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(57) ABSTRACT 
An improved architecture for a program code conversion 
apparatus and method for generating intermediate represen 
tations for program code conversion. The program code 
conversion apparatus determines which types of IR nodes to 
generate in an intermediate representation of Subject code to 
be translated. Depending upon the particular Subject and 
target computing environments involved in the conversion, 
the program code conversion apparatus utilizes either base 
nodes, complex nodes, polymorphic nodes, and architecture 
Specific nodes, or Some combination thereof, in generating 
the intermediate representation. 
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ARCHITECTURE FOR GENERATING 
INTERMEDIATE REPRESENTATIONS FOR 

PROGRAM CODE CONVERSION 

BACKGROUND OF THE INVENTION 

0001) 1. Technical Field 
0002 The subject invention relates generally to the field 
of computers and computer Software and, more particularly, 
to program code conversion methods and apparatus useful, 
for example, in code translators, emulators and accelerators. 
0003 2. Description of Related Art 
0004 Across the embedded and non-embedded CPU 
market, one finds predominant Instruction Set Architectures 
(ISAS) for which large bodies of software exist that could be 
“Accelerated” for performance, or “Translated” to a myriad 
of capable processors that could present better cost/perfor 
mance benefits, provided that they could transparently 
access the relevant Software. One also finds dominant CPU 
architectures that are locked in time to their ISA, and cannot 
evolve in performance or market reach and would benefit 
from “Synthetic CPU” co-architecture. 
0005. It is often desired to run program code written for 
a computer processor of Oa first type (a “Subject’ processor) 
on a processor of a Second type (a "target” processor). Here, 
an emulator or translator is used to perform program code 
translation, Such that the Subject program is able to run on 
the target processor. The emulator provides a virtual envi 
ronment, as if the Subject program were running natively on 
a Subject processor, by emulating the Subject processor. 
0006. In the past, subject code is converted to an inter 
mediate representation of a computer program during run 
time translation using So-called base nodes, as described in 
co-pending patent application entitled Program Code Con 
version, U.S. patent application Ser. No. 09/827,971, in 
connection with FIGS. 1 through 5 of this application. 
Intermediate representation is a term widely used in the 
computer industry to refer to forms of abstract computer 
language in which a program may be expressed, but which 
is not specific to, and is not intended to be directly executed 
on, any particular processor. Program code conversion meth 
ods and apparatus which facilitate Such acceleration, trans 
lation and co-architecture capabilities utilizing intermediate 
representations are, for example, addressed in the co-pend 
ing patent application, U.S. application Ser. No. 09/827,971. 

