
DE69721381T220040115
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 697 21 381 T2 2004.01.15

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 811 931 B1
(21) Deutsches Aktenzeichen: 697 21 381.1
(96) Europäisches Aktenzeichen: 97 303 797.1
(96) Europäischer Anmeldetag: 04.06.1997
(97) Erstveröffentlichung durch das EPA: 10.12.1997
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 02.05.2003
(47) Veröffentlichungstag im Patentblatt: 15.01.2004

(51) Int Cl.7: G06F 13/40

(54) Bezeichnung: Einsetzen und Entfernen einer Erweiterungskarte

(30) Unionspriorität:
658602 05.06.1996 US

(73) Patentinhaber:
Compaq Computer Corp., Houston, Tex., US

(74) Vertreter:
Grünecker, Kinkeldey, Stockmair &
Schwanhäusser, 80538 München

(84) Benannte Vertragsstaaten:
DE, FR, GB, IT

(72) Erfinder:
Culley, Paul R., Cypress, US; Goodrum, Alan L.,
Tomball, Texas 77375, US; Chow, Raymond Y. L.,
Cypress, Texas 77429, US; Basile, Barry S.,
Houston, Texas 77084, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/215

DE 697 21 381 T2 2004.01.15
Beschreibung

[0001] Die Erfindung bezieht sich auf ein Einsetzen und Entfernen von Erweiterungskarten.
[0002] Computersysteme besitzen typischerweise Erweiterungskarten-Steckplätze bzw. -Schlitze zum Auf-
nehmen und elektrischen Verbinden von Erweiterungskarten mit einem Erweiterungsbus des Computersys-
tems. Der Erweiterungsbus kann einer von verschiedenen Typen sein, wie beispielsweise ein Industry Stan-
dard Architecture (ISA) Bus, ein Extended Industry Standard Architecture (EISA) Bus oder ein Peripheral Com-
ponent Interconnect (PCI) Bus.
[0003] Die EP-A-0 254 456 offenbart eine elektrische Schaltungsleiterplatte, die elektrisch mit einem Bus ver-
bunden ist, entfernbar von dem System und wieder einsetzbar in das System, ohne die Notwendigkeit, andere
Schaltungen, verbunden mit dem Bus, zu sperren.
[0004] IBM Technical Disclosure Bulletin Vol. 29 No. 7 offenbart eine Schaltung, um zu ermöglichen, dass
eine Datenkassette in ein Betriebsterminal eingesetzt oder davon entfernt werden kann, ohne die Operation
des Terminals zu unterbrechen.
[0005] Gemäß der vorliegenden Erfindung wird ein Verfahren zur Verwendung in einem Computersystem ge-
schaffen, das eine zentrale Verarbeitungseinheit besitzt, wobei das Verfahren aufweist: Verwenden einer
Klemme, um selektiv ein Entfernen einer Schaltungskarte von einem Verbinder zu verhindern, wobei der Ver-
binder so konfiguriert ist, um die Schaltungskarte aufzunehmen und elektrisch die Schaltungskarte mit der zen-
tralen Verarbeitungseinheit zu verbinden; Überwachen des Eingriffszustands der Klemme; und Zuführen einer
Anzeige bzw. Indikation über den Eingriffszustand zu der zentralen Verarbeitungseinheit; und Zuführen einer
Unterbrechungs-Anforderung zu der zentralen Verarbeitungseinheit, um anzuzeigen, wenn sich der Eingriffs-
zustand ändert; und gekennzeichnet durch Trennen einer Taktleitung und von anderen Leitungen des Busses,
wobei die anderen Leitungen des Busses getrennt werden, bevor die Taktleitung getrennt wird und die Energie
weggenommen wird.
[0006] Vorzugsweise weist das Verfahren weiterhin ein Speichern des Eingriffszustands in einem Speicher,
auf den durch die zentrale Verarbeitungseinheit zugreifbar ist, auf.
[0007] Vorzugsweise weist das Verfahren weiterhin ein Überwachen eines Energie-Zustand-Signals des Ver-
binders; und Zuführen einer Indikation bzw. Anzeige über das Energie-Zustand-Signal zu der zentralen Verar-
beitungseinheit auf.
[0008] Vorzugsweise wird Energie zu dem Verbinder, wenn die Klemme in Eingriff ist, zugeführt, und Energie
wird von dem Verbinder weggenommen, wenn die Klemme nicht in Eingriff ist.
[0009] Vorzugsweise weist das Verfahren weiterhin ein Bestimmen auf, ob die zentrale Verarbeitungseinheit
den Verbinder freigegeben hat, um Energie aufzunehmen, und wobei der Schritt eines Zuführens Energie nur
dann zuführt, wenn die zentrale Verarbeitungseinheit den Verbinder freigegeben hat, um Energie aufzuneh-
men.
[0010] Vorzugsweise umfasst ein Verbinden der zentralen Verarbeitungseinheit ein elektrisches Verbinden ei-
nes Busses mit dem Verbinder, wenn die Klemme in Eingriff ist; und ein elektrisches Isolieren der zentralen
Verarbeitungseinheit umfasst ein elektrisches Isolieren des Busses gegen den Verbinder, wenn die Klemme
nicht in Eingriff ist.
[0011] Vorzugsweise umfasst ein elektrisches Verbinden ein Verbinden einer Taktleitung und von anderen
Leitungen des Busses, wobei die anderen Leitungen des Busses verbunden werden, nachdem die Energie zu-
geführt ist und die Taktleitung verbunden ist.
[0012] Vorzugsweise besitzt das Computersystem einen Schalter, betätigt durch die Klemme, was eine An-
zeige der Position des Schalters liefert, und wobei das Verfahren vorzugsweise weiterhin aufweist: Aktualisie-
ren des Eingriffszustands bzw. -status , wenn die Anzeige dieselbe Position für eine vorbestimmte Dauer an-
zeigt.
[0013] Weiterhin wird gemäß der vorliegenden Erfindung ein System geschaffen, das aufweist: eine zentrale
Verarbeitungseinheit; einen Verbinder zum Aufnehmen einer Schaltungskarte, wobei der Verbinder eine Mehr-
zahl von externen Verbindungen besitzt; eine Klemme, konfiguriert so, um selektiv ein Entfernen der Schal-
tungskarte von dem Verbinder, wenn die Klemme in Eingriff ist, zu verhindern; und eine Schaltung, verbunden
so, um den Eingriffsstatus der Klemme zu überwachen, und um eine Zufuhr von Energie zu dem Verbinder
basierend auf dem Eingriffsstatus der Klemme zu regulieren; und dadurch gekennzeichnet, dass die Schaltung
zum Isolieren des Busses Einrichtungen zum Trennen einer Taktleitung und von anderen Leitungen des Bus-
ses umfasst, wobei die anderen Leitungen des Busses getrennt werden, bevor die Taktleitung getrennt ist und
die Energie entfernt ist.
[0014] Die Schaltung umfasst vorzugsweise: einen Schalter, betätigt durch die Klemme, was eine Anzeige
über die Position des Schalters liefert; und eine Schaltung, verbunden so, um den Eingriffsstatus zu aktualisie-
ren, wenn die Anzeige dieselbe Position für eine vorbestimmte Dauer anzeigt.
[0015] Die Schaltung kann vorzugsweise so konfiguriert sein, um eine Unterbrechungsanforderung zu der
zentralen Verarbeitungseinheit zuzuführen, um anzuzeigen, wenn sich der Eingriffszustand ändert. Sie kann
2/215

DE 697 21 381 T2 2004.01.15
auch einen Puffer umfassen, zugreifbar durch die zentrale Verarbeitungseinheit, verbunden so, um die Anzeige
über den Eingriffszustand zu speichern.
[0016] Vorzugsweise überwacht die Schaltung ein Energie-Status-Signal bzw. -Zustands-Signal des Verbin-
ders und liefert eine Anzeige des Energie-Status-Signals zu der zentralen Verarbeitungseinheit.
[0017] Weiterhin weist das Computersystem eine Schaltung auf, die auf die Schaltung anspricht, verbunden
so, um den Eingriffszustand der Klemme zu überwachen, verbunden so, um Energie zu dem Verbinder zuzu-
führen, wenn die Klemme in Eingriff ist, und so, um Energie von dem Verbinder wegzunehmen, wenn die Klem-
me nicht in Eingriff ist.
[0018] Die zentrale Verarbeitungseinheit kann selektiv den Verbinder freigeben, um Energie aufzunehmen,
und wobei das Computersystem weiterhin aufweisen kann: einen Puffer, verbunden so, um anzuzeigen, wenn
die zentrale Verarbeitungseinheit den Verbinder freigegeben hat, um Energie aufzunehmen, und wobei die
Schaltung, verbunden so, um nur Energie zuzuführen, Energie dann zuführt, wenn die zentrale Verarbeitungs-
einheit den Verbinder freigegeben hat, um Energie aufzunehmen.
[0019] Das Computersystem kann weiterhin einen Bus, vorzugsweise einen PCI-Bus, und eine Schaltung, die
auf die Schaltung zum Überwachen anspricht, zum Verbinden des Busses mit dem Verbinder, wenn die Klem-
me in Eingriff ist, und zum elektrischen Isolieren des Busses gegen den Verbinder, wenn die Klemme nicht in
Eingriff ist, aufweisen.
[0020] Die zentrale Verarbeitungseinheit kann selektiv den Bus freigeben, um mit dem Verbinder verbunden
zu werden, und das Computersystem kann weiterhin aufweisen: einen Puffer, verbunden so, um anzuzeigen,
wenn die zentrale Verarbeitungseinheit den Bus freigegeben hat, um mit dem Verbinder verbunden zu werden,
und wobei die Schaltung, verbunden so, um nur Energie zuzuführen, den Bus mit dem Verbinder dann verbin-
det, wenn die zentrale Verarbeitungseinheit den Verbinder freigegeben hat, um mit dem Bus verbunden zu wer-
den.
[0021] Vorzugsweise umfasst die Schaltung zum elektrischen Verbinden des Busses mit dem Verbinder eine
Einrichtung zum Verbinden einer Taktleitung und von anderen Leitungen des Busses, wobei die anderen Lei-
tungen des Busses verbunden werden, nachdem die Energie zugeführt ist und die Taktleitung verbunden ist.
[0022] Unter den Vorteilen der Erfindung ist einer oder sind mehrere der Folgenden umfasst. Wenn die Er-
weiterungskarte verbunden ist, werden Operationen auf der Erweiterungskarte stabilisiert und erreichen Be-
reitschaftsbedingungen, bevor externe Bussignale zu der Erweiterungskarte zugeführt werden. Wenn herun-
tergefahren bzw. getrennt wird, werden Operationen auf der Erweiterungskarte in einer geordneten Art und
Weise gehalten, bevor die Erweiterungskarte von dem Schlitz entfernt wird, was das Auftreten von nicht er-
wünschten Signalen auf dem Bus minimiert.
[0023] Andere Vorteile und Merkmale werden aus der nachfolgenden Beschreibung und aus den Zeichnun-
gen ersichtlich werden, in denen:
[0024] Fig. 1 zeigt ein Blockdiagramm eines Computersystems.
[0025] Fig. 2 zeigt ein Blockdiagramm eines Erweiterungskastens des Computersystems der Fig. 1.
[0026] Fig. 3 zeigt ein Blockdiagramm der Brücken-Chips in dem Computersystem.
[0027] Fig. 4 zeigt ein Blockdiagramm eines Warteschlangen-Blocks in jedem der Brücken-Chips.
[0028] Fig. 5 zeigt ein Blockdiagramm des Takt-Routing-Schemas in den Brücken-Chips.
[0029] Fig. 6 zeigt ein Blockdiagramm eines Taktgenerators in jedem der Brücken-Chips.
[0030] Fig. 7 zeigt ein Blockdiagramm einer Master-Kabel-Schnittstelle in jedem der Brücken-Chips zum
Übertragen von Daten über ein Kabel, das die Brücken-Chips verbindet.
[0031] Fig. 8 zeigt ein Zeitabstimmungsdiagramm von Signalen in der Master-Kabel-Schnittstelle.
[0032] Fig. 9 zeigt ein Blockdiagramm einer Slave-Kabel-Schnittstelle in jedem der Brücken-Chips zum Auf-
nehmen von Daten, übertragen über das Kabel.
[0033] Fig. 10 zeigt ein Blockdiagramm von Logik-Erzeugungs-Eingangs- und Ausgangs-Hinweiszeigern für
die empfangene Logik in der Slave-Kabel-Schnittstelle.
[0034] Fig. 11 zeigt ein Zeitabstimmungsdiagramm von Signalen in der Slave-Kabel-Schnittstelle.
[0035] Fig. 12 zeigt ein Zeitabstimmungsdiagramm der Eingangs- und Ausgangs-Hinweiszeiger und deren
Beziehung zu den aufgenommenen Kabeldaten.
[0036] Fig. 13 zeigt ein Blockdiagramm der Plazierung von Flip-Flop's und Eingangs- und Ausgangsan-
schlußflächen in jedem der Brücken-Chips.
[0037] Fig. 14 zeigt eine Tabelle der Informationen, geführt durch das Kabel.
[0038] Fig. 15A zeigt eine Tabelle, die den Typ von Informationen darstellt, geführt durch die Kabelsignale,
die Einzel-Adressenzyklus-Transaktionen zugeordnet sind.
[0039] Fig. 15B zeigt eine Tabelle, die den Typ von Informationen darstellt, geführt durch die Kabelsignale,
zugeordnet zu Dual-Adressen-Zyklus-Transaktionen.
[0040] Fig. 16 zeigt eine Tabelle von Parametern, zugeordnet zu dem Kabel.
[0041] Fig. 17 zeigt ein Logikdiagramm einer Fehlererfassungs- und Korrekturschaltung.
[0042] Fig. 18 zeigt eine Parität-Prüf-Matrix zum Erzeugen von Prüf-Bits in der Fehlererfassungs- und Kor-
3/215

DE 697 21 381 T2 2004.01.15
rekturschaltung.
[0043] Fig. 19 zeigt eine Syndrom-Tabelle zum Erzeugen von Fix-Bits in der Fehlererfassungs- und Korrek-
turschaltung.
[0044] Fig. 20A zeigt ein Zustand-Diagramm, das ein Round-Robin Arbitrierungs-Schema darstellt.
[0045] Fig. 20B zeigt ein Zustandsdiagramm, dass ein Zwei-Niveau-Entscheidungs-Schema darstellt.
[0046] Fig. 21 zeigt ein logisches Diagramm einer Entscheidungseinrichtung in jedem der Brücken-Chips.
[0047] Fig. 22 zeigt ein Zustandsdiagramm einer Erteilungs-Zustand-Maschine in einer Entscheidungsein-
richtung.
[0048] Fig. 23 zeigt ein Zustandsdiagramm eines Level eins einer Entscheidungs-Zustand-Maschine in der
Entscheidungseinrichtung.
[0049] Fig. 24 zeigt eine Tabelle, die eine Erzeugung von neuen Erteilungs-Signalen basierend auf dem mo-
mentanen Master darstellt.
[0050] Fig. 25 zeigt ein Blockdiagramm einer Logik zum Erzeugen von Masken-Bits und Master-Indikati-
ons-Bits mit Multi-Threading-Fähigkeit.
[0051] Fig. 26A zeigt ein logisches Diagramm von Schaltungen zum Erzeugen der maskierten Bits.
[0052] Fig. 26B zeigt ein Blockdiagramm eines Computersystems mit Mehrfach-Schichten von Bussen.
[0053] Fig. 27A zeigt eine Seitenansicht einer Erweiterungskarte, eingesetzt in einen Schlitz.
[0054] Fig. 27B–C zeigen schematische Diagramme einer Hebel-Schaltung.
[0055] Fig. 28–31 zeigen schematische Diagramme einer Schaltung des Erweiterungskastens.
[0056] Fig. 32A zeigt ein Zustandsdiagramm von der Schaltung des Erweiterungskastens.
[0057] Fig. 32B zeigt Wellenformen für die Schaltung des Erweiterungskastens.
[0058] Fig. 33A zeigt ein schematisches Diagramm einer Schaltung des Erweiterungskastens.
[0059] Fig. 33B zeigt Wellenformen für die Schaltung des Erweiterungskastens.
[0060] Fig. 33C–H zeigen ein Zustandsdiagramm von der Schaltung des Erweiterungskastens.
[0061] Fig. 34 zeigt ein schematisches Diagramm einer Schaltung des Erweiterungskastens.
[0062] Fig. 35A zeigt ein Zustandsdiagramm von der Schaltung des Erweiterungskastens.
[0063] Fig. 35B zeigt Wellenformen von der Schaltung des Erweiterungskastens.
[0064] Fig. 36 zeigt ein schematisches Diagramm einer Schaltung des Erweiterungskastens.
[0065] Fig. 37 zeigt ein Flußdiagramm eines nicht-maskierbaren Unterbrecher-Handler's, aufgerufen in Ab-
hängigkeit einer Erfassung eines Bus-Hängend-Zustands in dem Computer-System.
[0066] Fig. 38 zeigt ein Fluß-Diagramm eine BIOS-Programms, das durch ein Computersystem-Durch-
sichts-Ereignis aufgerufen wird.
[0067] Fig. 39 zeigt ein Fluß-Diagramm eines BIOS-Isolier-Programms, aufgerufen auf einen Bus-Hän-
gend-Zustand oder das Computer-Durchsichts-Ereignis hin.
[0068] Fig. 40 zeigt ein Blockdiagramm eines Bus-Watcher's in jedem der Brücken-Chips.
[0069] Fig. 41 zeigt ein Zustandsdiagramm einer Logik in dem Bus-Watcher zum Zurückführen des Busses
zu einem Leerlaufzustand.
[0070] Fig. 42 zeigt ein logisches Diagramm von Status-Signalen in dem Bus-Watcher. Fig. 43 zeigt ein logi-
sches Diagramm von Bus-Historie-FIFOs und Bus-Zustand-Vektor-FIFOs in der Fehler-Isolations-Schaltung.
[0071] Fig. 44 zeigt ein logisches Diagramm einer Schaltung zum Erzeugen von Bereitschafts-Signalen zum
Anzeigen, wenn die Bus-Historie- und Zustand-Vektor-Informationen verfügbar sind.
[0072] Fig. 45 zeigt ein Flußdiagramm eines Programms zum Zuordnen einer Bus-Zahl zu einem eingeschal-
teten oder leeren Schlitz.
[0073] Fig. 46 zeigt ein Flußdiagramm eines Programms zum Zuordnen von Speicherraum für das Compu-
tersystem.
[0074] Fig. 47 zeigt ein Flußdiagramm eines Programms zum Zuordnen eines I/O-Raums für das Computer-
system.
[0075] Fig. 48 zeigt ein Flußdiagramm eines Programms zum Handhaben einer neu eingeschalteten Karte.
[0076] Fig. 49 zeigt ein Blockdiagramm eines Konfigurationsraums für eine PCI-Brückenschaltung.
[0077] Fig. 50A zeigt ein Blockdiagramm eines Computersystems.
[0078] Fig. 50B zeigt einen Bus-Zahl-Zuordnungs-Baum.
[0079] Fig. 51 zeigt ein Blockdiagramm, das Konfigurations-Transaktionen vom Typ 0 und Typ 1 darstellt.
[0080] Fig. 52 zeigt eine Tabelle, die eine Auflistung einer Adresse von einem primären Bus zu einem sekun-
dären Bus aufweist.
[0081] Fig. 53A und 53B zeigen ein logisches Diagramm einer Schaltung zum Handhaben von Konfigurati-
ons-Zyklen vom Typ 0 und Typ 1.
[0082] Fig. 54A zeigt ein Blockdiagramm einer Schaltung zum Speichern von Informationen, um eine Berech-
nung von Bus-Funktions-Parametern zu ermöglichen.
[0083] Fig. 54B zeigt ein Blockdiagramm von Vorabruf-Zählern.
[0084] Fig. 55 zeigt ein Blockdiagramm eines Computersystems.
4/215

DE 697 21 381 T2 2004.01.15
[0085] Fig. 56 zeigt ein Blockdiagramm eines PCI-Entscheidungs-Schemas.
[0086] Fig. 57 zeigt ein schematisches Diagramm eines Puffer-Entleerungs-Logik-Blocks.
[0087] Fig. 58 zeigt ein schematisches Diagramm eines Kabel-Decodierers.
[0088] Fig. 59–62 zeigen schematische Diagramme einer geposteten Speicher-Schreib-Warteschlange, um-
fassend eine Steuerlogik.
[0089] Fig. 63–65 zeigen schematische Diagramme einer verzögerten Anforderungs-Warteschlange, umfas-
send eine Steuerlogik.
[0090] Fig. 66–69b zeigen schematische Diagramme einer verzögerten Abschluss-Warteschlange, umfas-
send eine Steuerlogik.
[0091] Fig. 70–74 zeigen schematische Diagramme und eine Tabelle einer Master-Zyklus-Entscheidungsein-
richtung.
[0092] Fig. 75–87 zeigen schematische und Zustand-Übergangs-Diagramme einer Warteschlan-
ge-Block-zu-PCI-Bus-Schnittstelle.
[0093] Fig. 88 zeigt ein schematisches Blockdiagramm, das Bus-Vorrichtungen darstellt, verbunden mit ei-
nem Expansions-Bus.
[0094] Fig. 89 zeigt ein schematisches Blockdiagramm, dass eine Schaltung darstellt, um Unterbre-
chungs-Anforderungen weiterzuführen.
[0095] Fig. 90 zeigt ein schematisches Diagramm einer Vorrichtungs-Auswahl-Logik.
[0096] Fig. 91–94 zeigen schematische Blockdiagramme von Registern.
[0097] Fig. 95 zeigt eine grafische Darstellung, die Wellenformen für das Computersystem darstellt.
[0098] Fig. 96 zeigt ein schematisches Diagramm der im Multiplex-Betrieb arbeitenden Schaltung.
[0099] Fig. 97A–D zeigen schematische Diagramme des Unterbrechungs-Aufnahme-Blocks.
[0100] Fig. 98 zeigt ein schematisches Diagramm des Unterbrechungs-Ausgabe-Blocks.
[0101] Fig. 99 zeigt ein Diagramm, das die Zeitmultiplexverarbeitung von Unterbrechungs-Anforderungs-Si-
gnalen darstellt.
[0102] Fig. 100 zeigt ein Diagramm, das eine Unterbrechungs-Anforderungs-Auflistung darstellt.
[0103] Figur 101 zeigt ein schematisches Blockdiagramm, dass Bus-Vorrichtungen darstellt, verbunden mit
einem Erweiterungsbus.

ÜBERSICHT

[0104] In der folgenden Beschreibung geben alle Signal-Mnemoniken, gefolgt durch ein „#", „_" oder „!", oder
diesen vorausgehend, invertierte, logische Zustände an.
[0105] Wie in Fig. 1 dargestellt ist, umfasst ein Computersystem 10 einen primären PCI-Bus 24, der mit ei-
nem Brücken-Chip 26a und einem Brücken-Chip 26b verbunden ist, wobei beide davon von einem gemeinsa-
men Design 26 sind. Der Brücken-Chip 26a ist mit einem Brücken-Chip 48a über ein Kabel 31 verbunden und
der Brücken-Chip 26b ist mit dem Brücken-Chip 48b über ein Kabel 28 verbunden. Die Brücken-Chips 48a und
48b sind von einem gemeinsamen Design 48, was gemeinsam zu dem Design 26 ist, mit der Ausnahme, das
das Design 26 ein eingangsseitiger Mode ist und das Design 48 ein ausgangsseitiger Mode ist.
[0106] Der PCI-Bus 24 ist mit einem lokalen Bus 22 über eine System-Steuereinheit/Host-Brücken-Schaltung
28 schnittstellenmäßig verbunden. Die Systemsteuereinheit/Host-Brücken-Schaltung 18 steuert auch einen
Zugriff zu einem Systemspeicher 20, der auch mit dem lokalen Bus 22 zusammen mit der CPU 14 und einem
Level-2-(L2)-Cachespeicher 16 verbunden ist.
[0107] Eine PCI Extended Industry Standard Architecture (EISA) Brücke 15 verbindet schnittstellenmäßig
den PCI-Bus 24 mit einem ISA-Bus 17. Sowohl eine Tastenfeld-Steuereinheit 21 als auch ein Read Only Me-
mory (ROM) 23 sind mit dem ISA-Bus 17 verbunden. Ein nicht-flüchtiger Random Access Speicher (NVRAM)
70, verbunden mit dem ISA-Bus 17, speichert Informationen, die das Computersystem übernehmen sollte,
wenn es abgeschaltet wird. Ein automatischer Server-Zurückgewinnungs-Zeitgeber 72 überwacht das Com-
putersystem hinsichtlich einer Inaktivität. Falls sich das System verriegelt, wird der ASR-Zeitgeber 72 nach un-
gefähr 10 Minuten ablaufen. Ein Tastenfeld 19 wird durch die Tastenfeld-Steuereinheit 21 hinsichtlich einer Er-
fassung von niedergedrückten Tasten überwacht.
[0108] Wie Fig. 2 zeigt, bildet der Brücken-Chip 48a eine Schnittstelle zu einem PCI-Bus 32a und der Brü-
cken-Chip 48b bildet eine Schnittstelle zu einem PCI-Bus 32b. Die PCI-Busse 32a und 32b sind an zwei Ex-
pansionskästen 30a und 30b, mit einem gemeinsamen Design 30, angeordnet, und jeder Expansionskasten
30 besitzt sechs Hot-Plug-Schlitze bzw. Steckplätze 36 (36a–f), die dazu geeignet sind, herkömmliche Erwei-
terungskarten 807 aufzunehmen (Fig. 27A). Ein Schlitz 34 an dem Expansionskasten nimmt eine Karte 46 auf,
die den Brücken-Chip 26 besitzt. Jeder Hot-Plug-Schlitz 36 besitzt zugeordnet eine Umschalt-Schaltung 41
zum Verbinden und Trennen des Schlitzes 36 mit und von dem PCI-Bus 32. Sechs mechanische Hebel 802
werden dazu verwendet, selektiv die Karten 807 an entsprechenden Schlitzen zu sichern (wenn sie geschlos-
sen oder verriegelt sind), wie weiterhin in der US-Patentanmeldung Serial-Nr. 08/658385, mit dem Titel „Secu-
5/215

DE 697 21 381 T2 2004.01.15
ring a Card in an Electronic Device", angemeldet an demselben Datum wie diese Anmeldung und hier unter
Bezugnahme darauf eingeschlossen, beschrieben ist. Jeder Erweiterungskasten 30 umfasst Register 52 und
82 zum Überwachen der Hebel 802 und von Status-Signalen des Erweiterungskastens 30 und ein Register 80
zum Kontrollieren einer Verbindung und einer Trennung von Schlitzen 36 und von dem PCI-Bus 32.
[0109] Wie Fig. 3 zeigt, ist der Brücken-Chip so ausgelegt, um in Paaren 26 und 48 verwendet zu werden,
um eine PCI-PCI-Brücke zwischen dem primären PCI-Bus 24 und dem sekundären PCI-Bus 32 zu bilden. Das
Programmiermodel ist dasjenige von zwei hierarchischen Brücken. Zu der Systemsoftware hin erscheint das
Kabel 28 als ein PCI-Bus, der exakt eine Vorrichtung enthält, und zwar den ausgangsseitigen Brücken-Chip
48. Dies vereinfacht stark die Konfiguration der 2-Chip-PCI-PCI-Brücke, die den primären und sekundären Bus
miteinander verbindet. Der Brücken-Chip 26, der näher zu der CPU 14 hin liegt, verbindet den primären
PCI-Bus 24 mit dem Kabel 28. Die zweite PCI-PCI-Brücke 48 ist in dem Erweiterungskasten 30 vorhanden und
verbindet das Kabel 28 mit dem sekundären Bus 32. Ein Mode-Stift-Upstream-Chip bestimmt, ob der Brü-
cken-Chip in dem ausgangsseitigen Mode oder dem eingangsseitigen Mode arbeitet. Einige Nicht-Brü-
cken-Funktionen, wie beispielsweise ein Bus-Monitor 106 und eine Hot-Plug-Logik in einem SIO 50, werden
nur in dem Erweiterungskasten 30 verwendet und sind nicht in dem einlaufseitigen Mode-Chip 26 funktional.
[0110] Ein Taktgenerator 102 in dem Brücken-Chip 26 erzeugt Takte basierend auf dem Takt PCI CLK1 auf
dem primären PCI-Bus 24, wobei einer der erzeugten Takte über das Kabel 28 zu einem Taktgenerator 122 in
dem ausgangsseitigen Brücken-Chip 48 vorgesehen wird. Der Taktgenerator 122 erzeugt die PCI-Takte in dem
Erweiterungskasten 30 bei derselben Frequenz des primären PCI-Busses 24 und steuert ihn an, was dazu
führt, dass beide Brücken-Chips 26 und 48 unter derselben Frequenz laufen. Der ausgangsseitige Brü-
cken-Chip 48 läuft dem eingangsseitigen Brücken-Chip 24 in der Phase mit der Verzögerung des Kabels 28
hinterher. Eine asymetrische Grenze in dem eingangseitigen Brücken-Chip 26 an dem Punkt, wo Daten von
dem Kabel 28 abgegriffen werden, ermöglicht, dass sich die Phasenverzögerung bei irgendeinem Wert befin-
det (und deshalb soll das Kabel von irgendeiner Länge sein), wobei das einzige Erfordernis dasjenige ist, dass
die Frequenz der zwei Brücken-Chips dieselbe ist.
[0111] Die Kern-Logik jedes Brücken-Chips ist der Brücken-Logik-Block (100 oder 120), der einen PCI-Mas-
ter (101 oder 123) zum Arbeiten als ein Master auf dem jeweiligen PCI-Bus, ein PCI-Target oder eine -Slave
(103 oder 121) zum Arbeiten als eine Slave-Vorrichtung auf dem jeweiligen PCI-Bus, Konfigurations-Register
(105 oder 125), die die Konfigurations-Informationen des entsprechenden Brücken-Chips enthalten, und einen
Warteschlangen-Block (107 oder 127), der verschiedene Warteschlangen enthält, in denen Daten, zugeordnet
zu Transaktionen zwischen dem primären PCI-Bus und dem sekundären PCI-Bus 32, in die Warteschlange
gestellt und gemanagt werden, aufweist. Die Daten, übertragen zwischen dem eingangsseitigen Brücken-Chip
26 und dem ausgangsseitigen Brücken-Chip 48, werden durch Kabelschnittstellen 104 und 130 in den Brü-
cken-Chips 26 und 48 jeweils gepuffert.
[0112] Eine Unterbrechungs-Programm-Logik ist auch in jedem Brücken-Chip enthalten. Dabei sind 8 Unter-
brechungen, 6 von den Sekundär-Bus-Schlitzen, 1 von einer SIO-Schaltung 50 und 1 von dem ausgangssei-
tigen Brücken-Chip 48, vorhanden. In dem ausgangsseitigen Chip 48 werden die Unterbrechungen durch ei-
nen Unterbrechungs-Aufnahme-Block 132 aufgenommen und entlang des Kabels 28 als eine serielle Daten-
folge in sequenziellen Zeit-Stücken geschickt. In dem ausgangsseitigen Brücken-Chip 26 werden die Unter-
brechungen durch einen Unterbrechungs-Ausgangs-Block 114 empfangen, der die Unterbrechungen zu einer
Unterbrechungs-Steuereinheit weiterleitet.
[0113] Die SIO-Schaltung 50 liefert Steuersignale zum Beleuchten von LED's, zum Steuern eines Reset und
für ein selektives Verbinden der Schlitze 36 mit dem Bus 32. Sie umfasst auch eine Logik zum Lesen des Ein-
griffs-Status der Hebel 802 und des Status-Zustands der Karten 807 in jedem Schlitz 36.
[0114] Die Brücken-Schaltung 26 umfasst einen Support für Unterbrechungen in dem Erweiterungskasten 30,
und, wenn sie in dem Host-System mit der anwendereigenen Schnittstelle zu einer Mehrfachkanal-Unterbre-
chungs-Steuereinheit installiert ist, schickt sie die Status-Zustände jeder Unterbrechung in einer seriellen Da-
tenfolge. Die Brückenschaltung 26 kann auch so konfiguriert sein, um standardmäßige PCI-INTA, INTB, INTC
und INTD Signale anzusteuern, falls sie in einem Standard-Schlitz in dem Host-System installiert ist.
[0115] Jeder Brücken-Chip umfasst auch einen PCI-Arbitrierer (116 oder 124) zum Steuern eines Zugriffs auf
bis zu sieben Bus-Master. Da die eingangsseitige Brücke 26 in einem Schlitz installiert ist, wird der PCI-Arbit-
rierer 116 in dem eingangsseitigen Brücken-Chip 26 gesperrt. Jeder Brücken-Chip umfasst auch eine I2C-Steu-
ereinheit (108 oder 126) für eine Kommunikation mit Vorrichtungen, wie beispielsweise EEPROMs, Tempera-
tursensoren, usw., einen JTAG-Master (110 oder 128) zum Durchführen von Test-Zyklen, einen Bus-Monitor
(106 oder 127) zum Messen einer Bus-Benutzung und einer Effektivität und der Effektivität des Vorabruf-Algo-
rithmus des Brücken-Chips, und einen Bus-Beobachter (Bus-Watcher) (119 oder 129) zum Speichern einer
Bus-Historie und von Status-Vektor-Informationen und zum Informieren der CPU 14 über einen Bus-Hän-
gend-Zustand. Bestimmte Blöcke werden in jedem Brücken-Chip gesperrt, wenn sie nicht verwendet werden.
In dem eingangsseitigen Brücken-Chip 26 werden Bus-Watcher 119, der SIO 118, der PCI-Arbitrierer 116 und
der Bus-Monitor 106 gesperrt. Zusätzlich werden der die Unterbrechung aufnehmende Block 112 in dem ein-
6/215

DE 697 21 381 T2 2004.01.15
gangsseitigen Chip 126 und der Unterbrechungs-Ausgangs-Block 134 in dem ausgangsseitigen Chip 48 ge-
sperrt.

ÜBERSICHT DES WARTESCHLANGEN-BLOCKS

[0116] Wie Fig. 4 zeigt, managen die Warteschlangen-Blöcke 107 und 127 Transaktionen, die zwischen dem
primären PCI-Bus 24 (in dem eingangsseitigen Chip) oder dem sekundären PCI-Bus 32 (in dem ausgangssei-
tigen Chip) und der Kabel-Schnittstelle 130 fließen.
[0117] (Von hier an wird auf den ausgangsseitigen Brücken-Chip unter der Annahme Bezug genommen, dass
der eingangsseitige Chip identisch arbeitet, ohne dass dies ansonsten angegeben ist). Der Warteschlan-
gen-Block 127 umfasst einen Kabel-Decodierer 146, der von der Kabel-Schnittstelle 130 Transaktionen auf-
nimmt, die auf dem sekundären PCI-Bus 32 abgeschlossen werden. Nach einem Decodieren einer Transakti-
on platziert der Decodierer 146 die Transaktionen, zusammen mit allen Informationen, umfasst in der Trans-
aktion, in eine von drei Warteschlangen 140, 142 und 144. Jede Warteschlange enthält verschiedene Trans-
aktions-Puffer, wobei jeder davon eine einzelne Transaktion speichert, und ist deshalb in der Lage, verschie-
dene Transaktionen simultan zu handhaben.
[0118] Die erste Warteschlange, eine gepostete Speicher-Schreib-Warteschlange (PMBQ) 140, speichert ge-
postete Speicher-Schreib-Zyklen, ausgegeben durch die CPU, auf dem primären Bus zusammen mit allen In-
formationen, die erforderlich sind, um jeden Zyklus auf dem sekundären Bus 32 auszuführen. Die PMWQ 140
besitzt vier Transaktions-Puffer, wobei jeder davon eine gepostete Speicher-Schreib-Transaktion hält, die bis
zu 8 Cache-Linien (256 Bytes) an Daten enthält. Unter bestimmten Umständen kann eine gepostete Spei-
cher-Schreib-Transaktion, die mehr als acht Cache-Linien bzw. -Zeilen an Daten besitzt, in einen oder mehrere
darauffolgende Puffer überlaufen, wie dies nachfolgend beschrieben ist.
[0119] Die zweite Warteschlange, eine verzögerte Anforderungs-Warteschlange (Delayed Request Queue –
142), speichert verzögerte Anforderungs-Transaktionen (d. h. verzögerte Lese-Anforderungen (Delayed Read
Requests – DRR), wie beispielsweise ein Speicher-Lesen (Memory Read – MR), eine Speicher-Lese-Linie
(Memory Read Line – MRL), und Speicher-Lese-Mehrfach-(Memory Read Multiple – MRM)-Anforderungen;
und in dem ausgangsseitigen Chip, Eingangs/Ausgangs-(I/O)-Lese-Schreib-Vorgänge und Konfigurationen
(config – Lese/Schreib-Vorgänge), ausgegeben durch die CPU auf dem primären Bus, zusammen mit allen In-
formationen, erforderlich dazu, jede Transaktion auf dem sekundären Bus 32 auszuführen. Die DRQ 142 be-
sitzt drei Transaktions-Puffer, wobei jeder davon in der Lage ist, ein Doppelwort, oder „dword", an Daten für
verzögerte Schreibvorgänge zu halten.
[0120] Die dritte Warteschlange, eine verzögerte Abschluss-Warteschlange (Delayed Completion Queue
(DCQ) 144, speichert verzögerte Abschluss-Informationen, geliefert durch den eingangsseitigen Chip, in Ab-
hängigkeit von verzögerten Anforderungs-Transaktionen, erzeugt auf dem sekundären Bus 32. Für eine ver-
zögerte Lese-Anforderung enthalten die entsprechenden Abschluss-Informationen die Lese-Daten, angefor-
dert durch die initiierende Vorrichtung, und den Lese-Status (d. h. eine Indikation darüber, ob ein Paritäts-Feh-
ler auf dem Target-Abort aufgetreten ist). Die verzögerten Abschluss-Informationen, zurückgeführt für eine ver-
zögerte Schreib-Transaktion, sind dieselben wie diejenigen, zurückgeführt für eine verzögerte Lese-Anforde-
rung, mit der Ausnahme, dass keine Daten für verzögerte Schreibvorgänge zurückgeführt sind. Da I/O- und
config-Lese-Schreibvorgänge nur auf dem ausgangsseitigen Bus auftreten, wird nur die eingangsseitige DCQ
verzögerte Abschluss-Informationen entsprechend zu einer von diesen Transaktionen enthalten. Die DCQ 144
besitzt acht Abschluss-Puffer, wobei jeder davon bis zu acht Cache-Linien bzw. Zeilen an Abschluss-Informa-
tionen für eine einzelne, verzögerte Anforderung halten kann. Zusätzlich zu den Abschluss-Informationen ent-
hält jeder Abschluss-Puffer auch eine Kopie der verzögerten Anforderung, die die Informationen erzeugte. Für
verzögerte Lese-Transaktionen kann eine Daten-„Folge" zwischen dem primären Bus 24 und dem sekundären
Bus 32 eingerichtet werden, wenn die anfordernde Vorrichtung damit beginnt, die angeforderten Daten aufzu-
suchen, bevor die Target-Vorrichtung damit stoppt, sie zu der DCQ 144 zu liefern. Unter bestimmten Umstän-
den wird die DCQ 144 automatisch zusätzliche Daten erneut aufsuchen, oder „vorababrufen" („prefetch"),
wenn eine anfordernde Vorrichtung alle die angeforderten Daten von dem entsprechenden Puffer in der DCQ
144 aufsucht. Sowohl ein Streaming als auch ein automatisches Vorababrufen (prefetching) werden in weite-
rem Detail nachfolgend diskutiert.
[0121] Eine Warteschlangen-zu-PCI-Schnittstelle (Queue-to-PCI Interface – QPIF) 148 verwaltet Transaktio-
nen, die von den Warteschlangen 140, 142 und 144 zu dem PCI-Bus 32 und von dem PCI-Bus 32 zu der DCQ
144 und zu dem eingangsseitigen Chip über die Kabel-Schnittstelle 130 fließen. Die QPIF 148 tritt in einen
„Master" Mode ein, um gepostete Speicher-Schreib- und verzögerte Anforderungs-Transaktionen von der
PMWQ 140 und der DRQ 142 auf dem sekundären Bus laufen zu lassen. Für sowohl gepostete Spei-
cher-Schreib- als auch verzögerte Lese-Transaktionen kann die QPIF 148 eine Transaktion „unterstützen", die
weniger als eine Cache-Zeile an Daten einsetzt (d. h. eine Speicher-Schreib-(Memory Write – MW) oder eine
Speicher-Lese-(Memory Read – MR) Transaktion), gegenüber einersolchen, die eine oder mehrere Cache-Zei-
7/215

DE 697 21 381 T2 2004.01.15
len (d. h. eine Speicher-Schreib- und Ungültigkeits-(MWI)-Transaktion oder eine Speicher-Lese-Zeile (MRL)
oder eine Speicher-Lese-Mehrfach-(MRM) Transaktion erfordert, falls bestimmte Zustände erfüllt werden. Die
QPIF 148 kann auch eine Lese-Transaktion, die eine Einzel-Cache-Zeile von Daten einsetzt (d. h. eine MRL
Transaktion), in eine von mehreren Cache-Zeilen an Daten (d. h. eine MRM-Transaktion) umwandeln. Die
QPIF 148 kann auch eine MRL- oder MRM-Transaktion „korrigieren", die in der Mitte einer Cache-Zeile be-
ginnt, und zwar durch Lesen der gesamten Cache-Zeile und dann aussondern des nicht angeforderten Teils
der Daten. Eine Transaktion-Unterstützung und eine Lese-Korrektur, wobei beide davon in weiterem Detail
nachfolgend beschrieben sind, verbessern eine Systemeffektivität durch Verringern der Zeit, die dazu erforder-
lich ist, Daten von einer Speichervorrichtung aufzusuchen.
[0122] Die QPIF 148 gibt einen „Slave" Code ein, um Daten von der DCQ 144 zu einer anfordernden PCI-Vor-
richtung zu liefern oder Transaktionen von dem PCI-Bus 32 zu der DCQ 144 und zu dem eingangsseitigen Chip
über das Kabel zu schicken. Wenn die QPIF 148 eine gepostete Schreib-Transaktion von dem Bus 32 emp-
fängt, führt sie die Transaktion weiter zu dem eingangsseitigen Chip, falls eine entsprechende Eine einer Grup-
pe von Transaktionszählern 159 anzeigt, dass die PMWQ in dem anderen Brücken-Chip nicht voll ist, wie dies
nachfolgend diskutiert ist. Wenn die QPIF 148 eine verzögerte Anforderung aufnimmt, führt sie zuerst die An-
forderung zu der DCQ 144 weiter, um zu bestimmen, ob die Transaktion bereits in der DCQ platziert worden
ist, und, falls dies der Fall ist, ob die entsprechenden, verzögerten Abschluss-Informationen zu der DCQ 144
zurückgeführt worden sind. Falls die verzögerten Abschluss-Informationen in der DCQ vorhanden sind, wer-
den die Informationen zu der anfordernden Vorrichtung geführt und die Transaktion wird beendet. Falls die An-
forderung bereits in eine Warteschlange gestellt ist, allerdings die Verzögerungs-Abschirmungs-Informationen
nicht zurückgeführt worden sind, wird die anfordernde Vorrichtung erneut versucht und die Transaktion wird
auf dem PCI-Bus 32 beendet. Falls die Transaktion noch nicht in die Warteschlange gestellt ist, reserviert die
DCQ 144 einen Abschluss-Puffer für die Transaktion und die QPIF 148 führt die Transaktion zu dem eingangs-
seitigen Chip über die Kabel-Schnittstelle 130 weiter, solange wie der entsprechende Transaktionszähler 149
anzeigt, dass der andere Brückenchip nicht voll ist.
[0123] Falls die DCQ 144 bestimmt, dass einer deren Pufferdaten enthält, vorgesehen für eine anfordernde
Vorrichtung, allerdings unterschiedlich als die Daten, die in der momentanen Transaktion angefordert sind,
kann der Puffer geleert werden, um zu verhindern, dass der anfordernde Master überholte Daten empfängt.
Der Puffer wird dann geleert, wenn er Prefetch-Daten enthält, (d. h. Daten, die in dem Puffer verbleiben, nach-
dem die anfordernde Vorrichtung einige der Daten aufgesucht hat, oder Daten, die nicht spezifisch durch die
Vorrichtung angefordert wurden), allerdings wird er nicht gelöscht, wenn er Abschluss-Daten enthält (d.h. spe-
zifisch angefordert durch eine Vorrichtung, die bis jetzt noch nicht zurückgekehrt ist, um sie zu empfangen).
Falls der Puffer-Abschluss-Daten enthält und die anfordernde Vorrichtung eine Anforderung ausgegeben hat,
die nicht den Puffer „trifft" („hit"), versieht die DCQ 144 die Vorrichtung mit einem Zeichen als eine „Multi-Threa-
ded" Vorrichtung (d. h. eine solche, die in der Lage ist, mehr als eine Transaktion zu einem Zeitpunkt beizube-
halten), und ordnet einen anderen Abschluss-Puffer der neuen Anforderung zu. Die Puffer-Lösch- und Mehr-
fach-Puffer-Zuordnungs-Schemen werden in weiterem Detail nachfolgend beschrieben.
[0124] Ein Master-Zyklus-Arbitrierer (MCA) 150 in dem Warteschlangen-Block 127 hält Standard-Reihenfol-
gen-Einschränkungen zwischen geposteten Speicher-Schreib-, verzögerten Anforderungs- und verzögerten
Abschluss-Transaktionen bei, wie dies in der PCI Bridge Architecture Specification, Version 2.1, angegeben
ist. Diese Einschränkungen erfordern, dass Bus-Zyklen eine starke Schreib-Reihenfolge beibehalten und dass
Entblockungen (Deadlocks) nicht auftreten. Deshalb bestimmt der MCA 150 die Reihenfolge, in der gepostete
Speicher-Schreib-Transaktionen in der PMWQ 140 und verzögerte Anforderungs-Transaktionen in der DRQ
142 auf dem PCI-Bus 32 laufen. Der MCA 150 steuert auch die Verfügbarkeit von verzögerten Abschluss-In-
formationen, gespeichert in der DCQ 144. Um eine Übereinstimmung mit diesen Regeln sicherzustellen, gibt
der ausgangsseitige MCA 150 jedem geposteten Speicher-Schreib-Zyklus eine Gelegenheit, früher ausgege-
bene, verzögerte Anforderungs-Zyklen im Bypass zu passieren, während sowohl der eingangsseitige als auch
der ausgangsseitige MCA 150 nicht zulassen, dass verzögerte Anforderungs- und verzögerte Abschluss-Zy-
klen früher ausgegebene, gepostete Speicher-Schreib-Zyklen im Bypass passieren. Eine Transaktions-Rei-
henfolge durch den MCA 150 wird in weiterem Detail nachfolgend beschrieben.
[0125] Die Transaktions-Zähler 159 in dem ausgangsseitigem Warteschlangen-Block 127 behalten eine Zäh-
lung der Zahl von Transaktionen, in dem eingangsseitigen Brücken-Chip in die Warteschlange gestellt, bei. Ein
Zähler 160 für ein gepostetes Speicher-Schreiben (Posted Memory Write – PMW) zeigt die Zahl von
PMW-Transaktionen, gehalten in der eingangsseitigen, geposteten Speicher-Schreib-Warteschlange, an. Der
PMW-Zähler 160 wird zu jedem Zeitpunkt erhöht, zu dem eine PMW-Transaktion zu der Kabel-Schnittstelle
130 geschickt wird. Der Zähler 160 wird zu jedem Zeitpunkt erniedrigt, zu dem die QPIF 148 ein Signal von
dem Kabel-Decodieren 146 aufnimmt, anzeigend, dass ein PMW-Zyklus auf dem eingangsseitigen PCI-Bus
24 abgeschlossen worden ist. Wenn die eingangseitige PMWQ die maximale Zahl (vier) der PMW Transakti-
onen in die Warteschlange gestellt hat, gibt der PMW-Zähler 160 ein PMW-Voll-Signal (tc_pmw_full) aus, und
teilt der QPIF 148 mit, zusätzliche PMW-Zyklen von dem PCI-Bus 32 erneut zu versuchen. In ähnlicher Weise
8/215

DE 697 21 381 T2 2004.01.15
zählt ein Zähler 161 für eine verzögerte Anforderung (Delayed Request – DR) die Zahl von DR-Transaktionen,
gehalten in der eingangsseitigen, verzögerten Anforderungs-Warteschlange. Wenn die DRQ die maximale
Zahl (drei) von DR-Transaktionen hält, stellt der DR-Zähler 161 ein DR-Voll-Signal (tc_dr_full) auf, das anzeigt,
dass die QPIF 148 alle darauffolgenden DR-Transaktionen von dem PCI-Bus 32 erneut versuchen muss. Ein
Zähler 162 für einen verzögerten Abschluss (Delayed Completion – DC), zählt die Zahl von verzögerten Ab-
schlüssen, die indem eingangsseitigen Master-Zyklus-Arbitrierer in die Warteschlange gestellt sind. Wenn der
MCA die maximale Zahl (vier) von verzögerten Abschlüssen hält, stellt der DC-Zähler 162 ein DC-Voll-Signal
(tc_dc_full) auf, das verhindert, dass die ausgangsseitige QPIF 148 verzögerte Anforderungs-Transaktionen
auf dem sekundären PCI-Bus 32 laufen lässt. Sobald der Voll-Zustand verschwindet, können Informationen
über den verzögerten Abschluss zu der ausgangsseitigen DCQ geschickt werden.
[0126] Ein PCI-Schnittstellen-Block 152 ist zwischen dem PCI-Bus 32 und dem Warteschlangen-Block 127
vorhanden. Die PCI-Schnittstelle 152 umfasst einen Master-Block 123 und einen Slave-(Target)-Block 121.
Der Slave-Block 121 ermöglicht PCI-Vorrichtungen auf dem Bus 32, auf interne Register von Brücken-Chips
(z. B. Target-Speicher-Bereichs-Register 155 und Konfigurations-Register) zuzugreifen, um Abschluss-Infor-
mationen zu beanspruchen, die in der DCQ 144 gespeichert sind, und um auch Transaktionen zu initiieren, die
durch die QPIF 148 und die Kabel-Schnittstelle 130 zu dem primären Bus geführt werden. Der Slave-Block 121
steuert die Verfügbarkeit des PCI-Busses 32 zu den PCI-Vorrichtungen auf dem Bus 32 durch Erkennen, wann
jede Vorrichtung auf deren REQ#-Zeile zugreift und die REQ#-Signale zu den PCI-Arbitrierer 124 weiterführt.
Wenn der PCI-Arbitrierer 124 eine anfordernde Vorrichtung auswählt, um eine Steuerung des Busses zu emp-
fangen, erteilt der Slave-Block 121 den Bus zu der Vorrichtung durch Aufstellen der GNT# Leitung der Vorrich-
tung. Sobald der Bus 32 zu der anfordernden Vorrichtung erteilt ist und die Vorrichtung deren FRAME# Signal
aufstellt, das den Beginn einer Transaktion anzeigt, verriegelt der Slave-Block 121 die Transaktions-Informati-
onen (z. B. Adresse, Befehl, Daten, Byte-Freigaben, Parität, usw.) in ein Slave-Verriegelungsregister 156. Der
Warteschlangen-Block 127 ist dann in der Lage, die Transaktions-Informationen von dem verriegelnden Re-
gister 156 aufzusuchen und sie zu der DCQ 144 und/oder der Kabel-Schnittstelle 130 zu liefern.
[0127] Transaktionen, unterstützt durch den PCI-Slave-Block 121, sind in der folgenden Tabelle dargestellt.

[0128] Der Master-Block 123 der PCI-Schnittstelle 152 lässt nur einen Zyklus laufen, initiiert durch den War-

PCI-Schnittstellen-Slave-Transaktionen
9/215

DE 697 21 381 T2 2004.01.15
teschlangen-Block 127 (d. h. Transaktionen, gehalten in der PMWQ 140 und der DRQ 142). Der Warteschlan-
gen-Block 127 fordert von dem PCI-Bus durch Senden eines Anforderungs-Signals (q2p_req) zu dem
PCI-Master 123 an, der dann bestimmt, ob ein entsprechendes Anforderungs-Signal (b1req_) zu dem PCI-Ar-
bitrierer 124 aufgestellt ist. Der Master-Block 123 stellt b1req_ auf, falls der Warteschlangen-Block 127 nicht
einen verriegelten Zyklus läuft und der PCI-Bus 32 nicht durch eine PCI-Vorrichtung verriegelt ist. Wenn der
PCI-Arbitrierer 124 den Warteschlangen-Block 127 auswählt, schickt der Master-Block 123 ein Bestäti-
gungs-Signal (p2q_ack), um den Warteschlangen-Block 127 wissen zu lassen, das er eine Kontrolle des Bus-
ses 32 inne hat. Falls der PCI-Arbitrierer 124 keine offenen Anforderungen von anderen Vorrichtungen auf dem
Bus 32 vorliegen hat, schickt der Master-Block 123 automatisch das p2q_ack Erteilungs-Signal zu dem War-
teschlangen-Block 127, sogar dann, wenn der Warteschlangen-Block 127 nicht das q2p_req Signal aufgestellt
hat. Sobald wie der Warteschlangen-Block 127 eine Arbitrierung erhält (d. h. der Arbitrierer 124 stellt das
b1gnt_ Signal auf) und sein q2p_ frame Signal aufstellt, um den Beginn einer Transaktion anzuzeigen, verrie-
gelt der PCI-Master 123 Informationen über abgehende Transaktionen (d. h. Adresse, Befehl, Daten,
Byte-Freigaben, Parität, usw.) in ein Master-Verriegelungs-Register 158 in der PCI-Schnittstelle 152. Die
Transaktions-Informationen werden dann verwendet, um die Transaktion auf dem PCI-Bus 32 abzuschließen.
[0129] Transaktionen, unterstützt durch den Master-Block 123, sind in der folgenden Tabelle dargestellt.

[0130] Allgemein arbeitet der Master-Block 123 als ein Standard-PCI-Master. Allerdings wird, im Gegensatz
zu Standard-PCI-Brücken, der Master-Block nicht eine MRL, MRM oder MWI Transaktion beenden, bis eine
Cache-Zeilen-Grenze erreicht ist, gerade nachdem der Master-Latenz-Zeitgeber (Master Latency Timer –
MLT) abläuft. Auch stellt der Master-Block 123 nicht „Initiator Ready" (IRDY) Warte-Zustände auf. Der Mas-
ter-Block 123 läuft einen verriegelten Zyklus auf dem PCI-Bus 32, falls der Warteschlangen-Block 127 sein
„Verriegelungs" Signal (q2p_lock) aufstellt und seine Verriegelung auf dem Bus 32 freigibt, wenn der Warte-
schlangen-Block 127 sein „Entriegelungs" Signal (q2p_unlock) aufstellt.
[0131] Wie auch Fig. 57 zeigt, enthält die PCI-Schnittstelle 152 eine Puffer-Entleerungs-Logik 154, die be-
stimmt, wann einer oder alle der DCQ Abschluss-Puffer durch den Warteschlangen-Block 127 geleert werden
sollten. Die PCI-Slave 121 erzeugt zwei Signale, die durch den Warteschlangen-Block 127 verwendet werden,
um die Abschluss-Puffer zu leeren: ein Flush-Signal (p2q_flush), das anzeigt, wann ein Puffer geleert werden
sollte, und ein Schlitz- bzw. Steckplatzauswahl-Signal (p2q_slot[2:0]), das anzeigt, welche PCI-Vorrichtung (d.
h. welcher Einsteckplatz an dem PCI-Bus) hinsichtlich seiner Daten geleert werden sollte. Die folgende Tabelle
stellt die Beziehung zwischen p2q_slot[2:0], und der PCI-Schlitz-Zahl dar.

PCI-Schnittstellen-Master-Transaktionen
10/215

DE 697 21 381 T2 2004.01.15
[0132] Wenn p2q_flush aufgestellt ist, wird der Warteschlangen-Block 127 entweder alle Abschluss-Puffer in
der DCQ 144 entleeren, falls p2q_slot[2:0] gleich zu „000" ist, oder den entsprechenden Einen der acht Ab-
schluss-Puffer, falls p2q_slot[2:0] irgendeinen anderen Wert hat. Der Warteschlangen-Block 127 behält ein
Protokoll davon bei, welche Abschluss-Puffer, falls welche vorhanden sind, jedem PCI-Steckplatz zu irgendei-
nem gegebenen Zeitpunkt entsprechen.
[0133] Das p2q_flush Signal wird an der ansteigenden Flanke des ersten PCI-Takt-(CLK)-Zyklus aufgestellt,
nachdem ein config Schreib-(WR-CFG)-Zyklus auftritt, oder nachdem ein I/O-Schreib-(iowr)-Zyklus auftritt,
oder ein Speicher-Schreib-(memwr)-Zyklus ein ausgangsseitiges Target (hit_tmem) während eines Be-
fehl-Prüf-Zustands (cmd_chk_st) trifft. Gates 2014, 2016, 2018 und 2020 und ein Flip-Flop 2022 sind so ange-
ordnet, um p2q_flush auf diese Art und Weise zu erzeugen.
[0134] In dem eingangsseitigen Brücken-Chip (d.h. wenn das Upstream_chip_i Signal aufgestellt ist) besitzt
p2q_slot[2:0] immer einen Wert von „001", da die CPU der einzige Master auf dem primären PCI-Bus ist. In
dem ausgangsseitigen Chip hängt der Wert von p2q_slot davon ab, ob der Zyklus, der zu einem Flush-Zustand
(Flush Condition) führt, ein Zyklus von dem sekundären Bus 32 zu dem Warteschlangen-Block 127 ist (d. h.
falls p2q_qcyc aufgestellt ist). Falls das p2q_qcyc Signal aufgestellt ist, nimmt p2q_slot[2:0] den Wert des
reg_slot[2:0] Signals an, erzeugt durch die PCI-Slave 121. Das reg_slot[2:0] Signal zeigt an, welcher der sie-
ben Vorrichtungen auf dem sekundären PCI-Bus 32 eine Kontrolle des Busses 32 erteilt worden ist. Die
PCI-Slave 121 erzeugt das reg_slot[2:0] Signal durch Verriegeln des Werts der GNT# Leitung für jeden der
sieben Schlitze bzw. Steckplätze auf dem Bus 32, um ein verriegeltes Erteilungs-Signal mit sieben Bits
(latched_gnt_[7:1]; die achte Erteilungs-Leitung, die zu dem Warteschlangen-Block gehört, wird ignoriert) zu
bilden, und durch Codieren von latched_gnt[7:1] entsprechend einer Durchsichtstabelle 2006, die nachfolgend
angegeben ist.
[0135]

[0136] Falls der Zyklus, der zu dem Entleeren führt, nicht ein Sekundär-PCI-zu-Warteschlangen-Block-Zyklus
ist, muss er eine I/O-Lesung oder eine config-Lesung zu dem Sollspeicherbereich von einem der Steckschlitze
an dem sekundären Bus 32 sein. Wenn der Zyklus eine I/O-Lesung oder eine config-Lesung ist (d. h. !iowr AND
!wr_cfg), nimmt p2q_slot[2:0] den Wert des PCI-Schlitzes an, dessen Speicherbereich getroffen worden ist
(mrange_slot[2:0]). Ansonsten ist der Zyklus ein I/O-Schreiben oder ein config-Schreiben und p2q_slot[2:0]

Erzeugung von p2q_slot[2:0]

latched_gnt[7:1] reg_slot[2:0]
1111111 000
1111110 001
1111101 010
1111011 011
1110111 100
1101111 101
1011111 110
0111111 111

Erzeugung von req_slot[2:0]
11/215

DE 697 21 381 T2 2004.01.15
wird gleich zu „000", so dass alle Abschluss-Puffer geleert werden. Gates 2008 und 2010 und Multiplexer 2002
und 2004 sind so angeordnet, um p2q flush[2:0] auf diese Art und Weise zu erzeugen.

KABEL-DECODIERER

[0137] Wie Fig. 58 zeigt, empfängt der Kabel-Decodierer 146 Transaktionen von der Kabel-Schnittstelle und
wählt die geeignete Warteschlange so aus, um jede Transaktion zu empfangen. Wenn sich der Kabeldecodie-
rer in der Daten-Phase befindet (d.h. wenn data_phase oder next_data_phase vorliegt, wird ein asynchrones
Signal, das den Wert von data_phase einstellt, an dem nächsten CLK-Zyklus aufgestellt ist), sieht der Ka-
bel-Decodierer 146 an dem Befehl-Code (cd_cmd[3:0]), geschickt über das Kabel, nach, um zu bestimmen,
welche Warteschlange die Transaktion empfangen sollte. Wie in der Tabelle nachfolgend dargestellt ist, ist,
wenn cd_cmd[3:0] einen Wert von „1001" hat, die Transaktion ein verzögerter Abschluss, so dass der Ka-
bel-Decodierer ein cd_dcq_select Signal aufstellt, das der dcq mitteilt, die Transaktion zu beanspruchen. Wenn
die drei LSB des Befehl-Code-Signals (cd_cmd[2:0]) „111" sind, ist die Transaktion ein gepostetes Spei-
cher-Schreiben, so dass der Kabel-Decodierer ein cd_pmwq_select Signal erzeugt, um die pmwq über die an-
kommende Transaktion zu warnen. Wenn die Transaktion weder ein gepostetes Speicher-Schreiben noch ein
verzögerter Abschluss ist und der Befehl-Code nicht ein Streaming-Signal darstellt, stellt der Kabel-Decodierer
ein cd_drq_select Signal auf, das der DRQ mitteilt, die Transaktion zu beanspruchen. Gates 2024, 2026, 2028
und 2030 sind so konfiguriert, um die cd_dcq_select, cd_pmwq_select, und cd_drg_select Signale auf diese
Art und Weise zu erzeugen.
[0138] Die nachfolgende Tabelle stellt die Befehl-Code mit vier Bits, zugeordnet zu jedem Typ einer Transak-
tion, dar.
[0139]

[0140] Wenn der ausgangsseitige Brücken-Chip eine Datenfolge zwischen dem primären Bus und einem se-
kundären Bus-Master eingerichtet hat, empfängt der eingangsseitige Kabel-Decodierer einen Befehl-Code von
„1000". Dieser Code stellt ein Streaming-Signal dar, erzeugt durch den ausgangsseitigen Chip, um den ein-
gangsseitigen Chip zu informieren, dass eine Datenfolge eingerichtet worden ist. Wenn der Kabeldecodierer
diesen Befehl-Code empfängt, stellt er ein cd_stream Signal auf, das der QPIF in der eingangsseitigen Vor-
richtung mitteilt, die Transaktion fortzuführen. Der Kabel-Decodieren erzeugt auch ein cd_stream_next_data
Signal, das den eingangsseitigen Chip instruiert, einen anderen Teil von Daten zu dem sekundären Bus zu lie-
fern. Das cd_stream-next_data Signal wird dann aufgestellt, wenn ein cd_stream Signal aufgestellt ist, wobei
sich die Transaktion in der Daten-Phase befindet (d. h. data_phase ist aufgestellt), und ein next_data Signal
ist von dem eingangsseitigen Chip über die Kabel-Schnittstelle empfangen worden (das next_data Signal er-
scheint auf einer der Leitungen des c2q_buff[3:0] Signals, das, wenn keine Datenfolge auftritt, dem Warte-
schlangen-Block mitteilt, welcher ausgangsseitige DCQ-Puffer der momentanen Transaktion zugeordnet ist).
Das cd_stream_next_data Signal wird zurückgenommen, wenn entweder das cd_stream Signal zurückgenom-
men ist oder wenn eine neue Anforderung von der Kabel-Schnittstelle empfangen ist (d. h. c2q_new_req ist
aufgestellt). Gates 2032 und 2034 sind so konfiguriert, um die cd_stream und die cd_stream_next_data Sig-
nale auf diese Art und Weise zu erzeugen.

GESPEICHERTE-SCHREIB-WARTESCHLANGE

[0141] Wie Fig. 59 zeigt, ist die gepostete Speicher-Schreib-Warteschlange (PMWQ) 140 ein Speicherele-
ment, das alle die Befehl-Informationen enthält, die benötigt werden, um gepostete Schreib-Transaktionen auf

Transaktions-Typ Befehl-Code
I/O-Lesen 0010
I/O-Schreiben 0011
Config-Lesen 1010
Config-Schreiben 1011
Speicher-Lesen 0110
MRL 1110
MRM 1100
Speicher-Schreiben 0111
MWI 1111
verzögerter Abschluss 1001
Datenfolge eingereichtet 1000

Transaktions-Befehl-Code
12/215

DE 697 21 381 T2 2004.01.15
dem Target-Bus auszuführen. Die PMWQ umfasst einen Zeichen- bzw. Tag-Speicher-Bereich 2036, der Infor-
mationen hält, die jede Transaktion identifizieren, einen Daten-RAM 2038, der die Schreib-Daten hält, die jeder
Transaktion in der PMWQ zugeordnet sind, und verschiedene Steuerblöcke, um den Fluß von Transaktionen
in die PMWQ hinein und von dieser heraus zu verwalten. Für jede Transaktion in der PMWQ behält der Zei-
chen-Speicher 2036 Informationen bei, wie beispielsweise über die Adresse, zu der geschrieben werden soll,
den PCI-Befehl-Code (MW oder MWI), ein Adressen-Paritäts-Bit, und „einen verriegelten Zyklus" und einen
„Dual-Adressen-Zyklus" Indikations-Bits, wie in der folgenden Tabelle dargestellt ist. Der Zeichenspeicher
2036 speichert auch einen Hinweiszeiger zu der Daten-RAM-Stelle der Daten entsprechend zu jeder der
Transaktionen in der PMWQ.

[0142] Da die PCI Spec. 2.1 fordert, dass gepostete Speicher-Schreib-Transaktionen in der Reihenfolge aus-
geführt werden, in der sie empfangen werden, ist der Zeichen- bzw. Tag-Speicher 2036 eine zirkulare
FIFO-Vorrichtung. Die PMWQ, und deshalb der Zeichen-Speicher 2036, können bis zu vier gepostete Spei-
cher-Schreib-Transaktionen simultan handhaben.
[0143] Der Daten-RAM 2038, umfasst vier Daten-Puffer 2042, 2044, 2046 und 2048, einen für jede Transak-
tion in der PMWQ. Jeder Puffer kann bis zu acht Cache-Zeilen, oder 256 Bytes, an Daten (acht Worte pro Ca-
che-Zeile) speichern. Für jede Cache-Zeile in einem Puffer speichert der Puffer acht Daten-Paritäts-Bits 2040
(eins pro dword) und zweiunddreißig Freigabe-Bits 2050 (eines pro Byte).
[0144] Ein Kabel-Schnittstellen-Block 2060 empfängt jede Transaktion und die entsprechenden Daten von
dem Kabel-Codierer und platziert die Transaktion in dem Zeichen-Speicher 2036. Ein Warteschlangen-Schnitt-
stellen-Block 2053 empfängt die Daten von dem Kabel-Schnittstellen-Block 2060 und platziert sie in der geeig-
neten Stelle in dem Daten-RAM 2038. Die Warteschlangen-Schnittstelle 2053 empfängt auch Daten von dem
Daten-RAM 2038 und liefert sie zu der QPIF, wenn die QPIF die entsprechende Transaktion auf dem PCI-Bus
laufen lässt. Ein Eingangs-Hinweis-Zeiger Logik-Block 2054 erzeugt vier Eingangs-Hinweis-Zeiger, einen für
jeden Puffer, die der Warteschlangen-Schnittstelle 2053 mitteilen, wo das nächste Wort von Daten zu platzie-
ren ist. Ein Gültigkeits(Ausgangs)-Hinweiszeiger-Block 2056 erzeugt vier Ausgangs-Hinweiszeiger, einen für
jeden Puffer, die die Position des nächsten Worts, das herangezogen werden soll, anzeigen.
[0145] Wie Fig. 60 zeigt, hält ein Gültigkeits-Flag-Logik-Block 2052 ein Acht-Bit-Gültigkeits-Zeilen-Register
2062 für jeden der vier Puffer in dem Daten-RAM 2038 aufrecht. Das Gültigkeits-Zeilen-Register 2062 zeigt
an, welche der acht Cache-Zeilen in jedem Puffer gültige Daten enthält. Wenn das letzte Wort in einer Ca-
che-Zeile mit Daten gefüllt worden ist (d.h. valid_pointer[2:0] entspricht „111" und cd_next-data wird aufgestellt,
was anzeigt, dass das Wort gefüllt worden ist), wird das entsprechende Bit in einem Acht-Bit-Kabel-Gültig-
keits-Signal (d. h. q0_cable_valid[7:0], q1_cable_valid[7:0], usw.) eingestellt. Das Bit, das eingestellt werden
soll, wird durch die drei signifikantesten Bits des Gültigkeits-Hinweiszeigers (valid_pointer[5:3]) bestimmt, die
anzeigen, dass die Cache-Zeile gefüllt ist. Das entsprechende Bit in dem Kabel-Gültigkeits-Signal wird auch
eingestellt, wenn ein Einsteckplatz-Gültigkeitssignal (validate_slot) von dem Kabel-Decodierer an dem Ende
einer Transaktion empfangen ist. Das Kabel-Gültigkeits-Signal wird in das Gültigkeits-Zeilen-Register 2062
entsprechend dem ausgewählten Daten-Puffer an der ansteigenden Flanke des ersten PCI-Takt-Zyklus (CLK)

Inhalte von PMWQ
13/215

DE 697 21 381 T2 2004.01.15
verriegelt, nachdem das letzte Wort gefüllt ist, oder das valid_slot Signal empfangen ist. Ansonsten hält das
Gültigkeits-Zeilen-Register seinen momentanen Wert bei. Die Bits in dem Gültigkeits-Zeilen-Register 2062
werden dann gelöscht, wenn die entsprechenden Bits eines Acht-Bit-Ungültigkeits-Signals (d.h.
q0_invalid[7:0], q1_invalid[7:0], usw.) aufgestellt sind.
[0146] Der Gültigkeits-Flag-Logik-Block 2052 erzeugt ein pmwq_valid[3:0] Signal, das anzeigt, welcher, falls
irgendeiner vorhanden ist, der vier Daten-Puffer mindestens eine gültige Zeile an Daten enthält. Der Gültig-
keits-Block 2052 erzeugt auch ein pmwq_valid_lines[7:0] Signal, das anzeigt, welche der acht Cache-Zeilen
eines ausgewählten Daten-Puffers gültig sind. Ein Warteschlangen-Auswahl-Signal von dem QPIF
(p2pif_queue_select[1:0]) wird dazu verwendet, auszuwählen, welches gültige Zeilen-Register 2062 eines Da-
ten-Puffers verwendet wird, um das pmwq_valid_lines[7:0] Signal zu erzeugen. Wenn der Warteschlan-
gen-Block eine Steuerung des Busses erhält, um einen geposteten Speicher-Schreib-Zyklus laufen zu lassen,
und zwar von einem ausgewählten Daten-Puffer, überträgt der Warteschlangen-Block alle Daten in jeder Zeile,
deren entsprechendes Bit in dem pewg_valid_lines[7:0] Signal eingestellt ist. Gates 2064, 2066, 2068, 2070
und 2072 und ein Flip-Flop 2074 sind so angeordnet, um die Werte in dem Gültigkeits-Zeilen-Register 2062
für den ersten Daten-Puffer (q0_valid[7:0]) einzustellen. Eine ähnliche Schaltung bestimmt die Inhalte der Gül-
tigkeits-Register für die anderen drei Daten-Puffer. Ein Multiplexer 2076 wählt den Wert des
pmwg_valid_lines[7:0] Signals aus.
[0147] Wie nun Fig. 61 zeigt, hält ein Voll-Zeilen-Logik-Block 2058 ein Acht-Bit-Voll-Zeilen-Register 2078 für
jeden der vier Daten-Puffer aufrecht. Die Inhalte jedes Voll-Zeilen-Registers 2078 zeigen an, welche der acht
Cache-Zeilen in dem entsprechenden Daten-Puffer voll sind. Die Bits in jedem Voll-Zeilen-Register 2078 wer-
den durch ein asynchrones next_full_line_bit Signal, erzeugt durch die Voll-Zeilen-Zustand-Maschine 2080,
was nachfolgend beschrieben ist, eingestellt. Wenn ein Warteschlangen-Auswahl-Signal von der QPIF
(select_nex_queue[3:1]) einen der Daten-Puffer auswählt und das next_full_line_bit Signal aufgestellt ist, wird
das Bit in dem Voll-Zeilen-Register 2078 entsprechend zu der Cache-Zeile, angezeigt durch die drei signifikan-
testen Bits, des Gültigkeits-Hinweiszeigers (valid_pointer[5:3]) eingestellt. Ein 3x8 Decodierer 2082 wandelt
den Drei-Bit-Gültigkeits-Hinweiszeiger in ein Acht-Bit-Signal um, das bestimmt, welches Bit einzustellen ist. Ein
Acht-Bit-Voll-Zeilen-Signal (q0_full_line) wird für jeden Daten-Puffer von den Inhalten des entsprechenden
Voll-Zeilen-Registers 2078 erzeugt. Das Voll-Zeilen-Signal zeigt an, welche Zeilen in dem entsprechenden Da-
ten-Puffer voll sind. Der Voll-Zeilen-Logik-Block 2058 erzeugt auch ein pmwg_full_line[7:0] Signal, das anzeigt,
welche Cache-Zeilen eines ausgewählten Daten-Puffers voll sind. Der Multiplexer 2084 und das
q2pif_queue_select[1:0] Signal werden dazu verwendet, das pmwg_full_line[7:0] Signal zu erzeugen.
[0148] Wie auch Fig. 62 zeigt, wird die Voll-Zeilen-Zustand-Maschine 2080 in einen IDLE Zustand 2086 bei
einem Reset platziert. In dem IDLE Zustand 2086 wird das next_full_line_bit auf Null gesetzt. Wenn eine Trans-
aktion in die PMWQ platziert wird, tritt die Transaktion in zwei Phasen auf, eine Adressen-Phase und eine Da-
ten-Phase. Wenn die Daten-Phase beginnt (d. h. ein clock_second_phase Signal wird aufgestellt) und der Gül-
tigkeits-Hinweiszeiger zu dem ersten Wort in der Cache-Zeile hinweist (valid_pointer[2:0] = „000"), geht die Zu-
stand-Maschine 2080 zu einem DATA Zustand 2088 über. In dem Datenzustand wird das next_full_line_bit Si-
gnal nur dann aufgestellt, wenn der Gültigkeits-Hinweiszeiger auf das letzte Wort in der Cache-Zeile hinweist
(valid_pointer[2:0] = "111"), wird das cd_next_data Signal durch den Kabel-Decodierer aufgestellt (anzeigend,
dass das letzte Wort mit Daten gefüllt wurde), und das Byte-Freigabe-Signal von dem Kabel-Decodierer
(cd_byte_en[3:0]) gleicht „0000". Die Zustand-Maschine geht auch zurück zu dem IDLE Zustand 2086, wenn
diese Zustände auftreten. Falls diese Zustände nicht auftreten, bevor die Transaktion endet (d.h. cd_complete
wird aufgestellt), bleibt das next_full_line_bit Signal nicht aufgestellt und die Zustand-Maschine 2080 geht zu-
rück zu dem IDLE Zustand 2086. Die Zustand-Maschine 2080 geht auch zu dem IDLE Zustand 2086 ohne Auf-
stellen des next_full_line_bit Signals über, wenn das cd_byte_en[3:0] Signal einen Wert, einen anderen als
„0000", annimmt.
[0149] Wie wiederum Fig. 59 und auch Fig. 63 zeigen, muss die PMWQ normalerweise eine Transaktion von
dem Kabel-Decodierer beenden, wenn der Daten-Puffer, der die entsprechenden Daten aufnimmt, voll ist. Al-
lerdings lässt, wenn der Kabel-Decodierer fortfährt, Daten zu verschicken, nachdem der Puffer voll ist, ein
Überlauf-Logik-Block 2090 zu, dass die Daten in den nächsten, leeren Puffer überlaufen. Der Überlauf-Lo-
gik-Block 2090 führt ein Überlauf-Register 2092, das anzeigt, welche, falls irgendwelche vorhanden sind, der
vier Daten-Puffer als Überlauf-Puffer verwendet werden. Die Inhalte des Überlauf-Registers 2092 werden dazu
verwendet, ein Vier-Bit-Überlauf-Signal (pmwq_overflow[3:0]) zu erzeugen. Wenn sich die Transaktion in der
Daten-Phase befindet (d.h. data_phase ist aufgestellt), erreicht der Gültigkeits-Hinweiszeiger das letzte Wort
eines Daten-Puffers (d. h. valid_pointer[5:0] = „111111"), der Kabel-Decodieren zeigt an, dass mehr Daten an-
kommen (d. h. cd_next_data wird aufgestellt), und der Kabel-Decodierer hat nicht angezeigt, dass die Trans-
aktion abgeschlossen ist (d. h. cd_complete ist nicht aufgestellt), das select_next_queue[3:0] Signal, das auf
den am kürzesten vorher gefüllten Daten-Puffer hinweist, wird dazu verwendet, das Überlauf-Register-Bit ent-
sprechend dem nächsten Daten-Puffer einzustellen. Falls die Bedingungen nicht erfüllt sind, wird das Über-
lauf-Bit gelöscht. Gates 2094 und 2095 werden in Verbindung mit dem select_next_queue[3:0] Signal verwen-
14/215

DE 697 21 381 T2 2004.01.15
det, um die geeigneten Überlauf-Register-Bits einzustellen und zu löschen, wenn diese Zustände erfüllt sind.
[0150] Eine einzelne Transaktion kann fortführen, um in zusätzliche Puffer überzulaufen, bis der letzte, nicht
benutzte Puffer voll ist. Falls mehr als ein Puffer als ein Überlauf-Puffer verwendet wird, werden Mehr-
fach-Überlauf-Register-Bits eingestellt. Aufeinanderfolgende, eingestellte Bits in dem Überlauf-Register zei-
gen an, dass eine einzelne Transaktion in mehr als einen Puffer übergelaufen ist. Die Überlauf-Bits werden
entweder eingestellt oder gelöscht, wenn die gepostete Schreib-Transaktion in die PMWQ hinein platziert ist.
Auch kann, falls die QPIF beginnt, die PMW-Transaktion auf dem Target-Bus laufen zu lassen und den origi-
nalen Puffer zu entleeren, während sich die Daten noch dabei befinden, in die PMWQ einzutreten, wobei der
Original-Puffer wieder verwendet werden, um die Überlauf-Transaktion fortzuführen. Der Überlauf kann fort-
führen, bis alle verfügbaren Puffer voll sind.

