifische Bus-Busy-Zahler 1302A-G, wobei sechs der Zahler
jeweils den 6 Schlitzen auf dem sekundaren PCI-Bus 32 und einer der SIO 50 entsprechen. Die Bus-Busy-Zah-
ler 1302A—-G werden dann geldscht, wenn das Signal GL_TIME_EXPIRE aufgestellt ist. In Abhangigkeit da-
von, welche Bus-Vorrichtung eine Steuerung auf dem sekundaren Bus 32 besitzt, erhdht sich der
Bus-Busy-Zahler 1302 bei jedem PCI-Takt, in dem das Sekundar-PCI-Bus FRAME_ oder IRDY _ Signal aufge-
stellt ist. Der geeignete Eine der sieben Zahler wird durch eines der Erteilungs-Signale GNT[7:0]_ ausgewahlt.
Demzufolge wird, zum Beispiel, der Bus-Busy-Zahler 1302A dann ausgewahlt, wenn das Signal GNT[1]_ auf
niedrig gesetzt ist, was anzeigt, dass der SIO der momentane Master auf dem sekundaren PCI-Bus 32 ist.
[0570] Sieben Daten-Zyklus-Zahler 1306A-G entsprechend, jeweils, zu den 6 Schlitzen auf dem sekundaren
PCI-Bus 32 und dem SIO 50, flhren die Zeit nach, wahrend der eine Datenibertragung tatsachlich zwischen

80/215

DE 697 21 381 T2 2004.01.15

einem Master und einem Target wahrend einer Transaktion auf dem PCI-Bus 32 auftritt. Der ausgewahlte Da-
ten-Zyklus-Zahler 1306 wird bei jedem PCI-Takt erhéht, bei dem die Sekundar-Bus- IRDY_ und TRDY_ Sig-
nale beide auf niedrig gesetzt sind. Die Daten-Zyklus-Zahler 1306 A—G werden dann geldscht, wenn das Signal
GL_TIME_EXPIRE aufgestellt ist.

[0571] Sechs DCQ-Daten-Zahler 1310A—F sind in dem Bus-Monitor 127 zum Protokollieren der Menge an
Daten, eingeladen in die DCQ-Puffer, umfasst. Die Sechs DCQ-Daten-Zahler 1310A—F entsprechen den 6
Schlitzen auf dem sekundaren PCI-Bus 32. Der ausgewahlte DCQ-Daten-Zahler 1310 erhoht sich bei jedem
PCI-Takt, indem verzogerte Lese-Abschluss- (Delayed Read Completion — DRC) Daten von dem Kabel 28
empfangen und in die Prefetch-Puffer hineingeladen werden.

[0572] Ein anderer Satz von Zahlern, DCQ-Daten-Benutzungs-Zahler 1314A-F, werden dazu verwendet, die
Menge an Daten zu protokollieren, die in die DCQ 144 eingeladen sind, tatsachlich verwendet durch die 6
Schlitze auf dem sekundaren PCI-Bus 32. Der ausgewahlte DCQ-Daten-Benutzungs-Zahler 1314 erhoht sich
bei jedem PCI-Takt, in dem der sekundare Bus-Masterdaten von dem entsprechenden DCQ-Puffer liest. Beide
DCQ-Daten-Zahler 1310A-F und DCQ-Daten-Benutzungs-Zahler 1314A-F erhdhen sich bei jedem Daten-Zy-
klus ungeachtet der Zahl von Bytes, die tatsachlich tbertragen werden. In den meisten Fallen betragt die Zahl
von Bytes, Gbertragen in jedem Daten-Zyklus, 4.

[0573] Wenn der Global-Perioden-Zeitgeber 1300 ablauft und das Signal GL_TIME_EXPIRE aufstellt, treten
verschiedene Ereignisse auf. Zuerst l1adt der Global-Perioden-Zeitgeber 1300 seinen Originalen Zahl-Wert wie-
der ein, der der hexadezimale Wert FFFFFFFF ist. Die Inhalte aller anderen Zahler, umfassend die
Bus-Busy-Zahler 1302A-G die Daten-Zyklus-Zahler 1306A-G, die DCQ-Daten-Zahler 1310A-F und die
DCQ-Daten-Benutzungs-Zahler 1314A-F, werden in Register 1304, 1308, 1312 und 1316 jeweils eingeladen.
Die Zahler 1302, 1306, 1310 und 1314 werden dann auf 0 geléscht. Der Global-Periode-Zeitgeber 1300 be-
ginnt dann, erneut zu zahlen, nachdem erneut mit seinem Original-Wert wieder geladen ist.

[0574] Das Signal GL_TIME_EXPIRE wird zu dem Unterbrechungs-Aufnahme-Block 132 zugeflhrt, der die
Unterbrechung Uber das Kabel 28 zu dem Unterbrechungs-Ausgangs-Block 114 weiterflhrt, der wiederum
eine Unterbrechung zu der CPU 14 erzeugt. Die CPU 14 antwortet auf die Unterbrechung durch Aufrufen eines
Unterbrechungs-Handlers, um die Bus-Funktion-Analyse durchzufihren. Der Unterbrechungs-Handler greift
auf die Inhalte der Register 1304, 1308, 1312 und 1316 zu, und berechnet die verschiedenen Parameter, um-
fassend die Bus-Benutzung, die Bus-Effektivitat, die Prefetch-Effektivitat-Parameter, zugeordnet den 6 Sekun-
dar-Bus-Schlitzen bzw. -Einsteckplatzen und der SIO 50.

[0575] Der Bus-Benutzungs-Parameter ist der Wert des Bus-Busy-Zahlers 1302, geteilt durch den Anfangs-
wert des Global-Perioden-Zeitgebers 1300, der der hexadezimale Wert FFFFFFFF ist. Demzufolge ist die
Bus-Nutzung der Prozentsatz der gesamten, globalen Zeit, wahrend der ein Bus-Master eine Bus-Transaktion
durchfihrt.

[0576] Eine PCl-Transaktion umfasst eine Adressen-Phase und mindestens eine Daten-Ubertragungs-Pha-
se. Ein Bus-Master stellt das Signal FRAME_ auf, um den Beginn und die Dauer einer aktiven Bus-Transaktion
anzuzeigen. Wenn das Signal FRAME_ weggenommen ist, zeigt dies an, dass die Transkaktion die End-Da-
ten-Phase ist oder die Transaktion abgeschlossen worden ist. Das Signal IRDY _ zeigt an, dass der Bus-Master
in der Lage ist, die momentane Daten-Phase der Bus-Transaktion abzuschlieRen. Wahrend eines Schreibens
zeigt das Signal IRDY_ an, dass gultige Daten auf dem Bus vorhanden sind. Wahrend eines Lesens zeigt das
Signal IRDY_ an, das der Master prapariert ist, um Lese-Daten anzunehmen. Das adressierte PCl-Target
spricht auf die Bus-Transaktion durch Aufstellen des Signals TRDY_ an, um anzuzeigen, dass das Target in
der Lage ist, die momentane Datenphase der Transaktion abzuschlieien. Wahrend eines Lesens zeigt das
Signal TRDY_ an, dass gliltige Daten auf dem Bus vorhanden sind; wahrend eines Schreibens zeigt das Signal
TRDY_ an, dass das Target prapariert wird, um Daten anzunehmen. Warte-Zustédnde kdnnen zwischen den
Adressen- und Daten-Phasen und zwischen aufeinanderfolgenden Daten-Phasen der Bus-Transaktionen ein-
gesetzt werden.

[0577] Wahrend der Adressen-Phase oder den Warte-Zustanden tritt keine Daten-Ubertragung tatséchlich
auf.

[0578] Eine tatséchliche Daten-Ubertragung tritt nur dann auf, wenn beide Signale IRDY_ und TRDY_ auf
niedrig gesetzt sind. Um die Daten-, Ubertragungs-Bus-Effektivitat zu bestimmen, teilt der Unterbre-
chungs-Handler den Wert des Daten-Zyklus-Zahlers 1306 durch den Wert des Bus-Busy-Zahlers 1302. Die
Bus-Effektivitat stellt die Menge an Zeit dar, wahrend der eine Datenlibertragung tatsachlich wahrend einer
Bus-Transaktion auftritt. Durch Berechnen dieses Werts kann sich das Computersystem tber Target-Vorrich-
tungen bewusst werden, die viele Warte-Zustande erfordern und deshalb ineffektiv sind.

[0579] Der Briicken-Chip 48 kann Daten von dem primaren PCI-Bus 26 abrufen und die Daten in der DCQ
144 speichern. Die DCQ 144 besitzt acht Puffer, wobei jeder einem sekundaren Bus-Master zuordenbar ist.
Zum Beispiel wird eine Speicher-Lese-Mehrfach-Transaktion, erzeugt durch einen sekundaren Bus-Master, als
Ziel an dem primaren Bus vorgesehen, bewirken, dass die Briicke 26, 48 insgesamt 8 Cache-Zeilen von dem
Speicher 20 abruft und sie in die DCQ 144 einladt. Eine Speicher-Lese-Zeilen-Transaktion wird bewirken, dass

81/215

DE 697 21 381 T2 2004.01.15

die PCI-PCI-Bricke 26, 48 eine Zeile von Daten von dem Speicher 20 abruft. Zusatzlich kann, wie in Verbin-
dung mit den Fig. 75 und 79 beschrieben ist, die PCI-PCI-Briicke 26, 48 eine Lesepromotion durchfiihren, die
eine Lese-Anforderung von einem Sekundar-Bus-Master zu einer Lese-Anforderung fir einen grof3eren Block
an Daten umwandelt. In diesen Fallen existiert eine Moglichkeit, dass nicht alle der abgerufenen Daten durch
den Bus-Master verwendet werden. In diesem Fall werden nicht-gelesene Daten ausgesondert, was die Le-
se-Daten-Effektivitat reduziert. Ein Messen der Lese-Daten-Effektivitadt ermoglicht System-Designern zu ver-
stehen, wie ein Bus-Master Lese-Daten, abgerufen durch den Bruicken-Chip 26, 48, von dem priméaren Bus 24,
verwendet.

[0580] Wie Fig. 54B zeigt, erhoht sich der Zahler 1310 an der ansteigenden Flanke des Takts PCLK, falls das
Signal DCQ_DATA_RECEIVED[X], X = 2-7, aufgestellt ist, was anzeigt, dass vier Bytes an Daten durch einen
DCQ-Puffer, zugeordnet einem Master X von dem Kabel 28, empfangen werden. Der Zahler 1310 gibt einen
Zahl-Wert DCQ Data[X] [20:0], X = 2—-7, aus, was auf Null geléscht wird, wenn das Signal GL_TIME_EXPIRE
aufgestellt ist.

[0581] Der Zahler 1314 erhoht sich an der ansteigenden Flanke des Takts PCLK, falls ein Signal
DCQ_DATA_TAKEN[X], X = 2-7, aufgestellt ist, was anzeigt, dass vier Bytes an Daten von einem DCQ-Puffer
zugeordnet zu Master X, gelesen sind. Der Zahler 1314 wird dann geldscht, wenn das Signal
GL_TIME_EXPIRE hoch ist.

[0582] Um die Menge der DCQ-Daten zu bestimmen, die tatsachlich durch die Vorrichtungen auf dem sekun-
daren PCI-Bus 32 verwendet werden, wird die Prefetch-Effektivitat durch den Unterbrechungs-Handler berech-
net. Dies wird dadurch bestimmt, dass das Verhaltnis des Werts in dem Zahler 1314, der die DCQ-Daten ver-
wendet, zu dem Wert des DCQ-Daten-Zahlers 1310 gesetzt wird. Obwohl sogar nicht alle Daten, Gbertragen
in die Prefetch-Puffer oder Ubertragen aus diesen heraus, 4 Bytes breit sind, ist das Verhaltnis eng durch eine
Annahme angenahert, dass alle Daten-Phasen dieselbe Zahl von Bytes Uibertragen.

[0583] In Abhangigkeit der berechneten Parameter kann ein Benutzer oder der Computerhersteller besser die
Funktion des Computersystems verstehen. Zum Beispiel kdnnte dann, wenn eine Bus-Effektivitat niedrig ist,
die PCI-Vorrichtung, die eingesetzt ist, durch ein unterschiedliches Teil des Computerherstellers ersetzt wer-
den. Eine Kenntnis der DCQ-Lese-Daten-Effektivitdt ermdoglicht dem Computerhersteller, seinen DCQ-Ab-
ruf-Algorithmus zu andern, um besser die Effektivitat zu verbessern.

VERWENDUNG VON NEBEN-BUS-VORRICHTUNGEN

[0584] Wie in Fig. 88 dargestellt ist, fihren sechs Erweiterungskarten, eingesetzt in die sechs Erweiterungs-
kartenschlitze bzw. -Steckplatze 36a—f, Bus-Vorrichtungen 1704-1708 ein, die zu der CPU 14 untergeordnet
sind, und Bus-Vorrichtungen 1701-1702, die zu einem 1,0 Prozessor 1700 untergeordnet sind. Obwohl alle
Neben-Bus-Vorrichtungen 1701- 1708 mit dem gemeinsamen PCI-Bus 32 verbunden sind, erscheinen die
[,O0-Neben-Vorrichtungen 1701-1702 zu der CPU 14 nur so, dass sie Uber den |,0-Prozessor 1700 adressier-
bar sind und nicht direkt tber den PCI-Bus 32 adressierbar sind. Deshalb dient der PCI-Bus 32 sowohl als ein
[,O-Neben-Vorrichtungs-Bus als auch als ein Neben-Vorrichtungs-Bus der CPU 14.

[0585] Zu Zwecken eines Verhinderns, dass die CPU 14 die |,0-Neben-Vorrichtungen 1701-1702 als Vorrich-
tung des PCI-Busses 32 erkennt, umfasst der Brucken-Chip 48 eine Logik 1710 (Fig. 90) zum Verhindern,
dass die 1,0-Neben-Vorrichtungen 1701-1702 auf Konfigurations-Zyklen ansprechen, die durch die CPU 14
laufen. Der Erweiterungskasten 30 umfasst auch eine Multiplexing-Schaltung 1712, die mit dem Unterbre-
chungs-Aufnahme-Block 132 des Briicken-Chips 48 zusammenarbeitet, um Unterbrechungs-Anforderungen
zu maskieren, die von den |,0-Neben-Vorrichtungen 1701-1702 ausgehen, dass diese zu der CPU 14 propa-
gieren. Unterbrechungs-Anforderungen, die von den 1,0-Neben-Bus-Vorrichtungen 1701-1702 ausgehen,
werden durch den Unterbrechungs-Aufnahme-Block 132 zu dem 1,0-Prozessor 1700 umgeleitet. Der |,O-Pro-
zessor 1700 konfiguriert die 1,0-Neben-Vorrichtungen 1701-1702; empfangt und verarbeitet Unterbre-
chungs-Anforderungen, die von den |,0-Neben-Vorrichtungen 1701-1702 ausgehen; und steuert einen Be-
trieb der 1,0-Neben-Vorrichtungen, wie dies durch die CPU 14 geleitet wird.

[0586] Nach einem Einschalten des Computersystems 10 und wenn eine Karte 807 eingeschaltet bzw. hoch-
gefahrenist (d. h. eine neue Bus-Vorrichtung ist an dem PCI-Bus 32 eingefiihrt), tastet der |,O-Prozessor 1700
den PCI-Bus 32 ab, um 1,0-Neben-Bus-Vorrichtungen zu identifizieren. Zu Zwecken eines |dentifizierens des
Typs einer Bus-Vorrichtung (1,0-Neben-Bus-Vorrichtung oder Neben-Vorrichtung der CPU 14) lasst der
[,O-Prozessor 1700 Konfigurations-Zyklen auf dem PCI-Bus 32 laufen, um das Vorrichtungs-ldentifikati-
ons-Wort (Vorrichtungs-ID) jeder Bus-Vorrichtung zu lesen. Die Vorrichtungs-ID ist in dem Konfigurations-Hea-
der-Raum aller PCI-Vorrichtungen angeordnet. Der 1,0-Prozessor 1700 speichert die Ergebnisse dieser Ab-
tastung in einem [,0-Neben-Register 1729 mit sechs Bits (Fig. 93) innerhalb des 1,0-Prozessors 1700, der
durch die CPU 14 zuganglich ist. Bits null bis funf des Registers 1729 sind Schlitzen bzw. Steckplatzen 36a—f
jeweils zugeordnet. Ein Wert von 1" fur ein Bit zeigt an, dass der zugeordnete Schlitz 36 eine Bus-Neben-Vor-
richtung zu der CPU 14 besitzt, und ein Wert von ,0" fir ein Bit zeigt an, dass der zugeordnete Schlitz 36 eine

82/215

DE 697 21 381 T2 2004.01.15

Bus-Neben-Vorrichtung zu dem 1,0-Prozessor 1700 besitzt.

[0587] Der 1,0-Prozessor 1700 kann in irgendeinen der Schlitze bzw. Steckplatze 36a—f eingesetzt werden.
Zu Zwecken eines Identifizierens, welcher Schlitz 36, falls irgendeiner vorhanden ist, einen |,0-Prozessor ent-
halt, tastet die CPU 14 den PCI-Bus 32 ab und liest die Vorrichtungs-ID der Bus-Vorrichtungen, verbunden mit
dem Bus 32. Die CPU 14 versucht nicht, irgendwelche Vorrichtungen 1704-1708 auf dem Bus 32 zu konfigu-
rieren bis ein Host-Konfigurations-Freigabe-Bit 1726 (Fig. 94) innerhalb des |,0-Prozessors 1700 der CPU 14
anzeigt, dass der 1,0-Prozessor 1700 seine Identifikation von 1,0-Neben-Vorrichtungen 1701-1702 auf dem
Bus 32 abgeschlossen hat. Das Host-Konfigurations-Freigabe-Bit 1726 besitzt einen Wert von ,0" (Wert bei
einem Einschalten), um eine Konfiguration der Vorrichtungen auf dem Bus 32 durch die CPU 14 zu sperren,
und einen Wert ,1", um eine Konfiguration der CPU 14 der Nebenvorrichtungen 1704-1708 der CPU 14 auf
dem Bus 32 freizugeben. Wenn die CPU 14 Bus-Vorrichtungen auf dem Bus 32 konfiguriert, ,sieht" die CPU
14 nicht die 1,0-Neben-Vorrichtungen 1701-1702, und zwar aufgrund der Maskierung durch die Logik 1710,
wie dies nachfolgend beschrieben ist.

[0588] Nachdem das Host-Freigabe-Konfigurations-Bit 1726 eingestellt ist, liest die CPU 14 die Inhalte des
[,O-Neben-Registers 1729 und Ubertragt die gelesenen Inhalte zu einem Sechs-Bits-,0-Neben-Register 1428
(Fig. 91) des Briicken-Chips 48. Das Register 1728 zeigt den Neben-Status (Neben-1,0-Prozessor 1700 oder
Neben-CPU 14) der Bus-Vorrichtungen in derselben Art und Weise wie das Register 1729 an. Bevor die CPU
14 zu dem Register 1728 schreibt, enthalt das Register 1728 alle ,Eins'en" (Werte bei einem Einschalten), was
der CPU 14 ermdglicht, den Bus 32 nach dem 1,0-Prozessor 1700 abzutasten. Der Unterbrechungs-Aufnah-
me-Block 132 verwendet das Register 1728, um zu identifizieren, welche Unterbrechungs-Anforderungen,
empfangen durch den Block 132, zu der CPU 14 gefihrt werden sollten, und welche Unterbrechungs-Anfor-
derungen, empfangen durch den Block 132, zu dem 1,0-Prozessor 1700 flr eine Verarbeitung geflhrt werden
sollten. Weiterhin verwendet die Logik 1710 die Inhalte des Registers 1728, um eine Erkennung durch die CPU
14 der 1,0-Neben-Vorrichtungen 1701-1702 von der CPU 14 zu blockieren.