SUMMARY OF THE INVENTION 

0007. The following is a summary of various aspects and 
advantages realizable according to various embodiments of 
the improved architecture for program code conversion 
according to the present invention. It is provided as an 
introduction to assist those skilled in the art to more rapidly 
assimilate the detailed discussion of the invention that 
ensues and does not and is not intended in any way to limit 
the Scope of the claims that are appended hereto. 
0008. The various embodiments described below relate 
to improved architectures for a program code conversion 
apparatus and an associated method for converting Subject 
code executable in a Subject computing environment to 
target code executable in a target computing environment. 
The program code conversion apparatus creates an interme 
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diate representation (IR) of the subject code which may then 
be optimized for the target computing environment in order 
to more efficiently generate the target code. Depending upon 
the particular architectures of the Subject and target com 
puting environments involved in the conversion, the pro 
gram code conversion apparatus of one embodiment deter 
mines which of the following types of IR nodes to generate 
in the intermediate representation (IR): base nodes, complex 
nodes, polymorphic nodes, and architecture-specific nodes. 
The program code conversion architecture will by default 
generate base nodes when creating the intermediate repre 
Sentation, unless it is determined that another one of the 
types of nodes would more applicable to the particular 
conversion being effectuated. 
0009 Base nodes provide a minimal set of nodes (i.e., 
abstract expressions) needed to represent the Semantics of 
any Subject architecture running the Subject code, Such that 
base nodes provide a RISC-like functionality. Complex 
nodes are generic nodes that represent CISC-like Semantics 
of a Subject architecture running the Subject code in a more 
compact representation than base nodes. While all complex 
nodes could be decomposed into base node representations 
with the same Semantics, complex nodes preserve the 
Semantics of complex instructions in a single IR node in 
order to improve the performance of the translator. Complex 
nodes essentially augment the set of base nodes for CISC 
like instructions in the Subject code. Base nodes and com 
pleX nodes are both generically used over a wide range of 
possible Subject and target architectures, thus allowing 
generic optimizations to be performed on the corresponding 
IR trees comprised of base nodes and complex nodes. 
0010. The program code conversion apparatus utilizes 
polymorphic nodes in the intermediate representation when 
the features of the target computing environment would 
cause the Semantics of the particular Subject instruction to be 
lost if realized as a generic IR node. The polymorphic nodes 
contain a function pointer to a function of the target com 
puting environment specific to a particular Subject instruc 
tion in the Source code. The program code conversion 
apparatus further utilizes architecture-specific nodes to pro 
vide target-Specialized conversion components for perform 
ing Specialized code generation functions for certain target 
computing environments. 
0011. The improved IR generation methods hereafter 
described allow the program code conversion apparatus to 
be configurable to any Subject and target processor archi 
tecture pairing while maintaining an optimal level of per 
formance and maximizing the Speed of translation. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0012. The features of the present invention, which are 
believed to be novel, are set forth with particularity in the 
appended claims. The present invention, both as to its 
organization and manner of operation, together with further 
advantages, may best be understood by reference to the 
following description, taken in connection with the accom 
panying drawings in which the reference numerals designate 
like parts throughout the figures thereof and wherein: 
0013 FIG. 1 shows an example computing environment 
including Subject and target computing environments, 
0014 FIG.2 shows a preferred program code conversion 
apparatus, 
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0.015 FIG. 3 is a schematic diagram of an illustrative 
computing environment illustrating translation of Subject 
code to target code, 
0016 FIG. 4 is a schematic illustration of various inter 
mediate representations realized by a program code conver 
Sion apparatus in accordance with a preferred embodiment 
of the present invention; 
0017 FIG. 5 is a detailed schematic diagram of a pre 
ferred program code conversion apparatus, 
0.018 FIG. 6 shows example IR trees generated using 
base nodes and complex nodes, 
0.019 FIG. 7 is a schematic diagram illustrating an 
example of ASN generation for implementation of the 
present invention in an accelerator; 
0020 FIG. 8 is a schematic diagram illustrating an 
example of ASN generation for implementation of the 
present invention in a translator; 
0021 FIG. 9 is an operational flow diagram of the 
translation proceSS when utilizing ASNS in accordance with 
a preferred embodiment of the present invention; 
0022 FIG. 10 is a schematic diagram illustrating an 
example of a translation proceSS and corresponding IR 
generated during the process, 

0023 FIG. 11 is a schematic diagram illustrating another 
example of a translation process and corresponding IR 
generated during the process, and 

0024 FIG. 12 is a schematic diagram illustrating a 
further example of a translation proceSS and corresponding 
IR generated during the process. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0.025 The following description is provided to enable any 
person skilled in the art to make and use the invention and 
sets forth the best modes contemplated by the inventors of 
carrying out their invention. Various modifications, how 
ever, will remain readily apparent to those skilled in the art, 
Since the general principles of the present invention have 
been defined herein Specifically to provide an improved 
architecture for a program code conversion apparatus. 
0.026 Referring to FIG. 1, an example computing envi 
ronment is shown including a Subject computing environ 
ment 1 and a target computing environment 2. In the Subject 
environment 1, Subject code 10 is executable natively on a 
Subject processor 12. The Subject processor 12 includes a Set 
of Subject registers 14. Here, the subject code 10 may be 
represented in any Suitable language with intermediate lay 
ers (e.g., compilers) between the Subject code 10 and the 
Subject processor 12, as will be familiar to a person skilled 
in the art. 

0027. It is desired to run the subject code 10 in the target 
computing environment 2, which provides a target processor 
22 using a set of target registers 24. These two processors 12 
and 22 may be inherently non-compatible, Such that these 
two processors use different instruction Sets. Hence, a pro 
gram code conversion architecture 30 is provided in the 
target computing environment 2, in order to run the Subject 
code 10 in that non-compatible environment. The program 
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code conversion architecture 30 may comprise a translator, 
emulator, accelerator, or any other architecture Suitable for 
converting program code designed for one processor type to 
program code executable on another processor type. For the 
purposes of the discussion of the present invention following 
hereafter, the program code conversion architecture 30 will 
be referred to as the “translator 30.’ It should be noted that 
the two processors 12 and 22 may also be of the same 
architecture type, Such as in the case of an accelerator. 
0028. The translator 30 performs a translation process on 
the subject code 10 and provides a translated target code 20 
for execution by the target processor 22. Suitably, the 
translator 30 performs binary translation, wherein subject 
code 10 in the form of executable binary code appropriate to 
the Subject processor 12 is translated into executable binary 
code appropriate to the target processor 22. Translation can 
be performed Statically or dynamically. In Static translation, 
an entire program is translated prior to execution of the 
translated program on the target processor. This involves a 
significant delay. Therefore, the translator 30 preferably 
dynamically translates Small Sections of the Subject code 10 
for execution immediately on the target processor 22. This 
is much more efficient, because large Sections of the Subject 
code 10 may not be used in practice or may be used only 
rarely. 