WARTESCHLANGE FÜR VERZÖGERTE ANFORDERUNG

[0151] Wie Fig. 64 zeigt, speichert die DRQ 142 alle die Informationen, die dazu benötigt werden, eine ver-
zögerte Lese-Anforderung- (Delayed Read Request – DRR) und eine verzögerte Schreib-Anforderung- (De-
layed Write Request – DRW) Transaktionen auf dem Target-Bus abzuschließen. Die DRQ umfasst einen War-
teschlangenspeicher 2100, der Informationen hält, wie beispielsweise die Adresse, die davon gelesen oder
dazu geschrieben werden soll, den PCI-Befehl-Code, Byte-Freigaben, Adressen- und Daten-Paritäts-Bits, In-
dikations-Bits über einen „verriegelten Zyklus" und einen „Dual-Adressen-Zyklus", und die Puffer-Zahl des Puf-
fers für den verzögerten Abschluss, reserviert in dem initiierenden Brücken-Chip für die Abschluss-Informatio-
nen. Der Warteschlangen-Speicher 2100 hält auch bis zu zweiunddreißig Bits (ein Wort) an Daten, die zu dem
Target-Bus in einem verzögerten Schreib-Zyklus geschrieben werden sollen. Da verzögerte Schreib-Zyklen
niemals mehr als ein Wort an Daten einsetzen, wird kein Daten-RAM in der DRQ benötigt. Die DRQ, und des-
halb der Warteschlangen-Speicher 2100, ist in der Lage, bis zu drei verzögerte Anforderungs-Transaktionen
auf einmal zu halten. Ein Kabel-Schnittstellen-Block 2102 beansprucht verzögerte Anforderungs-Transaktio-
nen von dem Kabel-Decodierer und platziert sie in den Warteschlangen-Speicher 2100. Die folgende Tabelle
zeigt die Informationen, die in dem DRQ-Warteschlangen-Speicher beibehalten werden.

[0152] Wie auch Fig. 65 zeigt, bestimmt ein Gültigkeits-Flag-Logik-Block 2104, wann die DRQ alle die Infor-
mationen empfangen hat, die dazu notwendig sind, die Transaktionen in dem Warteschlangen-Speicher 2100
laufen zu lassen. Wenn einer der DRQ-Schlitze durch ein entsprechendes Schlitz-Auswahl-Signal ausgewählt
ist (d.h. select_zero für den ersten Schlitz, select_one für den zweiten Schlitz und select_two für den dritten
Schlitz) und der Schlitz durch ein validate_slot Signal für gültig erklärt ist, anzeigend, dass der Kabel-Decodie-
rer ein Zuführen der Transaktion zu der DRQ abgeschlossen hat, wird ein Gültigkeits-Signal entsprechend zu

Inhalte von DRQ
15/215

DE 697 21 381 T2 2004.01.15
dem Schlitz (d.h. q0_valid, q1_valid oder q2_valid) an der ansteigenden Flanke des nächsten
PCI-Takt-(CLK)-Zyklus aufgestellt. Falls ein Schlitz nicht ausgewählt ist und durch ein valid_slot Signal für gül-
tig erklärt ist, wird das Gültigkeits-Signal für den Schlitz bzw. den Einsteckplatz wieder zurückgenommen, falls
die QPIF den Schlitz ausgewählt hat, durch Aufstellen eines DRQ-Auswahl-Signals (q2pif_drq_select) und
durch Identifizieren des Schlitzes bzw. des Einsteckplatzes (q2pif_queue_select = Schlitz-Zahl), allerdings die
Transaktion durch Aufstellen eines Zyklus-Aussonderungs-Signals (q2pif_abort_cycle) ausgesondert hat. Das
Gültigkeits-Signal wird auch zurückgenommen, falls die DRQ die Transaktion durch Aufstellen eines Zy-
klus-Abschluss-Signals (z. B. q0_cycle_complete) beendet, während die QPIF auf mehr Daten wartet (d. h.
q2pif_next_data ist aufgestellt). Allerdings wird das Zyklus-Abschluss-Signal ignoriert, falls die QPIF momen-
tan Daten zu dem anderen Brücken-Chip (d.h.
[0153] q2pif_streaming ist aufgestellt) als Datenfolge überträgt. Ansonsten hält, falls das Gültigkeits-Signal
des Schlitzes nicht spezifisch aufgestellt oder an einem Takt-Zyklus zurückgenommen ist, er seinen momen-
tanen Wert bei. Der Gültigkeits-Flag-Logik-Block 2104 erzeugt auch ein DRQ Gültigkeits-Signal
(drq_valid[3:0]), das anzeigt, welcher, falls irgendeiner vorhanden ist, der drei DRQ-Schlitze eine gültige Trans-
aktion enthält, und zwar durch Kombinieren der Gültigkeits-Signale für jeden individuellen Schlitz (d.h.
drq_valid = {0, q2_valid, q1_valid, q0_valid}). Gates 2106, 2108, 2110, 2112 und 2114, Multiplexer 2116 und
2118 und ein Flip-Flop 2120 sind so angeordnet, um die Schlitz-Gültigkeits-Signale und die DRQ-Gültig-
keits-Signale auf diese Art und Weise zu erzeugen.
[0154] Die DRQ umfasst auch Hinweiszeiger-Logik-Blöcke, die Hinweiszeiger zu den Speicher-Stellen beibe-
halten, von denen Daten während verzögerter Lese-Anforderungs-Transaktionen gelesen werden sollen.
Wenn die Adresse, an der die verzögerten Lese-Transaktionen beginnen wird, in den Warteschlangen-Spei-
cher 2100 eingeladen ist, erzeugt ein Gültigkeits-Hinweiszeiger-Logik-Block 2122 einen Sechs-Bit-Gültig-
keits-Hinweiszeiger, der anzeigt, wo die Transaktion enden wird. Falls die Transaktion ein einzelnes Wort um-
fasst (z. B. ein Speicher-Lesen), stellt die Gültigkeits-Hinweiszeiger-Logik 2122 den gültigen Hinweiszeiger
gleich zu der Adresse, eingeladen in den Warteschlangen-Speicher 2100 hinein, auf. Für eine Speicher-Le-
se-Zeilen-Transaktion gibt die Gültigkeits-Hinweiszeiger-Logik 2122 dem gültigen Hinweiszeiger einen Wert
von „000111", was anzeigt, dass der letzte, gültige Teil der Daten ein acht dwords (d. h. eine Cache-Zeile) über
den Startpunkt hinaus ist. Für eine Speicher-Lese-Mehrfach-Transaktion wird der gültige Hinweiszeiger auf
„111111" gesetzt, was anzeigt, dass der letzte, gültige Teil an Daten vierundsechzig dwords (d. h. acht Ca-
che-Zeilen) über den Startpunkt ist. Die Gültigkeits-Hinweiszeiger-Logik 2122 behält einen gültigen Hinweis-
zeiger für jeden Schlitz in der DRQ (valid_pointer_0[5:0], valid_pointer_1[5:0] und valid_pointer_2[5:0]) bei. Die
Stelle des gültigen Hinweiszeigers wird durch die DRQ dann ignoriert, wenn sie ein Streaming-Signal von der
QPIF (q2pif_streaming) empfängt, wie dies in weiterem Detail nachfolgend beschrieben ist.
[0155] Ein Ausgangs-Hinweiszeiger-Logik-Block 2124 behält drei Ausgangs-Hinweiszeiger
(output_pointer_0[5:0], output_pointer_1[5:0] und output_pointer_2[5:0]), einen für jeden Schlitz in der DRQ,
bei, die das nächste Wort an Daten anzeigen, das von dem Speicher gelesen werden soll, und zugeführt zu
dem anderen Brücken-Chip. Der Hinweiszeiger wird dann erhöht, wenn die QPIF anzeigt, dass sie bereit ist,
den nächsten Teil an Daten zu lesen (d.h. sie stellt das q2pif_next_data Signal auf), einmal für jede Wort-Le-
sung. Mit Ausnahme in Streaming-Situationen, wird eine Transaktion beendet (abgeschlossen), wenn der Aus-
gangs-Hinweiszeiger den gültigen Hinweiszeiger erreicht. Wenn eine Transaktion endet, bevor alle Daten ge-
lesen sind (d. h. bevor der Ausgangs-Hinweiszeiger den Eingangs-Hinweiszeiger erreicht), wird die QPIF an
der Stelle, angezeigt durch den Ausgangs-Hinweiszeiger, aufnehmen, wenn die Transaktion wieder beginnt.
Wenn der Ausgangs-Hinweiszeiger erhöht wird, allerdings die Ausgangs-Hinweiszeiger-Logik 2124 ein Step-
back-Signal (q2pif_step_back) empfängt, was anzeigt, dass die Transaktion an dem PCI-Bus beendet wurde,
bevor die QPIF in der Lage war, den letzten Teil von Daten zu lesen, erniedrigt die Ausgangs-Hinweiszeiger-Lo-
gik 2124 den Zähler einmal, so dass der letzte, nicht gelesene Teil der Daten gelesen werden kann, wenn die
Transaktion wieder beginnt. Ein Warteschlangen-Schnittstellen-Block 2126 liefert Transaktions-Informationen
und den gültigen und Ausgangs-Hinweiszeiger zu der QPIF.

WARTESCHLANGE FÜR VERZÖGERTEN ABSCHLUSS

[0156] Wie Fig. 66 zeigt, speichert die DCQ 144 verzögerte Abschluss-Nachrichten, die die Antwort des Tar-
get-Busses auf jede verzögerte Anforderung, ausgegeben zu dem initiierenden Bus hin, enthalten. Verzögerte
Abschluss-Nachrichten entsprechend zu verzögerten Lese-Anforderungen umfassen die angeforderten Da-
ten, während verzögerte Abschluss-Nachrichten, entsprechend zu verzögerten Schreib-Anforderungen, keine
Daten umfassen. Ein Kabel-Schnittstellen-Block 2130 beansprucht verzögerte Abschluss-Nachrichten von
dem Kabel-Decodierer und liefert die verzögerten Abschluss-Informationen zu einem Tag-Speicher 2132. Die
DCQ, und deshalb der Tag-Speicher 2132, ist dazu geeignet, bis zu acht verzögerte Abschluss-Nachrichten
auf einmal zu speichern. Der Tag-Speicher 2132 speichert Informationen, wie beispielsweise den PCI-Befehl
und die Adresse, enthalten in der originalen Anforderung, zu der verzögerten Abschluss-Nachricht führend,
16/215

DE 697 21 381 T2 2004.01.15
Byte-Freigabe-Bits, Adressen- und Daten-Paritäts-Bits und Bits für einen „verriegelten Zyklus" und einen „Du-
al-Adressen-Zyklus". Für verzögerte Schreib-Transaktionen, die immer nur ein einzelnes Wort an Daten ein-
setzen, speichert der Tag-Speicher 2132 eine Kopie der geschriebenen Daten. Jeder der acht Schlitze bzw.
Steckplätze in dem Tag-Speicher 2132 umfasst einen implizierten Hinweiszeiger zu einem von acht entspre-
chenden Daten-Puffern in einem DCQ-Daten-RAM 2134. Für verzögerte Lese-Transaktionen werden die zu-
rückgeführten Daten in einem entsprechenden Daten-Puffer 2135a–h in dem Daten-RAM 2134 gespeichert.
Die folgende Tabelle stellt die Informationen dar, gespeichert in dem Tag-Speicher 2132 für jede Transaktion,
gehalten in der DCQ.

[0157] Jeder der acht Daten-Puffer in dem DCQ-Daten-RAM 2134 kann bis zu acht Cache-Zeilen (256 Bytes)
an verzögerten Abschlussdaten speichern. Deshalb sind die Puffer groß genug, um alle Abschlussdaten für
sogar die größten, verzögerten Anforderungs-Transaktionen (Speicher-Lese-Mehrfach-Transaktion) zu spei-
chern. Allerdings kann die Kapazität jedes Daten-Puffers auf vier Cache-Zeilen durch Einstellen eines Konfi-
gurations-Bits (cfg2q_eight_line_) in den Konfigurations-Registern des Brücken-Chips reduziert werden. Jeder
Daten-Puffer kann durch Daten gefüllt werden, vorgesehen in einer einzelnen, verzögerten Abschluss-Trans-
aktion, oder falls nicht alle angeforderten Daten in einer einzelnen, verzögerten Abschluss-Transaktion zurück-
geführt werden, durch mehrfache, verzögerte Abschluss-Transaktionen. Allerdings kann jeder Daten-Puffer
Daten entsprechend zu nur einer originalen, verzögerten Anforderung enthalten, ungeachtet davon, wieviele
verzögerte Abschluss-Transaktionen es benötigt, die angeforderten Daten zu liefern.
[0158] Ein Warteschlangen-Schnittstellen-Block 2136 steuert den Fluss von Abschluss-Daten von der
DCQ-Kabel-Schnittstelle 2130 in den Daten-RAM 2134 hinein und aus dem Daten-RAM 2134 zu der QPIF her-
aus. Drei Logik-Blöcke erzeugen Hinweiszeiger, die die Eingabe und die Ausgabe von Daten, gespeichert in
den acht Daten-Puffern, leiten. Der erste Block, ein Eingangs-Hinweiszeiger-Logik-Block 2138, behält einen
Sechs-Bit-Eingangs-Hinweiszeiger für jeden der acht Daten-Puffer bei (in_pointer_0[5:0], in_pointer_1[5:0],
usw.). Jeder Eingangs-Hinweiszeiger weist auf die Stelle in dem entsprechenden Daten-Puffer hin, um das
nächste Wort an Daten zu platzieren. Der zweite Block, ein Ausgangs-Hinweiszeiger-Logik-Block 2140, behält
einen Sechs-Bit-Ausgangs-Hinweiszeiger für jeden der acht Puffer bei (out_pointer_0[5:0], out_pointer_1[5:0],
usw.). Jeder Ausgangs-Hinweiszeiger weist auf die Stelle des Worts von Daten unmittelbar dem Wort, das als
letztes von der QPIF entfernt ist, hin. Der Ausgangs-Hinweiszeiger für einen ausgewählten Daten-Puffer wird
dann erhöht, wenn die QPIF anzeigt, dass sie für den nächsten Teil von Daten bereit ist (d. h. wenn
q2pif_next_data aufgestellt ist). Falls der Ausgangs-Hinweiszeiger erhöht wird, allerdings der letzte Teil von
Daten nicht die anfordernde Vorrichtung erreicht, da die Transaktion durch eine Vorrichtung, eine andere als
die QPIF, beendet wurde, stellt die QPIF ein Rückschritt-Signal (q2pif_step_back) auf, das bewirkt, dass der
Ausgangs-Hinweiszeiger-Logik-Block 2140 den Ausgangs-Hinweiszeiger um ein Wort erniedrigt.
[0159] Der dritte Hinweiszeiger-Block, ein gültiger Hinweiszeiger-Logik-Block 2142, behält für jeden der
Acht-Daten-Puffer einen Sechs-Bit-Gültigkeits-Hinweiszeiger bei (valid_pointer_0(0:5], valid_pointer_1[5:0],
usw.), der das nächste Wort an Daten in dem entsprechenden Daten-Puffer anzeigt, der zu der QPIF verfügbar

Inhalte von DCQ
17/215

DE 697 21 381 T2 2004.01.15
ist. Da die PCI Spec. 2.1 erfordert, dass Lese-Abschluss-Daten nicht vor einer früher initiierten, geposteten
Speicher-Schreib-Transaktion zurückgeführt werden, können verzögerte Abschluss-Daten, platziert in die
DCQ hinein, während ein gepostetes Speicher-Schreiben in dem PMWQ anhängig ist, nicht zu der anfordern-
den Vorrichtung verfügbar gemacht werden, bis das gepostete Speicher-Schreiben auf dem PCI-Bus abge-
schlossen ist und von der PMWQ entfernt ist. Deshalb muss, solange wie irgendwelche früher in die Warte-
schlange gestellten, geposteten Speicher-Schreib-Transaktionen in der PMWQ verbleiben, der gültige Hin-
weiszeiger bei seiner momentanen Position verbleiben. Dann kann, wenn alle früher in die Warteschlange ge-
stellten, geposteten Speicher-Schreib-Vorgänge von der PMWQ entfernt worden sind, der gültige Hinweiszei-
ger zu derselben Position wie diejenige in dem Hinweiszeiger bewegt werden. Wenn die PMWQ leer ist, sind
alle verzögerten Abschluss-Daten gültig (d. h. zu der anfordernden Vorrichtung hin verfügbar), sobald wie sie
in der DCQ gespeichert sind.
[0160] Wie auch die Fig. 67A und 67B zeigen, muss der Gültigkeits-Hinweiszeiger-Logik-Block 2142 den
Master-Zyklus-Arbitrierer (Master Cycle Arbiter – MCA) fragen, um alle verzögerten Abschluss-Transaktionen
für gültig zu erklären, die in die verzögerte Abschluss-Warteschlange eintreten, während ein gepostetes Spei-
cher-Schreiben in der PMWQ anhängig ist. Allerdings kann, da der MCA nicht mehr als vier verzögerte Ab-
schluss-Transaktionen auf einmal in die Warteschlange stellen kann, wie dies nachfolgend diskutiert ist, der
Gültigkeits-Hinweiszeiger-Logik-Block 2142 eine Gültigkeit von nicht mehr als vier verzögerten Abschluss-Da-
ten-Puffern auf einmal anfordern. Der Gültigkeits-Hinweiszeiger-Logik-Block 2142 muss auch eine Protokollie-
rung beibehalten, welche vier verzögerten Abschluss-Transaktionen in dem MCA zu irgendeinem gegebenen
Zeitpunkt in die Warteschlange gestellt sind. Um dies so vorzunehmen, behält der Gültigkeits-Hinweiszei-
ger-Logik-Block 2142 zwei Vier-Schlitz-Register bei: ein DCQ-Puffer-Zahl-Register 2144 und ein Gültig-
keits-Anforderungs-Register 2146. Das Puffer-Zahl-Register 2144 behält die Drei-Bit-DCQ-Puffer-Zahl bei, wie
dies durch das DCQ-Puffer-Zahl-Signal (cd_dcq_buff_num[2:0]) bestimmt ist, geliefert durch den Kabel-Deco-
dierer, und zwar von jeder verzögerten Abschluss-Transaktion, in dem MCA in die Warteschlange gestellt. Das
Gültigkeits-Anforderungs-Register 2146 behält ein Transaktions-Gültigkeits-Anforderungs-Bit für jeden der
DCQ-Puffer bei, deren Zahlen in den vier Schlitzen bzw. Einsteckplätzen 2148a–d des Puffer-Zahl-Registers
2144 gespeichert sind. Das Anforderungs-Bit in jedem Schlitz 2150a–d des Gültigkeits-Anforderungs-Regis-
ters 2146 wird aufgestellt, falls eine entsprechende, verzögerte Abschluss-Transaktion in dem MCA in die War-
teschlange gestellt ist. Die Werte der Bits in den vier Gültigkeits-Anforderungs-Schlitzen 2150a–d werden zu-
sammen mit dem MCA als ein Vier-Bit-Gültigkeits-Anforderungs-Signal (dcq_valid[3:0]) vorgesehen.
[0161] Wenn eine verzögerte Abschluss-Transaktion in dem MCA in die Warteschlange gestellt werden soll,
wird seine entsprechende DCQ-Puffer-Zahl in einen der Puffer-Zahl-Schlitze bzw. -Einsteckplätze 2148a–d
durch das cd_dcq_buff_num[2:0] Signal eingeladen. Der Schlitz 2148a–d, der beladen werden soll, wird durch
ein Zwei-Bit-Auswahl-Signal (next_valid_select[1:0]) ausgewählt. Der Wert des Auswahl-Signals hängt von
dem Wert des dcq_valid[3:0] Signals, erzeugt durch das Gültigkeits-Anforderungs-Register 2146 und die
Durchsichts-Tabelle 2152, ab, wobei die Inhalte davon in der Tabelle nachfolgend gezeigt sind. Der Schlitz wird
dann beladen bzw. belegt, wenn er durch next_valid_select[1:0] ausgewählt ist, wenn der Kabel-Decodieren
die DCQ ausgewählt hat und die Transaktion abgeschlossen hat (d. h. cd_dcq_select und cd_complete werden
aufgestellt), und wenn mindestens eine gepostete Speicher-Schreib-Transaktion in der PMWQ anhängig ist
(d.h. pmwq_no_pmw ist nicht aufgestellt). Gates 2154, 2156, 2158, 2160 und 2162 und ein 2x4 Decodieren
2164 sind so angeordnet, um das Puffer-Zahl-Register 2144 auf diese Art und Weise zu laden. In ähnlicher
Weise wird das entsprechende Bit in dem Gültigkeits-Anforderungs-Register 2146 durch den Ausgang von
Gates 2154, 2156, 2158, 2160 und 2162 und den 2x4 Decodierer 2164 eingestellt.

[0162] Auf das dcq_valid[3:0] Signal hin gibt der MCA ein Vier-Bit-DCQ-Lauf-Signal (mca_run_dcq[3:0]) aus,
das anzeigt, welcher der DCQ-Puffer, auf den durch das Puffer-Zahl-Register hingewiesen ist, seinen Gültig-
keits-Hinweiszeiger aktualisiert haben kann. Das mca_run_dcq[3:0] Signal wird zu einem Gültigkeits-Hinweis-
zeiger-Aktualisierungs-Logik-Block 2166 geliefert, und zwar zusammen mit dem pmwg_no_pmw Signal und

Puffer-Zahl-Register-Schlitz-Auswahl
18/215

DE 697 21 381 T2 2004.01.15
den In-Hinweiszeigern für jeden der acht Daten-Puffer. Falls eine gepostete Speicher-Schreib-Transaktion in
der PMWQ verbleibt, nachdem der MCA eines der mca_run_dcq[3:0] Bits aufstellt (was dann auftreten wird,
wenn eine gepostete Speicher-Schreib-Transaktion in die Warteschlange gestellt wurde, nachdem die verzö-
gerte Abschluss-Transaktion in die Warteschlange gestellt wurde, allerdings bevor der MCA das entsprechen-
de mca_run_cq Bit aufgestellt hat), wird der entsprechende Gültigkeits-Hinweiszeiger aktualisiert, solange wie
keine anderen, verzögerten Abschluss-Transaktionen entsprechend zu demselben DCQ-Puffer noch in dem
MCA in die Warteschlange gestellt sind. Falls eine verzögerte Abschluss-Transaktion für denselben DCQ-Puf-
fer noch in der MCA in die Warteschlange gestellt ist, kann der Gültigkeits-Hinweiszeiger nur aktualisiert wer-
den, wenn das mca_run_dcq Bit entsprechend dieser Transaktion aufgestellt ist. Andererseits werden, sobald
das pmwq_no_pmw Signal weggenommen ist, alle Gültigkeits-Hinweiszeiger aktualisiert, um die entsprechen-
den In-Hinweiszeiger anzupassen, ungeachtet davon, ob verzögerte Abschlüsse noch in der Warteschlange
in dem MCA gestellt sind. Wenn ein mca_run_dcq Bit aufgestellt ist, wird das entsprechende Bit in dem Gül-
tigkeits-Anforderungs-Register 2146 gelöscht. Gates 2168, 2170, 2172, 2174 und 2176 sind so angeordnet,
um die Gültigkeits-Anforderungs-Register-Bits auf diese Art und Weise zu löschen. Wie wiederum Fig. 66
zeigt, bestimmt ein Hit-Logik-Block 2180, wenn eine verzögerte Anforderungs-Transaktion von einer anfor-
dernden Vorrichtung auf dem PCI-Bus eine der verzögerten Abschluss-Nachrichten in der DCQ „getroffen" hat.
Entsprechend zo der PCI Spec 2.1 müssen die folgenden Attribute identisch für einen verzögerten Abschluss
sein, um zu einer Anforderung angepasst zu werden: Adresse, PCI Befehl, Byte-Freigaben, Adressen- und Da-
ten-Parität (falls eine Schreib-Anforderung vorliegt), REQ64# (falls eine 64-Bit-Daten-Transaktion vorliegt),
und LOCK# (falls unterstützt wird). Falls eine Anforderung durch die PCI-Slave verriegelt ist, sucht die QPIF
die Anforderungs-Informationen auf, schickt sie zu der DCQ und stellt ein Prüf-Zyklus-Signal auf
(q2pif_check_cyc), das die DCQ-Hit-Logik 2180 instruiert, die Anforderungs-Informationen zu den verzögerten
Abschluss-Nachrichten, gespeichert in dem DCQ-Tag-Speicher 2132, zu vergleichen. Die Hit-Logik 2180 emp-
fängt das 64 Bit-Adressen-Signal (q2pif_addr[63:2]), das Vier-Bit-PCI-Befehls-Signal (q2pif_cmd[3:0]), die vier
Freigabe-Bits (q2pif_byte_en[3:0]), das Dual-Adressen-Zyklus-Bit (q2pif_dac), (das dem PCI REQ64# Signal
entspricht), das Verriegelungs-Bit (q2pif_lock) von der QPIF, und, falls die Anforderung eine Schreib-Anforde-
rung ist, die Daten, die geschrieben werden sollen (q2pif_data[31:0]). Obwohl es nicht durch die PCI Spec 2.1
erforderlich ist, liefert die QPIF auch die Schlitz-Zahl (q2pif_slot[2:0]) der anfordernden Vorrichtung, um das
Puffer-Entleerungs-Programm für den Warteschlangen-Block fortzuführen, wie dies nachfolgend beschrieben
ist. Die Hit-Logik 2180 vergleicht dann jedes dieser Signale mit verzögerten Abschluss-Informationen, gespei-
chert in den acht DCQ-Puffern. Falls alle Signale die Informationen irgendwelcher der verzögerten Ab-
schluss-Nachrichten anpassen, identifiziert die Hit-Logik 2180 den Puffer, der die Anpassungs-Ab-
schluss-Nachricht enthält, durch Aufstellen eines entsprechenden Bits in einem Acht-Bit-Hit-Signal
(dcq_hit(7:0]). Wenn ein Treffer bzw. Hit auftritt, sucht die QPIF die Abschluss-Nachricht auf und liefert sie zu
der anfordernden Vorrichtung. und, falls die Anforderung eine Lese-Anforderung ist, beginnt sie ein Entfernen
der zurückgeführten Daten von dem entsprechenden Daten-Puffer in dem Daten-RAM 2134. Falls die ange-
forderten Informationen nicht die Abschluss-Informationen irgendeiner der verzögerten Abschluss-Nachrichten
in der DCQ anpassen, ist die Anforderung in Bezug auf die DCQ „fehlgeschlagen" („missed"), und wird in dem
nächsten, verfügbaren DCQ-Puffer gespeichert und über das Kabel zu dem anderen Brücken-Chip durch die
QPIF weitergeführt. Eine PCI-Vorrichtung, die eine Anforderung initiiert, die die DCQ verfehlt hat, kann deren
REQ# Leitung maskiert haben, bis deren Abschluss-Nachricht zurückgeführt ist, wie dies in weiterem Detail
nachfolgend beschrieben ist.
[0163] Die Hit-Logik 2180 verbindet sich auch schnittstellenmäßig mit einem Multi-Threaded-Master-Erfas-
sungs-Block 2182, um zu erfassen, welche PCI-Schlitze bzw. - Steckplätze, falls welche vorhanden sind, Mul-
ti-Threaded Vorrichtungen enthalten. Multi-Threaded Vorrichtungen sind in der Lage, mehr als eine, verzögerte
Transaktion zu einem Zeitpunkt beizubehalten, und müssen deshalb speziell behandelt werden. Wenn ein Mul-
ti-Threaded-Master erfasst ist, wird ein entsprechendes Bit in den Konfigurations-Registern eingestellt, um an-
zuzeigen, dass die Vorrichtung in der Lage ist, mehrere, offenstehende, verzögerte Transaktionen zu unter-
stützen, und deshalb sollte deren REQ# Zeile nicht maskiert werden. Eine Multi-Threaded-Master-Erfassung
wird in weiterem Detail nachfolgend diskutiert.
[0164] Eine andere Funktion der DCQ ist diejenige, zu bestimmen, wenn eine Gelegenheit existiert, um eine
Datenfolge von Lese-Daten zwischen dem primären und dem sekundären PCI-Bus erzeugen. Eine Strea-
ming-Gelegenheit existiert dann, wenn verzögerte Abschluss-Daten in die DCQ durch den Kabel-Decodierer
platziert werden, während sie noch auf dem Target-Bus durch die Target-Vorrichtung platziert sind. Falls die
PCI-Vorrichtung, die die Transaktion initiierte, wieder deren Anforderung liefert, während die Target-Vorrich-
tung noch Daten auf dem PCI-Bus platziert, wird eine Lese-Datenfolge eingerichtet. Da ein Lese-Streaming
eine effiziente Art und Weise ist, um Daten zwischen dem primären und dem sekundären PCI-Bus zu übertra-
gen, gibt der PCI-Brücken-Chip nicht nur eine höhere Priorität in den Bus-Arbitrierungs-Prozess zu einer Vor-
richtung, deren Abschluss-Daten ankommen, sondern wird auch versuchen, eine Nicht-Streaming-Transaktion
zu beenden, um die Möglichkeit zu verbessern, dass eine Datenfolge eingerichtet werden wird. Allerdings ist
19/215

DE 697 21 381 T2 2004.01.15
es, während in der Theorie ein Streaming während irgendeines Lese-Zyklus auftreten kann, in der Praxis wahr-
scheinlich, dass dies nur während Transaktionen auftritt, die eine große Menge an Daten umfassen (d.h. Spei-
cher-Lese-Mehrfach-Transaktionen). Deshalb wird der Warteschlangen-Block versuchen, Transaktionen zu-
gunsten von potentiellen Streaming-Gelegenheiten nur dann zu beenden, wenn eine potentielle Strea-
ming-Transaktion eine Speicher-Lese-Mehrfach-Transaktion ist.
[0165] Wie auch Fig. 68 zeigt, bestimmt ein Stream- bzw. Datenfolge-Logik-Block 2184 in der DCQ, ob eine
Streaming-Gelegenheit existiert, und, falls dies der Fall ist, erzeugt er die Signale, erforderlich dazu, die Da-
tenfolge zu unterstützen. Der Datenfolge-Logik-Block 2184 erzeugt die Signale, erforderlich dazu, eine mo-
mentane Transaktion zugunsten einer potentiellen Datenfolge zu unterbrechen. Wenn der Kabel-Decodieren
eine verzögerte Abschluss-Transaktion in der DCQ platziert, verwendet die Datenfolge-Logik 2184 das
DCQ-Puffer-Zahl-Signal, geliefert durch den Kabel-Decodieren (cd_dcq_buff_num), um den PCI-Befehl-Code,
gespeichert in dem entsprechenden DCQ-Puffer (q0_cmd[3:0], q1_cmd[3:1] usw.), aufzusuchen. Falls der Be-
fehl-Code eine Speicher-Lese-Mehrfach-Anforderung (d. h. „1100") darstellt, stellt die Datenfolge-Logik 2184
ein Unterbrechungs-Für-Datenfolge-Signal (dcq_disconnect_for_stream) auf, das die QPIF und die
PCI-Schnittstelle instruiert, die momentane Transaktion aufgrund einer potentiellen Streaming-Gelegenheit zu
beenden. Ein Multiplexer 2186 und ein Komparator 2188 sind so angeordnet, um das
dcq_disconnect_for_stream Signal zu erzeugen. Dann liefert, solange wie der Kabel-Decodierer fortfährt, die
Abschluss-Daten zu der DCQ zu liefern (d. h. das cd_dcq_select Signal verbleibt aufgestellt) und keine gepos-
teten Speicher-Schreibvorgänge in der PMWQ erscheinen (d. h. pmwq_no_pmw verbleibt aufgestellt), liefert
die Datenfolge-Logik 2184 ein Streaming-Request-Signal (q2a_stream) direkt zu dem PCI-Arbitrierer. Die Da-
tenfolge-Logik 2184 liefert auch die Schlitz- bzw. Einsteckplatz-Zahl der potentiellen Streaming-Vorrichtung
(q2a_stream_master[2:0]) zu dem PCI-Arbitrierer unter Verwendung des cd_dcq_buff_num[2:0] Signals, um
die PCI-Schlitz-Zahl, gespeichert in dem ausgewählten DCQ-Puffer (q0_master[2:0] für DCQ-Puffer-Null
2135a, q1_master[2:0] für DCQ-Puffer-Eins 2135b, usw.), auszuwählen. Der PCI-Arbitrierer hebt dann die
Bus-Arbitrierungs-Priorität der potentiellen Streaming-Vorrichtung an, wie dies in weiterem Detail nachfolgend
diskutiert ist. Falls dem potentiellen Streaming-Master nicht. der Bus erteilt wird, bevor die Streaming-Gelegen-
heit verschwindet, wird deren Priorität zu Normal zurückgeführt. Da der eingangsseitige Bus nur eine Mas-
ter-Vorrichtung (die CPU) besitzt, wird dieses Merkmal in dem eingangsseitigen Chip gesperrt. Das Gate 2190
und der Multiplexer 2192 sind so angeordnet, um die q2a_stream und q2a_stream_master Signale zu erzeu-
gen.
[0166] Wenn eine anfordernde Vorrichtung eine verzögerte Abschluss-Nachricht, gespeichert in der DCQ,
trifft, wird das entsprechende Bit eines Acht-Bit-Hit-Signals (hit[7:0]) aufgestellt. Das hit[7:0] Signal zeigt an,
welcher der acht DCQ-Puffer durch die momentane Anforderung getroffen ist. Wenn dies auftritt, verriegelt,
falls der entsprechende DCQ-Puffer Daten enthält (d. h. dcq_no_data wird nicht aufgestellt), die Datenfol-
ge-Logik 2118 den Wert des Hit-Signals für die Dauer der Transaktion (d. h. solange, wie q2pif_cyc_complete
aufgestellt ist). Die verriegelte Version des Hit-Signals bildet ein „verzögertes" Hit-Signal (dly_hit[7:0]). Wenn
entweder das Hit-Signal oder das verzögerte Hit-Signal anzeigt, dass ein DCQ-Puffer getroffen worden ist, lie-
fert ein Drei-Bit-DCQ-Datenfolge-Puffer-Signal (dcq_stream_buff[2:0]) die Puffer-Zahl des getroffenen bzw.
Hit-DCQ-Puffers. Dann stellt, falls der Kabel-Decodierer verzögerte Abschluss-Daten in den Puffer platziert,
während sich der Zyklus, der den Puffer traf, in Arbeit befindet (d. h. cd_dcq_select wird aufgestellt und
cd_dcq_buff_num[2:0] entspricht dcq_stream_buff[2:0]), der Datenfolge-Logik-Block 2180 ein Datenfolge-Ver-
bindungs-Signal auf (dcq_stream_connect), das der QPIF mitteilt, dass eine Datenfolge eingerichtet worden
ist. Die QPIF informiert dann den Brücken-Chip auf dem Target-Bus, dass eine Datenfolge eingerichtet worden
ist. Falls bestimmte Bedingungen erfüllt sind, wird die Target-QPIF fortfahren im Datenfluss zu arbeiten, bis sie
mitteilt, zu stoppen, durch Initiieren von QPIF, wie dies in weiterem Detail nachfolgend diskutiert ist. Gates 2194
und 2196, Multiplexer 2198 und 2200 und ein Flip-Flop 2202 sind so angeordnet, um das verzögerte Hit-Signal
zu erzeugen. Gates 2204, 2206 und 2208 und ein Codieren 2210 sind so angeordnet, wie dies dargestellt ist,
um die dcq_stream_connect und dcq_stream_buff[2:0] Signale zu erzeugen.
[0167] Wie wiederum Fig. 66 zeigt, wird die DCQ, unter bestimmten Umständen, automatisch Daten von dem
Target-Bus zu Lasten eines PCI-Masters bei der Antizipierung automatisch vorab Abrufen, dass der Master zu-
rückkommen wird und die Daten anfordern wird. Ein Prefetch-Logik-Block 2212 in der DCQ stellt Daten vorab
ein, wenn der lesende Master alle die Daten in seinem DCQ-Puffer verbraucht und die Prefetch-Logik 2212
erwartet, dass die anfordernde Vorrichtung mit einer sequenziellen Lese-Anforderung zurückkehren wird (d. h.
eine Anforderung, die Daten aufnimmt, angeordnet an der nächsten, sequenziellen Stelle in dem Speicher).
Da einige Vorrichtungen, wie beispielsweise Multi-Threaded-Master, routinemäßig alle die Daten lesen, ange-
fordert in einer Transaktion, und dann mit einer unterschiedlichen, nicht-sequenziellen Anforderung zurückkeh-
ren, umfasst die Prefetch-Logik 2212 eine Vorhersageschaltung, die die Prefetch-Fähigkeiten für jede Vorrich-
tung auf dem PCI-Bus sperrt, bis die Vorrichtung eine Tendenz dahingehend gezeigt hat, sequenzielle Le-
se-Anforderungen auszugeben. Sobald sie eine Vorrichtung, die vorab eingestellte Daten empfangen hat, mit
einer nicht-sequenziellen Lese-Anforderung zurückkehrt, wird die Voraussage-Schaltung die Prefet-
20/215

DE 697 21 381 T2 2004.01.15
ching-Funktion für diesen Master sperren.
[0168] Unter Bezugnahme auch auf die Fig. 69a und 69b umfasst der Prefetch-Logik-Block 2212 ein Pre-
fetch-Vorhersage-Register 2214, wobei der Ausgang davon ein Acht-Bit-Prefetch-Freigabe-Signal
(prefetch_set[7:0]) ist, das beurteilt, ob die Prefetch-Funktion für jede der Vorrichtungen auf dem PCI-Bus ver-
fügbar ist. Alle Bits in dem Prefetch-Freigabe-Signal werden bei einem Reset (RST) gelöscht und wenn die
QPIF ein allgemeines Löschen aller der DCQ-Register fordert (d. h. general_flush wird aufgestellt und
q2pif_slot [2:0] entspricht „000"). Das general_flush Signal wird in weiterem Detail nachfolgend diskutiert.
Gates 2216 und 2218 erzeugen das Signal, das die prefetch_set Bits wiedereinstellt.
[0169] Ein individuelles Bit in dem Prefetch-Freigabe-Signal wird dann eingestellt, wenn der entsprechende
PCI-Schlitz bzw. PCI-Einsteckplatz durch das q2pif_slot Signal ausgewählt ist und die folgenden Zustände auf-
treten: die anfordernde Vorrichtung trifft einen verzögerten Abschluss-Puffer in der DCQ (d. h. eines der Bits in
den cycle_hit[7:0] Signal wird aufgestellt), die momentane Transaktion ist eine Speicher-Lese-Zeile oder ein
Speicher-Lese-Mehrfach-Zyklus (d. h. q2pif_cmd[3:0] entspricht „1100" oder „11110"), die QPIF hat angezeigt,
dass der Zyklus vollständig ist, (d. h. q2pif_cyc_complete wird aufgestellt) und das letzte Wort von Daten wurde
von dem DCQ-Puffer herangezogen (d.h. last_word ist aufgestellt). Gates 2220, 2222, 2224 und 2228a–h und
ein Decodierer 2226 sind so angeordnet, um die Vorhersage-Bits auf diese Art und Weise einzustellen. Das
last word Signal wird durch die Prefetch-Logik 2212 aufgestellt, wenn die anfordernde Vorrichtung versucht,
hinter dem Ende des DCQ-Puffers zu lesen. Dies tritt dann auf, wenn der Out-Pointer (Out-Hinweiszeiger) und
der In-Pointer (In-Hinweizeiger) gleich sind, was anzeigt, dass das Ende des DCQ-Puffers erreicht worden ist
(d. h. für einen Vier-Cache-Zeilen-Puffer, out_pointer_x[4:0] entspricht valid_pointer_x[4:0] oder, für einen
Acht-Cache-Zeilen-Puffer, out_pointer_x[5:0] entspricht valid_pointer_x[5:0]), und wenn die anfordernde Vor-
richtung versucht, einen anderen Teil von Daten zu lesen (d.h. q2pif_next_data ist aufgestellt). Gates 2230,
2232 und 2234 sind so angeordnet, um das last_word Signal zu erzeugen.
[0170] Ein individuelles Bit in dem Prefetch-Freigabe-Signal wird dann gelöscht, wenn der entsprechende
PCI-Schlitz ausgewählt ist und entweder ein PCI-Lösch-Zustand auftritt (p2q_flush wird aufgestellt), die QPIF
mitteilt der DCQ, den Gültigkeits-Hinweiszeiger des Puffers zurückzusetzen (q2p_step_back ist aufgestellt),
oder die anfordernde Vorrichtung eine Transaktion initiiert, die alle der DCQ-Puffer verfehlt (q2pif_check_cyc
wird aufgestellt und dcq_hit wird nicht aufgestellt). Gates 2236, 2238 und 2240a–h und ein Decodierer 2226
sind so angeordnet, um die Vorhersage-Freigabe-Bits in dieser Art und Weise zu löschen.
[0171] Wenn die Prefetch-Funktion für eine Vorrichtung auf dem PCI-Bus freigegeben ist, kann die Pre-
fetch-Logik 2212 zwei Typen von Prefetch-Signalen für die Vorrichtung erzeugen: ein Prefetch-Zeilen-Signal
(dcq_prefetch_line) und ein Prefetch-Mehrfach-Signal (dcq_prefetch_mul). Das Prefetch-Leitungs-Signal wird
dann erzeugt, wenn der momentane PCI-Befehl von der anfordernden Vorrichtung ein Speicher-Lese-Lei-
tungs-Zeilen-Signal ist, und das Prefetch-Mehrfach-Signal wird dann erzeugt, wenn der momentane PCI-Be-
fehl ein Speicher-Lese-Mehrfach-Signal ist. In jedem Fall wird das entsprechende Prefetch-Signal erzeugt,
wenn die folgenden Zustände auftreten: das prefetch_set Bit für den anfordernden PCI-Schlitz wird eingestellt;
ein entsprechendes Prefetch-Freigabe-Bit in den Konfigurations-Registern wird eingestellt
(cfg2q_auto_prefetch_enable); die DRQ in dem eingangsseitigen Chip ist nicht voll (!tc_dc_full); der DCQ-Puf-
fer hat Raum für die entsprechende Menge an Prefetch-Daten (_!dcq_no_prefetch_room); der momentane Zy-
klus trifft den DCQ-Puffer; und der anfordernde Master hat versucht, hinter das Ende des DCQ-Puffers zu lesen
(last word und q2pif_cyc_complete). Gates 2242, 2244, 2246, 2248, 2250, und 2252, ein Decodierer 2254 und
Multiplexer 2256 und 2258 sind so angeordnet, um die Prefetch-Signale auf diese Art und Weise zu erzeugen.
[0172] Wenn die Prefetch-Logik 2212 ein Prefetch-Signal erzeugt, erzeugt sie ein entsprechendes Pre-
fetch-Adressen-Signal (dcq_prefetch_addr[63:2]) durch Verknüpfen der oberen siebenundfünfzig Bits der
Adresse, gespeichert in dem entsprechenden DCQ-Puffer (q0_addr[63:7] für Puffer Null, q1_addr[63:7] für Puf-
fer Eins, usw.) mit den unteren fünf Bits des Ausgangs-Hinweiszeigers des Puffers (out_pointer_0[4:0], usw.).
Ein Dual-Adressen-Zyklus Signal (dcq_prefetch_dac) zeigt an, ob die Prefetch-Transaktion ein Dual- oder Ein-
zel-Adressen-Zyklus ist. Das dcq_prefetch_cycle Signal nimmt den Wert des Dual-Adressen-Bits, gespeichert
in dem DCQ-Puffer (q0_dac, q1_dac, usw.), an. Für sowohl die Prefetch-Adressen- und Dual-Adressen-Zy-
klus-Signale wird der geeignete Wert von einem Multiplexer 2260 oder 2262 ausgegeben und durch das
Drei-Bit-DCQ-Puffer-Zahl-Signal ausgewählt, anzeigend, welcher DCQ-Puffer durch die momentane Anforde-
rung getroffen wurde.
[0173] Wiederum unter Bezugnahme auf Fig. 66, besitzt jeder DCQ-Daten-Puffer verschiedene mögliche Zu-
stände, wobei jeder davon durch einen Puffer-Zustand-Logik-Block 2264 in der DCQ bestimmt wird. Das Fol-
gende sind die möglichen Puffer-Zustände.

1. Leer (Empty). Verfügbar für eine Zuordnung. Ein Puffer ist leer (empty) nach einem Laden bzw. Hochfah-
ren und nachdem er geleert ist.
2. Complete. Der Puffer enthält Abschluss-Informationen für einen verzögerten Abschluss von einer realen,
verzögerten Anforderung von einer Vorrichtung auf dem PCI-Bus (d.h. keine Prefetch-Anforderung). Die
PCI-Vorrichtung hat noch nicht wieder verbunden und Daten von dem Puffer genommen. Die verzögerte
21/215

DE 697 21 381 T2 2004.01.15
Abschluss-Transaktion ist abgeschlossen.
3. Prefetch. Der Puffer enthält Abschluss-Daten für eine Prefetch-Anforderung oder angeforderte Daten, die
in dem Puffer belassen wurden, nachdem der anfordernde Master von dem Puffer getrennt ist. Alle Ab-
schluss-Daten sind von dem Target angekommen.
4. PartComplete. Der Puffer ist für Abschluss-Informationen für eine reale, verzögerte Anforderung reser-
viert und kann diese enthalten (d.h. keine Prefetch-Anforderung). Der Master hat noch nicht wieder verbun-
den und Daten von dem Puffer genommen, und nicht alle Abschluss-Informationen sind von dem Target
angekommen.
5. PartPrefetch. Der Puffer ist für Abschluss-Informationen für eine Prefetch-Anforderung reserviert oder
enthält sie, oder der Puffer enthält angeforderte Daten, die in dem Puffer verblieben, nachdem der anfor-
dernde Master von dem Puffer getrennt ist. Nicht alle Abschluss-Informationen sind von dem Target ange-
kommen.
6. Discard. Der Puffer wurde gelöscht, während er in dem PartPrefetch-Zustand war, allerdings sind die letz-
ten Abschluss-Daten bis jetzt noch nicht von dem Target angekommen. Der Puffer wird in den Discard-Zu-
stand versetzt, um zu verhindern, dass er verwendet wird, bis die Transaktion auf dem Target-Bus abge-
schlossen ist und die letzten Daten ankommen.
Wenn die QPIF einen DCQ-Puffer für eine verzögerte Anforderungs-Transaktion anfordert, ordnet die Puf-
fer-Zustand-Logik 2264 die Puffer in der folgenden Reihenfolge zu. Falls kein Puffer in dem Empty-Zustand
oder dem Prefetch-Zustand vorliegt, muss der anfordernde Master erneut versucht werden.

[0174]

[0175] Wenn eine Vorrichtung auf dem PCI-Bus eine verzögerte Lese-Anforderung initiiert und ein DCQ-Ab-
schluss-Puffer daneben eingestellt ist, ändert die Puffer-Zustand-Logik 2264 den Zustand des Puffers zu Part-
Complete. Falls die DCQ eine Prefetch-Lesung initiiert, wird der Puffer-Zustand zu PartPrefetch geändert.
Wenn der letzte Teil von Abschluss-Daten ankommt, wird der Zustand des Puffers von PartComplete oder Part-
Prefetch zu Complete oder Prefetch jeweils hin geändert. Wenn die anfordernde Vorrichtung wieder eine neu
versuchte Lese-Anforderung zuführt und den Puffer trifft, werden irgendwelche gültigen Abschluss-Daten zu
dem Master hin gegeben, falls sich der Puffer in dem Complete, Prefetch, PartComplete oder PartPrefetch-Zu-
stand befindet.
[0176] Wenn der Master nicht alle die Daten vor einer Unterbrechung nimmt, wird der Zustand des Puffers zu
Prefetch oder PartPrefetch hin geändert, um anzuzeigen, dass nicht beanspruchte Daten dahingehend ange-
sehen werden, dass sie Prefetch-Daten sind. Falls der Master den letzten Teil von Daten heranzieht, wenn sich
der Puffer in dem Complete oder Prefetch-Zustand befindet, wird der Zustand des Puffers zu Empty hin geän-
dert.
[0177] Falls ein Lösch-Signal empfangen wird, während sich ein Puffer in dem Prefetch-Zustand befindet,
werden die Prefetch-Daten in dem Puffer ausgesondert und der Puffer-Zustand wird zu Empty hin geändert.
Falls ein Lösch-Ereignis auftritt, während sich der Puffer in dem PartPrefetch-Zustand befindet und Ab-
schluss-Daten noch ankommen, wird der Puffer zu dem Discard-Zustand geändert, bis alle Prefetch-Daten an-
kommen. Wenn die Transaktion abgeschlossen ist, werden die Prefetch-Daten ausgesondert und der Puf-

Puffer-Zahl Puffer-Zustand
Q0 Empty
Q1 Empty
Q2 Empty
Q3 Empty
Q4 Empty
Q5 Empty
Q6 Empty
Q7 Empty
Q0 Prefetch
Q1 Prefetch
Q2 Prefetch
Q3 Prefetch
Q4 Prefetch
Q5 Prefetch
Q6 Prefetch
Q7 Prefetch

DCQ-Puffer-Zuordnung
22/215

DE 697 21 381 T2 2004.01.15
fer-Zustand wird zu Empty hin geändert. Falls sich der Puffer in dem Complete oder Part-Complete-Zustand
befindet, wenn ein Lösch-Signal empfangen wird, werden die Abschluss-Daten in dem Puffer belassen und der
Puffer-Zustand verbleibt ungeändert. Falls das Lösch-Signal auftritt, da die entsprechende PCI-Vorrichtung
eine neue Anforderung ausgegeben hat, d. h. eine Anforderung, die nicht momentan in die Warteschlange ge-
stellt ist, und die alle die Abschluss-Puffer „verfehlt"), wie dies nachfolgend diskutiert worden ist, ordnet die
DCQ einen neuen Puffer für die Transaktion zu, wie dies vorstehend diskutiert ist. Deshalb kann eine PCI-Vor-
richtung mehr als einen Abschluss-Puffer zugeordnet haben. Mehrfach-Puffer können zu einer PCI-Vorrich-
tung zugeordnet werden, wenn die Vorrichtung einen Puffer besitzt, der Abschluss-Daten enthält oder erwartet
(d. h. der Puffer befindet sich in dem Complete oder PartComplete-Zustand) und die Vorrichtung eine neue An-
forderung ausgibt. Da Multi-Threaded-Vorrichtungen die einzigen Vorrichtungen sind, die mehrere Transaktio-
nen auf einmal beibehalten können, können nur Multi-Threaded-Vorrichtungen Mehrfach-Abschluss-Puffer
gleichzeitig reserviert haben.

MASTER-ZYKLUS-ARBITRIERER

[0178] Der Master-Zyklus-Arbitrierer (Master Cycle Arbiter – MCA) bestimmt die Ausführungs-Reihenfolge
von geposteten Speicher-Schreib- und verzögerten Anforderungs-Transaktionen, während die Reihenfol-
gen-Einschränkungen zwischen geposteten Speicher-Schreib-, verzögerten Anforderungs- und verzögerten
Abschluss-Zyklen beibehalten werden, angegeben in PCI Spec. 2.1. Entsprechend der PCI Spec 2.1 muss der
MCA garantieren, dass ausgeführte Zyklen eine starke Schreib-Reihenfolge beibehalten und dass keine Dead-
locks auftreten. Um sicherzustellen, dass keine Deadlocks auftreten werden, muss geposteten Spei-
cher-Schreib-Zyklen ermöglicht werden, früher in die Warteschlage gestellte, verzögerte Anforderungs-Zyklen
zu passieren, und die geforderten Reihenfolgen-Einschränkungen beizubehalten, wobei verzögerten Anforde-
rungs-Zyklen und verzögerten Abschluss-Zyklen niemals erlaubt werden muss, früher in die Warteschlange
gestellte, gepostete Speicher-Schreib-Zyklen zu passieren.
[0179] Unter Bezugnahme wiederum auf Fig. 70 verwendet der MCA zwei Transaktions-Warteschlangen,
eine Transaktions-Lauf-Warteschlange (Transaction Run Queue – TRQ) oder (Transaktions-Ausfüh-
rungs-Warteschlangen) 2270 und eine Transaktions-Reihenfolge-Warteschlange (Transaction Order Queue –
TOQ) 2272, um Zyklen, in die, PMWQ, die DRQ und die DCQ warteschlangenmäßig gestellt, zu verwalten. Ein
MCA-Steuerblock 2274 nimmt Transaktionen von der PMWQ, DRQ und DCQ in der Form von Vier-Bit-Gültig-
keits-Anforderungs-Signalen (pmwq_valid [3:0], drq_valid [3:0] und dcq_valid [3:0]) auf und gibt Lauf-Befehle
in der Form von Vier-Bit-Lauf-Signalen (mca_run_pmwq[3:0], mca_run_drq[3:0] und mca_run_dcq[3:0]) aus.
Die Transaktionen werden in die TRQ 2270 und die TOQ 2272 durch einen TRQ-Steuerblock 2276 und einen
TOQ-Steuerblock 2278 jeweils hinein- und herausbewegt.
[0180] Unter Bezugnahme auch auf Fig. 71 ist die TRQ 2270 die Warteschlange, von der der MCA die Trans-
aktions-Ausführungs-Reihenfolge bestimmt. Transaktionen in der TRQ 2270 können in irgendeiner Reihenfol-
ge ausgeführt werden, ohne die Transaktions-Reihenfolge-Regeln zu verletzten, allerdings kann, wenn einmal
ein geposteter Speicher-Schreib-Zyklus in der TRQ 2270 platziert ist, kein anderer Zyklus in die TRQ 2270 plat-
ziert werden, bis das gepostete Speicher-Schreiben entfernt ist. Transaktionen in der TRQ 270 werden in zir-
kularer Reihenfolge versucht und sind allgemein in der Reihenfolge, in der sie empfangen wurden, abgeschlos-
sen. Allerdings kann, falls eine Transaktion in der TRQ 2270 auf dem PCI-Bus versucht wird, der MCA die
nächste Transaktion in der TRQ 2270 auswählen, die auf dem PCI-Bus versucht werden soll. Da verzögerte
Abschluss-Transaktionen Slave-Zyklen, im Gegensatz zu Master-Zyklen, sind, werden sie niemals in der TRQ
2270 platziert. Weiterhin werden, da verzögerte Abschluss-Informationen zu der anfordernden Vorrichtung ver-
fügbar gemacht werden können, sobald sie in die DCQ eintreten, falls keine geposteten Speicher-Schreib-Zy-
klen in der PMWQ anhängig sind, verzögerte Abschluss-Transaktionen in der TOQ 2272 nur dann platziert,
wenn ein geposteter Speicher-Schreib-Zyklus in der TRQ 2270 anhängig ist, wie dies in weiterem Detail nach-
folgend diskutiert ist.
[0181] Die TRQ 2270 ist eine zirkulare Warteschlange, die bis zu vier Transaktionen auf einmal hält. Da die
MCA immer in der Lage sein muss, mindestens eine gepostete Speicher-Schreib-Transaktion laufen zu lassen,
um die erforderlichen Reihenfolgen-Beschränkungen zu wahren, kann die TRQ 2270 niemals mehr als drei
verzögerte Anforderungs-Transaktionen auf einmal halten. Weiterhin kann die TRQ nur eine gepostete
Schreib-Transaktion zu einem Zeitpunkt halten, da gepostete Schreibvorgänge nicht durch irgendeine später
initiierte Transaktion, umfassend andere gepostete Schreibvorgänge, hindurchgeführt werden können. Jeder
Schlitz 2280a–d in der TRQ 2270 enthält drei Bits an Informationen: ein Ein-Bit-Zyklus-Typ-Indikator 2282 („1"
gleich für gepostete Speicher-Schreib-Transaktionen und „0" gleich für verzögerte Anforderungs-Transaktio-
nen), und einen Zwei-Bit-Gültigkeits-Hinweiszeiger 2284, wobei die vier möglichen Werte davon identifizieren,
welche der Puffer in der PMWQ oder der DRQ die in die Warteschlangen gestellten Transaktionen belegen.
Die TRQ 2270 umfasst auch einen Eingabe/Ausgabe-Freigabe-Block 2286, der bestimmt, wann eine Transak-
tion in die TRQ 2270 hinein oder aus dieser heraus bewegt werden kann, einen Eingangs-Logik-Block 2288,
23/215

DE 697 21 381 T2 2004.01.15
der die Platzierung einer Transaktion in die TRQ 2270 hinein steuert, und einen Ausgangs-Logik-Block 2290,
der eine Entfernung einer Transaktion von der TRQ 2270 steuert. Diese Logik-Blöcke enthalten eine standard-
mäßige Warteschlangen-Management-Schaltung.
[0182] Ein zirkularer Eingangs-Hinweiszeiger 2292 wählt den nächsten, verfügbaren Schlitz bzw. Einsteck-
platz zur Platzierung einer ankommenden Transaktion aus. Der Eingangs-Hinweiszeiger ist zirkular, um so um-
fangreich wie möglich eine historische Reihenfolge der ankommenden Transaktionen beizubehalten.
[0183] Ein zirkularer Ausgangs-Hinweiszeiger 2294 arbitriert zwischen den Transaktionen in der TRQ 2270
und bestimmt deren Reihenfolge einer Ausführung. Der Ausgangs-Hinweiszeiger 2294 beginnt immer mit dem
oberen Schlitz 2286a in der TRQ 2270 beim Startup und schreitet zirkular durch die TRQ 2270 hindurch. Der
Ausgangs-Hinweiszeiger 2294 kann konfiguriert sein, um in entweder einem infiniten Retry- oder einem
Null-Retry-Mode zu arbeiten, durch Einstellen oder Löschen, jeweils, eines infiniten Retry-Bits in den Konfigu-
rations-Registern (cfg2q_infretry). In einem infiniten Retry-Mode verbleibt der Ausgangs-Hinweiszeiger 2294
auf einer Transaktion, bis die Transaktion erfolgreich auf dem PCI-Bus läuft. In einem Null-Retry-Mode wird der
Ausgangs-Hinweiszeiger 2294 zu jedem Zeitpunkt erhöht, zu dem eine Transaktion auf dem Bus versucht wird
(d. h.
[0184] q2pif_cyc_complete war dem vorherigen PCI-Takt-Zyklus aufgestellt), ungeachtet davon, ob die
Transaktion erfolgreich abschließt oder erneut versucht wird. Da die PCI Spec 2.1 vorschreibt, dass gepostete
Speicher-Schreib-Transaktionen dahingehend zugelassen werden, im Bypass an verzögerten Anforde-
rungs-Transaktionen vorbeizuführen, muss der Ausgangs-Hinweiszeiger 2294 in mindestens einem der Brü-
cken-Chips so konfiguriert werden, um in einem Null-Retry-Mode zu arbeiten. Hierbei ist der ausgangsseitige
Chip immer so konfiguriert, um in einem Null-Retry-Mode zu arbeiten. Alternativ kann der Ausgangs-Hinweis-
zeiger so konfiguriert sein, um in einem finiten Retry-Mode zu arbeiten, indem jede Transaktion auf dem
PCI-Bus eine vorbestimmte Anzahl (z. B. drei) von Malen versucht werden kann, bevor sich der Ausgangs-Hin-
weiszeiger erhöht. Sowohl der eingangsseitige als auch der ausgangsseitige Chip können so konfiguriert sein,
um in einem finiten Retry-Mode zu arbeiten, mit einem Verletzen der Reihenfolgen-Beschränkungen der PCI
Spec 2.1. In jedem Fall versucht der Ausgangs-Hinweiszeiger, die historische Reihenfolge von Transaktionen,
gespeichert in der TRQ 2270, beizubehalten, was sich nur dann erhöht, wenn eine Transaktion nicht erfolg-
reich auf dem Target-PCI-Bus abgeschlossen werden kann.
[0185] Wenn ein geposteter Speicher-Schreib- oder verzögerter Anforderungs-Zyklus aus der TOQ 2272 aus-
gesondert ist (new_toq_cycle wird aufgestellt), wie dies nachfolgend diskutiert ist, oder wenn die TOQ 2272
nicht freigegeben ist (!toq_enabled) und ein neuer Zyklus durch die MCA empfangen wird (new_valid_set),
werden das Zyklus-Typ-Bit und die Gültigkeits-Bits für den neuen Zyklus in den nächsten, leeren Schlitz in die
TRQ eingeladen. Falls der Zyklus von der TOQ 2272 kommt, werden die gültigen Bits und das Zyklus-Typ-Bit
durch die TOQ als gültig geliefert und Zyklus-Typ-Signale (toq_valid[1:0] und toq_cyctype[0]) jeweils. Ansons-
ten werden die neuen Zyklus-Informationen durch die MCA als gültige und Zyklus-Typ-Signale (d_valido[1:0]
und d_cyctype[0]) geliefert. Gates 2296 und 2298 und Multiplexer 2300 und 2302 sind angeordnet, um die Aus-
wahl von Zyklen zu steuern, die in die TRQ 2270 hineingeladen werden sollen. Wenn ein Zyklus erfolgreich
auf dem PCI-Bus läuft, wird der Zyklus von der Transaktions-Reihenfolge-Warteschlange entfernt und sein Zy-
klus-Typ-Bit und Gültigkeits-Bits werden zu dem MCA-Steuer-Block 2274 als TRQ-Zyklus-Typ und Gültig-
keits-Signale (trq_cyctype [0]) und trq_valido [1:0]) jeweils geliefert.
[0186] Der TRQ-Steuer-Block 2276 erzeugt ein trq_pmw Signal, das anzeigt, wenn eine gepostete Spei-
cher-Schreib-Transaktion in die TRQ 2270 warteschlangenmäßig gestellt wird. Wenn dieses Signal aufgestellt
ist, müssen darauffolgend ausgegebene, verzögerte Anforderungs- und verzögerte Abschluss-Transaktionen
in die TOQ 2272 in die Warteschlange gestellt werden, wie dies nachfolgend diskutiert ist. Das trq_pmw Signal
wird dann aufgestellt, wenn der MCA-Steuer-Block 2274 die TRQ 2270 instruiert hat, einen neuen, geposteten
Speicher-Schreib-Zyklus (trq_slot_valid_set entspricht nicht „0000" und d_trq_cyctype entspricht „1") in die
Warteschlange zu stellen, oder, alternativ, wenn irgendeiner der TRQ-Schlitze 2280a–d einen Zyklus
(trq_slot_valid [3:0] entspricht nicht „0000"), ist mindestens einer der Zyklen ein geposteter Spei-
cher-Schreib-Zyklus (trq_cyctype entspricht „1 ") und der gepostete Speicher-Schreib-Zyklus ist nicht von dem
entsprechenden Schlitz 2280a–d gelöscht worden (!trq_slot_valid_rst [3:0]). Gates 2304, 2306, 2308, 2310,
und 2312 sind so angeordnet, um das trq_pmw Signal in dieser Art und Weise zu erzeugen.
[0187] Wie nun die Fig. 72 zeigt, ist die TOQ 2272 eine First-In-First-Out (FIFO) Warteschlange, die die his-
torische Reihenfolge von Transaktionen enthält, empfangen durch die Brücke, nachdem eine gepostete Spei-
cher-Schreib-Transaktion in der TRQ 2270 platziert ist. Da alle Transaktionen auf früher ausgegebene, gepos-
tete Speicher-Schreibvorgänge warten müssen, damit diese laufen, werden alle Transaktionen, umfassend ge-
postete Speicher-Schreib-, verzögerte Anforderungs- und verzögerte Abschluss-Transaktionen, in der TOQ
2270 platziert, wenn ein gepostetes Speicher-Schreiben in die TRQ 2270 warteschlangenmäßig gestellt ist.
Transaktionen in der TOQ 2272 müssen in der TOQ 2272 verbleiben, bis die gepostete Spei-
cher-Schreib-Transaktion von der TRQ 2270 entfernt ist.
[0188] Die TOQ 2270, die acht Schlitze 2314a–h hat, kann bis zu drei gepostete Speicher-Schreib-Transak-
24/215

DE 697 21 381 T2 2004.01.15
tionen (die vierte wird in der TRQ 2270 gespeichert werden), drei verzögerte Anforderungs-Transaktionen und
vier verzögerte Abschluss-Transaktionen halten. Jeder der Schlitze 2314a–h in der TOQ 2272 enthält zwei Zy-
klus-Typ-Bits 2316, die die entsprechende Transaktion („01" ist ein gepostetes Speicher-Schreiben, „00" ist
eine verzögerte Anforderung, und „1x" ist ein verzögerter Abschluss) identifizieren, und zwei Gültigkeits-Bits
2318, die identifizieren, welcher der Puffer in der PMWQ, DRQ und DCQ die entsprechende Transaktion be-
legt. Die TOQ 2272 umfasst auch Standard-Eingabe- und Ausgabe-Logik-Blöcke 2320 und 2322, die die Be-
wegung von Transaktionen in die TOQ 2272 hinein und aus dieser heraus steuern.
[0189] Die Positionen, an denen Transaktionen in die TOQ 2272 hinein platziert und von dieser entfernt wer-
den, werden durch einen Drei-Bit-Eingangs-Zähler 2326 (inputr[2:0]) und einen Drei-Bit-Ausgangszähler 2324
(outputr[2:0]) jeweils bestimmt. Beide Zähler beginnen an dem ersten Schlitz 2314a in der TOQ 2272 und er-
höhen sich durch die Warteschlange hindurch, wenn Transaktionen in die Warteschlange eingegeben und von
dieser entfernt werden. Der Eingangs-Zähler 2326 erhöht sich an der ansteigenden Flanke jedes PCI-Takt-Zy-
klus, wo die TOQ 2272 freigegeben wird (toq_enabled wird aufgestellt), und der MCA-Steuer-Block 2274 liefert
einen neuen Zyklus zu der TOQ 2272 (new_valid_set wird aufgestellt). Die Gültigkeits-Bits und die Zy-
klus-Typ-Bits für jeden neuen Zyklus werden durch den MCA als gültig und die Zyklus-Typ-Signale
(d_valido[1:0] und d cyctype[1:0]) geliefert. Der Ausgangs-Zähler 2324 erhöht sich an der ansteigenden Flanke
jedes PCI-Takt-Zyklus, an dem der MCA-Steuerblock 2274 die TOQ 2272 instruiert, zu dem nächsten Zyklus
(next_toq_cycle wird aufgestellt) zu gehen, und die TOQ 2272 ist nicht leer: d. h. inputr [2:0] entspricht nicht
outputr [2:0]). Zyklen, die in der TOQ 2272 existieren, werden durch die TOQ-Gültigkeits- und cycletype Sig-
nale (toq_valido[1:0] und toq_cyctypeo [1:0]) dargestellt. Gates 2328 und 2330 und ein Komparator 2332 sind
so angeordnet, um geeignet den Eingangs-Hinweiszeiger 2326 und den Ausgangs-Hinweiszeiger 2324 zu tak-
ten.
[0190] Wenn eine verzögerte Anforderungs-Transaktion oder eine gepostete Speicher-Schreib-Transaktion
aus der TOQ 2272 ausgesondert ist, wird die Transaktion in die TRQ 2270 platziert, um auf eine Arbitrierung
zu warten. Da allerdings verzögerte Abschluss-Transaktionen Target-Transaktionen sind und keine Mas-
ter-Transaktionen, werden verzögerte Abschlüsse nicht in die TRQ 2270 platziert. Anstelle davon werden ver-
zögerte Abschlüsse einfach aus der TRQ 2272 ausgesondert und dazu verwendet, die entsprechenden Daten
in den DCQ-Daten-Puffern für gültig zu erklären. Allerdings müssen, solange wie eine gepostete Spei-
cher-Schreib-Transaktion in der TRQ 2270 warteschlangenmäßig hineingestellt ist, alle verzögerten Abschlüs-
se in die TOQ 2272 platziert werden, sogar dann, wenn zwei oder mehr verzögerte Abschlüsse derselben, ver-
zögerten Anforderung entsprechen, und deshalb denselben, verzögerten Abschluss-Puffer, wie dies vorste-
hend beschrieben ist.
[0191] Wie die Fig. 73A bis 73D zeigen, steuert der MCA-Steuerblock 2274 den Fluss von Transaktionen
über den MCA. Wie vorstehend diskutiert ist, wird die PMWQ, DRQ und DCQ Anforderungs-Gültigkeit von
Transaktionen in den Warteschlangen durch Vorsehen von Vier-Bit-Gültigkeits-Signalen pmwq_valid[3:0],
drq_valid[3:0] und dcq_ valid[3:0] jeweils, zu dem MCA, gehalten. Unter diesen Signalen kann sich nur ein Bit
während jedes Takt-Impulses ändern, da nur eine einzelne, neue Transaktion in den Warteschlangen-Block bei
jedem Taktimpuls platziert werden kann. Deshalb identifiziert der MCA-Steuer-Block neue Gültigkeits-Anforde-
rungen durch Überwachen der sich ändernden Bits in den pmwq_valid, drq_valid und dcq_valid Signalen. Um
dies zu vorzunehmen, verriegelt der MCA-Steuer-Block jedes Signal und invertiert es an der ansteigenden
Flanke jedes PCI-Takts, um ein verzögertes, invertiertes Signal zu erzeugen, und vergleicht das verzögerte,
invertierte Signal mit dem momentanen Signal (d. h. dem Signal an dem nächsten Taktimpuls). Da nur ein neu
geändertes Bit denselben Wert wie sein verzögertes und invertiertes Gegenstück haben wird, ist der
MCA-Steuer-Block in der Lage, zu erfassen, welches Bit geändert ist. Unter Verwendung von Flip-Flops 2340,
2342 und 2344 und Gates 2346, 2348 und 2350, erzeugt die MCA-Steuereinheit new_pmwq_valid(3:0],
new_drq_valid[3:0] und new_dcq_valid[3:0] Signale, die, bei jedem Taktimpuls, zusammen identifizieren, ob
die DMWQ, DRQ oder DCQ, falls irgendeine vorhanden ist, irgendeine neue Transaktion für eine Validitierung
lieferte und welcher Puffer in der entsprechenden Warteschlange die neue Transaktion enthält. Wie auch
Fig. 74 zeigt, verwendet der MCA-Steuer-Block eine Durchsichts-Tabelle 2352, um die zwölf Bits der
new_pmwq_valid, new_drq_valid und new_dcq_valid Signale in die Zwei-Bit d_valid[1:0] und d_cyctype[1:0]
Signale, geliefert zu der TRQ und der TOQ, wie dies vorstehend diskutiert ist, umzuwandeln.
[0192] Die MCA-Steuereinheit gibt die TOQ durch Verriegeln des toq_enabled Signals auf einen Wert von „1"
frei, wenn entweder das trq_pmw aufgestellt ist, was anzeigt, dass ein geposteter Speicher-Schreib-Zyklus in
der TRQ in die Warteschlange gestellt ist, oder wenn das toq_enable Signal bereits aufgestellt ist und die TOQ
nicht leer ist (!toq_empty). Gates 2354 und 2356 und ein Flip-Flop 2358 sind so angeordnet, um toq_enabled
auf diese Art und Weise zu erzeugen.
[0193] Der MCA-Steuerblock stellt das new_toq_cycle Signal auf, das die TRQ instruiert, den Zyklus in die
Warteschlange zu stellen, der von der TOP ausgesondert ist, wenn dort nicht ein geposteter Spei-
cher-Schreib-Zyklus in TRQ während des vorherigen Takt-Zyklus (!s1_trq_pmw) vorhanden war, wenn die
TOQ nicht leer ist (!toq_empty), und wenn der Zyklus, der von der TOQ ausgesondert werden soll, nicht eine
25/215