[0589] Zu Zwecken eines Anzeigens zu dem Unterbrechungs-Empfangs-Block 132, welche Bus-Vorrichtung,
falls irgendeine vorhanden ist, ein |,0-Prozessor ist, stellt die CPU 14 ein Bit eines 1,0-Schlitz-Registers 1730
(Fig. 32) ein, dessen Bits 0-5 den Schlitzen 36a—f jeweils entsprechen. Fir dieses Register 1730, angeordnet
innerhalb des Bricken-Chips 48, zeigt ein Wert von ,,0" fur ein Bit an, dass der zugeordnete Schlitz 36 keinen
I,O-Prozessor besitzt, und ein Wert von ,1" fiir das Bit zeigt an, dass der zugeordnete Schlitz 36 einen |,0-Pro-
zessor besitzt.

[0590] Wie in Fig. 90 dargestellt ist, umfasst die Logik 1710 ein Multi-Bit-UND-Gate 1711, das Signale
AD_IDSEL[5:0] zu Adressen/Daten-Leitungen des Busses 32 liefert, um Vorrichtungen auf dem Bus 32 wah-
rend Konfigurations-Zyklen auszuwahlen. Das UND-Gate 1711 empfangt ein Sechs-Bit-Signal ENABLE[5:0],
das Bits besitzt, die fir Bits des |,0-Neben-Registers 1728 Indikativ sind und zu diesen entsprechen. Das
UND-Gate 1711 empfangt auch die typischen ldentifikations-Auswahl-Signale SLOT_IDSEL[5:0], geliefert
durch den Brucken-Chip 48, zum Auswahlen von Vorrichtungen auf den Bus 32, wahrend Konfigurations-Zy-
klen. Deshalb werden die Signale ENABLE[5:0] dazu verwendet, selektiv die Signale SLOT_IDSEL[5:0] von
dem PCI-Bus 32 zu maskieren, wenn Konfigurations-Zyklen durch die CPU 14 laufen.

[0591] Zu Zwecken eines Kontrollierens der Bestimmung von Unterbrechungs-Anforderungen von den Schilit-
zen 36a—d, werden die Vier-Standard-PCIl-Unterbrechungs-Anforderungs-Signale (INTA#, INTB#, INTC# und
INTD#), geliefert durch jeden Schlitz 36, zu einer Multiplexing-Schaltung 1712 gefiihrt (Fig. 88). Die Multiple-
xing-Schaltung 1712 serialisiert die PCl-Unterbrechungs-Anforderungs-Signale, empfangen von den Schlitzen
36, und liefert die Signale zu dem Unterbrechungs-Emfpangs-Block 132 (ber vier zeit-multiplexierte-, serielle
Unterbrechungs-Anforderungs-Signale: INTSDA#, INTDSB#, INTSDC# und INTSDD#.

[0592] Wie in Fig. 89 dargestellt ist, liefert der Unterbrechungs-Empfangs-Block 132 Unterbrechungs-Anfor-
derungs-Signale fir die CPU 14 zu dem Unterbrechungs-Ausgabe-Block 114 iber ein zeit-mulitplexiertes, se-
rielles Unterbrechungs-Anforderungs-Signal INTSDCABLE#. Der Unterbrechungs-Empfangs-Block 132 liefert
Unterbrechungs-Anforderungs-Signale flr den 1,0-Prozessor 1700 (ber ein zeit-multiplexiertes, serielles Un-
terbrechungs-Anforderungs-Signal INTSDIIO#, geliefert iber eine PCI INTC# Leitung 1709 des Busses 32 zu
dem 1,0-Prozessor 1700.

[0593] Der Unterbrechungs-Ausgabe-Block 114 liefert die Unterbrechungs-Anforderungen, bestimmt tiber die
CPU 14, zu einer oder mehreren der Standard-PCI-Unterbrechungs-Anforderungs-Leitungen (INTA#, INTB#,
INTC# und INTD#) des PCIl-Busses 24. Eine Unterbrechungs-Steuereinheit 1900, extern zu dem Bri-
cken-Chip 26, empfangt die Unterbrechungs-Anforderungen von den PCIl-Unterbrechungs-Anforderungs-Lei-
tungen des PCI-Busses 24. Die Unterbrechungs-Steuereinheit 1900 priorisiert die Unterbrechungs-Anforde-
rungen (die Unterbrechungs-Anforderungen von anderen Vorrichtungen auf dem PCI-Bus 24 umfassen kon-
nen) und liefert sie zu der CPU 14. Der Unterbrechungs-Ausgabe-Block 114 kann entweder asynchron (wenn
er sich in einem asynchronen Mode befindet) die Unterbrechungs-Anforderungs-Signale zu den Unterbre-
chungs-Anforderungs-Leitungen des PCI-Busses 24 liefern oder kann sie seriell (wenn er sich in einem seriel-
len Mode befindet) die Unterbrechungs-Anforderungs-Signale zu der INTA# Leitung des PCI-Busses 24 fiih-

83/215

DE 697 21 381 T2 2004.01.15

ren, wie dies weiter nachfolgend beschrieben ist.

[0594] Wiein Fig. 95 dargestellt ist, reprasentieren alle der zeit-multiplexierten, seriellen Daten-Signale deren
Daten Uber einen Unterbrechungs-Zyklus 1850, der acht aufeinanderfolgende Zeit-Teile (TO-T7) aufweist. Die
Dauer jedes Zeit-Teils ist ein Zyklus des PCI-Takt-Signals CLK. Jeder Zeit-Teil stellt einen ,Snapshot" Giber den
Status von einem oder mehreren Unterbrechungs-Anforderungs-Signalen dar. Wie in Fig. 99 dargestellt ist,
stellt das Signal INTSDA# die abgetasteten INTA# Unterbrechungs-Anforderungs-Signale von den Schlitzen
36a—f dar. Das Signal INTSDB# stellt die abgetasteten INTB# Unterbrechungs-Anforderungs-Signale von den
Schlitzen 36a—f dar. Das Signal INTSDC# stellt die abgetasteten INTC# Unterbrechungs-Anforderungs-Signa-
le von den Schlitzen 36a—f dar. Das Signal INTSDD# stellt die abgetasteten INTD# Unterbrechungs-Anforde-
rungs-Signale von den Schlitzen 36a—f dar. Zu Zwecken eines Kombinierens der Unterbrechungs-Signale
INTSDA#-D# in das Signal INTSDIIO# verknlpft der Unterbrechungs-Empfangs-Block 132 logisch die Signale
INTSDA#-D# zusammen mit UND, wahrend gleichzeitig Unterbrechungs-Anforderungs-Signale, bestimmt fiir
die CPU 14, maskiert werden. Ahnlich verkniipft, zu Zwecken eines Kombinierens der Unterbrechungs-Signale
INTSDA#-D# in das Signal INTSDCABLE# der Unterbrechungs-Aufnahme-Block 132 logisch mit UND die Si-
gnale INTSDA#-D# zusammen, wahrend simultan Unterbrechungs-Anforderungs-Signale, bestimmt fir die
CPU 14, maskiert werden.

[0595] Fur den Zweck eines Instruierens des Unterbrechungs-Ausgangs-Blocks 114, wenn ein anderer Un-
terbrechungs-Zyklus 1850 beginnt, liefert der Unterbrechungs-Aufnahme-Block 132 ein Synchronisations-Sig-
nal INTSYNCCABLE# zu dem Unterbrechungs-Ausgangs-Block 114. Die abfallende, oder negative, Flanke
des Signals INTSYNCCABLE# zeigt an, dass der Zeit-Teil TO des Unterbrechungs-Zyklus 1850, tibertragen
Uber das Signal INTSDCABLE# an der nachsten, positiven Flanke des CLK Signals beginnt. Ein Signal INT-
SYNCIIO# wird in einer analogen Weise verwendet, um einen ankommenden Zeit-Schlitz TO des Unterbre-
chungs-Zyklus 1850, Ubertragen uber das Signal INTSDIIO#, anzuzeigen. Das Signal INTSYNCIIO# wird
durch den Unterbrechungs-Empfangs-Block 132 zu dem |,0-Prozessor 1700 Uber eine PCI INTD# Leitung
1710 des Busses 32 geliefert. Fir den Zweck eines Instruierens der Multiplexing-Schaltung 1712, wenn ein
anderer Unterbrechungs-Zyklus 1850 Uber die Unterbrechungs-Signale INTSDA#-D# zu Uibertragen ist, liefert
der Unterbrechungs-Empfangs-Block 132 ein Synchronisations-Signal INTSYNC# zu der Multiplexing-Schal-
tung 1712. Die abfallende, oder negative Flanke des Signals des INTSYNC# zeigt an, dass die Multiple-
xing-Schaltung 1712 den Zeit-Teil TO der Signale INTSDA#-D# an der nachsten, positiven Flanke des CLK-Si-
gnals Ubertragen sollte.

[0596] Wie in Fig. 96 dargestellt ist, umfasst die Multiplexing-Schaltung 1712 vier Multiplexer 1741-1744, die
die Signale INTSDA#, INTSDB#, INTSDC# und INTSDD# jeweils liefern. Die Auswahl-Eingdnge der Multiple-
xer 17411744 empfangen ein Zeit-Teil-Signal SLICEIN[2:0], das dazu verwendet wird, die Zeit-Teile TO-T7
der Signale INTSDA#-D# anzuzeigen. Die INTA-D# Unterbrechungs-Anforderungs-Signale von den Schlitzen
36 werden zu Eingangen der Multiplexer 1741-1744 jeweils geliefert.

[0597] Das Signal SLICEIN[2:0] wird durch den Ausgang eines Drei-Bit-Zahlers 1745 geliefert, der an der po-
sitiven Flanke des PCI-Takt-Signals CLK getaktet wird. Das Unterbrechungs-Synchronisations-Signal INT-
SYNC# wird durch einen getakteten Freigabe-Eingang des Zahlers 1745 empfangen. An der negativen Flanke
des Signals INTSYNC# setzt sich der Zahler 1745 auf Null zurtick (SLICEIN[2:0] entspricht Null). Der Zahler
1745 erhoht den Wert, angezeigt durch das SLICEIN[2.0] Signal, bis das SLICEIN[2:0] Signal gleich zu , 7" ist,
wo es verbleibt, bis der Zahler 1745 erneut durch das INTSYNC# Signal zurlickgesetzt wird.

[0598] Wie in Fig. 97A dargestellt ist, umfasst, zu Zwecken eines Protokollierens der Zeit-Teile TO-T7, der
Unterbrechungs-Aufnahme-Block 132 einen Drei-Bit-Zahler 1750, der an der positiven Flanke des CLK-Sig-
nals getaktet wird. Der Zahler 1750 liefert ein Ausgangs-Signal SL1[2:0], das durch den Auswahl-Eingang ei-
nes 3x8 Decodierers 1752 empfangen wird. Der Decodierer 1752 liefert ein Acht-Bit-Signal G_CNTR([7:0], wo-
bei das aufgestellte Bit des Signals G_CNTR[7:0] den Zeit-Teil der Signale INTSDIIO# und INTSDCABLE# an-
zeigt.

[0599] Das INTSYNC# Signal wird durch den Ausgang eines Invertierers 1774 geliefert, der das signifikan-
teste Bit des G_CNTR([7:0] Signals, G_CNTR][7], empfangt. Obwohl das INTSYNC# Signal auf niedrig wahrend
des Zeit-Teils T7 gepulst wird, kdnnte der Unterbrechungs-Aufnahme-Block 132 alternativ mehrere Zyklen des
CLK-Signals nach Beenden eines Unterbrechungs-Zyklus 1850, vor einem Pulsen des INTSYNC# Signals auf
niedrig, warten. Die Signale INTSYNCCABLE# und INTSYNCIIO# werden beide durch den Ausgang eines In-
vertierers 1755 geliefert, der das Bit G_CNTR[0] empfangt.

[0600] Ein zusatzliches Unterbrechungs-Anforderungs-Singal CAY_INT# fir die CPU 14 wird durch die
S10-Schaltung 50 geliefert. Das CAY_INT# Signal wird logisch mit UND mit den INTSDA#-D# Signalen wah-
rend des Zeit-Teils TO verknlpft. Das CRY_INT# Signal wird durch den Ausgang eines UND-Gates 1756 ge-
liefert, das ein SIO_CMPL# Signal, das SI_INTR# Signal und ein I°C_INT# Signal aufnimmt. Das SIO CMPL#
Signal wird aufgestellt, oder auf niedrig angesteuert, wenn die SIO-Schaltung 50 einen Seriell-Ausgangs-Pro-
zess abgeschlossen hat. Das 1°C_INT# Signal wird aufgestellt, oder auf niedrig angesteuert, um einen Ab-
schluss einer Transaktion Uber einen 1°C-Bus (nicht dargestellt) anzuzeigen, verbunden mit dem Briicken-Chip

84/215

DE 697 21 381 T2 2004.01.15

48. Das |,C_INT# Signal wird ansonsten weggenommen, oder auf niedrig angesteuert.

[0601] Zu Zwecken eines Maskierens von Unterbrechungs-Anforderungen erzeugt der Unterbre-
chungs-Empfangs-Block 132 vier Maskierungs-Signale MASKA, MASKB, MASKC und MASKD. Wenn das
MASKA Signal aufgestellt ist, oder auf hoch angesteuert ist, wahrend eines bestimmten Zeit-Teils (TO-T7) des
Signals INTSDA#, wird eine Unterbrechungs-Anforderung, angezeigt durch das Seriell-Unterbrechungs-Signal
INTSDA# wahrend dieses bestimmten Zeit-Schlitzes, von der CPU 14 maskiert. Falls das MASKA Signal weg-
genommen ist, oder auf niedrig angesteuert ist, wahrend des bestimmten Zeit-Teils, wird die Unterbre-
chungs-Anforderung, angezeigt durch das Seriell-Unterbrechungs-Signal INTSDA# von dem |,0-Prozessor
1700 maskiert. Die MASKB-D Signale funktionieren ahnlich zu den Maskierungs-Unterbrechungs-Anforderun-
gen, geliefert durch die Signale INTSDB#-D#.

[0602] Wie in Fig. 97B dargestellt ist, liefert ein Multiplexer 1758 das MASKA Signal. Der Auswahl-Eingang
des Multiplexers 1758 empfangt das SL1[2:0] Signal. Die acht Eingange des Multiplexers 1758 empfangen in-
vertierte [IO_SUB[5:0] Signale, die flr entsprechende Bits des |,0-Neben-Registers 1728 Indikativ sind. Die
Signale 110_SUBJ5:0] werden mit den geeigneten Eingdngen des Multiplexers 1758 so verbunden, dass dann,
wenn das INTSDA# Signal den Unterbrechungs-Status fir einen bestimmten Schlitz bzw. Einsteckplatz 36 an-
zeigt, das MASKA Signal gleichzeitig das zugeordnete Bit des Registers 1728 fiir diesen Schlitz 36 anzeigt:
Drei andere Multiplexer 1760, 1762 und 1764 liefern die Signale MASKB, MASKC und MASKD jeweils. Ahnlich
zur Erzeugung des MASKA Signals, sind die Signale [I0_SUB[5:0] mit den geeigneten Eingangen von Multi-
plexern 1760, 1762 und 1764 so verbunden, dass die MASKE, MASKC und MASKD Signale das Bit des Re-
gisters 1728, zugeordnet zu dem Schlitz, dargestellt durch die Signale INTSDB#, INTSDC# und INTSDD#, an-
zeigen. Die Multiplexer 1760-1764 empfangen das Signal SL1[2:0] an deren Auswahl-Eingangen.

[0603] Wie in Fig. 97C dargestellt ist, umfasst der Unterbrechungs-Aufnahme-Block 132 auch zwei Multiple-
xer 1768 und 1770, die zwei Maskierungssignale IIOTS_D und IIOTS_C, verwendet dazu, die INTD# und IN-
TC# Signale zu maskieren, geliefert durch die Schlitz-Unterbrechungs-Leitungen des 1,0-Prozessors 1700, lie-
fern, da die Leitungen 1709 und 1713 dazu verwendet werden, die Signale INTSDIIO# und INTSYNCIIO# je-
weils zu dem 1,0-Prozessor 1700 zu liefern. Die Auswahl-Eingange beider Multiplexer 1768 und 1770 empfan-
gen das Signal SL1[2:0], und die Signal-Eingadnge der Multiplexer 1768 und 1770 empfangen Signale
(IOSLOT[5:0], die fur die entsprechenden Bits des 1,0-Schlitz-Registers 1730 Indikativ sind. Die Signale
(IOSLOT[5:0] werden mit den geeigneten Eingadngen von Multiplexern 1768 und 1770 so verbunden, dass
dann, wenn die INTSDC#-D# Signale den Unterbrechungs-Status fir einen bestimmten Schlitz 36 anzeigen,
das IIOSLOT[5:0] Signal, ausgewahlt durch die Multiplexer 1768 und 1770, gleichzeitig das zugeordnete Bit
des Registers 1730 fir diesen Schritt 36 anzeigt.

[0604] Wie in Fig. 97D dargestellt ist, werden sechs UND-Gates 1772-1782 dazu verwendet, um die Signale
INTSDA#-INTSDD# zu kombinieren und ausgewahlte Unterbrechungs-Anforderungs-Signale von der CPU 14
zu maskieren. Das UND-Gate 1772 empfangt ein invertiertes ECC_ERR_DOWN# Signal (aufgestellt dazu, um
einen Fehler, erfasst durch den Chip 48b bei Kabel-Ubertragungen, anzuzeigen) und das Bit G_CNTRL][O].
Das UND-Gate 1774 empfangt ein invertiertes INTSDA# Signal und das MASKA Signal. Das UND-Gate 1776
empfangt ein invertiertes INTSDB# Signal und das MASKB Signal. Das UND-Gate 1778 empféangt ein inver-
tiertes INTSDC# Signal, das MASKC Signal und das IIOTS_C Signal. Das UND-Gate 1780 empfangt ein in-
vertiertes INTSDC# Signal, das MASKD Signal und das IIOTS_D Signal. Das UND-Gate 1782 empfangt ein
invertiertes CAY_INT Signal und das G_CNTRL Signal.

[0605] Die Ausgange der UND-Gates 1772-1782 sind als Eingange zu einem ODER-Gate 1784 verbunden,
das seinen Ausgang mit dem Signal-Eingang eines Flips-Flops 1786 vom D-Typ verbunden besitzt. Das
Flip-Flop 1786 wird an der positiven Flanke des CLK-Signals getaktet, und der Einstell-Eingang des Flip-Flops
1786 empfangt das RST-Signal. Der invertierende Ausgang des Flip-Flops 1786 liefert das INTSDCABLE# Si-
gnal.