0029) Referring now to FIG. 2, a preferred embodiment 
of the translator 30 is illustrated in more detail, comprising 
a front end 31, a kernel 32 and a back end 33. The front end 
31 is configured Specific to the Subject processor 12 asso 
ciated with the subject code. The front end 31 takes a 
predetermined section of the subject code 10 and provides a 
block of a generic intermediate representation (an “IR 
block”). The kernel32 optimizes each IR block generated by 
the front end 31 by employing optimization techniques, as 
readily known to those skilled in the art. The back end 33 
takes optimized IR blocks from the kernel 32 and produces 
target code 20 executable by the target processor 22. 
0030) Suitably, the front end 31 divides the subject code 
10 into basic blocks, where each basic block is a sequential 
Set of instructions between a first instruction at a unique 
entry point and a last instruction at a unique exit point (Such 
as a jump, call or branch instruction). The kernel 32 may 
Select a group block comprising two or more basic blockS 
which are to be treated together as a single unit. Further, the 
front end 31 may form iso-blockS representing the same 
basic block of Subject code under different entry conditions. 
In use, a first predetermined section of the subject code 10 
is identified, Such as a basic block, and is translated by the 
translator 30 running on the target processor 22 in a trans 
lation mode. The target processor 22 then executes the 
corresponding optimized and translated block of target code 
2O. 

0031. The translator 30 includes a plurality of abstract 
registers 34, Suitably provided in the kernel 32, which 
represent the physical Subject registers 14 that would be 
used within the Subject processor 12 to execute the Subject 
code 10. The abstract registers 34 define the state of the 
Subject processor 12 being emulated by representing the 
expected effects of the Subject code instructions on the 
Subject processor registers. 

0032. A structure employing such an implementation is 
shown in FIG. 3. As shown, compiled native subject code is 
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shown residing in an appropriate computer memory Storage 
medium 100, the particular and alternative memory Storage 
mechanisms being well-known to those skilled in the art. 
The Software components include native Subject code to be 
translated, translator code, translated code, and an operating 
System. The translator code, i.e., the compiled version of the 
Source code implementing the translator, is similarly resi 
dent on an appropriate computer memory Storage medium 
102. The translator runs in conjunction with the memory 
stored operating system 104 Such as, for example, UNIX 
running on the target processor 106, typically a micropro 
ceSSor or other Suitable computer. It will be appreciated that 
the structure illustrated in FIG. 3 is exemplary only and that, 
for example, methods and processes according to the inven 
tion may be implemented in code residing with or beneath 
an operating System. The translated code is shown residing 
in an appropriate computer memory Storage medium 108. 
The Subject code, translator code, operating System, trans 
lated code and Storage mechanisms may be any of a wide 
variety of types, as known to those skilled in the art. 
0033. In a preferred embodiment of the present invention, 
program code conversion is performed dynamically, at run 
time, while the translated program is running in the target 
computing environment. The translator 30 runs inline with 
the translated program. The execution path of the translated 
program is a control loop comprising the Steps of executing 
translator code which translates a block of the Subject code 
into translated code, and then executing that block of trans 
lated code; the end of each block of translated code contains 
instructions to return control back to the translator code. In 
other words, the Steps of translating and then executing the 
Subject code are interlaced, Such that only portions of the 
Subject program are translated at a time. 
0034. The translator 30’s fundamental unit of translation 
is the basic block, meaning that the translator 30 translates 
the Subject code one basic block at a time. A basic block is 
formally defined as a Section of code with exactly one entry 
point and exactly one exit point, which limits the block code 
to a single control path. For this reason, basic blocks are the 
fundamental unit of control flow. 