DE 697 21 381 T2 2004.01.15
verzögerte Abschluss-Transaktion ist (!(toq_cyctypeo[1] = „DC")). Die MCA-Steuereinheit verwendet ein Gate
2360, um das new_toq_cycle Signal zu erzeugen.
[0194] Das next_toq_cycle Signal, das verwendet wird, um den TOQ-Ausgangs-Zähler auf den nächsten Zy-
klus in der TOQ zu erhöhen, wird aufgestellt, wenn die TOQ nicht leer ist (!toq_empty) und entweder wenn kei-
ne geposteten Speicher-Schreib-Zyklen momentan in der TRQ in die Warteschlange gestellt sind (!trq_pmw)
und der nächste Zyklus in der TOQ ein verzögerter Abschluss ist (toq_cyctype[1] = „DC"), oder wenn der
nächste TOQ-Zyklus ein gepostetes Speicher-Schreiben oder eine verzögerte Anforderungs-Transaktion ist
(!(toq_cyctype[1] = „DC")) und dabei keine geposteten Speicher-Schreib-Transaktionen während des vorheri-
gen Taktzyklus vorhanden waren (!s1_trq_pmw). Der Steuerblock verwendet Gates 2362, 2364, 2366 und
2368, um das next_toq_cycle Signal zu erzeugen.
[0195] Die MCA-Steuereinheit erzeugt das mca_run_dcq[3:0] Signal, um anzuzeigen, dass eine verzögerte
Abschluss-Transaktion von der TOQ ausgesondert worden ist. Wenn die TRQ keine geposteten Spei-
cher-Schreib-Zyklen enthält (!trq_pmw), ist die TOQ nicht leer (!toq_empty), und der TOQ-Zyklus ist ein verzö-
gerter Abschluss (toq_cyctype[1] = „DC"), das mca_run_dcq[3:0] Signal nimmt den Wert des decodierten
toq_valido[1:0] Signals an, was vorstehend diskutiert ist. Ansonsten ist das mca_run_dcq[3:0] Signal gleich
„0000". Das Gate 2370, der Decodieren 2372 und der Multiplexer 2374 sind so angeordnet, um
mca_run_dcq[3:0] auf diese Art und Weise zu erzeugen.
[0196] Der MCA-Steuer-Block erzeugt new_mca_run_dr[3:0] und new_mca_run_pmw[3:0] Signale, um an-
zuzeigen, dass er eine neue, verzögerte Anforderungs-Transaktion und eine gepostete Speicher-Transaktion
jeweils hat, die in die Warteschlange gestellt werden sollen. Das new_mca_run_dr[3:0] Signal nimmt den Wert
von dem 2x4 decodierten d_valido[1:0] Signal an, was vorstehend diskutiert ist, wenn der neue Zyklus ein ver-
zögerter Anforderungs-Zyklus ist (d_cyctype[0] = „DR"). Ansonsten werden alle Bits des new_mca_run_dr[3:0]
Signals auf Null gesetzt. Ähnlich nimmt das new_mca_run_pmw[3:0] Signal den Wert des 2x4 decodierten
d_valido[1:0] Signals an, wenn der neue Zyklus eine gepostete Speicher-Schreib-Transaktion ist, und wird an-
sonsten auf „0000" eingestellt. Decodieren 2376 und 2380 und Multiplexer 2378 und 2382 sind so angeordnet,
um die new_mca_run_dr und die new_mca_run_pmw Signale auf diese Art und Weise zu erzeugen.
[0197] Die MCA-Steuereinheit erzeugt toq_mca_run_dr[3:0] und toq_mca_run_pmw[3:0] Signale, um anzu-
zeigen, wenn eine neue, verzögerte Anforderungs-Transaktion oder eine gepostete Speicher-Schreib-Trans-
aktion, jeweils, von der TOQ ausgesondert wurde. Das toq_mca_run_dr[3:0] Signal nimmt den Wert des 2x4
decodierten toq_valido[1:0] Signals an, wenn ein verzögerter Anforderungs-Zyklus von der TOQ ausgesondert
ist, und einen Wert von „0000" ansonsten. In ähnlicher Weise nimmt das toq_mca_run_pmw[3:0] Signal den
Wert des 2x4 decodierten toq_valido[1:0] Signals an, wenn ein geposteter Speicher-Schreib-Zyklus von der
TOQ ausgesondert ist, und einen Wert von „0000" ansonsten. Decodieren 2384 und 2388 und Multiplexer 2386
und 2390 werden verwendet, um die toq_mca_run_dr und toq_mca_run_pmw Signale auf diese Art und Weise
zu erzeugen. Die MCA-Steuereinheit erzeugt die trq_mca_run_dr[3:0] und trq_mca_run_pmw[3:0] Signale, um
anzuzeigen, wenn eine neue, verzögerte Anforderungs-Transaktion oder eine gepostete Spei-
cher-Schreib-Transaktion jeweils die Arbitrierung in der TRQ erlangt hat, und bereit ist, auf dem PCI-Bus zu
laufen. Das trq_mca_run_dr[3:0] Signal nimmt den Wert des 2x4 decodierten trq_valido[1:0] Signals an, wenn
ein verzögerter Anforderungs-Zyklus die Arbitrierung erlangt hat und die TRQ nicht leer ist. Das
trq_mca_run_dr[3:0] nimmt einen Wert von „0000" ansonsten an. In ähnlicher Weise nimmt das
trq_mca_run_pmw[3:0] Signal den Wert des 2x4 decodierten trq_valido[1:0] Signals an, wenn ein geposteter
Speicher-Schreib-Zyklus die Arbitrierung erlangt hat und die TRQ nicht leer ist. Das trq_mca_run_pmw[3:0] Si-
gnal wird auf einen Wert von „0000" ansonsten eingestellt. Die Gates 2392 und 2398, die Decodierer 2394 und
2400 und die Multiplexer 2396 und 2402 werden dazu verwendet, die trq_mca_run_dr und trq_mca_run_pmw
Signale in dieser Art und Weise zu erzeugen.
[0198] Wenn die TRQ leer ist, kann der MCA eine Anforderung ausgeben, um die nächste Transaktion in der
TOQ laufen zu lassen, während die Transaktion in die TRQ platziert wird. Wenn sowohl die TRQ als auch die
TOQ leer sind, können Transaktionen damit beginnen, zu laufen, sogar bevor sie in die TRQ warteschlangen-
mäßig gestellt sind. Deshalb umfasst der MCA-Steuer-Block eine Logik, die bestimmt, wenn die new_mca_run
oder die toq_mca_run Signale asynchron verwendet werden können, um anzuzeigen, dass eine Transaktion
auf dem PCI-Bus versucht werden kann. Durch Umwandeln der new_mca_run oder der der toq_mca_run Si-
gnale in asynchrone Laufsignale, sichert die MCA-Steuereinheit einen PCI-Takt-Warte-Zustand. Wenn das
new_valid_set Signal durch den MCA-Steuerblock aufgestellt ist und die TOQ nicht freigegeben ist
(!toq_enabled), nehmen die async_mca_run_dr[3:0] und async_mca_run_pmw[3:0] Signale die Werte der
new_mca_run_dr[3:0] und new_mca_run_pmw[3:0] Signale jeweils an. Ansonsten nehmen die asynchronen
Laufsignale die Werte von toq_mca_run_dr[3:0] und toq_mca_run_pmw[3:0] Signale an. Die MCA-Steuerein-
heit verwendet das Gate 2404 und die Multiplexer 2406 und 2408 dazu, die asynchronen Laufsignale zu er-
zeugen.
[0199] Wenn ein PCI-Bus-Master eine Transaktion abgeschlossen hat (s1_q2pif_cyc_complete ist aufge-
stellt), ist die TRQ nicht leer (!trq_empty) und ist für einen Betrieb in dem Null-Retry-Mode konfiguriert
26/215

DE 697 21 381 T2 2004.01.15
(!cfg2q_infretry), und irgendeine neue Transaktion ist von der TOQ ausgesondert worden (new_toq_cycle)
oder die TOQ ist nicht freigegeben (!toq_enabled) und die MCA hat einen neuen Zyklus empfangen, der für
gültig erklärt wird (new_valid_set), die MCA kann nicht einen Zyklus auswählen, um auf dem PCI-Bus zu lau-
fen, so dass sowohl das mca_run_dr[3:0] als auch das mca_run_pmw[3:0] Signal auf „0000" gesetzt werden.
Ansonsten nehmen, falls die TRQ leer ist (trq_empty) und entweder eine neue Transaktion von der TOQ aus-
gesondert ist (new_toq_cycle) oder die TOQ nicht freigegeben ist (!toq_enabled) und die MCA einen neuen
Zyklus empfangen hat, der für gültig erklärt wird (new_valid_set), dann die mca_run_dr[3:0] und
mca_run_pmw[3:0] Signale den Wert der asynchronen Lauf-Signale async_mca_run_dr[3:0] und
async_mca_run_pmw[3:0], jeweils, an. Ansonsten nimmt das mca_run_dr[3:0] Signal den Wert des
trq_mca_run_dr[3:0] Signals an und das mca_run_pmw[3:0] Signal nimmt den Wert des trq_run_pmw[3:0] Si-
gnals an, mit AND mit dem Gültigkeits-Anforderungs-Signal von der PMWQ verknüpft (pmwq_valid[3:0]).
Gates 2410, 2412, 2414, 2416 und 2418 und Multiplexer 2420, 2422, 2424 und 2426 sind so angeordnet, um
die MCA-Lauf-Signale auf diese Art und Weise zu erzeugen.

DIE WARTESCHLANGEN-BLOCK-ZU-PCI-SCHNITTSTELLE (QPIF)

[0200] Wie wiederum die Fig. 4 und 75 zeigen, leitet die QPIF 148 den Fluss von Transaktionen zwischen
dem Warteschlangen-Block 127 und dem PCI-Bus 32. Die QPIF 148 liefert auch Transaktionen, initiiert auf
dem PCI-Bus 32, zu der Kabel-Schnittstelle 130. Die QPIF 148 arbeitet in zwei Moden: einem Master-Mode
und einem Slave-Mode. In dem Master-Mode hat die QPIF 148 eine Kontrolle über den PCI-Bus und führt des-
halb Transaktionen, vorgesehen für Target-Vorrichtungen auf dem Bus, aus. Eine Master-Zustand-Maschine
2500 in der QPIF 148 sucht Transaktionen von der PMWQ und DRQ auf und führt sie auf dem PCI-Bus aus,
wenn sich die QPIF in dem Master-Mode befindet. In dem Slave-Mode empfängt die QPIF 148 Transaktionen,
initiiert durch eine Vorrichtung auf dem PCI-Bus, und liefert entweder die angeforderten Informationen zu der
initiierenden Vorrichtung (falls die Informationen verfügbar sind) oder sucht die initiierende Vorrichtung erneut
auf (falls die Transaktion eine verzögerte Anforderung ist) und führt die Transaktion weiter zu dem eingangs-
seitigen Chip. Die Transaktion wird auch aufgesucht, wenn der entsprechende eine der Transaktions-Zähler
159 anzeigt, dass der andere Brücken-Chip voll ist, wie dies vorstehend diskutiert ist. Eine Slave-Zustand-Ma-
schine 2502 empfängt eine ankommende Transaktion von dem PCI-Bus und prüft dann die DCQ nach einer
entsprechenden Abschluss-Nachricht und/oder führt die Transaktion zu einem Kabel-Nachrichten-Generator
2504 weiter, der wiederum die Transaktion über das Kabel zu dem eingangsseitigen Brücken-Chip weiterführt.
[0201] Unter Bezugnahme auch auf die Fig. 76A und 76B umfasst die QPIF eine Adressen- und Daten-Ver-
riegelungs-Logik 2506, die die ankommenden Adressen-Phasen- und Daten-Phasen-Informationen, zugeord-
net zu jeder Transaktion, initiiert durch eine Vorrichtung auf dem PCI-Bus, verriegelt. Die QPIF-Slave-Zu-
stand-Maschine 2502 kontrolliert die Betriebsweise der Adressen- und Daten-Verriegelungs-Logik 2506. Wenn
eine neue Transaktion, initiiert auf dem PCI-Bus, für die QPIF vorgesehen ist, stellt die Slave-Zustand-Maschi-
ne 2502 ein Adressen-Phasen-Verriegelungs-Signal (reg_latch_first_request) auf, das anzeigt, dass die
Adressen-Phasen-Informationen von dem PCI-Bus verriegelt werden sollten. An der nächsten, abfallenden
Flanke des PCI-Takt-Signals bewirkt die Aufstellung des reg_latch_first_request Signals, dass ein verzögertes
Adressen-Phasen-Verriegelungs-Signal (dly_reg_latch_first_request) aufgestellt werden soll. Wenn sowohl
das originale als auch das verzögerte Adressen-Phasen-Verriegelungs-Signal aufgestellt sind, erzeugt die Ver-
riegelungs-Logik 2506 ein erstes Verriegelungs-Signal (latch1). Ein Flip-Flop 2508 und ein Gate 2510 sind so
angeordnet, um das erste, verriegelnde Signal auf diese Art und Weise zu erzeugen.
[0202] Die Verriegelungs-Logik 2506 lädt die Adressen-Phasen-Informationen von dem PCI-Bus (über die
PCI-Schnittstelle) in drei Adressen-Phasen-Register ein, wenn das erste Verriegelungs-Signal aufgestellt ist.
Das erste Register ist ein dreißig-Bit-Adressen-Register 2512, das die Start-Adresse der momentanen Trans-
aktion anzeigt. Wenn das erste Verriegelungs-Signal aufgestellt ist, wird das Adressen-Signal von der
PCI-Schnittstelle (p2q_ad[31:2]) in das Adressen-Register 2512 eingeladen. Das Adressen-Register 2512 gibt
das Adressensignal aus, verwendet durch die QPIF (q2pif_addr[31:2]). Das zweite Register ist ein Vier-Bit-Be-
fehls-Register 2514, das den PCI-Befehl-Code von dem PCI-Bus empfängt (p2q_cmd[3:0]), und das QPIF-Be-
fehls-Signal ausgibt (q2pif_cmd[3:0]). Das dritte Register ist ein Drei-Bit-Schlitz-Auswahl-Register 2516, das
das p2q_slot[2:0] Signal empfängt, das anzeigt, welche PCI-Vorrichtung der momentane Bus-Master ist, und
gibt das QPIF-Schlitz-Auswahl-Signal aus (g2pif_slot[2:0]).
[0203] Wenn die Adressen-Phase der PCI-Transaktion endet, stellt die Slave-Zustand-Maschine 2502 ein
Daten-Phasen-Verriegelungs-Signal auf (reg_latch_second_request), das anzeigt, dass die Daten-Phasen-In-
formationen von dem PCI-Bus verriegelt werden sollten. An der nächsten, abfallenden Flanke des PCI-Takt-Si-
gnals bewirkt das aufgestellte reg_latch_first_request Signal, dass ein verzögertes Daten-Phasen-Verriege-
lungs-Signal (dly_reg_latch_second_request) aufgestellt wird. Wenn sowohl das originale als auch das verzö-
gerte Daten-Phasen-Verriegelungs-Signal aufgestellt sind, erzeugt die Verriegelungs-Logik 2506 ein zweites
Verriegelungs-Signal (latch2). Ein Flip-Flop 2518 und ein Gate 2520 sind so angeordnet, um das zweite Ver-
27/215

DE 697 21 381 T2 2004.01.15
riegelungs-Signal auf diese Art und Weise zu erzeugen.
[0204] Die Verriegelungs-Logik 2506 lädt dann die Daten-Phasen-Informationen von dem PCI-Bus (über die
PCI-Schnittstelle) in drei Daten-Phasen-Register, wenn das zweite Verriegelungs-Signal aufgestellt ist. Das
erste Daten-Phasen-Register ist ein Zweiunddreißig-Bit-Daten-Register 2522, das die Daten empfängt, die der
momentanen Transaktion zugeordnet sind, und zwar auf den PCI-Adressen/Daten-Leitungen (p2q_ad[31:0]),
und gibt das QPIF-Daten-Signal aus (q2pif_data[31:0]). Das zweite Daten-Phasen-Register ist ein
Vier-Bit-Freigabe-Register 2524, das Freigabe-Bits von dem PCI-Bus empfängt (p2q_cbe[3:0]), und das
QPIF-Byte-Freigabe-Signal ausgibt (qq2pif_byte_en[3:0]). Das dritte Register ist ein Drei-Bit-Verriege-
lungs-Register 2526, das das PCI-Verriegelungs-Signal empfängt (p2q_lock), das anzeigt, dass die momenta-
ne Transaktion als eine verriegelte Transaktion laufen sollte, und das QPIF-Verriegelungs-Signal ausgibt
(q2pif_lock).
[0205] Wie wiederum die Fig. 75 und auch die Fig. 77 zeigen, umfasst das QPIF einen „Verriegelungs"-Lo-
gik-Block 2528, der den „Verriegelungs"-Zustand des QPIF kontrolliert.
[0206] Die QPIF besitzt drei Verriegelungs-Zustände: einen nicht verriegelten Zustand 2530 (lock_state[1:0]
= „00"), der anzeigt, dass keine verriegelten Transaktionen in der DCQ anhängig sind; einen verriegelten Zu-
stand 2532 (lock_state[1:0] = „01"), der anzeigt, dass eine verriegelte Transaktion in der DCQ empfangen wor-
den ist oder sich im Abschluss auf dem PCI-Bus befindet; und einen unlocked-but-retry Zustand 2534
(lock_state[1:0] = „10"), der anzeigt, dass die Verriegelung entfernt worden ist, allerdings eine gepostete Spei-
cher-Schreib-Transaktion, die in dem anderen Brücken-Chip anhängig ist, laufen muss, bevor die nächste
Transaktion angenommen werden kann.
[0207] Bei einem Power-up bzw. Einschalten und einem Reset tritt die Verriegelungs-Logik 2528 in den nicht
verriegelten Zustand 2530 ein und wartet auf eine verriegelte Transaktion, um in die DCQ einzutreten (ange-
zeigt durch die Aufstellung des dcq_locked Signals). Bei dem ersten Takt-Impuls, nachdem das dcq_locked
Signal aufgestellt ist, tritt die Verriegelungs-Logik in den verriegelten Zustand 2532 ein, der die QPIF-Slave-Zu-
stand-Maschine 2502 dazu bringt, alle Transaktions-Anforderungen von dem PCI-Bus erneut zu versuchen.
Die PCI-Schnittstelle stellt auch ein Verriegelungs-Signal (p2q_lock) auf, das anzeigt, dass sie den PCI-Bus
für die Transaktion verriegelt hat. Nachdem die Verriegelungs-Transaktion abgeschlossen ist und die anfor-
dernde Vorrichtung die verriegelten Abschluss-Daten von der DCQ aufgesucht hat, wird das dcq_locked Signal
weggenommen. Bei dem ersten Taktimpuls, nachdem das dcq_locked weggenommen ist, während das
p2q_lock Signal noch aufgestellt ist, falls keine geposteten Speicher-Schreib-Vorgänge in dem anderen Brü-
cken-Chip anhängig sind (d. h. das pmw_empty Signal wird durch den Kabel-Decodierer aufgestellt), kehrt die
Verriegelungs-Logik 2528 zu dem nicht verriegelten Zustand 2530 zurück und die Slave-Zustand-Maschine
2502 ist wieder in der Lage, Transaktions-Anforderungen zu akzeptieren. Allerdings tritt, falls das pwm_empty
Signal nicht bei dem ersten Taktimpuls aufgestellt ist, nachdem das dcq_lock Signal weggenommen ist, die
Verriegelungs-Logik 2528 in den unlocked-but-retry Zustand 2534 ein, der die Slave-Zustand-Maschine 2502
dazu bringt, alle Transaktionen erneut zu versuchen, bis der gepostete Speicher-Schreib-Zyklus auf dem an-
deren PCI-Bus abgeschlossen ist. Nachdem der gepostete Speicher-Schreib-Zyklus abgeschlossen ist, wird
das pmw_empty Signal aufgestellt, und die Verriegelungs-Logik 2528 kehrt zu dem nicht verriegelten Zustand
2530 zurück.
[0208] Wie wiederum die Fig. 75 und auch die Fig. 78 zeigen, umfasst die QPIF eine Puffer-Flush-Logik
2536, die bestimmt, wann die die DCQ Daten von einem oder allen deren Daten-Puffer entleeren sollte. Wie
vorstehend diskutiert ist, erzeugt die PCI-Schnittstelle in dem ausgangsseitigen Chip ein p2q_flush Signal,
wenn der eingangsseitige Chip ein I/O oder config Schreiben oder ein Speicher-Schreiben ausgibt, das das
Soll-Speicher-Bereichs-Register (Target Memory Range Register – TMRR) einer ausgangsseitigen Vorrich-
tung trifft. Die QPIF-Puffer-Flush-Logik 2536 stellt ein QPIF-Flush-Signal auf (general_flush), das den entspre-
chenden Daten-Puffer oder alle Daten-Puffer entleert (in Abhängigkeit von dem Wert des p2q_slot Signals, wie
dies vorstehend diskutiert ist), wenn das p2q_flush Signal empfangen ist. Ansonsten stellt die Puffer-Flush-Lo-
gik 2536 das allgemeine Flush-Signal nur dann auf, wenn eine Vorrichtung auf dem sekundären Bus eine ver-
zögerte Anforderung ausgibt, die alle der DCQ-Puffer verfehlt, wenn durch die DCQ-Steuer-Logik geprüft ist
(d. h. !dcq_hit und q2pif_check_cyc sind aufgestellt). In jedem Fall wird das general_flush Signal dazu verwen-
det, nur Puffer zu entleeren, die sich in dem „prefetch" Zustand befinden, wie dies vorstehend diskutiert ist.
Deshalb werden Prefetch-Daten in der DCQ gehalten, bis die PCI-Schnittstelle ein Entleeren verlangt oder bis
die entsprechende PCI-Vorrichtung eine nicht-sequenzielle Anforderung ausgibt (d. h. verfehlt die DCQ).
Gates 2538 und 2540 sind so angeordnet, um das general_flush Signal auf diese Art und Weise zu erzeugen.
[0209] Wenn eine Multi-Threaded-Vorrichtung mehr als einen Abschluss-Puffer zugeordnet besitzt, wobei
mindestens einer davon Prefetch-Daten enthält, verbleiben die Prefetch-Daten in dem entsprechenden Puffer
so lange, wie die Vorrichtung nicht eine Anforderung ausgibt, die alle die DCQ-Puffer verfehlt. Sobald die Vor-
richtung eine neue Anforderung ausgibt, werden alle deren Prefetch-Puffer entleert. Alternativ könnte ein Pre-
fetch-Puffer, zugeordnet einer Multi-Threaded-Vorrichtung, entleert werden, sobald die Vorrichtung eine Anfor-
derung ausgibt, die einen anderen DCQ-Puffer trifft.
28/215

DE 697 21 381 T2 2004.01.15
[0210] Wie wiederum Fig. 75 zeigt, umfasst die QPIF einen Lese-Befehl-Logik-Block 2542, der Lese-Befehle
von der PCI-Schnittstelle und Prefetch-Befehle von der DCQ empfängt und ein abgehendes Nachrichten-Be-
fehl-Signal (message_cmd) zu dem Kabel zuführt. In Nicht-Streaming-Situationen kann der abgehende Nach-
richten-Befehl derselbe wie der Befehl sein, der von dem PCI-Bus oder der DCQ empfangen ist, oder die Le-
se-Befehl-Logik 2542 kann den Befehl in einen solchen umwandeln, der eine größere Menge an Daten ein-
setzt. Da Transaktionen, ausgeführt dword-by-dword, länger benötigen, um auf dem Host-Bus abzuschließen,
als Transaktionen, die eine gesamte Cache-Zeile von Daten einsetzen, und da einzelne Cache-Zeilen-Trans-
aktionen länger benötigen, um auf dem Host-Bus abzuschließen, als Mehrfach-Cache-Zeilen-Transaktionen,
unterstützt die Lese-Befehl-Logik oft „kleinere" Befehle zu „größeren" solchen, um die Zahl von Takt-Zyklen,
verbraucht durch die Transaktion, zu reduzieren („read promotion"). Zum Beispiel ist, wenn eine Vorrichtung
auf dem sekundären PCI-Bus einen Speicher-Lese-Befehl ausgibt und dann nach jedem dword von Daten in
einer Cache-Zeile fragt, die Lese-Befehl-Logik 2542 in der Lage, die Host-Latenzzeit durch Unterstützen des
PCI-Befehls zu einer Speicher-Lese-Zeile zu reduzieren, was ermöglicht, dass der eingangsseitige Chip die
gesamte Cache-Zeile an Daten auf einmal liest anstelle davon, jedes dword individuell zu lesen.
[0211] Wie auch Fig. 79 zeigt, erzeugt, wenn die DCQ anzeigt, dass eine Lese-Datenfolge eingerichtet wor-
den ist (d. h. dcq_stream_connect ist aufgestellt), wie dies vorstehend diskutiert ist, die Lese-Befehl-Logik
2542 einen Nachrichten-Befehl von „1000", was den eingangsseitigen Chip darüber informiert, dass eine Da-
tenfolge auftritt. Wenn keine Datenfolge eingerichtet worden ist, muss die Lese-Befehl-Logik 2542 entschei-
den, ob ein Speicher-Lese-, ein Speicher-Lese-Zeilen- oder ein Speicher-Lese-Mehrfach-Befehl zu verschi-
cken ist. Falls der Befehl, empfangen von dem PCI-Bus, ein Speicher-Lese(MR)-Befehl ist (q2p_CMD[2:0] ent-
spricht „0110") und das entsprechende Speicher-Lesezu-Speicher-Lese-Zeilen-Unterstützungs-Bit
(cfg2q_mr2mr1) in den Konfigurations-Registern eingestellt ist, erzeugt die Lese-Befehl-Logik 2542 einen
Speicher-Lese-Zeilen-Befehl („1110"). Andererseits erzeugt, falls der PCI-Befehl ein Speicher-Lese-Befehl ist,
und das entsprechende Speicher-Lese-zu-Speicher-Lese-Mehrfach-Bit (cfg2q_mr2mrm) eingestellt ist, oder
falls der Befehl ein Speicher-Lese-Zeilen-Befehl (q2pif_cmd[3:0] gleich zu „1110") von dem PCI-Bus ist oder
ein Prefetch-Zeilen-Befehl (dcq_prefetch_linie ist aufgestellt) von der DCQ ist und das entsprechende Spei-
cher-Lese-Zeilen-zu-Speicher-Mehrfach-Bit (cfg2q_mrl2mrm) eingestellt ist, oder falls der Befehl ein Pre-
fetch-Mehrfach-Befehl (dcq_prefetch_mu1) von der DCQ ist, die Lese-Befehl-Logik 2542 einen Speicher-Le-
se-Mehrfach-Befehl (d. h. message_cmd entspricht „1100"). Falls der Befehl ein Prefetch-Zeilen-Befehl ist und
das entsprechende Speicher-Lese-Zeilen-zu-Speicher-Lese-Mehrfach-Bit nicht eingestellt ist, erzeugt die Le-
se-Befehl-Logik 2542 einen MRL-Befehl („1110"). Ansonsten gibt die Lese-Befehl-Logik 2542 den empfange-
nen PCI-Befehl (q2pif_cmd[2:0]) als das Nachrichten-Befehl-Signal aus. Gates 2544, 2546, 2548, 2550, 2552,
2554, 2556 und 2558 und Multiplexer 2560, 2562 und 2564 sind so angeordnet, um das message_cmd Signal
auf diese Art und Weise zu erzeugen.
[0212] Wie wiederum Fig. 75 zeigt, erzeugt, wenn die QPIF im Master-Mode arbeitet und eine Steuerung
über den Bus empfangen hat, um eine Transaktion, gespeichert in der PMWQ, laufen zu lassen, ein
Schreib-Befehl-Logik-Block 2566 den Befehl-Code, der auf dem PCI-Bus ausgeführt wird. Um Transakti-
ons-Zeit zu reduzieren, wie dies vorstehend diskutiert ist, kann eine Schreib-Befehl-Logik Spei-
cher-Schreib-(MW)-Befehle umwandeln, was Daten-Übertragungen ein dword zu einem Zeitpunkt in Spei-
cher-Schreib- und Ungültigkeits-Befehle (MWI) hinein einsetzt, was Übertragungen von mindestens einer ge-
samten Cache-Zeile an Daten einsetzt. Der Schreib-Befehl-Logik-Block 2566 kann einen Befehl-Midstream
umwandeln, wenn z. B. die Transaktion als ein Speicher-Schreiben in der Mitte einer Cache-Zeile beginnt und
Daten enthält, die die nächste Cache-Zeilen-Grenze kreuzt und alle acht dwords an Daten in der nächsten Ca-
che-Zeile umfasst. In dieser Situation beendet die Schreib-Befehl-Logik 2566 die Speicher-Schreib-Transakti-
on, wenn sie die erste Cache-Zeilen-Grenze erreicht, und initiiert ein Speicher-Schreiben und erklärt eine
Transaktion für ungültig, um nächste, volle Cache-Zeilen an Daten zu übertragen. Die Schreib-Befehl-Logik
2566 kann auch einen MWI-Transaktions-Midstream zugunsten einer MW-Transaktion beenden, falls weniger
als eine Cache-Zeile an Daten zu dem Target-Bus hin geschrieben werden soll, nachdem eine Cache-Zei-
len-Grenze gekreuzt wird.
[0213] Wie wiederum Fig. 75 und auch Fig. 80 zeigen, hält die Slave-Zustand-Maschine 2502 auch zwei
Zähler aufrecht, die anzeigen, wenn eine gepostete Schreib-Transaktion, initiiert auf dem PCI-Bus, beendet
werden sollte. Ein 4K Seiten-Grenzen-Zähler (Page Boundary Counter) 2594 erzeugt ein Seiten-Zähl-Signal
(page_count_reg[11:2]), das anzeigt, wenn Daten, übertragen von dem PCI-Bus, eine 4K Seiten-Grenze errei-
chen. Da ein einzelner Speicher-Zugriff nicht erlaubt ist, um eine 4K Seiten-Grenze zu überqueren, muss die
gepostete Schreib-Transaktion auf dem initiierenden Bus beendet werden, wenn eine Grenze erreicht ist. Der
4K Seiten-Grenzen-Zähler 2594 wird mit dem dritten bis zwölften Bit der Transaktions-Adresse
(q2pif_addr[11:2]) geladen, wenn die Zustand-Maschine ein load_write_counter Signal aufstellt (die Umstände,
die eine Aufstellung von diesem Signal mit sich bringen, werden in weiterem Detail nachfolgend diskutiert). Der
Zähler 2594 erhöht sich dann um eins an der ansteigenden Flanke jedes Takt-Impulses, nachdem das
load_write_counter Signal weggenommen ist. Der Zähler 2594 wird nicht bei Takt-Impulsen erhöht, während
29/215

DE 697 21 381 T2 2004.01.15
denen die initiierende Vorrichtung einen Initiator-Warte-Zustand eingesetzt hat (d.h. p2q_irdy aufgestellt). Der
Ausgang von Gate 2592 bestimmt, wann dem Zähler erlaubt wird, sich zu erhöhen. Wenn alle Bits in dem
page_count_reg[11:2] Signal hoch sind, ist eine 4K Seiten-Grenze erreicht worden und die Slave-Zustand-Ma-
schine muss die gepostete Schreib-Transaktion beenden und erneut die initiierende Vorrichtung versuchen.
[0214] Ein dword Zähler 2598 erzeugt ein pmw_counter[5:0] Signal, das die Zahl von dwords, geschrieben
von dem initiierenden Bus, während einer geposteten Schreib-Transaktion anzeigt. Das pmw_counter[5:0] Si-
gnal wird dann verwendet, um anzuzeigen, wann ein Überlauf aufgetreten ist oder wann die letzte Zeile der
Transaktion erreicht worden ist, wie dies nachfolgend diskutiert ist. Wenn die Slave-Zustand-Maschine 2503
das load_write_counter Signal aufstellt, werden die dritten bis fünften Bits des Adressen-Signals
(q2pif_addr[4:2]) in die unteren drei Bits des Zählers 2598 eingeladen, während die oberen drei Bits auf Null
gesetzt werden. Dieses Adressen-Offset zeigt an, an welchem dword in einer Cache-Zeile eine gepostete
Schreib-Transaktion gestartet wurde. Der Zähler 2598 erhöht sich dann um eins an der ansteigenden Flanke
jedes Takt-Impulses, nachdem das load_write_counter Signal weggenommen ist. Der Zähler 2598 wird nicht
bei Takt-Impulsen erhöht, während denen die initiierende Vorrichtung einen Initiator-Warte-Zustand eingesetzt
hat (d. h. p2q_irdy ist aufgestellt). Der Ausgang des Gates 2596 bestimmt, wann dem Zähler erlaubt wird, sich
zu erhöhen. Wenn alle Bits in dem pmw_counter[5L0] Signal hoch sind, hat das gepostete Schreiben das Ende
der achten Cache-Zeile erreicht.
[0215] Wie wiederum die Fig. 81A bis 81C zeigen, erzeugt der Schreib-Befehl-Logik-Block 2566 ein
Vier-Bit-Schreib-Befehl-Signal (write_cmd[3:0]), das den Befehl-Code der geposteten Schreib-Transaktion an-
zeigt, die auf dem PCI-Bus ausgeführt werden soll. Falls der Befehl-Code, gespeichert in der PMWQ, einen
Speicher-Schreib- und Ungültigkeits-Befehl darstellt (pmwq_cmd[3] = „1"), erzeugt die Schreib-Befehl-Logik
2566 einen Schreib-Befehl-Code von „1111". Falls der PMWQ-Befehl-Code einen Speicher-Schreib-Befehl
darstellt, verriegelt sich die Schreib-Befehl-Logik 2566 an dem Speicher-Schreibzu-Speicher-Schreib- und Un-
gültigkeits-Konfigurations-Bit (cfg2q_mw2mwi) entsprechend dem Target-PCI-Schlitz. Falls das
cfg2q_mw2mwi Bit nicht eingestellt ist, erzeugt die Schreib-Befehl-Logik 2566 einen Speicher-Schreib-Befehl
(„0111"). Falls das Konfigurations-Bit eingestellt ist, erzeugt die Schreib-Befehl-Logik 2566 einen MWI-Befehl,
falls die nächste Zeile in dem PMWQ-Daten-Puffer voll ist (pmwg_full_line ist aufgestellt), und erzeugt einen
MW-Befehl ansonsten. Die Multiplexer 2568 und 2570 sind so angeordnet, um das write_cmd Signal auf diese
Art und Weise zu erzeugen.
[0216] Wenn die QPIF eine Transaktion auf dem PCI-Bus ausführt und eine Cache-Zeilen-Grenze erreicht
hat, kann die Schreib-Befehl-Logik 2566 ein new_write_cmd Signal aufstellen, das anzeigt, dass die momen-
tane Transaktion zugunsten eines neuen Schreib-Befehls beendet werden muss. Falls die Transaktion die letz-
te Cache-Zeile in dem PMWQ-Daten-Puffer erreicht hat (d. h. pmwq_pointer[5:3] entspricht „111"), wird das
new_write Befehl-Signal aufgestellt, um anzuzeigen, dass die Transaktion beendet werden sollte, falls der
nächste PMWQ-Puffer nicht ein Überlauf-Puffer ist, gültige Daten enthaltend, falls das entsprechende
cfg2q_mw2mwi Bit nicht eingestellt ist, oder falls die full_line Bits entsprechend zu der momentanen Ca-
che-Zeile und der nächsten Cache-Zeile unterschiedlich sind (d.h. pmwq_full_line[7] entspricht nicht
pmwq_next_full_line). Falls die Transaktion nicht das Ende des PMWQ-Puffers erreicht hat, wird das
new_write_cmd Signal aufgestellt, entweder falls die nächste Zeile in dem PMWQ-Puffer nicht gültige Daten
enthält (!pmwq_valid_lines[x + 1]), oder falls das cdfg2q_mw2mwi Bit eingestellt ist und die Voll-Zeilen-Bits für
die momentane Zeile und die nächste Zeile unterschiedlich sind (d. h. pmwq_full_line[x] entspricht nicht
pmwq_full_line[x + 1]). Gates 2572, 2474, 2576, 2578 und 2580 und ein Multiplexer 2582 sind so angeordnet,
um das new_write Befehl-Signal auf diese Art und Weise zu erzeugen.
[0217] Nachdem das new_write_cmd Signal aufgestellt ist, wird die Transaktion nicht beendet, bis der
Schreib-Befehl-Logik-Block 2566 ein synchrones, neues Schreib-Befehl-Signal aufstellt
(held_new_write_cmd). Das held_new_write_cmd Signal wird an dem ersten Taktimpuls aufgestellt, nachdem
das new_write_cmd Signal aufgestellt ist und das end_of_line Signal aufgestellt ist, was anzeigt, dass das
Ende der Cache-Zeile erreicht worden ist, so lange wie die PCI-Schnittstelle nicht die Transaktion beendet hat
(d. h. p2q_start_pulse ist aufgestellt). Der held_new_write Befehl wird bei einem Reset und bei dem ersten
Takt-Impuls weggenommen, nachdem die new_write_cmd, end_of-line und p2q_start_pulse Signale wegge-
nommen sind und die QPIF die Transaktion beendet (d. h. das asynchrone early_cyc_complete Signal ist auf-
gestellt). Ansonsten behält das held_new_write_cmd Signal seinen momentanen Wert. Gates 2584 und 2586,
ein Invertieren 2588 und ein Flip-Flop 2590 sind so angeordnet, um das held_new_write_cmd Signal auf diese
Art und Weise zu erzeugen.
[0218] Wie wiederum Fig. 75 und auch Fig. 82A zeigen, umfasst die QPIF einen Über-lauf-Logik-Block 2600,
der der Master-Zustand-Maschine 2500 ermöglicht, Überlauf-Daten zu verwalten, falls irgendwelche vorhan-
den sind, wenn eine gepostete Schreib-Transaktion auf dem Target-Bus ausgeführt wird. Wenn die QPIF ein
Transaktions-Lauf-Signal (mca_run_pmw oder mca_run_dr, wie vorstehend diskutiert ist) von dem MCA emp-
fängt, erzeugt die Überlauf-Logik 2600 ein Zwei-Bit-Initial-Warteschlangen-Auswahl-Signal
(start_queu_select[2:0]), was anzeigt, welcher der Puffer in der PMWQ oder der DRQ ausgewählt werden soll-
30/215

DE 697 21 381 T2 2004.01.15
te, um die momentane Transaktion laufen zu lassen. Die folgende Tabelle stellt dar, wie das start_queue_select
Signal erzeugt wird.
[0219]

[0220] Wenn die QPIF eine gepostete Schreib-Transaktion auf dem Target-Bus ausführt, wird ein
Zwei-Bit-QPIF-Warteschlangen-Auswahl-Signal (q2pif_queue_select[1:0]) verwendet, um den geeigneten
Puffer in der PMWQ auszuwählen. Wenn die Transaktion initiiert wird, stellt die Master-Zustand-Maschine
2500 ein Warteschlangen-Auswahl-Signal auf (initial_queue_select), das bewirkt, dass das
q2pif_queue_select Signal den Wert des anfänglichen Warteschlangen-Auswahl-Signals annimmt
(start_queue_select). Zu demselben Zeitpunkt wird ein Warteschlangen-Auswahl-Zähler 2602 mit dem Wert
des start_queue_select Signals geladen. Nachdem das initial_queue_select Signal weggenommen ist, nimmt
das q2pif_queue_select Signal den Wert des count_queue_select Signals an, erzeugt durch den Zähler 2602.
Wenn die gepostete Speicher-Schreib-Transaktion in den nächsten PMWQ-Puffer überläuft, stellt die Mas-
ter-Zustand-Maschine 2500 ein Erhöhungs-Warteschlangen-Auswahl-Signal (inc_queue_select) auf, das be-
wirkt, dass sich der Zähler 2602 um Eins erhöht. Als Folge wird das q2pif_select_signal erhöht und der nächste
Puffer in der PMWQ wird ausgewählt, um die Transaktion fortzuführen. Ein Mulitplexer 2604 bestimmt den
Wert des q2pif_queue_select Signals.
[0221] Wie auch Fig. 82B zeigt, stellt die Überlauf-Logik 2600 ein overflow_next_queue Signal auf, wenn die
Master-Zustand-Maschine 2500 fortführen sollte, Informationen von dem nächsten PMWQ-Puffer während ei-
ner geposteten Speicher-Schreib-Transaktion zu sammeln. Unter Verwendung des q2pif_queue_select[1:0]
Signals um zu bestimmen, welche PMWQ momentan ausgewählt ist, stellt die Überlauf-Logik 2600 das
overflow_next_queue Signal auf, wenn das gültige Bit (pmwq_valid) und ein Überlauf-Bit (pwq_overflow) ent-
sprechend zu dem nächsten PMWQ-Puffer eingestellt sind. Die pmwq_valid und die pmwq_overflow Zeichen
werden nachfolgend diskutiert. Gates 2606, 2608, 2610 und 2612 und ein Multiplexer 2614 sind so angeordnet,
um das overflow_next_queue Signal auf diese Art und Weise zu erzeugen.
[0222] Wie wiederum Fig. 75 zeigt, umfasst die QPIF einen Lese-Ausrichtungs-Logik-Block 2616, der der
QPIF ermöglicht, fehlausgerichtete Speicher-Lese-Zeilen- und Speicher-Lese-Mehrfach-Transaktionen zu kor-
rigieren. Eine Lese-Zeilen Korrektur tritt dann auf, wenn die QPIF, während sie in dem Master-Mode arbeitet,
eine MRL- oder MRM-Transaktion empfängt, die in der Mitte einer Cache-Zeile beginnt. Um Transaktions-Zeit
zu reduzieren, beginnt die QPIF die Lese-Transaktion an der Cache-Zeilen-Grenze und ignoriert die nicht an-
geforderten dwords anstelle eines individuellen Lesens nur der angeforderten dwords von Daten.
[0223] Unter Bezugnahme auch auf Fig. 83 aktiviert die Lese-Ausrichtungs-Logik 2616 das Lese-Ausrich-
tungs-Merkmal durch Aufstellen eines align_read Signals. Dieses Signal wird dann aufgestellt, wenn der Be-
fehl, gespeichert in dem entsprechenden DRQ-Puffer, ein Speicher-Lese-Zeilen oder ein Speicher-Lese-Mehr-
fach-Befehl ist (d. h. drq_cmd [3:0] entspricht „1110" oder „1100" jeweils), und wenn das Lese-Ausrich-
tungs-Konfigurations-Bit (cfg2q_read_align) entsprechend zu der Target-PCI-Vorrichtung eingestellt ist. Gates
2618 und 2620 sind so angeordnet, um das align_read Signal auf diese Art und Weise zu erzeugen.
[0224] Wie wiederum die Fig. 84A bis 84C zeigen, umfasst die Lese-Ausrichtungs-Logik 2616 einen Le-
se-Ausrichtungs-Abwärts-Zähler 2622, der die dwords von jeder Cache-Zeilen-Grenze zählt und anzeigt, wenn
die Master-Zustand-Maschine 2500 das erste, angeforderte dword erreicht. Der Zähler 2622 umfasst eine Zu-
stand-Maschine 2624, die die Betriebsweise des Zählers 2622 steuert.
[0225] Bei einem Reset tritt der Zähler 2622 in einen IDLE CNT Zustand 2626 ein, in dem keine Zählung auf-
tritt. Wenn der MCA die QPIF dahingehend instruiert, eine verzögerte Anforderungs-Transaktion auf dem
PCI-Bus laufen zu lassen (d. h. wenn irgendwelche Bits in dem mca_run_dr[3:0] aufgestellt sind), stellt die
QPIF ein verzögertes Anforderungs-Lauf-Signal auf (any_drq_run), was anzeigt, dass sie versucht, eine ver-
zögerte Anforderungs-Transaktion laufen zu lassen. Während sich der Zähler in dem IDLE_CNT Zustand 2622
befindet, wird sein Drei-Bit-Ausgangs-Signal (throw_cnt[2:1]) mit dem dword offset der Transaktion-Adresse
(drq_addr[4:2]) geladen, wenn das any_run_drq Signal aufgestellt ist und die QPIF die Steuerung des

MCA Run Code start_queue_select
00000001 00
00000010 01
00000100 10
00001000 11
00010000 00
00100000 01
01000000 10
10000000 11

Erzeugung eines start_queue_select Signals
31/215

DE 697 21 381 T2 2004.01.15
PCI-Busses erhält (d. h. p2q_ack wird aufgestellt). Das Gate 2623 erzeugt das Lade-Freigabe-Signal. Dann
tritt, an der ansteigenden Flanke des nächsten PCI-Takt-Zyklus, der Zähler 2622 in den COUNT Zustand 2628
ein. Falls die Transaktion an einer Cache-Zeilen-Grenze beginnt, gleicht das dword offset „000" und keine Zäh-
lung wird benötigt. Wenn eine Lese-Ausrichtung aktiviert wird, beginnt die Master-Zustand-Maschine 2500
jede MRL- und MRM-Transaktion an der Cache-Zeilen-Grenze, ungeachtet der tatsächlichen Start-Adresse.
[0226] Während sich der Zähler 2622 in dem COUNT Zustand 2628 befindet, verringert er sich um Eins bei
jedem Takt-Impuls, solange wie das p2q_ack Signal aufgestellt ist, throw_cnt nicht Null erreicht hat, sich die
Transaktion in der Daten-Phase befindet (d. h. das asynchrone Signal eary_data_phase ist aufgestellt) und die
Target-Vorrichtung nicht einen Target-Ready-Warte-Zustand (!p2q_trdy) ausgegeben hat. Das Gate 2625 be-
stimmt, wann der Zähler erniedrigt wird. Falls die PCI-Schnittstelle den Bus von der QPIF wegnimmt (p2q_ack
wird weggenommen) oder falls die Daten-Phase endet (early_data_phase wird weggenommen), beendet der
Zähler 2622 ein Erniedrigen und tritt erneut in den IDLE_CNT Normalzustand 2626 ein. Falls das throw_cnt
Signal „000" erreicht, während das p2q_ack Signal noch aufgestellt ist, stoppt der Zähler 2622 ein Zählen und
tritt in den DONE Zustand 2630 ein. Ansonsten verbleibt der Zähler in dem COUNT Zustand 2628.
[0227] Wenn der Zähler „000" erreicht, stellt die Lese-Ausrichtungs-Logik 2616 ein read_data_start Signal
auf, das die Master-Zustand-Maschine 2500 instruiert, ein Lesen von Daten von der Target-Vorrichtung zu be-
ginnen. Ein Komparator 2632 erzeugt das read_data_start Signal. Nachdem das read_data_start Signal auf-
gestellt ist, verbleibt der Zähler 2622 in dem DONE Zustand 2630 bis die Daten-Phase endet
(early_data_phase, wird weggenommen).
[0228] Wie Fig. 85 zeigt, steuert die Master-Zustand-Maschine die Betriebsweise der QPIF, wenn die QPIF
in dem Master-Mode arbeitet. In dem Master-Mode führt die QPIF gepostete Schreib-Transaktionen und ver-
zögerte Anforderungs-Transaktionen auf dem PCI-Bus aus. Die folgende Tabelle stellt die Ereignisse dar, die
Zustand-Übergänge in der Master-Zustand-Maschine bewirken.
32/215

DE 697 21 381 T2 2004.01.15
[0229] Bei einem Reset tritt die Master-Zustand-Maschine in einen IDLE Zustand 2700 ein, in dem die QPIF
auf Instruktionen wartet, um eine Transaktion auf dem PCI-Bus laufen zu lassen. Wenn die QPIF ein Lauf-Si-
gnal von dem MCA empfängt (any_run wird aufgestellt, wenn irgendein Bit in dem mca_run_pmw Signal oder
dem mca_run_dr Signal aufgestellt ist), ist das Kabel nicht belegt, eine Nachricht weiterleitend (!cable_busy),
und die PCI-Schnittstelle versucht nicht, die vorherige Transaktion zu beenden (!p2q_master_dphase), die
Master-Zustand-Maschine versucht, die Transaktion auf dem PCI-Bus laufen zu lassen. Falls die Transaktion
eine verzögerte Anforderungs-Transaktion ist (any_run_drq ist aufgestellt) und der andere Chip keinen Raum

Master-Zustand-Transaktionen
33/215

DE 697 21 381 T2 2004.01.15
für einen verzögerten Abschluss hat (tc_dc_full ist aufgestellt), ist die Master-Zustand-Maschine nicht in der
Lage, die Anforderung laufen zu lassen, und führt den MCA zu der nächsten Transaktion weiter. Ansonsten
beginnt, falls die PCI-Schnittstelle die QPIF Steuerung des Busses (p2q_ack ist aufgestellt) gegeben hat, die
Master-Zustand-Maschine damit, die Transaktion auf dem PCI-Bus auszuführen. In dem IDLE Zustand 2700
liefert der Master die Adressen-Phasen-Informationen, die vorstehend diskutiert sind, zu dem PCI-Bus. Falls
die Transaktion, die laufen soll, ein Dual-Adressen-Zyklus ist (q2pif_dac_flag ist aufgestellt), tritt die Master-Zu-
stand-Maschine in einen MASTER_DAC Zustand 2702 ein, in dem die zweite Hälfte der Adressen-Informatio-
nen geliefert wird. Falls die Transaktion nicht ein Dual-Adressen-Zyklus ist und eine verzögerte Anforde-
rungs-Transaktion ist (any_run_drq ist aufgestellt), dann tritt die Master-Zustand-Maschine in einen RDATA1
Lese-Zustand 2704 ein, indem die Master-Zustand-Maschine die Datenphase der verzögerten Anforde-
rungs-Transaktion beginnt. Falls die Transaktion nicht ein Dual-Adressen-Zyklus ist und nicht eine verzögerte
Anforderung ist, ist sie eine gepostete Speicher-Schreib-Transaktion, so dass die Master-Zustand-Maschine
in einen WDATA1 Schreib-Zustand 2706 eintritt, indem die Master-Zustand-Maschine in die Datenphase der
geposteten Speicher-Schreib-Transaktion eintritt.
[0230] In dem MASTER_DAC Zustand 2704 = 2 liefert die Master-Zustand-Maschine die zweite Hälfte der
Adressen-Phasen-Informationen. Dann tritt, falls das p2q_ack Signal noch aufgestellt ist und die Transaktion
eine verzögerte Anforderung ist, die Master-Zustand-Maschine in den RDATA1 Zustand 2704 ein, wenn sie
das Start-Signal (p2q_start_pulse) von der PCI-Schnittstelle empfängt. Falls die Transaktion nicht eine verzö-
gerte Anforderung ist, tritt die Master-Zustand-Maschine in den WDATA1 Zustand 2706 ein, wenn sie den
PCI-Start-Impuls empfängt. Die Master-Zustand-Maschine initiiert auch eine verzögerte Abschluss-Nachricht
auf dem Kabel, wenn der PCI-Start-Impuls empfangen ist, durch Aufstellen eines Asynchron-Abschluss-Nach-
richten-Signals (early_master_send_message). Falls das p2q_ack Signal durch die PCI-Schnittstelle wegge-
nommen worden ist, kehrt die Master-Zustand-Maschine zu dem IDLE Zustand 2700 zurück und wartet darauf,
erneut die Transaktion zu versuchen.
[0231] Der RDATA1 Zustand 2704 ist der Anfangs-Zustand für verzögerte Lese- und verzögerte Schreib-An-
forderungen. In diesem Zustand wartet die Master-Zustand-Maschine auf den PCI-Start-Impuls, und zwar vor
Eintreten in eine RBURST Burst-Daten-Phase 2708. Wenn die Zustand-Maschine zuerst in den RDATA1 Zu-
stand 2704 eintritt, initiiert sie eine Abschluss-Nachricht auf dem Kabel, falls dies nicht schon bereits in dem
MASTER_DAC Zustand 2702 vorgenommen ist. Dann beendet, falls das p2q_ack durch die PCI-Schnittstelle
weggenommen ist, die Master-Zustand-Maschine die Transaktion, führt den MCA zu der nächsten Transaktion
weiter, und tritt erneut in den IDLE Zustand 2700 ein. Ansonsten präpariert, wenn der PCI-Start-Puls erscheint,
sich die Master-Zustand-Maschine so, um in den RBURST Zustand 2708 einzutreten. Falls die QPIF das Ende
der Transaktion anzeigt (queue_cyc_complete) oder falls die Transaktion eine 4K Seiten-Grenze erreicht hat
(read_page_disconnect ist aufgestellt, da alle Bits in dem drq_addr [11:2] Signal hoch sind), entfernt die Mas-
ter-Zustand-Maschine das frame_ signal von der QPIF und zeigt an, dass der nächste Teil an Daten der letzte
Teil ist (asynchrones Signal early_last_master_data ist aufgestellt), bevor in den RBURST Zustand 2708 ein-
getreten wird. Die Master-Zustand-Maschine stellt auch ein asynchrones early_master_lastline Signal auf, das
anzeigt, dass die letzte Zeile von Daten erreicht worden ist, falls das read_page_disconnect_lastline Signal
aufgestellt ist oder falls das DRQ-Last-Zeilen-Signal (drq_lastline) aufgestellt ist und die QPIF nicht ein Strea-
ming-Signal von dem anderen Brücken-Chip empfangen hat (cd_stream oder stream_match sind nicht aufge-
stellt oder cfq2q_stream_disable ist nicht eingestellt). Falls der PCI-Start-Impuls nicht aufgestellt ist, verbleibt
die Master-Zustand-Maschine in dem RDATA1 Zustand 2704, bis die QPIF die Transaktion beendet oder eine
4K Seiten-Grenze erreicht ist, was die Zustand-Maschine zu dem IDLE Zustand 2700 zurückführen wird, oder
bis der PCI-Start-Impuls erscheint, was die Zustand-Maschine dazu bringt, in den RBURST Zustand 2708 ein-
zutreten.
[0232] In dem RBURST Zustand 2708 führt die Master-Zustand-Maschine burstmäßig Daten zu dem
PCI-Bus. Falls eine Abschluss-Nachricht bis jetzt noch nicht initiiert worden ist, initiiert die Master-Zustand-Ma-
schine eine Abschluss-Nachricht unter Eintreten in den RBURST Zustand 2708. Dann beendet, falls das
p2q_ack Signal weggenommen ist, oder falls die QPIF Transaktion erneut durch die PCI-Schnittstelle versucht
wird (p2q_retry ist aufgestellt), oder falls die PCI-Schnittstelle die Transaktion aussondert (p2q_target_abort ist
aufgestellt), beendet die Master-Zustand-Maschine die Transaktion auf dem PCI-Bus, sondert die Ab-
schluss-Nachricht auf dem Kabel aus und kehrt zu dem IDLE Zustand zurück. Wenn das p2q_ack Signal weg-
genommen ist, fährt der Master-Zyklus-Arbitrierer fort, die momentane Transaktion auszuwählen. Wenn aller-
dings die Transaktion erneut aufgesucht oder ausgesondert ist, führt die Master-Zustand-Maschine den MCA
zu der nächsten Transaktion weiter.
[0233] Während das p2q_ack Signal noch aufgestellt ist und die QPIF-Transaktion nicht erneut versucht oder
ausgesondert wird, beendet die Master-Zustand-Maschine niemals die Transaktion und kehrt zu dem IDLE Zu-
stand 2700 zurück, falls eine 4K Seiten-Grenze erreicht ist und die PCI-Schnittstelle anzeigt, dass die Tar-
get-Vorrichtung aufgehört hat, Daten aufzunehmen (p2q_trdy ist nicht länger aufgestellt). Falls die Target-Vor-
richtung den letzten Teil von Daten nimmt, verbleibt die Zustand-Maschine in dem RBURST Zustand 2708.
34/215

DE 697 21 381 T2 2004.01.15
[0234] Falls die QPIF das queue_cyc_complete Signal aufstellt, was anzeigt, dass die Transaktion abge-
schlossen ist, wird der Master allgemein die Transaktion beenden und zu dem IDLE Zustand 2700 zurückkeh-
ren, falls das p2q_trdy Signal weggenommen ist oder in dem RBURST Zustand 2708 verbleibt, bis das letzte
dword an Daten übertragen wird, falls das p2q_trdy Signal aufgestellt verbleibt. Falls sich allerdings die Trans-
aktion in der Daten-Phase befindet und sich nicht in der letzten Daten-Phase befindet (p2q_master_dphase
und !p2q_last_dphase) und eine Datenfolge mit dem anderen Brücken-Chip eingerichtet worden ist
(cd_stream und stream_match und !cfg2q_stream_disable), wird die Master-Zustand-Maschine in der
RBURST-Phase indefinit verbleiben. Wenn sich die QPIF in einem Streaming-Vorgang befindet, stellt die Mas-
ter-Zustand-Maschine ein Streaming-Signal auf (q2pif_streaming), das die QPIF dazu bringt, fortzufahren, Da-
ten zu der anfordernden Vorrichtung auf dem anderen PCI-Bus zu liefern, bis die Vorrichtung die Transaktion
beendet.
[0235] Falls das p2q_ack Signal aufgestellt verbleibt und weder das p2q_retry, das p2q_target_abort oder das
queue_cyc_complete Signal aufgestellt ist, sieht die Master-Zustand-Maschine bei dem p2q trdy Signal nach.
Falls das Signal nicht aufgestellt ist, was anzeigt, dass die Target-Vorrichtung den letzten Teil von Daten ge-
nommen oder geliefert hat, stellt die Master-Zustand-Maschine deren nächstes Daten-Signal auf
(early_next_data), das anzeigt, dass die QPIF bereit ist, einen anderen Teil von Daten zu übertragen. Das
nächste Daten-Signal wird nur dann aufgestellt, falls die Transaktion nicht eine korrekte Lesung ist (align_read
ist nicht aufgestellt) oder falls die Transaktion eine korrekte Lesung ist und das read_data_start Signal aufge-
stellt worden ist. Falls das p2q_trdy Signal aufgestellt ist, was anzeigt, dass das Target nicht die letzte Da-
ten-Übertragung durchgeführt hat, verbleibt die Zustand-Maschine in dem RBURST Zustand 2708.
[0236] In dem WDATA1 Zustand 2706 beginnt die Master-Zustand-Maschine die Daten-Phase einer gepos-
teten Speicher-Schreib-Transaktion. Falls das p2q_ack Signal weggenommen ist oder die p2q_retry oder das
p2q_target_abort Signal aufgestellt ist, während sich die Master-Zustand-Maschine in diesem Zustand befin-
det, wird die Transaktion auf dem PCI-Bus beendet und die Zustand-Maschine kehrt zu dem IDLE Zustand
2700 zurück. Wenn das p2q_ack Signal weggenommen ist, verbleibt der MCA bei dem momentanen Zyklus;
ansonsten führt die Master-Zustand-Maschine die MCA schrittmäßig zu der nächsten Transaktion weiter.
[0237] Falls das p2q_ack Signal aufgestellt verbleibt und die Transaktion weder erneut aufgesucht noch aus-
gesondert wird, muss die Master-Zustand-Maschine bestimmen, ob der Schreibvorgang ein einzelnes dword
oder mehr als ein dword einsetzt. Falls in dem WDATA1 Zustand das queue_cyc_complete Signal aufgestellt
ist, wird das neue Halte-Schreib-Befehl-Signal aufgestellt, die end_of_line und new_write_cmd Signale werden
aufgestellt, oder die Transaktion hat das letzte dword von Daten erreicht, die Transaktion setzt ein einzelnes
dword ein. In dieser Situation endet die Transaktion und die Zustand-Maschine kehrt zu dem IDLE Zustand
2700 nur dann zurück, wenn das Target den letzten Teil von Daten nahm (!p2q_trdy). Ansonsten verbleibt die
Zustand-Maschine in dem WDATA2 Zustand 2710. Falls die Transaktion mehr als ein dword von Daten ein-
setzt, tritt die Master-Zustand-Maschine in einen WDATA2-Burst-Daten-Phasen-Zustand 2710 ein. Unmittelbar
vor einem Eintreten in den WDATA2 Zustand setzt die Master-Zustand-Maschine einen q2p_irdy Warte-Zu-
stand ein, falls das overflow_next_queue Signal aufgestellt worden ist.
[0238] In dem WDATA2 Zustand 2710 leitet die Master-Zustand-Maschine die Daten burstmäßig zu dem
PCI-Bus weiter. Falls das p2q_ack Signal weggenommen ist oder die Transaktion durch die PCI-Schnittstelle
ausgesondert ist, wird die Transaktion in der QPIF beendet und die Master-Zustand-Maschine tritt erneut in
den IDLE Zustand 2710 ein. Falls die Transaktion erneut durch die PCI-Schnittstelle versucht wird, allerdings
die PCI-Schnittstelle die Daten nahm, die geliefert sind (!p2q_trdy), tritt die Master-Zustand-Maschine erneut
in den IDLE Zustand 2700 ein. Ansonsten tritt die Zustand-Maschine in einen WRETRY-Stepback-Zustand
2712 ein, der die PMWQ außerhalb des Hinweiszeigers zurück zu dem vorherigen Teil von Daten durch Erzeu-
gen des Rückschreit-Signals, das vorstehend diskutiert ist, führt. Von dem WRETRY Zustand 2712 tritt die Zu-
stand-Maschine immer wieder in den IDLE Zustand 2700 ein.
[0239] Falls das p2q_ack Signal aufgestellt verbleibt und die Transaktion weder erneut versucht noch ausge-
sondert ist, bestimmt die Master-Zustand-Maschine, ob die Transaktion abgeschlossen ist. Falls die QPIF das
Ende der Transaktion anzeigt (queue_cyc_complete ist aufgestellt) oder das Ende einer Cache-Zeile erreicht
ist und ein neuer Schreib-Befehl benötigt wird (end_of_line und new_write_command sind aufgestellt), tritt die
Zustand-Maschine in einen WSHORT_BURST Zustand 2714 ein, wenn entweder der letzte Teil der Daten ge-
nommen wurde (!p2q_trdy) oder der PCI-Start-Impuls empfangen ist. In jedem Fall müssen nur zwei dwords
an Daten zu dem PCI-Bus hingeschrieben werden. Ansonsten verbleibt die Zustand-Maschine in dem
WDATA2 Zustand 2710. Wenn die Zustand-Maschine in den WSHORT_BURST Zustand 2714 eintritt, ver-
bleibt das QPIF frame_signal aufgestellt, falls die Transaktion in die nächste Warteschlange überlaufen kann,
und ein neuer Schreib-Befehl wird nicht benötigt.
[0240] In dem WSHORT_BURST Zustand 2714 präpariert sich die Master-Zustand-Maschine, um die ab-
schließenden zwei dwords Daten zu dem PCI-Bus zu schreiben. Falls das p2q_ack Signal weggenommen ist
oder der Zyklus erneut versucht wird oder durch die PCI-Schnittstelle ausgesondert wird, beendet die Zu-
stand-Maschine die Transaktion und kehrt zu dem IDLE Zustand 2700 zurück. Wenn das PCI-Kenntnis-Signal
35/215

DE 697 21 381 T2 2004.01.15
verschwindet oder der Zyklus ausgesondert wird, stellt die Master-Zustand-Maschine das Stepback-Signal auf,
um anzuzeigen, dass der PMWQ-Out-Pointer zurück zu dem vorherigen dword schrittmäßig geführt werden
sollte. Wenn die Transaktion erneut durch die PCI-Schnittstelle versucht wird, wird der Out-Pointer zurück nur
dann schrittmäßig geführt, falls die Target-Vorrichtung nicht den letzten Teil an Daten nahm (p2q_trdy ist auf-
gestellt). Wenn die Transaktion nicht beendet ist und sie in den nächsten PMWQ-Puffer überlaufen kann
(overflow_next_cueue ist aufgestellt) und ein neuer Schreib-Befehl nicht benötigt wird, behält die Master-Zu-
stand-Maschine das QPIF-Frame-Signal, das aufgestellt ist, bei, und tritt dann in einen WCOMPLETE Zustand
2716 ein, falls die Target-Vorrichtung den letzten Teil an Daten genommen hat oder in dem WSHORT_BURST
Zustand 2714 hat, oder verbleibt ansonsten in dem WSHORT-BURST Zustand 2714. Falls die Transaktion
nicht in die nächste Warteschlange überlaufen kann oder ein neuer Schreib-Befehl benötigt wird, nimmt die
Zustand-Maschine das Frame-Signal weg, um das Ende der QPIF-Transaktion anzuzeigen, und tritt dann in
den WCOMPLETE Zustand 2716 ein, falls der letzte Teil von Daten durch die Target-Vorrichtung genommen
wurde, oder verbleibt in dem WSHORT_BURST Zustand 2714 ansonsten.
[0241] In dem WCOMPLETE Zustand 2716 beendet die Master-Zustand-Maschine die gepostete Spei-
cher-Schreib-Transaktion. Die Zustand-Maschine tritt in den IDLE Zustand 2700 ein, wenn die Transaktion er-
neut versucht oder durch die PCI-Schnittstelle ausgesondert ist. Falls die Transaktion erneut versucht wird,
wird der PMWQ-Out-Pointer nur dann erhöht, falls die Target-Vorrichtung den letzten Teil an Daten nahm. Falls
die Transaktion in die nächste Warteschlange überlaufen kann, wird ein neuer Schreib-Befehl nicht benötigt,
und die Transaktion befindet sich nicht in der letzten Daten-Phase, die Master-Zustand-Maschine erhöht den
Warteschlangen-Auswahl-Zähler und kehrt zu dem WDATA1 Zustand 2706 zurück, um die Transaktion von der
Überlauf-Warteschlange fortzuführen, solange wie die Target-Vorrichtung den letzten Teil an Daten nahm. Falls
die Target-Vorrichtung nicht den letzten Teil an Daten nahm, verbleibt die Master-Zustand-Maschine in dem
WCOMPLETE Zustand 2716.
[0242] Falls die Transaktion nicht in den nächsten PMWQ-Puffer überlaufen wird, beendet die Master-Zu-
stand-Maschine die Transaktion und kehrt zu dem IDLE Zustand 2700 zurück, falls das Target den letzten Teil
an Daten nahm. Ansonsten verbleibt die Zustand-Maschine in dem WCOMPLETE Zustand 2716, bis eines der
beendenden Ereignisse, diskutiert vorstehend, auftritt.
[0243] Wie die Fig. 86 zeigt, steuert die Slave-Zustand-Maschine die Operation der QPIF, wenn die QPIF in
dem Slave-Mode arbeitet. In dem Slave-Mode empfängt die QPIF gepostete Schreib-Transaktionen und ver-
zögerte Anforderungs-Transaktionen von Vorrichtungen auf dem PCI-Bus und führt die Transaktionen weiter
zu dem Target-Bus über das Kabel. Die folgende Tabelle stellt die Ereignisse dar, die Zustand-Übergänge in
der Slave-Zustand-Maschine verursachen.
36/215

DE 697 21 381 T2 2004.01.15
[0244] Bei einem Reset tritt die Slave-Zustand-Maschine in einen IDLE Zustand 2720 ein, in dem die QPIF
auf eine Transaktion wartet, die initiiert werden sollte, und zwar durch eine Vorrichtung auf dem PCI-Bus. Falls
eine Transaktion, initiiert auf dem Bus, nicht die QPIF als Ziel trifft (q2p_qcyc ist nicht aufgestellt), fährt die Sla-
ve-Zustand-Maschine in dem IDLE Zustand 2720 fort. Wenn eine Transaktion auf dem PCI-Bus nicht die QPIF
als Ziel trifft, tritt die Slave-Zustand-Maschine in einen SLAVE_DAC-Dual-Adressen-Zyklus-Zustand 2722 ein,
falls das p2q_dac_flag aufgestellt ist und ein Adressen-Paritäts-Fehler nicht aufgetreten ist (p2q_perr_ ist nied-
rig). Falls die Transaktion nicht ein Dual-Adressen-Zyklus ist und eine gepostete Speicher-Schreib-Anforde-
rung ist, und falls ein Paritäts-Fehler nicht in der Adressen-Phase aufgetreten ist, lädt die Slave-Zustand-Ma-
schine die Schreib-Zähler (d. h. stellt load_write_counter auf) und bestimmt, ob sie die Transaktion akzeptieren
kann. Falls die PMWQ in dem anderen Brücken-Chip voll ist (tc_dc_full ist durch den DC-Transaktions-Zähler
aufgestellt) oder die DCQ verriegelt ist (dcq_locked ist aufgestellt) oder sich die QPIF-Verriegelungs-Logik in
dem unlocked-but-retry Zustand befindet (lock_state [1] entspricht „1"), dann beendet die Slave-Zustand-Ma-
schine die Transaktion durch Aufstellen eines asynchronen Retry-Signals (early_retry), das zu der PCI-Schnitt-
stelle als q2pif_retry zugeführt wird, und verbleibt in dem IDLE Zustand 2720. Falls die QPIF die Transaktion
annehmen kann, initiiert die Slave-Zustand-Maschine die gepostete Speicher-Schreib-Nachricht auf dem Ka-
bel und tritt in einen PMW1 Zustand 2724 ein, in dem die Transaktion weiter zu dem Kabel geführt wird.
[0245] Falls die Transaktion nicht ein Dual-Adressen-Zyklus oder eine gepostete Speicher-Schreib-Anforde-