[0606] Vier UND-Gates 1790-1796 werden dazu verwendet, die INTSDA#-D# Signale zu kombinieren und
ausgewahlte Unterbrechungs-Anforderungs-Signale von dem [,0-Prozessor 1700 zu maskieren. Das
UND-Gate 1790 empfangt ein invertiertes INTSDA# Signal und ein invertiertes MASKA Signal. Ein anderer
Eingang des UND-Gates 1790 ist mit dem Ausgang eines NOR-Gates 1802 verbunden, das das INTSDA# Si-
gnal wahrend der Zeit-Teile TO und T7 maskiert, da keine Karten- und Unterbrechungsanforderungen in diesen
Zeit-Teilen umfasst sind. Das NOR-Gate 1802 empfangt die Bits G_CNTRL[0] und G_CNTRL[7]. Das
UND-Gate 1732 empfangt ein invertiertes INTSDB# Signal und ein invertiertes MASKB Signal. Ein anderer
Eingang des UND-Gates 1792 ist mit dem Ausgang eines NOR-Gates 1804 verbunden, der oder das das
INTSDB# Signal wahrend der Zeit-Teile T1 und T4 maskiert, da keine Karten-Unterbrechungs-Anforderungen
in diesen Zeit-Teilen umfasst sind. Das NOR-Gate 1802 empfangt die Bits G_CNTRL[1] und G_CNTRL[4].
[0607] Das UND-Gate 1794 empfangt ein invertiertes INTSDC# Signal und ein invertiertes MASKC Signal.
Ein anderer Eingang des UND-Gates 1794 ist mit dem Ausgang eines NOR-Gates 1806 verbunden, der das
INTSDC# Signal wahrend der Zeit-Teile T2 und T5 maksiert, da keine Karten-Unterbrechungs-Anforderungen
in diesen Zeit-Teilen umfasst sind. Das NOR-Gate 1806 empfangt die Bits G_ CNTRL[2] und G_CNTRL[5]. Das

85/215

DE 697 21 381 T2 2004.01.15

UND-Gate 1796 empfangt ein invertiertes INTSDD# Signal und ein invertiertes MASKD Signal. Ein anderer
Eingang des UND-Gates 1796 ist mit dem Ausgang eines NOR-Gates 1808 verbunden, die das INTSDD# Si-
gnal wahrend der Zeit-Teile T3 und T6 maskiert, da keine Karten-Unterbrechungs-Anforderungen in diesen
Zeit-Teilen umfasst sind. Das NOR-Gate 1808 empfangt die Bits G_CNTRL[3] und G_CNTRL[6].

[0608] Die Ausgange der UND-Gates 1790-1796 sind als Eingange mit einem ODER-Gate 1798 verbunden,
das einen Ausgang mit dem Signal-Eingang eines Flip-Flops 1800 vom D-Typ verbunden besitzt. Das Flip-Flop
1800 wird auf der positiven Flanke des CLK-Signals getaktet und der Einstell-Eingang des Flip-Flops 1800
empfangt das RST-Signal. Der invertierende Ausgang des Flip-Flops 1800 liefert das INTSDIIO# Signal.
[0609] Wie in Fig. 98 dargestellt ist, umfasst der Unterbrechungs-Ausgangs-Block 114 einen Drei-Bit-Zahler
1820 von einem gemeinsamen Design zu dem Zahler 1745. Der Zahler 1820 wird an der positiven Flanke des
Signals CLK getaktet, liefert ein Ausgangs-Signal G_CNTR2[2:0] und beginnt ein Zahlen von 0 an bis 7, nach-
dem er durch das INTSYNC# Signal zuriickgesetzt ist.

[0610] Zu Zwecken, das INTSYNCCPU# Signal zu liefern, umfasst der Unterbrechungs-Ausgangs-Block 114
ein Flip-Flop 1822 vom D-Typ, das an der positiven Flanke des CLK-Signals getaktet wird. Der Einstell-Eingang
des Flip-Flops 1822 empfangt das RST-Signal und der Signal-Eingang des Flip-Flops 1822 empfangt das INT-
SYNCCABLE# Signal. Der nicht-invertierende Ausgang des Flip-Flops 1822 liefert das INTSYNCCPU# Signal.
[0611] Zu Zwecken, das INTSDCPU# Signal zu liefern, umfasst der Unterbrechungs-Ausgangs-Block 114 ein
Flip-Flop 1824 vom D-Typ, das an der positiven Flanke des CLK-Signals getaktet wird. Der Einstell-Eingang
des Flip-Flops 1824 empfangt das RST-Signal und der Signal-Eingang des Flip-Flops 1824 empfangt das
INTSDCABLE# Signal. Der nicht-invertierende Ausgang des Flip-Flops 1824 liefert das INTSDCPU# Signal.
[0612] Die Unterbrechungs-Anforderungen, empfangen durch den Unterbrechungs-Empfangs-Block 114,
werden zu der Unterbrechungs-Steuereinheit 1900 entweder asynchron oder seriell zugefihrt. In dem asyn-
chronen Mode werden die Unterbrechungs-Anforderungen zu den vier PCI-Unterbrechungs-Leitungen (her-
kémmlich bezeichnet auch als ,Barben Poling") auf dem PCI-Bus 24 aufgelistet, wie dies in Figur 100 darge-
stellt ist.

[0613] Zu Zwecken eines Haltens der Unterbrechungs-Informationen, geliefert durch das INTSDCABLE# Si-
gnal, umfasst der Unterbrechungs-Ausgangs-Block 114 ein Acht-Bit-Register 1826. Alle Signal-Eingédnge emp-
fangen das INTSDCABLE# Signal. Die Lade-Freigabe-Eingange von Bits 0-7 empfangen die Bits
G_CNTR[0]-G_CNTR([7] jeweils. Deshalb wird, zum Beispiel, wahrend des Zeit-Teils T4, ein Bit 3 mit dem
Wert, dargestellt durch das INTSDCABLE# Signal, geladen. Bits 0 (dargestellt durch ein INT_A1 Signal) und
4 (dargestellt durch ein INT_A2 Signal) werden in ein CPUINTA# Signal hinein aufgelistet. Bits 1 (dargestellt
durch ein INT_B1 Signal) und 5 (dargestellt durch ein INT_B2 Signal) werden in ein CPUINTB# Signal hinein
aufgelistet. Bits 2 (dargestellt durch ein INT_C1 Signal) und 6 (dargestellt durch ein INT_C2 Signal) werden in
ein CPUINTC# Signal hinein aufgelistet. Bits 3 (dargestellt durch ein INT_D1 Signal) und 7 (dargestellt durch
ein INT_D2 Signal) werden in ein CPUINTD# Signal hinein aufgelistet.

[0614] Vier ODER-Gates 1828-1834 liefern die Signale CPUINTA#, CPUINTB#, CPUINTC# und CPUINTD#,
die zu den PCIl-Unterbrechungs-Leitungen INTA#, INTB#, INTC# und INTD# jeweils des PCI-Busses 24 gelie-
fert werden. Das ODER-Gate 1828 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1836 verbun-
den. Das UND-Gate nimmt ein invertiertes CM-Signal auf. Das Signal CM wird durch ein Bit eines Konfigura-
tions-Registers des Briicken-Chips 26 geliefert und wird aufgestellt, oder auf hoch angesteuert, um den asyn-
chronen Mode anzuzeigen, und wird weggenommen, oder auf niedrig angesteuert, um den synchronen Mode
anzuzeigen. Das UND-Gate 1836 empfangt auch das Signal INT_A1, das Signal INT_A2, und ein Signal
ECC_ERR_UP (verwendet dazu, einen Fehler in Kabel-Ubertragungen anzuzeigen).

[0615] Das ODER-Gate 1828 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1838 verbunden.
Das UND-Gate 1838 empfangt das CM-Signal und das INTSDCPU# Signal. Ein anderer Eingang des
UND-Gates 1838 ist mit dem Ausgang eines ODER-Gates 1848 verbunden. Das ODER-Gate 1848 empfangt
das ECC_ERR_UP Signal und das Bit G_CNTR2[0].

[0616] Das ODER-Gate 1830 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1840 verbunden und
einen Eingang mit dem Ausgang eines UND-Gates 1842 verbunden. Das UND-Gate 1840 empfangt ein inver-
tiertes CM-Signal, das Signal INT_B1, und das Signal INT_B2. Das UND-Gate 1842 empfangt das Signal CM
und ein invertiertes Bit G_CNTR2[0] (verwendet dazu, das ,sync" Signal zu der Unterbrechungs-Steuereinheit
1900 wahrend des seriellen Modes zu liefern).

[0617] Das ODER-Gate 1832 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1844 und mit einem
Eingang, der das CM-Signal empfangt, verbunden. Das UND-Gate 1844 empfangt ein invertiertes CM-Signal,
das INT_C1 Signal und das INT_C2 Signal. Das ODER-Gate 1834 besitzt einen Eingang mit dem Ausgang
eines UND-Gates 1846 und mit einem Eingang, der das CM-Signal aufnimmt, verbunden. Das UND-Gate 1846
empfangt ein invertiertes CM-Signal, das INT_D1 Signal und das INT_D2 Signal.

[0618] Andere Ausfihrungsformen liegen innerhalb des Schutzumfangs der nachfolgenden Anspriiche.

86/215

DE 697 21 381 T2 2004.01.15

Patentanspriiche

1. Verfahren zur Verwendung in einem Computersystem (10), das eine zentrale Verarbeitungseinheit (14)

besitzt, wobei das Verfahren aufweist:

Verwenden einer Klemme, um selektiv ein Entfernen einer Schaltungskarte (807) von einem Verbinder (34)
zu verhindern, wobei der Verbinder (34) so konfiguriert ist, um die Schaltungskarte aufzunehmen;
Uberwachen des Eingriffszustands der Klemme; und

Zufuihren einer Anzeige Uber den Eingriffszustand zu der zentralen Verarbeitungseinheit (14); und

Zufuihren einer Unterbrechungs-Anforderung zu der zentralen Verarbeitungseinheit (14), um anzuzeigen,
wenn sich der Eingriffszustand &ndert; und gekennzeichnet durch

Trennen einer Taktleitung und von anderen Leitungen des Busses (32), wobei die anderen Leitungen des Bus-
ses (32) getrennt werden, bevor die Taktleitung getrennt wird und die Energie weggenommen wird.

2. Verfahren nach Anspruch 1, das weiterhin aufweist:
Speichern des Eingriffszustands in einem Speicher (20), auf den durch die zentrale Verarbeitungseinheit (14)
zugreifbar ist.

3. Verfahren nach Anspruch 1 oder Anspruch 2, das weiterhin aufweist:
Uberwachen eines Energie-Zustand-Signals (STATUS[127:0]) des Verbinders (34); und
Zufuhren einer Indikation Uber das Energie-Zustand-Signals (STATUS[127:0]) zu der zentralen Verarbeitungs-
einheit (14).

4. Verfahren nach einem der Anspriiche 1 bis 3, das weiterhin aufweist:
Zufuhren von Energie zu dem Verbinder, wenn die Klemme in Eingriff ist; und Wegnehmen von Energie von
dem Verbinder, wenn die Klemme nicht in Eingriff ist.

5. Verfahren nach Anspruch 4, das weiterhin ein Bestimmen aufweist, ob die zentrale Verarbeitungseinheit
(14) den Verbinder (34) freigegeben hat, um Energie aufzunehmen, und wobei der Schritt eines Zufihrens von
Energie ein Zufiihren von Energie nur dann, wenn die zentrale Verarbeitungseinheit (14) den Verbinder (34)
freigegeben hat, um Energie aufzunehmen, umfasst.

6. Verfahren nach Anspruch 4 oder Anspruch 5, das weiterhin
ein elektrisches Verbinden eines Busses (32) mit dem Verbinder (34), wenn die Klemme in Eingriff ist; und
ein elektrisches Isolieren des Busses (32) gegen den Verbinder (34), wenn die Klemme nicht in Eingriff ist;
aufweist.

7. Verfahren nach Anspruch 6, wobei ein elektrisches Verbinden ein Verbinden einer Taktleitung und von
anderen Leitungen des Busses (32) umfasst, wobei die anderen Leitungen des Busses (32) verbunden wer-
den, nachdem die Energie zugefiihrt ist und die Taktleitung verbunden ist.

8. Verfahren nach einem der Anspriiche 1 bis 7, wobei das Computersystem (10) einen Schalter (805) be-
sitzt, betatigt durch die Klemme, was eine Anzeige der Position des Schalters (805) liefert, wobei das Verfahren
weiterhin aufweist:

Aktualisieren des Eingriffsstatus, wenn die Anzeige dieselbe Position fir eine vorbestimmte Dauer anzeigt.

9. System, das aufweist:
eine zentrale Verarbeitungseinheit (14);
einen Bus;
einen Verbinder (34) zum Aufnehmen einer Schaltungskarte (807), wobei der Verbinder (34) eine Mehrzahl
von externen Verbindungen besitzt;
eine Klemme, konfiguriert so, um selektiv ein Entfernen der Schaltungskarte (807) von dem Verbinder (34),
wenn die Klemme in Eingriff ist, zu verhindern;
eine Schaltung (43), verbunden so, um den Eingriffsstatus der Klemme zu berwachen und um eine Zufuhr
von Energie zu dem Verbinder (34) basierend auf dem Eingriffsstatus der Klemme zu regulieren; und
eine Schaltung, die auf die Schaltung zum Uberwachen des Eingriffsstatus anspricht, zum Verbinden des Bus-
ses (32) mit dem Verbinder (34), wenn die Klemme in Eingriff ist, und zum elektrischen Isolieren des Busses
(32) gegen den Verbinder (34), wenn die Klemme nicht in Eingriff ist, und dadurch gekennzeichnet,
dass die Schaltung zum Isolieren des Busses (32) Einrichtungen zum Trennen einer Taktleitung und von an-
deren Leitungen des Busses (32) umfasst, wobei die anderen Leitungen des Busses (32) getrennt werden, be-
vor die Taktleitung getrennt ist und die Energie weggenommen ist.

87/215

DE 697 21 381 T2 2004.01.15

10. System nach Anspruch 9, wobei die Schaltung umfasst:
einen Schalter (805), betatigt durch die Klemme, was eine Anzeige uber die Position des Schalters (805) lie-
fert; und
eine Schaltung, verbunden so, um den Eingriffsstatus zu aktualisieren, wenn die Anzeige dieselbe Position flr
eine vorbestimmte Dauer anzeigt.

11. Computersystem (10), das aufweist:
ein System nach Anspruch 9 oder 10.

12. Computersystem (10) nach Anspruch 11, wobei die Schaltung so konfiguriert ist, um eine Unterbre-
chungs-Anforderung zu der zentralen Verarbeitungseinheit (14) zu liefern, um anzuzeigen, wenn sich der Ein-
griffszustand andert.

13. Computersystem (10) nach Anspruch 11 oder Anspruch 12, wobei die Schaltung einen Puffer, zugreif-
bar durch die zentrale Verarbeitungseinheit (14), umfasst, verbunden so, um die Anzeige Uber den Eingriffszu-
stand zu speichern.

14. Computersystem (10) nach einem der Anspriiche 11 bis 13, wobei die Schaltung ein Energie-Status-Si-
gnal (STATUS[127:0]) des Verbinders (34) tGberwacht und eine Indikation des Energie-Status-Signals (STA-
TUS[127:0]) zu der zentralen Verarbeitungseinheit (14) zufiihrt.

15. Computersystem (10) nach einem der Anspriiche 11 bis 14, das weiterhin aufweist:
eine Schaltung, die auf die Schaltung anspricht, verbunden so, um den Eingriffszustand der Klemme zu Uber-
wachen, verbunden so, um Energie zu dem Verbinder (34) zuzufiihren, wenn die Klemme in Eingriff ist, und
so, um Energie von dem Verbinder (34) wegzunehmen, wenn die Klemme nicht in Eingriff ist.

16. Computersystem (10) nach Anspruch 15, wobei die zentrale Verarbeitungseinheit (14) selektiv den
Verbinder (34) freigibt, um Energie aufzunehmen, wobei das Computersystem (10) weiterhin aufweist:
einen Puffer, verbunden so, um anzuzeigen, wenn die zentrale Verarbeitungseinheit (14) den Verbinder (34)
freigegeben hat, um Energie aufzunehmen, und
wobei die Schaltung, verbunden so, um nur Energie zuzufihren, Energie dann zufiihrt, wenn die zentrale Ver-
arbeitungseinheit (14) den Verbinder (34) freigegeben hat, um Energie aufzunehmen.

17. Computersystem (10) nach Anspruch 16, wobei die zentrale Verarbeitungseinheit (14) selektiv den Bus
(32) freigibt, um mit dem Verbinder (34) verbunden zu werden, wobei das Computersystem (10) weiterhin auf-
weist:

einen Puffer, verbunden so, um anzuzeigen, wenn die zentrale Verarbeitungseinheit (14) den Bus (32) freige-
geben hat, um mit dem Verbinder (34) verbunden zu werden, und

wobei die Schaltung, verbunden so, um nur Energie zuzufiihren, den Bus (32) mit dem Verbinder (34) dann
verbindet, wenn die zentrale Verarbeitungseinheit (14) den Verbinder (34) freigegeben hat, um mit dem Bus
(32) verbunden zu werden.

18. Computersystem (10) nach einem der Anspriiche 9 bis 17, wobei die Schaltung fur ein elektrisches Ver-
binden des Busses (32) mit dem Verbinder (34) umfasst:
eine Einrichtung zum Verbinden einer Taktleitung und von anderen Leitungen des Busses (32), wobei die an-
deren Leitungen des Busses (32) verbunden werden, nachdem die Energie zugefiihrt ist und die Taktleitung
verbunden ist.