0035) 
0036). In the process of generating translated code, inter 
mediate representation (“IR”) trees are generated based on 
the Subject instruction Sequence. IR trees comprise nodes 
that are abstract representations of the expressions calcu 
lated and operations performed by the Subject program. The 
translated code is then generated based on the IR trees. The 
collections of IR nodes described herein are colloquially 
referred to as “trees”. We note that, formally, such structures 
are in fact directed acyclic graphs (DAGs), not trees. The 
formal definition of a tree requires that each node have at 
most one parent. Because the embodiments described use 
common Subexpression elimination during IR generation, 
nodes will often have multiple parents. For example, the IR 
of a flag-affecting instruction result may be referred to by 
two abstract registers, those corresponding to the destination 
Subject register and the flag result parameter. 

Intermediate Representation (IR) Trees 

0037 For example, the subject instruction (add 7% r1, 9% 
r2, 9% r3) performs the addition of the contents of subject 
registers % r2 and % r3 and stores the result in subject 
register % r1. Thus, this instruction corresponds to the 
abstract expression “% r1=% r2+%3.”. This example con 
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tains a definition of the abstract register % r1 with an add 
expression containing two Subexpressions representing the 
instruction operands % r1 and % r2. In the context of a 
Subject program, these Subexpressions may correspond to 
other, prior Subject instructions, or they may represent 
details of the current instruction Such as immediate constant 
values. 

0038. When the “add” instruction is parsed, a new 'Y' IR 
node is generated, corresponding to the abstract mathemati 
cal operator for addition. The 'Y' IR node stores references 
to other IR nodes that represent the operands (held in Subject 
registers, represented as Subexpression trees). The Y node 
is itself referenced by the appropriate Subject register defi 
nition (the abstract register for % r1, the instruction's 
destination register). AS those skilled in the art may appre 
ciate, in one embodiment the translator is implemented 
using an object-oriented programming language Such as 
C++. For example, an IR node is implemented as a C++ 
object, and references to other nodes are implemented as 
C++ references to the C++ objects corresponding to those 
other nodes. An IR tree is therefore implemented as a 
collection of IR node objects, containing various references 
to each other. 

0039) Abstract Registers 
0040. Further, in the embodiment under discussion, IR 
generation uses a set of abstract registers 34. These abstract 
registers 34 correspond to specific features of the Subject 
architecture. For example, there is a unique abstract register 
34 for each physical register 14 on the Subject architecture 
12. Abstract registers 34 serve as placeholders for IR trees 
during IR generation. For example, the value of Subject 
register % r2 at a given point in the Subject instruction 
Sequence is represented by a particular IR expression tree, 
which is associated with the abstract register 34 for subject 
register % r2. In one embodiment, an abstract register 34 is 
implemented as a C++ object, which is associated with a 
particular IR tree via a C++ reference to the root node object 
of that tree. 

0041. In the example instruction sequence described 
above, the translator 30 has already generated IR trees 
corresponding to the values of % r2 and % r3 while parsing 
the subject instructions that precede the “add” instruction. In 
other words, the Subexpressions that calculate the values of 
% r2 and % r3 are already represented as IR trees. When 
generating the IR tree for the “add % r1, 9% r2, % r3 
instruction, the new 'Y' node contains references to the IR 
Subtrees for % r2 and % r3. 