Slave-Zustand-Übergänge
37/215

DE 697 21 381 T2 2004.01.15
rung ist, lädt die Slave-Zustand-Maschine den dword Zähler (stellt load_write_counter auf), und, falls nicht ein
Paritäts-Fehler aufgetreten ist, analysiert sie die verzögerte Anforderungs-Transaktion. Falls die Transaktion
eine MRL- oder eine MRM-Transaktion ist und die QPIF-Verriegelungs-Logik sich nicht in dem unlocked-bu-
tretry Zustand befindet, stellt die Slave-Zustand-Maschine das QPIF-Prüf-Zyklus-Signal (q2pif_check_cyc)
auf, was die DCQ instruiert, die verriegelte Anforderung zu den verzögerten Abschluss-Nachrichten in den
DCQ-Puffern zu vergleichen. Falls die Anforderung einen DCQ-Puffer trifft, der nicht leer ist (dcq_hit und
!dcq_no_data), tritt die Slave-Zustand-Maschine in einen STEP_AHEAD Zustand 2726 ein, in dem die QPIF
beginnt, die angeforderten Informationen zu dem PCI-Bus zuzuführen. Falls die MRL- oder MRM-Anforderung
alle die DCQ-Daten-Puffer verfehlt (!dcq_hit), ist die DCQ nicht voll (!dcq_full), die verzögerte Anforde-
rungs-Warteschlange in dem anderen Brücken-Chip ist nicht voll (!tc_dr_full) und die DCQ und QPIF sind nicht
verriegelt (!dcq_locked und !lock_state [1]) stellt die Slave-Zustand-Maschine das q2pif_retry Signal auf, führt
die Anforderung weiter zu dem Kabel, und verbleibt in dem IDLE Zustand 2720. Falls die Anfor- derung die
DCQ verfehlt und die Anforderung nicht entlang des Kabels geschickt werden kann, versucht die QPIF einfach
erneut die anfordernde Vorrichtung und verbleibt in dem IDLE Zustand 2720.
[0246] Falls die verzögerte Anforderung nicht eine MRL- oder MRM-Transaktion ist, wird ein zweiter Takt-Zy-
klus benötigt, um die Anforderung zu prüfen, da die Daten- oder Byte-Freigaben mit den Inhalten der DCQ-Puf-
fer verglichen werden müssen, so dass die Slave-Zustand-Maschine in einen SECOND CHECK Zustand 2728
eintritt. Falls ein Paritäts-Fehler auftritt oder falls sich die Verriegelungs-Logik in dem unlocked-but-retry Zu-
stand befindet, versucht die Zustand-Maschine erneut die anfordernde Vorrichtung und verbleibt in dem IDLE
Zustand 2720.
[0247] In dem SLAVE_DAC Zustand 2722 empfängt die Slave-Zustand-Maschine die zweite Hälfte der
Adressen-Phasen-Informationen. Falls die anfordernde Vorrichtung nicht target-mäßig die QPIF getroffen hat,
ignoriert die Slave-Zustand-Maschine die Transaktion und verbleibt in dem IDLE Zustand 2720. Wenn die QPIF
die Target-Vorrichtung ist, sind die Zustand-Übergangs-Ereignisse dieselben wie solche in dem IDLE Zustand
2720. Genauergesagt lädt, falls die Transaktion eine gepostete Speicher-Schreib-Anforderung ist und ein Pa-
ritäts-Fehler nicht aufgetreten ist, die Slave-Zustand-Maschine die Schreib-Zähler und bestimmt, ob sie die
Transaktion annehmen kann. Falls die PMWQ in dem anderen Brücken-Chip voll ist (tc_pmw_full ist aufge-
stellt), wird die DCQ verriegelt, oder die QPIF-Verriegelungs-Logik befindet sich in dem unlocked-but-retry Zu-
stand, die Slave-Zustand-Maschine versucht erneut die anfordernde Vorrichtung und kehrt zu dem IDLE Zu-
stand 2720 zurück. Falls die QPIF die Transaktion annehmen kann, initiiert die Slave-Zustand-Maschine die
gepostete Speicher-Schreib-Nachricht auf dem Kabel und tritt in den PMW1 Zustand 2724 ein.
[0248] Falls die Transaktion nicht eine gepostete Speicher-Schreib-Anforderung ist, lädt die Slave-Zu-
stand-Maschine den dword Zähler, und, falls kein Paritäts-Fehler aufgetreten ist, analysiert sie die verzögerte
Anforderungs-Transaktion. Falls die Transaktion eine MRL- oder MRM-Transaktion ist und sich die QPIF-Ver-
riegelungs-Logik nicht in dem unlocked-but-retry Zustand befindet, stellt die Slave-Zustand-Maschine das
QPIF-Prüf-Zyklus-Signal auf. Falls die Anforderung einen DCQ-Puffer trifft, der nicht leer ist, tritt die Slave-Zu-
stand-Maschine in den STEP ADHEAD Zustand 2726 ein. Falls die MRL- oder MRM-Anforderung alle die
DCQ-Daten-Puffer verfehlt, ist die DCQ nicht voll, die verzögerte Anforderungs-Warteschlange in dem anderen
Brücken-Chip ist nicht voll (tc_dr_full ist nicht aufgestellt) und die DCQ und die QPIF sind nicht verriegelt, stellt
die Slave-Zustand-Maschine stellt das q2pif_retry Signal auf, führt die Anforderung weiter entlang des Kabels
und kehrt zu dem IDLE Zustand 2720 zurück. Falls die Anforderung die DCQ verfehlt und die Anforderung nicht
entlang des Kabels geschickt werden kann, versucht die QPIF einfach erneut die anfordernde Vorrichtung und
kehrt zu dem IDLE Zustand 2720 zurück.
[0249] Falls die verzögerte Anforderung nicht eine MRL- oder MRM-Transaktion ist, wird ein zweiter Takt-Zy-
klus benötigt, um die Anforderung zu prüfen, da die Daten- oder Byte-Freigaben mit den Inhalten der DCQ-Puf-
fer verglichen werden müssen, so dass die Slave-Zustand-Maschine in den SECOND CHECK Zustand 2728
eintritt. Falls ein Parität-Fehler auftritt oder falls sich die Verriegelungs-Logik in dem unlocked-but-retry Zustand
befindet, versucht die Zustand-Maschine erneut die anfordernde Vorrichtung und kehrt zu dem IDLE Zustand
2720 zurück.
[0250] In dem PMW1 Zustand 2724 führt die Slave-Zustand-Maschine eine gepostete Spei-
cher-Schreib-Transaktion über das Kabel zu der Target-Vorrichtung weiter. Wenn die Zustand-Maschine zuerst
in den PMW1 Zustand 2724 eintritt, nimmt sie das load_write_counter Signal weg. Falls der dword Zähler an-
zeigt, dass die gepostete Speicher-Schreib-Transaktion die letzte Cache-Zeile ist (pmw_counter [5:3] ent-
spricht „111") und die PMWQ in der anderen Brücke voll ist (tc_pmw_full) und das Schreib-Überlauf-Merkmal
gesperrt ist (!cfg2q_write_overflow), oder falls das write_page_disconnect Signal aufgestellt ist, da die Trans-
aktion eine 4K Seiten-Grenze erreicht hat, oder falls die DCQ das dcq_disconnect_for_stream Signal aufge-
stellt hat und das Schreib-Unterbrechungs-Merkmal nicht gesperrt ist (!cfg2q_wr_discnt_disable), stellt die Sla-
ve-Zustand-Maschine das slave_lastline Signal auf, das anzeigt, dass die momentane Cache-Zeile die letzte
sein wird, die übertragen werden soll. Die Slave-Zustand-Maschine verbleibt dann in dem PMW1 Zustand
2724, bis das p2q_qcyc Signal weggenommen ist, was anzeigt, dass die Transaktion auf dem PCI-Bus abge-
38/215

DE 697 21 381 T2 2004.01.15
schlossen wurde. Nach Verlassen des PMW1 Zustands 2724, tritt die Slave-Zustand-Maschine wieder in den
IDLE Zustand 2720 ein.
[0251] In dem SECOND_CHECK Zustand 2728 hat die Slave-Zustand-Maschine die DCQ die zweite Phase
der Anforderungs-Informationen zu den verzögerten Abschluss-Informationen in den DCQ-Puffern vergleichen
lassen. Falls die Transaktion nicht eine verzögerte Schreib-Anforderung ist (!io_write und !config_write) oder
dabei ein Paritäts-Fehler vorhanden ist (!p2q_perr) und falls die DCQ nicht verriegelt ist und das dwr_check_ok
Signal aufgestellt ist, stellt die Slave-Zustand-Maschine das q2pif_check_cyc auf. Das dwr_check_ok Signal
wird entweder dann aufgestellt, wenn die Transaktion nicht eine verzögerte Schreib-Anforderung ist oder wenn
sie eine verzögerte Schreib-Anforderung ist und ein p2q_irdy Warte Zustand nicht eingesetzt worden ist. Falls
die Anforderung einen der DCQ-Puffer trifft und der Puffer nicht leer ist, tritt die Slave-Zustand-Maschine in den
STEP_AHEAD Zustand 2726 ein. Falls die Anforderung alle der DCQ-Puffer verfehlt, allerdings die QPIF die
Nachricht entlang des Kabels schicken kann, versucht die Slave-Zustand-Maschine die anfordernde Vorrich-
tung erneut, führt die Transaktion entlang des Kabels weiter und tritt erneut in den IDLE Zustand 2720 ein. An-
sonsten wird, falls die Anforderung alle der DCQ-Puffer verfehlte, und die QPIF nicht die Transaktion entlang
des Kabels schicken konnte, oder falls ein Paritäts-Fehler an einer verzögerten Schreib-Anforderung auftritt,
die Zustand-Maschine erneut die anfordernde Vorrichtung versuchen und wieder in den IDLE Zustand 2720
eintreten.
[0252] In dem STEP_AHEAD Zustand 2726 erhöht die Slave-Zustand-Maschine den DCQ-Ausgangs-Hin-
weiszeiger zu dem nächsten dword. Dieser Zustand ist notwendig, unmittelbar nachdem ein DCQ-Puffer ge-
troffen wird, da die PCI-Schnittstelle das erste dword von Daten ohne Zugreifen auf das !p2q_trdy Signal ver-
riegelt. Von dem STEP_AHED Zustand 2726 tritt die Zustands Maschine in einen HIT_DCQ Zustand 2730 ein,
in dem Daten von dem geeigneten DCQ-Puffer zu der anfordernden Vorrichtung geliefert werden, falls das letz-
te dword von Daten nicht genommen worden ist. Ansonsten tritt die Zustand-Maschine in einen
HIT_DCQ_FINAL Zustand 2732 ein, in dem die anfordernde Vorrichtung erneut versucht wird, da der
DCQ-Puffer keine weiteren Daten enthält.
[0253] Von dem HIT_DCQ Zustand 2730 beendet, wenn die verzögerte Anforderungs-Transaktion auf dem
PCI-Bus endet, bevor sie in der QPIF endet (d. h. p2q_qcyc wird weggenommen), die Zustand-Maschine die
Transaktion in der QPIF und stellt das Stepback-Signal auf, das anzeigt, dass der DCQ Out-Pointer verringert
werden sollte, da der letzte Teil von Daten nicht durch die anfordernde Vorrichtung genommen wurde. Die Zu-
stand-Maschine tritt dann erneut in den IDLE Zustand 2720 ein. Falls der DCQ-Puffer „Out-Of-Data" läuft, wäh-
rend die anfordernde Vorrichtung fortfährt, ihn anzufordern (dcq_no_data und !p2q_irdy), oder falls der
pmw_counter anzeigt, dass das letzte dword erreicht worden ist und das read_disconnect_for_stream Signal
aufgestellt worden ist, versucht die Slave-Zustand-Maschine erneut die anfordernde Vorrichtung und tritt in den
HIT_DCQ_FINAL Zustand 2732 ein. Falls die Transaktion endet, um eine Datenfolge einzurichten, wird das
Stepback-Signal aufgestellt und der Ausgangs-Hinweiszeiger des geeigneten DCQ-Puffers wird erniedrigt. In
irgendeiner anderen Situation fährt die Slave-Zustand-Maschine fort, Daten in dem HIT_DCQ_FINAL Zustand
2732 vorzusehen.
[0254] In dem HIT_DCQ_FINAL Zustand 2732 besitzt die Slave-Zustand-Maschine ein dword an Daten übrig,
um sie zu übertragen. Falls der PCI-Bus die Transaktion beendet, bevor die anfordernde Vorrichtung den letz-
ten Teil von Daten nimmt (d. h. p2q_qcyc wird weggenommen), stellt die Slave-Zustand-Maschine das Step-
back-Signal auf und kehrt zu dem IDLE Zustand 2720 zurück. Falls das p2q_qcyc Signal aufgestellt verbleibt
und die anfordernde Vorrichtung nicht einen Initiator-Warte-Zustand aufgestellt hat (!p2q_irdy), wird die anfor-
dernde Vorrichtung erneut versucht, da der letzte Teil an Daten genommen worden ist. Die Zustand-Maschine
tritt dann erneut in den IDLE Zustand 2720 ein. Ansonsten verbleibt die Slave-Zustand-Maschine in dem HIT
DCQ FINAL Zustand 2732.
[0255] Wie die Fig. 87 zeigt, ist der Kabel-Nachrichten-Generator eine Zustand-Maschine, die Kabel-Nach-
richten von Transaktions-Informationen erzeugt, erhalten von der Master- und der Slave-Zustand-Maschine.
Zusätzlich zu einem IDLE Zustand 2740 umfasst der Nachrichten-Generator auch einen Dual-Adressen-Zy-
klus-(CABLE_DAC) Zustand 2742, einen Master-Daten-Phasen-(MASTER_DPHASE) Zustand 2744 und ei-
nen Slave-Daten-Phasen-(SLAVE_DPHASE) Zustand 2746. Die folgende Tabelle stellt die Ereignisse dar, die
Zustand-Übergänge in dem Kabel-Nachrichten-Generator zu erzeugen.
39/215

DE 697 21 381 T2 2004.01.15
[0256] Bei einem Reset tritt der Kabel-Nachrichten-Generator in den IDLE Zustand 2740 ein, in dem er auf
Transaktions-Informationen wartet, damit sie von der Master- oder Slave-Zustand-Maschine ankommen. Von
dem IDLE Zustand 2740 entspricht, falls der Kabel-Nachrichten-Generator ein Prefetch-Mehrfach-Signal
(dcq_prefetch_mul) oder ein Prefetch-Leitungs-Signal (dcq_prefetch_line) empfängt, das Kabel-Adressen-Si-
gnal (ear-ly_cad [31:2]) dem Prefetch-Adressen-Signal (dcq_prefetch_addr [31:2]). Ansonsten nimmt das
early_cad [31:2] Signal den Wert des QPIF-Adressen-Signals (q2pif_addr [31:2]) an. Wenn die Kabel-Nach-
richt durch die Master-Zustand-Maschine initiiert wird, ist die Nachricht eine verzögerte Abschluss-Nachricht,
so dass der Befehl-Code (early_ccbe [3:0]) "1001" entspricht. Wenn die Kabel-Nachricht durch die Slave-Zu-
stand-Maschine initiiert wird, nimmt der Befehl-Code den Wert des message_cmd [3:0] Signals an, wie dies
vorstehend diskutiert ist.
[0257] Falls das send_message Signal aufgestellt ist, anzeigend, dass entweder die Master-Zustand-Maschi-
ne oder die Slave-Zustand-Maschine eine Nachricht initiiert hat, und die entsprechende Transaktion nicht ein
Dual-Adressen-Zyklus ist, oder falls der Kabel-Nachrichten-Generator eine Prefetch-Anforderung empfängt,
die nicht ein Dual-Adressen-Zyklus ist, oder falls der Kabel-Nachrichten-Generator ein Datenfolgen-Verbin-
dungs-Signal empfängt und keine verzögerten Anforderungen von der CPU in der ausgangsseitigen DRQ an-
hängig sind, stellt der Kabel-Nachrichten-Generator ein sent_pmw Signal auf, das anzeigt, dass eine gepos-
tete Speicher-Schreib-Anforderung von dem PCI-Bus entlang des Kabels geschickt werden wird. Das
sent_pmw Signal wird nicht aufgestellt, falls eine Datenfolge durch die DCQ eingerichtet worden ist. Der Ka-
bel-Nachrichten-Generator stellt ein sent_dr Signal auf, wenn eine Lese-Anforderung oder eine verzögerte
Schreib-Anforderung von der Slave-Zustand-Maschine empfangen ist oder ein Prefetch-Signal emfpangen ist,
und wenn eine Datenfolge nicht durch die DCQ eingerichtet worden ist.
[0258] Falls die DCQ eine Datenfolge eingerichtet hat (dcq_stream_connect ist aufgestellt), nimmt die Puffer-
zahl für das Kabel-Signal (early_cbuff [2:0]) den Wert des DCQ-Datenfolge-Puffers an (dcq_stream_buff [2:0]),
der Kabel-Befehl-Code (early_ccbe [3:0]) wird gleich zu „1000" eingestellt, und der Kabel-Nachrichten-Gene-
rator tritt in den SLAVE_DPHASE Zustand 2746 ein. Ansonsten nimmt, falls sich die QPIF in dem Slave-Mode
befindet und der Kabel-Nachrichten-Generator entweder ein Prefetch-Mehrfach- oder ein Prefetch-Lei-
tungs-Signal empfängt, das Kabel-Puffer-Signal den Wert der DCQ-Pufter-Zahl an (dcq_buff [2:0]) und der Ka-
bel-Nachrichten-Generator tritt in den SLAVE_DPHASE Zustand 2746 ein. Ansonsten arbeitet die QPIF in dem
Master-Mode und der Kabel-Nachrichten-Generator tritt in den MASTER_DPHASE Zustand 2744 ein.
[0259] Wenn der Kabel-Nachrichten-Generator das send_message Signal und eine Transaktion, die ein Du-

Kabel-Nachrichten-Generator-Zustand-Übergänge
40/215

DE 697 21 381 T2 2004.01.15
al-Adressen-Zyklus ist, empfängt, oder wenn er eine Prefetch-Anforderung empfängt, die ein Dual-Adres-
sen-Zyklus ist, tritt der Nachrichten-Generator in den CABLE_DAC Zustand 2742 ein. Für ein Prefetch-Signal
wird das Kabel-Adressen-Signal gleich zu den oberen zweiunddreißig Bits des dcq_prefetch_addr [63:0] Sig-
nals eingestellt; ansonsten entspricht die Kabel-Adresse den oberen zweiunddreißig Bits des q2pif_addr[63:0]
Signals. Auch entspricht, falls der Kabel-Nachrichten-Generator die Transaktion von der Slave-Zustand-Ma-
schine empfängt, die Kabel-Puffer-Zahl der DCQ-Puffer-Zahl; ansonsten entspricht die Kabel-Puffer-Zahl der
DRQ-Puffer-Zahl (keine Abschluss-Nachrichten werden für gepostete Speicher-Schreib-Transaktionen er-
zeugt).
[0260] In dem CABLE_DAC Zustand 2742 erzeugt der Kabel-Nachrichten-Decodieren die zweite Hälfte der
Adressen-Phasen-Informationen. Wie in dem IDLE Zustand 2740 nimmt das Kabel-Adressen-Signal den Wert
der Prefetch-Adresse an, wenn die empfangene Transaktion eine Prefetch-Leitungs- oder Prefetch-Mehr-
fach-Anforderung ist, und nimmt den Wert von q2pif_addr[31:2] ansonsten an. Das sent_pmw Signal wird dann
aufgestellt, wenn der Nachrichten-Generator eine gepostete Speicher-Schreib-Transaktion von der Slave-Zu-
stand-Maschine empfängt, und das sent_dr Signal wird dann aufgestellt, wenn sie eine Prefetch-Anforderung
oder eine verzögerte Anforderung von der Slave-Zustand-Maschine empfängt. Falls eine Prefetch-Anforde-
rung oder eine Anforderung von der Slave-Zustand-Maschine empfangen wird, tritt der Kabel-Nachrichten-Ge-
nerator in den SLAVE_DPHASE Zustand 2746 ein. Ansonsten tritt der Nachrichten-Generator in den
MASTER_DPHASE Zustand 2744 ein.
[0261] In dem MASTER_DPHASE Zustand 2744 versucht der Kabel-Nachrichten-Generator, eine verzögerte
Abschluss-Nachricht entlang des Kabels zu schicken. Allerdings muss, falls die PCI-Schnittstelle den Bus zu
einer Vorrichtung auf dem PCI-Bus erteilt, bevor die QPIF eine Kontrolle des Busses erhält, der Kabel-Nach-
richten-Generator den MASTER_DPHASE Zustand 2744 verlassen, um die neu empfangene Nachricht zu
schicken. Deshalb wird, falls das send_message Signal aufgestellt ist, während sich der Nachrichten-Genera-
tor in dem MASTER_DPHASE Zustand 2744 befindet, das q2c_new_req Signal aufgestellt, um den Start einer
neuen Nachricht anzuzeigen. Falls das q2pif_dac_flag aufgestellt ist, ist die neue Transaktion ein Dual-Adres-
sen-Zyklus und der Kabel-Nachrichten-Generator tritt in den CABLE_DAC Zustand 2742 ein. Ansonsten tritt
der Nachrichten-Generator in den SLAVE_DPHASE Zustand 2746 ein.
[0262] Falls das send_message Signal nicht aufgestellt ist, schickt der Kabel-Nachrichten-Generator eine
verzögerte Abschluss-Nachricht von der Master-Zustand-Maschine aus. Wenn die Master-Zustand-Maschine
die letzte Daten-Übertragung mit dem PCI-Bus abgeschlossen hat und die Target-Vorrichtung die Übertragung
bestätigt hat (!p2q_trdy), oder wenn der Master die Transaktion auf dem Kabel ausgesondert hat, stellt der Ka-
bel-Nachrichten-Generator ein sent_dc Signal auf, das anzeigt, dass die verzögerte Abschluss-Nachricht ent-
lang des Kabels geschickt worden ist, und tritt erneut in den IDLE Zustand 2740 ein. Ansonsten verbleibt der
Nachrichten-Generator in dem MASTER DPHASE Zustand 2744 und fährt fort, die verzögerte Ab-
schluss-Nachricht zu erzeugen.
[0263] Von dem SLAVE_DPHASE Zustand 2746 sind, solange wie eine Datenfolge mit dem eingangsseitigen
Chip eingerichtet wird, keine verzögerten Anforderungen von der CPU in der ausgangsseitigen DRQ anhängig,
und die anfordernde Vorrichtung fährt fort, Daten zu der QPIF zu schicken (q2p_qcyc ist aufgestellt), der Ka-
bel-Nachrichten-Generator verbleibt in dem SLAVE_DPHASE Zustand 2746 und fährt fort, die Transaktion von
der anfordernden Vorrichtung weiterzuführen. Ansonsten führt, falls der Kabel-Nachrichten-Generator eine
verzögerte Anforderung oder eine Prefetch-Anforderung empfängt, der Kabel-Nachrichten-Generator die An-
forderung weiter, und, in dem Fall einer verzögerten Schreib-Anforderung, das eine dword an Daten zu der ein-
gangsseitigen Vorrichtung weiter, und tritt dann in den IDLE Zustand 2740 ein. Ansonsten hat der Kabel-Nach-
richten-Generator eine gepostete Speicher-Schreib-Anforderung empfangen. In dieser Situation verbleibt der
Kabel-Nachrichten-Generator in dem SLAVE_DPHASE Zustand 2746 und fährt fort, die geposteten Spei-
cher-Schreib-Informationen entlang des Kabels weiterzuführen, bis das early_last_slave_data Signal aufge-
stellt ist, was anzeigt, dass der letzte Teil an Daten durch die Slave-Zustand-Maschine geschickt worden ist.
Der Nachrichten-Generator beendet dann die Kabel-Transaktion und tritt erneut in den IDLE Zustand 2740 ein.

KABEL-SCHNITTSTELLE

[0264] Um die gültige Übertragung von Daten zwischen den zwei Brücken-Chips sicherzustellen, müssen Da-
ten, geschickt über das Kabel 28, geeignet zu den Takten von den Takt-Generatoren 102 und 122 synchroni-
siert werden. Der ausgangsseitige Takt-Generator 122 legt seine Takte basierend auf einem eingangsseitigen
Takt (der wiederum auf dem PCI-Bus-Takt PCICLK1 basiert) fest, übertragen entlang des Kabels 28 mit den
Daten. Als Folge werden eingangsseitige Daten, übertragen zur Ausgangsseite hin, zu den Takten synchroni-
siert, erzeugt in dem ausgangsseitigen Brücken-Chip 48. Allerdings ist die Phasen-Verzögerung, zugeordnet
zu dem Kabel 28, zwischen den Haupt-Takten, erzeugt in dem eingangsseitigen Chip 26, und die Daten, über-
tragen zurück eingangsseitig von dem ausgangsseitigen Chip 48, unbekannt. Die Länge des Kabels 28 reicht
von 10 bis zu 100 Fuß (falls eine geeignet Schnittstellen-Technologie verwendet wird). Die empfangende Logik
41/215

DE 697 21 381 T2 2004.01.15
in der eingangsseitigen Kabel-Schnittstelle 104 ist effektiv eine asynchrone Grenze in Bezug auf den eingangs-
seitigen Takt. Demzufolge muss die empfangende Logik die eingangsseitigen-zu-ausgangsseitigen Daten zu
dem Takt von dem eingangsseitigen Takt-Generator 102 erneut synchronisieren.
[0265] In Fig. 5 nun ist das Takt-Verteilungs-Schema in dem 2-Chip in der 2-Chip-PCI-PCI-Brücke dargestellt.
Transaktionen, die nach vorne zwischen den Brücken-Chips 46 und 48 geführt werden, werden zu mehrfa-
chen, zeit-multiplexierten Nachrichten codiert. Das Format der Nachrichten ist ähnlich zu dem PCI-Transakti-
ons-Format (mit der Ausnahme eines Zeit-Multiplexing) und umfasst eine Adresse und eine oder mehrere Da-
ten-Phasen und modifizierte Handshake-Signale zusätzlich zu den Signalen, die hinzugefügt sind, um eine
Puffer-Zahl und spezielle Brücken-Funktions-Befehle anzuzeigen. Jede Kabel-Schnittstelle 104 oder 130 um-
fasst eine Master-Kabel-Schnittstelle (192 oder 194) und eine Slave-Kabel-Schnittstelle (196 oder 198). Die
Master-Kabel-Schnittstelle 192 oder 194 überträgt Nachrichten weiter zu dem Kabel 28 und die Slave-Ka-
bel-Schnittstelle 196 oder 198 empfängt Nachrichten von dem Kabel 28.
[0266] Der Takt-Generator 102 oder 122 in jedem Brücken-Chip umfasst zwei sich auf dem Chip befindliche
PLLs für eine Takt-Erzeugung. Eine PLL 184 in dem eingangsseitigen Brücken-Chip 26 verriegelt sich auf dem
Primär-PCI-Bus-Eingangs-Takt PCICLK1. In dem ausgangsseitigen Brücken-Chip 48 verriegelt sich die PLL
180 auf einem ankommenden Takt PCICLK2 von einem Takt-Puffer 181.
[0267] In der nachfolgenden Beschreibung bezieht sich ein „1X Takt" auf einen Takt, der dieselbe Frequenz
wie der Takt PCICLK1 besitzt, während sich ein „3X Takt" auf einen Takt bezieht, der dreimal die Frequenz des
Takts PCICLK1 besitzt. Ein 1X Takt PCLK, erzeugt durch die PLL 184 oder 180 (in dem Brücken-Chip 26 oder
48 jeweils), wird für die PCI-Bus-Schnittstellen-Logik 188 oder 190 für den Brücken-Chip verwendet, und der
3X Takt PCLK3 wird dazu verwendet, die Kabel-Nachrichten-Erzeugungs-Logik in der Master-Kabel-Schnitt-
stelle 192 oder 194 laufen zu lassen. Die andere PLL 186 oder 182 wird dazu verwendet, sich auf einen Ka-
bel-Eingangs-Takt CABLE_CLK1 (von Eingangsseite) oder einen CABLE_CLK2 (von Ausgangsseite) zu ver-
riegeln, und um einen 1X Takt CCLK und einen 3X Takt CCLK3 zu erzeugen, um ankommende Kabel-Daten
zu erfassen. Die Taktausgänge der PLL 186 und 182 werden zu der Slave-Kabel-Schnittstelle 196 und 198
jeweils weitergeführt.
[0268] Die PLLs sind in dem Layout so angeordnet, um die 1X und 3X Takte so nahe wie möglich auszuba-
lancieren, um die Verschiebung dazwischen zu minimieren.
[0269] Die PLL 184 oder 180 erzeugt ein Phasen-Indikator-Signal PCLKPHI1, das der Master-Kabel-Schnitt-
stelle 192 oder 194 anzeigt, wenn die erste Phase von Daten zu dem Kabel 28 vorhanden sein sollte. Auf der
Eingangsseite ist das Signal PCLKPHI1 auf dem PCI-Takt PCICLK1 basierend; auf der Ausgangsseite ist das
Signal PCLKPHI1 auf dem PCI-Takt PCICLK2 basierend. Die PLL 186 oder 182 erzeugt ein Phasen-Indika-
tor-Signal CCLKPHI1, basierend auf dem Kabel-Takt CABLE_CLK1 oder CABLE_CLK2, um zu der Slave-Ka-
bel-Schnittstelle 196 oder 198 anzuzeigen, wenn die erste Phase von Daten entlang des Kabels 28 angekom-
men ist. Der PCI-Takt PCICLK2 für den sekundären PCI-Bus 32 wird außerhalb eines 1X Takts BUFCLK der
PLL 182 in dem ausgangsseitigen Brücken-Chip 48 erzeugt. Der Takt BUFCLK steuert den Takt-Puffer 181
über einen Treiber 179 an. Der Puffer 181 gibt ein separates Taktsignal für jeden der sechs Schlitze auf dem
sekundären PCI-Bus 32 ebenso wie den Takt PCICLK2 aus, was zurück zu dem Bus-Eingangs-Takt zu dem
ausgangsseitigen Brücken-Chip 48 geführt wird. Indem der Takt PCLK auf dem Takt PCICLK2 von dem
Takt-Puffer 181 basierend ist, werden die Takt-Schemen der eingangsseitigen und ausgangsseitigen Chips so
gestaltet, um ähnlicher zu erscheinen, da beide auf dem externen Bus-Takt basierend sind.
[0270] Der Kabel-Takt CABLE_CLK1 ist ein 33% Taktzyklus. Die PLL 182 wandelt erst den 33% Taktzyklus
zu einem 50% Taktzyklus zur Ausgabe als BUFCLK um.
[0271] Die PCI-Spezifikation, Version 2.1, fordert, dass der PCI-Bus-Takt die folgenden Erfordernisse erfüllen
muss: Takt-Zyklus-Zeit größer als oder gleich zu 30 ns; Takt-Hoch-Zeit größer als 11 ns; Takt-Niedrig-Zeit grö-
ßer als oder gleich zu 11 ns und Taktanstiegsrate zwischen 1 und 4 ns.
[0272] Wenn das Computersystem hochgefahren wird, wird der eingangsseitige Chip zuletzt hochgefahren,
die eingangsseitige PLL 184 schickt den Takt CABLE_CLK1 (über die Master-Schnittstelle 122) nach unten
entlang des Kabels 28, das dann durch die ausgangsseitige PLL 182 und PLL 180 verriegelt wird. Die aus-
gangsseitige PLL 180 schickt dann den Takt CABLE_CLK2 zurück eingangsseitig, um durch die PLL 186 ver-
riegelt zu werden. Das System ist nicht vollständig betriebsfähig, bis alle vier PLLs eine Verriegelung erhalten
haben.
[0273] Falls der eingangsseitige Brücken-Chip 26 hochfährt und der ausgangsseitige Brücken-Chip 48 noch
nicht eingeschaltet ist, verhält sich der eingangsseitige Brücken-Chip 26 als eine PCI-PCI-Brücke, wobei nichts
mit dem ausgangsseitigen Bus (das Kabel 28) verbunden ist. Als Folge nimmt der eingangsseitige Brü-
cken-Chip 26 nicht irgendwelche Zyklen an, bis der ausgangsseitige Brücken-Chip 48 hochgefahren bzw. ein-
geschaltet ist und die ausgangsseitige PLL 186 eine „Verriegelung" von dem Kabel-Takt CABLE_CLK2 erhal-
ten hat.
[0274] Der eingangsseitige Brücken-Chip 26 floatiert alle seiner PCI-Ausgangs-Puffer und Zustand-Maschi-
nen asynchron mit einem Aufstellen des PCI-Reset-Signals PCIRST1_ auf dem primären Bus 24. Während
42/215

DE 697 21 381 T2 2004.01.15
eines Resets kann die PLL 184 versuchen, eine Verriegelung auf dem PCI-Bus-Takt PCICLK1 zu erhalten. Da
die PCI Spezifikation garantiert, dass das Signal PCIRST1_ aktiv für mindestens 100 μs verbleiben wird, nach-
dem der PCI-Bus-Takt stabil wird, hat die PLL 184 ungefähr 100 μs, um eine Verriegelung zu erhalten.
[0275] Der ausgangsseitige Brücken-Chip 48 setzt alle internen Zustand-Maschinen beim Erfassen des Sig-
nals PCIRST1_ für den primären Bus zurück. Daraufhin stellt der ausgangsseitige Brücken-Chip ein
Schlitz-spezifisches Reset zu jedem Schlitz auf dem sekundären PCI-Bus 32 ebenso wie ein Reset-Signal
PCIRST2_ für einen sekundären PCI-Bus auf.
[0276] Wie Fig. 6 zeigt, umfasst jede PLL einen spannungs-gesteuerten Oszillator (VCO) 200, der einen Aus-
gang 201 (den 3X Takt) zwischen 75 Mhz (für einen 25-Mhz PCI-Bus) und 100 Mhz (für einen 33-Mhz PCI-Bus)
erzeugt. Der VCO 200 empfängt einen Referenz-Takt 197, der der PCI-Bus-Takt ist. Jede PLL besitzt eine Ver-
riegelungs-Erfassungs-Schaltung 205, die durch ein Verriegelungs-Indikations-Bit anzeigt, dass die PLL-Pha-
se auf deren Referenz genau genug verriegelt ist, um deren vorgesehene Funktion durchzuführen.
[0277] Die Verriegelungs-Anzeige-Bits werden zu einem Status-Register in dem Konfigurations-Raum 105
oder 125 jedes Brücken-Chips geschrieben. Auf der Ausgangsseite wird ein power-good/lock-Status-Bit zu
dem eingangsseitigen Brücken-Chip 26 übertragen, um anzuzeigen, dass die Hauptelemente des ausgangs-
seitigen Brücken-Chips 48 stabil sind (Energie ist stabil) und die ausgangsseitigen PLLs verriegelt sind (Ver-
riegelungs-Anzeige-Bits der zwei PLLs sind aktiv). Das Verriegelungs-Anzeige-Bit wird auch tormäßig mit den
EDC-Status-Bits gesteuert, so dass EDC-Fehler nicht als solche berichtet werden, bis die PLLs verriegelt sind.
Demzufolge kann das Brücken-Chip-Paar zu einem fehlerfreien-Kommunikations-Zustand ohne eine Softwa-
re-Intervention gelangen. Das Verriegelungs-Anzeige-Bit liefert auch bestimmte, diagnostische Informationen,
die zwischen einem PLL-Verriegelungs-Fehler und anderen Daten-Fehlern unterscheiden können. Die Takt-Er-
zeugungs-Schaltung umfasst eine Vier-Zustand-Maschine 202, um einen durch 3 geteilten Takt (1X Takt) des
VCO Ausgangs 201 zu erzeugen. Der 1X Takt wird zurück zu der PLL an dem Eingang 203 geführt.
[0278] Daten werden entlang des Kabels 28 unter einer 3X Takt (PCLK3) Rate in drei Zeit-multiplexierten
Phasen geführt, um eine 1X Takt Nachrichten-Übertragungs-Rate zu erzeugen. Wie Fig. 7 zeigt, umfasst die
Schaltung in der Master-Kabel-Schnittstelle 192 oder 194 zum Zerlegen und Übertragen der Kabel-Nachricht
ein Register 204, das die abgehende Nachricht unter einer lokalen PCLK-Grenze abtastet. Das Flip-Flop 208
liefert eine zusätzliche Zone für eine Halte-Zeit in der dritten Phase der übertragenden Nachricht durch Halten
dieser Phase für eine zusätzliche Hälfte eines PCLK. Da das Ausgangs-Register 212 mit dem 3X Takt PCLK3
getaktet ist, verringert dies das Erfordernis für eine enge Kontrolle in Bezug auf den Versatz zwischen den 1X
und 3X Takten. Von dem Phasen-Indikations-Signal PCLKPHI1 erzeugt ein Satz von drei Flips-Flops 210 auf-
einanderfolgende PHI1, PHI2 und PHI3 Signale, die Phasen 1, 2 und 3 jeweils darstellen, was wiederum einen
60:20 Multiplexer 206 steuert. Die drei Phasen von Daten (LMUXMSG [19:0], LMUXMSG [39:20], {LMUXMSG
[51:40], EDC [7:0]}) werden aufeinanderfolgend in das Register 212 multiplexiert und über das Kabel 28 ange-
steuert. Die dritte Phase an Daten umfasst Fehler-Korrektur-Bits EDC [7:0], erzeugt durch einen ECC-Gene-
rator 206 (Fig. 17), von den Ausgangs-Bits LMUXMSG [51:0] des Registers 204. Das Flip-Flop 214, getaktet
durch PCLK3, empfängt das PHI1 Signal und taktet es als den Kabel-Takt CABLE_CLK1 oder CABLE_CLK2
heraus.
[0279] Da die Master-Kabel-Schnittstelle 192 oder 194 eine 1X-zu-3X Kommunikations-Schnittstelle ist, wird
eine EIN-3X-Takt-Latenz hervorgerufen, die zu einer einzelnen 3X Takt-Phasen-Verschiebung der übertragen-
den Kabel-Nachricht von dem PCI-Bus-Takt führt, wie dies in Fig. 8 dargestellt ist. In der Periode T0 wird eine
Nachricht A dem Eingang des Registers 204 präsentiert und der erste Phasen-Takt-Indikator PCLKPHI1 wird
auf hoch gesetzt. Das Signal PHI1 wird auf hoch von einem vorherigen Zyklus gesetzt. In der Periode P1 wird
der Kabel-Takt CABLE_CLK1 oder CABLE_CLK2 auf hoch in Abhängigkeit des Signals PHI1, das zu hoch
übergeht, angesteuert. Der PCLKPHI1 Impuls bewirkt, dass das Signal PHI2 auf hoch in der Periode T1 ge-
pulst wird. Als nächstes wird, in der Periode T2, das Signal PHI3 in Abhängigkeit des Signals PHI2 gepulst. In
der Periode T3 wird das Signal PHI1 auf hoch in Abhängigkeit des Signals PHI3, das hoch ist, gepulst. Eine
Nachricht A wird auch in das Register 204 an der ansteigenden Flanke des Takts PCLK in der Periode T3 ein-
geladen. Als nächstes bewirkt, in der Periode T4, das Signal PHI1, dass der Multiplexer 206 die ersten Pha-
sen-Daten A1 zum Einladen in das Register 212 auswählt. Als nächstes werden, in der Periode T5, die zweiten
Phasen-Daten A2 ausgewählt und in das Register 212 eingeladen. Dann werden, in der Periode T6, die dritten
Phasen-Daten A3 in das Register 212 eingeladen. Dieser Prozess wird für die Nachrichten B, C, D und E in
den darauffolgenden Takt-Perioden wiederholt.
[0280] Wie in Fig. 8 dargestellt ist, besitzt der Kabel-Takt CABLE_CLK einen 33% Taktzyklus. Alternativ kann
der Kabel-Takt CABLE_CLK so ausgelegt werden, um einen durchschnittlichen Taktzyklus von 50% zu haben,
was, zum Beispiel, durch Abschicken des Kabel-Taktes als 33% hoch – 66% niedrig – 66% hoch – 33% niedrig
vorgenommen werden kann. In dem man einen durchschnittlichen 50% Taktzyklus hat, könnte dies zu besse-
ren Durchgangscharakteristika in dem Kabel 28 führen.
[0281] Wie Fig. 9 zeigt, stellt ein Slave-Kabel-Schnittstellen-First-in-First-out-Puffer (FIFO) 216 ankommen-
den Daten von dem Kabel 28 zusammen und überträgt die zusammengestellten Daten zu den Warteschlangen
43/215

DE 697 21 381 T2 2004.01.15
und den PCI Zustand-Maschinen in dem empfangenden Brücken-Chip. Der FIFO 216 ist 4 Eintritte tief, wobei
jeder Eintritt in der Lage ist, eine vollständige Kabel-Nachricht zu halten. Die Tiefe des FIFO 216 ermöglicht,
dass Kabel-Daten zu dem Takt des lokalen Brücken-Chips ohne Verlieren irgendeiner effektiven Bandbreite in
der Kabel-Schnittstelle synchronisiert werden können. Zusätzlich ist, auf der Eingangsseite, der FIFO 216 eine
asynchrone Grenze für die Kabel-Daten, die von dem ausgangsseitigen Brücken-Chip 48 ankommen. Der
FIFO 216 stellt sicher, dass die Kabel-Daten geeignet in Bezug auf PCLK synchronisiert sind, bevor sie zu dem
Rest des Chips ausgegeben werden.
[0282] Die Eintritte des FIFO 216 werden durch einen Eingangs-Hinweiszeiger INPTR[1:0] von einem Ein-
gangs-Hinweiszeiger-Zähler 226 ausgewählt, der durch das Signal CCLK3 getaktet wird, gelöscht wird, wenn
ein Signal EN_INCENT niedrig ist, und durch den Phasen-Indikator CCLKPHI1 freigegeben wird. Die negative
Flanke des 3X Takts CCLK3 von der PLL 186 oder 182 wird dazu verwendet, ankommende Daten von dem
Kabel 28 zu verriegeln, zuerst in ein 20-Bit Register 218 hinein und dann in ein Register 220 hinein, falls ein
Phasen-Ein-Indikations-Signal PHI1_DLY aufgestellt ist, oder in ein Register 222 hinein, falls ein Phasen-2-In-
dikationssignal PHI2_DLY aufgestellt ist. Die Phase-1-Daten, die Phase-2-Daten und die Phase-3-Daten von
den Registern 220, 222 und 218 jeweils werden in den ausgewählten Eingang des FIFO 216 an der negativen
Flanke von CCLK3 ausgewählt, wenn das Phasen-3-Indikations-Signal PHI3_DLY aufgestellt ist. Die vier Sät-
ze von Ausgängen von dem FIFO 216 werden durch einen 240:60 Multiplexer 228 empfangen, der durch einen
Ausgangs-Hinweiszeiger OUTPTR [1:0] von einem Ausgangs-Hinweiszeiger-Zähler 224, getaktet durch PCLK
und gelöscht dann, wenn ein Signal EN_OUTCNT niedrig ist, ausgewählt wird.
[0283] Wie die Fig. 10 zeigt, laufen die Eingangs-Hinweiszeiger- und Ausgangs-Hinweiszeiger-Zähler 226
und 224 kontinuierlich durch den FIFO 216, was Daten füllt und leert. Die Zähler 226 und 224 sind in einer
solchen Art und Weise versetzt, um gültige Daten in einer Stelle zu garantieren, bevor sie ausgelesen werden.
Die Initialisierung der Hinweiszeiger ist unterschiedlich für einen eingangsseitigen Brücken-Chip 26 gegenüber
einem ausgangsseitigen Brücken-Chip 48, aufgrund von Synchronisierungsunsicherheiten.
[0284] Flip-Flops 236 und 238 synchronisieren das Reset-Signal C_CRESET, das synchron zu den Takten in
dem Brücken-Chip ist, zu der CLK-Takt-Grenze. Das Signal EN_INCNT wird durch das Flip-Flop 238 erzeugt.
Der Eingangs-Hinweiszeiger wird an der ansteigenden Flanke des Takts CCLK3 erhöht, wenn das erste Pha-
sen-Indikations-Signal CCLKPHI1 und das Signal EN_INCNT vorliegen. Der Ausgangs-Hinweiszeiger wird
dann an einer späteren, lokalen PCLK-Takt-Grenze PCLK gestartet, wenn garantiert werden kann, dass die
Daten in dem FIFO 216 gültig sein werden. Der eingangsseitige und der ausgangsseitige Brücken-Chip müs-
sen das Starten des Ausgangs-Hinweiszeigers unterschiedlich handhaben, da die Phasen-Beziehung des Ka-
bel-Taktes zu dem lokalen Takt nicht für den eingangsseitigen Brücken-Chip 26 bekannt ist, sondern für den
ausgangsseitigen Brücken-Chip 48 bekannt ist.
[0285] In dem ausgangsseitigen Brücken-Chip 48 ist die Phasen-Beziehung zwischen dem ankommenden
Kabel-Takt CABLE_CLK1 und dem sekundären PCI-Bus-Takt PCICLK2 bekannt, da der PCI-Takt PCICLK2
von dem Kabeltakt erzeugt wird. Als Folge existiert keine Synchronisations-Strafe für den Ausgangs-Hinweis-
zeiger OUTPTR[1:0] in dem ausgangsseitigen Brücken-Chip 48, und der Ausgangs-Hinweiszeiger kann den
Eingangs-Hinweiszeiger INPTR[1:0] so nahe wie möglich nachführen. Ein Flip-Flop 230, das an der negativen
Flanke des Takts PCLK getaktet wird, wird dazu verwendet, irgendwelche Taktverschiebungsprobleme zwi-
schen dem Takt CCLK, erzeugt durch die PLL 182, und dem Takt PCLK, erzeugt durch die PLL 180, zu ver-
meiden. Obwohl diese zwei Takte identische Frequenzen haben und in Phase miteinander sein sollten, ist da-
bei eine unbekannte Verschiebung zwischen den zwei Takten vorhanden, da sie von zwei unterschiedlichen
PLLs erzeugt werden. Auf der Ausgangsseite ist das Signal EN_OUTCNT das Signal EN_INCNT, verriegelt
auf der negativen Flanke des Signals PCLK durch das Flip-Flop 230. Ein Multiplexer 234 wählt den Ausgang
des Flip-Flops 230 aus, da das Signal UPSTREAM_CHIP niedrig ist.
[0286] In dem eingangsseitigen Brücken-Chip 26 wird die Kabel-Schnittstelle bzw. das Kabel-Interface als
vollständig asynchron behandelt. Die Phasen-Unsicherheit erfolgt aufgrund der unbekannten Phasenverschie-
bung des Kabels 28 selbst. Das Auslegen in Bezug auf diese Unsicherheit führt zu einer vollständigen Freiheit
in Bezug auf die Länge des Kabels 28. Dasjenige, was bekannt ist, ist das, dass die Takte in den eingangssei-
tigen und ausgangsseitigen Brücken-Chips dieselbe Frequenz haben, da sie beide deren Ursprung in dem ein-
gangsseitigen PCI-Bus-Takt PCICLK1 haben. In dem eingangsseitigen Brücken-Chip 26 ist das Signal
EN_OUTCNT das Signal EN_INCNT verriegelt auf der postiven Flanke des Takts PCLK durch ein Flip-Flop
232. Der Multiplexer 234 wählt den Ausgang des Flip-Flops 232 aus, da das Signal UPSTREAM_CHIP hoch
ist. Das Flip-Flop 232 garantiert, dass gerade für das „Lineup" im schlechtesten Fall des Kabel-Taktes
CABLE_CLK2 und des lokalen PCI-Taktes PCLK (eine vollständige PCLK Periode-Phasen-Verschiebung) gül-
tige Daten in dem FIFO 216 vorhanden sind, bevor die Daten zu dem Rest des Chips übertragen werden.
[0287] Wie Fig. 11 zeigt, werden die Kabel-Daten durch die Slave-Kabel-Schnittstelle 196 oder 198 als
Drei-Phasen-, in der Zeit multiplexierte, Signale A1, A2 und A3; B1, B2 und B3; C1, C2 und C3; usw., empfan-
gen. Eine vorherige Transaktion wird in den Perioden T0, T1 und T2 abgeschlossen. Beginnend in der Periode
T3 werden die ersten Phasen-Daten A1 dem Register 218 präsentiert und der erste Phasen-Indikator
44/215

DE 697 21 381 T2 2004.01.15
CCLKPHI1 wird auf hoch gepulst. An der abfallenden Flanke von CCLK3 in der Periode T3 werden die Daten
A1 in das Register 218 eingeladen und das Indikations-Signal PHI_DLY der lokalen Phase 1 wird auf hoch ge-
pulst. In der Periode T4 werden, an der abfallenden Flanke des Takts, die Daten A1 der Phase 1 in das Register
220 eingeladen, die Daten A2 der Phase 1 werden in das Register 218 eingeladen und das Indikations-Signals
PHI2_DLY der Phase 2 wird auf hoch gepulst. In der Periode T5 werden, an der abfallenden Flanke von
CCLK3, die Daten der Phase 2 in das Register 222 eingeladen, die Daten A3 der Phase 3 werden in das Re-
gister 218 eingeladen und das Indikations-Signal PHI3_DLY der Phase 3 wird auf hoch gepulst. In der Periode
T6 werden die Inhalte der Register 220, 222 und 218 in den ausgewählten Eingang des FIFO 216 an der fol-
genden Flanke CCLK3 eingeladen. Auch werden in der Periode T6 die Daten B1 dem Register 218 zusammen
mit dem Indikations-Signal CCLKPHI1 präsentiert. Nachrichten B und C werden in das FIFO 216 in derselben
Art und Weise wie eine Nachricht A in darauffolgenden Perioden eingeladen.
[0288] Wie Fig. 12 zeigt, beginnt der Eingangs-Hinweiszeiger INPTR[1:0] bei dem Wert 0 in der Periode T0
an der ansteigenden Flanke des Takts CCLK3. Auch wird, in einer Peridoe T0, eine Nachricht A in das FIFO 0
an der abfallenden Flanke des Takts CCLK3 eingeladen. In dem ausgangsseitigen Brücken-Chip 48 wird der
Ausgangs-Hinweiszeiger OUTPTR [1:0] auf den Wert 0 an der nächsten, ansteigenden Flanke des Takts PCLK
in der Periode T3 erhöht. Auch wird, in der Periode T3, der Eingangs-Hinweiszeiger INPTR[1:0] auf den Wert
1 an der ansteigenden Flanke des Takts CCLK3 erhöht, und die Nachricht B wird in den FIFO 1 an der abfal-
lenden Flanke von CCLK3 eingeladen. Kabel-Daten werden demzufolge in FIFO0, FIFO1, FIFO2 und FIFO3
in einer zirkularen Weise eingeladen.
[0289] Auf der Ausgangsseite wird, falls der Eingangs-Hinweiszeiger INPTR[1:0] in der Zeitperiode T0 den
Wert 0 hat, der Ausgangs-Hinweiszeiger OUTPTR[1:0] auf den Wert 0 in der Periode T6 erhöht, zwei PCLK
Perioden nach dem Eingangs-Hinweiszeiger INPTR[1:0]. Die zwei PCLK Perioden-Verzögerungen in dem
ausgangsseitigen Brücken-Chip 26 ermöglicht, dass die Phasenverschiebung in dem Kabel 28 irgendein Wert
ist, was den Vorteil hat, dass die Kabellänge nicht von einem spezifischen, festgelegten Wert sein muss.
[0290] Wie Fig. 13 zeigt, werden die Eingangs- und Ausgangs-Flips-Flops an der Kabel-Schnittstelle kunden-
seitig durch den Hersteller der Chips platziert, um die Verschiebung zwischen den Kabeldaten und dem Takt,
der dadurch hindurchgeführt wird, zu minimieren.
[0291] Die Menge an Draht zwischen jedem Flip-Flop und der I/O wird als so konsistent wie möglich zwischen
allen Kabel-Schnittstellen-Signalen beibehalten.

KABEL-NACHRICHT

[0292] Sechzig Bits an Kabel-Daten bilden eine Nachricht. Die 60 Bits werden auf 20 Kabel-Zeilen multiple-
xiert und werden alle 10 ns über das Kabel 28 übertragen. Die Tabelle in Fig. 14 stellt die Bits dar und die Pha-
se jedes Bits ist zugeordnet. Die ersten drei Spalten stellen das eingangsseitige-zu-ausgangsseitige Da-
ten-Format dar, und die letzten drei Spalten stellen das ausgangsseitig-zu-eingangsseitig Daten-Übertra-
gungs-Format dar. Das Folgende ist eine Beschreibung der Signale.
[0293] EDC[7:0]: Die Signale sind die acht Syndrom-Bits, verwendet dazu, Fehler zu erfassen und zu korri-
gieren, die beim Übertragen von Daten über das Kabel 28 vorgefunden werden.
[0294] CAD[31:0]: Die Signale sind die 32 Adressen- oder Daten-Bits.
[0295] CFRAME_: Das Signal wird dazu verwendet, den Beginn und das Ende einer Kabel-Transaktion zu
signalisieren, ähnlich zu dem PCI FRAME_ Signal.
[0296] CCBE[3:0]_: Die vier Bits bilden Byte-Freigaben in einigen PCI-Takt-Phasen und entweder einen
PCI-Befehl oder einen Nachrichten-Code in anderen PCI-Takt-Phasen.
[0297] CBUFF[3:0]: In der Adressen-Phase zeigen die Signale eine Puffer-Zahl zum Initialisieren der verzö-
gerten Abschluss-Warteschlange (DCQ) des Brücken-Chips, 148, an, um einen eingangsseitigen und aus-
gangsseitigen, verzögerten Lese-Abschluss (Delayed Read Completion – DRC) und eine verzögerte Lese-An-
forderung (Delayed Read Request – DRR) Transaktionen festzulegen. Nach der Adressen-Phase enthalten die
Signale das Paritäts-Bit, eine Paritäts-Fehler-Indikation und das Daten-Bereitschafts-Signal.
[0298] COMPLETION REMOVED: Das Bit wird dazu verwendet, zu signalisieren, dass ein verzögerter Ab-
schluss von der Transaktions-Reihenfolge-Warteschlange (Transaction Ordereing Queue – TOC) auf der an-
deren Seite des Kabels 28 entfernt worden ist.
[0299] PMW ACKNOWLEDGE: Das Bit wird dazu verwendet, zu signalisieren, dass ein gepostetes Spei-
cher-Schreiben (PMW) auf der anderen Seite abgeschlossen worden ist und von der Transaktions-Lauf-War-
teschlange (Transaction Run Queue – TRQ) entfernt worden ist.
[0300] LOCK_: Das Bit wird zum Ausgang (allerdings nicht zum Eingang) hin übertragen, um verriegelte Zy-
klen zu identifizieren.
[0301] SERR_: Das Bit wird dazu verwendet, eine SERR_ Indikation zur Eingangsseite hin zu übertragen,
wird allerdings nicht zur Ausgangsseite hin übertragen.
[0302] INTSYNC und INTDATA: Die Bits führen die acht Unterbrechungen von der Ausgangsseite zu der Ein-
45/215

DE 697 21 381 T2 2004.01.15
gangsseite in einem seriell multiplexierten Format. Das Signal INTSYNC ist das Synchronisations-Signal, das
den Start f0 der Unterbrechungs-Sequenz anzeigt, und das Signal INTDATA ist das serielle Daten-Bit. Die Si-
gnale INTSYNC und INTDATA werden auf separaten Leitungen (Lines) über das Kabel 28 geführt.
[0303] RESET SECONDARY BUS: Das Bit wird dann aufgestellt, wenn die CPU 14 zu dem sekundären Re-
set-Bit in einem Brücken-Steuer-Register in dem eingangsseitigen Brücken-Chip 26 schreibt. Es bewirkt, dass
sich der ausgangsseitige Brücken-Chip 48 auf einen Power-Up Zustand zurücksetzt. Die Reset Signale für die
Schlitze werden auch aufgestellt. Das Signal RESET für den sekundären Bus wird auf einer separaten Leitung
über das Kabel 28 weitergeführt.
[0304] Da die Adresse und die Daten in jeder PCI Transaktion über dieselben Leitungen multiplexiert werden,
umfasst jede PCI-Transaktion eine Adressen-Phase und mindestens eine Daten-Phase (mehr als eine für
Burst-Transaktion). Die PCI-Spezifikation unterstützt auch Einzel-Adressen-Transaktionen (ein 32-Bit Adres-
sieren) und Dual-Adressen-Transaktionen (ein 64-Bit Adressieren).
[0305] In Fig. 15A stellt eine Tabelle dar, welche Informationen an jedem Bereich des Busses während Adres-
sen und Daten-Phasen der Einzel-Adressen-Transaktionen erscheinen. Für eine Einzel-Adressen-Transaktion
ist die erste Phase die Adressen-Phase und die zweite und die darauffolgenden Phasen sind Daten-Phasen.
In der Adressen-Phase einer verzögerten Lese/Schreib-Anforderungs-Transaktion zeigen die Signale
CBUFF[3:0] die DCQ-Puffer-Zahl zum Initialisieren des Brücken-Chips DCQ 148 an, um eingangsseitige und
ausgangsseitige DRC- und DRR-Transaktionen festzulegen. Nach der Adressen-Phase enthält das Signal
CBUFF[3:0] das Paritäts-Bit. Die Signale CCBE[3:0]_ enthalten den PCI-Befehl in der Adressen-Phase und
die Byte-Freigabe-Bits in den Daten-Phasen.
[0306] Für gepostete Speicher-Schreib-Transaktionen sind die Signale CBUFF[3:0] „nicht sicher" in der
Adressen-Phase und enthalten die Data-Ready-Indikation, die Parität-Fehler-Indikation und ein Parität-Bit in
den Daten-Phasen.
[0307] In einer verzögerten Lese/Schreib-Abschluss-Transaktion enthalten die Signale CBUFF[3:0] die
DCQ-Puffer-Zahlen in der Adressen-Phase und die End-Completion-Indikation, eine Daten-Ready-Indikation,
eine Parität-Fehler-Indikation und ein Parität-Bit in den Daten-Phasen. Die Signale CCBE[3:0]_ enthalten ei-
nen Code, der eine DRC-Transaktion in der Adressenphase und die Status-Bits der DRC-Transaktion in den
Daten-Phasen darstellen. Verzögerte Abschluss-Transaktionen führen den Status des Bestimmungs-Busses
für jede Daten-Phase zurück. Das Daten-Parität-Bit wird auf CCBE[3]_ übertragen. Andere Status-Zustände
werden auf den CCBE[2:0]_BUS codiert, wobei ein binärer Wert 000 einen normalen Abschluss anzeigt und
ein binärer Wert 001 einen Target-Aussonderungs-Zustand anzeigt. Die Adressen/Daten-Bits CAD[31:0] sind
„nicht sicher" in der Adressen-Phase und enthalten Daten während der Daten-Phasen.
[0308] In der Datenfolge-Verbindungs-Transaktion enthalten die Signale CBUFF[3:0] eine Puffer-Zahl in der
Adressen-Phase und das Signal CBUFF[2] enthält die Daten-Ready-Indikation in den Daten-Phasen. Die Sig-
nale CCBE[3:0] enthalten einen Code, der eine Datenfolge-Verbindungs-Transaktion in der Adressen-Phase
darstellt, und sind nicht in den Daten-Phasen „sicher". Die Adressen-Daten-Bits CAD[31:0] werden nicht wäh-
rend einer Datenfolge-Verbindungs-Transaktion verwendet.
[0309] Die Tabelle in Fig. 15B stellt das Codieren der Signale für Dual-Adressen-Transaktionen dar. In verzö-
gerten Lese/Schreib-Anforderungs-Transaktionen enthalten die Signale CBUFF[3:0] eine Puffer-Zahl in der
ersten und der zweiten Adressen-Phase und das Signal CBUFF[0] enthält das Paritäts-Bit in der Daten-Phase.
Die Signale CCBE[3:0]_ enthalten einen Code, der einen Dual-Adressen-Zyklus in der ersten Adressen-Phase
darstellt, den PCI-Befehl in der zweiten Phase und die Byte-Freigabe-Bits in der Daten-Phase. Die Signale
CAD[31:0] enthalten die signifikantesten Adressen-Bits in der ersten Adressen-Phase, die am wenigsten sig-
nifikanten Adressen-Bits in der zweiten Adressen-Phase und die Daten-Bits in der Daten-Phase. In einer ge-
posteten Dual-Adressen-Speicher-Schreib-Transaktion sind die Signale CBUFF[3:0] „nicht sicher" in den ers-
ten zwei Adressen-Phasen, allerdings enthalten die Signale CBUFF[1:0] das Paritäts-Fehler-Indikations-Bit
und das Paritäts-Bit in den Daten-Phasen. Die Signale CCBE[3:0]_ enthalten einen Code, der einen Du-
al-Adressen-Zyklus in der ersten Adressen-Phase darstellt, die PCI-Befehl-Bits in der zweiten Adressen-Phase
und die Byte-Freigabe-Bits in den Daten-Phasen. Die Signale CAD[31:0] enthalten die signifikantesten Adres-
sen-Bits in der ersten Adressen-Phase, die verbleibenden Adressen-Bits in der zweiten Adressen-Phase und
die Daten-Bits in den Daten-Phasen.
[0310] Dabei sind drei mögliche Zustände für die Daten-Übertragung vorhanden: nicht-letzte (not-last), letzte
einer Kabel-Übertragung (last-of-cable-transfer) und letzte von (lastof) Anforderung. Der nicht-letzte Zustand
wird durch Aufstellen des Bits CBUFF[2] angezeigt, während FRAME_ aktiv ist, was anzeigt, dass ein anderes
Wort von Daten vorhanden ist. Der last-of-cable Übertragungs-Zustand wird durch Aufstellen des Bits
CBUFF[2] angezeigt, während das Signal CFRAME_ inaktiv ist. Der last-of-request Zustand wird durch Auf-
stellen der Bits CBUFF[3] und CBUFF[2] angezeigt, während das Signal CFRAME_ inaktiv ist.
[0311] Die folgenden vier IEEE 1149.1 Boundary-Scan (JTAG) Signale sind in dem Kabel 48 umfasst, um eine
JTAG-Test-Kette zu bewirken: TCK (der Test-Takt), TDI (Test-Daten-Eingang), TDO (Test-Daten-Ausgang) und
TMS (Test-Mode-Auswahl). Das optimale TRST_ wird nicht entlang des Kabels übertragen, allerdings kann
46/215

DE 697 21 381 T2 2004.01.15
TRST_ aus „powergood" erzeugt werden.
[0312] Die JTAG Signale werden von dem System-PCI-Verbinder über den eingangsseitigen Brücken-Chip
26, umfassend JTAG Master 110, entlang des Kabels 28 zu dem ausgangsseitigen Brücken-Chip 28 zu dem
JTAG Master 128 übertragen, was die JTAG Signale zu jedem der sechs PCI-Schlitze auf dem sekundären
PCI-Bus 32 verteilt. Der Rückführpfad reicht von dem JTAG Master 128 bis zum Kabel 28 zurück zu dem ein-
gangsseitigen Brücken-Chip 26 und dann zu dem PCI-Schlitz auf dem primären PCI-Bus 24. Die Signale TDO;
TCK und TMS sind ausgangsseitige Bound-Signale. Das Signal TDI ist ein eingangsseitiges Bound-Signal.
[0313] Ein Typ eines Kabels 28, das verwendet werden kann, ist ein zylindrisches 50-Paar abgeschirmtes Ka-
bel, ausgelegt dazu, einen High Performance Parallel Interface (HIPPI) Standard zu unterstützen. Ein zweiter
Typ eines Kabels ist ein abgeschirmtes fünf-Paar Band-Kabel. Die Vorteile des ersten sind Standardisierung,
Robustheit und zuverlässige, gleichförmige Herstellung. Die Vorteile des zweiten sind größere, mechanische
Flexibilität, automatisches Verbinden mit dem Verbinder bei der Montage und möglicherweise geringere Kos-
ten.
[0314] Die Tabelle der Fig. 16 stellt einige der HIPPI Kabel-Spezifikationen dar. Die Erdungs-Abschirmung
besteht aus einem umwickelten Aluminium-Band und führt nur minimal DC-Ströme aufgrund der unterschied-
lichen Art der Puffer, die verwendet werden sollen. Das Verfahren eines Signalisierens ist tatsächlich differen-
ziell, was verschiedene Nachteile liefert, wobei die differenziellen Puffer verwendet werden, um Signale über
das Kabel 28 zu verschicken und zu empfangen. Zunächst ist das einzige, differenzielle Verfahren weniger
kostspielig als Faseroptiken für diese kurze Distanz und weniger komplex, um sich schnittstellenmäßig zu ver-
binden, als andere, serielle Verfahren. Ein differenzielles Signalisieren liefert eine wesentliche Rausch-Immu-
nität für einen üblichen Mode und einen Betriebsbereich für einen üblichen Mode, ist in ASICs verfügbar und
schneller als TTL. Wenn Twisted Pair und eine Abschirmung verwendet werden, minimiert dies die elektroma-
gnetische Strahlung. Wenn niedrige Spannungsschwingungen verwendet werden, minimiert es eine Energie-
abnahme.
[0315] Die signalisierenden Pegel, die als ein Target ausgewählt werden, sind in dem IEEE Draft Standard für
Low-Voltage Differential Signals (LVDS) für Scaleable Coherent Interface (SCI), Draft 1.10 (5. Mai 1995) be-
schrieben.
[0316] Der Kabel-Verbinder ist ein AMP-Metall-Mantel-Verbinder mit 100 Stiften, mit zwei Reihen von Stiften.
Die Reihen sind 100 mils voneinander beabstandet und die Stifte sind bei 50 mil zentriert. Die Metallhülle liefert
eine EMI-Abschirmung und gibt Verbindungen mit dem Massepfad von der Kabelabschirmung zu dem Leiter-
plattenverbinder. Der passende, rechtwinklige Leiterplattenverbinder passt nur zu einem PCI-Träger. Der Ver-
binder ist so, dass er einen Stab besitzt, der zwischen den zwei Reihen und Stiften verläuft, um elektrostatische
Entladungen von Signalstiften abzuleiten, wenn der Verbinder getrennt wird. Ein Paar Flügelschrauben, befes-
tigt an dem Kabelverbinder, wird die passenden Verbinder sichern.

FEHLER-ERFASSUNG UND -KORREKTUR

[0317] Ein Fehlererfassungs- und Korrektur-(EDC)-Verfahren wird an jedem Brücken-Chip ausgeführt, um
eine Kommunilkation über das Kabel 28 zu schützen. Da die Daten in drei 20-Bit-Gruppen zeit-multiplexiert
werden, um über 20 Paare von Drähten verschickt zu werden, ist jedes Triplet von „angrenzenden" Bits (d. h.
Bits, die demselben Draht in dem Kabel 28 zugeordnet sind) so angeordnet, um auf einem einzelnen
Draht-Paar übertragen zu werden. Das EDC-Verfahren kann Einzel-Bit-Fehler und Mehrfach-Bit-Fehler korri-
gieren, die in derselben Bit-Position in jeder der drei zeit-multiplexierten Phasen auftreten. Die Multi-Bit-Fehler
sind typischerweise einem Hardware-Fehler zugeordnet, z. B. einem gebrochenen oder defekten Draht oder
einem fehlerhaften Stift an den Brücken-Chips 26, 48.
[0318] Zwanzig Draht-Paare des Kabels 28 werden für eine ausgangsseitige Kommunikation verwendet und
20 weitere für eine eingangsseitige Kommunikation. Für die verbleibenden 10 Paare in dem 50-Paar-HIP-
PI-Kabel 28 (das solche Informationen, wie die Takt-Signale CABLE_CLK1 und CABLE_CLK2, Reset-Signale
und das Power Good/PLL-Lock Signal durchlässt), wird eine Fehler-Erfassung und -Korrektur nicht durchge-
führt.
[0319] Das Folgende sind die Hintergrundannahmen für den EDC-Algorithmus. Die meisten Fehler sind Ein-
zel-Bit-Fehler. Die Wahrscheinlichkeit, zufällige Mehrfach-Bit-Fehler in derselben Transaktion zu haben, ist ex-
trem weit weg, da das Kabel 28 nicht für eine Interferenz von internen oder externen Quellen anfällig ist. Fehler,
verursacht durch einen defekten Draht, können bewirken, dass ein einzelnes Bit oder eine Gruppe von Bits auf
diesem Draht übertragen wird. Wenn ein Hardware-Fehler auftritt, ist der logische Zustand des entsprechen-
den, differenziellen Puffers ein Einzel-Gültigkeits-Logik Zustand.
[0320] Wie Fig. 17 zeigt, werden die Ausgangs-Signale FIFOOUT[59:0] von dem Multiplexer 228 in der Sla-
ve-Kabel-Schnittstelle 196 oder 198 zu dem Eingang eines Prüf-Bit-Generators 350 zugeführt, der Prüf-Bits
CHKBIT[7:0] erzeugt. Die Prüf-Bits werden entsprechend der Parität-Prüf-Matrix, dargestellt in Fig. 18, er-
zeugt, in der die erste Reihe zu CHKBIT[0] entspricht, die zweite Reihe zu CHKBIT[1] entspricht, usw.. Die Bits
47/215

DE 697 21 381 T2 2004.01.15
über eine Reihe entsprechen Daten-Bits FIFOOUT[0:59].
[0321] Die Prüf-Bits werden durch ein Exklusiv-ODER aller der Daten-Bits FIFOOUT[X] (X ist gleich zu 0–59)
erzeugt, die einen Wert von „1" in der Parität-Prüf-Matrix haben. Demzufolge ist das Prüf-Bit CHKBIT[0] ein
Exklusiv-ODER von Daten-Bits FIFOOUT[7], FIFOOUT[8], FIFOOUT[9], FIFOOUT[12], FIFOOUT[13],
FIFOOUT[16], FIFOOUT[22], FIFOOUT[23], FIFOOUT[24], FIFOOUT[26], FIFOOUT[32], FIFOOUT[33],
FIFOOUT[34], FIFOOUT[35], FIFOOUT[38], FIFOOUT[39], FIFOOUT[45], FIFOOUT[46], FIFOOUT[48],
FIFOOUT[49], FIFOOUT[51] und FIFOOUT[52]. Ähnlich ist das Prüf-Bit CHKBIT[1] ein Exklusiv-ODER von
Bits 0, 2, 4, 5, 9, 10, 12, 14, 15, 16, 23, 27, 35, 37, 38, 40, 43, 46, 47, 48, 50 und 53. Prüf-Bits CHKBIT[2:7]
werden in einer ähnlichen Art und Weise entsprechend der Parität-Prüf-Matrix von Fig. 18 erzeugt. Die Pari-
tät-Prüf-Matrix ist auf den 20 Unterkanälen oder Drähten pro zeit-multiplexierter Phase, und einer Wahrschein-
lichkeit, dass mehrere Fehler in den akkumulierten Daten einem fehlerhaften Unterkanal oder Draht zuzu-
schreiben sind, der dieselbe Daten-Position in jeder zeit-multiplexierten Phase beeinflusst, basierend.
[0322] In der Master-Kabel-Schnittstelle 192 oder 194 werden die Prüf-Bits CHKBIT[7:0] als Fehlererfas-
sungs- und Korrektur-Bits EDC[7:0] zusammen mit anderen Kabel-Daten geliefert, um einer Fehler-Korrek-
tur-Logik in der Slave-Kabel-Schnittstelle 196 oder 198 zu ermöglichen, Daten-Fehler zu erfassen und zu kor-
rigieren.
[0323] Die Prüf-Bits CHKBIT[7:0] werden zu einem Fix-Bit-Generator 352 zugeführt, der Fix-Bits FIXBIT[59:0]
entsprechend der Syndrom-Tabelle, dargestellt in Fig. 19, erzeugt. Die Prüf-Bits CHKBIT[7:0] besitzen 256 (28)
mögliche Werte. Die Syndrom-Tabelle in Fig. 19 enthält 256 mögliche Positionen. Jede der 256 Positionen in
der Syndrom-Tabelle enthält zwei Eintritte, wobei der erste Eintritt der hexadezimale Wert der Prüf-Bits CH-
KBIT[7:0] ist und der zweite Eintritt den Kabel-Daten-Status anzeigt, der dieser Position zugeordnet ist. Dem-
zufolge zeigt, zum Beispiel, ein hexadezimaler Wert von 00 einen Nicht-Fehler-Zustand an, ein hexadezimaler
Wert von 01 zeigt einen Fehler in einem Daten-Bit 52 an, ein hexadezimaler Wert von 02 zeigt einen Fehler in
dem Daten-Bit 53 an, ein hexadezimaler Wert von 03 zeigt einen nicht-korrigierbaren Fehler (UNCER) an,
usw..
[0324] Die EDC-Logik ist dazu geeignet, bis zu drei fehlerhafte Bits zu erfassen, so lange wie diese Daten-Bits
benachbart zueinander sind, d. h. demselben Draht zugeordnet sind. Demzufolge sind, zum Beispiel, falls die
Prüf-Bits CHKBIT[7:0] einen hexadezimalen Wert 3D enthalten, dann die Daten-Bits 3, 23 und 43 fehlerhaft.
Das Kabel 28 führt Kabel-Daten CABLE_DATA[19:0]. Demzufolge sind die Daten-Bits FIFOOUT[3],
FIFOOUT[23] und FIFOOUT[43] der vierten Position der Kabel-Daten zugeordnet, d. h. CABLE DATA[3]. Das
EDC-Verfahren kann auch Zwei-Bit-Fehler korrigieren, die demselben Kabel-Draht zugeordnet sind. Demzu-
folge zeigt, zum Beispiel, ein hexadezimaler Prüf-Bit-Wert von 0F Fehler in Daten-Bits FIFOOUT[4] und
FIFOOUT[24] an, beide dem CABLE_DATA[4] zugeordnet.
[0325] Der Fix-Bit-Generator 352 erzeugt auch Signale NCERR (nicht-korrigierbarer Fehler) und CRERR
(korrigierbarer Fehler). Falls kein Fehler durch die Prüf-Bits angezeigt wird, dann sind die Signale CRERR (kor-
rigierbarer Fehler) und NCERR (nichtkorrigierbarer Fehler) beide auf niedrig zurückgenommen. In diesen Po-
sitionen in der Syndrom-Tabelle, die den nicht-korrigierbaren Zustand UNCER enthält, wird das Signal NCERR
auf hoch gesetzt und das Signal CRERR wird auf niedrig zurückgenommen. Ansonsten wird dort, wo ein kor-
rigierbarer Daten-Fehler angezeigt wird, das Signal NCERR auf niedrig zurückgenommen und die Signale
CRERR werden auf hoch zurückgesetzt.
[0326] Die unteren 52 Bits der Fix-Bits FIXBIT[51:0] werden zu einem Eingang von 52 Exklusiv-ODER-Gates
354 zugeführt, deren anderer Eingang eines von jedem der unteren 52 Bits der FIFO-Daten FIFOOUT[51:0]
empfängt. Die oberen 8 FIFO-Bits FIFOOUT[59:52], zugeordnet zu der Fehler-Erfassung und den Korrek-
tur-Bits EDC[7:0], werden dazu verwendet, die Prüf-Bits und die Syndrom-Bits zu erzeugen, werden allerdings
nicht einer Fehlerkorrektur unterworfen. Die Exklusiv-ODER-Gates 354 führen eine Bit-weise Exklu-
siv-ODER-Operation der festgelegten Bits FIXBIT[51:0] und der Daten-Bits FIFOOUT[51:0] aus. Falls die Da-
ten-Signale FIFOOUT[51:0] korrigierbare, fehlerhafte Daten-Bits enthalten, werden diese Daten-Bits durch die
Exklusiv-ODER-Operation „geflipped". Die Exklusiv-ODER-Gates 354 liefern die korrigierten Daten
CORRMSG[51:0] zu dem 1-Eingang eines Multiplexers 360. Der 0-Eingang des Multiplexers 360 nimmt die
Daten-Bits FIFOOUT[51:0] auf und der Multiplexer 360 wird durch ein Konfigurations-Signal
CFG2C_ENABLE_ECC ausgewählt. Der Ausgang des Multiplexers 360 erzeugt Signale MUXMSGI[51:0].
Falls die System-Software eine Fehler-Erfassung und eine Korrektur durch Einstellen des Signals
CFG2C_ENABLE_ECC auf hoch freigibt, dann wählt der Multiplexer 360 die korrigierten Daten
CORRMSG[51:0] für eine Ausgabe aus. Ansonsten werden, falls die Fehler-Erfassung und -Korrektur gesperrt
ist, die Daten-Bits FIFOOOT[51:0] verwendet.
[0327] Die nicht-korrigierbaren und die korrigierbaren Fehler-Indikatioren NCERR und CRERR werden zu
Eingängen von UND-Gates 356 und 358 jeweils geliefert. Die UND-Gates 356 und 358 werden durch das Si-
gnal CFG2C_ENABLE_ECC freigegeben. Die Ausgänge der UND-Gates 356 und 358 erzeugen Signale
C_NLERR und C_CRERR jeweils. Die Signale C_NLERR und C_CRERR können nur dann aufgestellt wer-
den, wenn eine Fehler-Erfassung und eine Korrektur freigegeben ist. Wenn ein Fehler erfasst ist, werden die
48/215

DE 697 21 381 T2 2004.01.15
festgelegten Bits (Fix-Bits) verriegelt und für diagnostische Zwecke verwendet.
[0328] Falls ein korrigierbarer Fehler angezeigt wird (das Signal C_CRERR ist hoch), dann wird eine Unter-
brechung zu dem Unterbrechungs-Empfangs-Block 132 hin erzeugt, weitergeführt zu dem Unterbre-
chungs-Ausgangs-Block 114, und dann zu der System-Unterbrechungs-Steuereinheit übertragen, und dann
zu der CPU 14, um einen Unterbrechungs-Händler aufzurufen. Die nicht-korrigierbaren Fehler, angezeigt
durch das Signal C_NCERR, werden bewirken, dass der System-Fehler SERR_ aufgestellt wird, was wieder-
um bewirkt, dass die System-Unterbrechungs-Steuereinheit (nicht dargestellt) die nichtmaskierbare Unterbre-
chung (Non-Maskable Interrupt – NMI) zu der CPU 14 hin aufstellt. In dem ausgangsseitigen Brücken-Chip 48
werden nicht-korrigierbare Fehler bewirken, dass das Power-Good/PLL-Lock-Indikations-Bit weiter zu dem Ka-
bel 28 geschickt wird, um vernachlässigt zu werden, so dass der eingangsseitige Brücken-Chip 26 keine Zy-
klen zur Ausgangsseite hin schickt.
[0329] Um zufällige Unterbrechungen während und nach einem Power-up-Vorgang zu verhindern, wird eine
Fehlererfassung und -korrektur an sowohl dem eingangsseitigen als auch dem ausgangsseitigen Brü-
cken-Chip während eines Power-up-Vorgangs gesperrt, bis sich die eingangsseitige PLL 186 und die aus-
gangsseitige PLL 182 auf den Takt CABLE_CLK1 oder CABLE_CLK2 verriegelt haben.
[0330] Eine System-Mangament-Software, die auf die Unterbrechung für korrigierbare Fehler anspricht, be-
stimmt die Ursache durch Lesen der verriegelten Fix-Bits. Falls ein Hardware-Fehler bestimmt wird (z. B. Mehr-
fach-Daten-Fehler-Bits, zugeordnet demselben Kabel-Draht), dann kann die System-Management-Software
den Benutzer auf den Zustand hinweisen, um den Hardware-Fehler zu beseitigen. Die System-Manage-
ment-Software spricht auf SERR_ an, verursacht durch einen nicht-korrigierbaren Fehler, unter Abschalten des
Systems oder unter Durchführen von anderen Funktionen, die durch den Benutzer programmiert sind.