19. Computersystem (10) nach einem der Anspriiche 16 bis 18, wobei der Bus (32) einen PCI-Bus (32)
aufweist.

Es folgen 127 Blatt Zeichnungen

88/215

DE 697 21 381 T2 2004.01.15
Anhangende Zeichnungen

(LT13LSIOUVA LHIOIN
(171731S394va LHIIN 208 NILNVH)

208 NILAWVH)

D9E 99€ 9 PIE 99€ J9E_—\

19

N

gT134N3LSVL

3
LIFHNIZ
-¥3anaLs
-Q134N3LSVL
I
sng vsii
__dIHO dIiHO LIZHNIZNANALS
97—~ -Navonus -N3YoNYE /\eu. NDioma (4§ i iy
97— ~~—0qz -¥SI3 -10d = <

) T 1 b o

ew SNg Dd A¥VWRd ¥ = |
ONNLIVHOS 4NV

¥IHOIAdS | o NINONUE -LSOH "N3LLvid

: “WALSAS i (ETECIVENEREIT o |
0% -W3LSAS N

H ¥
s%f 17 Snd V01 H]
gLA DD I

89/215

DE 697 21 381 T2 2004.01.15

- yalsioay
o e g lNosenus
(B /g g g o R R
e 4 _
-mwzﬂﬂwm__;mm /// ,ﬂl/hwll W i P9E %98 9 ll.\mwu«um“w v
N EEeEE e AR
78 e v
vV bE ~ ¥ 3qvNoIs -snLvis
o8 {uaLsioay b~ ~20871383H
™ v N (751
[0:6£]1 104 /-._m._m_ﬁs_ \ B\ -
ITYNOIS -¥3ANALS —— : . T o o ==
-SONVOSNV -T3TIvaivd____| G i i— : S ! [t
€ __ [1 [t (] ¥
ITVYNOIS %0 109 [91:6€] 1n0d
-¥3N3LS -ZNIND3S)
KMOQ ¥3M04 / dN¥IMOd 0 009
[0-1111nod | 94
ITYNOIS -¥3N3LS -a31 _\ . , . i - : d
BB
- o o W 1s K

(17131s39¥va LHOIN 208 1393H)

90/215

DE 697 21 381 T2 2004.01.15

| 4
1 ‘]‘,8 ;‘ Primary PCl Bus ~
: / . (y m' ‘ '
BUS- |, = -1 [ra BUS-
warcheR [10 1 | | aeer [=lyasrer| | sLave [0% [lwonror
F'IFG] 101 yo3 102 | 106
U4 LS s Pty
A 2] - m]00]08 .
2~ I N sch:.’_:gﬁsnﬂoy SRy TR
I | o
UPSTREAM_CHIP ——
) T 104 26
| V&
UPSTREAM_CHIP
I [130 4
128 » KABELI/F (e
S |
JTAG 120L
] 2 6 l 27 SC‘II-Ivlf\:Jg-EN- .
BLOCK
- 134~ [INT
—/ 1 125 IN
| B
BUS pa | [ra]| [7o BUS-
MONITOR[*] ™"®] IMASTER| | SLAVE | | Rierer | WATCHER
? ‘ 3 \ |
] | 124

N

SEKUNDARER PCI- BUS

FiG. 3

91/215

1535
:ICHER KABEL /" 130
EQS(E;IECESSREGISTEI; |/F 127
(TMRR) (mmmmm e o e T :
e
I_ | | KABEL- DE- {
“““““““““ CODIERER :
|
o 146 }
PM [
140 :
I
|
DRQ {
1 :
lS& :
- |
i
@ reaysanos. |
— Pvw| [OR | [BC |1
~ = .~ |
160 161 ‘162 ||
:
!
MA@ !
|
o e |t
N ecineoRegsTERt |
_ 11234 Master | [Purren
' Leerunasf " | 194
FIG. 4 1211 Slave Loak | |_159 39
PCl Bus |

DE 697 21

381 T2 2004.01.15

92/215

DE 697 21 381 T2 2004.01.15

AT gy 33Mhz ,

T -~ PCLK3 100 Mhz A
< PLL

FRAGESTELLUNG
UND PCI- ZUSTAND
MASCHINEN- LOGIK

/
184
PCLKPHIT 196 3 K 23z

4:] | C(U(3100Mhz
2

] 92—\- MASTER- KABEL | / F SLAVE- KABEL I/ F CG‘KPH"

f 3

(33Mhz) 33Mhz

CABLE_(LK2
—— (33Mhz) | DATA DA '
182 § _ CCKPHI f] 08
ggl;hz \ ;'il' o SLAVE-KABELI/F[™ o) ster. kageL 1/H—194
]00 Mhl‘ 1 1 ! Y { .
a3t 33Mhz .
' (ax
| ‘ POLK3 KLW
100 Mh
179 FRAGESTELLUNGS-\ . PLL
UND PCI- ZUSTAND- |, 33Mhz #A L
Yf tog MASCHINEN- LOGIK/‘ PCIK
—
48
PCl (LK
TAKT- PUFFER

B~ VVVVVY

FIG. 5 | | PCl CLK 2

93/215

DE 697 21 381 T2 2004.01.15

Pl.l."'\.. ‘ » VERRIEGELUNGS- INDIKATION
260 Vo 3XTAKT
100 Mhz 205 -
. 197\ _ .

ExTERNER (LK LOCK DIV 3 {1X TAkT
— | REFIK IND MASCHINE -
R [aw 7

| 201

FIG. 6

94/215

DE 697 21 381 T2 2004.01.15

LI

- HHdNN
x.—u ._mm<v_Al.||Ilm m= —_—._n—
1414 - €
J eNnd
&
i
LIHd wﬁ 0
—~ [0F:15] 9SHXAW]
£ 4l M ,AU 1HORIHOVN
NZLVQ -138V b / \ |
|
N_L i~~~ ol
[0Z:6£] 9SS <
(0611 9SWXNWT N9 [414
a2

ey
902

95/215

DE 697 21 381 T2 2004.01.15

<

894

\ N\

-\

1 JC

- &

PNSINTIN L AL

Al

L

SIL bLLOELL ZLL Gl OLL 61 8L 4 9L SL ol o€l T U oL

_/

\l

A

v

RN
—
S

-
5
C

.

1HdDd

Eftid
Cid

\|__/ Uhd

0iog ojqv)

| yonan
X.
L/

Uy

3/1 999 o1 9
d

96/215

DE 697 21 381 T2 2004.01.15

218 ML DY PHI3_DLY
L | Phose 1 =
KABEL-DATER] r2 [DATEN fIFo 216
(A3 ——C Lgag 8
| Mo o <
- 13 [DATEN 41 -:>
> \222 /I/ |
l_’DhAu;; 3 FLFOOUT [59:0]
> "
2% EINGANGS INFTR {1:0] AUSGANGS
’\-‘ - -
e s oo
CCLKPHIY — BN |
—_— — g
(K3 R kP aw 124
EN_INGHT

- H6.9

97/215

EN_OUTONT

DE 697 21 381 T2 2004.01.15

0l 94

dID) WvayISdn

md

\vuw 0 EA AT FZNINO -SNOLLVSINOUHONAS
< j
1w _ =
¥3OIFZSIAMNIH 1IN0 N3 Vlc VI - R | m
-3gvosny —] | 14 4] .
e th -
.................... g L 13539))
.............. s —
1174 8Ee 9¢C
<
Enm)
jn
¥IOITZSIIMNIH
-3gVONI3 — 0N 1

9t

98/215

DE 697 21 381 T2 2004.01.15

[19H

/
N\

1P

A\

N\

\

_/

-/

£

A

i/

N/

19

g0

{o

_/

A

/

/

N/

/

\ i/
7]
\

/
N/
i 19

)

_/

)

v

nn

_/

SIL bIL EIL 2L U o 6L 8 a4 9 s on e u o

LIHN)
R0” EIHd
N0 eI
0™ 1Hd

| oing o)

J/l\ LD

VIva 034
d

Lo

99/215

DE 697 21 381 T2 2004.01.15

i

SIL bl EIL T1L L1 OLL 6F 8L A4

913

I

oEl W oUW

4

l

£

A

deow

0

g

X
X

(b

S

S

s.—..——.-—@ IOILIISSONVONIZ

x._h—sc I9ILIISSONVOSNY

bR

€041
411

Lo
0044
¥
£X1)

100/215

DE 697 21 381 T2 2004.01.15

3X (LK

AKX

FIG. 13

101/215

DE 697 21 381 T2 2004.01.15

vl 9l

0)43 | 10av) JYVdS 00d | toav) 4VdS l
1A | 204V VS DA | 20aV) YdS 4
{03 | €0aY) JVdS)@ | £0ay) J4YdS £
€)1 | voayd VdS €@ | voawn J4VdS 4
pI0 [500V J4VdS A | S0V J4vdS g
ST 34YdS 6a | 90am J4VdS 9
0 | 2000 J4YdS DI NR 34vdS [
DU | 80av) bay ma) DW_| 800n bay may g
120D | 600Y) 443 120Y) | 600 101 b
£0av) | 010Y) | peaowsy uojiajdwioy || ZZGYD | 01GY) | ponowsy uoyojduoy | o[
€20V | 11OV Y Mid £2Y) | LIOM) PV Md [
bt | Ziav) 044n9) FOY) | 210 04n9 tl
§TaV) [Elav EHT) §Tav) | ElN EE) £l
970V | pian 4ing 90v) | blam AT Pl
[Lan | sian €408 1Lav) | stan N0 4
820V [91an 038 82a0v) | 910M) 03 91
600V) | Z1OV 1389 620Y) | Z1aV) 1399 [
0EQY) | 810V) 1382 0E0Y) | 81aW 1 Bl
1EQV) | 610V Z[D) 1E0Y) { 610V £300) 6l
IWVED { 0zav) 000Y) WveD | 0zan 000V 0
£ cmw_w_ Nommm_a_ _amE_n_ mamﬁ_a_ Noma—_._ —ema__ﬂ_ :m

|

OILIISSONVONIZ -NZ -OILIISSONVOSNV

-owassonvosny |

O‘h_mwm02<.ww:< -NZ -OILIISSONVONIA

102/215

DE 697 21 381 T2 2004.01.15

EINZEL- ADRESSEN- 1. PHASE 2.PHAsE | PARALEFOLGENDE
chuff <3> |buff# X NA
chuff <2> |buff# X NA
VERZOGERTE- | chuff<I> |buff# X NA
aNFoRDERUNG| chuff<l> _JbufE | paritS | WA
| he<30> [POeamd | Bfo! NA
cod<> addr | dofecs® NA
chuff<3> X X X
chuff <2> |X daia ready- data ready
eporaes | huff<l> X parily error parity error
SCHREIBEN 1 chuff<0> [X parity parity
cche<30> {Pemd | BE<> BE<>
cad<> addr dota data
chuff <3> |bufi# end of completion| end of completion
chuff <2> |buff# data ready data ready
LPeRZOGERTE- | chuff<l> [bufk# parity errar parity error
ABSCHLUSS | chuff<0> |buft¥ parity parity
cche<3:0> |DRC status status
cad<> X data data
| chuff <3> |buff# X X
ream- Connec chuff <2> [buff¥ data ready data ready
chuff<l> _ |buff# X X
chuff<0> |bufff | X X
cche<3:0> -istrmconn | X X
cad<> X X X

FIG. 154

103/215

DE 697 21 381 T2 2004.01.15

45191

-ANVava

O T oo PSSP
S5 _MM, m._ Wg A__“mw.)
Aund | And X X <055 N3SIF¥HOS
10139 Kqund | 10170 Kyind X X ZBIP | saizieniee
X X X X <|p
&. Js«__T X X <g>|np
K] pposil | <>pm
VN el | __s.dlu)] .Aqmmﬁ
YN Ajod Fn ¥ @.l <> | ONN¥3aN04NY
Wi X I 0 RIS | “uzoozen
N X #jn)09 <t)
N X #4n £ | <e>)np

104/215

DE 697 21 381 T2 2004.01.15

Parameter : WERT

IMPEDANZ (Differenﬁul) 108 +/- 5 Ohm

mpeDANZ (Single-ended) 67 +/- 5 Ohm
PROPAGATIONS- VERZOGERUNG 1.54 ns/ft min, 1.58 ns/ft max

Delay Skew 0.025 ns/ft max

pamprun (Differential) 0.08 db/ft max @ 50 MHz

LANGE 12
DC WIDERSTAND 0.070 Ohm /ft max

FIG. 16

105/215

DE 697 21 381 T2 2004.01.15

- o 1914 BSE |
NI F18VNT J29D) _ M TGYNI 9D
| 3) [
| v | VLD
[0:15] 10004 | 9¢¢E -
{0151 19sWXW _ RN IIATY
— /ecm YN) I
| YIDN
[0°1S] ooy : §
[0-65] inoojy
LLELY) . WOLVYANIO
D -119 -4N¥d
DN 01 1D
; 303 aNR S TaavL
[0:15] 95Wi40) Lo ey Y <
¥SE [0-65] noxy

/
4

106/215

DE 697 21 381 T2 2004.01.15

8l

1000 | 00000000 | 00010000 | 00010000 | L1LO 1OOL { L1OI 1100 | LL1OOLOL | OLOL 1010 | L

0100 | 00000000 | 10010000 { 00000LL0 | L10L0LOO | 0000 LOLL | 1001 LOOL | 00OOOLLL | 9

0010 | 0000 0000 | 0100 1100 { 0001 1001 | 010L0O0LO | OOLO LLLO | LLLO 1000 | LL1000OO | S
0001 | 0000 LLLL | 00000OLE | 00000000 { OLOOOLIO | OLLLOLLO | 10000100 | LOOD LIOL | F

0000 | (00O 1000 | 1OLO LLLL | L1EL 1100 | L1100OLO | 00O 0OOL | 0000 L0CO | 00OL 0000 | €

0000 | 01000110 | 0001 OLLO | 010 tOLL | 0OLL LOOL | 00100001 | 00000010 | 0110 L100 | T

0000 | 001D 001 | L100 100L | 0110 1000 | 0000 L000 | 10000001 | L10LOLLO | 0OLLOOLL | I

0000 | 00OL 1011 | 01100000 | 1100 Li1L | 00000LOL | L100000L | OOLLOOLL | 10000000 | O

68/9 SYET 1068 L9SKETIO 6BLISKET 1068 [9Sk €ET1068/9 SHET 1068 [9Sh ETI0

6655 SSSSSSky bbb bbBY CEEEEEEE €T TTIT ez ALl LLLL LI

[65-011n0 0414

? 3

slig-N3lva

Y

[111810

107/215

FIG. 19

DE 697 21 381 T2 2004.01.15

00 No Error

| 00857 140 D858
010852 |21 UNCER |41 DB44.24
070853 [ZZUNCER |42 DB52.12
03UNCER 123DB46 |43DBI2
040854 (24 DB 52,37 |44 UNCER
O5UNCER (250832 |45 DB33.
06 UNGR |26 0805 146 UNCER
FG.19A|FIG. 198} —577Dg09 |27 DB55,35 |47 DB53.33
080855 (28 0B41.21 148 DB40.00
09 UNGER_ 29 UNCER |49 DB34
OAUNCER 12ADBA3 J4ADBAT |
0BDB38 |28 UNGER |4B DB58.38
OCUNCER [2CDB42 — [ACUNCER
0DDB39 |2 UNCER J4D DB54,34
OEDB3/ |26 DBS7 37 |4EDB44,04
OFDB2404 [2F D835 J4F DB16
T0DBS6 |30 UNCER |50 DBST17
—TTUNGR |31 D807 |51 D26
T7D849,09 3ZUNCER |52 DBOO
130848 (33 ONCGER |53 UNCER
T4UNCER 340821 (54 DB07
T5DB49 |35 ONCER |55 UNCER
T6DB50 |36 UNCER |56 UNCER
170823.03 37 UNGR___ 157 UNCRR |
TSUNCER [38DB25 |58 UNCER |
19DB5T |39UNCER 159 UNCER
TADB40 [3AUNCGER _[SAUNCRR
TRUNCER |38 UNCER |58 UNCER
TCDBAT [3CUNCGER5CUNCER
1D UNCER|3D DB43,23,03,5D UNCER
TEDB25.05 SEUNCER _ |SEDBSZ 37.17|
SEUNCER _|5F DBS6,16

1F UNCER

108/215

FIG. 19A

DE 697 21 381 T2 2004.01.15

50085919 (800859 __ |AODB3L,IT [CO UNCER [EODBI9_
61 UNCER |81 UNCER A1 DBI3___ [C1DBO8 __ |EJ UNCER.
[67UNCER __[82DB40,20 |A2DB14 __ [(20B01 [E2 UNCER_
63UNCER 830823 |A3DB5313 (3 UNCER |3 UNCER
t4DB28 [84DB50,10 |A4DBO6 _ [c4DB44 (€4 DB33I3
65UNCER _ |850824 |5 DB28,08 |C5DB22,02 [€5 UNCER |
66DB32,17 [86DB27 ___[A6 DBSA,14 }c’a UNCER __[E6 DB53,33,13|
57 DB52 32.12187 DBA6,06. |A7 UNCER |7 UNCER _ |E7 DB36,16
G8DBIT |88 UNCER |ABDB36 __ [CBDB31 __[FB UNCER _
§9DB30,10_[89DB45___ |A9 DB43,23 Iw UNCER___|E9 DB4Z.22,02)
6ADB30,10 |8ADBO4 __ |AA UNCER _ |CADB20,00 |FA DB41,21,0
GBUNCER |88 DB29,09 |AB UNCER (B DB44,24,04| B DB34,14 |
SCUNCER _ |8CDB29 _ |AC UNCER _ [(CDBA7.27 [EC UNCER _
60 0B59,39,19.8D DB59,39_|AD UNCER _[CD UNCER __|ED DB3Y,19
GEUNCER |8 UNCER _JAE UNCER _|CE UNCER _[EEDB50,30
GFUNCER __[8F UNCER__[AFDB45,05 |CF UNCER _ |FFDB54,34 14|
70DB17 |90 UNCER __[B0 D818 (DO DB40,20,00(FO DB 58,18
7YDB5T11 (910822 [B1 DB45,25 |DIDBSI,31 [FI UNCER
72084626 (920810 |87 UNCER _ [D248,08 [F2DBIS_
73UNCER_ 93 UNCER B3 UNCER D3 UNCER _|F3 UNGR
TAUNCER __[94DB03 B4 UNCER _ D7 TNGR—[f4 URGRR |
T5UNCER |95 UNCER__[BS UNCER D5 DB55,35,15|F5 DB26,08
T6UNCER |96 UNCER _[B6 DB48,28,08]D6 DB46,26,06F6 DB21,01 |
77DB48,78 |97 DBA5,25,05]87 DB27,07 |07 UNCER___ |7 DB56,36.16|
78084202 [98DB20 (BB DB56,36 |08 UNCER _ [FBDB30
TOUNCER |99 DB49.29 |B9 DBS1,31,11D9 UNGER __|F9 UNCER
JAUNCER __[JA UNCER _|BA UNCER _[DA UNCER _ [FADBSS,15 |
78DB47,07 |98 UNCER 8B 083,18 (DB UNCER _|FB DBSE, 38,18
7CDB50,30,109C UNCER__[BC UNCER _[DC UNCER [FC UNCRR |
TDUNCER__ |90 UNCER__|BDDB4Z,2Z [DDDB3515 |FD DBA7,27.0
JEDB37,17 _|9EDB49,29,09|BEDB43,03 [DEDBAT,0T |FE UNCER
JFUNCER _|9F UNCER __|BF UNCER _|DF UNCER __|FF UNCER

FIG. 198

109/215

DE 697 21 381 T2 2004.01.15

(=)

FIG. 20A

110/215

DE 697 21 381 T2 2004.01.15

| Level 1

CPU "
VERZOGERTE
ANFORDERUNG

ERNEUT
VERSUCHENDE
MASTER

Level 2

Level 2

)

-
-

Master D

FIG 208

111/215

DE 697 21 381 T2 2004.01.15

80¢
LT

UL
—[[0°Z] 1ISVWHLS vZD103 AW

Wy34IS V20

_lzcﬁ 1SVW YT 030 AW

g R L
I8 I5vW Al Iaﬁ 1SV R

b0
1291 L L
|
- -m ‘l'll |
INVED NIW<—1 3N (o000 T0:6] INONIW ¥Z9D0)
DI WVILLS

(ST

Zit nz |, _
OIE Al TR
906
[0:Z1isvW WY N
™ | sﬁ/ D34 1075 ANV
90E [0:0) 189 VIT - -
- - MOONIM K340 | va"Isvmim
. - 143 NIIMVED Sanvis [0:2] ISYWIM N m_.u_m_nwﬁ_ L D3¥ WVRIS
(0] 034 AW L o rraTeTl
_ : B , = INVHS NIW
—— :.a BIUNSYW V2D I T I
v (127 o3 eams|

112/215

DE 697 21 381 T2 2004.01.15

- RESET

GNT[7:0] =
NEWGNT [7:0]

CHANGING_GNT =0

1 ANY_REQ

/CHANGING_GNT = |
GNT [7:0] = NOGNY
CURMAST [2:0] =
N_CURMAST [2:0]
UPDATE RR_MAST [2:0]

GNT [7:0] =
NEWGNT[7:0]
CHANGING_ GNT = 0

(A) OPEN_WINDOW & IANY_REQ & BUS_[DLE & (N_CURMAST! = CURMAST) / CHANGING_GNT = 1
GNT [7:0] = NOGNT

CURMAST [2:0] = N_CURMAST [2:0]

RR_MAST [2:0]

=N_RR_MAST [2:0]

LISTATE {1:0] =

N_LISTATE[1:0]

OPEN_WINDOW & IANY_REQ & BUS_IDLE & (N_CURMAST = CURMAST)
JUISTATE [1:0] = N_LISTATE [1:0]

(O OPEN_WINDOW & (N_CURMAST! = CURMAST) / CHANGING_GNT =1
GNT [7:0] = NOGNT
CURMAST [2:0] = N_CURMAST [2:0]
UPDATE RR_MAST [2:0]
LISTATE [1:0] = N_LISTATE [1:0]

113/215

DE 697 21 381 T2 2004.01.15

IBAL_DEL_REQ / ADV_RR_MAST = 1

N_CURMAST [2:0] = N_RR_MAST [2:0]

OPEN_WINDOW = STREAM_REQ +
RESET 4N_GRANT + ICURMAST_REQ

ANY_SLOT_REQ /
ADV_RR_MAST = |
N_CURMAST = N_RR_MAST BAL_DEL_REQ / N_CURMAST [2:0] = BALBOA

ADV_RR_MAST =0

®

IANY_SLOT_REQ /
N_CURMAST [2:0] = BALBOA, ADV_RR_MAST =0

OPEN_WINDOW =
IBAL_DEL_REQ + BAL_RETRIE!