0042. The implementation of the abstract registers 34 is 
divided between components in both the translator 30 and 
the translated code. In the context of the translator, an 
abstract register is a placeholder used in the course of IR 
generation, Such that the abstract register 34 is associated 
with the IR tree that calculates the value of the subject 
register 14 to which a particular abstract register 34 corre 
sponds. AS Such, abstract registers 34 in the translator may 
be implemented as a C++ object which contains a reference 
to an IR node object (i.e., an IR tree). In the context of the 
translated code, an abstract register 34 is a specific location 
within the abstract register Store, to and from which Subject 
register 14 values are Synchronized with the actual target 
registers 24. Alternatively, when a value has been loaded 
from the abstract register Store, an abstract register 34 in the 
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translated code could be understood to be the target register 
26 which temporarily holds a Subject register value during 
the execution of the translated code, prior to being Saved 
back to the register Store. 
0.043 An example of program translation as described is 
illustrated in FIG. 4. FIG. 4 shows the translation of two 
basic block of x86 instructions, and the corresponding IR 
trees that are generated in the process of translation. The left 
side of FIG. 4 shows the execution path of the emulator 
during translation. The translator 30 translates 151 a first 
basic block of subject code 153 into target code and then 
executes 155 that target code. When the target code finishes 
execution, control is returned to the emulator 157. The 
translator 30 then translates 157 the next basic block of 
subject code 159 into target code and executes 161 that 
target code, and So on. 
0044) In the course of translating 151 the first basic block 
of subject code 153 into target code, the translator 30 
generates an IR tree 163 based on that basic block. In this 
case, the IR tree 163 is generated from the Source instruction 
“add%eex, %edx,” which is a flag-affecting instruction. In 
the course of generating the IR tree 163, four abstract 
registers are defined by this instruction: the destination 
Subject register %ecX 167, the first flag-affecting instruction 
parameter 169, the Second flag-affecting instruction param 
eter 171, and the flag-affecting instruction result 173. The, 
IR tree corresponding to the “add” instruction is simple a “Y” 
(arithmetic addition) operator 175, whose operands are the 
subject registers %ecx 177 and %edx 179. 
004.5 Emulation of the first basic block puts the flags in 
a pending State by Storing the parameters and result of the 
flag-affecting instruction. The flag-affecting instruction is 
“add%ecx, %edx.” The parameters of the instruction are the 
current values of emulated subject registers %ecx 177 and 
%edx 179. The “G” symbol preceding the subject register 
uses 177, 179 indicate that the values of the Subject registers 
are retrieved from the global register Store, from the loca 
tions corresponding to %ecX and %edX, respectively, as 
these particular Subject registers were not previously loaded 
by the current basic block. These parameter values are then 
stored in the first 169 and second 171 flag parameter abstract 
registers. The result of the addition operation 175 is stored 
in the flag result abstract register 173. 
0046. After the IR tree is generated, the corresponding 
target code is generated based on the IR. The process of 
generating target code from a generic IR is well understood 
in the art. Target code is inserted at the end of the translated 
block to Save the abstract registers, including those for the 
flag result 173 and the flag parameters 169,171, to the global 
register Store. After the target code is generated, it is then 
executed 155. 

0047. In the course of translating 157 the second basic 
block of subject code 159, the translator 30 generates an IR 
tree 165 based on that basic block. The IR tree 165 is 
generated from the Source instruction “pushf,” which is a 
flag-using instruction. The Semantics of the “pushf instruc 
tion are to Store the values of all condition flags onto the 
Stack, which requires that each flag be explicitly calculated. 
AS Such, the abstract registers corresponding to four condi 
tion flag Values are defined during IR generation: the Zero 
flag ("ZF") 181, the sign flag (“S17”) 183, the carry flag 
(“CF”) 185, and the overflow flag (“OF”) 187. Node 195 is 
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the arithmetic comparison operator “unsigned less-than.” 
The calculation of the condition flags is based on informa 
tion from the prior flag-affecting instruction, which in this 
case is the "add 76ecX, 76edx' instruction from the first basic 
block 153. The IR calculating the condition flag values 165 
is based on the result 189 and parameters 191, 193 of the 
flag-affecting instruction. AS above, the “1” symbol preced 
ing the flag parameter labels indicates that the emulator 
inserts target code to load those values from the global 
register Store prior to their use. 
0048 Thus, the second basic block forces the flag values 
to be normalized. After the flag Values are calculated and 
used (by the target code emulating the “pushf instruction), 
they will be stored into the global register store. Simulta 
neously, the pending flag abstract registers (parameters and 
result) are put into an undefined State to reflect the fact that 
the flag values are Stores explicitly (i.e., the flags have been 
normalized). 
0049 FIG. 5 shows the translator 30 formed in accor 
dance with a preferred embodiment of the present invention 
capable of generating Several different types of IR nodes that 
may be used in translation as well as illustrating how the 
implementations of those different types of IR nodes are 
distributed between the frontend 31, kernel32, and backend 
33 components of the translator 30. The term “realize” refers 
to IR generation, which is performed in the frontend 31 as 
Subject instructions of the Subject code 10 are decoded (i.e., 
parsed). The term "plant” refers to target code generation, 
which is performed in the backend 33. 
0050. Note that while the translation process is described 
below in terms of a single Subject instruction, these opera 
tions actually take place for an entire basic block of Subject 
instructions at once as described above. In other words, the 
entire basic block is initially decoded to generate an IR 
forest, then the kernel 32 applies optimizations to the whole 
IR forest. Lastly, the backend 33 performs target code 
generation for the optimized IR forest one node at a time. 
0051 When generating an IR forest for a basic block, the 
translator 30 may generate either base nodes, complex 
nodes, polymorphic nodes, or architecture Specific nodes 
(ASN), or any combination thereof, depending upon the 
desired translator performance and the particular architec 
tures of the Source processor and target processor pairing. 
0.052 Base Nodes 
0053 Base nodes are abstract representations of the 
Semantics (i.e., the expressions, calculations, and opera 
tions) of any Subject architecture and provide the minimal 
Set of Standard or basic nodes needed to represent the 
Semantics of the Subject architecture. AS Such, base nodes 
provide simple Reduced Instruction Set Computer (RISC)- 
like functionality, Such as, for instance, an “add’’ operation. 
In contrast to other types of nodes, each base node is 
irreducible, meaning that it cannot be broken down any 
further into other IR nodes. Due to their simplicity, base 
nodes are also easily translated by the translator 30 into 
target instructions on all backends 33 (i.e., target architec 
tures). 
0054 When utilizing only base IR nodes, the translation 
process takes place entirely at the top portion of FIG. 5 (i.e., 
paths traveling through the “Base IR” block 204). The 
front-end 31 decodes a subject instruction from the subject 
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program code 10 in decode block 200, and realizes (gener 
ates) in realize block 202 a corresponding IR tree made of 
base nodes. The IR tree is then passed from the front-end 31 
to the Base IR block 204 in kernel 32, where optimizations 
are applied to an entire IR forest. As the IR forest optimized 
by the Base IR block 204 consists only of base nodes, it is 
entirely generic to any processor architecture. The optimized 
IR forest is then passed from the Base IR block 204 in the 
kernel 32 to the backend 33, which plants (generates) 
corresponding target code instructions for each IR node in 
Plant block 206. The target code instructions are then 
encoded by encode block 208 for execution by the target 
processor. 