SEKUNDÄR-BUS-ARBITRIERER

[0331] Wie die Fig. 3 zeigt, umfasst jeder Brücken-Chip einen PCI-Arbitrierer 116 oder 124. Da der eingangs-
seitige Brücken-Chip 26 normalerweise in einem Schlitz installiert ist, wird der PCI-Arbitrierer 116 gesperrt. Der
PCI-Arbitrierer 124 unterstützt 8 Master: 7 allgemeine PCI-Master (REQ[7:1]_, GNT[7:1]_), umfassend die
sechs PCI-Schlitze und die Hot-Plug-Steuereinheit in der SIO 50, und den Brücken-Chip selbst (BLREQ_,
BLGNT_). Die Signale BLREQ_ und BLGNT_ werden von und zu dem PCI-Master-Block 123 geführt. Der Brü-
cken-Chip stellt das Signal BLREQ_ auf, falls eine Transaktion von der CPU 14, zielmäßig vorgesehen für den
sekundären PCI-Bus 32, durch den eingangsseitigen und ausgangsseitigen Brücken-Chip 26 und 48 empfan-
gen ist. Die Anforderungs- und Erteilungs-Leitungen REQ[1]_ und GNT[1]_ für die SIO 50 werden intern in den
ausgangsseitigen Brücken-Chip 48 weitergeleitet. Der PCI-Arbitrierer 124 setzt eine PCICLK2 Verzögerung
zwischen einer Negation eines GNT_ Signals für einen Master und das Aufstellen eines GNT_ Signals für ei-
nen anderen Master ein.
[0332] In dem ausgangsseitigen Brücken-Chip 48 wird der PCI-Arbitrierer 124 freigegeben oder gesperrt, und
zwar basierend auf dem abgetasteten Wert von REQ[7]_ an der ansteigenden Flanke des Signals PCIRST2_.
Falls der Brücken-Chip 48 REQ[7]_ niedrig auf PCIRST2_ abtastet, wird er den PCI-Arbitrierer 124 sperren.
Falls der PCI-Arbitirierer 124 gesperrt ist, dann wird ein externer Arbitrierer (nicht dargestellt) verwendet, und
die Hot-Plug-Anforderung wird auf dem REQ[1]_ Stift angesteuert und die Hot-Plug-Erteilung wird auf dem
GNT[1]_ Stift eingegeben. Die Brücken-PCI-Bus-Anforderung ist auf dem REQ[2]_ Stift angesteuert und deren
Erteilung wird auf dem GNT[2]_ Stift eingegeben. Falls der Brücken-Chip 48 REQ[7]_ auf hoch auf PCIRST2_
abtastet, wird er den PCI-Arbitrierer 124 freigeben.
[0333] Der PCI-Arbitrierer 124 negiert ein GNT_ Signal des Masters, entweder um einen Initiator mit höherer
Priorität zu bedienen, oder auf das REQ_ Signal des Masters hin, das negiert werden soll. Wenn einmal sein
GNT_ Signal negiert ist, hält der momentane Bus-Master den Besitz über den Bus bei, bis der Bus zu seinem
Leerlauf zurückkehrt.
[0334] Falls keine PCI-Agenten momentan den Bus verwenden oder anfordern, nimmt der PCI-Arbitrierer 124
eines von zwei Dingen in Abhängigkeit von dem Wert eines PARKMSTRSEL Konfigurations-Registers in dem
Konfigurations-Raum 125 vor. Falls das Register den Wert von 0 enthält, verwendet der PCI-Arbitrierer 124
den letzten, aktiven Master, um auf dem Bus 32 zu parken; falls er den Wert 1 enthält, dann wird der Bus an
dem Brücken-Chip 48 geparkt.
[0335] Der PCI-Arbitrierer 124 umfasst einen PCI-Minimal-Erteilungs-Zeitgeber 304 (Fig. 21), der die mini-
male, aktive Zeit aller der GNT_Signale steuert. Der Fehler-Wert für den Zeitgeber 304 ist der hexadezimale
Wert 0000, der anzeigt, dass dort kein minimales Erteilungszeit-Erfordernis vorhanden ist. Der Zeitgeber 304
kann mit einem Wert von 1 bis 255 programmiert sein, um anzuzeigen, dass die Zahl von PCICLK2 Taktperi-
oden der GNT_Leitung aktiv ist. Alternativ kann der individuelle, Minimum-Erteilungs-Zeitgeber jedem
PCI-Master auf dem sekundären Bus 32 zugeordnet sein, um eine größere Flexibilität zu erzielen. Die Mini-
mum-Erteilungs-Zeit ist nur dann anwendbar, wenn der momentane Master sein REQ_ Signal aufstellt. Wenn
einmal das REQ_ Signal weggenommen ist, kann das GNT_Signal ungeachtet des minimalen Erteilungs-Zeit-
49/215

DE 697 21 381 T2 2004.01.15
werts erteilt werden.
[0336] Wie Fig. 20A zeigt, führt, in einem normalen Betrieb, der PCI-Arbitrierer 124 ein Round-Robin-Priori-
täts-Schema (Arbitrierungs-Schema auf dem zweiten Niveau) aus. Die acht Master in dem Round-Robin-Sche-
ma umfassen Vorrichtungen, die mit den sechs Schlitzen bzw. Einsteckplätzen des Erweiterungskastens 30,
dem SIO 50 und einer geposteten Speicher-Schreib-(PMW)-Anforderung von dem eingangsseitigen Brü-
cken-Chip 26 verbunden sind. Alle Master auf dem PCI-Bus 32 in diesem Schema besitzen dieselbe Priorität
wie der Brücken-Chip 48. Nachdem der Master den sekundären PCI-Bus 32 erteilt hat und der Master das
FRAME_ Signal aufgestellt hat, wird der Bus erneut arbitriert und der momentane Master wird an die Unterseite
des Round-Robin-Stapels gesetzt. Falls der Master diese Anforderung negiert oder der Minimum-Ertei-
lungs-Zeitgeber 304 abläuft, wird der PCI-Bus 32 dem Master mit der nächsten, höchsten Priorität erteilt. Ver-
riegelte Zyklen werden nicht in irgendeiner Weise unterschiedlich durch den PCI-Arbitrierer 124 behandelt.
[0337] Auf bestimmte Ereignisse hin wird das Arbitrierungs-Schema so modifiziert, um eine System-Funktion
zu optimieren. Die Ereignisse umfassen: 1) eine eingangsseitig-zuausgangsseitig verzögerte Lese- oder ver-
zögerte Schreib-Anforderung ist anhängig, 2) eine ausgangsseitig-zu-eingangsseitig verzögerte Lese-Anfor-
derung ist anhängig, ohne dass eine Lese-Abschluss-Indikation geliefert wird, und 3) eine Streaming-Möglich-
keit existiert, während der Brücken-Chip 26 der momentane Master auf dem eingangsseitigen Bus 24 ist.
[0338] Wenn eine verzögerte Anforderung erfasst ist, wird der Brücken-Chip 48 der nächste Master, der dem
sekundären PCI-Bus 32 erteilt werden soll. Wenn einmal dem Brücken-Chip 48 der Bus 32 erteilt ist, behält er
einen Besitz über den Bus 32 bei, bis er alle offenstehenden, verzögerten Anforderungen abschließt oder einer
seiner Zyklen erneut versucht wird. Falls der Brücken-Chip 48 erneut versucht wird, wird ein Zwei-Level-Arbi-
trierungs-Schema durch den Arbitrierer 124 ausgeführt. Eine primäre Ursache dafür, dass der Brü-
cken-Chip-Lese-Zyklus erneut versucht wird, ist diejenige, dass die Target-Vorrichtung eine Brücke mit einem
geposteten Schreib-Puffer ist, der gelöscht werden muß. In diesem Fall ist die optimale Operation diejenige,
den Bus 32 zu dem erneut versuchenden Target zu erteilen, um ihm zu ermöglichen, seinen geposteten
Schreib-Puffer zu entleeren, so dass er die Brücken-Chip-Lese-Anforderung annehmen kann.
[0339] Wie Fig. 20B zeigt, umfasst ein Zwei-Level-Arbitrierungs-Protokoll ein Arbitrierungs-Schema auf dem
ersten Level, das ein Round-Robin-Schema ist, und zwar unter drei möglichen Mastern: die verzögerte Anfor-
derung von der CPU 14, eine Anforderung von dem erneut versuchenden Master und ein Master, der durch
das Arbitrierungs-Schema auf dem zweiten Level ausgewählt ist. Jeder dieser drei Master in dem Arbitrie-
rungs-Schema unter dem ersten Level wird jedem dritten Arbitrierungs-Schlitz erteilt. Für Speicher-Zyklen
kann der Schlitz, der dem erneut versuchenden Target zugeordnet ist, von den Target-Speicher-Bereich-Kon-
figurations-Registern in dem Konfigurations-Raum 125 des Brücken-Chips 48 bestimmt werden, der den
Speicherbereich speichert, der jeder PCI-Vorrichtung zugeordnet ist. Falls der erneut versuchende Master
nicht bestimmt werden kann (wie in dem Fall einer I/O-Lesung), oder falls der erneut versuchende Master nicht
den sekundären Bus 32 anfordert, dann würde das Arbitrierungs-Schema auf dem ersten Level zwischen dem
Brücken-Chip 48 und einem Level-Two-Master vorliegen.
[0340] Der erneut versuchende Master wird nicht von der Level-Zwei-Arbitrierung maskiert. Demzufolge ist
es für ihn möglich, zwei Back-to-Back-Arbitrierungs-Gewinne zu haben, falls er der nächste Master in dem Le-
vel-Two-Arbitrierungs-Schema ist.
[0341] Zum Beispiel würde, falls eine Eingangs-zu-Ausgangs-Lesung erneut versucht wird und der Master C
(der erneut versuchende Master) den Bus 32 ebenso wie einen Master B und einen Master E anfordert, die
Reihenfolge der Bus-Erteilungen wie folgt in einer absteigenden Reihenfolge sein: der Brücken-Chip 48, der
erneut versuchende Master (Master C), der Master C, der Brücken-Chip 48, der erneut versuchende Master
C, der Master E, der Brücken-Chip 48, usw., bis der Brücken-Chip 48 in der Lage ist, seine Transaktion abzu-
schließen, und der PCI-Arbitrierer 152 zurück zu seinem Level-Two-Arbitrierungs-Schema für einen normalen
Betrieb kehrt.
[0342] Falls, als ein anderes Beispiel, die Brücken-Chip-Lesung erneut versucht wird und die einzigen ande-
ren die anfordernden Master Master A und Master D sind (d. h. der erneut versuchende Master fordert nicht
den Bus an, oder er könnte nicht identifiziert werden, da er auf einen I/O-Raum gerade zugreift), ist die Rei-
henfolge der Bus-Erteilungen wie folgt: der Brücken-Chip 48, der Master A, der Brücken-Chip 48, der Master
D, usw..
[0343] Das Zwei-Level-Arbitrierungs-Schema gibt verzögerten Anforderungen von der CPU 14 die höchste
Priorität. Obwohl dieses Arbitrierungs-Verfahren stark die CPU 14 favorisiert, wird jeder anfordernden Vorrich-
tung auf dem Bus 32 schließlich der PCI-Bus 32 erteilt. Indem dies so vorgenommen wird, ist dabei eine ge-
ringere Chance vorhanden, dass die anderen, sekundären Bus-Master vernachlässigt werden würden, wenn
eine PCI-Brücken-Chip-Anforderung erneut versucht wird.
[0344] Unter Bezugnahme auf Fig. 21 umfasst der PCI-Arbitrierer 124 eine L2 Zustand-Maschine 302, um
das Level-Two-Round-Robin-Arbitrierungs-Schema auszuführen. Die L2 Zustand-Maschine 302 empfängt Si-
gnale RR_MAST[2:0], die den momentanen Round-Robin-Master anzeigen. Die L2 Zustand-Maschine 302
empfängt auch Anforderungs-Signale RR_REQ[7:0], entsprechend zu den 8 möglichen Mastern des sekundä-
50/215

DE 697 21 381 T2 2004.01.15
ren PCI-Busses 32. Basierend auf dem momentanen Master und dem Zustand der Anforderungs-Signale, er-
zeugt die L2 Zustand-Maschine 302 einen Wert, der den nächsten Round-Robin-Master darstellt. Der Ausgang
der L2 Zustand-Maschine 302 wird zu dem 0-Eingang eines 6:3 Multiplexers 306 geliefert, dessen 1-Eingang
Signale Q2A_STRMAST[2:0] empfängt. Der Auswahl- bzw. Select-Eingang des Multiplexers 306 empfängt ein
Signal STREAM_REQ, das auf hoch durch ein UND-Gate 308 gesetzt wird, wenn eine Streaming-Gelegenheit
existiert (Q2A_STREAM ist hoch), der Streaming-Master auf dem sekundären PCI-Bus 32 seine Anforde-
rungs-Zeile (MY_REQ[Q2A_STRMAST[2:0]] ist hoch) und eine verzögerte Anforderung nicht anhängig ist
(BAL_DEL_REQ ist niedrig).
[0345] Der Ausgang des Multiplexers 306 steuert Signale N_RR_MAST[2:0] an, die den nächsten Round-Ro-
bin-Master in dem Level-Two-Arbitrierungs-Schema darstellen. Die Signale N_RR_MAST[2:0] werden durch
eine L1 Zustand-Maschine 300 empfangen, die auch die folgenden Signale empfängt: ein Signal
RTRYMAST_REQ (das die Anforderung des erneut versuchenden Bus-Masters darstellt); ein Signal
MIN_GRANT (das dann aufgestellt wird, wenn der Minimal-Erteilungs-Zeitgeber 304 zeitmäßig abläuft); das
verzögerte Anforderungs-Signal BAL_DEL_REQ; das Datenfolge-Anforderungs-Signal STREAM_REQ; ein
Signal CURMAST_REQ (das anzeigt, dass der momentane Master ein Aufstellen seines Anforderungs-Sig-
nals beibehält); ein Signal ANY_SLOT_REQ (das auf hoch gestellt wird, falls irgendeines der Anforderungs-Si-
gnale REQ[7:0]_ auf hoch, allerdings nicht die Brücken-Chip-Anforderung BLREQ_ umfassend, aufgestellt ist);
und Signale L1STATE[1:0] (die den momentanen Zustand der L1 Zustand-Maschine 300 darstellt). Die L1 Zu-
stand-Maschine 300 wählt eine von drei möglichen L1-Mastern aus, umfassend den erneut versuchenden
Master (RTRYMAST_REQ), die verzögerte Anforderung von dem Brücken-Chip 48 (BAL_DEL_REQ) und den
Level-Two-Master (ANY_SLOT_REQ).
[0346] Das Anforderungs-Signal des erneut versuchenden Master RTRYMAST_REQ wird durch ein
UND-Gate 312 erzeugt, das das Signal BAL_DEL_REQ, das Signal MY_REQ[RTRY_MAT[2:0]] (das anzeigt,
ob der erneut versuchende Master seine Anforderung aufstellt) und den Ausgang eines ODER-Gates 310
empfängt. Die Eingänge des ODER-Gates 310 nehmen die Signale RTRY_MAST[2:0] auf. Demzufolge ist,
falls ein erneut versuchender Master identifiziert worden ist (RTRY_MAST[2:0] ist Nicht-Null), eine verzögerte
Anforderung vorhanden ist (BAL_DEL_REQ ist hoch) und ein erneut versuchender Master seine Anforderung
aufgestellt hat, dann das Signal RTRYMAST_REQ aufgestellt.
[0347] Die L1 Zustand-Maschine 300 erzeugt Signale N_L1STATE[2:0] (die den nächsten Zustand der L1 Zu-
stand-Maschine 300 darstellen), ebenso wie Signale N_CURMAST[2:0] (die den nächsten Master gemäß dem
Level-Two-Arbitrierungs-Schema darstellen). Die L1 Zustand-Maschine 300 erzeugt auch ein Signal
OPEN_WINDOW, das anzeigt, wenn ein erneut arbitrierendes Fenster für eine Erteilungs-Zustand-Maschine
306 existiert, um Master auf dem sekundären PCI-Bus 32 zu ändern. Ein Signal ADV_RR_MAST, geliefert
durch die L1 Zustand-Maschine 300, zeigt zu der Erteilungs-Zustand-Maschine 306 hin an, wenn der Wert der
Signale N_RR_MAST[2:0] in die Signale RR_MAST[2:0] zu laden sind, um den nächsten Le-
vel-Two-Round-Robin-Master weiterzuführen.
[0348] Die Erteilungs-Zustand-Maschine 306 gibt Erteilungs-Signale GNT[7:0] ebenso wie ein Signal
CHANGING_GNT aus, um anzuzeigen, dass die Inhaberschaft des Busses 32 geändert wird. Die Ertei-
lungs-Signale GNT[7:1]_ werden von den GNT[7:1] Signalen invertiert, und das Erteilungs-Signal BLGNT_
wird von dem GNT[0] Signal invertiert. Die Erteilungs-Zustand-Maschine 306 erzeugt auch Signale
L1STATE[1:0] und Signale RR_MAST[2:0].
[0349] Der Minimum-Erteilungs-Zeitgeber 304 wird durch das Signal PCLK getaktet und erzeugt das Signal
MIN_GRANT. Der Minimum-Erteilungs-Zeitgeber 304 empfängt auch das Signal CHANGING_GNT und
NEW_FRAME (anzeigend, dass ein neues FRAME_ Signal aufgestellt worden ist). Der Anfangs-Wert des Mi-
nimum-Erteilungs-Zeitgebers 304 wird als ein Wert geladen {CFG2A_MINGNT[3:0], 0000}, wobei die Signale
CFG2A_MINGNT[3:0] gespeicherte Konfigurations-Bits in dem Konfigurations-Raum 125 sind, die den An-
fangs-Wert des Minimum-Erteilungs-Zeitgebers 304 definieren. Der Minimum-Erteilungs-Zeitgeber 304 wird
erneut geladen, nachdem er herunter auf Null gezählt hat, und das Signal CHANGING_GNT wird auf hoch ge-
setzt. Nachdem der Minimum-Erteilungs-Zeitgeber 304 mit einem neuen Wert geladen ist, beginnt er sich zu
erniedrigen, wenn das Signal NEW_FRAME auf hoch gesetzt ist und das Signal CHANGING_GNT auf niedrig
durch die Erteilungs-Zustand-Maschine 306 zurückgenommen ist, was anzeigt, dass eine neue Transaktion
auf dem PCI-Bus 32 begonnen hat.
[0350] Signale MY_REQ[7:1] werden durch ein NOR-Gate 314 erzeugt, dessen Eingänge die Anforde-
rungs-Signale REQ[7:1]_ und Maskierungs-Signale Q2AMASKREQ[7:1] empfangen. Ein Aufstellen des Mas-
kierungs-Bits Q2AMASKREQ[X], X = 1–7, maskiert die Anforderung REQ[X]_ des entsprechenden Masters,
was verhindert, dass der PCI-Arbitrierer 124 auf das Anforderungs-Signal anspricht. Ein Signal MY_REQ[0]
wird durch einen Invertierer 316 angesteuert, der die Brücken-Anforderung BLREQ empfängt.
[0351] Wie Fig. 22 zeigt, umfasst die Erteilungs-Zustand-Maschine 306 vier Zustände: PARK, GNT,
IDLE4GNT und IDLE4PARK. Beim Aufstellen eines RESET-Signals (erzeugt von dem PCI-Reset-Signal
PCIRST2_), tritt die Erteilungs-Zustand-Maschine 306 in einen Zustand PARK ein, wo sie verbleibt, während
51/215

DE 697 21 381 T2 2004.01.15
ein Signal ANY_REQ weggenommen wird. Das Signal ANY_REQ wird auf hoch gesetzt, falls irgendeine der
Anforderungs-Zeilen zu dem PCI-Arbitrierer 124 aufgestellt ist. In dem PARK Zustand wird die PCI-PCI-Brücke
48 als der Inhaber des PCI-Busses 32 geparkt, wenn eine andere Anforderung nicht vorhanden ist.
[0352] Falls das Signal ANY_REQ aufgestellt ist, geht die Erteilungs-Zustand-Maschine 306 von dem Zu-
stand PARK zu dem Zustand IDLE4GNT über, und das Signal CHANGING_GNT wird auf hoch gesetzt, um
anzuzeigen, dass der PCI-Arbitrierer 124 Master ändert. Die Erteilungs-Signale GNT[7:0] werden alle auf
Null'en gelöscht, und die Signale CURMAST[2:0] werden mit dem Wert des nächsten Master
N_CURMAST[2:0] aktualisiert. Zusätzlich werden die Round-Robin-Master-Signale RR_MAST[2:0] mit dem
nächsten Round-Robin-Master-Wert N_RR_MAST[2:0] aktualisiert, wenn das Signal ADV_RR_MAST durch
die L1 300 aufgestellt ist. Das Signal ADV_RR_MAST zeigt, wenn es hoch ist, an, dass der nächste L1-Master
einer der L2 Master ist.
[0353] Von einem Zustand IDLE4GNT geht die Erteilungs-Zustand-Maschine 306 als nächstes zu dem GNT
Zustand über, und die Signale GNT[7:0] werden auf den Zustand von neuen Erteilungs-Signalen NEW-
GNT[7:0] eingestellt und das Signal CHANGING_GNT werden auf niedrig gesetzt. Die Signale NEWGNT[7:0]
sind auf dem Zustand der momentanen Master-Signale CURMAST[2:0] basierend, wie dies in Fig. 24 darge-
stellt ist.
[0354] Von dem Zustand GNT sind drei Übergänge möglich. Die Erteilungs-Zustand-Maschine 306 kehrt zu
dem PARK Zustand zurück, falls ein Arbitrierungs-Fenster offen ist (OPEN_WINDOW ist hoch), keine Anfor-
derung anhängig ist (ANY_REQ ist niedrig), der PCI-Bus 32 leer ist (BUS_IDLE ist hoch) und der nächste Mas-
ter der momentane Master ist (d.h. der momentane Master ist der parkende Master). Bei dem Übergang zurück
von dem GNT Zustand zu dem PARK Zustand werden die Signale L1STATE[1:0] mit den Signalen
N_L1STATE[1:0] aktualisiert. Allerdings wird, falls keine Anforderungen anhängig sind und der Bus leer ist,
aber der momentane Master nicht der parkende Master ist (d. h. die Signale N_CURMAST[2:0] sind nicht
gleich zu dem Wert der Signale CURMAST[2:0]), ein Leerlauf-Zustand benötigt und die Erteilungs-Zu-
stand-Maschine 306 geht von dem GNT Zustand zu dem IDLE4PARK Zustand über. Die L1 Zustand-Werte
L1STATE[1:0] werden aktualisiert. Von dem IDLE4PARK Zustand geht die Erteilungs-Zustand-Maschine 306
zu dem PARK Zustand über, die Erteilungs-Signale GNT[7:0] gleich zu den neuen Erteilungs-Signalen NEW-
GNT[7:0] einstellend, um den PCI-Bus 32 dem neuen Master zu erteilen. Das Signal CHANGING_GNT wird
auch auf niedrig gesetzt.
[0355] Falls sich das Arbitrierungs-Fenster öffnet (OPEN_WINDOW ist hoch) und der nächste Master nicht
der momentane Master ist (die Signale N_CURMAST[2:0] sind nicht gleich zu den Signalen CURMAST[2:0]),
dann geht die Erteilungs-Zustand-Maschine 306 zu dem Leerlauf Zustand IDLE4GNT über, um Bus-Master-Er-
teilungen zu ändern. Bei dem Übergang wird das Signal CHANGING_GNT hoch gesetzt, die Signale GNT[7:0]
werden alle auf Null'en gelöscht, die Signale CURMAST[2:0] werden mit dem nächsten Master-Wert
N_CURMAST[2:0] aktualisiert, und die L1 Zustand-Signale L1 STATE[1:0] werden mit dem nächsten Zu-
stand-Wert N_L1STATE[1:0] aktualisiert. Zusätzlich werden die Round-Robin-Master-Signale RR_MAST[2:0]
mit dem nächsten Round-Robin-Master RR_MAST[2:0] aktualisiert, falls das Signal ADV_RR_MAST auf hoch
gesetzt ist. Die Erteilungs-Signale GNT[7:0] werden dann auf den Wert NEWGNT[7:0] bei dem Übergang von
dem IDLE4GNT Zustand zu dem GNT Zustand gesetzt.
[0356] Wie Fig. 23 zeigt, startet die L1 Zustand-Maschine 300 (Fig. 21) in eine, Zustand RR unter Aufstellen
des RESET-Signals, wo die Zustand-Maschine 300 verbleibt, während ein verzögertes Anforderungs-Signal
BAL_DEL_REQ auf niedrig gesetzt wird (anzeigend, dass dort keine verzögerte Anforderung anhängig ist). In
dem RR Zustand wird das Signal ADV_RR_MAST auf hoch gesetzt, um der Erteilungs-Zustand-Maschine 300
zu ermöglichen, den Round-Robin-Master zu aktualisieren (d. h. Einstellen von Signalen RR_MAST[2:0] gleich
zu dem Wert N_RR_MAST[2:0]). Der RR Zustand ist der Round-Robin Zustand, in dem das Level-Two-Arbit-
rierungs-Schema verwendet wird. In dem RR Zustand werden die nächsten Master-Signale N_CURMAST[2:0]
gleich zu dem nächsten Round-Robin-Master N_RR_MAST[2:0] gesetzt, und das Signal OPEN_WINDOW
wird auf hoch gesetzt, falls die Datenfolge-Anforderungs-Gelegenheit existiert (STREAM_REQ ist hoch), oder
der Minimum-Erteilungs-Zeitgeber 304 abgelaufen ist (MIN_GRANT ist hoch), oder der momentane Master
seine Anforderung aufgestellt hat (CURMAST_REQ geht auf niedrig). Wenn hoch aufgestellt ist, ermöglicht
das Signal OPEN_WINDOW, dass eine neue Arbitrierung stattfindet.
[0357] Falls eine verzögerte Anforderung erfasst wird (BAL_DEL_REQ geht zu hoch über), geht die L1 Zu-
stand-Maschine 300 von dem RR Zustand zu dem BAL Zustand über, den nächsten Master Zustand
N_CURMAST[2:0] als den Brücken-Chip 48 einstellend und das Signal ADV_RR_MAST wegnehmend, um die
Level-Two-Round-Round-Arbitrierung zu sperren. In dem BAL Zustand wird das Signal OPEN_WINDOW auf
hoch gesetzt, falls die verzögerte Anforderung weggenommen ist (BAL_DEL_REQ geht zu niedrig über), oder
die verzögerte Anforderung erneut versucht worden ist (BAL_RETRIED geht zu hoch über). Falls das Signal
BAL_DEL_REQ auf niedrig gesetzt ist oder falls die verzögerte Anforderung BAL_DEL_REQ auf hoch gesetzt
ist, allerdings die Anforderung des erneut versuchenden Masters auf niedrig gesetzt wird (RTRYMAST_REQ
ist niedrig) und die Schlitz-Anforderung ANY_SLOT_REQ auf hoch gesetzt wird, dann geht die L1 Zustand-Ma-
52/215

DE 697 21 381 T2 2004.01.15
schine 300 zurück zu dem RR Zustand. Bei dem Übergang wird das Signal ADV_RR_MAST auf hoch gesetzt
und die nächsten Master-Signale N_CURMAST[2:0] werden gleich zu dem nächsten Round-Robin-Master
N_RR_MAST[2:0] gesetzt. Falls das Signal BAL_DEL_REQ weggenommen ist, zeigt dies an, dass der Arbit-
rierer 124 zurück zu dem Level-Two-Round-Robin-Schema kehren sollte. Falls das Signal der verzögerten An-
forderung aufgestellt ist, allerdings die Anforderung des erneut versuchenden Masters weggenommen wird,
dann ist das Level-One-Arbitrierungs-Schema zwischen den Schlitzen auf dem PCI-Bus 32 und dem Brü-
cken-Chip 48.
[0358] Falls sowohl die verzögerte Anforderung BAL_DEL_REQ als auch die Anforderung des erneut versu-
chenden Masters RTRYMAST_REQ aufgestellt sind, dann geht die L1 Zustand-Maschine 300 von dem Zu-
stand BAL zu dem Zustand RETRY_MAST über, und der erneut versuchende Master wird als der nächste
Master eingestellt (N_CURMAST[2:0] wird gleich zu RTRY_MAST[2:0]) eingestellt. Das Signal
ADV_RR_MAST wird auf niedrig beibehalten. In dem RETRY_MAST Zustand ist, falls keiner der
PCI-Schlitz-Master eine Anforderung aufstellt (ANY_SLOT_REQ ist niedrig), dann das Level-One-Arbitrie-
rungs-Schema zwischen dem erneut versuchenden Master und dem Brücken-Chip 48, und die L1 Zu-
stand-Maschine 300 geht zurück zu dem BAL Zustand. Der Brücken-Chip 48 wird als der nächste Master ein-
gestellt (N_CURMAST[2:0] ist gleich zu dem Zustand BALBOA), und das Signal ADV_RR_MAST wird auf
niedrig beibehalten. Allerdings geht die L1 Zustand-Maschine 300 von dem RETRY_MAST Zustand zu dem
RR Zustand über, falls irgendeiner der Schlitz-Master eine Anforderung aufstellt (ANY_SLOT_REQ ist hoch).
Bei dem Übergang wird das Signal ADV_RR_MAST auf hoch gesetzt, und der nächste Round-Robin-Master
wird als der nächste Master eingestellt (N_CURMAST[2:0] wird gleich zu N_RR_MAST[2:0] eingestellt).
[0359] Um von dem Vorteil der Streaming-Fähigkeiten des Brücken-Chips Gebrauch zu machen, wenn Daten
für eine DRC damit beginnen, von dem Kabel 28 anzukommen, wird der Master, zugeordnet zu dieser DRC,
die Vorrichtung mit der höchsten Priorität (unter der Annahme, dass deren REQ_ aufgestellt ist). Dies ermög-
licht dem Master, die Daten-Folge, von dem Kabel 28 ankommend, aufzunehmen, während das Aus-
wahl-Fenster dort für ein Streaming vorhanden ist. Falls der Brücken-Chip 48 nicht den Master verbinden kann,
bevor die DRC-Warteschlange aufgefüllt ist, dann wird sich der eingangsseitige Brücken-Chip 24 trennen, und
nur ein Teil der Daten würde zu dem anfordernden Master hindurchgeführt werden, was erfordert, dass der
Master eine andere Lese-Anforderung auf den eingangsseitigen Bus 24 abgibt. Der Streaming-Master behält
die höchste Priorität bei, so lange wie DRC-Daten fortfahren, von dem Kabel 28 anzukommen. Falls der Master
eine unterschiedliche Zyklus-Adresse wiederholt, wird dies erneut versucht werden, allerdings wird er den Be-
sitz über den sekundären PCI-Bus 32 beibehalten, bis seine Anforderung weggeht oder die Gelegenheit für
ein Streaming vorüber ist.

ERNEUT VERSUCHENDE ANFORDERUNGEN UND MULTI-THREADED MASTER

[0360] Da jeder Brücken-Chip eine Vorrichtung mit verzögerter Transaktion ist, falls eine Vorrichtung auf dem
ausgangsseitigen Bus 32 eine Lese-Anforderung abgibt, bestimmt für ein eingangsseitiges Target, wird der
ausgangsseitige Brücken-Chip 48 eine Wiederversuch-Transaktion (beschrieben in der PCI Spezifikation) auf
dem sekundären Bus 32 ausgeben und die Anforderung weiter zu dem Kabel 28 führen. Die Wiederver-
such-Transaktion bewirkt, dass der anfordernde Master die Steuerung von dem PCI-Bus 32 aufgibt und seine
REQ_ Zeile wegnimmt. Nach Wegnehmen seiner REQ_ Zeile wird der erneut versuchende Master wieder eine
Anforderung für denselben Zyklus zu einer späteren Zeit aufstellen, was dazu führt, dass seine GNT_ aufge-
stellt wird (falls seine REQ_ Zeile nicht maskiert ist) und der Bus-Master erneut versucht, bis die Lese-Ab-
schluss-Indikation in dem ausgangsseitigen Brücken-Chip 48 aufgestellt ist.
[0361] Wie die Fig. 25 zeigt, wird, um die unnötige Bearbeitung von Wiederversuch-Anforderungen zu ver-
meiden, die REQ_ Zeile einen sekundären Bus-Master, er eine erneut versuchte, verzögerte Lese- oder
Schreib-Anforderung ausgibt, durch Aufstellen des geeigneten einen der Signale Q2A_MASK_REQ[7:1] (An-
forderung von dem Brücken-Chip 48, die erneut versucht sind, werden nicht maskiert), maskiert, bis der ver-
zögerte Abschluss zurückführt. Auf diese Art und Weise wird anderen, anfordernden Mastern eine Priorität ge-
geben, um deren Anforderungen hineinzubringen. Sobald die ersten Informationen, zugeordnet dem verzöger-
ten Abschluss, zurückgeführt werden, wird die REQ_ Zeile des entsprechenden Masters von der Maskierung
befreit und der erneut versuchende Master ist in der Lage, in eine Arbitrierung erneut einzutreten.
[0362] Allerdings existiert ein spezieller Fall für Multi-Threaded- (oder Multi-Headed) Master auf dem aus-
gangsseitigen Bus 32 (Fig. 26B), die in der Lage sind, eine erste Anforderung aufzustellen, erneut versucht zu
werden und zurückzukommen mit einer unterschiedlichen Anforderung. Eine solche Multi-Threaded-Bus-Vor-
richtung ist eine PCI-PCI-Brücke 323, die den sekundären PCI-Bus 32 und einen untergeordneten PCI-Bus
325 verbindet. Der Bus 325 ist mit Netzwerk-Schnittstellen-Karten (Network Interface Cards – NICs) 327A und
327B verbunden, die mit zwei unterschiedlichen Netzwerken verbunden sind. Demzufolge kann, falls die An-
forderung von der NIC 327A für den primären PCI-Bus 32 erneut durch den Brücken-Chip 48 versucht wird,
die NIC 327B eine unterschiedliche Anforderung erzeugen. In diesem Fall werden die REQ_ Zeilen der Mul-
53/215

DE 697 21 381 T2 2004.01.15
ti-Threaded-Master nicht maskiert, wie dies durch das Signal CFG2Q_MULTI_MASTER[X], das auf hoch ge-
setzt wird, angezeigt ist.
[0363] Ein Status-Register 326 bestimmt, ob ein Schlitz ein einzelner oder ein Multi-Threaded ist. Bei einem
Reset wird das Register 326 gelöscht, um anzunehmen, dass jede sekundäre Bus-Vorrichtung Einzel-Threa-
ded ist. Der Schlitz wird dann überwacht, um zu bestimmen, ob er einen unterschiedlichen Zyklus anfordert,
während ein anderer Zyklus von demselben Master anhängig ist. Falls ein Multi-Threaded-Verhalten in einem
Master beobachtet wird, dann wird ein solcher durch Einstellen des entsprechenden Bits
CFG2Q_MULTI_MASTER[X] auf hoch markiert.
[0364] Der Eingang des Status-Registers 326 wird mit dem Ausgang eines 14:7 Multiplexers 328 verbunden,
dessen 0-Eingang mit dem Ausgang eines 14:7 Multiplexers 330 verbunden ist, dessen 1-Eingang mit Adres-
sen-Bits P2Q_AD[22:16] verbunden ist. Ein Auswahl-Signal CFGWR_MM wählt die 0- und 1-Eingänge des
Multiplexers 328 aus. Wenn hoch aufgestellt ist, bewirkt das Signal CFGWR_MM ein Konfigurations-Schreiben
des Status-Registers 326 von den Daten-Bits P2Q_AD[22:16], was eine Software-Steuerung der Bits in dem
Register 326 ermöglicht. Der 1-Eingang des Multiplexers 330 nimmt Multi-Master-Signale
MULTI_MASTER[7:1] auf, der 0-Eingang empfängt den Ausgang des Registers 326 und der Multiplexer 330
wird durch ein Signal MULTI SEL ausgewählt. Das Signal MULTI_SEL wird durch ein UND-Gate 338 erzeugt,
dessen erster Eingang ein Signal Q2PIF_CHECK_CYC aufnimmt (gesetzt auf hoch, um anzuzeigen, dass die
momentanen Transaktions-Informationen gegenüber von Informationen geprüft werden sollten, die in dem
Warteschlangen-Block 127 gespeichert sind, und zwar hinsichtlich einer Anpassung, wie beispielsweise wäh-
rend einer verzögerten Speicher-Lese- oder Schreib-Anforderung von einer Bus-Vorrichtung auf dem sekun-
dären PCI-Bus 32), und der andere Eingang nimmt den invertierten Zustand des Signals DCQ_HIT auf (was
anzeigt, dass die momentenen Adressen-Informationen nicht die Adressen-Informationen anpassen, die einer
anhängigen Anforderung des anfordernden Master in der DCQ 148 zugeordnet sind). Demzufolge wird, falls
ein fehlerhafter Vergleich auftrat, der Wert der Signale CFG2Q_MULTI_MASTER[7:1] aktualisiert.
[0365] Ein Bit MULTI_MASTER[X] wird auf hoch gesetzt, falls der Master X eine anhängige Anforderung hat,
die erneut versucht worden ist, und der Master X darauffolgend zurück zu einer unterschiedlichen Anforderung
kommt. Dies wird durch Vergleichen der Transaktions-Informationen (z. B. Adresse, Byte-Freigaben, Daten für
ein Schreiben) der anhängigen Anforderung mit der Adresse der neuen Anforderung geprüft. Ein fehlgeschla-
gener Vergleich zeigt an, dass der Master im Multi-Threaded-Betrieb ist. Wenn einmal ein Multi-Master-Konfi-
gurations-Bit CFG2Q_MULTI_MASTER[X] (X = 1–7) auf hoch gesetzt ist, wird das Bit auf hoch beibehalten.
[0366] Die Signale MULTI_MASTER[7:1] werden durch einen Decodierer 336 erzeugt. Der Decodierer 336
nimmt Signale Q2PIF_SLOT[2:0] (Schlitz-Zahl für die momentane, verzögerte Anforderung von einem Master),
Q[7:0]_MASTER[2:0] (der Master, zugeordnet zu jedem der acht Puffer in der DCQ 148), Q[7:0]_COMPLETE
(der Abschluss-Status jeder der acht Warteschlangen), und Q[7:0]_PART_COMPLETE (der Teil-Ab-
schluss-Status jedes der Puffer in der verzögerten Abschluss-Warteschlange) auf. Zum Beispiel zeigt dann,
falls das Signal Q0_MASTER[2:0] den Wert 4 enthält, dies an, dass der DCQ-Puffer 0 die Transations-Infor-
mationen einer verzögerten Anforderung von der Bus-Vorrichtung in dem Schlitz 4 speichert. Das Signal
QY_COMPLETE, Y = 0–7, zeigt an, falls „hoch" aufgestellt ist, ob der DCQ-Puffer Y alle die Daten empfangen
hat, die der verzögerten Anforderungs-Transaktion zugeordnet sind. Das Signal QY_PART_COMPLETE, Y =
0–7, zeigt an, falls hoch aufgestellt ist, dass der DCQ-Puffer Y als der DCQ-Puffer für eine verzögerte Trans-
aktion von einem der Master zugeordnet worden ist, allerdings alle die Daten, die der verzögerten Transaktion
zugeordnet sind, noch nicht empfangen worden sind.
[0367] Falls die momentane Schlitz-Zahl Q2PIF_SLOT[2:0] gleich zu dem Wert irgendeines der acht Warte-
schlangen-Master-Indikations-Signale Q[7:0]_MASTER[2:0] ist, und sich der entsprechende DCQ-Puffer in
dem Abschluss- oder Teil-Abschluss-Zustand befindet, dann wird das entsprechende eine der Bits
MULTI_MASTER[7:1] auf hoch gesetzt, falls das Signal DCQ HIT niedrig ist, und das Signal
Q2PIF_CHECK_CYC[2:0] hoch ist. Demzufolge wird, zum Beispiel, falls das Signal Q2PIF_SLOT[2:0] den
Wert 2 enthält, was anzeigt, dass die Vorrichtung im Schlitz 2 der momante Master der verzögerten Anforde-
rung ist, und der DCQ-Puffer 5 eine anhängige Anforderung für den Schlitz-2-Master speichert
(Q5_MASTER[2:0] = 5), und irgendeines der Signale Q5_COMPLETE oder Q5_PART_COMPLETE hoch ist,
und falls das Signal Q2PIF_CHECK_CYC hoch ist und das Signal DCQ_HIT niedrig ist, dann das Bit
MULTI_MASTER[2] auf hoch gesetzt, um so anzuzeigen, dass die Schlitz-2-Vorrichtung ein Multi-Threa-
ded-Master ist.
[0368] Ein Maskierungs-Anforderungs-Erzeugungs-Block 332 erzeugt Signale Q2A_MASK_REQ[X] (X =
1–7) in Abhängigkeit von Signalen Q[7:0] MASTER[2:0], Q[7:0]_STATE[3:0], (was den Zustand von verzöger-
ten Abschluss-Warteschlangen 0–7 anzeigt), SLOT_WITH_DATA[7:0] (was anzeigt, ob ein verzögerter Ab-
schluss Qs 0–7 gültige Daten enthält), CFG2Q_MULTI_MASTER[X] (X = 1–7), CFG2Q_ALWAYS_MASK und
CFG2Q_NEVER_MASK.
[0369] Wie Fig. 26A zeigt, umfasst der Masken-Anforderungs-Erzeugungs-Block 332 einen 2:1 Multiplexer
320 zum Erzeugen des Signals Q2A_MASK_REQ[X] (X = 1–7). Der 1-Eingang des Multiplexers 320 ist mit
54/215

DE 697 21 381 T2 2004.01.15
dem Ausgang eines ODER-Gates 322 verbunden und der 0-Eingang ist auf niedrig gesetzt. Der Auswahl-Ein-
gang des Multiplexers 320 wird durch ein Signal MASK_MUXSEL angesteuert. Ein Eingang des ODER-Gates
322 ist mit dem Ausgang eines NOR-Gates 324 verbunden, der ein Signal CFG2Q_MULTI_MASTER[X] auf-
nimmt (anzeigend einen Multi-Threaded-Master), und der andere Eingang empfängt ein Signal
CFG2Q_NEVER_MASK (ein Konfigurations-Bit, das anzeigt, dass die Anforderungs-Zeile nicht maskiert wer-
den sollte, falls ein Multi-Threaded-Master erfasst ist). Der andere Eingang des ODER-Gates 322 empfängt
ein Signal CFG2Q_ALWAYS_MASK, das ein Konfigurations-Bit ist, das anzeigt, dass das entsprechende Mas-
ken-Bit Q2A_MASK_REQ[X] immer maskiert werden sollte, falls das Signal MUXSEL auf hoch gesetzt ist. Das
Signal MASK_MUXSEL wird auf hoch gesetzt, falls die Anforderung von dem sekundären Bus-Master nicht zu
Daten vorliegt, die bereits in dem Warteschlangen-Block 127 existieren, d. h. die Anforderung muss zu dem
primären PCI-Bus 24 übertragen werden. Demzufolge wird, zu jedem Zeitpunkt, zu dem eine Anforderung von
einer Vorrichtung auf dem sekundären PCI-Bus 32 eingangsseitig zu dem primären PCI-Bus 24 übertragen
wird, eine Prüfung in Bezug auf Bits CFG2Q_MULTI_MASTER[7:1] durchgeführt werden, um zu bestimmen,
ob ein Multi-Threaded-Master erfasst worden ist.
[0370] Die Maskierung von Anforderungen kann durch Einstellen der geeigneten Bits in den Konfigurati-
ons-Registern 125 übergangen werden. Die verfügbaren Moden umfassen: 1) normaler Mode, in dem die An-
forderungs-Maskierung freigegeben ist, mit der Ausnahme, falls ein Multi-Threaded-Master
(CFG2Q_NEVER_MASK = 0, CFG2Q_ALWAYS_MASK = 0), 2) immer ein Maskierungs-Mode, in dem Anfor-
derungen von erneut versuchenden Mastern maskiert werden, gerade wenn Multi-Threaded (CFG2Q_
ALWAYS_MASK = 1) vorliegt, und 3) niemals Maskierungs-Mode, in dem die Anforderungen niemals maskiert
sind (CFG2Q_NEVER_MASK = 1, CFG2Q_ALWAYS_MASKED = 0).

ERWEITERUNGS-KARTEN-EINSETZEN UND ENTFERNEN VON VERBINDUNGS-EXPANSIONS-KARTEN

[0371] Wie in den Fig. 1 und 27A dargestellt ist, besitzen die zwei Expansionskästen 30a und 30b, von einem
gemeinsamen Design 30, jeweils die sechs Hot-Plug-Schlitze 36 (36a–f), in denen die herkömmlichen Erwei-
terungskarten 807 eingesetzt und entfernt werden können (Hot-Plugged), während das Computersystem 10
hochgefahren bzw. eingeschaltet verbleibt. Die sechs mechanischen Hebel 802 werden dazu verwendet, se-
lektiv die Expansionskarten 807 zu sichern (wenn geschlossen, oder verriegelt, ist), die in die entsprechenden
Hot-Plug-Schlitze 36 eingesetzt werden. Zu Zwecken eines Entfernens oder eines Einsetzens der Expansions-
karten 807 in einen der Schlitze 36 muss der entsprechende Hebel 802 geöffnet werden, oder entriegelt wer-
den, und so lange wie der Hebel 802 geöffnet ist, verbleibt der entsprechende Schlitz 36 abgeschaltet.
[0372] Wenn der Hebel 802, der die Expansionskarte 807 an seinem Schlitz 36 sichert, geöffnet ist, erfasst
das Computersystem 10 dieses Auftreten und fährt die Karte 802 herunter (und den entsprechenden Schlitz
36), bevor die Karte 807 von deren Schlitz bzw. Einsteckplatz 36 entfernt werden kann. Schlitze bzw. Einsteck-
plätze 36, die heruntergefahren sind, ähnlich anderen Schlitzen 36, die keine Karten 807 halten, verbleiben
heruntergefahren bzw. abgeschaltet, bis eine Software des Computersystems 10 selektiv die Schlitze bzw. Ein-
steckplätze 36 hochfährt.
[0373] Die Karte 46, eingesetzt in den Kartenschlitz 34, besitzt den Brücken-Chip 48, der den Sicherungs-Sta-
tus (offen oder geschlossen) der Hebel 802 überwacht und irgendeine Karte 807 (und einen entsprechenden
Schlitz 36) herunterfährt, der nicht durch seinen Hebel 802 gesichert ist. Eine Software des Computersystems
10 kann auch selektiv irgendeinen der Schlitze 36 herunterfahren.
[0374] Die Karten 807 werden durch eine Hochfahrsequenz hochgefahren und durch eine Herunterfahrse-
quenz heruntergefahren. In der Hochfahrsequenz (the power up sequence) wird Energie zuerst zu der Karte
807 zugeführt, die hochgefahren werden soll, und danach wird ein PCI-Takt-Signal (von dem PCI-Bus 32) zu
der Karte 807 geliefert, die hochgefahren wird. Verbleibende PCI-Bus-Signal-Leitungen der Karte 807 werden
dann mit entsprechenden Leitungen des PCI-Busses 32 verbunden. Zuletzt wird das Reset-Signal für die Karte
807, die hochgefahren wird, weggenommen, was die Karte 807 außerhalb eines Reset-Zustands bringt.
[0375] Die Hochfahrsequenz ermöglicht der Schaltung der Karte 807, dass sie hochgefahren wird, um voll-
ständig funktional mit dem PCI-Takt-Signal zu werden, bevor die verbleibenden PCI-Bus-Signale geliefert wer-
den. Wenn das Taktsignal und die verbleibenden PCI-Bus-Signale mit der Karte 807 verbunden werden und
bevor die Karte 807 zurückgesetzt wird, besitzt der Brücken-Chip 48 eine Kontrolle des PCI-Busses 32. Da der
Brücken-Chip 48 eine Kontrolle über den PCI-Bus 32 während dieser Zeiten besitzt, stören potentielle Defekte
auf dem PCI-Bus 32 von der Power-up-Sequenz nicht die Operationen der Karten 807, die hochgefahren sind.
[0376] In der Herunterfahr- bzw. Power-Down-Sequenz wird die Karte 807, die heruntergefahren werden soll,
zuerst zurückgesetzt. Als nächstes werden die PCI-Bus-Signale, ohne das PCI-Takt-Signal, von der Karte 807
entfernt. Der Brücken-Chip 48 unterbricht darauffolgend das PCI-Takt-Signal von der Karte 807, bevor Energie
von der Karte 807 entfernt wird. Die Herunterfahr- bzw. Power-Down-Sequenz minimiert die Propagation von
falschen Signalen von der Karte 807, die heruntergefahren werden soll, zu dem Bus 32, da die Schaltung auf
der Karte 807 deren vollständige Funktion beibehält, bis die PCI-Bus-Signal-Leitungen entfernt sind.
55/215

DE 697 21 381 T2 2004.01.15
[0377] Wenn das PCI-Taktsignal und die verbleibenden PCI-Bus-Signale unterbrochen werden, und wenn die
Karte 807 zurückgesetzt bzw. in einen Reset-Zustand versetzt wird, besitzt der Brücken-Chip 48 eine Kontrolle
des PCI-Busses 32. Da der Brücken-Chip 48 eine Kontrolle über den PCI-Bus 32 während dieser Zeitpunkte
besitzt, stören potentielle Defekte auf dem PCI-Bus 32 von der Power-Down- bzw. Herunterfahr-Sequenz nicht
die Operationen der Karten 807, die sie hochgefahren haben.
[0378] Der Brücken-Chip 48 umfasst die Seriell-Eingangs/Ausgangs-(SIO)-Schaltung 50, die die Hochfahr-
und Herunterfahr-Sequenzen der Schlitze bzw. Einsteckplätze 36 über vierundzwanzig Steuersignale
POUT[39:16] steuert. Die Steuersignale POUT[39:16] sind ein Untersatz von vierzig Ausgangs-Steuersignalen
POUT[39:0], erzeugt durch die SIO-Schaltung 50. Die Steuersignale POUT[39:16] sind verriegelte Versionen
von Schlitz-Bus-Freigabe-Signalen BUSEN#[5:0], Schlitz-Energie-Freigabe-Signalen PWREN[5:0],
Schlitz-Takt-Freigabe-Signalen CLKEN#[5:0] und Schlitz-Reset-Signalen RST#[5:0], alle internen Signale der
SIO-Schaltung 50, wie weiter nachfolgend beschrieben ist. Die Steuersignale POUT[39:0] und deren Bezie-
hung zu den Signalen BUSEN#[5:0], PWREN[5:0], CLKEN#[5:0] und RST#[5:0] sind in der nachfolgenden Ta-
belle beschrieben:

PARALLEL-AUSGANGS-STEUER-SIGNALE (POUT[39:01])
56/215

DE 697 21 381 T2 2004.01.15
[0379] Wie in den Fig. 2 und 28 dargestellt ist, besitzt jeder Hot-Plug-Schlitz 36 die zugeordnete Um-
schalt-Schaltung 41 zum Verbinden und Trennen des Schlitzes 36 mit und von dem PCI-Bus 32. Die Um-
schalt-Schaltung 41 für jeden Schlitz 36 empfängt vier der Steuersignale POUT[39:16]. Als ein Beispiel wird,
für den Schlitz 36a, wenn das Steuersignal POUT[28] aufgestellt ist, oder niedrig ist, der Schlitz 36a mit den
Bus-Signal-Leitungen des PCI-Busses 32 durch eine Umschalt-Schaltung 47 verbunden. Wenn das Steuersi-
gnal POUT[28] weggenommen ist, oder hoch ist, wird der Schlitz 36a von den Bus-Signal-Leitungen des
PCI-Busses 32 getrennt.
[0380] Wenn das Steuersignal POUT[22] aufgestellt ist, oder niedrig ist, wird der Schlitz 36a mit einem
PCI-Takt-Signal CLK über eine Umschalt-Schaltung 43 verbunden. Wenn das Steuersignal POUT[22] wegge-
nommen ist, oder hoch ist, wird der Schlitz 36a von dem Taktsignal CLK getrennt.
[0381] Wenn das Steuersignal POUT[34] aufgestellt ist, oder hoch ist, wird der Schlitz 36a mit einem Kar-
ten-Spannungs-Versorgungs-Pegel VSS über eine Umschalt-Schaltung 45 verbunden. Wenn das Steuersignal
POUT[34] weggenommen ist, oder niedrig ist, wird der Schlitz 36a von dem Karten-Spannungs-Versor-
gungs-Pegel VSS getrennt.
[0382] Wenn das Steuersignal POUT[16] aufgestellt ist oder niedrig ist, wird der Schlitz 36a zurückgesetzt,
und wenn das Steuersignal POUT[16] weggenommen ist, oder hoch ist, gelangt der Schlitz 36a aus seinem
Reset-Zustand.
[0383] Wie in Fig. 2 zu sehen ist, kann die SIO-Schaltung 50 selektiv bis zu einhundertachtundzwanzig (sech-
zehn Bytes) von verriegelten Status-Signalen STATUS[127:0], geliefert durch den Erweiterungskasten 30,
überwachen. Die Status-Signale STATUS[127:0] bilden einen „Snapshot" von ausgewählten Zuständen des
Erweiterungskastens 30. Die Status-Signale STATUS[127:0] umfassen sechs Status-Signale STATUS[5:0], die
den Sicherungs-Status (geöffnet oder geschlossen) jedes der Hebel 802 anzeigen. Die SIO-Schaltung 50
überwacht die Status-Signale STATUS[31:0] hinsichtlich Änderungen in deren logischen Spannungspegeln.
Die SIO-Schaltung 50 verschiebt seriell die Status-Signale STATUS[127:32] in die SIO-Schaltung 50 hinein,
wenn durch die CPU 14 angewiesen ist, dies so vorzunehmen.
[0384] Die SIO-Schaltung 50 empfängt seriell die Status-Signale STATUS[127:0], das am wenigsten signifi-
kanteste Signal zuerst, und zwar über ein serielles Daten-Signal NEW_CSID. Das Daten-Signal NEW_CSID
wird durch den seriellen Ausgang des parallelen Eingangs-Verschieberegisters 82 mit zweiunddreißig Bits, an-
geordnet auf einer Leiterplatte des Erweiterungskastens 30, zusammen mit den Schlitzen bzw. Einsteckplät-
zen 36, geliefert.
[0385] Das Register 82 empfängt, über dessen parallele Eingänge, vierundzwanzig Parallel-Status-Signale
PIN[23:0], vier zugeordnet zu jedem der Hot-Plug-Schlitze 36, die in den zweiunddreißig am wenigsten signi-
fikanten Status-Signalen STATUS[31:0] umfasst sind. Wenn sich der Status, angezeigt durch eines oder meh-
rere der Status-Signale STA-TUS[31:0], ändert (der logische Spannungs-Pegel ändert sich), erzeugt der Brü-
cken-Chip 48 eine Unterbrechungs-Anforderung zu der CPU 14 durch Aufstellen, oder Ansteuern auf niedrig,
eines seriellen Unterbrechungs-Anforderungs-Signals SI_INTR#, das über einen Unterbrechungs-Emp-
fangs-Block 132 empfangen wird. Die Status-Signale PIN[23:0] umfassen zwei PCI-Karten-Präsenz-Signale
(PRSNT1# und PRSNT2#), zugeordnet zu jedem Schlitz 36.
[0386] Sechs Status-Signale PIN[5:0], entsprechend zu deren verriegelten Versionen, Status-Signale STA-
TUS[5:0], zeigen den Sicherungs- oder Eingriffs-Status (offen oder geschlossen) jedes der Hebel 802 an.
Sechs Gleit-Schalter 805 (Fig. 27A–27C) werden durch die Bewegung deren entsprechender Hebel 802 betä-
tigt und werden dazu verwendet, elektrisch den Sicherungs-Status des entsprechenden Hebels 802 anzuzei-
gen. Jeder Schalter 805 besitzt ein erstes Terminal, verbunden mit Masse, und ein zweites Terminal, das das
entsprechende eine der Status-Signale PIN[5:0] zuführt. Das zweite Terminal ist mit einem Versorgungs-Span-
nungs-Pegel VDD über einen von sechs Widerständen 801 verbunden.
[0387] Falls sich einer der Hebel 802 öffnet und die Karte 807, gesichert durch den Hebel 802, entsichert wird,
wird das entsprechende eine der Status-Signale PIN[5:0] aufgestellt, oder auf hoch angesteuert. Als ein Bei-
spiel wird, für den Schlitz 36a, das Status-Signal PIN[0] weggenommen oder auf niedrig angesteuert, wenn der
entsprechende Hebel 802 geschlossen ist. Wenn der Hebel 802 für den Schlitz 36a geöffnet ist, wird das Sta-
tus-Signal PIN[0] aufgestellt, oder auf hoch angesteuert.
[0388] Das Register 82 empfängt auch eine serielle Datenfolge von verriegelten Status-Signalen STA-
TUS[127:32], die keine Unterbrechungen verursachen, wenn sich der logische Spannungs-Pegel eines der Si-
gnale STATUS[127:32] ändert. Die Status-Signale STATUS[127:32] werden durch das Verschiebe-Register 52
mit sechzehn Bits, angeordnet auf der Leiterplatte des Expansionskastens 30, mit den Schlitzen 36, gebildet.
Das Verschiebe-Register 52 empfängt Status-Signale an seinen parallelen Eingängen und verriegelt die Sta-
tus-Signale STATUS[127:32], wenn durch die SIO-Schaltung 50 instruiert ist, dies so vorzunehmen. Das Ver-
schiebe-Register 52 serialisiert die Status-Signale STATUS[127:32] und liefert die Signale STATUS[127:32] zu
dem seriellen Eingang des Registers 82 über ein serielles Daten-Signal CSID_I.
[0389] Wenn durch die SIO-Schaltung 50 instruiert ist, verriegelt das Register 82 Status-Signale PIN[23:0],
bildet die Status-Signale STATUS[31:0], liefert die Status-Signale STATUS[31:0] und liefert ein Byte oder mehr
57/215

DE 697 21 381 T2 2004.01.15
der Status-Signale STATUS[127:32] (wenn dies durch die CPU 14 angefordert ist), in einem am wenigsten si-
gnifikanten Signal einer ersten Art, zu der SIO-Schaltung 50, und zwar über das serielle Daten-Signal
NEW_CSID. Die Status-Signale STATUS[127:0] werden durch die nachfolgende Tabelle beschrieben:
[0390]

[0391] Wie in den Fig. 2 und 30 dargestellt ist, verriegelt, wenn eine SIO-Schaltung 50 ein Register-Lade-Si-
gnal CSIL_O_ aufstellt, oder auf niedrig ansteuert, das Schiebe-Register 52 die Status-Signale STA-
TUS[127:32] und das Schiebe-Register 82 verriegelt die Status-Signale STATUS[31:0]. Wenn die SIO-Schal-
tung 50 das Signal CSIL_O_ wegnimmt, oder auf hoch ansteuert, verschieben beide Register 52 und 82 seriell
deren Daten zu der SIO-Schaltung 50 an der positiven Flanke des Taktsignals CSIC_O, geliefert durch die
SIO-Schaltung 50. Das Taktsignal CSIC_O wird zu der und auf einem Viertel der Frequenz des PCI-Taktsignals
CLK synchronisiert.
[0392] Wie in Fig. 29 dargestellt ist, verwendet, zu Zwecken einer Überwachung, oder für ein Abtasten, der
Status-Signale STATUS[31:0], die SIO-Schaltung 50 ein 32-Bit-Unterbrechungs-Register 800, dessen Bit-Po-
sitionen den Signalen STATUS [31:0] entsprechen. Die SIO-Schaltung 50 aktualisiert die Bits des Unterbre-
chungs-Registers 800, um die entsprechenden Status-Signale STATUS[31:0] anzugleichen, die entprellt (de-
bounced) worden sind, wie weiter nachfolgend beschrieben ist. Zwei Status-Signale STATUS[7:6] werden für
zusätzliche Hot-Plug-Schlitze 36 reserviert, und das siebte und achte, signifikanteste Bit des Unterbre-
chungs-Registers 800 werden auch für die zusätzlichen Schlitze 36 reserviert. Das Unterbrechungs-Register
800 ist ein Teil eines Register-Logik-Blocks 808 der SIO-Schaltung 50, die mit dem PCI-Bus 32 gekoppelt ist.