BAL_DEL_REQ & RTRYMAST_REQ /
N_CURMAST [2:0] = RTRY MAST[20]
ADV_RR_MAST =0

(R) !BAL_DEL REQ+
BAL_DEL_REQ & IRTRYMAST_REQ
ANY_SLOT_REQ / ADV_RR_MAST =1 |

N_CURMAST[2:01 = N_RR_MAST(20]

FIG. 23

114/215

DE 697 21 381 T2 2004.01.15

CURMAST [2:0]

NEWGNT [7:0]

00000001

06000010

00000100

00001000

00010000

00100000

01000000

~NjosejlwviajlwL@ivI-—- O

10000000

FG. 24

115/215

DE 697 21 381 T2 2004.01.15

8EE 1K 020

1S 10w VR D]

[-1=X
[X] 03¥ NSYW VZD

it | TN v T
[o Teao
¢ | DuwswWToedy
[0:21 W1syw IonW | [0-Z] 1015 41420
YSVW 43N 029 9Ee

NSYN™ SAVAMIV 0Z94)

[ATM31SYW 1DnW 029D

JENS}

DOW L o) viva Hum 107
gﬁw — 01 Te:11
ysow [0 EISYW 10210
\.\\ |
e 926

[1:21 ISYW 1ONW0Z94)

N |

|||v=uc. _

WH_¥M9J)

L snsvwonw

116/215

DE 697 21 381 T2 2004.01.15

L-1=X

[X1 034 YSYW VD

AT

TSKNW XSV
0

bt

NSYW SAYMIV 029D

YSYW ¥3AIN 029D

X1 1SYW TN D29

117/215

DE 697 21 381 T2 2004.01.15

oura |

BRUCKE

u

primARER PCH BUS —
[‘
PG-PCI.

26
BRUCKEN- f

CHIP

M%

Blr;(e;:l:((ElN f 18
CHIP | 22

sexunpirer P BUS f’J

123
arad-

BRUCKE

325 NEBENGEORDNETER
~ - .
1 o]
NIC | NIC

7 7
327A 3278

FIG. 26B

118/215

DE 697 21 381 T2 2004.01.15

VLT 9

p
h

00000000000000000000000000000

10g ML 9N

| 13Nd44039 ——
| 508
D9 zLITHOS ¥N4 ﬁ_\

Naa 7393H
L =[0] Nid W/
| 108

8>

4.2 94
N3ISSOTHOS3O |—W~\ 508
09¢ zLHOSs ¥Nd
70§ 1383H o4
2.~ 0104 %
108

==>,

119/215

DE 697 21 381 T2 2004.01.15

32
f sekunpArer PCl- BUS
/\ . POUT [39:16]
Bl T
TN AN S
l POUT (28] _|uwscharr. <:{—E>
[SCHALTUNG
: EN— R
! POUT[16] |
! 43!,
: rf : RESET
I POUT[22] |umschacr- | SlGNAﬂ
| SCHALTUNG AN
: EN— - : TAKT
: K —— : SIGNAL
: i —
: E“— Y y ' : \
: s
| | SORGUNGS-
I | {SPANNUNGS-
Cm——m———— e — e —————g === PEGEL
41
FIG. 28

120/215

DE 697 21 381 T2 2004.01.15

£1N980 67 "9l

43 m__“ Ddnz

#04V)
v«-ﬁﬁ.mtmﬁ nz. N\ ¥3LSIOFY -LISTM -ZLIHOS
7 Y31S193Y -3gVOITNS -ZLITHOS _ a_\. w_i
-mwvnwwmi - Emu w_.ﬁ& ¥3LS193¥ -N3LVa -._._m_m_mm
0 a0%) “T3AM3S 7 ¥ILSIOTY -HANALS (L
— 0S m_ S8 ya1510m
W8 . . ﬂu.\ | [-31A49 -38VONI3 -T1ARI3S
INOG3IVO4N™0S i
T _m_ﬁrb_x/\ SONNHOTMENIINN (3
0°¢)# NIsng
Emomm ﬂzﬁwﬁw) Eﬂ\ _m -mwz:_._ommmwwwm__mmm
J1vadn 0S (~ _m
78 ! 008
N - M R S
MI901 -SNV /NI3 < - e
) 1 | 7#———* 901 -3avoNIz
¥aN3Ls -a31 | po 8 STHOLMS ._mm Asviav ais) MIN
028 =
P , ¥38391132 " voa\ N
Hcen wz:h_<%nmm 0IS

121/215

DE 697 21 381 T2 2004.01.15

0€9H

~QIS) N

Savonia 019
VY __
/ sf)
v #QV01/ LIS
TS i s —
T 59 18 OGN | RUEE | G0k
TBLEZT N
[2L:LL1 41
[9:1 1T hid

[0:51 Hid

122/215

DE 697 21 381 T2 2004.01.15

#INIAd

Vi€ 9

- - 0)I9) TIaVNT" LIS
T 009 raTaT 18
» o SS34904
o] 08d NI WYDS 748 | b
SaNvsnz Enlaz__.mab. wamyz e ———
(17 A Mm<5< 70 TN _ -a1Ag/ g TAGE BT
i zﬂv oW NS (0TI ,
1A |
9¢8 XD
. ;
88 v
% (5SS Ws) 0
(019D MS H.u.bl 0I1S) MmN
| ISy ‘ {o:sITnavNa e
rAg ~ 3avoi3ud 383HOSYIA
[o'sT Ol 3vadn [9°16) 0N 21vadn : T e
| ! Mﬂ BCGEEEEN TETITATIY
) 3 ier ([0°L€ 034" 4IND) SLIg 1€ H.ﬁu

008 :
43151938 in
-SONNHOIYA ,

~¥3INN c_

aa vy |
,sul mInsT P

[0S IDLMST @

[9:1E1 MS NONY

[9:16} 038 aNI 0 ShB

[9:1€IMS NON 10

123/215

DE 697 21 381 T2 2004.01.15

410 G104

241€ "91

181€ 94|

00 NI NVDS

1N0IWIL 1Y

18189

SS34904d NI NV)SI

81€ "9

R IS
TR .
__J

[0J 9t msil

‘
:
m - [pl31avN3 Lig
"
'
"

11£8 T WGEITRT

S| ™ [“Teomms

NES— o5 | TITvE 18
g

| smg €8 | [E1718vnT 18
NGEBLS

MNE o [TeITIEVIE L6

S e

E8) o | T
:;_ “TI90 S
L

124/215

DE 697 21 381 T2 2004.01.15

(81& "9

v_w o8 -
98 Tl N VDS 788 | | -
B v
FINO_ WoLms W3 |0 ’ FuINi 15 |0 L A\ ma"_a DAT oNIaNad
qu EV T D Y- | |
i3] | T
. i [0°sT WIS ¥D 5 |
 [oSTHIMS TR LS \VIEM.H
BT jg 058 oS\ Fynsiors
v__ {0'00000) |
£c8 [0S HOUMS TI

[0:S3IDIMST a
6v8

125/215

DE 697 21 381 T2 2004.01.15

JIEMH
b6

TS
TECER)

198))
TS1ETAS HON ﬁluu
[9:1€19H) MSN N9 1eTMS RONT O 152, ¥l \rm; .
m) S fo:zing
/«\ 916 | ¥
] Uml . w0070
G . MN oXe
s LTS —
5t 4 £l
98~ —— -
ﬂ%’m__az__ T 898 | 198
1 .
Y ‘ VST . —
. L S0a0M Wl W 7190 AN

NN KO JONVID L |
\L..I Vl_._a...sm

998 LY S

126/215

DE 697 21 381 T2 2004.01.15

it i -

m -
h o 1)
L y _._._uu.sm . _ |
| \'4 106
| T U v
{9:1E] MS™NONT .mﬁu f TO-ICTMSN VDS RIS - \ TR
s m el MS NONT @ o _
006 18 [Shmuwsia
! “F
Vv
] 0
[9°1€] a__;r..é

506 1)

(9 1e1navea 18
806 .

127/215

DE 697 21 381 T2 2004.01.15

31€ 9
18

i R T EOETRTT]
SN [GIE1oN W - [Toreloa amaed

RN | — " TO1E] XSYW ¥INI

{0:1€T0Mld 13 -
rlw. fo:ie1om EE: | | o ~ [[o:t€Tvui SNON34I

[ote] oa Va4

e of

vEs

A [COEETEL]

[o:1e] odld 13si
[0:1€] 0¥ ONION3d

1 1

ToTEI0N SNiaNd

0CLET XSYW Wi [0:161 0Ud 135

[O:1E1 041" ONIONdi

98

128/215

DE 697 21 381 T2 2004.01.15

SOP SN ‘

GETTING_BYTE
OR IHOLD_OFF

ISTOP_SCAN
{s)

f

\

\

CSIC_0 = IGETTING_BYTE
T ORIHOLD_OFF
(SIL_0 ="T"
CLR_BUSY_STATUS ="0°
SCAN_DONE ="0"

esic0="1"
GslL_0="0"
CLR_BUSY_STATUS ="

GsIC_0="0"
i 0="1"
CLR_BUSY_STATUS ="0"

CSIC_0 = IGSIC_0
GiLo="1"
CLR_BUSY_STATUS
 =GETTING_BYTE
SCAN_DONE = STOP_SCAN

STOP_SCAN = (BYTE_PTR_EQUAL_CNT & GETTING_BYTE) OR ((BYTE[1]&
BIT [0] & CHECK_SWITCH_ONLY) OR (BYTE [4] & BIT [0]
& ICHECK_SWITCH_ONLY)) & IGETTING _BYTE

FIG. 324

129/215

DE 697 21 381 T2 2004.01.15

ax

ar

Lnnnnhmmnmmmmmnmnnnm

G!C 0

FIG. 328

130/215

DE 697 21 381 T2 2004.01.15

|

820

FIG. 33A

131/215

ax
[|
RISWIGH [V 50_UPDATE
SOTENGSO] | . ae L OSOLCO
SLOT RSTI5:0] | ‘“eaacnine
50_UPDATE_DONE _ \- 998
CONTROL SIGNALS”™— {
| ‘ PWREN [5:0]
‘cg';m CLKEN £ [50]
| SR | G #[50]
RST # [5:01
| r 999

'

DE 697 21 381 T2 2004.01.15

g€ "9

“9 s . (oSl 18
y wie | o514 wasng
g ikt !] f0's1# N3N0
i 1 [0:61 NIuMd
- T LU — 1 #iNomn
- T T T 1 #0300
- BT | | tyt:tz] 1nod
- HEY |] [a:ed 1n0d
" i _] [22:4] 104
" i H———— | el n0g
ONNNIDQZHIA ¥IEIDLIAZ
S ~ "

zNanoas -NMOT- YIM0d

znano3s -dfl -§IM0d

132/215

DE 697 21 381 T2 2004.01.15

RS~ o
N ¢
50LC_0="T
PWRON B S0_UPDATE = A ORB OR C
FiG. 336
~A = SH_PWRON OR HW_PWRON

fle. 338 | S0_UPDATE ="0"
(S0LC_0="1"
150_UPDATE_DONE |
$0_UPDATE_DONE
| CAYREQ # = 0"
| OFF_ARBI)< S0_UPDATE = "
A= SH_PHRON Gs01C_0="1

R
PWRDN :
HW_ CAYGNT #="T"
B=1A%&
[SW_(I;:IRUP | (SOLC_O = ICAYGNT #
PWRUP_PENDING]
C=1&lB CAYGNT #="0"

& |

60_UPDATE SOLC 0=
$0_UFDATE="1"
CAREQ#="1"

HW_PWRON = ANY_SLOT_OPEN

MR | (™ 1S0_UPDATE_DONE
SW_PWRON = (GO_UPDATEOR \ L OF) Fespic 0=
S0_ GO BWY OR S0_UPDATE = "0°

(DO_RESET AND !FIRST_TIME)
AND ANY_SLOT1_TO§

FIG. 33C

133/215

DE 697 21 381 T2 2004.01.15

1S0_UPDATE_DONE —

SO_UPDATE_DONE

OFF_ARB2

CAYGNT # = "0"

F16.33D

(S0LC 0="1"

CAYREQ # = "0"
S0_UPDATE = 0"
(S0LC_0="1"

CAYGNT #="1".

(SOLC_O = ICAYGNT #

(soLc_0="1"
SO_UPDATE = *1"
CAYREQ #="1"

ISO_UPDATE_DONE

(S0LC_0="1"
S0_UPDATE = 0"

DE 697 21 381 T2 2004.01.15

1S0_UPDATE_DONE

$0_UPDATE = 0"
(s0LC_0="1"

50_UPDATE_DONE

CAYREQ # = "0"
OFF_ARB3 SO_UPDATE ="0"
| (SoLC_0="1"

CAYGNT #="1"

(SOLC_0 = ICAYGNT #

| | CAYGNT #="0"
@ (S0LC_0 ="1"
| $0_UPDATE = "1"

CAYREQ #="1"

0

~ SO_UPDATE_DONE
GS0LC_0 ="1"

CAYREQ #="1"
FIG. 33E

1SO_UPDATE_DONE

(S0LC_0 = "

OR6

135/215

DE 697 21 381 T2 2004.01.15
(S0LC_0 ="1"
S0_UPDATE=A OR B OR C
150_UPDATE_DONE S0_UPDATE = § |
1S0_UPDATE_ (] PwRoN (SOLC_0 = ISO_UPDATE_DONE
GC0=T
| $0_UPDATE ="1"
| S0_UPDATE = "0"
mMeR_TIHEOUT—~—{) G0LC_0="T"
TIMER_TIMEOUT |
| S0_UPDATE = 0"
ON_ARB! GoLC="1"
| CAYRED # = 0"
o [SO_UPDATE="0"
CAYGNT #="1 .@ L (SOLC_0 = CAYGNT #

< CAYGNT #="0"
O ooo=""
CAREQ#="T"
[oo o="
FI6. 33F $0_UPDATE="1"

FG. 33F

136/215

DE 697 21 381 T2 2004.01.15
0L 0="1" gmlf,-:&'f.r
CAVRED #.="1" A

MIMER_TIMEOUT
went£="r () S0_UPDATE = "0"
BUSON (S0LC_0="T"
S0_UPDATE = TIMER_TIMEQUT
(SOLC_0 = cmsm
SO_UPDATE = 0"
ON_ARB2 CS0LC_0="1"
CAYREQ # ="
CAYGNT #="T"
CAYOGNT#="1"

. SO_UPDATE ="0"
A (SOLC_0 = CAYGNT #
_—~ CAYGNT #="0"

SO_UPDATE_DONE @ | _gskgat L8
S0_UPDATE =07
G0LC_0="T" | o
CAYREQ # =0 0L 0="T"
S0_UPDATE = 0"
| 1S0_UPDATE_DONE

FIG. 336

137/215

DE 697 21 381 T2 2004.01.15

150_UPDATE_DONE . S0_UPDATE = 0"
- Gs0LC_0="1"

$0_UPDATE_DONE

CAYREQ #="0"
S0_UPDATE = 0"
(S0LC_0="1"

(S0LC_0 ="T1"
$0_UPDATE ="1"

FIG. 33H

138/215

DE 697 21 381 T2 2004.01.15

4

-

16

139/215

- BIT CNTR[5:0}f vERscHIEBE-
= AUSGANGS-
BIT- ZAHLER
A
- m 922 CIK
< \ SO-UPDATE DONE
e S ST 1) -
INC_ONTR
AUSGANGS- -
SO_UPDATE V%?ﬂ%' 10AD_GNTR
920’\. /I\ | Gosco
ar
PWREN [5:0] |
[50] W ‘
BUSEN#[5:40] |
Da3- Dy

CLKEN # [5:0] 3
RST#(50] Dy7-Dgy (50C_0
GPOA[30] gz‘rgu

’ 5 712
LEDS[11:0] DD \

|)f 924

DE 697 21 381 T2 2004.01.15

(S0S¢_0=""
LOAD_CNTR = SO_UPDATE
INC_CHTR = "0"

(505_0="0"
L0AD_(NR =0
INC_CNTR ="0"

(505C_0="0"
LOAD_CNTR ="0"
INC_CHTR = 0"

(S0SC_0="1"
LOAD_CNTR = 0"
INC_CNTR = "0

LOAD_CNTR = b°#°
INC_CNTR = IMAXCNT
(S0SC_0 = IMAXCNT

FG. 35A

140/215

DE 697 21 381 T2 2004.01.15

gs¢ "9

.A— ;§§

| R _q _ oo _

TR T T T A A A I

_ b _ T _ 0009
d _ | _ | [Ley 1 - 11

| e m:<zo_mmm:m5 3naN 3azHosyaAl “E J+ Il

N T R S A S A A

“, “ “ “ . m._<zo_w8.a250n_ N3N m._mwﬂ_m,mm; “ 4
— “ | .._ | - _ - N " i | 0 109

— _ m—

| { ! | | | | (| |

R R T T S TS B S S SRS
SN N N N OO SN N POV NN N Mo
T JOOO0OO0Oo OO O, 00 gdu

141/215

DE 697 21 381 T2 2004.01.15

N34 ONVH

9¢ 914

309

A

_ 0 J10%)
) v HIHS /#1n0 "
"Wa éJ 0 609
0] nujauawr|@e] s 6
4 4
« foL Inod / /
L 1nod
T
fZrselinod ~)
| fiz6ziinod

142/215

DE 697 21 381 T2 2004.01.15

NMI
HANDLER

400

BUS HANGEND NEIN -

?

RUFE

BIDS RUFE ANDERE
ISOLIER- PROZEDUREN AUF

HANDLER

ERLEDIGT

FIG. 37

143/215

BIOS ERFASST

ASR 80OT

ISOLATIONS-

EV EINGE-
STELLT

IN- PROGRESS-

DE 697 21 381 T2 2004.01.15

444

GEBE ALLE
SCHLITZE FREI,
MIT AUSNAHME

SOLCHER, DIE
UNMITTELBAR
VOR ASR

SIND

FREIGEGEBEN

450

y /-——/

PROTOKOLLIERE
FEHLER-
BESEITIGUNGS-
EV

_BUS
HANGEND
NHANGEND

452

NEIN

446

_BUS
HANGEND

ANHANGIG ?