STATUS[127:0]

BIT BESCHREIBUNG
0 Status-Signal von Hebel 802 für Schlitz 36a (PIN[0])
1 Status-Signal von Hebel 802 für Schlitz 36b (PIN[1])
2 Status-Signal von Hebel 802 für Schlitz 36c (PIN[2])
3 Status-Signal von Hebel 802 für Schlitz 36d (PIN[3])
4 Status-Signal von Hebel 802 für Schlitz 36e (PIN[4])
5 Status-Signal von Hebel 802 für Schlitz 36f (PIN[5])
6 reserviert für Status-Signal von Hebel 802 für einen zusätzlichen

Hot-Plug-Schlitz
7 reserviert für Status-Signal von Hebel 802 für einen zusätzlichen

Hot-Plug-Schlitz
8 PRSNT2# Signal für Schlitz 36a (PIN[6])
9 PRSNT2# Signal für Schlitz 36b (PIN[7])
10 PRSNT2# Signal für Schlitz 36c (PIN[8])
11 PRSNT2# Signal für Schlitz 36d (PIN[9])
12 PRSNT2# Signal für Schlitz 36e (PIN[10])
13 PRSNT2# Signal für Schlitz 36f (PIN[11])
14 reserviert für PRSNT#2 Signal für einen zusätzlichen Hot-Plug-Schlitz 36
15 reserviert für PRSNT#2 Signal für einen zusätzlichen Hot-Plug-Schlitz 36
16 PRSNT1# Signal für Schlitz 36a (PIN[12])
17 PRSNT1# Signal für Schlitz 36b (PIN[13])
18 PRSNT1# Signal für Schlitz 36c (PIN[14])
19 PRSNT1# Signal für Schlitz 36d (PIN[15])
20 PRSNT1# Signal für Schlitz 36e (PIN[16])
21 PRSNT1# Signal für Schlitz 36f (PIN[17])
22 reserviert für PRSNT#1 Signal für einen zusätzlichen Hot-Plug-Schlitz 36
23 reserviert für PRSNT#1 Signal für einen zusätzlichen Hot-Plug-Schlitz 36
24 Power-Fehler-Status für Schlitz 36a (PIN[18))
25 Power-Fehler-Status für Schlitz 36b (PIN[19])
26 Power-Fehler-Status für Schlitz 36c (PIN[20])
27 Power-Fehler-Status für Schlitz 36d (PIN[21])
28 Power-Fehler-Status für Schlitz 36e (PIN[22])
29 Power-Fehler-Status für Schlitz 36f (PIN[23])
30 reserviert für Power-Fehler-Status für zusätzlichen Hot-Plug-Schlitz 36
31 reserviert für Power-Fehler-Status für zusätzlichen Hot-Plug-Schlitz 36
32– 127 Status-Signale, die keine nterbrechungs-Anforderungen verursachen, wenn

sich deren Status ändert
58/215

DE 697 21 381 T2 2004.01.15
[0393] Eine serielle Abtast-Eingangs-Logik 804 der SIO-Schaltung 50 tastet sequenziell, oder überwacht, die
Status-Signale STATUS[31:0], das am wenigsten signifikante Signal zuerst, hinsichtlich Änderungen, wie dies
durch Übergänge in deren logischen Spannungs-Pegeln angezeigt ist. Falls sich der Status von einem oder
mehr der Status-Signale STATUS[5:0], zugeordnet den Hebeln 802, ändert, tritt die Seriell-Abtast-Ein-
gangs-Logik 804 in einen langsamen Abtast-Mode ein, so dass die Status-Signale STATUS[5:0] zweiunddrei-
ßigmal innerhalb eines vorbestimmten Entprell- bzw. Debounce-Zeit-Intervalls abgetastet werden. Falls sich
eines oder mehrere der Status-Signale STATUS[5:0] ändert, aktualisiert die serielle Abtast-Eingangs-Logik
804 das Unterbrechungsregister 800 (und stellt das serielle Unterbrechungs-Signal SI_INTR# auf), falls das
geänderte Status-Signal STATUS[5:0] auf demselben, logischen Spannungsniveau für zumindest ein vorbe-
stimmtes Entprell-Zeit-Intervall verbleibt. Die Seriell-Abtast-Eingangs-Logik 804 ist mit programmierbaren Zeit-
gebern 806 gekoppelt, die das Ende des Entprell-Verzögerungs-Intervalls erzeugen und anzeigen, initiiert
durch die Seriell-Abtast-Logik 804. Unter Fordern des Status, stabil für die Entprell-Zeit zu bleiben, minimiert
das Intervall das unbeabsichtigte Power-Down von einem der Hot-Plug-Schlitze 36 aufgrund eines falschen
Werts (d. h. eines „Defekts"), angezeigt durch eines der Status-Signale STATUS[5:0]. Wenn alle der Status-Si-
gnale STATUS[5:0] auf demselben, logischen Spannungspegel für mindestens das Entprell-Zeit-Intervall ver-
bleiben, dann schreitet die Seriell-Abtast-Eingangs-Logik 804 fort, um noch einmal erneut alle zweiunddreißig
Status-Signale STATUS[31:0] in dem schnelleren Abtast-Mode abzutasten.
[0394] Falls die Seriell-Abtast-Eingangs-Logik 804 eine Änderung in einem der Status-Signale STATUS[31:6]
erfasst, instruiert die Seriell-Abtast-Eingangs-Logik 804 die Zeitgeber 806, ein anderes Debounce- bzw. Ent-
prell-Verzögerungs-Intervall zu messen, stellt darauf das Seriell-Unterbrechungs-Signal SI_INTR# auf, aktua-
lisiert das Unterbrechungs-Register 800 mit den Signalen STATUS[31:6], die sich geändert haben, und igno-
riert weitere Änderungen in den Status-Signalen STATUS[31:6], bis das Entprell-Zeit-Intervall abläuft. Nach
Ablaufen des Entprell-Zeit-Intervalls schreitet die Seriell-Abtast-Eingangs-Logik 804 fort, um Änderungen in
den zweiunddreißig Status-Signalen STATUS[31:0] zu erkennen.
[0395] Wenn das Seriell-Unterbrechungs-Signal SI_INTR# aufgestellt ist, liest die CPU 14 darauffolgend das
Unterbrechungs-Register 800, bestimmt, welche (es können mehr als eins sein) Status-Signale STATUS[3:0]
die Unterbrechung verursachten, und nimmt das Seriell-Unterbrechungs-Signal SI_INTR# durch Schreiben ei-
ner „1" zu dem Bit oder den Bits des Unterbrechungs-Registers 800, die sich geändert haben, weg.
[0396] Die CPU 14 kann selektiv Unterbrechungs-Anforderungen, verursacht durch die Status-Signale STA-
TUS[31:0], durch Schreiben einer „1" zu einem entsprechenden Bit eines Unterbrechungs-Maskierungs-Re-
gisters 810 mit zweiunddreißig Bits maskieren. Die CPU 14 kann auch selektiv irgendein Byte der Status-Sig-
nale STATUS[47:0] durch Schreiben einer Byte-Zahl des ausgewählten Bytes zu einem Seriell-Ein-
gangs-Byte-Register 812 lesen. Die SIO-Schaltung 50 überträgt dann das erwünschte Byte in ein Seriell-Da-
ten-Register 815 hinein.
[0397] Zum Beispiel schreibt, um das dreißigste Byte (Byte-Zahl zwei) der Status-Signale STATUS[23:16] zu
lesen, die CPU 14 eine „2" in das Seriell-Eingangs-Byte-Register 812. Die Seriell-Abtast-Eingangs-Logik 804
verschiebt dann seriell Byte zwei der Status-Signale STATUS[23:16] in das Seriell-Daten-Register 815 hinein.
Ein Busy-Status-Bit BS des Seriell-Eingangs-Byte-Registers 812 ist gleich zu „1", wenn die CPU 14 zu Anfang
die erwünschte Byte-Zahl zu dem Seriell-Eingangs-Byte-Register 812 schreibt. Das Bit BS wird durch die
SIO-Schaltung 50 gelöscht, nachdem das angeforderte Byte in das Seriell-Daten-Register 815 hinein verscho-
ben worden ist.
[0398] Die CPU 14 kann einen der Schlitze 36 durch Schreiben einer „1" zu einem entsprechenden Bit eines
Schlitz-Freigabe-Registers 817 hochfahren und den Schlitz 36 durch Schreiben einer „0" zu diesem Bit sper-
ren. Weiterhin kann die CPU 14 einen der Schlitze 36 durch Schreiben einer „1" zu einem entsprechenden Bit
eines Schlitz-Reset-Registers 819 zurücksetzen. Die Inhalte der Schlitz-Freigabe- 817 und der Schlitz-Re-
set-819 Register sind durch Signale SLOT_EN[5:0] und SLOT_RST_[5:0] jeweils dargestellt.
[0399] Um die Anforderung zu initiieren, angezeigt durch das Schlitz-Freigabe- 817 und Reset- 819 Register,
zu initiieren, schreibt die CPU 14 eine „1" zu einem SO-Bit eines Steuer-Registers 814. Nachdem das SO-Bit
aufgestellt ist (was ein GO_UPDATE Signal aufstellt, oder auf hoch ansteuert), initiiert die SIO-Schaltung 50
die erforderlichen Powerdown- und/oder Power-up-Sequenzen und steuert sie.
[0400] Die Seriell-Abtast-Eingangs-Logik 804 ist mit einer EIN/AUS-Steuer-Logik 820 verbunden, die die Po-
wer-up- und Power-down-Sequenzen steuert. Die EIN/AUS-Steuer-Logik 820 liefert die Signale BUSEN#[5:0],
CLKEN#[5:0], RST#[5:0] und PWREN[5:0] zu einer Seriell-Ausgangs-Logik 824.
[0401] Jede Power-up- und Power-down-Sequenz umfasst vier Verschiebe-Phasen, während denen ein an-
derer Schritt der Power-down- oder Power-up-Sequenz durchgeführt wird. Während jeder Verschiebe-Phase
instruiert die EIN/AUS-Steuer-Logik 820 die Seriell-Ausgangs-Logik 824, die Steuer-Signale BUSEN#[5:0],
CLKEN#[5:0], RST#[5:0] und PWREN[:0] zu kombinieren; diese Signale zu verriegeln; und liefert seriell diese
Signale (über ein serielles Daten-Signal CSOD_O) zu dem seriellen Eingang eines Ausgangs-Verschiebe-Re-
gisters 80. An dem Ende jeder Verschiebe-Phase instruiert die EIN/AUS-Steuer-Logik 820 das Verschiebe-Re-
gister 80, die Steuersignale POUT[35:12] zu aktualisieren.
59/215

DE 697 21 381 T2 2004.01.15
[0402] Die EIN/AUS-Steuer-Logik 820 wird auch schnittstellenmäßig mit der Register-Logik 808 und einer
Steuer-Logik 822 für eine Licht emittierende Diode (Light Emitting Diode – LED) verbunden. Die LED-Steu-
er-Logik 122 steuert den Ein/Aus-Status der sechs LEDs 54, die visuell anzeigen, ob die entsprechenden He-
bel 802 verriegelt sind oder entriegelt sind. Die LEDs 54 können so programmiert werden, um dann zu blinken,
wenn sie eingeschaltet sind, und zwar über LED-Steuerregister (nicht dargestellt) der Register-Logik 808.
[0403] Wie in Fig. 31A dargestellt ist, umfasst die Seriell-Abtast-Eingangs-Logik 804 eine Abtast-Zu-
stand-Maschine 840, die das Abtasten der Status-Signale STATUS[31:0] hinsichtlich Änderungen steuert und
das Verschieben eines ausgewählten Bytes der Status-Signale STATUS[47:0] in das Seriell-Ein-
gangs-Byte-Register 815 hinein steuert.
[0404] Die Abtast-Zustand-Maschine 840 wird an der negativen Flanke eines Takt-Signals DIV2CLK getaktet,
das zu einem PCI-Taktsignal CLK synchronisiert ist, und von einer Hälfte der Frequenz des PCI-Taktsignals
CLK ist. Die Last- und Taktsignale, CSIL_O_ und CSIC_O, jeweils, werden durch die Abtast-Zustand-Maschine
840 geliefert. Das Taktsignal wird, wenn es freigegeben wird, zu dem Taktsignal CSIC_O synchronisiert.
[0405] Ein Bit/Byte-Zähler 841 zeigt, über ein Zweiunddreißig-Bit-Signal BIT_ACTIVE[31:0] an, welches Bit
der Status-Signale STATUS[3:0] momentan durch das Seriell-Daten-Signal NEW_CSID repräsentiert wird.
Das aufgestellte Bit des Signals BIT_ACTIVE[31:0] besitzt dieselbe Bit-Position wie das Status-Signal STA-
TUS[31:0], dargestellt durch das Daten-Signal NEW_CSID.
[0406] Der Zähler 841 liefert auch ein Drei-Bit-Signal BIT[2:0], das darstellt, welches Bit des momentanen
Bytes der Status-Signale STATUS[31:0] momentan durch die Abtast-Zustand-Maschine 840 abgetastet wird.
Der Zähler 841 wird an der negativen Flanke eines Signals SHIFT_ENABLE getaktet. Die Ausgänge des Zäh-
lers 841 werden zurückgesetzt, oder gelöscht, wenn der Ausgang eines UND-Gates 842, verbunden mit dem
Lösch-Eingang des Zählers 840, negiert wird.
[0407] Die Abtast-Zustand-Maschine 840 liefert ein Signal SCAN_IN_IDLE, das, wenn es aufgestellt wird,
oder auf hoch gesetzt wird, anzeigt, dass sich die Abtast-Zustand-Maschine 840 in einem IDLE Zustand befin-
det, und momentan nicht irgendeines der Status-Signale STATUS[127:0] abtastet. Das Signal SCAN_IN_IDLE
wird ansonsten weggenommen.
[0408] Das Signal SCAN_IN_IDLE wird zu einem Eingang des UND Gates 842 geliefert. Der andere Eingang
des UND-Gates 842 ist mit dem Ausgang eines ODER-Gates 843 verbunden. Ein Eingang des ODER-Gates
843 empfängt ein invertiertes HOLD_OFF Sinal, und der andere Eingang des ODER-Gates 843 empfängt ein
Signal GETTING_BYTE.
[0409] Das Signal HOLD_OFF zeigt, wenn es aufgestellt ist, oder auf hoch angesteuert ist, an, dass eine Än-
derung in dem einen der Status-Signale STATUS[5:0] erfasst worden ist, und die Seriell-Abtast-Logik 804 in
den Langsam-Abtast-Mode eingetreten ist. In diesem Langsam-Abtast-Mode bzw. Slow-Scan-Mode wartet die
Seriell-Abtast-Eingangs-Logik 804 auf ein vorbestimmtes Langsam-Abtast-Intervall, bevor die Status-Signale
STATUS[31:0] erneut weitergeführt werden. Die Seriell-Abtast-Eingangs-Logik 804 zählt die Zahl von Malen,
für die die Seriell-Abtast-Signale STATUS[5:0] während des Langsam-Abtast-Modes abgetastet werden, und
verwendet diese Zählung, um zu bestimmen, wenn eines von dem Status-Signal STATUS[5:0] unverändert für
das Entprell-Verzögerungs-Intervall verblieb, wie weiterhin nachfolgend beschrieben werden wird.
[0410] Deshalb werden, wenn sich die Abtast-Zustand-Maschine 840 in dem IDLE Zustand befindet und ent-
weder das HOLD_OFF Signal weggenommen ist oder sich die Abtast-Zustand-Maschine 840 beim Lesen ei-
nes ausgewählten Bytes (ausgewählt durch die CPU 14) der Status-Signale STATUS[47:0] befindet, alle Aus-
gänge des Zählers 841 gelöscht oder gleich zu Null gesetzt.
[0411] Das Signal SHIFT_ENABLE wird durch den Ausgang eines UND-Gates 844 geliefert. Ein Eingang des
UND-Gates 844 nimmt das Takt-Signal CSIC_O auf. Ein anderer Eingang des UND-Gates 844 nimmt ein Si-
gnal DIV2CLK# auf. Das Signal DIV2CLK# wird aufgestellt, oder auf niedrig angesteuert, an der negativen
Flanke des Signals CLKDIV4. Der dritte Eingang des UND-Gates 844 empfängt ein Signal
SCAN_IN_PROGRESS, das, wenn es aufgestellt wird, oder auf hoch angesteuert ist, anzeigt, dass die Ab-
tast-Zustand-Maschine 840 momentan die Status-Signale STATUS[127:0] abtastet, und das Signal
SCAN_IN_PROGRESS wird ansonsten weggenommen.
[0412] Deshalb wird, wenn die Abtast-Zustand-Maschine 840 nicht die Status-Signale STATUS[127:0] ver-
schiebt, der Zähler 841 gesperrt. Weiterhin wird, wenn freigegeben ist, der Zähler 841 an der negativen Flanke
des Taktsignals DIV2CLK getaktet.
[0413] Das Unterbrechungs-Register 800 empfängt Eingangs-Signale D_INTR_REG[31:0] an deren entspre-
chenden zweiunddreißig Eingängen. Die Last-Freigabe-Eingänge des Unterbrechungs-Registers 800 nehmen
entsprechende Last-Freigabe-Signale UPDATE_IRQ[31:0] auf. Das Unterbrechungs-Register 800 wird an der
positiven Flanke des PCI-Taktsignals CLK getaktet.
[0414] Für die Zwecke, ein Protokoll über die Status-Signale STATUS[5:0] nach jeder Abtastung beizubehal-
ten, liefert ein Mehrfach-Bit, D-Typ-Flip-Flop 836 Status-Signale SCAN_SW[5:0]. Der Lösch-Eingang des
Flip-Flops 836 nimmt das Reset-Signal RST auf, und das Flip-Flop 836 wird an der positiven Flanke des Takt-
signals CLK getaktet. Der Eingang des Flip-Flops 836 ist mit dem Ausgang eines Mehrfach-Bit-ODER-Gates
60/215

DE 697 21 381 T2 2004.01.15
850 verbunden, das einen Eingang mit dem Ausgang eines Multi-Bit-UND-Gates 846 verbunden und einen
Eingang mit dem Ausgang eines Multi-Bit-UND-Gates 847 verbunden besitzt. Ein Eingang des UND-Gates
846 nimmt sechs Bit-Freigabe-Signale BIT_ENABLE[5:0] auf (nachfolgend beschrieben) und der andere Ein-
gang des UND-Gates 846 nimmt das Seriell-Daten-Signal NEW_CSID auf. Ein Eingang des UND-Gates 847
nimmt invertierte Bit-Freigabe-Signale BIT_ENABLE[5:0] auf, und der andere Eingang des UND-Gates 847
nimmt die Signale SCAN_SW[5:0] auf.
[0415] Nur eines der Bit-Freigabe-Signale BIT_ENABLE[5:0] wird zu einem Zeitpunkt aufgestellt (wenn die
Abtast-Zustand-Maschine 840 abtastet), und das aufgestellte Bit zeigt an, welches eine der entsprechenden
Status-Signale STATUS[31:0] durch das Signal NEW_CSID dargestellt wird. Demzufolge werden, wenn die
Abtast-Zustand-Maschine 840 abtastet, und zwar an jeder positiven Flanke des Taktsignals CLK, die Signale
SCAN_SW[5:0] aktualisiert.
[0416] Die Bit-Freigabe-Signale BIT_ENABLE[31:0] werden durch den Ausgang eines Mehrfach-Bit-Multiple-
xers 832 geliefert, der die Bits BIT_ACTIVE[31:0] an seinem einen Eingang empfängt. Der Null-Eingang des
Multiplexers 832 empfängt ein Zweiunddreißig-Bit-Signal, das für eine logische Null Indikativ ist. Der Aus-
wahl-Eingang des Multiplexers 832 empfängt das Signal SHIFT_ENABLE.
[0417] Zu Zwecken einer Erfassung einer Änderung in den Status-Signalen STATUS[5:0], liefert ein Multi-Bit-,
Exklusiv-Oder-(XOR)-Gate 848 Umschalt-Änderungs-Signale SW_CHG[5:0]. Wenn eines der Signale
SW_CHG[5:0] aufgestellt ist oder hoch ist, änderte sich die logische Spannung des entsprechenden Status-Si-
gnals STATUS[5:0] während aufeinanderfolgender Abtastungen. Ein Eingang des XOR-Gates 848 ist mit dem
Eingang des Flip-Flops 836 verbunden, und der andere Eingang des XOR-Gates 848 empfängt die Signale
SCAN SW[5:0].
[0418] Wie in Fig. 31 D dargestellt ist, besitzt, zu Zwecken eines Anzeigens, wenn der logische Span-
nungs-Pegel eines ausgewählten Status-Signals STATUS[5:0] bei einem logischen Spannungs-Pegel für min-
destens die Dauer des Debounce-Verzögerungs-Intervalls verblieben war, die Abtast-Eingangs-Logik 804
sechs Signale LSWITCH[5:0]. Der nichtinvertierende Eingang eines Flip-Flops 900 vom D-Typ liefert das Sig-
nal LSWITCH[5] an seinem nicht-invertierenden Ausgang. Das Signal LSWITCH[5] wird aufgestellt oder auf
hoch angesteuert, um den vorstehend beschriebenen Zustand anzuzeigen, und wird ansonsten weggenom-
men. Das Flip-Flop 900 wird an der positiven Flanke des Taktsignals CLK getaktet, und der Lösch-Eingang des
Flip-Flops 900 nimmt das RST-Signal auf.
[0419] Der Eingang des Flip-Flops 900 ist mit dem Ausgang eines Multiplexers 902 verbunden, der ein
D_LSWITCH[5] Signal liefert. Der Auswahl-Eingang des Multiplexers 902 ist mit dem Ausgang eines
UND-Gates 903 verbunden, der ein MAX5 Signal und ein SCAN_END Signal aufnimmt. Das SCAN_END Si-
gnal zeigt, wenn es aufgestellt ist, an, dass die Abtast-Zustand-Maschine 840 deren momentane Abtastung
abgeschlossen hat. Fünf Signale (MAX5, MAX4, MAX3, MAX2, MAX1 und MAX0) zeigen an, ob das entspre-
chende Status-Signal STATUS[5], STATUS[4], STATUS[3], STATUS[2], STATUS[1] oder STATUS[0], jeweils,
auf demselben, logischen Spannungs-Niveau für mindestens die Dauer des Debounce-Zeit-Intervalls verblie-
ben ist. Der Null-Eingang des Multiplexers 902 empfängt das Signal LSWITCH[5], und der eine Eingang des
Multiplexers 902 empfängt das Signal SCAN_SW[5]. Das Signal SCAN_END wird durch den Ausgang eines
UND-Gates 851 geliefert (Fig. 31B). Das UND-Gate 851 empfängt ein Signal STOP_SCAN und ein Signal
SCAN_DONE. Das Signal STOP_SCAN wird aufgestellt, oder auf hoch angesteuert, wenn Zustände zum Be-
enden des Abtastens durch die Abtast-Zustand-Maschine 840 vorhanden sind, wie weiter nachfolgend be-
schrieben ist. Das Signal SCAN_END ist eine gepulste Version (für einen Zyklus des CLK-Signals) des Signals
STOP_SCAN. Die Signale LSWITCH[4]-LSWITCH[0] und D_LSWITCH[4]-D_LSWITCH[0] werden in einer
ähnlichen Weise aus den jeweiligen SCAN_SW[4]-SCAN_SW[0] Signalen und den jeweiligen Signalen
MAX4-MAX0 erzeugt.
[0420] Zu Zwecken einer Aktualisierung wird der logische Spannungspegel der Status-Signale STATUS[31:6]
als diese Signale eingetastet, ein Multi-Bit-D-Typ-Flip-Flop 905 (Fig. 31D) liefert sechsundzwanzig Signale
SCAN_NSW[31:6]. Eines der Signale SCAN_NSW[31:6] wird aufgestellt, oder auf hoch angesteuert, um die-
sen Zustand anzuzeigen, und wird ansonsten weggenommen. Das Flip-Flop 905 wird an der positiven Flanke
des Taktsignals CLK getaktet und der Löscheingang des Flip-Flops 905 nimmt das RST-Signal auf.
[0421] Der Eingang des Flip-Flops 905 ist mit dem Ausgang eines Multi-Bit-Multiplexers 906 verbunden. Der
Auswahl-Eingang des Multiplexers 906 nimmt ein invertiertes CHECK_SWITCH_ONLY Signal auf. Das
CHECK_SWITCH_ONLY Signal wird aufgestellt, oder auf hoch angesteuert, wenn die Abtast-Zustand-Maschi-
ne 850 nur die Status-Signale STATUS[5:0] oder die Status-Signale STATUS[127:32] abtastet (d. h. Änderun-
gen in den Signalen STATUS[31:6] ignorieren), und sie ansonsten wegnimmt. Der Null-Eingang des Multiple-
xers 906 empfängt die Signale SCAN_NSW[31:6], und der eine Eingang des Multiplexers 906 ist mit dem Aus-
gang eines Multi-Bit-ODER-Gates 907 verbunden. Ein Eingang des ODER-Gates 907 ist mit dem Ausgang ei-
nes Multi-Bit-UND-Gates 908 verbunden, und der andere Eingang des ODER-Gates 907 ist mit dem Ausgang
eines Multi-Bit-UND-Gates 872 verbunden.
[0422] Ein Eingang des UND-Gates 908 empfängt die Signale BIT_ENABLE[31:6]. Der andere Eingang des
61/215

DE 697 21 381 T2 2004.01.15
UND-Gates 908 ist mit dem Ausgang eines Multi-Bit-Multiplexers 909 verbunden. Falls das NEW_CSID Signal
aufgestellt ist, oder hoch ist, liefert der Multiplexer 909 ein Signal mit sechsundzwanzig Bits gleich zu
„h3FFFFFF". Ansonsten liefert der Multiplexer ein Signal mit sechsundzwanzig Bits gleich zu „0". Ein Eingang
des UND-Gates 872 ist mit dem invertierten Ausgang des UND-Gates 908 verbunden und der andere Eingang
des UND-Gates 872 nimmt die Signale SCAN_NSW[31:6] auf.
[0423] Zu Zwecken eines Speicherns des logischen Spannungs-Pegels der Status-Signale STATUS[31:6]
nach jeder Abtastung liefert ein Multi-Bit-D-Typ-Flip-Flop 871 sechsundzwanzig Signale LNON_SW[31:6]. Ei-
nes der Signale LNON_SW[31:6] wird aufgestellt, oder auf hoch gesetzt, um diesen Zustand anzuzeigen, und
wird ansonsten weggenommen. Das Flip-Flop 871 wird auf der positiven Flanke des Taktsignals CLK getaktet,
und der Lösch-Eingang des Flip-Flops 871 empfängt das RST-Signal.
[0424] Der Eingang des Flip-Flops 871 ist mit dem Ausgang eines Multi-Bit-Multiplexers 870 verbunden, der
die Signale D_LNON_SW[31:6] liefert. Der Auswahl-Eingang des Multiplexers 870 empfängt das Signal
SCAN_END. Der Null-Eingang des Multiplexers 870 empfängt die Signale LNON_SW[31:6], und der eine Ein-
gang des Multiplexers 807 empfängt die Signale SCAN_NSW[31:6].
[0425] Wie in Fig. 31B dargestellt ist, umfasst, zu Zwecken eines Erzeugens der MAX0, MAX1, MAX2, MAX3,
MAX4 und MAX5 Signale, die Seriell-Eingangs-Logik 804 sechs Zähler 831a–f, jeweils, von einem gemeinsa-
men Design 831. Jeder Zähler 831 wird initialisiert (auf einen vorbestimmten Zähl-Wert), wenn ein UND-Gate
892 seinen Ausgang aufstellt, oder auf hoch ansteuert. Für den Zähler 831a empfängt das UND-Gate 892 das
Signal BIT_ENCABLE[0], das Signal SW_CHG[0] und ein invertiertes Signal QUICK_FILTER. Das Signal
QUICK_FILTER kann, wenn es aufgestellt ist, oder hoch ist, dazu verwendet werden, das Debounce-Zeit-In-
tervall zu umgehen. Das QUICK_FILTER Signal wird normalerweise weggenommen oder auf niedrig gesetzt.
Der Takt-Eingang des Zählers 831 ist mit dem Ausgang eines UND-Gates 893 verbunden. Für den Zähler 831a
empfängt das UND-Gate 893 das BIT ENABLE[0] Signal, das invertierte SW_CHG[0] Signal, das invertierte
GETTING_BYTE Signal und das invertierte MAX0 Signal. Deshalb wird, für den Zähler 831a, wenn sich einmal
die logische Spannung des Status-Signals STATUS[0] ändert, zu jedem Zeitpunkt, zu dem die Seriell-Ab-
tast-Logik 804 das Status-Signal STATUS[0] abtastet, der Zähler 831a erhöht. Wenn der Zähler 831a seinen
maximalen Wert erreicht, wird das Signal MAX0 aufgestellt, was anzeigt, dass das Debounce-Zeit-Intervall ab-
gelaufen ist. Falls sich die logische Spannung des Status-Signals STATUS[0] während der Zählung ändert,
wird der Zähler 831a reinitialisiert, und die Zählung beginnt erneut. Die anderen Zähler 831b–f arbeiten in einer
ähnlich Weise in Bezug auf deren entsprechende Status-Signale STATUS[5:1].
[0426] Das HOLD_OFF Signal instruiert, wenn es aufgestellt ist, einen der Zeitgeber 806, ein vorbestimmtes
Langsam-Abtast-Intervall zu messen, das die serielle Abtast-Zustand-Maschine 840 in den Langsam-Ab-
tast-Mode versetzt. Wenn der Zeitgeber 806 eine Messung dieses Verzögerungs-Intervalls abschließt, stellt
der Zeitgeber 806 ein FTR_TIMEOUT Signal auf, oder steuert es auf hoch an, das ansonsten weggenommen
wird, oder negiert wird. Das Produkt dieses Langsam-Abtast-Intervalls und der Zahl von Zählungen für den
Zähler 831, um seinen maximalen Wert zu erreichen, ist gleich zu dem Debounce-Zeit-Intervall (8 ms).
[0427] Das HOLD_OFF Signal wird durch den Ausgang eines JK-Flip-Flops 885 geliefert. Das Flip-Flop 885
wird an der positiven Flanke des CLK Signals getaktet, und der Lösch-Eingang des Flip-Flops 885 empfängt
das RST-Signal. Der J-Eingang ist mit dem Ausgang eines UND-Gates 883 verbunden und der K-Eingang ist
mit dem Ausgang eines UND-Gates 884 verbunden. Ein Eingang des UND-Gates 884 ist mit dem Ausgang
eines Flip-Flops 896 vom JK-Typ verbunden, und der andere Eingang des UND-Gates 893 empfängt das
SCAN_END Signal. Ein Eingang des UND-Gates 884 ist mit dem invertierten Ausgang des UND-Gates 883
verbunden, ein Eingang des UND-Gates 884 empfängt das FTR_TIMEOUT Signal, und ein anderer Eingang
des UND-Gates 884 empfängt ein SCAN_IN_IDLE Signal, das aufgestellt wird, wenn sich die Abtast-Zu-
stand-Maschine 840 in deren IDLE Zustand befindet, wie dies weiter nachfolgend beschrieben ist.
[0428] Das Flip-Flop 895 wird an der positiven Flanke des CLK Signals getaktet und der Lösch-Eingang des
Flip-Flops 895 empfängt das RST-Signal. Der J-Eingang ist mit dem Ausgang eines NAND-Gates 894 verbun-
den, der die MAX0, MAX1, MAX2, MAX3, MAX4 und MAX5 Signale aufnimmt. Der K-Eingang ist mit dem Aus-
gang eines UND-Gates 826 verbunden, der mit dem invertierten J-Eingang des Flip-Flops 895 verbunden ist,
und empfängt ein invertiertes SCAN_IN_PROGRESS Signal, das dann aufgestellt wird, wenn die Abtast-Zu-
stand-Maschine 840 die Status-Signale STATUS[31:0] abtastet.
[0429] Zu Zwecken einer Erzeugung des CHECK_SWITCH_ONLY Signals umfasst die Seriell-Abtast-Ein-
gangs-Logik 804 ein Flip-Flop 864 vom JK-Typ, das das CHECK_SWITCH_ONLY Signal an dem nicht-inver-
tierendem Ausgang liefert, und wird an der positiven Flanke des CLK-Signals getaktet. Der Lösch-Eingang des
Flip-Flops 864 empfängt das RST-Signal, und der J-Eingang des Flip-Flops 864 empfängt ein DEBOUNCE Si-
gnal, das, wenn es aufgestellt, oder auf hoch angesteuert, ist, anzeigt, dass sich einer des logischen Span-
nungs-Pegels eines oder mehrere der Status-Signale STATUS[31:6] geändert hat. Der K-Eingang des
Flip-Flops 864 ist mit dem Ausgang eines UND-Gates 865 verbunden. Ein Eingang des UND-Gates 865 nimmt
das invertierte DEBOUNCE Signal auf und ein Eingang des UND-Gates 865 nimmt das SCAN_IN_IDLE Signal
auf.
62/215

DE 697 21 381 T2 2004.01.15
[0430] Wie in Fig. 31C dargestellt ist, wird das Debounce-Signal DEBOUNCE durch den nicht-invertierenden
Ausgang eines Flip-Flops 860 vom JK-Typ geliefert. Das Flip-Flop 860 wird durch die positive Flanke des Takt-
signals CLK getaktet, und der Lösch-Eingang des Flip-Flops 860 empfängt das Reset-Signal RST. Der J-Ein-
gang des Flip-Flops 860 empfängt ein Signal CHANGE_ON_INPUT. Das Signal CHANGE_ON_INPUT wird
aufgestellt, oder auf hoch angesteuert, wenn eine Änderung in einem der Status-Signale STATUS[31:6] an
dem Ende einer Abtastung durch die Seriell-Eingangs-Logik 804 erfasst wird, und wird ansonsten weggenom-
men. Der K-Eingang ist mit dem Ausgang eines UND-Gates 861 verbunden, das ein DB_TIMEOUT Signal an
einem seiner Eingänge aufnimmt. Der andere Eingang des UND-Gates 861 nimmt das invertierte
CHANGE_ON_INPUT Signal auf. Das DB TIMEOUT Signal wird durch die Zeitgeber 106 für einen Zyklus des
CLK-Signals aufgestellt, wenn die Debounce-Zeit-Verzögerung (initiiert durch das Aufstellen des DEBOUNCE
Signals) abgelaufen ist. Das Aufstellen des DB_TIMEOUT Signals negiert das DEBOUNCE Signal an der
nächsten, positiven Flanke des CLK-Signals.
[0431] Das CHANGE_ON_INPUT Signal wird durch den nicht-invertierenden Ausgang eines Flip-Flops 866
vom JK-Typ geliefert, das an der positiven Flanke des CLK-Signals getaktet wird. Der Lösch-Eingang des
Flip-Flops empfängt das RST-Signal. Der J-Eingang des Flip-Flops 866 ist mit dem Ausgang eines UND-Gates
869 verbunden, das das SCAN END Signal aufnimmt, und der andere Eingang des UND-Gates 869 ist mit dem
Ausgang eines ODER-Gates 867 verbunden. Das ODER-Gate 867 verknüpft logisch ODER-mäßig alle eines
Satzes von NSW_CHG[31:6] Signalen. Die Bit-Positionen der Signale NSW_CHG[31:6] entsprechen den
Bit-Positionen der Status-Signale STATUS[31:6] und zeigen an, durch deren Aufstellen, ob sich das entspre-
chende Status-Signal STATUS[31:6] nach der letzten Abtastung geändert hat. Das UND-Gate 869 nimmt wei-
terhin das SCAN_END Signal auf. Der K-Eingang des Flip-Flops 866 ist mit dem Ausgang eines UND-Gates
868 verbunden, der das invertierte SCAN_IN_PROGRESS Signal und den invertierten Ausgang des
UND-Gates 869 aufnimmt. Die Signale NSW_CHG[31:6] werden durch den Ausgang eines Mul-
ti-Bit-XOR-Gates 862 geliefert, das die Signale D_LNON_SW[31:6] und LNON_SW[31:6] aufnimmt.
[0432] Der nicht-invertierende Ausgang eines Multi-Bit-D-Typ-Flip-Flops 912 liefert Bits SI_DATA[7:0] für das
Seriell-Daten-Register 815. Der Lösch-Eingang des Flip-Flops 912 empfängt das Signal RST und das Flip-Flop
912 wird an der positiven Flanke des CLK-Signals getaktet. Der Signal-Eingang des Flip-Flops 912 ist mit dem
Ausgang eines Multi-Bit-Multiplexers 916 verbunden. Der Auswahl-Eingang des Multiplexers 916 ist mit dem
Ausgang eines UND-Gates 914 verbunden, und der Null-Eingang des Multiplexers 916 nimmt die Bits
SI_DATA[7:0] auf. Das UND-Gate 914 nimmt die Signale GETTING_BYTE und SHIFT_ENABLE auf. Demzu-
folge werden, wenn die Seriell-Abtast-Logik 804 nicht ein angefordertes Byte der Status-Signale STATUS[47:0]
verschiebt, die Werte der Bits SI_DATA[7:0] bewahrt.
[0433] Der eine Eingang des Multiplexers 916 ist mit dem Ausgang eines Multi-Bit-Multiplexers 910 verbun-
den. Der eine Eingang des Multiplexers 910 ist mit dem Ausgang eines Multi-Bit-ODER-Gates 911 verbunden,
und der Null-Eingang des Multiplexers ist mit dem Ausgang eines Multi-Bit-UND-Gates 915 verbunden. Der
Auswahl-Eingang des Multiplexers 910 empfängt das Signal NEW_CSID.
[0434] Ein Eingang des UND-Gates 915 empfängt die Bits SI_DATA[7:0], und ein invertierender Eingang des
UND-Gates 915 ist mit dem Ausgang eines 3X8 Decodierers 913 verbunden. Der Decodieren 913 empfängt
das Signal BIT[2:0]. Ein Eingang des ODER-Gates 911 empfängt die Bits SI_DATA[7:0], und der andere Ein-
gang des ODER-Gates 911 empfängt den Ausgang des Decodierers 913.
[0435] Die Seriell-Eingangs-Logik 804 liefert fünf Signale RST_SWITCH[5:0] (entsprechend den Bit-Positio-
nen der Status-Signale STATUS[5:0]) zu der EIN/AUS-Steuer-Logik 820, was, durch deren Aufstellen, anzeigt,
ob der entsprechende Schlitz 36a–f heruntergefahren werden sollte. Die EIN/AUS-Steuer-Logik 820 zeigt an,
wenn der Schlitz 36 (angezeigt durch die RST_SWITCH[5:0] Signale) durch das darauffolgende Einstellen ei-
nes von fünf Signalen CLR_SWITCH[5:0] heruntergefahren worden ist, deren Bit-Positionen den Signalen
RST_SWITCH[5:0] entsprechen. Nach Empfangen der Anzeige, dass der Schlitz bzw. Einsteckplatz 36 herun-
tergefahren worden ist, nimmt die serielle Logik 804 dann das entsprechende RST_SWITCH[5:0] Signal zu-
rück.
[0436] Die Signale RST_SWITCH[5:0] werden durch den nicht-invertierenden Ausgang eines Mul-
ti-Bit-Flip-Flops 891 vom D-Typ (Fig. 31B) geliefert. Der Lösch-Eingang des Flip-Flops 891 empfängt das Re-
set-Signal RST und das Flip-Flop 891 wird an der positiven Flanke des Taktsignals CLK getaktet. Der Eingang
des Flip-Flops 891 ist mit dem Ausgang eines Multi-Bit-ODER-Gates 857 verbunden, der einen Eingang mit
dem Ausgang eines Multi-Bit-UND-Gates 859 verbunden besitzt und einen Eingang mit dem Ausgang eines
Multi-Bit-UND-Gates 855 verbunden besitzt. Ein Eingang des UND-Gates 859 ist mit dem Ausgang eines Mul-
tiplexers 853 verbunden, und der andere Eingang des UND-Gates 859 empfängt verriegelte Schlitz-Freiga-
be-Signale LSLOT_EN[5:0], die anzeigen, durch deren Aufstellen, ob der entsprechende Schlitz bzw. Ein-
steckplatz 36a–f hochgefahren ist. Ein Eingang des UND-Gates 855 nimmt die Signale CLR_SWITCH_[5:0]
auf. Ein anderer Eingang des UND-Gates 855 nimmt die Signale RST_SWITCH[5:0] auf. Ein anderer Eingang
des UND-Gates 855 ist mit dem invertierten Ausgang des Multiplexers 853 verbunden.
[0437] Der Null-Eingang des Multiplexers 853 empfängt ein Sechs-Bit-Signal, das für Null Indikativ ist. Der
63/215

DE 697 21 381 T2 2004.01.15
eine Eingang des Multiplexers 853 ist mit dem Ausgang eines Multi-Bit-UND-Gates 849 verbunden. Ein Ein-
gang des UND-Gates 849 empfängt die Signale D_LSWITCH[5:0], und der andere Eingang des UND-Gates
849 empfängt die invertierten Signale L_SWITCH[5:0]. Der Auswahl-Eingang des Multiplexers 853 empfängt
das SCAN_END Signal.
[0438] Zu Zwecken einer Erzeugung des SI_INTR# Signals umfasst die Seriell-Abtast-Logik 804 ein Flip-Flop
882 vom D-Typ, das das Seriell-Unterbrechungs-Signal SI_INTR# an seinem invertierenden Ausgang liefert.
Das Flip-Flop 882 wird an der positiven Flanke des CLK-Signals getaktet, und der Löscheingang des Flip-Flops
882 empfängt das RST-Signal. Der Eingang des Flip-Flops 882 ist mit dem Ausgang eines ODER-Gates 881
verbunden, der zweiunddreißig anhängige Unterbrechungs-Signale PENDING_IRQ[31:0] aufnimmt, die, durch
deren Aufstellen, oder Ansteuern auf hoch, anzeigen, ob eine Unterbrechung für das entsprechende eine der
Status-Signale STATUS[31:0] anhängig ist. Die Signale PENDING_IRQ[31:0] werden ansonsten weggenom-
men.
[0439] Wie in Fig. 31E dargestellt ist, liefert ein Multi-Bit-Flip-Flop 979 vom D-Typ die Signale
PENDING_IRQ[31:0] an seinem nicht-invertierenden Ausgang. Das Flip-Flop 979 wird an der positiven Flanke
des Signals CLK getaktet und empfängt das Signal RST an seinem Lösch-Eingang. Der Eingang des
Flip-Flops 979 ist mit dem Ausgang eines Multi-Bit-UND-Gates 981 verbunden, das invertierte Unterbre-
chungs-Maskierungs-Signale INTR_MASK[31:0] an einem Eingang aufnimmt. Die Signale INTR_MASK[31:0]
sind für ein entsprechendes Bit des Unterbrechungs-Masken-Registers 810 Indikativ. Der andere Eingang des
UND-Gates 981 ist mit dem Ausgang eines Multi-Bit-ODER-Gates 835 verbunden. Ein Eingang des
ODER-Gates 835 ist mit dem Ausgang eines Multi-Bit-UND-Gates 862 verbunden und der andere Eingang des
ODER-Gates 835 ist mit dem Ausgang eines Multi-Bit-UND-Gates 834 verbunden.
[0440] Das UND-Gate 862 nimmt invertierte PENDING_IRQ[31:0] Signale auf und signalisiert
SET_IRQ[31:0]. Die Signale SET_PIRQ[31:0] werden aufgestellt, um anzuzeigen, dass eine Unterbre-
chungs-Anforderung für das entsprechende eine der Status-Signale STATUS[31:0] erzeugt werden sollte.
Deshalb werden die Signale PENDING_IRQ[31:0] mit den Signalen SET_PIRQ[31:0] aktualisiert, falls sie nicht
durch die Signale INTR_MASK[31:0] maskiert sind.
[0441] Das UND-Gate 834 empfängt die Signale PENDING_IRQ[31:0], invertierte Signale SET_PIRQ[31:0]
und invertierte WR_INTR_REG[31:0] Signale. Die Signale WR_INTR_REG[31:0] zeigen die Schreib-Daten an,
geliefert durch die CPU 14, und zwar zu dem Unterbrechungs-Register 800 hin. Die CPU löscht eine Unterbre-
chung durch Schreiben einer „1" zu dem entsprechenden Bit des Unterbrechungs-Registers 800. Deshalb
wird, falls dies auftritt, und keine neuen Unterbrechungs-Anforderungen für das entsprechende eine der Sta-
tus-Signale STATUS[31:0] angezeigt werden, das entsprechende eine der Signale PENDING_IRQ[31:0] ge-
löscht.
[0442] Die Signale SET_PIRQ[31:0] werden durch den Ausgang eines Multi-Bit-UND-Gates 839 geliefert. Ein
Eingang des UND-Gates 839 empfängt die Signale UPDATE_IRQ[31:0]. Der andere Eingang des UND-Gates
839 ist mit dem Ausgang eines Multi-Bit-XOR-Gates 837 verbunden. Ein Eingang des XOR-Gates 837 emp-
fängt die Signale D_INTR_REG[31:0], der andere Eingang des XOR-Gates 837 empfängt die Signale
INTR_REG[31:0]. Deshalb wird, wenn die Bits des Unterbrechungs-Registers 800 von einem logischen Zu-
stand zu einem anderen übergehen, eine Unterbrechungs-Anforderung erzeugt.
[0443] Zu Zwecken einer Aktualisierung der Bits des Unterbrechungs-Registers 800 werden die Signale
UPDATE_IRQ[31:0] zu den entsprechenden Last-Eingängen des Registers 800 geliefert. Wenn eines der Si-
gnale UPATE_IRQ[31:0] aufgestellt ist, oder auf hoch angesteuert ist, wird das entsprechende Bit mit dem ent-
sprechenden einen der Signale D_INTR_REG[31:0] geladen.
[0444] Die Signale UPDATE IRQ[31:0] werden durch den Ausgang eines Multi-Bit-ODER-Gates 971 geliefert.
Ein Eingang des ODER-Gates 971 ist mit dem Ausgang eines Multi-Bit-UND-Gates 973 verbunden. Ein Ein-
gang des UND-Gates 973 ist mit dem Ausgang eines Multi-Bit-Multiplexers 977 verbunden, und der andere
Eingang des UND-Gates 973 nimmt invertierte PENDING_IRQ[31:0] Signale auf. Der Auswahl-Eingang des
Multiplexers 977 empfängt das Signal SCAN_END, der eine Eingang des Multiplexers 977 empfängt ein Zwei-
unddreißig-Bit-Signal, indikativ für „hFFFFFFFF", und der Null-Eingang des Multiplexers 977 empfängt ein
Zweiunddreißig-Bit-Signal, indikativ für „0". Deshalb ermöglichen, an dem Ende einer Abtastung, die Signale
UPDATE_IRQ[31:0], dass die Bits des Unterbrechungs-Registers 800 aktualisiert werden, die den aufgestell-
ten PENDING_IRQ[31:0] Signalen entsprechen.
[0445] Ein anderer Eingang des ODER-Gates 971 ist mit dem Ausgang eines Multi-Bit-UND-Gates 975 ver-
bunden. Ein Eingang des UND-Gates 975 empfängt die invertierten INTR_MASK[31:0] Signale, ein anderer
Eingang des UND-Gates 975 empfängt die Signale PENDING_IRQ[31:0], und der andere Eingang des
UND-Gates 975 empfängt die Signale WR_INTR_REG[31:0]. Deshalb kann die CPU 14 selektive Bits der Si-
gnale PENDING_IRQ[31:0] löschen.
[0446] Die Signale D_INTR_REG[5:0] werden durch den Ausgang eines Multi-Bit-Multiplexers 830 geliefert.
Wenn das SCAN_END Signal aufgestellt ist, sind die Signale D_INTR_REG[5:0] gleich zu den Signalen
D_LSWITCH[5:0]. Wenn das SCAN_END Signal weggenommen ist, sind die Signale D_INTR_REG[5:0]
64/215

DE 697 21 381 T2 2004.01.15
gleich zu den Signalen LSWITCH[5:0].
[0447] Die Signale D_INTR_REG[31:6] werden durch den Ausgang eines Multi-Bit-Multiplexers 845 geliefert.
Wenn das SCAN_END Signal aufgestellt ist, sind die Signale D_INTR_REG[31:6] gleich zu den Signalen
D_LNON_SW[31:6]. Wenn das SCAN_END Signal weggenommen ist, sind die Signale D_INTR_REG[5:0]
gleich zu den Signalen LNON_SW[31:6]. Das Unterbrechungs-Register 800 nimmt neue Werte nur dann auf,
wenn das Signal SCAN END aufgestellt ist.
[0448] Wie in den Fig. 32A–B dargestellt ist, tritt die Abtast-Zustand-Maschine 840 in einen IDLE Zustand
nach dem Aufstellen des RESET-Signals RST ein. Wenn sie sich nicht in dem IDLE Zustand befindet, toggelt
die Abtast-Zustand-Maschine 840 die Zustände des Seriell-Eingangs-Taktsignals CSIC_O, um das Schie-
be-Register 82 zu takten. Weiterhin stellt, wenn sie sich nicht in einem ersten Lade-Zustand LD1 befindet, die
Abtast-Zustand-Maschine 840 das Lade-Signal CSIL_O_ auf oder steuert es auf hoch an, um die Register 82
und 52 freizugeben, um seriell die Status-Signale STATUS[127:0] zu der SIO-Schaltung 50 zu verschieben. In
dem IDLE Zustand setzt die Abtast-Zustand-Maschine 840 das Signal SCAN_DONE gleich zu Null.
[0449] Die Abtast-Zustand-Maschine 840 geht von dem IDLE Zustand zu dem Zustand LD1 über, wenn ent-
weder das Signal GETTING_BYTE aufgestellt ist oder das Signal HOLD_OFF weggenommen ist. Ansonsten
verbleibt die Abtast-Zustand-Maschine 840 in dem IDLE Zustand. In dem LD1 Zustand stellt die Abtast-Zu-
stand-Maschine 840 das Lade-Signal CSIL_O_ auf oder steuert es auf niedrig an, das die Register 82 und 52
freigibt, um zu verriegeln und damit zu beginnen, die Status-Signale STATUS[127:0] aufzunehmen.
[0450] Die Abtast-Zustand-Maschine 840 geht von dem LD1 Zustand zu einem Lade-Zwei-Zustand LD2 über.
In dem LD2 Zustand wird das Lade-Signal CSIL_O_ aufgestellt beibehalten, was den Registern 82 und 52 er-
möglicht, seriell die Status-Signale STATUS[127:0] zu verschieben.
[0451] Die Abtast-Zustand-Maschine 840 geht darauffolgend zu einem Abtast-Zustand SCAN über. In dem
SCAN Zustand tastet die Seriell-Abtast-Eingangs-Logik 804 die Status-Signale STATUS[127:0] an jeder nega-
tiven Flanke des Takt-Signals DIV2CLK ab.
[0452] Wenn das Signal STOP_SCAN aufgestellt ist, geht die Abtast-Zustand-Maschine 840 zurück zu dem
IDLE Zustand. Das STOP_SCAN Signal wird aufgestellt, wenn entweder das erwünschte Byte der Status-Si-
gnale STATUS[127:0] in das Seriell-Daten-Register 815 hinein verschoben worden ist; die Hebel-Status-Sig-
nale STATUS[5:0] eingetastet worden sind und das Seriell-Unterbrechungs-Signal SI_INTR# aufgestellt wor-
den ist; oder alle Status-Signale STATUS[31:0] hinein verschoben worden sind. In dem SCAN Zustand wird
das SCAN_DONE Signal gleich zu dem STOP_SCAN Signal gesetzt.
[0453] Wie in Fig. 33A dargestellt ist, umfasst die EIN/AUS-Steuer-Logik 820 eine EIN/AUS-Zustand-Maschi-
ne 998, die die RST_SWITCH[5:0] Signale, SLOT_EN[5:0] und SLOT_RST_[5:0] empfängt. Basierend auf den
Zuständen, angezeigt durch diese Signale, zeigt die EIN/AUS-Zustand-Maschine 998 die geeigneten Hoch-
fahr- und Herunterfahr-Sequenzen an und steuert sie. Die EIN/AUS-Zustand-Maschine 998 liefert Steuersig-
nale zu der Steuer-Logik 999.
[0454] Die EIN/AUS-Zustand-Maschine 998 liefert ein Seriell-Ausgangs-Aktualisierungs-Signal SO_UPDATE
zu der Seriell-Ausgangs-Logik 824. Wenn das Signal SO_UPDATE aufgestellt ist, oder auf hoch angesteuert
ist, beginnt die Seriell-Ausgangs-Logik 824 die Verschiebe-Phase und verschiebt Seriell-Steuer-Daten, über
das Signal CSOD_O, zu dem Register 80. Die Seriell-Ausgangs-Logik 824 zeigt einen Abschluss der Verschie-
be-Phase durch Aufstellen eines Signals SO_UPDATE_DONE an, das durch die EIN/AUS-Zustand-Maschine
998 empfangen wird. Die EIN/AUS-Zustand-Maschine 998 aktualisiert darauffolgend die Steuersignale
POUT[39:0] durch Negieren, oder Takten, des Verriegelungs-Signals CSOLC_O, das durch das Register 80
empfangen wird.
[0455] Die Steuer-Logik 999 liefert die Signale PWREN[5:0], CLKEN#[5:0], BUSEN#[5:0] und RST#[5:0] zu
der Seriell-Ausgangs-Logik 824. Die Steuer-Logik 999 liefert auch ein PCI-Bus-Anforderungs-Signal CAY-
REQ# zu dem und empfängt ein PCI-Bus-Erteilungs-Signal CAYGNT# von dem Arbitrierer 124. Die
EIN/AUS-Steuer-Logik 820 stellt das Signal CAYREQ# auf, oder steuert es auf niedrig an, um den PCI-Bus 32
anzufordern, wenn der Arbitrierer 124 das Signal CAYGNT# aufstellt, oder auf niedrig ansteuert, hat der Arbi-
trierer 124 eine Steuerung über den PCI-Bus 32 zu der EIN/AUS-Steuer-Logik 820 erteilt.
[0456] Wie in den Fig. 33B–G dargestellt ist, tritt die EIN/AUS-Zustand-Maschine 998 in einen Idle-Zustand
IDLE unter Aufstellen des Reset-Signals RST ein. Falls kein Leerlauf vorliegt, steuert die EIN/AUS-Zu-
stand-Maschine 998 eine von drei Sequenzen: die Power down-Sequenz, die Power-on-Sequenz oder die eine
Durchgangs-Sequenz, verwendet dazu, die Steuer-Signale POUT[39:0] zu aktualisieren, wie dies durch das
Schlitz-Freigabe- 817 und das LED-Steuer- (nicht dargestellt) Register angezeigt ist. Die EIN/AUS-Zu-
stand-Maschine 998 stellt das Lade-Signal CSOLC_O für einen Zyklus des Taktsignals CLK des Registers 80
auf, oder steuert es auf hoch, bis die EIN/AUS-Zustand-Maschine 998 bestimmt, dass die Steuer-Signale
POUT[39:0] aktualisiert werden müssen. Wenn die Steuer-Signale POUT[39:0] aktualisiert sind, negiert die
EIN/AUS-Zustand-Maschine 998 das Signal CSOLC_O, was die Steuer-Signale POUT[39:0] aktualisiert.
[0457] Die EIN/AUS-Zustand-Maschine 998 beginnt die Power-down-Sequenz, wenn entweder die Software
ein energiemäßiges Herunterfahren bzw. Power-down mindestens eines der Schlitze bzw. Einsteckplätze 36
65/215

DE 697 21 381 T2 2004.01.15
anfordert, wie dies durch das Wegnehmen der Signale SLOT_EN[5:0] angezeigt ist; oder die Seriell-Ab-
tast-Eingangs-Logik 804 bestimmt, dass mindestens einer der Schlitze bzw. Einsteckplätze 36a–f der Po-
wer-down-Sequenz unterworfen werden sollte, wie dies durch das Aufstellen der Signale RST_SWITCH[5:0]
angezeigt ist. Um die Power-down-Sequenz zu beginnen, stellt die EIN/AUS-Zustand-Maschine 998 das
SO_UPDATE Signal auf, um eine Verschiebe-Phase und Übergänge von dem IDLE Zustand zu einem RSTON
Zustand zu beginnen.
[0458] Während des RSTON Zustands negiert die Steuer-Logik 999 die Reset-Signale RST#[5:0] für die
Schlitze 36, die energiemäßig heruntergefahren werden sollen, und die Seriell-Ausgangs-Logik 824 verschiebt
seriell die Reset-Signale RST#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998 ne-
giert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuer-Signale durch die Seriell-Ausgangs-Logik
824 zu dem Register 80 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE an-
gezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem RSTON Zustand zu einem OFF_ARB1 Zustand
über.
[0459] In dem OFF_ARB1 Zustand fordert die EIN/AUS-Zustand-Maschine 998 eine Steuerung über den se-
kundären PCI-Bus 32 durch Aufstellen des Anforderungs-Signals CAYREQ# an. Die EIN/AUS-Zustand-Ma-
schine 998 geht dann zu einem OFF_WGNT1 Zustand über, wo sie auf die Erteilung des sekundären PCI-Bus-
ses 32 wartet. Wenn der Arbitrierer 124 eine Steuerung über den Bus 32 erteilt, wie dies durch das Aufstellen
des CAYREQ# Signals angezeigt ist, negiert die EIN/AUS-Zustand-Maschine 998 das Signal CSOLC_O für
einen Zyklus des Signals CLK, um die Steuer-Signale POUT[39:0] zu aktualisieren, und geht zu einem
OFF_LCLK1 Zustand über.
[0460] In dem OFF_LCLK1 Zustand stellt die EIN/AUS-Zustand-Maschine 998 das Signal SO_UPDATE auf,
um so eine andere Verschiebe-Phase zu beginnen. Die EIN/AUS-Zustand-Maschine 998 geht von dem
OFF_LCLK1 Zustand zu einem Bus-off-Zustand BUSOFF über. Während des BUSOFF Zustands nimmt die
Steuer-Logik 999 die BUS-Freigabe-Signale BUSEN#[5:0] für die Schlitze 36 weg oder steuert sie auf hoch an,
die energießmäßig heruntergefahren werden sollen, und die Seriell-Ausgangs-Logik 824 verschiebt seriell die
Bus-Freigabe-Signale BUSEN#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998 ne-
giert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuer-Signale durch die Seriell-Ausgangs-Logik
824 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE angezeigt ist, geht die
EIN/AUS-Zustand-Maschine 998 von dem BUSOFF Zustand zu einem OFF_ARB2 Zustand über, wo die Zu-
stand-Maschine 998 wieder erneut eine Kontrolle des sekundären PCI-Busses 32 anfordert. Die Zustand-Ma-
schine 998 geht dann zu einem OFF_WGNT2 Zustand über, wo sie auf die Erteilung des PCI-Busses 32 war-
tet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998 zu einem OFF_LCLK2 Zustand
über, wo die Steuer-Signale POUT[39:0] durch Negieren des Signals CSOLC_O für einen Zyklus des Signals
CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zu einem Takt-Off-Zustand CLKOFF über.
[0461] Während des CLKOFF Zustands nimmt die Steuer-Logik 999 die Takt-Freigabe-Signale CLKEN#[5:0]
für die Schlitze 36 weg, oder steuert sie auf hoch an, die energiemäßig heruntergefahren werden sollen. Die
Bus-Freigabe-Signale BUSEN#[5:0] ändern sich nicht, und die Seriell-Ausgangs-Logik 824 verschiebt seriell
die Takt-Freigabe-Signale CLKEN#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998
negiert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuer-Signale durch die Seriell-Ausgangs-Lo-
gik 824 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE angezeigt ist, geht
die EIN/AUS-Zustand-Maschine 998 von dem CLKOFF-Zustand zu einem OFF_ARB3 Zustand über, wo die
Zustand-Maschine 998 erneut eine Steuerung bzw. Kontrolle über den PCI-Bus 32 anfordert. Die Zustand-Ma-
schine 998 geht dann zu einem OFF_WGNT3 Zustand über, wo sie auf die Erteilung des PCI-Busses 32 war-
tet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998 zu einem OFF_LCLK3 Zustand
über, wo die Steuersignale POUT[39:0] durch Negieren des Signals CSOLC_O für einen Zyklus des Signals
CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zu einem Power-Off-Zustand PWROFF über.
[0462] Während des PWROFF Zustands nimmt die Steuer-Logik 999 die Energie-Freigabe-Signale PW-
REN[5:0] für die Schlitze 36 weg oder setzt sie auf niedrig, die energiemäßig heruntergefahren werden sollen.
Die Signale REST#[5:0], BUSEN#[5:0] und CLKEN#[5:0] ändern sich nicht, und die Seriell-Ausgangs-Logik
824 verschiebt seriell die Energie-Freigabe-Signale PWREN[5:0] zu dem Ausgangs-Register 80. Die
EIN/AUS-Zustand-Maschine 998 negiert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuersig-
nale durch die Seriell-Ausgangs-Logik 824 verschoben sind, wie dies durch das Aufstellen des Signals
SO_UPDATE_DONE angezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem PWROFF Zustand zu
einem OFF_LCLK4 Zustand über, wo die Signale POUT[39:0] durch Negieren des Signals CSOLC_O für einen
Zyklus des Signals CLK aktuallisiert werden. Die Zustand-Maschine 998 geht dann zu dem IDLE Zustand über,
der die Power-Down-Sequenz abschließt.
[0463] Falls eine Power-Down-Sequenz nicht erforderlich ist, dann bestimmt die EIN/AUS-Zustand-Maschine
998, ob die Power-Up-Sequenz erforderlich ist. Falls entweder die Software mindestens angefordert hat, dass
mindestens einer der Schlitze 36 energiemäßig hochgefahren werden soll, oder ein Hochfahren des Erweite-
rungskastens 30 anhängig ist, dann geht die EIN/AUS-Zustand-Maschine 998 von dem IDLE Zustand zu ei-
66/215

DE 697 21 381 T2 2004.01.15
nem Power-On-PWRON Zustand über, um die Power-On-Sequenz zu beginnen. Um die Power-On-Sequenz
zu beginnen, stellt die EIN/AUS-Zustand-Maschine 998 das SO_UPDATE Signal auf, um eine Verschie-
be-Phase zu beginnen, und geht von dem IDLE Zustand zu einem Power-On-Zustand PWRON über.
[0464] Während des PWRON Zustands stellt die Steuer-Logik 999 die Power-Freigabe-Signale PWREN[5:0]
für die Schlitze 36 auf, die energiemäßig hochgefahren werden sollen, und die Seriell-Ausgangs-Logik 824 ver-
schiebt seriell die Power-Freigabe-Signale PWREN[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zu-
stand-Maschine 998 negiert auch das Signal SO_UPDATE. Wenn einmal alle vierzig Steuersignale durch die
Seriell-Ausgangs-Logik 824 verschoben sind, wie dies durch das Aufstellen des Signals SO_UPDATE_DONE
angezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem PWRON-Zustand zu einem Initialisie-
rungs-Zustand LDCNT1 eines Zeitgebers 806 über und negiert das Lade-Signal CSOLC_O, um die Steuersi-
gnale POUT[39:0] zu aktualisieren.
[0465] In dem LDCNT1 Zustand initialisiert die EIN/AUS-Zustand-Maschine 998 die Zeitgeber 806 so, dass
die Zeitgeber 806 eine Indikation liefern, wenn ein vorbestimmtes Stabilisierungs-Verzögerungs-Intervall ab-
gelaufen ist. Das Stabilisierungs-Verzögerungs-Intervall ermöglicht eine ausreichende Zeit für die Karte 807,
die energiemäßig hochgefahren werden soll, um sich zu stabilisieren, wenn einmal der Spannungspegel VSS

zu der Karte 807 zugeführt ist. In dem LDCNT1 Zustand stellt die EIN/AUS-Zustand-Maschine, 998 auch das
Signal CSOLC_O auf. Die EIN/AUS-Zustand-Maschine 820 geht von dem LDCNT1 Zustand zu einem CLKON
Zustand über.
[0466] Während des CLKON Zustands stellt die Steuerlogik 999 die Taktfreigabesignale CLKEN#[5:0] für die
Schlitze bzw. Einsteckplätze 36 auf oder steuert sie auf niedrig an, die energiemäßig hochgefahren werden
sollen. Die PWREN[5:0] Signale verbleiben unverändert, und die Seriell-Ausgangs-Logik 824 verschiebt seriell
die Taktfreigabesignale CLKEN#[5:0] zu dem Ausgangs-Register 80. Die EIN/AUS-Zustand-Maschine 998 ne-
giert auch das Signal SO_UPDATE. Wenn einmal das Stabilisierungs-Verzögerungs-Intervall abgelaufen ist,
geht die EIN/AUS-Zustand-Maschine 998 von dem CLKOFF Zustand zu einem ON_ARB1 Zustand über.
[0467] In dem ON_ARB1 Zustand fordert die EIN/AUS-Zustand-Maschine 998 eine Steuerung bzw. Kontrolle
über den sekundären PCI-Bus 82 durch Aufstellen des Anforderungs-Signals CAYREQ# an. Die EIN/AUS-Zu-
stand-Maschine 998 geht dann zu einem ON_WGNT1 Zustand über, wo sie auf die Erteilung des sekundären
PCI-Busses 32 wartet. Wenn einmal die Kontrolle bzw. Steuerung des Busses 32 erteilt ist, wie dies durch das
Aufstellen des CAYGNT Signals angezeigt ist, negiert die EIN/AUS-Zustand-Maschine 998 das Signal
CSOLC_O, um die Steuer-Signale POUT[39:0] zu aktualisieren, und geht zu einem ON_LCLK1 Zustand über,
wo die Signale POUT[39:0] aktualisiert werden.
[0468] Die EIN/AUS-Zustand-Maschine 998 geht von dem ON_LCLK1 Zustand zu einem LDCNT2 Zustand
über, wo die Zeitgeber 806 so initialisiert werden, dass die Zeitgeber 806 eine Indikation liefern, wenn ein an-
deres, vorbestimmtes Stabilisierungs-Verzögerungs-Intervall abgelaufen ist. Dieses Verzögerungsintervall
wird dazu verwendet, dem Takt-Signal an der Karte 807 zu ermöglichen, energiemäßig hochgefahren zu wer-
den, um sich zu stabilisieren, bevor die Power-Up-Sequenz fortfährt. Die EIN/AUS-Zustand-Maschine 998 geht
von dem LDCNT2 Zustand zu einem Bus-Ein-Zustand BUSON über.
[0469] Während des BUSON Zustands stellt die Steuerlogik 999 die Bus-Freigabe-Signale BUSEN#[5:0] für
die Schlitze 36 auf, oder steuert sie auf niedrig an, die energiemäßig heruntergefahren werden sollen. Die Si-
gnale CLKEN#[5:0] und PWREN[5:0] verbleiben unverändert, und die Seriell-Ausgangs-Logik 824 verschiebt
seriell die Bus-Freigabe-Signale BUSEN#[5:0] zu dem Ausgangsregister 80. Die EIN/AUS-Zustand-Maschine
998 negiert auch das Signal SO_UPDATE. Wenn einmal das Stabilisierungs-Verzögerungs-Intervall abgelau-
fen ist, geht die EIN/AUS-Zustand-Maschine 998 von dem BUSON Zustand zu einem ON_ARB2 Zustand über,
wo die Zustand-Maschine 998 erneut wieder eine Kontrolle des PCI-Busses 32 anfordert. Die Zustand-Maschi-
ne 998 geht dann zu einem ON_WGTN2 Zustand über, wo sie auf die Erteilung des Busses 32 wartet. Wenn
einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998 zu einem ON_CLK2 Zustand über, wo die
Signale POUT[39:0] durch Negieren des Signals CSOLC_O für einen Zyklus des Signals CLK aktualisiert wer-
den. Die Zustand-Maschine 998 geht dann zu einem Reset-Off-Zustand RSTOFF über.
[0470] Während des RESTOFF Zustands stellt die Steuerlogik 999 die Reset-Signale RST#[5:0] für die Schlit-
ze 36 auf, oder negiert sie, die energiemäßig hochgefahren werden sollen, und zwar in Abhängigkeit von deren
jeweiligen SLOT_RST_[5:0] Signalen. Die Signale CLKEN#[5:0], PWREN[5:0] und BUSEN#[5:0] verbleiben
unverändert, und die Seriell-Ausgangs-Logik 824 verschiebt seriell die Reset-Signale RST#[5:0] zu dem Aus-
gangsregister 80. Die EIN/AUS-Zustand-Maschine 998 negiert auch das Signal SO_UPDATE. Wenn einmal
alle vierzig Steuersignale durch die Seriell-Ausgangs-Logik 824 verschoben sind, wie dies durch das Aufstellen
des Signals SO_UPDATE_DONE angezeigt ist, geht die EIN/AUS-Zustand-Maschine 998 von dem RSTON
Zustand zu einem ON_ARB3 Zustand über, wo die Zustand-Maschine 998 erneut wieder eine Kontrolle des
Busses 32 anfordert. Die Zustand-Maschine 998 geht dann zu einem ON_WGTN3 Zustand über, wo sie auf
die Erteilung des Busses 32 wartet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine 998
zu einem ON_CLK3 Zustand über, wo die Signale POUT[39:0] durch Negieren des Signals CSOLC_O für ei-
nen Zyklus des Signals CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zurück zu dem IDLE
67/215

DE 697 21 381 T2 2004.01.15
Zustand.
[0471] Falls weder die Power-Up-Sequenz noch die Power-Down-Sequenz erforderlich ist, dann bestimmt die
EIN/AUS-Zustand-Maschine 998, ob eine Ein-Durchgang-Sequenz benötigt wird, um ausgewählte solche der
Signale POUT[39:0] zu aktualisieren. Falls die GO_UPDATE Signal aufgestellt ist und falls sich irgendwelche
Bits des Schlitz-Freigabe-Registers 817 oder des Schlitz-Reset-Registers 918 ändern, dann geht die EIN/AUS
Zustand-Maschine 998 zu einem ONEPASS Zustand über und stellt das SO_UPDATE Signal auf.
[0472] Die EIN/AUS Zustand-Maschine 998 verbleibt in dem ONEPASS Zustand, bis die vierzig Steuer-Sig-
nale zu dem Register 80 verschoben worden sind. Die EIN/AUS-Zustand-Maschine 998 geht dann zu einem
OP_ARB Zustand über, wo die Zustand-Maschine 998 eine Kontrolle des PCI-Busses 32 durch Aufstellen des
Signals CAYREQ# anfordert. Die Zustand-Maschine 998 geht dann zu einem OP_WGNT Zustand über, wo sie
auf die Erteilung des Busses 32 wartet. Wenn einmal die Erteilung empfangen ist, geht die Zustand-Maschine
998 zu einem OP_LCLK Zustand über, wo die Signale POUT[39:0] durch Negieren des Signals CSOLC_O für
einen Zyklus des Signals CLK aktualisiert werden. Die Zustand-Maschine 998 geht dann zurück zu dem IDLE
Zustand.
[0473] Wie in Fig. 34 dargestellt ist, umfasst die Seriell-Ausgangs-Logik 824 einen Verschiebe-Aus-
gangs-Bit-Zähler 921, der ein Sechs-Bit-Zähler-Ausgangs-Signal BIT_CNTR[5:0] liefert, das das Steuer-Signal
protokolliert, aus der Seriell-Ausgangs-Logik 824 über das Signal CSOD_O heraus verschoben. Wenn das Si-
gnal BIT_CNTR[5:0] gleich zu einer Zahl mit sechs Ziffern gleich zu „39" ist, dann wird ein Signal MAX_CNT
aufgestellt. Das Signal MAX_CNT wird zu dem Eingang eines UND-Gates 922 geliefert. Das UND-Gate 922
empfängt weiterhin ein Signal SHIFT4, das aufgestellt wird, wenn die Ausgangs-Verschiebe-Zustand-Maschi-
ne 920 in der SHIFT4 Zustand eintritt, der weiter nachfolgend beschrieben wird. Der Ausgang des UND-Gates
922 liefert das Signal SO_UPDATE_DONE.
[0474] Die Ausgangs-Verschiebe-Zustand-Maschine 920 liefert ein Erhöhungs-Zähler-Signal INC_CNTR zu
dem Bit-Zähler 921. Wenn das INC_CNTR-Signal aufgestellt ist, erhöht der Bit-Zähler 921 den Wert, darge-
stellt durch das Signal BIT_CNTR[5:0]. Wenn ein Lade-Zähler-Signal LOAD_CNTR aufgestellt ist oder wenn
das RST-Signal aufgestellt ist, dann löscht der Ausgang eines ODER-Gates 925, verbunden mit einem
Lösch-Eingang des Bit-Zählers 921, das Signal BIT_CNTR[5:0].
[0475] Das Signal BIT CNTR[5:0] wird zu dem Auswahl-Eingang eines Multi-Bit-Multiplexers 924 geliefert, der
das Signal CSOD_O liefert. Der nullte bis elfte Eingang des Multiplexers 924 empfangen die LED-Steuer-Sig-
nale LEDS[11:0]. Der zwölfte bis fünfzehnte Eingang des Multiplexers 924 empfangen Ausgangs-Signale
GPOA[3:0] für allgemeine Zwecke. Der sechszehnte bis einundzwanzigste Eingang empfangen die Reset-Si-
gnale RST#[5:0]. Der zweiundzwanzigste bis siebenundzwanzigste Eingang empfangen die Takt-Freigabe-Si-
gnale CLKEN#[5:0]. Der achtundzwanzigste bis dreiunddreißigste Eingang empfangen die Bus-Freigabe-Sig-
nale BUSEN[5:0]. Der vierunddreißigste bis neununddreißigste Eingang empfangen die Energie-Freigabe-Si-
gnale PWREN[5:0].
[0476] Wie in den Fig. 35A-B dargestellt ist, tritt die Ausgangs-Verschiebe-Zustand-Maschine 920 in einen
IDLE Zustand ein, wenn das Signal RST aufgestellt ist. Falls das Signal SO_UPDATE aufgestellt ist, dann geht
die Ausgangs-Verschiebe-Zustand-Maschine 920 von dem IDLE Zustand zu einem SHIFT1 Zustand über.
[0477] Da die Ausgangs-Verschiebe-Zustand-Maschine 920 an der positiven Flanke des PCI-Takt-Signals
CLK getaktet wird, geht die Ausgangs-Verschiebe-Zustand-Maschine 920 über einen SHIFT1 Zustand, einen
SHIFT2 Zustand, einen SHIFT3 Zustand und einen SHIFT4 Zustand hindurch, um das Takt-Signal CSOSC_O
zu erzeugen, das ein viertel der Frequenz des Takt-Signals CLK ist. Während des SHIFT1- und SHIFT2-Zu-
stands wird das Takt-Signal CSOSC_O negiert und auf niedrig gesetzt, und während des SHIFT3 und SHIFT4
Zustands wird das Taktsignal CSOSC_O aufgestellt oder auf hoch gesetzt. Wenn die momentane Verschie-
be-Phase abgeschlossen ist, wie dies durch das Aufstellen des Signals MAXCNT angezeigt ist, kehrt die Ver-
schiebe-Zustand-Maschine 920 zu dem IDLE Zustand zurück und das Takt-Signal CSOSC_O wird, bis zu dem
Beginn der nächsten Verschiebe-Phase, aufgestellt.
[0478] Wie in Fig. 36 dargestellt ist, wird ein Signal HANG_PEND durch den Lösch-Eingang des Registers
80 empfangen. Das Aufstellen, oder Ansteuern auf hoch, des HANG_PEND Signals asynchron löscht die ge-
eigneten Ausgangs-Steuer-Signale POUT[39:0], um alle Schlitze 36 energiemäßig herunterzufahren, wenn
sich der PCI-Bus 32 in einem verriegelten Zustand befindet, wie dies weiter nachfolgend beschrieben ist.