RUFE BIOS- ISOLATIONS-

HANDLER AUF

SETZE BUS-
HANGEND-
ANHANGIGKEITS/
BIT ZURUCK

454

ERLEDIGT

FIG. 38

144/215

-

A 4

‘ ERLEDIGT >

DE 697 21 381 T2 2004.01.15

410
| | A
FIG. 39 {FG. 39AIR6. 398 S SoLToN W
| SETZEBUS-
ANHANGIGKEITS-
BIT ZURUCK
- +
' PROTOKOLLIERE _
ADRESSEN/ RE-ENABLE ONESLOT, |
BIOS - DATEN-)
ISOLATE HISTORIE- UND %A? O/N g%fgﬂm mSje—
BUS- ZUSTANDS-
VEKTOREN 412 f
f/
408
437 439
= | ;(PROTOKOLLIERE
| N+ [—>TUALISIERE FSEST'-ZEER R
B FEHLERZEICHEN .{
I=N
432 431 427
/
GEBE LESE / 431
SCHREIB- y |N=0[
“| sCHLITZ =N T
‘ WIEDER FREI
A4
_J
120 |-
JA 442
PROTOKJOLLIERE : /428
|| UNFAHIGKEIT, UM CLEAR ISOLATION IN
FEHLER ZU
ISOLIEREN PROGRESS EV

< ERLEDIGT >

FIG. 39A

145/215

DE 697 21 381 T2 2004.01.15

418~

SPERRE SCHLITZ

(EINSTECKPLATZ)

NEIN

AKTUALISIERE
ISOLATIONS-

IN- PROGRESS- EV, |_~490

SCHREITE ZU
NACHSTEM
BELEGTEM

SCHLITZ FORT

430
ed

SPERRE SCHLITZ
AKTUALISIERE

ISOLATION- IN-
PROGRESS-EV

NEIN _

SPERRE SCHLITZ(E),
PROTOKOLLIERE
FEHLER

|

GEBE NICHT- FEHLER-
HAFTE SCHLITZE
WIEDER FREI

——440

ALLE
BELEGTEN

NEIN

SCHLITZE |
VERSUCHT” -

424

ZEICHEN FUR
IRGENDEINEN
SCHLITZ EINGE;
STELLT 2

_426

146/215

FlG. 398

6

DE 697 21 381 T2 2004.01.15

L
“SONNSSVY4Y3
-“HOLM3A
ovva DS [s |
D |
0¥ DIA I
—
0%
108" ST 40
siviats 4
Qi DIse
L0Y” 1514 _Sng
dn) 15 1
o wom
[~ Ao D
. o S04l AQY IS
i owse | w0 | oo
[0°1€7 €934 ISIH SN g | LoWIvive DA sne
168930 IS Sha,_ (0511 tvLva,_ISISng
[0:1€1 2934 LS Sna 1 [01E1 oSS
(0:1£] L34 ™1SIH™Sng 6 TUVE Bl
. e [0:16] EYLYG ™S4 ™Shg

0 9H

AQY IS ~—— TR
oog | STHaIsDd
~SONNSSVYAI
- - =~0OIM3A
[0:10€] tvIva_Isinsng -5ng
[0:(€] ZvIva_ISIH_Sng, — T T
ielomve sH sng— L—s— 10
8sh
oSV 1 ¥ | sanwisnz |
1308V W 4§ fsoNnTIaLS:aH) 43 AN INVH
Elwu.u—w -ozwwznz 10 InL
— — -sng
L ON3d 9NVH
\L
o<t
08 900 Y) | NONINOd JNAS
N3 ADDY ONVH Udv) N3 1M
1IN0 Wl | wu3eaouaz
d0 NI | 900DV
aN3d ONVH
[0°213 100 SWL oM — SIVNOIS Dd

414

147/215

DE 697 21 381 T2 2004.01.15

ISET_HANG_PEND

! 1 _EN_CAP_ BR_M_ABORT = 0
A BR_T_ABORT =0
RCOVR_ACTIVE =0

SET_HANG_PEND
/ DEVSEL_0 = IDEVSEL_

DEVSEL_0 =
DEV_SEL_WAS
C) TIE mgtbnss.lm IDLE
IFRAME /ST D=1
/STOP_ D=1
HANG_PEND
TIME_OUT 15
457~
| 4-817
o ZAHLER
s

FIG. 41

148/215

DE 697 21 381 T2 2004.01.15

1084 93T N0 |

- Veb

NOEIMOd INAS -
| [0:£1] 100 ¥ALOM 3
o B 4 e
| 108 5T 1S o -
b«
“haL
= = “haw
0L
ey s%ﬂr_g |
o) e n] "
. - -
74 ¥ITHYZ |
a [0:£0TIN0 9L §\. m| | 07w
. _._s W
v ~AOH
el Bkl L) = Eom
WO | Ve _N__‘ oM y “m

99v

149/215

DE 697 21 381 T2 2004.01.15

 YOBMOIONAS R AM
_ |
_ 3 9N
06k
, i NOEMOd IS
M1 , !
P ¢ w6 LU L
7114 |
80— 4 0
o a 107INL
1n0”IWi0M
YOSIMOJ INAS M
r— /15
m <4—md
| CaoaTom
W H ON3d 9NYH 13
S = RO

14

150/215

DE 697 21 381 T2 2004.01.15

. - i

VO anvA

b=
S
=

G Gt SR WS I s Nnm W S GED R WD S G D ey G N ——— D G — = S WD - —— Gh— — o——— — —

151/215

DE 697 21 381 T2 2004.01.15

. GRD CHL LD D SO GED Gwy G RN LS EED GED GED T MRS TR G gt GES GEp GRS TN GED GNP TP UL GEI AR L S GED SR B SN weh

O-1¥00v @V 044 DI [o:h2) o4l DINSNA - by 9
[0:521 2044 DIASNE I | |

[0:1€] é DIx sne [0:2] 1041 DI Snd
| N o
) XOUIMOd INAS
928 l_ d?c , - |

[0:Z1 0044 DIASNY
£0414 o €15
10 Ni—{[o:hz] viva D3N Sne o
B , {7 108 I N

_ {
tI3Y 1StH Sne ow

—
T RUTETRN
o

s_,_.z__ﬁ_ - 900V 0¥ 04147151 Com
| *oa@;u._,m " NOXIMOd NS

S v

I A ?\. wsd W0
md | [0:51] VIva_ISIHSnE ¢
804H I | [0:1E) zvivaIsihTsne

[0:180413 ISIH SR fino " ____ [0 7104111 7SNE 1n0 " Nlt—L0:LE EVIVA™ ISIN ™ SnQ 1084 931" 41}
T I \._ .

=,
c
I

152/215

DE 697 21 381 T2 2004.01.15

,1926
(BUS_ASSIGN)
SETZE NEBEN- BUS{
. 1000 ZAHL VON PCI- PCI-
SETZE PCI BUS j BRUCKE GLEICH ZU}
GLEICH ZU CURRENT PO _BUS
CURRENT P s ==
INITIALISIERE
DEV UND FCN :
SETZE
1024 Pd_BUS, DEY
IS , UND FCN ZURUCK
PCl_BUS 1
JA /" GLEICHzU
4 NULL ? RUFE
SETZE SEKUNDAR- | 1001 BUS_ASSIGN AuF
BUS- ZAHL VON
Z NEIN ,
BRUCKEN- ole ‘ /
SCHALTUNG 18 .
GLEICH ZU NULL FlNDnE NACHSTE PCI- PCI-]022 .
BRUCKE ODER SCHLITZ
36, DER ABGESCHALTET
IST ODER LEER IST, AUF
1002 PCI_BUS; AKTUALISIERE 1010
/ DEV UND FCN |
1004
- : ERHOHE
CURRENT_PQ_BUS 1020
. BEWAHRE
PQO_BUS, DEV
UND FCN AUF
4
SETZE NEBEN- BUS{
ZAHL VON PCI- PCI-
BRUCKE GLEICH ZU
SETZE PRIMAR- BUS MAXIMALER ZAHL
ZAHL VON PCI- PC VON PCI- BUSSEN
1012 A i Ny
BRUCKE GLEICH zug rJ
CURRENT_PQ_BUS 1018
: : SETZE SEKUNDAR-
1014 ~U ERHOHE BUS- ZAHL VON PCI+
PCI- BRUCKE
| CURRENT_PQO_BIS olECHZY. T 1016
N CURRENT_PC_BUS
GEHE ZURUCK

AE. 45

153/215

DE 697 21 381 T2 2004.01.15

C MEN _lAuoc)

- SUCH- PARAMETER

INITIALISIERE | __—~1(28

FWD NACHSTE PCI-
FUNKTION, LEERER

ABGESCHALTETER
SCHLITZ

1032

ERFOLGREICH\.NEIN

SCHLITZ ODER 1030

?

A

C GEHE ZURUCK)

1034
NEIN
1036
ORDNE SPEICHER-
RESSOURCEN ALS

ORDNE FEHLER-
SPEICHER- GROSSEN
UND AUSRICHTUNG FUR
LEEREN ODER
HERUNTERGEFAHRENEN
SCHLITZ ZU

]038 ~_J| SPEZIFIZIERT DURCH
DIE PCi- FUNKTION ZU

HG. 46

154/215

DE 697 21 381 T2 2004.01.15

C 1/ 0_ALLOC)

INITIALISIERE | _~1040

SUCH- PARAMETER !

FWD NACHSTE PCI-
FUNKTION, LEERER
scHLTzZoDER | _—1042
ABGESCHALTETER
SCHLITZ |

y

(GEHE ZURUCK)

ORDNE FEHLER-
1/ 0- GROSSEN
'UND AUSRICHTUNG FUR |___,,

LEEREN ODER
HERUNTERGEFAHRENEN}
SCHLITZ ZU

ORDNE I/ O-
' RESSOURCEN ALS >
]osoN SPEZIFIZIERT DURCH
DIE PCI- FUNKTION ZU

H6. 47

155/215

DE 697 21 381 T2 2004.01.15

C wo_wr

LEGE UNTER-
BRECHUNGS-
| REGISTER 800, UM 1052
NEU EIGESETZE 1057
KARTE ZU FINDEN
1056 BESTIMME PRIMAR-
3 SEKUNDAR- UND
@EHE ZURUCK NEBEN- BUS-
ZAHLEN,
RESERVIERT FUR
! DIESEN SCHLITZ
SCHREIBE ZU 1060 NEIN
SCHLITZ- FEIGABE N & 1058
253'_?_2'5?0?137,? BESTIVMME STELLE N v
. UM SCHLITZ 36, UND GROSSE VON | / O-
1054 EINZUSCHALTEN UND SPEICHER- RAUME, RI:IIQ%FIGUE[IRREA <
RESERVIERT FUR PRIMAR- SE DAR:
DIESEN SCHLITZ gNBFEEBsg'-qBP%SI-
AHLEN -
‘ PCI- BRUCKE
GREIFE AUF PCI- - BRUCK
1055~ BUS AUF KARTE SCHREIBE BASIS-
807 ZU ADRESSEN- REGISTER
IN DEM PCI-
KONFIGURATIONS-
RAUM- HEADER
1062
LESE .
UNTERBRECHUNGS
SCHREIBE ZU PIN- REGISTER —1064
UNTERBRECHUNGS- i 1068
REGISTER 800, UM | P
UNTERBRECHUNG
ZU LOSCHEN 1066 BESCHREIBE
BENUTZTN_ JA UNTERBRECHUNGS-
KARTE ZEILEN- REGISTER
1 1072 IRQs MIT GEEIGNETER
IRQ- ZAHL
LADE ?
VORRICHTUNGS- _ NEINE, —
TREIBER FUR
karte3s 1074 y
GEBE KARTEN-
BEFEHL- REGISTER | _—~1070
FREI

- A
(GEHEZURUCD

FiG. 48

156/215

DE 697 21 381 T2 2004.01.15

BYTE : DOPPELWORT.
3 ; 2] I 0 ZAHL
(VORRICHTUNG-ID VENDOR- 1D 1200 00
1201 STATUS - BEFEHL- |
N REGISTER REGISTER._ L1202 o
HEADER- KLASSEN- KODE REV:BION- 02
BLOCK BIST HEADER- LATENZ- |CACHE-ZELLEN-| 03
Wi ZEITGEBER GROSSE |
" BASIS- ADRESSE 0 04
1218 S BASIS- ADRESSE1 1220 05
SEKUNDAR- | NEBEN-BUS- | SEKUNDAR- | PRIMAR- BUS- | 1222 06
LATENZ- -
ZEITGEBER ZAHL BUS iAHL . ZAHL ’f
SEKUNDAR- '[0' j/ 0' f‘Zﬂa 07
STATUS UMT 4—_BAsis |
1214 ~L SPEICHER-LIMIT - | SPEICHER- BASls\-_-’uw 08
' VORAB ABRUFBARE VORAB ABRUFBARE \] 212 09
SPEICHER- LIMIT SPEICHER- BASIS |
VORAB ABRUFBARE BASIS (OBERE 32 BITS) | 10
VORAB ABRUFBARE BASIS (UNTERE 32 BITS) | I
AL N | J— 19
(OBERE 16 BITS) - (UNTERE 16 BITS)
RESERVIERT : 13
ERWEITERUNGS- ROM- BASIS 14
UNTER- UNTER- |
BRUCKEN- STEUERUNG | BRECHUNGS- | BRECHUNGS- 15
STIFT ﬂ%_
7 ~
1259 1204 1206

P(l - P(l- BRUCKEN- KONFIGURATIONS- REGISTER

HE. 49

157/215

DE 697 21 381 T2 2004.01.15

MINHOZL ¥3A ANVLS

40s 914

R E

LMM%<0m:A\\\

OLLI3S
-SONVONIT

oEmw
-mwz<oz_m
-SONVOSNY
o:. /
-wez<uz_m
mM_mm
-SONVOSNY \
N =m= o1113s
.mwz<wm:<
wnve

YIHOSIHOUVHIIH

MINHO31 ¥3d ANV1S

Y0$ "9

(1l
N

ISna Dd | 1 Esngind
- SIEI~—"P\Bioma NDIOOE N
-Dd-Dd . 1141
N I ,
o bsnand} Eﬂ tsnand §
sta1—plnire T
VT Dd-Id -E-_..z ﬁﬁ__&w
V I ;] 4
N_.N— ONNLTVHOS \
-NaxMonNyg
11zl 1S0H
c }
sng ¥3IvMYO01 ;
-1 W

158/215

DE 697 21 381 T2 2004.01.15

1S 94

Ldll
114 9L 857 09
t|o]| WHvz-umsioan | M2 SONMINON HvZ-sne LgINNIS3
0t L8 ot tl ¢l 9l € . 1€
052 st 0dAl
D M :
0}0] Hvz-uaLsioay .mz%_m_NzE LYIIANISIY
003 [g on I

159/215

DE 697 21 381 T2 2004.01.15

SEKUNDAR- ADRESSEN-
PRIMAR- ADRESSE BITS AD [31::16]
AD (152111
00000 0000 0000 0000 0001
00001 - 0000 0000 0000 0010
- 00010 0000 0000 0000 0100
00011 0000 0000 0000 1000
00100 0000 0000 0001 0000
00101 0000 0000 0010 0000
00110 0000 0000 0100 0000
00111 0000 0000 1000 0000
01000 0000 0001 0000 0000
01001 0000 0010 0000 0000
otot0 0000 0100 0000 0000
01011 0000 1000 0000 0000
01100 0001 6000 0000 0000
01101 0010 0000 0000 0000
01110 0100 0000 0000 0000
ot 1000 0000 0000 0000
1XXXX 0000 0000 0000 0000

HE.52

160/215

DE 697 21 381 T2 2004.01.15

UPSTREAM_GHIP__, 276

IDSEL
TYPE CF6_CYC_US
CFGCMD g_CF6_CVC_|

ADDROB
UPSTREAM_CHIP_ 978

§1_BL_IDSEL |
CFBCMD — |\ TYPA_(FG_CYC_DS
ADDREB

MSTR_ACTIVE ——

280
FGCMD ~

mnm____)_ﬂl’l_crs_cvc_us
UPSTREAM_CHIP |

282
CROCMD —— N
ADDR@1 TYP1_CF6_CYC_DS

umm_mlr_cH |

TYP1_CF6_CYC_US
IH_RANGE 1™ pASs_TYP1_DS
SEC_BUS_MATCH
SEC_US_MATGH__ ﬂ,\(‘ ny
' ' 286 |
PQL_ADDR{15:11]— 256
= 00100 28
| TYP1_CR6_CYC DS, 290
NRNGE —C
SP_MATCH PASS_TYP1_US
WR_
FIG. 53A

161/215

DE 697 21 381 T2 2004.01.15

g€s "9

\\.|4 N 0L LA

LU V ,

14

3/

gINITOL LdAD

/14

HINTOL 1ML
[stlav dzv

35Ind”14VIS™ 42D

| | BINTOL LdAL

| [0 30 dzb

045 0L 1dAL m

892

#0d oL v\l

HIVW ™ ds
DIV Sng IS

am 99

D DLW ds
3D Wtisdn

IDIYW Sng)AS

992

ANCOL L
A/

aw 9

diID WvasIsdn

h

—— (1D 9

© [0:LIWNNTSnE WINd 4

4[4 H IDIVH SNE"Wisd

e =
tH)

162/215

DE 697 21 381 T2 2004.01.15

vis 9ld

91EL 2161 g0El KO i
#31s1934 SN IS1918 3151934
DA < - fe—y~
——— |] < <
ﬁ#..ﬁp.ﬂm_wuwm_mmm«/ ¥3THYZ -N3LVa -conf ¥ITHYZ -SNIHAZ -szof . 43Hyz-19313d -m:m/
FYHIEL 1V 0IEL ! 9vo0el 1 9vaoel
_ A—S.—zw Teme
y3g3aoli3z

MR R
oogt—"|

-3Q0RI3d -Tvao1o

163/215

DE 697 21 381 T2 2004.01.15

gvs ‘94

A WL 19

(50230 @SN YV 000

[XINIWVL VIvO 00

bLEL

T INL 19

(0021 x] G0 ——

[X] ;A3 Viva 0)a

164/215

DE 697 21 381 T2 2004.01.15

MINHO31 ¥3A ANV1S

§S 914

O9NNLHOINY ONNLHOMN
~d4OA -HOA
~— Shand
9001
biol 411]1 |
Y - IIMoNY4g
A \ otot PRy
ONNLHOIN ONNLHOINY
-d40OA -dOA
7 e Dd
vool mv_o.a_”_uy..__m |
-0 W 8001

_=GV\\\v

2001

)

e
0001

t

165/215

DE 697 21 381 T2 2004.01.15

MINHOZ1 ¥3d ANVLS

166/215

DE 697 21 381 T2 2004.01.15

LS9

11D aW

we [/
—]
b a
TR] I -
]
IS8

910¢

v10z

9002
P

[0:zT 1015 03 7 -SLLINHOSHO¥NA

3Taavl “..
(21189 QDN

0102

(011015 J9NVEN

_\—ﬂ oo}

v/ D

411/

[0-Z]11015 03

167/215

DE 697 21 381 T2 2004.01.15

2026
DATA PHASE CD_CMD [3:0] = "B1001 =\ © 0ca SEET
NEXT_DATA_PHASE |
2024 2028
~ (D_CMD[2:0]="111" (0 PMWQ SELET =
—
2030
- (D DRQ_SELECT
/7
146 \ -
cp_,cmn [3.01:. 1000" - __/ p—