FEHLER-ISOLATION

[0479] Der Bus-Beobachter bzw. Watcher 129 kann einen fehlerhaften bzw. hängenden Zustand auf dem se-
kundären PCI-Bus 32 erfassen. Falls ein hängender Zustand erfasst wird, stellt der Bus-Beobachter 129 ein
Bus-Hängend-Anhängigkeits-Bit ein, das bewirkt, dass die SIO 50 die Schlitze bzw. Einsteckplätze auf dem
sekundären PCI-Bus 32 energiemäßig herunterfährt, und eine nicht-maskierbare Unterbrechung (Non-Masca-
ble Interrupt – NMI) wird zu der CPU 14 übertragen. Die CPU 14 spricht auf die NMI durch aufrufen eines
NMI-Programms an, um den Schlitz (die Schlitze), die den hängenden Zustand verursachen, zu isolieren.
68/215

DE 697 21 381 T2 2004.01.15
Wenn einmal der defekte Schlitz bzw. die defekten Schlitzen identifiziert sind, werden sie gesperrt oder ener-
giemäßig abgeschaltet.
[0480] Für Software-Diagnostik-Zwecke umfasst der Bus-Beobachter 129 in dem ausgangsseitigen Brü-
cken-Chip 48 einen Bus-Historie-FIFO und einen Bus-Vektor-FIFO. Wenn der sekundäre PCI-Bus 32 geeignet
funktioniert, werden die Bus-Historie-Informationen, die eine Adressen-Gruppe (umfassend die PCI-Adresse,
die PCI-Befehls-Signale, die PCI-Master-Zahl und das Adressen-Paritäts-Bit) und eine Daten-Gruppe (umfas-
send die PCI-Daten, die Byte-Freigabe-Signale C/BE[3:0]_, ein Paritäts-Fehler-Signal PERR_, das Daten-Pa-
ritäts-Bit, ein Burst-Zyklus-Indikations-Bit und ein Daten-Gültigkeits-Zeichen) durch den Bus-Beobachter 129
bei jeder Transaktion aufgezeichnet. Wenn das PCI-Signal FRAME_ auf dem sekundären PCI-Bus 32 aufge-
stellt ist, um eine Bus-Transaktion zu starten, werden die Adressen-Gruppe und jede darauffolgende Da-
ten-Gruppe in dem Bus-Hinstorie-FIFO gespeichert. Wenn die Transaktion eine Burst-Transaktion ist, dann
wird das Burst-Zyklus-Indikations-Bit auf aktiv in der zweiten Daten-Phase gesetzt. Nach der ersten Datenpha-
se wird das Adressen-Feld in der Adressen-Gruppe, zugeordnet der darauffolgenden Datengruppe in der
Burst-Transaktion, um vier erhöht, und die neue Adressen-Gruppe und die Datengruppe werden in der nächs-
ten Stelle des Bus-Hinstorie-FIFO gespeichert. Falls Daten nicht übertragen werden, da ein Zustand eines er-
neuten Versuchs oder ein Zustand einer Unterbrechung ohne Daten vorliegt, wird das Gültigkeits-Daten-Indi-
kations-Bit auf niedrig gesetzt.
[0481] Sowohl die Adressen-Gruppe als auch die Daten-Gruppe fließen durch eine 2-Stufen-Pipeline, um Zeit
für die Daten-Gruppe zuzulassen, um das Daten-Paritäts-Bit und das Daten-Paritäts-Fehler-Bit zu sammeln,
und den Aufzeichnungsvorgang zu stoppen, wenn ein Daten-Paritäts-Fehler auftritt, bevor die nächste Adres-
sen-Gruppe gespeichert wird. Falls der Bus in der Mitte einer Schreib-Daten-Phasen hängt, werden die Daten
gespeichert, und ein Bus-Hängend-Status-Bit wird in einem Bus-Hängen-Indikations-Register 482 (Fig. 42),
zugänglich über einen Konfigurations-Raum, eingestellt. Falls der Bus in der Mitte einer Lese-Daten-Phase
hängt, werden die Daten als nicht gültig markiert, und das Bus-Hängend-Bit wird eingestellt.
[0482] Bus-Zustands-Vektoren werden in dem Bus-Vektor-FIFO zusammengestellt und gespeichert, umfas-
send die folgenden PCI-Steuer-Signale: Schlitz-Anforderungs-Signale REQ[7:0]_; Schlitz-Erteilungs-Signale
GNT[7:0]_; das FRAME_ Signal; das PCI-Vorrichtungs-Auswahl-Signal DEVSEL_; das PCI-Initiator-Bereit-
schafts-Signal TRDY_; das PCI-Target-Bereitschafts-Signal TRDY_; das Stopp_ Signal; das PCI-Paritäts-Feh-
ler-Signal PERR_; das PCI-System-Fehler-Signal SERR_; und das LOCK Signal. An jedem PCI-Takt, in dem
sich der Bus-Zustands-Vector ändert, d. h. irgendeines der aufgelisteten Signale ändert einen Zustand, wird
der neue Vector in den Bus-Vektor-FIFO hineingespeichert.
[0483] Der Bus-Beobachter 129 umfasst einen Watch-Dog-Zeitgeber 454 (Fig. 40), um zu bestimmen, ob
sich der sekundäre Bus 32 verriegelt hat. Falls der Watch-Dog-Zeitgeber 554 abläuft, dann hat der Bus 32 ge-
hangen. Das folgende sind Beispiele von Bus-Hängend-Zuständen, die durch den Watch-Dog-Zeitgeber 454
erfasst werden können: Das FRAME_ Signal wird auf hoch oder niedrig gesetzt; das Signal TRDY_ wird nicht
in Abhängigkeit von IRDY_ aufgestellt; der PCI-Arbitrierer 124 erteilt nicht den Bus zu irgendeinem Master; und
ein Master, der den Bus 32 anfordert, behält bei, es zu versuchen.
[0484] Wenn der Watch-Dog-Zeitgeber 454 abläuft, wird das Bus-Hängend-Anhängigkeits-Bit auf aktiv in
dem Bus-Hängend-Indikations-Register 482 gesetzt. Wenn das Bus-Hängend-Anhängigkeits-Bit auf aktiv ge-
setzt ist, gibt es den Bus-Beobachter 129 frei. Als nächstes werden die Schlitz-Freigabe-Bits in der SIO 50 ge-
löscht, was bewirkt, dass die Schlitze energiemäßig heruntergefahren werden. Die SIO 50 stellt dann das Sys-
tem-Fehler-Signal SERR_ auf.
[0485] Um die Ursache eines Bus-Hängend-Zustands zu isolieren, bewirkt das System-Fehler-Signal
SERR_, dass die Unterbrechungs-Logik in dem System die NMI zu der CPU 14 ausgibt. Wie Fig. 37 zeigt, be-
stimmt der NMI-Handler zuerst, 400, ob das Bus-Hängend-Anhängigkeits-Bit eingestellt ist, durch Lesen des
Bus-Hängend-Indikations-Registers 482. Falls dies der Fall ist, ruft der NMI-Handler, 401, einen BIOS-Isolati-
ons-Handler zum Isolieren des defekten Schlitzes bzw. Einsteckplatzes oder der defekten Schlitze auf. An-
sonsten werden andere NMI-Prozeduren aufgerufen, 402.
[0486] Als ein Fehler-Sicherheits-Mechanismus umfasst das Computersystem auch den Automatik-Ser-
ver-Wiederherstellungs- (Automatic Server Recovery – ASR) Zeitgeber 72, der gelöscht wird, wenn bestimmte
Software-Programme durch das Betriebssystem ausgeführt werden. Falls der ASR-Zeitgeber abläuft (z. B.
nach 10 Minuten), zeigt dies an, dass sich das Betriebssystem verriegelt hat. Der sekundäre PCI-Bus 32, der
hängt, kann die Ursache der System-Verriegelung sein, wobei in einem solchen Fall der NMI niemals zu der
CPU 14 gehen kann. Falls der ASR-Zeitgeber abläuft, dann tritt ein ASR-erzeugtes Reboot auf. Der ASR-Zeit-
geber stellt auch sicher, dass, falls sich der BIOS-Isolations-Handler in der Mitte einer Isolation eines Feh-
ler-Schlitzes auf dem PCI-Bus 32 befindet, und das Computer-System hängt, um ein ASR-Reboot zu verursa-
chen, das Isolations-Programm dort weiterfahren kann, wo es unmittelbar vor dem ASR-Time-Out-Ereignis ge-
lassen wurde.
[0487] Wie Fig. 38 zeigt, wird ein BIOS ASR Handler in Abhängigkeit eines ASR-Reboot Zustands aufgeru-
fen. Der ASR-Handler prüft zuerst, 444, um zu bestimmen, ob eine Isolations-In-Progress-Ereignis-Variable
69/215

DE 697 21 381 T2 2004.01.15
(EV) aktive Informationen enthält, die anzeigen, dass der Isolations-Prozess vor dem ASR-Time-Out-Ereignis
im Fortschreiten war. Das Isolations-In-Progress-EV wird in einem nicht-flüchtigen Speicher (NVRAM) 70 ge-
speichert und umfasst Header-Informationen, die auf aktiv gesetzt werden, um anzuzeigen, dass der Isolati-
ons-Prozess gestartet wurde. Das Isolations-In-Progress-EV wird auch mit dem momentanen Zustand des Iso-
lations-Prozesses aktualisiert, umfassend die Schlitze bzw. Einsteckplätze, die geprüft worden sind, die Schlit-
ze, die defekt sind, und die Schlitze, die freigegeben worden sind.
[0488] Falls der Isolations-Prozess im Fortschreiten war, gibt der BIOS-ASR-Handler wieder alle Schlitze frei,
448, mit Ausnahme solcher, die unmittelbar vor dem ASR-Ereignis freigegeben wurden, was aus dem Isolati-
ons-In-Progress-EV bestimmt wird. Die freigegebenen Schlitze vor dem ASR-Reboot waren wahrscheinlich die
Ursache der ASR-Durchsicht. Als Folge werden diese Schlitze gesperrt (d. h. energiemäßig heruntergefahren).
Als nächstes werden die Zahlen der gesperrten Schlitze als Fehler-Status-Informationen protokolliert, 450, ge-
speichert in dem NVRAM, und das Isolations-In-Progress-EV wird gelöscht. Der BIOS-ASR-Handler prüft
dann, 452, um zu bestimmen, ob das Bus-Hängend-Anhängigkeits-Bit eingestellt ist. Falls dies der Fall ist, wird
das Bus-Hängend-Anhängigkeits-Bit gelöscht (unter Durchführen eines I/O-Zyklus auf dem sekundären
PCI-Bus 32), um den Bus-Beobachter 129 wieder freizugeben.
[0489] Falls das Isolations-In-Progress-EV nicht in den aktiven Zustand eingestellt ist, 444, anzeigend, dass
der Isolations-Prozess nicht lief, als das ASR-Ereignis auftrat, prüft das Programm, 446, um zu bestimmen, ob
das Bus-Hängend-Anhängigkeits-Bit eingestellt ist. Falls nicht, dann wird der BIOS-ASR-Handler vorgenom-
men. Falls das Bus-Hängend-Anhängigkeits-Bit eingestellt ist, 446, was anzeigt, dass ein Bus-Hängend-Zu-
stand aufgetreten ist, und zwar vor dem ASR-Ereignis, ruft der BIOS-ASR-Handler den BIOS-Isolations-Hand-
ler auf, um den Fehler-Schlitz oder Schlitze zu isolieren.
[0490] Wie Fig. 39 zeigt, protokolliert der Isoaltions-Handler zuerst, 408, zu dem Fehler-Status-Informati-
ons-Bereich des NVRAM die Bus-Historie- und Bus-Zustand-Vektor-Informationen, gespeichert in den Histo-
rie- und Vektor-FIFOs, in dem Bus-Monitor 127. Die Bus-Historie- und Bus-Zustand-Vektor-FIFOs werden ge-
lesen und deren Inhalte werden zu dem NVRAM übertragen. Als nächstes werden die Header-Informationen
der Isolation-In-Progress-Ereignis-Variable eingestellt, 410, um anzeigen, dass sich der Isoaltions-Prozess
beim Fortschreiten befindet. Das Bus-Hängend-Anhängigkeits-Bit wird gelöscht (durch Schreiben zu einer vor-
bestimmten Konfigurations-Adresse), um den Bus-Watcher bzw. -Beobachter 129 wieder freizugeben. Als
nächstes gibt das Isolations-Programm den zuerst belegten Schlitz bzw. Einsteckplatz (d. h. ein Schlitz, mit
dem eine PCI-Vorrichtung verbunden ist) wieder frei (d. h. fährt es energiemäßig hoch), 412, und liest und
schreibt von dem PCI-Konfigurations-Raum der Vorrichtung. Ein Schlitz wird durch Schreiben zu dem
Schlitz-Freigabe-Register 817 (Fig. 29) wieder freigegeben. Als nächstes bestimmt das Programm 414, ob das
Bus-Hängend-Anhängigkeits-Bit auf aktiv gesetzt ist, was anzeigt, dass die Vorrichtung, verbunden mit dem
Schlitz, verursachte, dass der Bus hängt, während davon gelesen wurde. Falls dies nicht der Fall ist, bestimmt
das Programm, 416, ob alle belegten Schlitze geprüft worden sind. Falls dies nicht der Fall ist, wird der erste,
belegte Schlitz, gesperrt, 418, und das Isolation-In-Progress-EV wird aktualisiert, 420, um anzuzeigen, dass
der erste, belegte Schlitz erneut durch den BIOS-Isolations-Handler versucht worden ist. Falls das Programm
bestimmt, 414, dass das Bus-Hängend-Anhängigkeits-Bit auf aktiv gesetzt ist, wird der Schlitz als ausgefallen
angezeigt (z. B. durch Einstellen auf aktiv eines Ausfall-Zeichens für diesen Schlitz), und zwar in dem Aus-
fall-Status-Informations-Bereich des NVRAM. Als nächstes wird die Schleife, die aus den Schritten 412, 414,
416, 418 und 420 besteht, durchgeführt, bis alle belegten Schlitze geprüft worden sind.
[0491] Falls alle belegten Schlitze geprüft worden sind, 416, nimmt das Programm eine Prüfung vor, 424, um
zu bestimmen, ob irgendein Schlitz als ausgefallen in dem Ausfall-Status-Informations-Bereich des NVRAM
angezeigt ist. Falls dies der Fall ist, gibt das Programm 398 erneut nur die nicht ausgefallenen Schlitze frei,
426. Dann wird das Isolation-In-Progress-EV gelöscht, 428, und das BIOS-Isolations-Programm wird abge-
schlossen.
[0492] Falls keiner der Schlitze als ausgefallen angezeigt ist, 424, dann zeigt dies an, dass der Bus-Hän-
gend-Zustand nicht durch einen einzelnen Schlitz verursacht worden ist, sondern kann durch mehr als eine
Vorrichtung, die zu diesem selben Zeitpunkt aktiv sind, verursacht sein. Um dies zu bestätigen, sperrt der
BIOS-Isolations-Handler zuerst alle Schlitze (d. h. fährt sie energiemäßig herunter), 430, und aktualisiert das
Isolation-In-Progress-EV mit diesen Informationen. Als nächstes löscht der BIOS-Isolations-Handler 431 eine
Zähl-Variable N auf 0 und stellt eine Zähl-Variable I auf den Wert von N ein. Die Zähl-Variable N stellt die Zäh-
lung der belegten Schlitze dar.
[0493] Der BIOS-Isolations-Handler gibt wieder den belegten Schlitz I (der zu Anfang Schlitz N ist) frei (d. h.
fährt ihn energiemäßig hoch), 432, und liest und schreibt zu diesem PCI-Konfigurations-Raum. Der Handler
prüft dann, 438, um zu bestimmen, ob das Bus-Hängend-Anhängigkeits-Bit eingestellt ist. Falls dies nicht der
Fall ist, verringert der Handler 433 die variable I und prüft, 434, ob die Variable I größer als oder gleich zu null
ist. Falls dies der Fall ist, aktualisiert der Handler 435 das Isolations-In-Progress-EV und gibt wieder den nächs-
ten, belegten Schlitz I frei, 432, und liest und schreibt mit diesem. Der Handler prüft dann, 438, ob das
Bus-Hängend-Anhängigkeits-Bit für diesen nächsten Schlitz eingestellt ist. Auf diese Art und Weise werden,
70/215

DE 697 21 381 T2 2004.01.15
für jeden Schlitz N, der freigegeben werden soll, die vorher freigegebenen Schlitze auch energiemäßig, einer
zu einem Zeitpunkt, hochgefahren, um zu bestimmen, ob eine Kombination von Schlitzen den Fehler verur-
sacht.
[0494] Falls die Variable I dahingehend bestimmt ist, 434, dass sie geringer als Null ist, dann prüft der Handler
436, um zu bestimmen, ob alle belegten Schlitze freigegeben worden sind. Falls dies nicht der Fall ist, wird die
Variable N erhöht, 437, das Isolation-In-Progress-EV wird aktualisiert, 439, und die Variable I wird wieder ein-
gestellt, 441, und zwar gleich zu dem Wert von N.
[0495] Falls das Bus-Hängend-Anhängigkeits-Bit auf aktiv gesetzt ist, 438, dann werden potentiell zwei
Schlitze gesperrt, 440: Schlitz N (der der Schlitz ist, der momentan freigegeben ist), und Schlitz I (der der
Schlitz ist, von dem momentan gelesen und zu dem momentan geschrieben wird). Falls die Werte von I und N
dieselben sind, dann wird nur Schlitz N gesperrt.
[0496] Falls der Handler bestimmt, 436, dass alle belegten Schlitze freigegeben worden sind (und ein Fehler
nicht identifiziert werden konnte), dann lockt der Handler den NVRAM seine Unfähigkeit ein, 442, um den Feh-
ler zu isolieren. Als nächstes löscht der Handler 428 das Isolation-In-Progress-EV.
[0497] Wie Fig. 40 zeigt, liefert der Watch-Dog-Zeitgeber 454 Ausgangs-Signale WD_TMR_OUT[17:0] (Zeit-
geber-Zähl-Wert), HANG_PEND (Bus-Hängend-Zustand ist vorhanden), EN_CAP (die Software einer Erfas-
sung der Bus-Vektor-Historie-Information ist freigegeben), TIME_OUT (der Watch-Dog-Zeitgeber 454 ist ab-
gelaufen), ein Signal HANG_RCOVR_EN (eingestellt auf Hoch durch die Software, um die Hang-Recovery-Lo-
gik in dem Bus-Watcher 129 und in dem SIO 50 freizugeben), und ein Signal CAP_ILLEG_PROT (um einen
illegalen Zyklus auf dem PCI-Bus 32 anzuzeigen).
[0498] Das Signal HANG_PEND wird zu der SIO 50 geliefert, um die Sekundär-Bus-Schlitze zu schließen.
Die Eingangs-Signale zu dem Watch-Dog-Zeitgeber 454 umfassen einige der PCI-Bus-Signale, ein Signal
WRT_EN_CAP_1 (gepulst auf Hoch durch die Software, um erneut die Erfassung der Bus-Historie- und
Bus-Vektor-Informationen durch den Fehler-Isolations-Block 129 freizugeben), und ein Energie-Good-Indika-
tor-Signal SYNC_POWEROK (was anzeigt, dass Energie zu dem Computer-System stabil ist).
[0499] Eine Bus-Hängend-Zurückgewinnungs-Zustand-Maschine 456 empfängt die Signale HANG_PEND,
TIME_OUT und HANG_RCOVR_EN von dem Watch-Dog-Zeitgeber 454. Die Zurückgewinnungs-Zu-
stand-Maschine 456 empfängt auch einige der PCI-Signale. Die Ausgangs-Signale von der Bus-Hängend-Zu-
rückgewinnungs-Zustand-Maschine 456 umfassen ein Vorrichtungs-Auswahl-Signal DEVSEL_O zum Ansteu-
ern des PCI-Signal DEVSEL_, ein Signal STOP_O zum Ansteuern des PCI-Signal STOP_, ein Signal
SERR_EN, das ein Aufstellen des System-Fehler-Signals SERR_ freigibt, ein Signal BR_M_ABORT (was an-
zeigt, dass sich der Bus-Watcher 129 mit einem Master-Abort wieder hergestellt hat) ein Signal BR_T_ABORT,
das anzeigt dass sich der Bus-Watcher 129 mit einem Target-Abort wieder hergestellt hat), und ein Signal
RCOVR_ACTIVE (zum Anzeigen, wenn die Bus-Hängend-Zurückgewinnungs-Zustand-Maschine 456 aktiv
ist). Die Bus-Hängend-Zurückgewinnungs-Zustand-Maschine 456 stellt sicher, dass der sekundäre PCI-Bus
32 zurück zu dem Leerlauf- bzw. IDLE Zustand gebracht wird, um der Software zu ermöglichen, den Feh-
ler-Schlitz bzw. -Einsteckplatz zu isolieren. Wenn der Hang-Zustand erfasst ist, fährt die ISO 50 die sekundären
Bus-Schlitze herunter, was automatisch den Bus 32 in den Leerlauf-Zustand versetzten würde, falls einer der
Schlitz-Vorrichtungen der Bus-Master war, wenn der Hang-Zustand auftrat. Allerdings würde dann, wenn eine
der Schlitz-Vorrichtungen das Target war (und der Brücken-Chip 48 der Master war), wenn das Bus-Hangen
auftrat, dann der Brücken-Chip 48 an dem Bus verbleiben. Um den Brücken-Chip aus dem Bus herauszuneh-
men, erzwingt die Zurückgewinnungs-Zustand-Maschine 456 einen Zyklus für einen erneuten Versuch auf
dem PCI-Bus 32 durch Aufstellen des Signals STOP_.
[0500] Ein Bus-Historie-Erfassungs-Block 458 überwacht den PCI-Bus 32 hinsichtlich Transaktionen und lie-
fert die Bus-Historie-Informationen (umfassend die Adresse und die Daten) weiter zu Ausgangs-Signalen
BUS_HIST_DATA3[31:0] (die Bus-Historie-Adresse), BUS_HIST_DATA2[31:0] (die Bus-Historie-Daten) und
BUS_HIST_DATA1[15:0] (Paritäts-Fehler-Signal !PERR_, Paritäts-Bit-PAR, Gültigkeits-Daten-Bit VALID_DAT,
Adressen-Paritäts-Bit ADDRPAR, Burst-Indikator BURST, Master-Zahl MASTER[2:0], Byte-Freigabe-Bits
CBE[3:0]_, und Befehl-Bits CMD[3:0]). Der Bus-Historie-Erfassungs-Block 458 stellt ein Signal HIS_RDY auf,
wenn Daten auf den BUS_HIST_DATA Signalen verfügbar sind, was der Fall an dem Ende jeder Daten-Phase
in einer normalen Transaktion ist, oder falls die Transaktion mit einer Master-Aussonderung, einem erneuten
Versuch, beendet wird, und zwar während des Aufstellens des Time-Out- Signals TIME_OUT.
[0501] Ein Bus-Vektor-Erfassungs-Block 460 erfasst die Zustände von bestimmten PCI-Steuersignalen,
wenn irgendeines dieser Steuersignale seinen Zustand ändert. Der Vektor wird erfasst und als Signal
BUS_VECT_DATA[20:0] ausgegeben, die die Anforderungs-Signale !REQ[7:0]_, Erteilungs-Signale
!GNT[7:0]_, ein Time-Out-Signal TIME_OUT, ein Verriegelungs-Signal LOCK_, ein System-Fehler-Signal
SERR_, ein Paritäts-Fehler-Signal PERR_, ein Stop-Signal STOP_, ein Target-Ready-Signal TRDY_, ein Ini-
tiator-Ready-Signal IRDY_, ein Vorrichtungs-Auswahl-Signal DEVSEL_ und ein Frame-Signal FRAME_ ent-
halten. Der Bus-Vektor-Erfassungs-Block 460 stellt ein Signal VECT_RDY auf, falls sich irgendein Bus-Vektor
BUS_VECT_DATA[24:0] geändert hat oder der Watch-Dog-Zeitgeber 454 abgelaufen ist (TIME_OUT ist
71/215

DE 697 21 381 T2 2004.01.15
hoch).
[0502] Die Bus-Historie- und Bus-Vektor-Signale werden den Eingängen eines Bus- Watcher FIFOs präsen-
tiert, das einen 2-Deep-Bus-Historie-FIFO und einen 4-Deep-Vektor-Historie-FIFO umfasst. Die Ausgänge der
Bus-Historie-FIFOs werden als Signale BUS_HIST_REG1[31:0], BUS_HIST_REG2[31:0] und
BUS_HIST_REG3[31:0] präsentiert. Die Ausgänge des Vektor-Historie-FIFOs werden als Signale
BUS_VECT_REG[3:0] präsentiert. Die System-Software liest die Ausgänge des Bus-Historie-FIFO durch Er-
zeugen eines I/O-Lese-Zyklus, der bewirkt, dass ein Signal BUS_HIST_RD1 aufgestellt wird, und liest die Aus-
gänge des Vektors FIFO durch Erzeugen eines I/O-Lese-Zyklus, der bewirkt, dass ein Signal BUS_VECT_RD
aufgestellt wird.
[0503] Wie Fig. 41 zeigt, beginnt die Zurückgewinnungs-Zustand-Maschine 456 in einem Zustand IDLE,
wenn das Signal SYNC_POWEROK auf niedrig gesetzt wird, was anzeigt, dass Energie bis jetzt noch stabil
ist. Die Zustand-Maschine verbleibt in einem Zustand IDLE, während das Signal HANG_PEND niedrig ist. In
dem Zustand IDLE werden Signale BR_M_ABORT, BR_T_ABORT und RCOVR_ACTIVE auf niedrig gesetzt.
Das Signal RCOVR_ACTIVE ist aktiv hoch in den anderen Zuständen WAIT, ABORT und PEND_OFF. Falls
das Signal SET_HANG_PEND auf hoch gestellt ist, geht die Zustand-Maschine zu einem Zustand WAIT über.
Bei dem Übergang wird das Signal DEVSEL_O gleich zu dem invertierten Zustand des Vorrichtungs-Aus-
wahl-Signals DEVSEL_ gesetzt. Dies stellt sicher, dass dann, wenn das Vorrichtungs-Auswahl-Signal
DEVSEL_ durch ein Target vor dem Bus-Hängend-Zustand aufgestellt wird, die Zurückgewinnungs-Zu-
stand-Maschine 456 das Signal DEVSEL_ aufgestellt beibehält. In dem Zustand WAIT wird das Signal
DEVSEL_O gleich zu dem Zustand des Signals DEV_SEL_WAS gesetzt, was auf hoch gesetzt wird, falls das
Signal DEVSEL_ durch ein Target aufgestellt ist, bevor die Zustand-Maschine zu dem WAIT Zustand übergeht.
[0504] Von dem Zustand WAIT geht die Bus-Hängend-Zurückgewinnungs-Zustand-Maschine 456 zu dem
PEND_OFF Zustand über, falls ein Signal PCI_IDLE aufgestellt ist, was anzeigt, dass der PCI-Bus 32 zu einem
Leerlauf übergegangen ist (d. h. Signale FRAME_ und IRDY_ sind beide auf hoch gesetzt). Bei dem Übergang
wird das Signal BR_M_ABORT auf hoch gesetzt, um anzuzeigen, dass eine der Schlitz-Vorrichtungen der
Master vor dem Hang-Zustand war, und die Schlitz-Vorrichtung wird energiemäßig heruntergefahren, verur-
sacht dadurch, dass der PCI-Bus zu einem Leerlauf übergeht. Ein Signal SERR_EN wird auch auf hoch ge-
setzt, um ein Aufstellen des System-Fehler-Signals SERR_ freizugeben oder falls INTA_ freigegeben ist.
[0505] Falls eine Schlitz-Vorrichtung ein Target war, und zwar vor dem Bus-Hängend-Zustand, dann wird der
Bus-Master auf dem PCI-Bus 32 verbleiben. Um den Bus-Master aus dem PCI-Bus 32 herauszubringen, gibt
die Bus-Hängend-Zurückgewinnungs-Zustand-Maschine 456 einen erneuten Versuch auf dem PCI-Bus 32
heraus. Ein Zähler 457 zählt eine vorbestimmte Zahl von PCLK-Perioden (z. B. 15 PCLK-Perioden), nachdem
das Signal HANG_PEND auf hoch gesetzt ist. Die 15 PCLK-Perioden stellen eine ausreichende Anstiegszeit
auf FRAME_ und IRDY_ sicher, um den Signalen Zeit zu geben, zurück zu deren Leerlauf-Zuständen zu ge-
hen. Wenn 15 PCLK-Perioden abgelaufen sind, stellt der Zähler 457 das Signal TIME_OUT15 auf. Falls das
Signal TIME_OUT15 auf hoch gesetzt ist, und das Signal PCI_IDLE niedrig verbleibt, dann geht die Zu-
stand-Maschine von einem Zustand WATT zu einem Zustand ABORT über. Bei dem Übergang wird das Signal
STOP_O auf hoch gesetzt, um das PCI STOP_ Signal auf aktiv anzusteuern, um den Bus-Master erneut zu
versuchen. Die Zustand-Maschine verbleibt in einem Zustand ABORT, während der Bus-Master das Signal
FRAME_ auf niedrig aufgestellt beibehält. In dem Zustand ABORT wird das Signal STOP_O auf hoch beibe-
halten. Wenn einmal der Bus-Master das FRAME_ Signal in Abhängigkeit des Wiederversuch-Zustands zu-
rücknimmt, geht die Zustand-Maschine von einem Zustand ABORT zu einem Zustand PEND_OFF über. Bei
dem Übergang wird das Signal BR_T_ABORT auf hoch gesetzt, um anzuzeigen, dass das Target-Abort bzw.
die Ziel-Aussonderung notwendig war, und zwar nach dem Bus-Hängend-Zustand, um den Bus 32 in den Leer-
lauf-Zustand zu platzieren. Das Signal SERR_EN wird auch auf hoch gesetzt, um ein Aufstellen des Signals
SERR_ zu ermöglichen, oder falls INTA_ freigegeben ist. Die Zustand-Maschine verbleibt in dem Zustand
PEND_OFF, bis das Signal WRT_EN_CAP_1 auf hoch gesetzt worden ist, wobei es zu diesem Zeitpunkt zu-
rück zu dem Zustand IDLE übergeht.
[0506] Die System-Software kann den Wert von BR_M_ABORT und BR_T_ABORT Signalen lesen, um zu
bestimmen, ob die Schlitz-Vorrichtung, eingeschlossen in dem Bus-Hängend-Zustand, eine Master-Vorrich-
tung oder eine Slave-Vorrichtung war.
[0507] Wie Fig. 42 zeigt, umfasst der Watch-Dog-Zeitgeber 454 einen 18-Bit-LSFR-Zähler 464, der durch das
Signal PCLK getaktet wird. Der Zähler 464 wird dann freigegeben, wenn der Ausgang eines UND-Gates 467
auf hoch gesetzt ist, was dann auftritt, wenn ein neuer Master eine Anforderung (ANY_REQ ist hoch) ausgibt,
der Bus-Zyklus gestartet ist (Signale FRAME_ und IRDY_ sind beide aufgestellt), das Freigabe-Erfassungs-Si-
gnal EN_CAP aufgestellt ist, und das Signal TIME_OUT niedrig ist. Ein ODER-Gate 466 empfängt das Signal
ANY_REQ und die invertierten Zustände von Signalen FRAME_ und IRDY_. Das UND-Gate 467 empfängt den
Ausgang fo des ODER-Gates 466, das Signal EN_CAP und den invertierten Zustand des Signals TIME_OUT.
Der Ausgang des Zählers steuert Signale WD_TMR_OUT[17:0] und wird gelöscht, wenn ein Time-Out-Zu-
stand erfasst ist (TIME_OUT ist hoch), eine Datenübertragung stattgefunden hat (beide Signale IRDY_ und
72/215

DE 697 21 381 T2 2004.01.15
TRDY_ sind auf niedrig gesetzt), oder alle Ausgangs-Bits des Zählers 464 hoch sind (was ein illegaler Zustand
ist). Der Lösch-Zustand wird durch ein ODER-Gate 470 angezeigt, das das Signal TIME_OUT empfängt, das
bit-weise AND (UND) der Signale WD_TMR_OUT[17:0] und den Ausgang eines UND-Gates 472. Die Eingän-
ge des UND-Gates 472 nehmen den invertierten Zustand des Signals IRDY_ und den invertierten Zustand des
Signals TRDY_ auf.
[0508] Das Signal TIME_OUT wird auf hoch durch einen Time-Out-Detektor 474 gesetzt, wenn die Zeitge-
ber-Signale WD_TMR_OUT[17:0] zu dem binären Wert 1000000000000000. Das Signal TIME_OUT wird zu
einem Eingang eines ODER-Gates 476 geliefert, dessen Ausgang mit dem Eingang eines UND-Gates 478 ver-
bunden ist. Der andere Eingang des UND-Gates 478 nimmt den invertierten Zustand eines Signals
WRT_EN_CAP_1 auf (gesteuert durch eine Software, um erneut die Bus-Historie und Bus-Vektor-Erfassung
zu ermöglichen), und sein Ausgang wird mit dem D Eingang eines Flip-Flops 488 vom D-Typ verbunden. Das
Flip-Flop 488 wird durch das Signal PCLK getaktet und steuert ein Ausgangs-Signal WD_TIME_OUT an, das
zurück zu dem anderen Eingang des ODER-Gates 476 zugeführt wird. Das Flip-Flop 488 wird dann gelöscht,
wenn das Power-Good-Signal SYNC_POWEROK negiert wird. Demzufolge löscht ein ASR-Reset nicht das
Signal WD_TIME_OUT.
[0509] Das HANG PEND Signal wird durch ein Flip-Flop 482 vom D-Typ auf hoch gesetzt, dessen D-Eingang
mit dem Ausgang eines UND-Gates 484 verbunden wird und der durch das Signal PCLK getaktet wird. Ein
Eingang des UND-Gates 484 ist mit dem Ausgang eines ODER-Gates 486 verbunden, und sein anderer Ein-
gang nimmt den invertierten Zustand des Signals WRT_EN_CAP_1 auf. Ein Eingang des ODER-Gates 486 ist
mit dem Signal HANG PEND verbunden, und der andere Eingang ist mit dem Ausgang eines UND-Gates 488
verbunden. Die Eingänge des UND-Gates 488 nehmen das Signal TIME_OUT und das Freigabe-Signal
HANG_RCOVR_EN auf. Demzufolge wird, falls die System-Software eine Bus-Hängend-Wiederherstellung
freigibt (HANG_RCOVREN ist hoch), dann wird ein Time-out-Zustand bewirken, dass das Signal
HANG_PEND auf hoch gesetzt wird. Das Signal HANG_PEND wird dann gelöscht, wenn die System-Software
bewirkt, dass das Signal WRT_EN_CAP_1 aufgestellt wird (unter Durchführen eines I/O-Zyklus auf dem Bus
32), oder wenn das Signal SYNC_POWEROK negiert wird. Das Bit HANG_PEND wird nicht negiert durch ei-
nen ASR-Reboot.
[0510] Das Freigabe-Erfassungs-Signal EN_CAP wird durch ein Flip-Flop 490 vom D-Typ erzeugt, dessen
D-Eingang den Ausgang eines UND-Gates 492 aufnimmt. Ein Eingang des UND-Gates 492 ist mit dem Aus-
gang eines ODER-Gates 494 verbunden, und sein anderer Eingang ist mit dem invertierten Zustand eines Si-
gnals CLR_EN_CAP verbunden. Ein Eingang des ODER-Gates 494 wird zurück zu dem Signal EN_CAP ge-
führt und der andere Eingang nimmt das Signal WRT_EN_CAP_1 auf. Das Flip-Flop 490 wird durch das Signal
PCLK getaktet und auf hoch gesetzt, wenn das Signal SYNC_POWEROK auf niedrig gesetzt wird. Wenn ein-
mal das Signal EN_CAP auf hoch durch die Software über das Signal WRT_EN_CAP_1 gesetzt wird, wird es
auf hoch beibehalten. Das Signal CLR_EN_CAP wird aufgestellt, um das Signal EN_CAP zu löschen (Disable
Capture of Information – Sperren einer Erfassung von Information), was dann auftritt, wenn ein Zeitablauf bzw.
Time-Out aufgetreten ist (TIME_OUT ist hoch), ein System-Fehler aufgetreten ist (SERR_ ist niedrig), ein Pa-
ritäts-Fehler aufgetreten ist (PERR_ ist niedrig), oder ein illegales Bus-Protokoll erfasst worden ist
(CAP_ILLEG_PROT ist hoch).
[0511] Das Signal CAP_ILLEG_PROT wird durch ein Flip-Flop 483 vom D-Typ erzeugt, dessen D-Eingang
den Ausgang eines UND-Gates 485 aufnimmt. Ein Eingang des UND-Gates nimmt den invertierten Zustand
des Signals WRT_EN_CAP_1 auf, und der andere Eingang empfängt den Ausgang eines ODER-Gates 487.
Das ODER-Gate 487 empfängt die Signale CAP_ILLEG_PROT und SET_ILLEG_PROT. Das Signal
SET_ILLEG_PROT wird dann aufgestellt, wenn ein Protokollieren (capture) freigegeben ist (EN_CAP ist
hoch), die Zustand-Maschine 456 nicht aktiv ist (RCOVR_ACTIVE ist niedrig), der Bus leerläuft und irgendwel-
che Signale DEVSEL_, TRDY_ oder TRDY_ auf niedrig gesetzt sind. Dieser Zustand ist ein illegaler Zustand,
der eine Protokollierung der Bus-Historie und von Bus-Vektor-Informationen triggert.
[0512] Wie Fig. 43 zeigt, wird das Bus-Historie-Bereitschaft-Signal HIST_RDY durch ein Flip-Flop 502 vom
D-Typ erzeugt, das durch das Signal PCLK getaktet und durch das Signal RESET gelöscht wird. Der D-Ein-
gang des Flip-Flops 502 ist mit dem Ausgang eines ODER-Gates 504 verbunden, dessen Eingänge das Signal
TIME_OUT, ein Signal M_ABORT (Master-Abort-Signal, verzögert durch eine PCLK), den Ausgang eines
UND-Gates 506 und den Ausgang eines UND-Gates 508 aufnehmen. Das UND-Gate 506 stellt seinen Aus-
gang auf, falls ein erneuter Versuch, C zu trennen, oder ein Target-Abort-Zyklus auf dem sekundären Bus 32
vorhanden ist (das Signal FRAME_, der invertierte Zustand des Signals IRDY_, der invertierte Zustand des
Signals STOP_, und der invertierte Zustand des Signals DSC_A_B sind alle wahr). Das UND-Gate 508 stellt
seinen Ausgang auf, wenn eine abgeschlossene Daten-Übertragung aufgetreten ist (die Signale TRDY_ und
TRDY_ sind beide niedrig). Demzufolge werden die Bus-Historie-Informationen in die Bus-Historie-FIFOs ein-
geladen, wenn der Watch-Dog-Zeitgeber 554 zeitmäßig abläuft, ein erneuter Versuch, C zu unterbrechen, oder
ein Target-Abort-Zustand vorhanden ist, der Master den Zyklus ausgesondert hat oder ein Zyklus erfolgreich
abgeschlossen wurde.
73/215

DE 697 21 381 T2 2004.01.15
[0513] Das Gültigkeits-Daten-Indikations-Signal VALID_DATA wird durch einen Flip-Flop 510 vom D-Typ er-
zeugt, das durch das Signal PCLK getaktet wird und durch das Signal RESET gelöscht wird. Der D-Eingang
des Flip-Flops 510 wird mit dem Ausgang eines NOR-Gates 512 verbunden, das das Signal TIME_OUT, das
Master-Abort-Signal M_ABORT und den Ausgang des UND-Gates 506 aufnimmt. Demzufolge sind Daten gül-
tig, ohne dass ein Zeitablauf erfasst ist, ein Master-Abort-Zyklus ausgegeben ist, oder ein erneuter Versuch, C
zu trennen, oder ein Target-Abort-Zyklus, vorhanden ist.
[0514] Das Signal VECT_RDY wird durch ein Flip-Flop 514 vom D-Typ erzeugt, das durch das Signal PCLK
getaktet wird und durch das Signal RESET gelöscht wird. Der D-Eingang des Flip-Flops 514 wird mit dem Aus-
gang eines ODER-Gates 516 verbunden, der das Zeitablaufsignal TIME_OUT und ein Signal
CHANGE_STATE aufnimmt, was anzeigt, dass eines der PCI-Steuer-Signale in dem Bus-Vector seinen Zu-
stand geändert hat. Demzufolge werden die Zustands-Vektor-Informationen in die Vektor-FIFOs immer dann
eingeladen, wenn Steuersignale auf dem PCI-Bus 32 einen Zustand ändern oder wenn ein Zeitablauf aufge-
treten ist.
[0515] Wie Fig. 44 zeigt, werden die Bus-Historie-Daten {BUS_HIST_DATA3[31:0],
BUS_HIST_DATA2[31:0], BUS HIST_DATA1[15:0]} zu dem Eingang des Bus-Historie-Registers 540 geliefert,
das die erste Stufe des Bus-Historie-FIFO's ist. Die Bus-Historie 501 liefert Ausgangs-Signale
BUS_HIST_FIFO1[79:0] zu dem Register 542 (der zweite Zustand der Pipeline), was Ausgangs-Signale
BUS_HIST_FIFO0[79:0] liefert. Beide Bus-Historie-Register 540 und 542 werden durch das Signal PCLK ge-
taktet und gelöscht, wenn das Power-Good-Signal SYNC POWEROK niedrig ist.
[0516] Die Bus-Historie-Register 540 und 542 werden dann geladen, wenn der Ausgang des UND-Gates 518
auf hoch angesteuert wird. Das UND-Gate 518 empfängt das Freigabe-Erfassungs-Bit EN_CAP und das
ODER des Bus-Historie-Bereitschafts-Signals HIST_RDY und des CAP_ILLEG_PROT Signals (ODER-Gate
519). Die Ausgangs-Signale BUS_HIST_FIFO0[79:0] und BUS_HIST_FIFO1[79:0] werden zu den 0- und
1-Eingängen jeweils von Multiplexern 520, 522 und 524 geliefert. Jeder der Multiplexer 520, 522 und 524 wird
durch ein Lese-Adressen-Signal HIST_FIFO_RD_ADDR ausgewählt (das mit niedrig startet, um den Ausgang
des Bus-Registers 502 auszuwählen, und bei jeder darauffolgenden Lesung getoggelt wird). Die Multiplexer
520, 522 und 524 steuern Ausgangs-Signale BUS_HIST_REG3[31:0], BUS_HIST_REG2[31:0],
BUS_HIST_REG1[15:0] jeweils an.
[0517] Die Bus-Vektor-Daten-Signale BUS_VECT_DATA[24:0] werden zu den Eingängen eines Bus-Vek-
tor-Registers 544 geliefert, dessen Ausgang zu dem Eingang eines Bus-Vektor-Registers 546 weitergeführt
wird. Der Ausgang des Bus-Vektor-Registers 546 wird zu dem Eingang eines Bus-Vektor-Registers 548 wei-
tergeführt, dessen Ausgang wiederum zu dem Eingang eines Bus-Vektor-Registers 550 zurückgeführt wird.
Jedes der Bus-Vektor-Register 0–3 wird durch das Signal PCLK getaktet und dann gelöscht, wenn die Signale
SYNC_POWEROK niedrig sind. Die Bus-Vektor-Register werden dann geladen, wenn der Ausgang des
UND-Gates 521 auf hoch gesetzt wird. Das UND-Gate 521 empfängt das Signal EN_CAP und das ODER von
Signalen VECT_RDY und CAP_ILLEG_PROT (ODER-GATE 523). Die Bus-Vektor-Register 550, 548, 546 und
544 erzeugen Ausgangs-Signale BUS_VECT_FIFO0[24:0], BUS_VECT_FIFO1[24:0],
BUS_VECT_FIFO0[24:0] und BUS_VECT_FIFO3[24:0] jeweils, die wiederum zu den 0-, 1-, 2- und 3-Eingän-
gen eines Multiplexers 526 jeweils eingegeben werden. Der Ausgang des Multiplexers 526 liefert Signale
BUS_VECT_REG[31:0], wobei der Multiplexer 526 einen seiner Eingänge basierend auf dem Zustand von
Adressen-Signalen VECT_FIFO_RD_ADDR[1:0] auswählt (was mit einem binären Wert 00 beginnt und bei je-
der darauffolgenden Lesung erhöht wird).
[0518] Demzufolge werden die Bus-Historie- und Bus-Zustand-Vektor-Informationen in Abhängigkeit eines
Aufstellens von Signalen HIST_RDY oder VECT_RDY jeweils protokolliert, oder in Abhängigkeit eines Aufstel-
lens des Signals CAP_ILEG_PROT, falls ein illegaler Bus-Protokoll-Zustand erfasst ist.

ERWEITERUNGS-KARTEN-RAUM-RESERVIERUNG

[0519] Im Gegensatz zu herkömmlichen Computersystemen reserviert, in der Anfangs-Konfiguration des
Computersystems 10, bei einem Einschalten, die CPU 14 einen Speicherraum und PCI-Bus-Zahlen für die
Schlitze bzw. Eisteckplätze 36, die leer sind (keine Karte 807 ist eingesetzt) oder abgeschaltet sind bzw. her-
untergefahren sind.
[0520] Die CPU 14 ordnet, wie dies typischerweise vorgenommen wird, Bus-Zahlen für PCI-Busse (z. B.
PCI-Busse 24, 32a–b und PCI-Bus(e) der Karten 807, die in Schlitze 36 eingesetzt sind und eingeschaltet sind)
zu, die dann vorhanden sind, wenn das Computersystem 10 zuerst eingeschaltet bzw. hochgefahren wird.
[0521] Jede PCI-PCI-Brücken-Schaltung (z. B. PCI-PCI-Brücke 26, 48) in diesem Konfigurations-Regis-
ter-Raum 1252 (Fig. 49) besitzt ein Neben-Bus-Zahl-Register 1218 und ein Sekundär-Bus-Zahl-Register
1220. Das Neben-Bus-Zahl-Register 1218 enthält eine Neben-Bus-Zahl, die die höchste PCI-Bus-Zahl aus-
gangsseitig der PCI-PCI-Brücken-Schaltung ist, und das Sekundär-Bus-Zahl-Register 1220 enthält eine Se-
kundär-Bus-Zahl, die die PCI-Bus-Zahl des PCI-Busses unmittelbar ausgangsseitig der PCI-PCI-Brü-
74/215

DE 697 21 381 T2 2004.01.15
cken-Schaltung ist. Demzufolge definieren die Werte, gespeichert in dem Neben- 1218 und dem Sekundär-
1220 Bus-Zahl-Register, den Bereich von PCI-Bus-Zahlen, die ausgangsseitig der PCI-PCI-Brücken-Schal-
tung vorhanden sind.
[0522] Der Konfigurations-Register-Raum 1252 besitzt auch ein Primär-Bus-Zahlen-Register 1222. Das Pri-
mär-Bus-Zahl-Register 1222 enthält die Zahl des PCI-Busses, angeordnet unmittelbar eingangsseitig der
PCI-PCI-Brücken-Schaltung.
[0523] Die System-Steuereinheit/Host-Brücken-Schaltung 18 besitzt auch das Neben- 1218 und Sekundär-
1220 Bus-Zahl-Register. Nach einer Konfiguration enthält das Neben-Bus-Zahl-Register 1218 der Schaltung
18 die maximale PCI-Bus-Zahl, die in dem Computersystem vorhanden ist. Das Sekundär-Bus-Zahl-Register
1220 der Schaltung 18 enthält die Bus-Zahl Null, da dem PCI-Bus unmittelbar ausgangsseitig der Schaltung
18 (PCI-Bus 24) immer die Bus-Zahl Null zugeordnet wird.
[0524] Im Gegensatz zu dem bekannten System erkennt die CPU 14, dass einer der Schlitze 36, der zu An-
fang eingeschaltet bzw. hochgefahren ist oder leer ist, einen oder mehrere zusätzliche PCI-Buse) (vorhanden
auf der Karte 802, eingesetzt in dem Schlitz 36, zu Anfang heruntergefahren) in das Computersystem 10 hinein
einführen kann, nachdem das Computersystem 10 bereits eingeschaltet bzw. hochgefahren und konfiguriert
ist. Dementsprechend reserviert, während einer anfänglichen Konfiguration, die CPU 14 Speicherraum,
I/O-Raum und eine vorbestimmte Zahl (z. B. eins oder drei) von PCI-Bus-Zahlen für irgendeinen Schlitz 36, der
heruntergefahren oder leer ist.
[0525] Demzufolge müssen die PCI-PCI-Brücken-Schaltungen des Computersystems 10 nicht rekonfiguriert
werden, um die Karte 807 aufzunehmen, die vor kurzem eingeschaltet worden ist. Nur die PCI-PCI-Brü-
cken-Schaltungen der Karte 807, die vor kurzem eingeschaltet wurde, muss konfiguriert werden. Der Rest des
Computersystems 10 verbleibt unverändert.
[0526] Als ein Teil des Resource-Reservierungs-Prozesses baut ein Basic-Input/Output-System (BIOS), ge-
speichert in dem ROM 23 und verdeckt in den Speicher 20 eingegeben (und schreibgeschützt), eine Tabelle
auf, die Resource-Bereiche spezifiziert, die für die Schlitze 36 reserviert werden. Diese Tabelle umfasst eine
Bus-Zahl, Speicher und I/O-Resource-Bereiche zur Verwendung beim Konfigurieren einer PCI-Vorrichtung, die
neu zu dem System 10 hinzugefügt worden ist. Das Betriebssystem verwendet diese Tabelle, um zu bestim-
men, welche Resourcen reserviert worden sind und welche Resourcen für eine Konfigurierung der neu hinzu-
gefügten PCI-Vorrichtung verfügbar sind.
[0527] Wie in Fig. 45 dargestellt ist, ordnet, in einem rekursiven PCI-Konfigurations-Programm, bezeichnet
als BUS_ASSIGN, die CPU 14 Konfigurations-Register 1252 für PCI-Bus-Zahlen und -Programme der
PCI-PCI-Brücken-Schaltungen entsprechend zu. Die CPU 14 nimmt dies durch Abtasten eines PCI-Busses zu
einem Zeitpunkt für PCI-Vorrichtungen vor. Das BUS_ASSIGN Programm ist Teil des BIOS, gespeichert in dem
ROM 23, und wird dazu verwendet, zu Anfang das Computersystem 10, nach einem Einschalten, zu konfigu-
rieren.
[0528] Die CPU 14 setzt zuerst 1000, der Wert eines Such-Parameters PCI-Bus, gleich zu dem Wert eines
anderen Such-Parameters CURRENT_PCI_BUS, und initialisiert 1000 Such-Parameter FCN und DEV. Der
Parameter PCI-Bus zeigt die Bus-Zahl des PCI-Busses an, der momentan durch die GPU 14 abgetastet wird,
und wenn das BUS_ASSIGN Programm zuerst durch die CPU 14 ausgeführt wird, zeigt der Parameter
PCI-Bus die Bus-Zahl Null an.
[0529] Der Parameter CURRENT_PCI_BUS zeigt die nächste PCI-Bus-Zahl an, die zum Zuordnen durch die
CPU verfügbar ist, und wenn das Programm BUS_ASSIGN zuerst durch die CPU 14 ausgeführt wird, zeigt der
Parameter CURRENT_PCI_BUS eine Bus-Zahl Null an. Die Parameter FCN und DEV zeigen die momentane
PCI-Funktion und die PCI-Vorrichtung, jeweils, an, die momentan durch die CPU 14 abgetastet werden.
[0530] Die CPU 14 bestimmt, 1001, ob der Parameter PCI_BUS eine Bus-Zahl Null anzeigt, und falls dies der
Fall ist, stellt die CPU 14 das Sekundär-Bus-Zahl-Register 1220 der System-Steuereinheit/Host-Brü-
cken-Schaltung 18 gleich zu Null ein. Die CPU 14 findet dann, 1004, die nächste PCI-PCI-Brücken-Schaltung
oder den Schlitz 36, der heruntergefahren bzw. ausgeschaltet ist oder leer ist, auf dem PCI-Bus, angezeigt
durch den Parameter PCI_BUS. Zu Zwecken einer Bestimmung, ob die nächste, gefundene PCI-Vorrichtung
eine PCI-PCI-Brücken-Schaltung ist oder nicht existiert (ein abgeschalteter oder leerer Schlitz), versucht die
CPU 14, von einem Wert eines EIN-Wort-Vendor-ID-Register, angeordnet in dem Konfigurations-Raum jeder
PCI-Vorrichtung, zu lesen. Ein Wert von „hFFFF" (wobei die Vorsilbe „h" eine hexadezimale Darstellung be-
zeichnet) wird reserviert und nicht durch irgendeinen Vendor bzw. Lieferanten verwendet. Falls die versuchte
Lesung von dem Vendor-ID-Register zu einem Wert „HFFFF" zurückkehrt, dann zeigt dies an, dass keine
PCI-Vorrichtung vorhanden ist.
[0531] Falls die CPU 14 bestimmt, 1006, dass dort keine weiteren, nicht vorgefundenen PCI-PCI-Brü-
cken-Schaltungen oder Schlitze 36 vorhanden sind, die heruntergefahren sind oder leer sind, und zwar auf
dem PCI-Bus, angezeigt durch den Parameter PCI_BUS, wird eine Zurückführung von dem letzten Aufruf, vor-
genommen zu dem BUS_ASSIGN Programm, vorgenommen. Ansonsten bestimmt die CPU 14, 1008, ob eine
andere PCI-PCI-Brücken-Schaltung vorgefunden wurde, und falls nicht, erhöht die CPU 14, 1010, den Para-
75/215

DE 697 21 381 T2 2004.01.15
meter CURRENT_PCI_BUS, da ein Schlitz bzw. Einsteckplatz 36, der eingeschaltet oder leer ist, gefunden
wurde, und findet, 1004, die nächste PCI-PCI-Brücken-Schaltung oder einen Schlitz 36, der abgeschaltet oder
leer ist. Demzufolge reserviert, durch Erhöhen, 1010, des Parameters CURRENT_PCI_BUS, die CPU 14 ef-
fektiv eine Bus-Zahl für den Schlitz 36, der abgeschaltet oder leer ist. Alternativ kann die CPU 14 mehr als eine
Bus-Zahl für den Schlitz 36 reservieren, der abgeschaltet oder leer ist.
[0532] Falls die CPU 14 eine PCI-PCI-Brücken-Schaltung fand, dann stellt die CPU 14, 1012, die Pri-
mär-Bus-Zahl der PCI-PCI-Brücken-Schaltung gleich zu dem Parameter CURRENT_PCI_BUS ein. Die CPU
14 erhöht dann, 1014, den Parameter CURRENT_PCI_BUS und stellt, 1016, die sekundäre Bus-Zahl der
PCI-PCI-Brücke gleich zu der neuen Bus-Zahl, angezeigt durch den Parameter CURRENT_PCI_BUS, ein.
[0533] Die CPU 14 stellt dann, 1018, die Neben-Bus-Zahl der gefundenen PCI-PCI-Brücken-Schaltung gleich
zu der maximalen, möglichen Zahl von PCI-Bussen ein, und zwar durch Schreiben zu dem Ne-
ben-Bus-Zahl-Register 1218. Dieser Wert für das Neben-Bus-Zahl-Register 1218 ist temporär und ermöglicht
der CPU 14, zusätzliche, ausgangsseitige PCI-PCI-Brücken-Schaltungen oder Schlitze 36 zu finden und zu
programmieren, die abgeschaltet oder leer sind.
[0534] Die CPU 14 findet zusätzliche, ausgangsseitige PCI-PCI-Brücken-Schaltungen oder Schlitze 36, die
abgeschaltet oder leer sind, durch Aufbewahren, 1022, der Parameter PCI_BUS, DEV und FCN und jeweils
aufrufen, 1022, des BUS ASSIGN Programms. Die CPU 14 speichert dann wieder, 1024, die Werte für die Pa-
rameter PCI_BUS, DEV und FCN, und kehrt zu dem letzten Aufruf des BUS_ASSIGN Programms zurück, um
den Parameter CURRENT_PCI_BUS mit der nächsten PCI-Bus-Zahl zu aktualisieren, die durch die CPU 14
zugeordnet werden sollen.
[0535] Die CPU 14 aktualisiert dann, 1026, die Neben-Bus-Zahl der aufgefundenen PCI-PCI-Brücke durch
Einstellen, 1026, der Neben-Bus-Zahl gleich zu dem Parameter CURRENT_PCI_BUS. Demzufolge schließt
dies die Zuordnung der PCI-Bus-Zahl zu der gefundenen PCI-PCI-Brückenschaltung und zusätzlichen, aus-
gangsseitigen PCI-PCI-Brücken-Schaltungen und Einsteckplätzen bzw. Schlitzen 36 ab, die abgeschaltet oder
leer sind. Die CPU 14 findet dann, 1004, die nächste PCI-PCI-Brücken-Schaltung oder den Schlitz 36, die ab-
geschaltet oder leer sind, und zwar auf dem PCI-Bus, angezeigt durch den Parameter PCI_BUS.
[0536] Wie in Fig. 46 dargestellt ist, führt, nachdem die PCI-Bus-Zahlen zugeordnet sind, die CPU 14 ein
Speicher-Raum-Zuordnungs-Programm, bezeichnet als MEM_ALLOC, aus, um Speicher-Raum für die
PCI-Funktionen und Schlitze 36 zuzuordnen, die abgeschaltet oder leer sind. Die CPU 14 initialisiert zuerst,
1028, Such-Parameter, verwendet beim Unterstützen der CPU 14 beim Auffinden der angeordneten PCI-Funk-
tionen und Schlitze 36, die abgeschaltet oder leer sind.
[0537] Die CPU 14, findet dann, 1030, die nächste PCI-Funktion oder die Schlitze 36, die abgeschaltet oder
leer ist. Falls die CPU 14 bestimmt, 1032, dass alle PCI-Funktionen und alle Schlitze bzw. Einsteckplätze 36,
die abgeschaltet oder leer sind, einem Speicherraum zugeordnet worden sind, kehrt die CPU 14 von dem Pro-
gramm MEM_ALLOC zurück. Ansonsten bestimmt die CPU 14, 1032, ob eine PCI-Funktion gefunden wurde.
[0538] Falls dies der Fall ist, ordnet die CPU 14 Speicher-Resourcen zu, 1038, wie dies durch die PCI-Funk-
tion spezifiziert ist. Ansonsten wird einer der Schlitze bzw. Einsteckplätze 36, der abgeschaltet ist oder leer ist,
vorgefunden, und die CPU 14 ordnet eine Fehler-Speicher-Größe und eine Speicher-Ausrichtung für den
Schlitz 36 zu, 1036. Die Fehler-Speicher-Größe kann entweder eine vorbestimmte Größe sein, bestimmt vor
einem Einschalten des Computersystems 10, oder eine Größe, die nach einer Bestimmung der Speicher-Re-
sourcen, erforderlich durch das Computersystem 10, bestimmt ist.
[0539] Wenn Speicherraum zugeordnet wird, programmiert die CPU 14 Speicher-Basis- 1212 und Spei-
cher-Grenzen- 1214 Register der PCI-PCI-Brücken-Schaltungen, die eingangsseitig der gefundenen
PCI-Funktion vorhanden sind. Die CPU 14 programmiert geeignet auch Basis-Adressen-Register der entspre-
chenden PCI-Vorrichtungen. Die CPU 14 findet dann, 1030, die nächste PCI-Funktion oder den Schlitz 36, der
abgeschaltet oder leer ist.
[0540] Wie in Fig. 47 dargestellt ist, führt, nachdem die PCI-Bus-Zahlen zugeordnet sind, die CPU 14 ein
I/O-Raum-Zuordnungs-Programm, bezeichnet als I/O_ALLOC, aus, um I/O/Raum für PCI-Funktionen und
Schlitze 36, die leer sind, zuzuordnen. Die CPU 14 initialisiert zuerst, 1040, Such-Parameter, verwendet beim
Unterstützen der CPU 14, die zugeordneten PCI-Funktionen und Schlitze 36, die abgeschaltet oder leer sind,
zu finden.
[0541] Die CPU 14 findet, 1042, die nächste PCI-Funktion oder den Schlitz 36, der abgeschaltet oder leer ist.
Falls die CPU 14 bestimmt, 1044, dass alle PCI-Funktionen und Schlitze 36, die abgeschaltet oder leer sind,
einem I/O/Raum zugeordnet worden sind, kehrt die CPU 14 von dem I/O_ALLOC Programm zurück. Ansons-
ten bestimmt die CPU 14, 1044, ob eine PCI-Funktion gefunden wurde. Falls dies der Fall ist, ordnet die CPU
14, 1050, I/O-Resourcen zu, wie dies durch die PCI-Funktion spezifiziert ist. Ansonsten ordnen ein Schlitz 36,
der heruntergefahren ist oder leer vorgefunden wurde, und die CPU 14 eine Fehler-I/O-Größe und eine
I/O-Ausrichtung für den Schlitz 36 zu, 1048. Die Fehler-I/O-Größe kann entweder eine vorbestimmte Größe,
bestimmt vor einem Abschalten des Computersystems 10, oder eine Größe, bestimmt nach einer Bestimmung
der I/O-Ressourcen, erforderlich durch das Computersystem 10, sein.
76/215

DE 697 21 381 T2 2004.01.15
[0542] Wenn ein I/O/Raum zugeordnet wird, dann programmiert die CPU 14 die I/O-Basis 1208 und begrenzt,
1012, Register der PCI-PCI-Brücken-Schaltungen, eingangsseitig der PCI-Funktion oder des Schlitzes 36. Die
CPU 14 programmiert auch Basis-Adressen-Register der entsprechenden PCI-Vorrichtungen geeignet. Die
CPU 14 findet dann, 1042, die nächste PCI-Funktion oder den Schlitz 36, der abgeschaltet oder leer ist.
[0543] Wie in Fig. 48 dargestellt ist, führt, nach einer anfänglichen Konfiguration, wenn eine Unterbrechung
erzeugt ist, die anzeigt, dass einer der Hebel 802 geöffnet oder geschlossen ist, die CPU 14 ein Unterbre-
chungs-Service-Programm, bezeichnet als CARD_INT, aus. Die CPU 14 liest, 1052, die Inhalte des Unterbre-
chungs-Registers 800, um zu bestimmen, 1053, ob der Hebel 802 geöffnet oder geschlossen worden ist. Falls
die CPU 14 bestimmt, 1053, dass der Hebel 802, der die Unterbrechung verursacht, geöffnet wurde, kehrt die
CPU 14 von dem Programm CARD_INT zurück.
[0544] Ansonsten schreibt die CPU 14, 1054, zu dem Schlitz-Freigabe-Register 817 und stellt, 1054, das
SO-Bit ein, um das Einschalten des Schlitzes 36 und der Karte 807, eingesetzt in dem Schlitz 36, zu initiieren.
Die CPU 14 wartet dann (nicht dargestellt) auf die Karte 807, um einzuschalten. Die CPU 14 greift dann, 1055,
auf den PCI-Bus auf der Karte zu, falls vorhanden. Die CPU 14 bestimmt dann, 1056, ob die Karte 807, die
gerade eingeschaltet wurde, einen PCI-Bus besaß (und eine PCI-PCI-Brücken-Schaltung). Falls dies der Fall
ist, bestimmt, 1057, die CPU 14 die primären, sekundären und Unterprogramm-Bus-Zahlen, reserviert für den
Schlitz 36, in dem die Karte 807 eingeschaltet wurde. Die CPU 14 konfiguriert darauffolgend, 1058, die
PCI-PCI-Brücken-Schaltung auf der Karte 807, die eingeschaltet wurde.
[0545] Die CPU 14 bestimmt dann, 1060, die Stelle und die Größe von I/O-und Speicher-Räumen, reserviert
für den Schlitz 36. Die CPU 14 schreibt darauffolgend, 1062, zu Basis-Adressen-Registern in dem PCI-Konfi-
gurations-Header-Raum der Karte 807, die eingeschaltet wurde. Die CPU 14 liest dann, 1064, ein Unterbre-
chungs-Stift-Register in dem Konfigurations-Raum der Karte 807, um zu bestimmen, 1066, ob die Karte 807
Unterbrechungs-Anforderungen verwendet. Falls dies der Fall ist, schreibt die CPU 14, 1068, ein Unterbre-
chungs-Zeilen-Register in den Konfigurations-Raum der Karte 807 mit einer zugeordneten IRQ-Zahl.
[0546] Die CPU gibt dann, 1070, Befehls-Register der Karte 870 frei, die in dem Konfigurations-Raum der
Karte 807 angeordnet sind, und ermöglicht der Karte 807, auf Speicher- und I/O-Zugriffe auf den PCI-Bus 32
anzusprechen. Die CPU 14 schreibt darauffolgend, 1072, zu dem Unterbrechungs-Register 800, um die Un-
terbrechungs-Anforderung zu löschen, und lädt, 1074, einen Software-Vorrichtungs-Treiber für die Karte 807.
Die CPU 14 kehrt dann von dem Programm CARD_INT zurück.

BRÜCKEN-KONFIGURATION

[0547] Funktional bilden Brücken-Chips 26 und 48 eine PCI-PCI-Brücke zwischen PCI-Bussen 24 und 32. Al-
lerdings umfasst jeder Brücken-Chip einen Konfigurations-Raum, der unabhängig konfiguriert werden muss.
Eine Lösung ist diejenige, zwei Brücken als unabhängige Vorrichtungen, eine Brücke bildend, zu behandeln,
allerdings würde dies eine Modifikation des BIOS-Konfigurations-Programms erfordern. Die andere Lösung ist
diejenige, das Kabel 28 als einen Bus zu definieren, so dass das Konfigurations-Programm den eingangssei-
tigen Brücken-Chip 26 als eine PCI-PCI-Brücke zwischen dem PCI-Bus 24 und dem Kabel 28 und dem aus-
gangsseitigen Brücken-Chip 48 als eine PCI-PCI-Brücke zwischen dem Kabel 28 und dem PCI-Bus 32 konfi-
gurieren kann. Ein Vorteil dieser zweiten Lösung ist derjenige, dass Standard-PCI-Konfigurations-Zyklen lau-
fen können, um die Brücken-Chips 26 und 48 zu konfigurieren, falls sie zwei PCI-PCI-Brücken waren, wenn
tatsächlich die zwei Brücken-Chips eine PCI-PCI-Brücke bilden.
[0548] Dabei sind zwei Typen von Konfigurations-Transaktionen auf dem PCI-Bus vorhanden: Typ 0 und Typ
1. Ein Konfigurations-Zyklus vom Typ 0 ist für Vorrichtungen auf dem PCI-Bus vorgesehen, auf dem der Kon-
figurations-Zyklus erzeugt ist, während ein Konfigurations-Zyklus vom Typ 1 für Vorrichtungen auf einem se-
kundären PCI-Bus, auf den über eine Brücke zugegriffen wird, vorgesehen ist. Fig. 51 stellt das Adressen-For-
mat von Konfigurations-Zyklen vom Typ 0 und Typ 1 dar. Ein Konfigurations-Befehl vom Typ 0 wird durch Ein-
stellen von PCI-Adressen-Bits AD[1:0] auf 00 während eines Konfigurations-Zyklus spezifiziert. Ein Konfigura-
tions-Zyklus vom Typ 0 wird nicht über eine PCI-PCI-Brücke weitergeführt, sondern verbleibt lokal auf dem
Bus, auf dem die Konfigurations-Transaktion vom Typ 0 erzeugt wurde.
[0549] Ein Kofigurations-Befehl vom Typ 1 wird durch Einstellen von Adressen-Bits AD[1:0] auf einen binären
Wert 01 spezifiziert. Konfigurations-Befehle vom Typ 1 können durch eine PCI-PCI-Brücke zu irgendeinem Le-
vel in der PCI-Bus-Hierarchie weitergeführt werden. Schließlich wandelt eine PCI-PCI-Brücke einen Befehl
vom Typ 1 zu einem Befehl vom Typ 0 um, um Vorrichtungen zu konfigurieren, die mit der sekundären Schnitt-
stelle der PCI-PCI-Brücke verbunden sind.
[0550] Konfigurations-Parameter, gespeichert in den Konfigurations-Registern 105 oder 125 der Brücke,
identifizieren die Bus-Zahlen für deren primäre PCI-Schnittstelle (Primär-Bus-Zahl) und sekundären
PCI-Schnittstelle (Sekundär-Bus-Zahl) und eine nebengeordnete Bus-Zahl, die die höchste, nummerierte
PCI-Bus-Unterordnung der Brücke angibt. Die Bus-Zahlen werden durch ein PCI-Konfigurations-Programm
BUS_ASSIGN (Fig. 45) eingestellt. Zum Beispiel ist, in dem eingangsseitigen Brücken-Chip 26, die Pri-
77/215

DE 697 21 381 T2 2004.01.15
mär-Bus-Zahl des Busses 24, die Sekundär-Bus-Zahl ist die Zahl des Kabels 28 und die Neben-Bus-Zahl ist
die Zahl des Sekundär-PCI-Busses 32 oder die Zahl eines tieferen PCI-Busses, falls ein solcher existiert. In
dem ausgangsseitigen Brücken-Chip 48 ist die Primär-Bus-Zahl die Zahl des Kabel-Busses 28, die Sekun-
där-Bus-Zahl ist die Zahl des PCI-Busses 32 und die nebengeordnete Bus-Zahl ist die Zahl eines PCI-Busses,
angeordnet tiefer in der PCI-Bus-Hierarchie, falls eine solche existiert.
[0551] Wie Fig. 53A zeigt, wird eine Erfassung von Konfigurations-Zyklen durch eine Logik in dem PCI-Tar-
get-Block 103 oder 121 in dem eingangsseitigen Brücken-Chip 26 oder dem ausgangsseitigen Brücken-Chip
48 jeweils behandelt. Ein Konfigurations-Zyklus vom Typ 0, erfasst auf dem eingangsseitigen Bus 24, wird
durch Aufstellen eines Signals TYP0_CFG_CYC_US, erzeugt durch ein UND-Gate 276, angezeigt. Das
UND-Gate 276 empfängt Signale UPSTREAM_CHIP, IDSEL (Chip-Select während einer Konfigurati-
ons-Transaktion), CFGCMD (Konfigurations-Befehl-Zyklus, der erfasst ist) und ADDR00 (Bits 1 und 0 sind bei-
de 0'en). Ein Konfigurations-Zyklus vom Typ 0, erfasst durch den ausgangsseitigen Brücken-Chip 48, wird
durch ein Signal TYP0_CFG_CYC_DS, erzeugt durch ein UND-Gate 278, angezeigt, das ein Signal
S1_BL_IDSEL (IDSEL Signal für den ausgangsseitigen Brücken-Chip 48), das Signal CFGCMD, das Signal
ADDR00, ein Signal MSTR_ACTIVE (anzeigend, dass der Brücken-Chip 48 der Master auf einem sekundären
PCI-Bus 32 ist), und den invertierten Zustand eines Signal UPSTREAM_CHIP empfängt.
[0552] Eine Erfassung eines Konfigurations-Zyklus vom Typ 1 durch das PCI-Target 103 in dem eingangssei-
tigen Brücken-Chip 26 wird durch Aufstellen eines Signals TYP1_CFG_CYC_US von einem UND-Gate 280
angezeigt, das Signale CFGCMD, ADDR01 (Bits 1 und 0 sind niedrig und hoch jeweils) und
UPSTREAM_CHIP empfängt. Eine Erfassung eines Konfigurations-Zyklus vom Typ 1 auf dem ausgangsseiti-
gen Bus 32 wird durch Aufstellen eines Signals TYP_CFG_CYC_DS von einem UND-Gate 282, das die Sig-
nale CFGCMD, ADDR01 empfängt, und dem invertierten Zustand des Signals UPSTREAM_CHIP angezeigt.
[0553] Der Brücken-Chip, der eine Transaktion vom Typ 0 aufnimmt, verwendet das Register-Zahl-Feld 250
in der Konfigurations-Transaktions-Adresse, um auf das geeignete Konfigurations-Register zuzugreifen. Das
Funktions-Zahl-Feld 252 spezifiziert eine von acht Funktionen, die in einer multi-funktionalen Vorrichtung wäh-
rend der Konfigurations-Transaktion durchgeführt werden soll. Eine PCI-Vorrichtung kann multi-funktional sein
und kann solche Funktionen haben, wie eine Festplatten-Laufwerksteuereinheit, eine Speicher-Steuereinheit,
eine Brücke, usw.
[0554] Wenn der Brücken-Chip 26 eine Konfigurations-Transaktion vom Typ 1 auf seinem eingangsseitigen
Bus 26 sieht, kann er die Transaktion entweder ausgangsseitig weiterführen, die Transaktion zu einer Trans-
aktion vom Typ 0 translatieren, die Transaktion zu einem speziellen Zyklus konvertieren oder die Transaktion
ignorieren (basierend auf den Bus-Zahl-Parametern, gespeichert in den Konfigurations-Registern 105 oder
125). Falls eine Transaktion weitergeführt wird, gelangt sie bis zu dem PCI-Master des Bestimmungs-Brü-
cken-Chips, um die Transaktion vom Typ 1 zu der entsprechenden, geeigneten Transaktion zu konvertieren.
Falls ein Brücken-Chip die Transaktion selbst handhabt, dann spricht er durch Aufstellen des Signals
DEVSEL_ auf den PCI-Bus an, und handhabt die Transaktion als eine normale, verzögerte Transaktion.
[0555] In einer Konfiguration-Transaktion vom Typ 1 wählt das Bus-Zahl-Feld 260 einen eindeutigen PCI-Bus
in der PCI-Hierarchie aus. Ein PCI-Target-Block 103 führt einen Konfigurations-Zyklus vom Typ 1 von dem ein-
gangsseitigen Chip 26 zu dem ausgangsseitigen Brücken-Chip 48 hindurch, falls ein Signal PASS_TYP1_DS
durch ein UND-Gate 284 aufgestellt ist. Das UND-Gate 284 empfängt das Signal TYP1_CFG_CYC_US und
ein Signal IN_RANGE (das Bus-Zahl-Feld 260 ist größer als oder gleich zu der gespeicherten, sekundären
Bus-Zahl und geringer als oder gleich zu der gespeicherten Neben-Bus-Zahl). Der andere Eingang des
UND-Gates 284 ist mit dem Ausgang eines ODER-Gates 286 verbunden, der einen Eingang mit dem Ausgang
eines UND-Gates 288 verbunden besitzt, und wobei der andere Eingang den invertierten Zustand eines Sig-
nals SEC_BUS_MATCH aufnimmt. Demzufolge wird, falls ein Zyklus vom Typ 1 erfasst wird, das Signal
IN_RANGE aufgestellt ist, und wenn das Bus-Zahl-Feld 260 nicht die gespeicherte, sekundäre Bus-Zahl an-
passt, das Signal PASS_TYP1_DS aufgestellt. Falls das Bus-Feld 260 nicht die gespeicherte Sekun-
där-Bus-Zahl anpasst, dann werden die Bus-Vorrichtungen auf oder nach dem ausgangsseitigen Bus 32
adressiert. Das UND-Gate 288 wird auf hoch gesetzt und das Vorrichtungs-Zahl-Feld 258 zeigt an, dass das
Target des Konfigurations-Zyklus vom Typ 1 der Konfigurations-Raum des ausgangsseitigen Brücken-Chips
48 ist. Falls dies wahr ist, wird die Konfigurations-Transaktion vom Typ 1 entlang des Kabels 28 zu dem aus-
gangsseitigen Brücken-Chip 48 für eine Translation einer Konfigurations-Transaktion vom Typ 0 weitergeführt.
Das PCI-Target 121 in dem ausgangsseitigen Brücken-Chip 48 spricht auf die Transaktion an und liest von den
und schreibt in die ausgangsseitigen Brücken-Konfigurations-Register 125 entsprechend zu der Transaktion
vom Typ 0. Die Steuer-Stifte des ausgangsseitigen Chips werden angesteuert und Lese- und Schreib-Daten
erscheinen auf dem ausgangsseitigen PCI-Bus 32, falls eine Transaktion vom Typ 0 auf dem ausgangsseitigen
Bus läuft (für Debug-Zwecke), obwohl jedes IDSEL auf dem ausgangsseitigen Bus 32 so blockiert wird, das
keine Vorrichtung tatsächlich auf eine Transaktion vom Typ 0 anspricht.
[0556] Falls der PCI-Target-Block 103 in dem eingangsseitigen Brücken-Chip 26 eine Konfigurations-Trans-
aktion vom Typ 1 auf seinen eingangsseitigen Bus 24 erfasst, mit einem Bus-Zahl-Feld gleich zu der gespei-
78/215

DE 697 21 381 T2 2004.01.15
cherten Sekundär-Bus-Zahl (der Kabel-Bus 28), allerdings nicht eine Vorrichtung 0 adressierend (suchen nach
anderen Vorrichtungen auf dem Kabel-Bus 28), dann irgnoriert der Target-Block 103 die Transaktion auf dem
primären Bus 26.
[0557] Falls das PCI-Target 121 eine Konfigurations-Schreib-Transaktion vom Typ 1 (WR_hoch) auf dem se-
kundären PCI-Bus 32 erfasst, der ein Bus-Zahl-Feld außerhalb des Bereichs der Sekundär-Bus-Zahl und der
Neben-Bus-Zahl besitzt (IN_RANGE niedrig), und falls die Vorrichtungs-Zahl 258, die Funktions-Zahl 256 und
die Register-Zahl 254 einen speziellen Zyklus anzeigen (SP_MATCH hoch), dann wird ein Signal
PASS_TYP1_US durch ein UND-Gate 290 aufgestellt. Das UND-Gate 290 empfängt das Signal
TYP1_CFG_CYC_DS, das Signal SP_MATCH, das Schreib/Lese-Strobe WR_ und den invertierten Zustand
des Signal IN_RANGE. Wenn der PCI-Master 101 in dem eingangsseitigen Brücken-Chip 26 einen solchen
Zyklus empfängt, lässt er einen speziellen Zyklus auf dem primären PCI-Bus 24 laufen.
[0558] Konfigurations-Transaktionen werden durch einen Brücken-Chip unter bestimmten Bedingungen igno-
riert. Falls der Target-Block 103 in dem eingangsseitigen Brücken-Chip 26 eine Konfigurations-Transaktion
vom Typ 1 auf dem PCI-Bus 24 erfasst (sein eingangsseitiger Bus) und das Bus-Zahl-Feld 260 geringer als die
Sekundär-Bus-Zahl oder größer als die Neben-Bus-Zahl, gespeichert in dem Konfigurations-Raum des Brü-
cken-Chips, ist, dann ignoriert der Target-Block 103 die Transaktion.
[0559] Falls der Target-Block 121 in dem ausgangsseitigen Brücken-Chip 48 eine Konfigurations-Transaktion
vom Typ 1 auf dem sekundären PCI-Bus 32 erfasst (sein ausgangsseitiger Bus), und das Bus-Zahl-Feld 260
größer als oder gleich zu der Sekundär-Bus-Zahl oder geringer als oder gleich zu der Neben-Bus-Zahl, gespei-
chert in dem Konfigurations-Raum des Brücken-Chips, ist, dann ignoriert der Target-Block 121 die Transaktion.
Zusätzlich werden Konfigurations-Befehle vom Typ 1, die zu der Eingangsseite hin gehen, ignoriert, falls ein
Befehl vom Typ 1 nicht eine Konversion zu einer speziellen Zyklus-Transaktion spezifiziert, ungeachtet der
Bus-Zahl, spezifiziert in dem Befehl vom Typ 1.
[0560] Wie Fig. 53B zeigt, überwacht der PCI-Master 101 oder 123 einen Konfigurations-Zyklus, übertragen
über das Kabel 28. Falls der PCI-Master 123 in dem ausgangsseitigen Brücken-Chip 48 eine Konfigurati-
ons-Transaktion vom Typ 1 von dem eingangsseitigen Brücken-Chip 26 erfasst, vergleicht das Bus-Zahl-Feld
260 mit der Primär-Bus-Zahl und der Sekundär-Bus-Zahl, gespeichert in dem Konfigurations-Raum des Brü-
cken-Chips 48. Falls das Bus-Zahl-Feld 260 entweder die gespeicherte Primär-Bus-Zahl (d. h. Kabel 28) oder
die gespeicherte Sekundär-Bus-Zahl (Adressieren einer Vorrichtung direkt, verbunden mit dem ausgangssei-
tigen Bus 23) anpasst, dann translatiert der ausgangsseitige Brücken-Chip 48 die Transaktion zu einer Trans-
aktion vom Typ 0 (durch Einstellen von AD[1:0] = 00), wenn er die Konfigurations-Transaktion auf dem Bus
weiterführt. Die Transaktion vom Typ 0 wird auf dem PCI-Bus 32 durch den PCI-Master-Block 123 durchge-
führt.
[0561] Das nachfolgende sind Translationen, durchgeführt von Feldern in der Konfigurations-Transaktion
vom Typ 1. Das Vorrichtungs-Zahl-Feld 258 in der Konfigurations-Transaktion vom Typ 1 wird durch den
PCI-Master 123 decodiert, um eine eindeutige Adresse in der translatierten Transaktion vom Typ 0 auf dem
sekundären Bus 32 zu erzeugen, wie dies in der Tabelle der Fig. 52 definiert ist. Die Sekundär-Adressen-Bits
AD[31:16], decodiert von dem Vorrichtungs-Zahl-Feld 258, werden durch den PCI-Master 123 verwendet, um
die geeigneten Chip-Auswahl-Signale IDSEL für die Vorrichtungen auf dem sekundären PCI-Bus 32 zu erzeu-
gen. Wenn das Adressen-Bit AD[15] gleich zu 1 ist, dann behält der Brücken-Chip 48 alle Adressen-Bits
AD[31:16], gesetzt auf niedrig (kein IDSEL ist aufgestellt), bei. Das Register-Zahl-Feld 254 und das Funkti-
ons-Zahl-Feld 256 des Konfigurations-Befehls vom Typ 1 werden nicht modifiziert zu dem Konfigurations-Be-
fehl vom Typ 0 hindurchgeführt. Das Funktions-Zahl-Feld 256 wählt acht Funktionen aus, und das Regis-
ter-Zahl-Feld 254 wählt ein Doppel-Wort in dem Konfigurations-Register-Raum der ausgewählten Funktion
aus.
[0562] Für eine Konfigurations-Transaktion vom Typ 1, zielmäßig vorgesehen zu dem ausgangsseitigen Brü-
cken-Chip 48, wandelt der Brücken-Chip 48 die Transaktion vom Typ 1 zu einer Transaktion vom Typ 0 um,
als würde sie eine Vorrichtung auf dem ausgangsseitigen Bus 32 adressieren, allerdings werden die AD[31:16]
Stifte auf 0'en gesetzt, so dass keine Sekundär-PCI-Bus-Vorrichtung ein IDSEL aufnimmt. Die PCI-Master-Lo-
gik 123 erfasst dies durch Aufstellen eines Signals TYP1_TO_INT0, angesteuert durch ein UND-Gate 262. Das
UND-Gate 262 empfängt ein Signal CFG_CMD (einen Konfigurations-Befehl-Zyklus anzeigend), den Ausgang
eines ODER-Gates 264 und den invertierten Zustand des Signals UPSTREAM_CHIP (Translation Ty-
pe-1-zu-Type-0 wird in dem eingangsseitigen Brücken-Chip 26 gesperrt). Das ODER-Gate 264 stellt seinen
Ausgang auf hoch, falls ein Signal PRIM_BUS_MATCH aufgestellt ist (das Bus-Zahl-Feld 260 passt die ge-
speicherte, primäre Bus-Zahl an), oder falls die gespeicherte, primäre Bus-Zahl
CFG2P_PRIM_BUS_NUM[7:0] gleich zu null ist (anzeigend, dass die Primär-Bus-Zahl in dem Konfigurati-
ons-Raum des Brücken-Chips 48 nicht durch das System BIOS bis jetzt konfiguriert worden ist und der mo-
mentane Konfigurations-Zyklus vom Typ 1 zu dem internen Konfigurations-Raum geht, um die Pri-
mär-Bus-Zahl des Brücken-Chips 48 zu programmieren).
[0563] Ein Signal TYP1_TO_EXT0 wird durch ein UND-Gate 266 aufgestellt und spricht auf eine Anpassung
79/215

DE 697 21 381 T2 2004.01.15
zu einer gespeicherten Sekundär-Bus-Zahl an. Die Eingänge des UND-Gates 266 empfangen das Signal
CFG_CMD, das Signal SEC_BUS_MATCH, den invertierten Zustand des Signals UPSTREAM_CHIP und den
invertierten Zustand eines Signals SP_MATCH (nicht ein spezieller Zyklus). Das Signal TYP1_TO_EXT0 zeigt
an, dass die konvertierte Konfigurations-Transaktion vom Typ 0 zu einer Vorrichtung zielmäßig auf dem sekun-
dären PCI-Bus 32 geführt wird.
[0564] Das Signal TYP1_TO_INT0 wird zu dem 1-Eingang eines 4:1 Multiplexers 274 geliefert. Der 2-Eingang
wird auf niedrig gelegt und der 0- und 3-Eingang des Multiplexers 274 nehmen ein Signal LTYP1_TO_INT0
von einem Flip-Flop 270 vom D-Typ auf. Der Auswahl-Eingang S1 des Multiplexers 274 empfängt ein Signal
CMD_LATCH (FRAME_, aufgestellt für einen neuen Zyklus auf dem PCI-Bus 32), und der Auswahl-Eingang
S0 empfängt ein Signal P2Q_START_PULSE (das anzeigt, wenn es hoch ist, dass eine Adresse zu dem
PCI-Bus 32 geschickt worden ist). Der Ausgang des Multiplexers 274 wird mit dem D-Eingang eines Flip-Flops
270 verbunden, das mit dem Signal PCLK getaktet wird und durch das Signal RESET gelöscht wird. Die ID-
SEL-Signale zu den Sekundär-Bus-Vorrichtungen werden durch Aufstellen eines Signals BLOCK_IDSEL von
einem ODER-Gate 272 blockiert, das an seinen Eingängen Signale Q2P_AD[15] (keine Konversion wird ent-
sprechend Tabelle 1 der Fig. 6 benötigt), TYP1_TO_INT0 und LTYP1_TO_INT0 empfängt. Das Signal
LTYP1_TO_INT0 erweitert das Aufstellen des Signals BLOCK_IDSEL.
[0565] Wenn der PCI-Master 123 in dem ausgangsseitigen Brücken-Chip 48 eine Konfigurations-Transaktion
vom Typ 1 von dem eingangsseitigen Brücken-Chip 26 empfängt, in dem das Bus-Zahl-Feld 260 größer als die
gespeicherte, Sekundär-Bus-Zahl und geringer als oder gleich zu der gespeicherten Neben-Bus-Zahl ist, dann
führt der PCI-Master-Block 123 die Transaktion vom Typ 1 zu dem Sekundär-PCI-Bus 32 unverändert weiter.
Eine bestimmte andere Vorrichtung auf dem Sekundär-PCI-Bus 32, z. B. eine andere Brücken-Vorrichtung 323
(Fig. 26B), wird die Konfigurations-Transaktion vom Typ 1 aufnehmen und sie zu dem sekundären Bus
(PCI-Bus 325) weiterführen.
[0566] Eine Konfigurations-Transaktion vom Typ 1 zu einer speziellen Zyklus-Translation wird dann durchge-
führt, wenn der PCI-Master 123 eine Konfigurations-Schreib-Transaktion vom Typ 1 von dem eingangsseitigen
Brücken-Chip 26 empfängt und das Bus-Zahl-Feld 260 die gespeicherte Sekundär-Bus-Zahl anpasst und falls
das Vorrichtungs-Zahl-Feld 258, das Funktions-Zahl-Feld 256 und das Register-Zahl-Feld 254 einen speziel-
len Zyklus anzeigen (SP_MATCH ist hoch). Dies wird durch ein UND-Gate 268 angezeigt, das ein Signal
TYP1_TO_SPCYC auf hoch setzt. Das UND-Gate 268 empfängt SP_MATCH, und Q2P_CBE_[0] (Befehl-Bit
für einen speziellen Zyklus). Die Daten von der Konfigurations-Transaktion vom Typ 1 werden die Daten für
den speziellen Zyklus an dem Bestimmungs-Bus. Die Adresse während eines speziellen Zyklus wird ignoriert.