2032

(20_BUFF[2] L— N
DATA_ PHASE | (D STREAM NEXT_DATA
IC20_NEW_REQ [— B

FIG. 58

168/215

2034 ~

DE 697 21 381 T2 2004.01.15

659 ol

XXX ONNLTVHOS Ji4ZONZ _ £SO s\
I1N3Ls
-1LLINHOS
“NIONVIHOS
-JLHVM
wanoizas| YVE @IS IMTD
980—"1 -ow1 -
| viva 1XN u__._mc_)
[0:£1 ST OTIVA DMWd | Jiood _ A 8607 [2
) 500"\ 3 o |2 (e
— e 2 _
- - = —p— | — N3T13Z
[0°6] GIVVA DM |yanoa o L _ ; 807 300
D% St [0°E) MOLIBAD DM vz
i s e 1EAIE W | W
090z | 138w [[0:7) DIHS 3NV 342D o — oy
| wool] o] 0602 | 1 W0z 00
¥3¥3I0093a , “T10A -SONVD
139V NOA VA "NI3 . N33z
o e T4 : i

e TR n N
0-Z1 38N TIN DMWd ¥N-4333nd —
| | evﬂ vz

169/215

DE 697 21 381 T2 2004.01.15

[TO-11 DTAS J0A0 420

.“ [OL1 GrivA 00

[0:2) anvA 20

) mzﬂaﬂ.;s\\r/a [o-Jaivh 10
;

{01 GrIVA DMAd

9L0C

b90Z

(o:21anvA €0

:cm/ ,—\

T2 anva 80

09 94

1902
1502 .
\ alajlajanlalalala
UILSIOTY -NINIZ -SLIIMOILIND
oltlzlelwlsloft
[aw 00
00 [1075 3VaNVA
YIVO LGN @

\I.\
eLoe

[o:2] anvA™ 118D 00 ﬁ__u]
N

9902 0

1100330
8X¢t

(10 =[0-T] WINIOd” GNIVA

“TeSTaaINiOd aivA

[0:2] GTVANT 0DI

170/215

DE 697 21 381 T2 2004.01.15

aa/.. | 19 ‘9l [0°6T3man0" AN DIBS
| [TESTRINDd arvA
.ﬂ 1S
4
m _
mmmmw_m_momo ~—780
g
f L
TINN ¥344nd _.,_Uémﬁul_ EUI_ _mUl_EUI_
N4 ¥31SI93Y
“NAEZTTION lﬁ 1SV LSV} LSYT{LSVY1 |LSVI|LSVT| 1SV .._.w<|_ \I\&N@N
YD——p nNaavoizud ..Fm‘_‘._\.l,L Eﬁ me—N
of _ N m\ .\ 3 ﬁo\ _
\ \\ [][] m
S Tenmmngon I
(0TI DIAS M0 31420 __wobNo | ws |
0 — I5VHd QNOJ3S 10D 1 -1ion {118 INM TIN3 LN
1 m_. m wu“ w“__ _u.“.m [0ZTINI0d GIVA <
L N TN (vT18 108 © 080
[0°ZJ3N Mg €0 N0 @

807

171/215

DE 697 21 381 T2 2004.01.15

NEXT_FULL_LINE_BIT=0
(D_COMPLETE& 1B

CLOCK_SECOND_PHASE
&
(VALID_POINTER [2:01 = "Bggd"\

(HCO_BYTE_EN [3:0]
= 0P

NEXT_FULL_LINE BIT=8

{1A & (VALID_POINTER [2:0] = "B111") & (D_NEXT_DATA) =B.

«

2080

FIG. 62

172/215

DE 697 21 381 T2 2004.01.15

09M g

3SVHdN3Llva

 Saad , ,
wmksu |

{13030 LaAN DINS .

[013M0D DAN DINS |
(1130300 AN DINS
[2)3nnd LaN DINS

Wwas|m|Bs Bs | m | s
mn—p .\lm_._m ¥ ;Iaam
any neagp—"] \
0 € Lo

-

-~
[0°E1 MOUA0 DMWd

T

173/215

DE 697 21 381 T2 2004.01.15

v OH_

w0

y¥3Y¥31a003a —

=138V NOA

JTals
~LLINHOS
138V

oNnLIvHOS gLl Nz 141
IT13LSLLINHOS
-NIFONVIHOS
-1V
z YV & 3420 2
o - e
m viva DAN T :
90T o
it
- = MO0 > ind1no
[o:€1anvA D¥A| -Nawoiaz A
-SLIINOLLIND | /
nﬁ m /A YA
[0-Z1 DIVS INAND 41470
901
Emmhma)] -suavowino | FINIOd QITVA
IHIWVINLS {14Z0i A
. ﬁ ~
NN_N.

m

174/215

DE 697 21 381 T2 2004.01.15

59

M

9012

\Ln\ - K4

86, = DIES I8V 4420

\ IS DN D \
TID0 1808V 31400

4 ONIAVILLS 414201

\ VIVO LGN 4420
8012 331N 3D 00

QIVANT 0D

{QIVA ™0 ‘OIIVA™ LD 'arTvA 20 '8 =[0€) GrA DYa

anva ob

e vz

08I DINs

{ 1075 2VAITVA
NG

175/215

DE 697 21 381 T2 2004.01.15

-—

N3N3Z

i~ JHV)

1HOV
N3I32

~—JHV)
1HOV

N332

V)

LHOV

N31132

~IDV)

1HOV

N31132

~ JHV)

1HOV

N31I32

IV

1HOV

N321132Z

~30Y)

1HOV

N33z

~ 10V

29°914 Wl bl ___
~ (| W
XXX ONNLIVHOS §|4gD nZ
9 IS4 14
kS e
Nm N] -3LHVM eery
- Uy o ST g 1
rJ y_m._%mn_m Egl.m._ml"__._s : .m.. = _N
W90 T YIVG DN 31de) m.. _M W. V 11414
-ID13T4d IS0 1= M =
samnl—BISIE ___
ol | sy AR g | Gsete
ALl 35704 oniz” 1
-LLINHOS . m Ew“_m“.ﬂ /)SELT
d_!_m_s_ L [T anva | anvi
ST L TERTT
zmmm_nO—ww\n,_ m@.ﬂh—-— cun QQNN M0 L mmm—N
-138W) 3190} 3901 -y3913Z
_ 17 1) _-SIAMNIH 0
(0151 V04D FITTL | ol i iy 5T
(0211015 d1dZd 0812 | -innw H«a 14 i 9N-u33and
(067 M 3048 31420 —— " VSELZ \
. 1 " “unY IONVIHOSILIVM -N3ALvAa
[Z:69] ¥0GY 414 20 o ounpnz OETI0 NAY N

IV TV IFYT A

L S—

1HOV

3113z
-3HOVO
O¥d

saiomas

176/215

DE 697 21 381 T2 2004.01.15

V9 I

51 [ToTIDTEs G ba

E_ |

(] 0912 - |
ﬁll\r Qom Iz 20 -3a

(p=RIa0
° 0 bX{
1SV 1SV 18V 18V p
¥3LSIOTY -HIWNNN -¥344Nd _ | Wiz
~ 0 t¢t \ ¢9 B 6 |
S119 404 NIFIOIFHS LSV
SLg 4+
0ZUHOS LZLHOS (JZLMHOS §ZLIHOS
Wit Wi | wg | oE | G
0 t¢t ¢9 g6 i
[o1zTWON 308 000 O
99~ _
. eyt g ———
[0°E10D0 Nn¥ VOW HAQIZSIAAINIH DIAS 030 O
wioo1 MW ON DMWd ¥3IDIIZSIAMNIH 1131dW0) @
-SONNUIISIIVNLAY \ "SLIINSILIND ¥3ddnd MWd ON DMWd)
-43OIFZSIIMNIH ,
OIENETRNCRVERE VR 41 12 NG SN 4114
061 DIHS GNVA LN | -Hosna | T0E10MA D0

177/215

DE 697 21 381 T2 2004.01.15

a9 9

[Zi0)a NNy oW

91z [0:1TD3BSanvA” LGN |
[e]0)0 NnY YOW T — | 5
_ (L e
[0ET03 KAy VO > _ .rh/ = /2 ey
(11000 NS VOW __.._U, | 4y m_ vb %17 L
. \ | | —
(01030 NNY VoW 0L12 Q ﬁﬂk Wi
1291e— 1091z [8S13—
m ol Bsfin Bs[an 1
EIRS REL ~ _
“SONNMNAHIAAJOANY JONVYONIT -1SV1
ID—P -suayoitne sug aNN -TT3LSNIZ
¢ Z1I'THOS —N._._.__._om« ¢ Z1LITHOS € Z1ITHOS
Wt vostz | q0stz | J0stz | qosiz
0] l 3
[0’s] anva 00 _
MEd ON_ DM
WD O
DIBS 1T O

4114

178/215

DE 697 21 381 T2 2004.01.15

| 89 ‘0l [07] z___..___._..g.s_
HIEs 0a O | _ _
WYLIS Y20 , waa N (O[T Togon o
MR ON ‘Dwe o _.H.qmwl Clogon
061z | WYaAIS Y03 DINNOISI O30 | |——— (oI
. e | iCEme
[0:Z1 NG WV3ALS 0)0 = [0-TTWAN 4n8 030 @ 881z 1tA S iecran=
Bz o[_Loclam_so
L4) [losTam 9
DINNG) WVANS 00 | L1 Rg 80%C N Teion B
DTS 00 0
90zl = _((o
(0T HNT WAL 00 " T
a _ 0w _
vele | W¥a o nal [0 WK 308 00
‘ — , 10-21 1H _ﬂ 0:2) ISV 00
% 114H0) IN S4T0 Lz {114 M [0:7] BISYW
\Y 0 0 | ¢ [0-Z] H3ISYW 20
B I P . [T [0 SYW WVAMIS veb| _w_w %«mﬂm@.
[OZ10H A0 @000 ¢[0
LILE sz A o[lozlaswm s
g o | Al SN TR
154 N 07T 015vW 10

179/215

DE 697 21

381 T2 2004.01.15

2218 GENERAL_FLUSH

PREFETCH SET [7:0 3 gw”rwfiu]

7] 6f sI 4f 3] 21t Jo— oo
PREFETCH (R _ALL

Ji as—" REGISTER e\ LRST

2214~ [sET CLRISET CLR[SET CLRISET CLRISET CLR[SET CLRSET CR[SET CIR| 9974

muld 4 =

<
il

. 2240 A-H
Shcfci-ticd

\ Q2PIF_SLOT [2:0] m FLUSH 2236
Q2PIF STEP BACK —LHT |
2226 Q2PIF_CHECK (YC
2294 2238 . __MRM

LAST_DWORD

| nzm ac comm 7 g:::i m ::::’3:
LOQAE HT(7:01 MRL 9942
{07_ADDR [63:7], OUT_POINTER,7 [4:0] |
(4 ADDR37T OUT NS TE0D] Y 2320 %3-}5-%
(05" ADDR [637], OUT_POINTER_5 [£0F | imral
(04_ADDR [63:7], OUT_POINTER 4 [40] g ra
(03_ADDR[63:7], OUT_POINTER 3[0p |4 (PCL-FREFETCLADDRISS:2] DL 1))
{02 ADOR (6371, OUTPOINTER 7(408 | araE
{Q1_ADDR [€37], OUT_PORTER T (48R 12 |_g0cs e
{a0_ADDR [¢3:7], OUT_POINTER_0 (0% | wme]!
YaE ATD9) (TY3 | af
DIERER FIG. 69A DCQ_PREFETCH_DAC—

180/215

DE 697 21 381 T2 2004.01.15

181/215

DE 697 21 381 T2 2004.01.15

2270
_J

TRANS-
AKTIONS-

2272

TRANS-
AKTIONS-
REIHEN-

LAUF
WARTE-
SCHLANGE

TRQ-

STEUER-

2276 ~

FOLGE
WARTE-
SCHLANGE

|

LOGIK

DRQ_VALID [3:0]

MQA-

STEUER-

100-

STEUER-

2278

LOGIK

2274f

DCQ_VALID (3:0]

LOGIK

MCA_RUN_DR(3:0]

MCA_RUN_PMW [3:0) _

MCA_RUN_DCQ [3:0] _

PMWQ_VALID [3:0]

FIG. 70

182/215

———-———-——-—————-———n—.———-—qm.—.—.—n—-—-————u——.——————.—.-—-—a———-—.———-—n'-—-——

$1_Q2PIF_CYC_COMPLETE_

DE 697 21 381 T2 2004.01.15

EINGANGS-
HINWEIS-
ZEIGER-
LOGIK R

|

|

l

A |
|

T |
|

l

I

[

276

(FGQ2_INFRERRY —xus:

27 A

zvews- (1 PMW

TYP

2282
0

2270 2284

GULTIGKEITS-

ZYKLUS- |
ATIGKETS- |ZYKLUS_7280A

GULTIGKEITS-

ZYKLUS-

GULTIGKEITS-

0,DR

PNTR

2YKLUS_9980(

| GANGS-

G%JEL,PSC? 2290

HINWEIS- f+t
ZEIGER- | |
LOGIKA] |
|
!
|

[~
7300 -3

2294
700_VALIDO [m]\‘
D_VALID [1:0]

NEW_T0Q_CYQE |

10Q_CYCTYPED (0]
~D_QYQYPE[0]

1
0

NEW_T0Q_CYQLE |

TRQ_SLOT_VALID [3]
TRQ_SLOT VALID [2]
TRQ_SLOT VALID (1]
TRQ_SLOT_VALID [0]

{TRQ, CYCTYPE3, TRQ_CYCTYPE2, TRQ_CYCTYPE], TRQ_CYCTYPEO}

GANGS-
LOGIK

AUS-
GANGS- IFreIGABE -—~2286

ZYKLUS-

EIN / AUS-

I 3

.

2302
2308

0]¢]

NEW_T0Q_CYCLE

2298

TRQ_VAUDO[1:0] 229

TRQ_CYCTYPEO (0]

NEW_VAUID_SET|
IT0Q_ENABLED

|

ITRQ_SLOT VALID_RST [3:0]

: C23lﬂ

2304

TRQ_SLOT VALID SEY mF‘>_ﬁ,
-/

D_TRQ_CYCTYPE

TRQ-
STEUER-
LOGIK

2312

T GEAD ED) GID G G D G SED I G SR GEED GNP G GEED RS GERS S

183/215

DE 697 21 381 T2 2004.01.15

TR L9
[CamA e _
¥ — ! \/c\«mm‘ 901

. - -43N3alLs
(UGUDD 0L [SonvelB0b sonvosarvm o Dol

[0°170arvA 0OL I S) N3 3910NIHIZY o | N

¥iNd “SNOILMVSNVYYL e e e e e e
A4 YA 5 |

dd 1.c)iay
LEEL~\
./4 [0Z1¥ind1N0

Hp1E0~ T—1{"2toutno

UINd
OIEL 91 M |-siaw

IET o] au | N

S [smouedaiine TozTammen

YLNd

—~—~—— dAl -
e T e (R

g e P
WL 77— oz -MMmMo
| 4 :N\._/\ .mhﬁh .%m”mm@
WL~ g &, M_W_M_L

JUV) LNOG. =X UNZLHOS g Jy me

w_“ ”“,_. =dAL SDIAZ W 916 BIEL
MWe'lo) Lt

Sﬁ LD

|

| I
EITENTY

m “Few 1A

Y3THYZ

| e S . D ww —

9767

_ 1))
v MO VoL LaN

—— 0€ET
[02] E.E_f -1 L
Vel | 8Tt

— M MWD S G S WS Cmety GEE G SEED GEN T W TS S SEES GHS CIRD Gue CDMD G GEID GEN M) Gy YHED GNP Gmus WSS S Smue G

184/215

DE 697 21 381 T2 2004.01.15

VEL9H
11/

<~—§

AL Dol
b 0 ~ @ o0l

19YNT 0L
1S§—>!

1)) MNd il

~ 9%tz 0SEZ

85¢€2 N
[0-EJ ONVA_OMAd MIN
711/

(4114
~ BhET

[0:1]3dADDD @ | F1=8VL

-S1HOIS
-HO¥NA

[0:E1anvA 10 MaN

[o:lJarnvA @

714

[0:E1GNVA D¥a MaIN

,.@.4 O T TotTanva ommnd
| m
Wl ,h\
0 ¢ [o:cTanva 0oa
W
Y @
b ¢ [0:ET onvA_ 04g

185/215

DE 697 21 381 T2 2004.01.15

g6L "9l

0L€T

A d Ot

MI901-¥3naLs -Y)W

\

{ T

30=03ADA VoL

{0'000)
_ .\.SN

_ _\A
== Lo e
(0:10)a Ny SE

11/

X2 | [0:1700MvA DOL

Ba=111 64Dk ol
TR

30 =[11 034ADN val

MWd DYl

DO=[1]034ADN vohi

D0 0L N \

A4 DOl

09¢e

M4 DL 1SI

186/215

[W =T01325D10 oot JEL9H Wl
06€L 10’0’0l MI901-¥3n3aLs YN] EE«S:

DE 697 21 381 T2 2004.01.15

0 / —— ¥0= 0300 YL

[o'E1MWd NNY YOW 0OL | 1 000’0}
[0:€1%0° NN¥ VW D31

FXT {1zt oanivA boL
sgcz/

¥y3¥3A1A00
-3d

FXT [{0:1] oanvA DL

p—

[~ Mwd = [0]34AD0 a

VA
413/ _ (0000} Yotz be€Z”
0 43009 | 30=3ADL oL
[0:EI MW NNY VOW NN 1 -mva: i :__32_ _Agl
f SRR 0 u3I000
96€2 08EZ (oI on % b X2 [{o-t]oanvi ool
. 98¢ vamu\

AL oAl

MW= 034AD0 " DHl
_ 0000}

3Y3Ia00
-3d

Pt (TETowm il [FET90 g VO N
iz wie o/

[¥0=[013ADND 0

_ {0’00}

-ELEl[e[e)e)

LR
bXt

[o:tJamva @

187/215

DE 697 21 381 T2 2004.01.15

90T -¥3anals -

\.

[0°¢ Miid g VoM

147/

bove

GEL'9H

|-
(OETHRG W VO W | || LUc) Md HA DR bol
TR OV
0

{0140 Nny

@18YN3 0Ol
BS anvA Man-

VN 0oL

[0°ET 90" NN VOW JHASY _/__

(1174 [nBuNTozeDI 4114
IIN0D D0 2420 IS

DA 001 MaH

ALdv3 oL

|

g , { _

To°E) %0 NNy VOW _/_l..jl

0 — __. [0:€190 NN OW DAL
[05140 ANY VON DRASY

{000}

N A T

[0°ST¥a NNy VW MaN

135 QITYA MIN
a31evN3 boll

bkt

8Lie

[OETanvA_DMHd__
[OETMid NNy VO ol

[0°E] W4~ NS YO DNASY

188/215

DE 697 21 381 T2 2004.01.15

bL 9

00 { 0000 0000 00!
00 o 0000 0000 0010
00 0 0000 0000 0100
00 00 0000 0000 1000
X tl 0000 0001 0000
X ol 0000 0010 0000
X 10 000 0100 000D
1 00 0000 1000 0000
10 I 0001 0000 0000
10 0l 0010 0000 0000
10 10 0100 0000 0000
10 00 1000 0000 0000

[03aa00a [[etlamaa

{0’ arvA” mIna” man To:€] arva~0IaMIN TO°E) anvA~oda ™ paN)

az«_

189/215

DE 697 21 381 T2 2004.01.15

b0se

“—

SL9H

U&bDN

\\1|av_

0052

~

W90
-SONNTIDIRININ
00 - -N3LVQ
aNN N3SSINAY
Ncm«/
INIHOSYIN
-SANVLSNZ
-aAVIS
W90
MI901
molwnwmm_.__ -SONNT3D
Neyry ETIVETY
HOLVHaN3D
-NILHOR
-HOWN
-13avy
h v ¢
139vX Nz 0)anz NIONVTHOS
-31MVM NZ

IANIHOSVI -SANV1SNZ

-431SVIN
MO0 MO0 v
-1H3439 -SONNLHORY]
-3831 -Snv -3s31
\\ \\ MID01
=) Al
(4,14 929 -¥380
d3THYZ TH3439 y@&
-gIFHHOS -gI34HOS :
¢ ' 9952 A
. NIONVIHOS NIONVYIHOS NIONVIHOS
eam« vmmN -31LHVM NZ -31I¥VM NZ -3LEVYMNZ

190/215

DE 697 21 381 T2 2004.01.15

ONNT3O03
-d3A

ONNTIOIN
~d3A

0zst

V9.9

8157 4

=

0150

1SIN038 QNOJ3S IDIVT 934 NI 1SINDIY” GNOJIS HOIVT 938

gsz— V

lmVll

1SIN038 1S40 WOV 938 ki

153038 1534 HDIVI~ 938

191/215

DE 697 21 381 T2 2004.01.15

Q2PiF_ADDR [31:2]

VERRIEGELUNG 1— EN | 31 | 0 o o | 2 l
- N = - Las12
P2Q_AD [31:2]
— Q2PIF_CMD [3:0]
VERRIEGELUNG1—| EN| 3 | 2 | 1] O
.] 7 125'|4
P2Q_(BE[3:0]
Q2PIF_SLOT [2:0]
VERRIEGELUNG1 —J EN| 2 | 1
' 1] 12516
P2Q_SLOT[2:0] |
- Q2PIF_DATA[31:0]
VERRIEGELUNG2— N | 31|00 0o 0 [2] 1 | O 1
P20_AD (31:0] ' [T T 52
' Q2PIF_BYTE_EN [3:0]
 VERRIEGELUNG2— EN | 3 1 2] 1] O
| T g5
P20_(BE[3:0] |
Q2pPIF_LOCK

VERRIEGELUNG 2 —— EN | 1 1
- 2526

T
P2Q

0K

FIG. 768

192/215

DE 697 21 381 T2 2004.01.15

RESET & EISE _. / i
. 2530

IDCQ_LOCKED &&
2534 P20 TOCK &&
- PMW_EMPTY

IDCQ_LOGHED 82
P20 TOCX &&
PMW_EMPTY
FIG. 77
2536
/-—
P2Q_FLUSH |
GENERELLES
IDCQ_H" ENTLEEREN
Q2PIF_CHECK_(YC ———
2540

FIG. 78

193/215

DE 697 21 381 T2 2004.01.15

W) J9VSSIW

D

«000L.

5T
DINNOY WY3HIS 10

AL14

JilL

s

0952

11314

{314

UL
[0°€1 0% 11420

L33 AN 023D

iﬁ,ﬁvll [0:21 10% 41420
U

(0110, = AW 41d20)

vmm«g _w

11414

N

LR TR
10174120

[6:9] wOvzHn 023D

(,0110. = GW)"31dz0)

552 |

[0:211015™ 31420

N

N

154

- (091NN 0290

A
NN IDEEY U
LOLLL. = O 314z0)

194/215

DE 697 21 381 T2 2004.01.15

| Alzm_mnv——ﬁ_’

LOAD_WRITE_COUNTER

Q2PIF_ADDR [11:2] ——

12PQ_IRDY

2592

2594
=

(Nt
 LOAD
EN

SEITEN- GRENZEN-

ZAHLER
LOAD

UNTERBRECHUNGS-

—— PAGE_COUNT_REG [11:2]

LOAD_WRITE_COUNTER

{°000", Q2PIF_ADDR [4:2]} — LOAD

.2598
/.

DWORD
ZAHLER

|—— PMW_COUNTER [5:0]

FIG. 80

195/215

RESET

DE 697 21 381 T2 2004.01.15

PUWO_FULL_ LNE e 113 — |1 368

mr—0 [e
FG20_MW2HW

PMWQ_CMD (3]

FIG. 81A

2580
PMWQ_VALID_LINES [X + 1] |

(FG20_MW2HW1——
PHWQ_FULL_LINE(X] ——\D_
PMWQ_FULL_LINECK + 1] —/

| 2574 378

| 2576
PMWQ_FULL_LINE[7] —— | 2572
PMWQ_NEXT_FULL_LINE —
(FG2Q_Mw2mwl

IPMWQ_VALID
IPMWQ_OVERFLOW

(PMWQ_OUT_POINTER [5:3] ="1111"

2510

? WRITE_CMD [3:0]

FIG. 81B
2506 FBE
P20_START_PULSE o |
END_OF._LINE) 1 B o — neo_new_wRme_ouo
NBVRTE G0 —L | cpo ' |
EARY_CYC_COMPLETE—L” © . s
i TR

FIG. 81C

196/215

DE 697 21 381 T2 2004.01.15

NC_QUEUE SHET—— 2602

, (NT
START_QUEUE_SELECT[1:0] —— LOAD

OUT |——— COUNT_QUEUE_SELECT[1:0
INMAL_QUEUE_SELECT LOAD - - L1:0)

A
K ——

2604

COUNT_QUEUE_SELECT ———Ig

START_QUEUE_SELECT | [Q2PIF_QUEVE_SELECT[1:0]

INMTIAL_QUEUE_SELECT

FIG. 82A

2606

PMWQ_VALID [1]——{ | 0;,
PIWQ_OVERFLOW [1]——L__/608| ~ |_~9414

PHWQ_VALID (7)———— |
PMWQ_OVERFLOW [2}——

2610
PMWQ_VALID [3]— ~
PUWQ_OVERFLOW [3——L_J7¢77]
PMWQ_VALID [0]———
PMWQ_OVERFLOW (0] ?" I

Q2PIF_QUEUE_SELECT(1:0] ————j/

FIG. 828

 — OVERFLOW_NEXT QUEUE

197/215

DE 697 21 381 T2 2004.01.15

LESE- AUSRICHTUNGEN

2624
RESET & ESE e

ANY_DRQ_RUN &
P20_ACK

IP20_ACK I
2630 (P20 ACKRS
IEARLY_DATA._PHASE)

PI0_ACK I(THROW_

T o st
m‘gv‘}-g%‘ g'ooo') IP20_TRDY OR ELSE

PIOAK |
ITHROW,CHT = "000"
EARLY_DATA_PHASE _\fms [Lm

IP20_TRDY __| SO
CBT_STATE = COUNT _| —,——LOAD CNT OUT —THROW_CNT [2:0]

wanepez— (195 R
RESET
w— 43

ANY_RUN_DRQ

PO |\ |
(PII'_STA‘IE:!DLE_GH___,_{ THROW_ TR0 "7 o om

FIG.84A 3w T [s
B FIG. 84C
2620

(F620_READ_ALIGN ——— j |
ALIGN_READ
DRQ_CMD ="1110" |
DRQ_CMD = "1100"

218 FIG. 83

198/215

DE 697 21 381 T2 2004.01.15

199/215

DE 697 21 381 T2 2004.01.15

FIG. 86

200/215

DE 697 21 381 T2 2004.01.15

201/215

88 914
5

h

DE 697 21 381 T2 2004.01.15

mm——— Vv U
leprootg .moz<"_n__>_m..||ll.!|.l.|l
-SONNHOINE # JOSINI ONNLIVHOS ‘
-¥3INN NZ - % athz_ -SRIIAINAN #INASINI
VASIN
NIONNLITT zE_m._ N3ONNLI3T
-woz:umm__mmwmhz: -mwm ozw_m:om “SON :m_mm_nmw aINN
. p - o3ug v
) /if —ed |1 N] — N\ ~ TSN Oy
 m— 4 1 ~ U 1
1 _ | . P, #JIM
P ¢ ! / ﬁ 4 | 1 ‘ £ f £ f
oz.m_wz%i wzm__%%_m oz@ﬂ_%_m oz@w_%_m wzn_ _%>o_~_
-N3g3aN -N393N -N383N -N383N n yoss3zoud| # QIDNASINI
o L 0d) vLnD il | Y
- : Wc__ US__ Mmc: # esm_z_\ ﬂ
101 80Z1 90L1 Wl 200l i 0L 6oLt
Y9€ ZLIHOS 49 ZLHoS Y9€ ZLITHOS Q9EZLTHOS J9EZLIHOS 498z1HoS _

202/215

DE 697 21 381 T2 2004.01.15

68 94

—HaasHil
- I
el AL L E—
~ —FVasit
ONNLIZTF GINI
ONNLIZT# IINI \ RN |
_ -SONVIdNI ’el
60L1 # OIDNASINI -mmwz::ommm e
0lasSIN “43.INN
| _\/* TEVSIN
MO0 T8 |
bl -38vosnv
-SONNHOINE
“¥IIND
pL s3ssng-1od s3a ONNLIFT #IINl—T -
-mwzﬂm:w_w_w_ﬂm_.m__ NN ONNLIAT F QINl - — ONNLIZT # 81N
~_ ONNLIFT £FYINI

b2 SnaDd

[LIJHNIY3ANILS

006l—"| ~u3uNn

~SONNHOZE

._Iuvv:_&

1/
$3Ssnd -10d s3d
N3IONNLI31
~SONNHOIUGYILNN

203/215

DE 697 21 381 T2 2004.01.15

©SLOT IDSEL[S0] ——~
ENABLE [5:0] SRRl

17 N<i710
FIG. 90

1728

"= |20- NEBEN- VORRICHTUNG
"1" = HOST CPU 14 NEBEN- VORRICHTUNG

T

l20 NEBEN- REGISTER

FIG. N

5 4 3 2 1 O‘f””‘

| ._/~|20L SCHLITZ- REGISTER

T = IZO PROZESSOR
*0® = NICHT EIN l20 PROZESSOR

FG.92

204/215

DE 697 21 381 T2 2004.01.15

9 1 0 f‘ 129

~/‘120- NEBEN-

REGISTER
=10 NEBEN- VORRICHTUNG
FIG. 93 ~"1" = HOST CPU 14 NEBEN- VORRICHTUNG

(1726

HOST KONFIGURATIONS- FREIGABE- BIT

"1" = (PU 14 KANN AUF PCI- BUS 32 KONFIGURIEREN

b | '20 PROZESSOR 1700 KONFIGURIERT
lg0 NEBEN- VORRICHTUNGEN AUF BUS 32

FIG. 94

205/215

DE 697 21 381 T2 2004.01.15

-
R
(=)
S
| ¥ B

Y 5 N R N
L
ST, 2. YU T T YO YA T Y N N WO O TN Y WY SO T R N M
N I £
| < | I
WAB RERRERY E= oS~
”.......................*<am.—.—=

I (241

Y = NN Y 2 NN
A 200

L T gpunos Non YN
T e g oS NOA YN

R e NN 856 94 .
................A..........BGmN._._u_IOmZO>‘§— i ma@—&
e m V56 9
v vy peezunHOS NOA #)INI
41---J-ﬁulu-1ﬂl--/-0:.o
Lty Uy e 4 v v e v v e e .. b9gzurHOS NOAFVINI
.......-.\.1...*..)!#..?.»-

39¢ zLHOS NoA# (1N

206/215

DE 697 21 381 T2 2004.01.15

y

wmupmzmsme)u ”a”:.. 7 .=”e”=.2.mwﬁ®“m—/: p
R = S Y, = \)

\2:”2“5_“

=
=

325/_:__

”“””.““"“”““A“““““.i.ﬂéms..

vt s N N’ N—
LRI ANIN LSO LU,
u“u”“i”"““"”\u)n:_““"“\“)“m
BEREESESSED IS ESED M

. #0ININD

£
#9100
#VININD

NOSIN
RINASINI

EL AL

#F TIEVIINASING

ONOSINI -

OIDNASINI
QUSINI

207/215

DE 697 21 381 T2 2004.01.15

1743
~7/ SSINTC #
Z SAINTC £
A J ‘;la.mrw
7 INTSDC#| 4
z SGINTA# | g f,'.!'"c#
SSINTA# .
e | S50 s
3 [N\
9| SUNTAZ - N
| CSTNR# _
AN/ s
N SLICEIN [2:0]
(- 1745
T INTSYNC#
1742 o A
SINTB #
1 <SNB # I
g SAINTB £ ak
| a‘u
INTSDB # | g AT
5 |_SINB#
kY ulu .
(], S3INTB # 1744
SAINTD #
‘ 7 I].“
8 sommZ
§ [SN #
WTSD0# o [T
. 7 |__Samm#
/' 1 [_sanm#
1712 wow S1INTD #
MULTIPLEXING-
SCHALTUNG

FIG. 96

208/215

DE 697 21 381 T2 2004.01.15

UNTERBRECHUNGS-
: EMPFANGS- BLOCK
f 132
,Lm RST_
.) m '
6 0] 10201] 38 '
LR DEngDBIERER S ZAHLER f]750
/[\
ax
1754
6_QMR(7] ' ~ INTSYNC#
1755
~G_CNTR [0] INTSYNCCABLE #
INTSYNCIIO #

SID_CMPL# o
SR |\ GALINTE
s | /]
T s

FIG. 97A

209/215

0

10SUB [5]

110SUB (4]

“TI0SUB (3] _
TI0SUB (2] |
I0SUB (1]

110SU8B (0]

0"

<

SL1 [2.0]

[10SUB 5]

110SUB (4]

-~
—ad
- .
[-

- 110SUB 3]

5

10SuB [1]°

110su8 [0]

0

€D ot 7O €3 B L O

[10SUB (2]
SL1[2:0] ’

-~y .
C =)
~{
wn

— NN CAD B WY O
=
>

DE 697 21 381 T2 2004.01.15

FIG. 978

210/215

110SUB (3]

110SUB [4]

'0.

110SUB (5]

110suB (0]

v

110SUB (2]

110SUB (3]

. [10SUB (5]
[10SUB (4]

Iw

0

~ 110SUB (2]
110SUB (1]

110SUB (0]

- SL[20]

~
—
<
[

© = NI I o L O

losuB [1]
SLI [2:0] l

~4
ounud
~J
(- o)

132

—/

Z

:

‘Dt (NI €AD B

DE 697 21 381 T2 2004.01.15

110SLOT [3]

"

1OSLOT (5]

H1OSLOT {4]

0 |

TSt
OSLOT (1]

~TI0SL0T[0] |

SL1[2:0]

110SLOT [4]

10SLOT {3]

110SLOT (5]
10SLOT [0

IOSLOT (2] -

HOSLOT (1)

SL1[2:0]

FIG. 97C

e‘—-.wm.n(nchy

211/215

jl32

DE 697 21 381 T2 2004.01.15

a6

[91741%) 9
[E1791N) 9

I RTT

i

8081

0081 —")

%1 BTE
{_ o |
o |
b6LL # QOSIN) é ol
86/1 A_ ~
NSV \
N
4 Wr #F AN |, .
Ty = z baLl
26 :\IJ # 40SINI ._du_
VISYW o8l
m #VISINI _
h O6/1 [V ITHIND 9
M | MK
PO —<_ (s
B
—] 1 sl

28/l

08/1 N
M @ISV

QOSINI

3 S10il
b), 1]

#)SINI

N

(Lt

]

bLLL

L

un

aNSYW

S

#3051
VXSYW

e

YASINI

(AT
IMoanDn

212/215

DE 697 21 381 T2 2004.01.15

INTSYNCCABLE #
1829

8—p

6_am2r20| 3gr

K —p UK EN<

ECC_ERR_UP
| 6_CNTR2[0]
]

—_ 1834

INT_D1_|
(NT_D2 [
1846

.

1848
Cpul

(H

INTSDCABLE #

INTSYNCCPU #

INTSYNC #

INTSDCPU #

INTSDCABLE £ |

1824~

W] CPUINTE #

INT B2 —
ND# u
I6_CNTR2[0] |

I

INLC |

INT_Q

2

:

] 6 35 W 3

Y

2l

m_nﬂm_czllm:m]l

NT_AZJHT_D1

INT_BI[INT_Al

INT_C1

CLK—>

—
P BITS

LOAD ENABLES
S

(R

1826

L L 3 L

& [

V.

[

N

r_/ _/ F’)
GINTR2 [7] ﬁcmz (5] ﬁ(NTRZ (3]

'l
ﬂcmzm
GCNTR2[6] GCNTR2[4] GCNTR2[2] GONTR2(0]
FiG. 98

GCNTR2 [2:0] \

UNTERBRECHUNGS-
AUSGABE-

BLOCK 114

213/215

ZEIT-
scunrT] INTSDA# | INTSDD# | INTSDC# INTSDB #
10 scHLITZ], INTD #IscHLiTz scHUTZ3, [NTB # |
1 scHLITz], INTA# |scHuiTz2, INTD #|scHLiTz - ‘
12 [scHumz2. INTA# [scHLiTz3, INTD # ___IScHLTZ]_ INTB # |
T3 |schumzd. INTA# scHLTZ], INTC # [scHuTz2. INTB #
T4 scHLITz4, INTA # IscHuz 5. INTD # |scHurzé, INTC# | '
75 |scHumzS. INTA # [scHLmz 6. INTD # SCHLITZ4, [NTB #
16 scHLITzb. INTA # scHLITz4. INTC # IscHuzS. INTB #
7 scHLTz4. INTD # [scHuirz5. INTC # |schuirz6. INTB #
SCHLITZ | =SCHLITZ36A F lG 99
SCHLITZ2 = SscHLITZ368B
SCHLITZ 3 = SCHLITZ36(
SCHLITZ4 =scHLITz36D
SCHLITZ§ =scHLITZ36E
CHLITZ6 = scHLTZ36F
<l UNTER- . .
BRECHUNGS- UNTERBRECHUNGS- QUELLEN FUR
" ﬁﬁE ” ERWEITERUNGS- QUELLEN
NTA# BR_INTR # |SCHLITZ 1|SCHLITZ 2{SCHLITZ 3 | SCHLITZ 4| SCHLITZ 5 SCHUITZ 6] "1"
~ |INTD#| INTC# |INTB# |[INTA# |INID# |INTC#
WTB# |scHza SCHLITZ2SCHLITZ3] *1" | SCHLITZ 5{SCHLITZ s‘ - "1* IscHumzs
|INTD#| INTC# INTA# |INTD# INTB
NTC# | scHumz2 [scHuTzs *I" |scHUTZ1|scHuTze| "1* |SCHLITZ4|SsCHLTZS
INIA# |INTD# INIB# | INTA# | INTC# | INIB#
IND# |scHumzs | 1" [scHuTZafscHUTZ2| S [SCHLITZ4)SCHLITZ 5) SCHLITZ6
INTA # INTC# |INTB# | INTR# [INTD# | INTC# |INTB#

DE 697 21 381 T2 2004.01.15

FIG.

100

214/215

DE 697 21 381 T2 2004.01.15

QURT

Wnlmw¢ M
Vel Vil =T 0981 091 098
e 4o o dol 15 T 0 (—IEITea doi I doi [fESI3ieva do
TS0l st Bl BSal B 5
~—00L1
04
o o 7 - o |
1ozt Bol1 901 yill 20! J.mmsé.g_

215/215

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