BUS-FUNKTIONS-MONITOR

[0567] Der Bus-Monitor 127 (Fig. 3) umfasst eine Schaltung zum Speichern von Informationen, um bestimm-
te Bus-Funktions-Parameter zu berechnen. Die Parameter umfassen eine Bus-Nutzung, eine Bus-Effektivität
und eine Lese-Daten-Effektivität. Eine Bus-Nutzung ist das Verhältnis der Zeit, die der Bus belegt ist, unter
Durchführen einer Transaktion, zu einer vorgegebenen, globalen Zeitperiode. Eine Bus-Effektivität ist das Ver-
hältnis der Zahl von PCI-Takt-Perioden, die tatsächlich für eine Daten-Übertragung verwendet werden, zu der
gesamten Zahl von Taktperioden während der Bus-Beleg-Periode. Eine Lese-Daten-Effektivität ist das Verhält-
nis der Zahl der Lese-Daten-Bytes, auf die durch eine Vorrichtung auf dem Sekundär-PCI-Bus 32 zugegriffen
ist, und zwar von der verzögerten Abschluss-Warteschlange (DCQ) 144 (Fig. 4), zu der gesamten Zahl von
Daten-Bytes, abgerufen für diesen Master durch den Brücken-Chip 48. Die Informationen, gespeichert in dem
Bus-Monitor 127, werden durch die System-Software wieder aufgesucht, um die erwünschten Parameter zu
berechnen.
[0568] Wie Fig. 54A zeigt, zählt ein Global-Periode-Zeitgeber 1300 (der 32 Bits breit sein kann) eine gesamte
Zeitperiode, während der die verschiedenen Parameter berechnet werden sollen. Der Zeitgeber 1300 wird auf
den hexadezimalen Wert FFFFFFFF programmiert. Falls der PCI-Takt PCICLK2 bei 33 MHz läuft, dann beträgt
die Zeitgeberperiode ungefähr 2 Minuten. Wenn sich der Zeitgeber 1300 auf 0 verringert, stellt er ein Signal
GL_TIME_EXPIRE auf.
[0569] Der Bus-Monitor 127 umfasst 7 schlitz-spezifische Bus-Busy-Zähler 1302A–G, wobei sechs der Zähler
jeweils den 6 Schlitzen auf dem sekundären PCI-Bus 32 und einer der SIO 50 entsprechen. Die Bus-Busy-Zäh-
ler 1302A–G werden dann gelöscht, wenn das Signal GL_TIME_EXPIRE aufgestellt ist. In Abhängigkeit da-
von, welche Bus-Vorrichtung eine Steuerung auf dem sekundären Bus 32 besitzt, erhöht sich der
Bus-Busy-Zähler 1302 bei jedem PCI-Takt, in dem das Sekundär-PCI-Bus FRAME_ oder IRDY_ Signal aufge-
stellt ist. Der geeignete Eine der sieben Zähler wird durch eines der Erteilungs-Signale GNT[7:0]_ ausgewählt.
Demzufolge wird, zum Beispiel, der Bus-Busy-Zähler 1302A dann ausgewählt, wenn das Signal GNT[1]_ auf
niedrig gesetzt ist, was anzeigt, dass der SIO der momentane Master auf dem sekundären PCI-Bus 32 ist.
[0570] Sieben Daten-Zyklus-Zähler 1306A–G entsprechend, jeweils, zu den 6 Schlitzen auf dem sekundären
PCI-Bus 32 und dem SIO 50, führen die Zeit nach, während der eine Datenübertragung tatsächlich zwischen
80/215

DE 697 21 381 T2 2004.01.15
einem Master und einem Target während einer Transaktion auf dem PCI-Bus 32 auftritt. Der ausgewählte Da-
ten-Zyklus-Zähler 1306 wird bei jedem PCI-Takt erhöht, bei dem die Sekundär-Bus- IRDY_ und TRDY_ Sig-
nale beide auf niedrig gesetzt sind. Die Daten-Zyklus-Zähler 1306A–G werden dann gelöscht, wenn das Signal
GL_TIME_EXPIRE aufgestellt ist.
[0571] Sechs DCQ-Daten-Zähler 1310A–F sind in dem Bus-Monitor 127 zum Protokollieren der Menge an
Daten, eingeladen in die DCQ-Puffer, umfasst. Die Sechs DCQ-Daten-Zähler 1310A–F entsprechen den 6
Schlitzen auf dem sekundären PCI-Bus 32. Der ausgewählte DCQ-Daten-Zähler 1310 erhöht sich bei jedem
PCI-Takt, indem verzögerte Lese-Abschluss- (Delayed Read Completion – DRC) Daten von dem Kabel 28
empfangen und in die Prefetch-Puffer hineingeladen werden.
[0572] Ein anderer Satz von Zählern, DCQ-Daten-Benutzungs-Zähler 1314A–F, werden dazu verwendet, die
Menge an Daten zu protokollieren, die in die DCQ 144 eingeladen sind, tatsächlich verwendet durch die 6
Schlitze auf dem sekundären PCI-Bus 32. Der ausgewählte DCQ-Daten-Benutzungs-Zähler 1314 erhöht sich
bei jedem PCI-Takt, in dem der sekundäre Bus-Masterdaten von dem entsprechenden DCQ-Puffer liest. Beide
DCQ-Daten-Zähler 1310A–F und DCQ-Daten-Benutzungs-Zähler 1314A–F erhöhen sich bei jedem Daten-Zy-
klus ungeachtet der Zahl von Bytes, die tatsächlich übertragen werden. In den meisten Fällen beträgt die Zahl
von Bytes, übertragen in jedem Daten-Zyklus, 4.
[0573] Wenn der Global-Perioden-Zeitgeber 1300 abläuft und das Signal GL_TIME_EXPIRE aufstellt, treten
verschiedene Ereignisse auf. Zuerst lädt der Global-Perioden-Zeitgeber 1300 seinen Originalen Zähl-Wert wie-
der ein, der der hexadezimale Wert FFFFFFFF ist. Die Inhalte aller anderen Zähler, umfassend die
Bus-Busy-Zähler 1302A–G die Daten-Zyklus-Zähler 1306A–G, die DCQ-Daten-Zähler 1310A–F und die
DCQ-Daten-Benutzungs-Zähler 1314A–F, werden in Register 1304, 1308, 1312 und 1316 jeweils eingeladen.
Die Zähler 1302, 1306, 1310 und 1314 werden dann auf 0 gelöscht. Der Global-Periode-Zeitgeber 1300 be-
ginnt dann, erneut zu zählen, nachdem erneut mit seinem Original-Wert wieder geladen ist.
[0574] Das Signal GL_TIME_EXPIRE wird zu dem Unterbrechungs-Aufnahme-Block 132 zugeführt, der die
Unterbrechung über das Kabel 28 zu dem Unterbrechungs-Ausgangs-Block 114 weiterführt, der wiederum
eine Unterbrechung zu der CPU 14 erzeugt. Die CPU 14 antwortet auf die Unterbrechung durch Aufrufen eines
Unterbrechungs-Händlers, um die Bus-Funktion-Analyse durchzuführen. Der Unterbrechungs-Händler greift
auf die Inhalte der Register 1304, 1308, 1312 und 1316 zu, und berechnet die verschiedenen Parameter, um-
fassend die Bus-Benutzung, die Bus-Effektivität, die Prefetch-Effektivität-Parameter, zugeordnet den 6 Sekun-
där-Bus-Schlitzen bzw. -Einsteckplätzen und der SIO 50.
[0575] Der Bus-Benutzungs-Parameter ist der Wert des Bus-Busy-Zählers 1302, geteilt durch den Anfangs-
wert des Global-Perioden-Zeitgebers 1300, der der hexadezimale Wert FFFFFFFF ist. Demzufolge ist die
Bus-Nutzung der Prozentsatz der gesamten, globalen Zeit, während der ein Bus-Master eine Bus-Transaktion
durchführt.
[0576] Eine PCI-Transaktion umfasst eine Adressen-Phase und mindestens eine Daten-Übertragungs-Pha-
se. Ein Bus-Master stellt das Signal FRAME_ auf, um den Beginn und die Dauer einer aktiven Bus-Transaktion
anzuzeigen. Wenn das Signal FRAME_ weggenommen ist, zeigt dies an, dass die Transkaktion die End-Da-
ten-Phase ist oder die Transaktion abgeschlossen worden ist. Das Signal IRDY_ zeigt an, dass der Bus-Master
in der Lage ist, die momentane Daten-Phase der Bus-Transaktion abzuschließen. Während eines Schreibens
zeigt das Signal IRDY_ an, dass gültige Daten auf dem Bus vorhanden sind. Während eines Lesens zeigt das
Signal IRDY_ an, das der Master präpariert ist, um Lese-Daten anzunehmen. Das adressierte PCI-Target
spricht auf die Bus-Transaktion durch Aufstellen des Signals TRDY_ an, um anzuzeigen, dass das Target in
der Lage ist, die momentane Datenphase der Transaktion abzuschließen. Während eines Lesens zeigt das
Signal TRDY_ an, dass gültige Daten auf dem Bus vorhanden sind; während eines Schreibens zeigt das Signal
TRDY_ an, dass das Target präpariert wird, um Daten anzunehmen. Warte-Zustände können zwischen den
Adressen- und Daten-Phasen und zwischen aufeinanderfolgenden Daten-Phasen der Bus-Transaktionen ein-
gesetzt werden.
[0577] Während der Adressen-Phase oder den Warte-Zuständen tritt keine Daten-Übertragung tatsächlich
auf.
[0578] Eine tatsächliche Daten-Übertragung tritt nur dann auf, wenn beide Signale IRDY_ und TRDY_ auf
niedrig gesetzt sind. Um die Daten-, Übertragungs-Bus-Effektivität zu bestimmen, teilt der Unterbre-
chungs-Händler den Wert des Daten-Zyklus-Zählers 1306 durch den Wert des Bus-Busy-Zählers 1302. Die
Bus-Effektivität stellt die Menge an Zeit dar, während der eine Datenübertragung tatsächlich während einer
Bus-Transaktion auftritt. Durch Berechnen dieses Werts kann sich das Computersystem über Target-Vorrich-
tungen bewusst werden, die viele Warte-Zustände erfordern und deshalb ineffektiv sind.
[0579] Der Brücken-Chip 48 kann Daten von dem primären PCI-Bus 26 abrufen und die Daten in der DCQ
144 speichern. Die DCQ 144 besitzt acht Puffer, wobei jeder einem sekundären Bus-Master zuordenbar ist.
Zum Beispiel wird eine Speicher-Lese-Mehrfach-Transaktion, erzeugt durch einen sekundären Bus-Master, als
Ziel an dem primären Bus vorgesehen, bewirken, dass die Brücke 26, 48 insgesamt 8 Cache-Zeilen von dem
Speicher 20 abruft und sie in die DCQ 144 einlädt. Eine Speicher-Lese-Zeilen-Transaktion wird bewirken, dass
81/215

DE 697 21 381 T2 2004.01.15
die PCI-PCI-Brücke 26, 48 eine Zeile von Daten von dem Speicher 20 abruft. Zusätzlich kann, wie in Verbin-
dung mit den Fig. 75 und 79 beschrieben ist, die PCI-PCI-Brücke 26, 48 eine Lesepromotion durchführen, die
eine Lese-Anforderung von einem Sekundär-Bus-Master zu einer Lese-Anforderung für einen größeren Block
an Daten umwandelt. In diesen Fällen existiert eine Möglichkeit, dass nicht alle der abgerufenen Daten durch
den Bus-Master verwendet werden. In diesem Fall werden nicht-gelesene Daten ausgesondert, was die Le-
se-Daten-Effektivität reduziert. Ein Messen der Lese-Daten-Effektivität ermöglicht System-Designern zu ver-
stehen, wie ein Bus-Master Lese-Daten, abgerufen durch den Brücken-Chip 26, 48, von dem primären Bus 24,
verwendet.
[0580] Wie Fig. 54B zeigt, erhöht sich der Zähler 1310 an der ansteigenden Flanke des Takts PCLK, falls das
Signal DCQ_DATA_RECEIVED[X], X = 2–7, aufgestellt ist, was anzeigt, dass vier Bytes an Daten durch einen
DCQ-Puffer, zugeordnet einem Master X von dem Kabel 28, empfangen werden. Der Zähler 1310 gibt einen
Zähl-Wert DCQ Data[X] [20:0], X = 2–7, aus, was auf Null gelöscht wird, wenn das Signal GL_TIME_EXPIRE
aufgestellt ist.
[0581] Der Zähler 1314 erhöht sich an der ansteigenden Flanke des Takts PCLK, falls ein Signal
DCQ_DATA_TAKEN[X], X = 2–7, aufgestellt ist, was anzeigt, dass vier Bytes an Daten von einem DCQ-Puffer
zugeordnet zu Master X, gelesen sind. Der Zähler 1314 wird dann gelöscht, wenn das Signal
GL_TIME_EXPIRE hoch ist.
[0582] Um die Menge der DCQ-Daten zu bestimmen, die tatsächlich durch die Vorrichtungen auf dem sekun-
dären PCI-Bus 32 verwendet werden, wird die Prefetch-Effektivität durch den Unterbrechungs-Handler berech-
net. Dies wird dadurch bestimmt, dass das Verhältnis des Werts in dem Zähler 1314, der die DCQ-Daten ver-
wendet, zu dem Wert des DCQ-Daten-Zählers 1310 gesetzt wird. Obwohl sogar nicht alle Daten, übertragen
in die Prefetch-Puffer oder übertragen aus diesen heraus, 4 Bytes breit sind, ist das Verhältnis eng durch eine
Annahme angenähert, dass alle Daten-Phasen dieselbe Zahl von Bytes übertragen.
[0583] In Abhängigkeit der berechneten Parameter kann ein Benutzer oder der Computerhersteller besser die
Funktion des Computersystems verstehen. Zum Beispiel könnte dann, wenn eine Bus-Effektivität niedrig ist,
die PCI-Vorrichtung, die eingesetzt ist, durch ein unterschiedliches Teil des Computerherstellers ersetzt wer-
den. Eine Kenntnis der DCQ-Lese-Daten-Effektivität ermöglicht dem Computerhersteller, seinen DCQ-Ab-
ruf-Algorithmus zu ändern, um besser die Effektivität zu verbessern.

VERWENDUNG VON NEBEN-BUS-VORRICHTUNGEN

[0584] Wie in Fig. 88 dargestellt ist, führen sechs Erweiterungskarten, eingesetzt in die sechs Erweiterungs-
kartenschlitze bzw. -Steckplätze 36a–f, Bus-Vorrichtungen 1704–1708 ein, die zu der CPU 14 untergeordnet
sind, und Bus-Vorrichtungen 1701–1702, die zu einem I2O Prozessor 1700 untergeordnet sind. Obwohl alle
Neben-Bus-Vorrichtungen 1701– 1708 mit dem gemeinsamen PCI-Bus 32 verbunden sind, erscheinen die
I2O-Neben-Vorrichtungen 1701-1702 zu der CPU 14 nur so, dass sie über den I2O-Prozessor 1700 adressier-
bar sind und nicht direkt über den PCI-Bus 32 adressierbar sind. Deshalb dient der PCI-Bus 32 sowohl als ein
I2O-Neben-Vorrichtungs-Bus als auch als ein Neben-Vorrichtungs-Bus der CPU 14.
[0585] Zu Zwecken eines Verhinderns, dass die CPU 14 die I2O-Neben-Vorrichtungen 1701–1702 als Vorrich-
tung des PCI-Busses 32 erkennt, umfasst der Brücken-Chip 48 eine Logik 1710 (Fig. 90) zum Verhindern,
dass die I2O-Neben-Vorrichtungen 1701–1702 auf Konfigurations-Zyklen ansprechen, die durch die CPU 14
laufen. Der Erweiterungskasten 30 umfasst auch eine Multiplexing-Schaltung 1712, die mit dem Unterbre-
chungs-Aufnahme-Block 132 des Brücken-Chips 48 zusammenarbeitet, um Unterbrechungs-Anforderungen
zu maskieren, die von den I2O-Neben-Vorrichtungen 1701–1702 ausgehen, dass diese zu der CPU 14 propa-
gieren. Unterbrechungs-Anforderungen, die von den I2O-Neben-Bus-Vorrichtungen 1701–1702 ausgehen,
werden durch den Unterbrechungs-Aufnahme-Block 132 zu dem I2O-Prozessor 1700 umgeleitet. Der I2O-Pro-
zessor 1700 konfiguriert die I2O-Neben-Vorrichtungen 1701–1702; empfängt und verarbeitet Unterbre-
chungs-Anforderungen, die von den I2O-Neben-Vorrichtungen 1701–1702 ausgehen; und steuert einen Be-
trieb der I2O-Neben-Vorrichtungen, wie dies durch die CPU 14 geleitet wird.
[0586] Nach einem Einschalten des Computersystems 10 und wenn eine Karte 807 eingeschaltet bzw. hoch-
gefahren ist (d. h. eine neue Bus-Vorrichtung ist an dem PCI-Bus 32 eingeführt), tastet der I2O-Prozessor 1700
den PCI-Bus 32 ab, um I2O-Neben-Bus-Vorrichtungen zu identifizieren. Zu Zwecken eines Identifizierens des
Typs einer Bus-Vorrichtung (I2O-Neben-Bus-Vorrichtung oder Neben-Vorrichtung der CPU 14) lässt der
I2O-Prozessor 1700 Konfigurations-Zyklen auf dem PCI-Bus 32 laufen, um das Vorrichtungs-Identifikati-
ons-Wort (Vorrichtungs-ID) jeder Bus-Vorrichtung zu lesen. Die Vorrichtungs-ID ist in dem Konfigurations-Hea-
der-Raum aller PCI-Vorrichtungen angeordnet. Der I2O-Prozessor 1700 speichert die Ergebnisse dieser Ab-
tastung in einem I2O-Neben-Register 1729 mit sechs Bits (Fig. 93) innerhalb des I2O-Prozessors 1700, der
durch die CPU 14 zugänglich ist. Bits null bis fünf des Registers 1729 sind Schlitzen bzw. Steckplätzen 36a–f
jeweils zugeordnet. Ein Wert von „1" für ein Bit zeigt an, dass der zugeordnete Schlitz 36 eine Bus-Neben-Vor-
richtung zu der CPU 14 besitzt, und ein Wert von „0" für ein Bit zeigt an, dass der zugeordnete Schlitz 36 eine
82/215

DE 697 21 381 T2 2004.01.15
Bus-Neben-Vorrichtung zu dem I2O-Prozessor 1700 besitzt.
[0587] Der I2O-Prozessor 1700 kann in irgendeinen der Schlitze bzw. Steckplätze 36a–f eingesetzt werden.
Zu Zwecken eines Identifizierens, welcher Schlitz 36, falls irgendeiner vorhanden ist, einen I2O-Prozessor ent-
hält, tastet die CPU 14 den PCI-Bus 32 ab und liest die Vorrichtungs-ID der Bus-Vorrichtungen, verbunden mit
dem Bus 32. Die CPU 14 versucht nicht, irgendwelche Vorrichtungen 1704–1708 auf dem Bus 32 zu konfigu-
rieren bis ein Host-Konfigurations-Freigabe-Bit 1726 (Fig. 94) innerhalb des I2O-Prozessors 1700 der CPU 14
anzeigt, dass der I2O-Prozessor 1700 seine Identifikation von I2O-Neben-Vorrichtungen 1701–1702 auf dem
Bus 32 abgeschlossen hat. Das Host-Konfigurations-Freigabe-Bit 1726 besitzt einen Wert von „0" (Wert bei
einem Einschalten), um eine Konfiguration der Vorrichtungen auf dem Bus 32 durch die CPU 14 zu sperren,
und einen Wert „1", um eine Konfiguration der CPU 14 der Nebenvorrichtungen 1704–1708 der CPU 14 auf
dem Bus 32 freizugeben. Wenn die CPU 14 Bus-Vorrichtungen auf dem Bus 32 konfiguriert, „sieht" die CPU
14 nicht die I2O-Neben-Vorrichtungen 1701–1702, und zwar aufgrund der Maskierung durch die Logik 1710,
wie dies nachfolgend beschrieben ist.
[0588] Nachdem das Host-Freigabe-Konfigurations-Bit 1726 eingestellt ist, liest die CPU 14 die Inhalte des
I2O-Neben-Registers 1729 und überträgt die gelesenen Inhalte zu einem Sechs-Bits-I2O-Neben-Register 1428
(Fig. 91) des Brücken-Chips 48. Das Register 1728 zeigt den Neben-Status (Neben-I2O-Prozessor 1700 oder
Neben-CPU 14) der Bus-Vorrichtungen in derselben Art und Weise wie das Register 1729 an. Bevor die CPU
14 zu dem Register 1728 schreibt, enthält das Register 1728 alle „Eins'en" (Werte bei einem Einschalten), was
der CPU 14 ermöglicht, den Bus 32 nach dem I2O-Prozessor 1700 abzutasten. Der Unterbrechungs-Aufnah-
me-Block 132 verwendet das Register 1728, um zu identifizieren, welche Unterbrechungs-Anforderungen,
empfangen durch den Block 132, zu der CPU 14 geführt werden sollten, und welche Unterbrechungs-Anfor-
derungen, empfangen durch den Block 132, zu dem I2O-Prozessor 1700 für eine Verarbeitung geführt werden
sollten. Weiterhin verwendet die Logik 1710 die Inhalte des Registers 1728, um eine Erkennung durch die CPU
14 der I2O-Neben-Vorrichtungen 1701–1702 von der CPU 14 zu blockieren.
[0589] Zu Zwecken eines Anzeigens zu dem Unterbrechungs-Empfangs-Block 132, welche Bus-Vorrichtung,
falls irgendeine vorhanden ist, ein I2O-Prozessor ist, stellt die CPU 14 ein Bit eines I2O-Schlitz-Registers 1730
(Fig. 32) ein, dessen Bits 0–5 den Schlitzen 36a–f jeweils entsprechen. Für dieses Register 1730, angeordnet
innerhalb des Brücken-Chips 48, zeigt ein Wert von „0" für ein Bit an, dass der zugeordnete Schlitz 36 keinen
I2O-Prozessor besitzt, und ein Wert von „1" für das Bit zeigt an, dass der zugeordnete Schlitz 36 einen I2O-Pro-
zessor besitzt.
[0590] Wie in Fig. 90 dargestellt ist, umfasst die Logik 1710 ein Multi-Bit-UND-Gate 1711, das Signale
AD_IDSEL[5:0] zu Adressen/Daten-Leitungen des Busses 32 liefert, um Vorrichtungen auf dem Bus 32 wäh-
rend Konfigurations-Zyklen auszuwählen. Das UND-Gate 1711 empfängt ein Sechs-Bit-Signal ENABLE[5:0],
das Bits besitzt, die für Bits des I2O-Neben-Registers 1728 Indikativ sind und zu diesen entsprechen. Das
UND-Gate 1711 empfängt auch die typischen Identifikations-Auswahl-Signale SLOT_IDSEL[5:0], geliefert
durch den Brücken-Chip 48, zum Auswählen von Vorrichtungen auf den Bus 32, während Konfigurations-Zy-
klen. Deshalb werden die Signale ENABLE[5:0] dazu verwendet, selektiv die Signale SLOT_IDSEL[5:0] von
dem PCI-Bus 32 zu maskieren, wenn Konfigurations-Zyklen durch die CPU 14 laufen.
[0591] Zu Zwecken eines Kontrollierens der Bestimmung von Unterbrechungs-Anforderungen von den Schlit-
zen 36a–d, werden die Vier-Standard-PCI-Unterbrechungs-Anforderungs-Signale (INTA#, INTB#, INTC# und
INTD#), geliefert durch jeden Schlitz 36, zu einer Multiplexing-Schaltung 1712 geführt (Fig. 88). Die Multiple-
xing-Schaltung 1712 serialisiert die PCI-Unterbrechungs-Anforderungs-Signale, empfangen von den Schlitzen
36, und liefert die Signale zu dem Unterbrechungs-Emfpangs-Block 132 über vier zeit-multiplexierte-, serielle
Unterbrechungs-Anforderungs-Signale: INTSDA#, INTDSB#, INTSDC# und INTSDD#.
[0592] Wie in Fig. 89 dargestellt ist, liefert der Unterbrechungs-Empfangs-Block 132 Unterbrechungs-Anfor-
derungs-Signale für die CPU 14 zu dem Unterbrechungs-Ausgabe-Block 114 über ein zeit-mulitplexiertes, se-
rielles Unterbrechungs-Anforderungs-Signal INTSDCABLE#. Der Unterbrechungs-Empfangs-Block 132 liefert
Unterbrechungs-Anforderungs-Signale für den I2O-Prozessor 1700 über ein zeit-multiplexiertes, serielles Un-
terbrechungs-Anforderungs-Signal INTSDIIO#, geliefert über eine PCI INTC# Leitung 1709 des Busses 32 zu
dem I2O-Prozessor 1700.
[0593] Der Unterbrechungs-Ausgabe-Block 114 liefert die Unterbrechungs-Anforderungen, bestimmt über die
CPU 14, zu einer oder mehreren der Standard-PCI-Unterbrechungs-Anforderungs-Leitungen (INTA#, INTB#,
INTC# und INTD#) des PCI-Busses 24. Eine Unterbrechungs-Steuereinheit 1900, extern zu dem Brü-
cken-Chip 26, empfängt die Unterbrechungs-Anforderungen von den PCI-Unterbrechungs-Anforderungs-Lei-
tungen des PCI-Busses 24. Die Unterbrechungs-Steuereinheit 1900 priorisiert die Unterbrechungs-Anforde-
rungen (die Unterbrechungs-Anforderungen von anderen Vorrichtungen auf dem PCI-Bus 24 umfassen kön-
nen) und liefert sie zu der CPU 14. Der Unterbrechungs-Ausgabe-Block 114 kann entweder asynchron (wenn
er sich in einem asynchronen Mode befindet) die Unterbrechungs-Anforderungs-Signale zu den Unterbre-
chungs-Anforderungs-Leitungen des PCI-Busses 24 liefern oder kann sie seriell (wenn er sich in einem seriel-
len Mode befindet) die Unterbrechungs-Anforderungs-Signale zu der INTA# Leitung des PCI-Busses 24 füh-
83/215

DE 697 21 381 T2 2004.01.15
ren, wie dies weiter nachfolgend beschrieben ist.
[0594] Wie in Fig. 95 dargestellt ist, repräsentieren alle der zeit-multiplexierten, seriellen Daten-Signale deren
Daten über einen Unterbrechungs-Zyklus 1850, der acht aufeinanderfolgende Zeit-Teile (T0–T7) aufweist. Die
Dauer jedes Zeit-Teils ist ein Zyklus des PCI-Takt-Signals CLK. Jeder Zeit-Teil stellt einen „Snapshot" über den
Status von einem oder mehreren Unterbrechungs-Anforderungs-Signalen dar. Wie in Fig. 99 dargestellt ist,
stellt das Signal INTSDA# die abgetasteten INTA# Unterbrechungs-Anforderungs-Signale von den Schlitzen
36a–f dar. Das Signal INTSDB# stellt die abgetasteten INTB# Unterbrechungs-Anforderungs-Signale von den
Schlitzen 36a–f dar. Das Signal INTSDC# stellt die abgetasteten INTC# Unterbrechungs-Anforderungs-Signa-
le von den Schlitzen 36a–f dar. Das Signal INTSDD# stellt die abgetasteten INTD# Unterbrechungs-Anforde-
rungs-Signale von den Schlitzen 36a–f dar. Zu Zwecken eines Kombinierens der Unterbrechungs-Signale
INTSDA#-D# in das Signal INTSDIIO# verknüpft der Unterbrechungs-Empfangs-Block 132 logisch die Signale
INTSDA#-D# zusammen mit UND, während gleichzeitig Unterbrechungs-Anforderungs-Signale, bestimmt für
die CPU 14, maskiert werden. Ähnlich verknüpft, zu Zwecken eines Kombinierens der Unterbrechungs-Signale
INTSDA#-D# in das Signal INTSDCABLE# der Unterbrechungs-Aufnahme-Block 132 logisch mit UND die Si-
gnale INTSDA#-D# zusammen, während simultan Unterbrechungs-Anforderungs-Signale, bestimmt für die
CPU 14, maskiert werden.
[0595] Für den Zweck eines Instruierens des Unterbrechungs-Ausgangs-Blocks 114, wenn ein anderer Un-
terbrechungs-Zyklus 1850 beginnt, liefert der Unterbrechungs-Aufnahme-Block 132 ein Synchronisations-Sig-
nal INTSYNCCABLE# zu dem Unterbrechungs-Ausgangs-Block 114. Die abfallende, oder negative, Flanke
des Signals INTSYNCCABLE# zeigt an, dass der Zeit-Teil T0 des Unterbrechungs-Zyklus 1850, übertragen
über das Signal INTSDCABLE# an der nächsten, positiven Flanke des CLK Signals beginnt. Ein Signal INT-
SYNCIIO# wird in einer analogen Weise verwendet, um einen ankommenden Zeit-Schlitz T0 des Unterbre-
chungs-Zyklus 1850, übertragen über das Signal INTSDIIO#, anzuzeigen. Das Signal INTSYNCIIO# wird
durch den Unterbrechungs-Empfangs-Block 132 zu dem I2O-Prozessor 1700 über eine PCI INTD# Leitung
1710 des Busses 32 geliefert. Für den Zweck eines Instruierens der Multiplexing-Schaltung 1712, wenn ein
anderer Unterbrechungs-Zyklus 1850 über die Unterbrechungs-Signale INTSDA#-D# zu übertragen ist, liefert
der Unterbrechungs-Empfangs-Block 132 ein Synchronisations-Signal INTSYNC# zu der Multiplexing-Schal-
tung 1712. Die abfallende, oder negative Flanke des Signals des INTSYNC# zeigt an, dass die Multiple-
xing-Schaltung 1712 den Zeit-Teil T0 der Signale INTSDA#-D# an der nächsten, positiven Flanke des CLK-Si-
gnals übertragen sollte.
[0596] Wie in Fig. 96 dargestellt ist, umfasst die Multiplexing-Schaltung 1712 vier Multiplexer 1741–1744, die
die Signale INTSDA#, INTSDB#, INTSDC# und INTSDD# jeweils liefern. Die Auswahl-Eingänge der Multiple-
xer 1741–1744 empfangen ein Zeit-Teil-Signal SLICEIN[2:0], das dazu verwendet wird, die Zeit-Teile T0–T7
der Signale INTSDA#-D# anzuzeigen. Die INTA-D# Unterbrechungs-Anforderungs-Signale von den Schlitzen
36 werden zu Eingängen der Multiplexer 1741–1744 jeweils geliefert.
[0597] Das Signal SLICEIN[2:0] wird durch den Ausgang eines Drei-Bit-Zählers 1745 geliefert, der an der po-
sitiven Flanke des PCI-Takt-Signals CLK getaktet wird. Das Unterbrechungs-Synchronisations-Signal INT-
SYNC# wird durch einen getakteten Freigabe-Eingang des Zählers 1745 empfangen. An der negativen Flanke
des Signals INTSYNC# setzt sich der Zähler 1745 auf Null zurück (SLICEIN[2:0] entspricht Null). Der Zähler
1745 erhöht den Wert, angezeigt durch das SLICEIN[2.0] Signal, bis das SLICEIN[2:0] Signal gleich zu „7" ist,
wo es verbleibt, bis der Zähler 1745 erneut durch das INTSYNC# Signal zurückgesetzt wird.
[0598] Wie in Fig. 97A dargestellt ist, umfasst, zu Zwecken eines Protokollierens der Zeit-Teile T0–T7, der
Unterbrechungs-Aufnahme-Block 132 einen Drei-Bit-Zähler 1750, der an der positiven Flanke des CLK-Sig-
nals getaktet wird. Der Zähler 1750 liefert ein Ausgangs-Signal SL1[2:0], das durch den Auswahl-Eingang ei-
nes 3x8 Decodierers 1752 empfangen wird. Der Decodierer 1752 liefert ein Acht-Bit-Signal G_CNTR[7:0], wo-
bei das aufgestellte Bit des Signals G_CNTR[7:0] den Zeit-Teil der Signale INTSDIIO# und INTSDCABLE# an-
zeigt.
[0599] Das INTSYNC# Signal wird durch den Ausgang eines Invertierers 1774 geliefert, der das signifikan-
teste Bit des G_CNTR[7:0] Signals, G_CNTR[7], empfängt. Obwohl das INTSYNC# Signal auf niedrig während
des Zeit-Teils T7 gepulst wird, könnte der Unterbrechungs-Aufnahme-Block 132 alternativ mehrere Zyklen des
CLK-Signals nach Beenden eines Unterbrechungs-Zyklus 1850, vor einem Pulsen des INTSYNC# Signals auf
niedrig, warten. Die Signale INTSYNCCABLE# und INTSYNCIIO# werden beide durch den Ausgang eines In-
vertierers 1755 geliefert, der das Bit G_CNTR[0] empfängt.
[0600] Ein zusätzliches Unterbrechungs-Anforderungs-Singal CAY_INT# für die CPU 14 wird durch die
SIO-Schaltung 50 geliefert. Das CAY_INT# Signal wird logisch mit UND mit den INTSDA#-D# Signalen wäh-
rend des Zeit-Teils T0 verknüpft. Das CRY_INT# Signal wird durch den Ausgang eines UND-Gates 1756 ge-
liefert, das ein SIO_CMPL# Signal, das SI_INTR# Signal und ein I2C_INT# Signal aufnimmt. Das SIO CMPL#
Signal wird aufgestellt, oder auf niedrig angesteuert, wenn die SIO-Schaltung 50 einen Seriell-Ausgangs-Pro-
zess abgeschlossen hat. Das I2C_INT# Signal wird aufgestellt, oder auf niedrig angesteuert, um einen Ab-
schluss einer Transaktion über einen I2C-Bus (nicht dargestellt) anzuzeigen, verbunden mit dem Brücken-Chip
84/215

DE 697 21 381 T2 2004.01.15
48. Das I2C_INT# Signal wird ansonsten weggenommen, oder auf niedrig angesteuert.
[0601] Zu Zwecken eines Maskierens von Unterbrechungs-Anforderungen erzeugt der Unterbre-
chungs-Empfangs-Block 132 vier Maskierungs-Signale MASKA, MASKB, MASKC und MASKD. Wenn das
MASKA Signal aufgestellt ist, oder auf hoch angesteuert ist, während eines bestimmten Zeit-Teils (T0–T7) des
Signals INTSDA#, wird eine Unterbrechungs-Anforderung, angezeigt durch das Seriell-Unterbrechungs-Signal
INTSDA# während dieses bestimmten Zeit-Schlitzes, von der CPU 14 maskiert. Falls das MASKA Signal weg-
genommen ist, oder auf niedrig angesteuert ist, während des bestimmten Zeit-Teils, wird die Unterbre-
chungs-Anforderung, angezeigt durch das Seriell-Unterbrechungs-Signal INTSDA# von dem I2O-Prozessor
1700 maskiert. Die MASKB-D Signale funktionieren ähnlich zu den Maskierungs-Unterbrechungs-Anforderun-
gen, geliefert durch die Signale INTSDB#-D#.
[0602] Wie in Fig. 97B dargestellt ist, liefert ein Multiplexer 1758 das MASKA Signal. Der Auswahl-Eingang
des Multiplexers 1758 empfängt das SL1[2:0] Signal. Die acht Eingänge des Multiplexers 1758 empfangen in-
vertierte IIO_SUB[5:0] Signale, die für entsprechende Bits des I2O-Neben-Registers 1728 Indikativ sind. Die
Signale IIO_SUB[5:0] werden mit den geeigneten Eingängen des Multiplexers 1758 so verbunden, dass dann,
wenn das INTSDA# Signal den Unterbrechungs-Status für einen bestimmten Schlitz bzw. Einsteckplatz 36 an-
zeigt, das MASKA Signal gleichzeitig das zugeordnete Bit des Registers 1728 für diesen Schlitz 36 anzeigt:
Drei andere Multiplexer 1760, 1762 und 1764 liefern die Signale MASKB, MASKC und MASKD jeweils. Ähnlich
zur Erzeugung des MASKA Signals, sind die Signale IIO_SUB[5:0] mit den geeigneten Eingängen von Multi-
plexern 1760, 1762 und 1764 so verbunden, dass die MASKE, MASKC und MASKD Signale das Bit des Re-
gisters 1728, zugeordnet zu dem Schlitz, dargestellt durch die Signale INTSDB#, INTSDC# und INTSDD#, an-
zeigen. Die Multiplexer 1760–1764 empfangen das Signal SL1[2:0] an deren Auswahl-Eingängen.
[0603] Wie in Fig. 97C dargestellt ist, umfasst der Unterbrechungs-Aufnahme-Block 132 auch zwei Multiple-
xer 1768 und 1770, die zwei Maskierungssignale IIOTS_D und IIOTS_C, verwendet dazu, die INTD# und IN-
TC# Signale zu maskieren, geliefert durch die Schlitz-Unterbrechungs-Leitungen des I2O-Prozessors 1700, lie-
fern, da die Leitungen 1709 und 1713 dazu verwendet werden, die Signale INTSDIIO# und INTSYNCIIO# je-
weils zu dem I2O-Prozessor 1700 zu liefern. Die Auswahl-Eingänge beider Multiplexer 1768 und 1770 empfan-
gen das Signal SL1[2:0], und die Signal-Eingänge der Multiplexer 1768 und 1770 empfangen Signale
(IOSLOT[5:0], die für die entsprechenden Bits des I2O-Schlitz-Registers 1730 Indikativ sind. Die Signale
(IOSLOT[5:0] werden mit den geeigneten Eingängen von Multiplexern 1768 und 1770 so verbunden, dass
dann, wenn die INTSDC#-D# Signale den Unterbrechungs-Status für einen bestimmten Schlitz 36 anzeigen,
das IIOSLOT[5:0] Signal, ausgewählt durch die Multiplexer 1768 und 1770, gleichzeitig das zugeordnete Bit
des Registers 1730 für diesen Schritt 36 anzeigt.
[0604] Wie in Fig. 97D dargestellt ist, werden sechs UND-Gates 1772–1782 dazu verwendet, um die Signale
INTSDA#-INTSDD# zu kombinieren und ausgewählte Unterbrechungs-Anforderungs-Signale von der CPU 14
zu maskieren. Das UND-Gate 1772 empfängt ein invertiertes ECC_ERR_DOWN# Signal (aufgestellt dazu, um
einen Fehler, erfasst durch den Chip 48b bei Kabel-Übertragungen, anzuzeigen) und das Bit G_CNTRL[0].
Das UND-Gate 1774 empfängt ein invertiertes INTSDA# Signal und das MASKA Signal. Das UND-Gate 1776
empfängt ein invertiertes INTSDB# Signal und das MASKB Signal. Das UND-Gate 1778 empfängt ein inver-
tiertes INTSDC# Signal, das MASKC Signal und das IIOTS_C Signal. Das UND-Gate 1780 empfängt ein in-
vertiertes INTSDC# Signal, das MASKD Signal und das IIOTS_D Signal. Das UND-Gate 1782 empfängt ein
invertiertes CAY_INT Signal und das G_CNTRL Signal.
[0605] Die Ausgänge der UND-Gates 1772–1782 sind als Eingänge zu einem ODER-Gate 1784 verbunden,
das seinen Ausgang mit dem Signal-Eingang eines Flips-Flops 1786 vom D-Typ verbunden besitzt. Das
Flip-Flop 1786 wird an der positiven Flanke des CLK-Signals getaktet, und der Einstell-Eingang des Flip-Flops
1786 empfängt das RST-Signal. Der invertierende Ausgang des Flip-Flops 1786 liefert das INTSDCABLE# Si-
gnal.
[0606] Vier UND-Gates 1790–1796 werden dazu verwendet, die INTSDA#-D# Signale zu kombinieren und
ausgewählte Unterbrechungs-Anforderungs-Signale von dem I2O-Prozessor 1700 zu maskieren. Das
UND-Gate 1790 empfängt ein invertiertes INTSDA# Signal und ein invertiertes MASKA Signal. Ein anderer
Eingang des UND-Gates 1790 ist mit dem Ausgang eines NOR-Gates 1802 verbunden, das das INTSDA# Si-
gnal während der Zeit-Teile T0 und T7 maskiert, da keine Karten- und Unterbrechungsanforderungen in diesen
Zeit-Teilen umfasst sind. Das NOR-Gate 1802 empfängt die Bits G_CNTRL[0] und G_CNTRL[7]. Das
UND-Gate 1732 empfängt ein invertiertes INTSDB# Signal und ein invertiertes MASKB Signal. Ein anderer
Eingang des UND-Gates 1792 ist mit dem Ausgang eines NOR-Gates 1804 verbunden, der oder das das
INTSDB# Signal während der Zeit-Teile T1 und T4 maskiert, da keine Karten-Unterbrechungs-Anforderungen
in diesen Zeit-Teilen umfasst sind. Das NOR-Gate 1802 empfängt die Bits G_CNTRL[1] und G_CNTRL[4].
[0607] Das UND-Gate 1794 empfängt ein invertiertes INTSDC# Signal und ein invertiertes MASKC Signal.
Ein anderer Eingang des UND-Gates 1794 ist mit dem Ausgang eines NOR-Gates 1806 verbunden, der das
INTSDC# Signal während der Zeit-Teile T2 und T5 maksiert, da keine Karten-Unterbrechungs-Anforderungen
in diesen Zeit-Teilen umfasst sind. Das NOR-Gate 1806 empfängt die Bits G_CNTRL[2] und G_CNTRL[5]. Das
85/215

DE 697 21 381 T2 2004.01.15
UND-Gate 1796 empfängt ein invertiertes INTSDD# Signal und ein invertiertes MASKD Signal. Ein anderer
Eingang des UND-Gates 1796 ist mit dem Ausgang eines NOR-Gates 1808 verbunden, die das INTSDD# Si-
gnal während der Zeit-Teile T3 und T6 maskiert, da keine Karten-Unterbrechungs-Anforderungen in diesen
Zeit-Teilen umfasst sind. Das NOR-Gate 1808 empfängt die Bits G_CNTRL[3] und G_CNTRL[6].
[0608] Die Ausgänge der UND-Gates 1790–1796 sind als Eingänge mit einem ODER-Gate 1798 verbunden,
das einen Ausgang mit dem Signal-Eingang eines Flip-Flops 1800 vom D-Typ verbunden besitzt. Das Flip-Flop
1800 wird auf der positiven Flanke des CLK-Signals getaktet und der Einstell-Eingang des Flip-Flops 1800
empfängt das RST-Signal. Der invertierende Ausgang des Flip-Flops 1800 liefert das INTSDIIO# Signal.
[0609] Wie in Fig. 98 dargestellt ist, umfasst der Unterbrechungs-Ausgangs-Block 114 einen Drei-Bit-Zähler
1820 von einem gemeinsamen Design zu dem Zähler 1745. Der Zähler 1820 wird an der positiven Flanke des
Signals CLK getaktet, liefert ein Ausgangs-Signal G_CNTR2[2:0] und beginnt ein Zählen von 0 an bis 7, nach-
dem er durch das INTSYNC# Signal zurückgesetzt ist.
[0610] Zu Zwecken, das INTSYNCCPU# Signal zu liefern, umfasst der Unterbrechungs-Ausgangs-Block 114
ein Flip-Flop 1822 vom D-Typ, das an der positiven Flanke des CLK-Signals getaktet wird. Der Einstell-Eingang
des Flip-Flops 1822 empfängt das RST-Signal und der Signal-Eingang des Flip-Flops 1822 empfängt das INT-
SYNCCABLE# Signal. Der nicht-invertierende Ausgang des Flip-Flops 1822 liefert das INTSYNCCPU# Signal.
[0611] Zu Zwecken, das INTSDCPU# Signal zu liefern, umfasst der Unterbrechungs-Ausgangs-Block 114 ein
Flip-Flop 1824 vom D-Typ, das an der positiven Flanke des CLK-Signals getaktet wird. Der Einstell-Eingang
des Flip-Flops 1824 empfängt das RST-Signal und der Signal-Eingang des Flip-Flops 1824 empfängt das
INTSDCABLE# Signal. Der nicht-invertierende Ausgang des Flip-Flops 1824 liefert das INTSDCPU# Signal.
[0612] Die Unterbrechungs-Anforderungen, empfangen durch den Unterbrechungs-Empfangs-Block 114,
werden zu der Unterbrechungs-Steuereinheit 1900 entweder asynchron oder seriell zugeführt. In dem asyn-
chronen Mode werden die Unterbrechungs-Anforderungen zu den vier PCI-Unterbrechungs-Leitungen (her-
kömmlich bezeichnet auch als „Barben Poling") auf dem PCI-Bus 24 aufgelistet, wie dies in Figur 100 darge-
stellt ist.
[0613] Zu Zwecken eines Haltens der Unterbrechungs-Informationen, geliefert durch das INTSDCABLE# Si-
gnal, umfasst der Unterbrechungs-Ausgangs-Block 114 ein Acht-Bit-Register 1826. Alle Signal-Eingänge emp-
fangen das INTSDCABLE# Signal. Die Lade-Freigabe-Eingänge von Bits 0–7 empfangen die Bits
G_CNTR[0]-G_CNTR[7] jeweils. Deshalb wird, zum Beispiel, während des Zeit-Teils T4, ein Bit 3 mit dem
Wert, dargestellt durch das INTSDCABLE# Signal, geladen. Bits 0 (dargestellt durch ein INT_A1 Signal) und
4 (dargestellt durch ein INT_A2 Signal) werden in ein CPUINTA# Signal hinein aufgelistet. Bits 1 (dargestellt
durch ein INT_B1 Signal) und 5 (dargestellt durch ein INT_B2 Signal) werden in ein CPUINTB# Signal hinein
aufgelistet. Bits 2 (dargestellt durch ein INT_C1 Signal) und 6 (dargestellt durch ein INT_C2 Signal) werden in
ein CPUINTC# Signal hinein aufgelistet. Bits 3 (dargestellt durch ein INT_D1 Signal) und 7 (dargestellt durch
ein INT_D2 Signal) werden in ein CPUINTD# Signal hinein aufgelistet.
[0614] Vier ODER-Gates 1828–1834 liefern die Signale CPUINTA#, CPUINTB#, CPUINTC# und CPUINTD#,
die zu den PCI-Unterbrechungs-Leitungen INTA#, INTB#, INTC# und INTD# jeweils des PCI-Busses 24 gelie-
fert werden. Das ODER-Gate 1828 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1836 verbun-
den. Das UND-Gate nimmt ein invertiertes CM-Signal auf. Das Signal CM wird durch ein Bit eines Konfigura-
tions-Registers des Brücken-Chips 26 geliefert und wird aufgestellt, oder auf hoch angesteuert, um den asyn-
chronen Mode anzuzeigen, und wird weggenommen, oder auf niedrig angesteuert, um den synchronen Mode
anzuzeigen. Das UND-Gate 1836 empfängt auch das Signal INT_A1, das Signal INT_A2, und ein Signal
ECC_ERR_UP (verwendet dazu, einen Fehler in Kabel-Übertragungen anzuzeigen).
[0615] Das ODER-Gate 1828 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1838 verbunden.
Das UND-Gate 1838 empfängt das CM-Signal und das INTSDCPU# Signal. Ein anderer Eingang des
UND-Gates 1838 ist mit dem Ausgang eines ODER-Gates 1848 verbunden. Das ODER-Gate 1848 empfängt
das ECC_ERR_UP Signal und das Bit G_CNTR2[0].
[0616] Das ODER-Gate 1830 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1840 verbunden und
einen Eingang mit dem Ausgang eines UND-Gates 1842 verbunden. Das UND-Gate 1840 empfängt ein inver-
tiertes CM-Signal, das Signal INT_B1, und das Signal INT_B2. Das UND-Gate 1842 empfängt das Signal CM
und ein invertiertes Bit G_CNTR2[0] (verwendet dazu, das „sync" Signal zu der Unterbrechungs-Steuereinheit
1900 während des seriellen Modes zu liefern).
[0617] Das ODER-Gate 1832 besitzt einen Eingang mit dem Ausgang eines UND-Gates 1844 und mit einem
Eingang, der das CM-Signal empfängt, verbunden. Das UND-Gate 1844 empfängt ein invertiertes CM-Signal,
das INT_C1 Signal und das INT_C2 Signal. Das ODER-Gate 1834 besitzt einen Eingang mit dem Ausgang
eines UND-Gates 1846 und mit einem Eingang, der das CM-Signal aufnimmt, verbunden. Das UND-Gate 1846
empfängt ein invertiertes CM-Signal, das INT_D1 Signal und das INT_D2 Signal.
[0618] Andere Ausführungsformen liegen innerhalb des Schutzumfangs der nachfolgenden Ansprüche.
86/215

DE 697 21 381 T2 2004.01.15
Patentansprüche

1. Verfahren zur Verwendung in einem Computersystem (10), das eine zentrale Verarbeitungseinheit (14)
besitzt, wobei das Verfahren aufweist:
 Verwenden einer Klemme, um selektiv ein Entfernen einer Schaltungskarte (807) von einem Verbinder (34)
zu verhindern, wobei der Verbinder (34) so konfiguriert ist, um die Schaltungskarte aufzunehmen;
 Überwachen des Eingriffszustands der Klemme; und
 Zuführen einer Anzeige über den Eingriffszustand zu der zentralen Verarbeitungseinheit (14); und
 Zuführen einer Unterbrechungs-Anforderung zu der zentralen Verarbeitungseinheit (14), um anzuzeigen,
wenn sich der Eingriffszustand ändert; und gekennzeichnet durch
 Trennen einer Taktleitung und von anderen Leitungen des Busses (32), wobei die anderen Leitungen des Bus-
ses (32) getrennt werden, bevor die Taktleitung getrennt wird und die Energie weggenommen wird.

2. Verfahren nach Anspruch 1, das weiterhin aufweist:
 Speichern des Eingriffszustands in einem Speicher (20), auf den durch die zentrale Verarbeitungseinheit (14)
zugreifbar ist.

3. Verfahren nach Anspruch 1 oder Anspruch 2, das weiterhin aufweist:
 Überwachen eines Energie-Zustand-Signals (STATUS[127:0]) des Verbinders (34); und
 Zuführen einer Indikation über das Energie-Zustand-Signals (STATUS[127:0]) zu der zentralen Verarbeitungs-
einheit (14).

4. Verfahren nach einem der Ansprüche 1 bis 3, das weiterhin aufweist:
Zuführen von Energie zu dem Verbinder, wenn die Klemme in Eingriff ist; und Wegnehmen von Energie von
dem Verbinder, wenn die Klemme nicht in Eingriff ist.

5. Verfahren nach Anspruch 4, das weiterhin ein Bestimmen aufweist, ob die zentrale Verarbeitungseinheit
(14) den Verbinder (34) freigegeben hat, um Energie aufzunehmen, und wobei der Schritt eines Zuführens von
Energie ein Zuführen von Energie nur dann, wenn die zentrale Verarbeitungseinheit (14) den Verbinder (34)
freigegeben hat, um Energie aufzunehmen, umfasst.

6. Verfahren nach Anspruch 4 oder Anspruch 5, das weiterhin
ein elektrisches Verbinden eines Busses (32) mit dem Verbinder (34), wenn die Klemme in Eingriff ist; und
 ein elektrisches Isolieren des Busses (32) gegen den Verbinder (34), wenn die Klemme nicht in Eingriff ist;
aufweist.

7. Verfahren nach Anspruch 6, wobei ein elektrisches Verbinden ein Verbinden einer Taktleitung und von
anderen Leitungen des Busses (32) umfasst, wobei die anderen Leitungen des Busses (32) verbunden wer-
den, nachdem die Energie zugeführt ist und die Taktleitung verbunden ist.

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Computersystem (10) einen Schalter (805) be-
sitzt, betätigt durch die Klemme, was eine Anzeige der Position des Schalters (805) liefert, wobei das Verfahren
weiterhin aufweist:
 Aktualisieren des Eingriffsstatus, wenn die Anzeige dieselbe Position für eine vorbestimmte Dauer anzeigt.

9. System, das aufweist:
 eine zentrale Verarbeitungseinheit (14);
 einen Bus;
 einen Verbinder (34) zum Aufnehmen einer Schaltungskarte (807), wobei der Verbinder (34) eine Mehrzahl
von externen Verbindungen besitzt;
 eine Klemme, konfiguriert so, um selektiv ein Entfernen der Schaltungskarte (807) von dem Verbinder (34),
wenn die Klemme in Eingriff ist, zu verhindern;
 eine Schaltung (43), verbunden so, um den Eingriffsstatus der Klemme zu überwachen und um eine Zufuhr
von Energie zu dem Verbinder (34) basierend auf dem Eingriffsstatus der Klemme zu regulieren; und
 eine Schaltung, die auf die Schaltung zum Überwachen des Eingriffsstatus anspricht, zum Verbinden des Bus-
ses (32) mit dem Verbinder (34), wenn die Klemme in Eingriff ist, und zum elektrischen Isolieren des Busses
(32) gegen den Verbinder (34), wenn die Klemme nicht in Eingriff ist, und dadurch gekennzeichnet,
 dass die Schaltung zum Isolieren des Busses (32) Einrichtungen zum Trennen einer Taktleitung und von an-
deren Leitungen des Busses (32) umfasst, wobei die anderen Leitungen des Busses (32) getrennt werden, be-
vor die Taktleitung getrennt ist und die Energie weggenommen ist.
87/215

DE 697 21 381 T2 2004.01.15
10. System nach Anspruch 9, wobei die Schaltung umfasst:
 einen Schalter (805), betätigt durch die Klemme, was eine Anzeige über die Position des Schalters (805) lie-
fert; und
 eine Schaltung, verbunden so, um den Eingriffsstatus zu aktualisieren, wenn die Anzeige dieselbe Position für
eine vorbestimmte Dauer anzeigt.

11. Computersystem (10), das aufweist:
 ein System nach Anspruch 9 oder 10.

12. Computersystem (10) nach Anspruch 11, wobei die Schaltung so konfiguriert ist, um eine Unterbre-
chungs-Anforderung zu der zentralen Verarbeitungseinheit (14) zu liefern, um anzuzeigen, wenn sich der Ein-
griffszustand ändert.

13. Computersystem (10) nach Anspruch 11 oder Anspruch 12, wobei die Schaltung einen Puffer, zugreif-
bar durch die zentrale Verarbeitungseinheit (14), umfasst, verbunden so, um die Anzeige über den Eingriffszu-
stand zu speichern.

14. Computersystem (10) nach einem der Ansprüche 11 bis 13, wobei die Schaltung ein Energie-Status-Si-
gnal (STATUS[127:0]) des Verbinders (34) überwacht und eine Indikation des Energie-Status-Signals (STA-
TUS[127:0]) zu der zentralen Verarbeitungseinheit (14) zuführt.

15. Computersystem (10) nach einem der Ansprüche 11 bis 14, das weiterhin aufweist:
eine Schaltung, die auf die Schaltung anspricht, verbunden so, um den Eingriffszustand der Klemme zu über-
wachen, verbunden so, um Energie zu dem Verbinder (34) zuzuführen, wenn die Klemme in Eingriff ist, und
so, um Energie von dem Verbinder (34) wegzunehmen, wenn die Klemme nicht in Eingriff ist.

16. Computersystem (10) nach Anspruch 15, wobei die zentrale Verarbeitungseinheit (14) selektiv den
Verbinder (34) freigibt, um Energie aufzunehmen, wobei das Computersystem (10) weiterhin aufweist:
 einen Puffer, verbunden so, um anzuzeigen, wenn die zentrale Verarbeitungseinheit (14) den Verbinder (34)
freigegeben hat, um Energie aufzunehmen, und
 wobei die Schaltung, verbunden so, um nur Energie zuzuführen, Energie dann zuführt, wenn die zentrale Ver-
arbeitungseinheit (14) den Verbinder (34) freigegeben hat, um Energie aufzunehmen.

17. Computersystem (10) nach Anspruch 16, wobei die zentrale Verarbeitungseinheit (14) selektiv den Bus
(32) freigibt, um mit dem Verbinder (34) verbunden zu werden, wobei das Computersystem (10) weiterhin auf-
weist:
 einen Puffer, verbunden so, um anzuzeigen, wenn die zentrale Verarbeitungseinheit (14) den Bus (32) freige-
geben hat, um mit dem Verbinder (34) verbunden zu werden, und
 wobei die Schaltung, verbunden so, um nur Energie zuzuführen, den Bus (32) mit dem Verbinder (34) dann
verbindet, wenn die zentrale Verarbeitungseinheit (14) den Verbinder (34) freigegeben hat, um mit dem Bus
(32) verbunden zu werden.

18. Computersystem (10) nach einem der Ansprüche 9 bis 17, wobei die Schaltung für ein elektrisches Ver-
binden des Busses (32) mit dem Verbinder (34) umfasst:
 eine Einrichtung zum Verbinden einer Taktleitung und von anderen Leitungen des Busses (32), wobei die an-
deren Leitungen des Busses (32) verbunden werden, nachdem die Energie zugeführt ist und die Taktleitung
verbunden ist.

19. Computersystem (10) nach einem der Ansprüche 16 bis 18, wobei der Bus (32) einen PCI-Bus (32)
aufweist.

Es folgen 127 Blatt Zeichnungen
88/215

DE 697 21 381 T2 2004.01.15
Anhängende Zeichnungen
89/215

DE 697 21 381 T2 2004.01.15
90/215

DE 697 21 381 T2 2004.01.15
91/215

DE 697 21 381 T2 2004.01.15
92/215

DE 697 21 381 T2 2004.01.15
93/215

DE 697 21 381 T2 2004.01.15
94/215

DE 697 21 381 T2 2004.01.15
95/215

DE 697 21 381 T2 2004.01.15
96/215

DE 697 21 381 T2 2004.01.15
97/215

DE 697 21 381 T2 2004.01.15
98/215

DE 697 21 381 T2 2004.01.15
99/215

DE 697 21 381 T2 2004.01.15
100/215

DE 697 21 381 T2 2004.01.15
101/215

DE 697 21 381 T2 2004.01.15
102/215

DE 697 21 381 T2 2004.01.15
103/215

DE 697 21 381 T2 2004.01.15
104/215

DE 697 21 381 T2 2004.01.15
105/215

DE 697 21 381 T2 2004.01.15
106/215

DE 697 21 381 T2 2004.01.15
107/215

DE 697 21 381 T2 2004.01.15
108/215

DE 697 21 381 T2 2004.01.15
109/215

DE 697 21 381 T2 2004.01.15
110/215

DE 697 21 381 T2 2004.01.15
111/215

DE 697 21 381 T2 2004.01.15
112/215

DE 697 21 381 T2 2004.01.15
113/215

DE 697 21 381 T2 2004.01.15
114/215

DE 697 21 381 T2 2004.01.15
115/215

DE 697 21 381 T2 2004.01.15
116/215

DE 697 21 381 T2 2004.01.15
117/215

DE 697 21 381 T2 2004.01.15
118/215

DE 697 21 381 T2 2004.01.15
119/215

DE 697 21 381 T2 2004.01.15
120/215

DE 697 21 381 T2 2004.01.15
121/215

DE 697 21 381 T2 2004.01.15
122/215

DE 697 21 381 T2 2004.01.15
123/215

DE 697 21 381 T2 2004.01.15
124/215

DE 697 21 381 T2 2004.01.15
125/215

DE 697 21 381 T2 2004.01.15
126/215

DE 697 21 381 T2 2004.01.15
127/215

DE 697 21 381 T2 2004.01.15
128/215

DE 697 21 381 T2 2004.01.15
129/215

DE 697 21 381 T2 2004.01.15
130/215

DE 697 21 381 T2 2004.01.15
131/215

DE 697 21 381 T2 2004.01.15
132/215

DE 697 21 381 T2 2004.01.15
133/215

DE 697 21 381 T2 2004.01.15
134/215

DE 697 21 381 T2 2004.01.15
135/215

DE 697 21 381 T2 2004.01.15
136/215

DE 697 21 381 T2 2004.01.15
137/215

DE 697 21 381 T2 2004.01.15
138/215

DE 697 21 381 T2 2004.01.15
139/215

DE 697 21 381 T2 2004.01.15
140/215

DE 697 21 381 T2 2004.01.15
141/215

DE 697 21 381 T2 2004.01.15
142/215

DE 697 21 381 T2 2004.01.15
143/215

DE 697 21 381 T2 2004.01.15
144/215

DE 697 21 381 T2 2004.01.15
145/215

DE 697 21 381 T2 2004.01.15
146/215

DE 697 21 381 T2 2004.01.15
147/215

DE 697 21 381 T2 2004.01.15
148/215

DE 697 21 381 T2 2004.01.15
149/215

DE 697 21 381 T2 2004.01.15
150/215

DE 697 21 381 T2 2004.01.15
151/215

DE 697 21 381 T2 2004.01.15
152/215

DE 697 21 381 T2 2004.01.15
153/215

DE 697 21 381 T2 2004.01.15
154/215

DE 697 21 381 T2 2004.01.15
155/215

DE 697 21 381 T2 2004.01.15
156/215

DE 697 21 381 T2 2004.01.15
157/215

DE 697 21 381 T2 2004.01.15
158/215

DE 697 21 381 T2 2004.01.15
159/215

DE 697 21 381 T2 2004.01.15
160/215

DE 697 21 381 T2 2004.01.15
161/215

DE 697 21 381 T2 2004.01.15
162/215

DE 697 21 381 T2 2004.01.15
163/215

DE 697 21 381 T2 2004.01.15
164/215

DE 697 21 381 T2 2004.01.15
165/215

DE 697 21 381 T2 2004.01.15
166/215

DE 697 21 381 T2 2004.01.15
167/215

DE 697 21 381 T2 2004.01.15
168/215

DE 697 21 381 T2 2004.01.15
169/215

DE 697 21 381 T2 2004.01.15
170/215

DE 697 21 381 T2 2004.01.15
171/215

DE 697 21 381 T2 2004.01.15
172/215

DE 697 21 381 T2 2004.01.15
173/215

DE 697 21 381 T2 2004.01.15
174/215

DE 697 21 381 T2 2004.01.15
175/215

DE 697 21 381 T2 2004.01.15
176/215

DE 697 21 381 T2 2004.01.15
177/215

DE 697 21 381 T2 2004.01.15
178/215

DE 697 21 381 T2 2004.01.15
179/215

DE 697 21 381 T2 2004.01.15
180/215

DE 697 21 381 T2 2004.01.15
181/215

DE 697 21 381 T2 2004.01.15
182/215

DE 697 21 381 T2 2004.01.15
183/215

DE 697 21 381 T2 2004.01.15
184/215

DE 697 21 381 T2 2004.01.15
185/215

DE 697 21 381 T2 2004.01.15
186/215

DE 697 21 381 T2 2004.01.15
187/215

DE 697 21 381 T2 2004.01.15
188/215

DE 697 21 381 T2 2004.01.15
189/215

DE 697 21 381 T2 2004.01.15
190/215

DE 697 21 381 T2 2004.01.15
191/215

DE 697 21 381 T2 2004.01.15
192/215

DE 697 21 381 T2 2004.01.15
193/215

DE 697 21 381 T2 2004.01.15
194/215

DE 697 21 381 T2 2004.01.15
195/215

DE 697 21 381 T2 2004.01.15
196/215

DE 697 21 381 T2 2004.01.15
197/215

DE 697 21 381 T2 2004.01.15
198/215

DE 697 21 381 T2 2004.01.15
199/215

DE 697 21 381 T2 2004.01.15
200/215

DE 697 21 381 T2 2004.01.15
201/215

DE 697 21 381 T2 2004.01.15
202/215

DE 697 21 381 T2 2004.01.15
203/215

DE 697 21 381 T2 2004.01.15
204/215

DE 697 21 381 T2 2004.01.15
205/215

DE 697 21 381 T2 2004.01.15
206/215

DE 697 21 381 T2 2004.01.15
207/215

DE 697 21 381 T2 2004.01.15
208/215

DE 697 21 381 T2 2004.01.15
209/215

DE 697 21 381 T2 2004.01.15
210/215

DE 697 21 381 T2 2004.01.15
211/215

DE 697 21 381 T2 2004.01.15
212/215

DE 697 21 381 T2 2004.01.15
213/215

DE 697 21 381 T2 2004.01.15
214/215

DE 697 21 381 T2 2004.01.15
215/215

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