0.055 As noted above, base nodes are easily translated 
into target instructions on all backbends 33, and the trans 
lated code can typically be generated entirely through exclu 
sive utilization of base nodes. While the exclusive use of 
base nodes is very quick to implement for the translator 30, 
it yields Suboptimal performance in the translated code. In 
order to increase the performance of the translated code, the 
translator 30 can be specialized to exploit features of the 
target processor architecture by using alternative types of IR 
nodes, Such as complex nodes, polymorphic nodes, and 
architecture-specific nodes (ASNs). 
0056 Complex Nodes 
0057 Complex nodes are generic nodes that represent the 
Semantics of a Subject architecture in a more compact 
representation than base nodes. Complex nodes provide a 
“Complex Instruction Set Computer (CISC)-like” function 
ality Such as "add imm” (add register and immediate con 
Stant), for example. Specifically, complex nodes typically 
represent instructions with immediate constant fields. Imme 
diate-type instructions are instructions in which a constant 
operand value is encoded into the instruction itself in an 
“immediate” field. For constant values that are small enough 
to fit into immediate fields, Such instructions avoid the use 
of one register to hold the constant. For complex instruc 
tions, complex nodes can represent the Semantics of the 
complex instructions with much fewer nodes than equivalent 
base node representations characterizing the same Seman 
tics. While compleX nodes can essentially be decomposed 
into base node representations having the same Semantics, 
complex nodes are useful in preserving the Semantics of 
immediate-type instructions in a single IR node, thus 
improving the performance of the translator 30. Further 
more, in Some situations, the Semantics of the complex 
instructions would be lost by representing the complex 
instructions in terms of base nodes, and complex nodes thus 
essentially augment the base node Set to include IR nodes for 
Such “CISC-like' instructions. 

0.058 With reference to FIG. 6, an example of the 
efficiency achieved by using a complex node as compared to 
that of base nodes will now be described. For example, the 
Semantics of the MIPS add-immediate instruction “addi r1,it 
10” adds ten to the value held in register r1. Rather than 
loading the constant value (10) into a register and then 
adding two registers, the addi instruction Simply encodes the 
constant value 10 directly into the instruction field itself, 
thus avoiding the need to use a Second register. When 
generating an intermediate representation of these Semantics 
Strictly using base nodes, the base node representation for 
this instruction would first load the constant value 10 from 

Nov. 4, 2004 

the const(#10) node 60 into a register node r(x) 61, and then 
perform an addition of the register node r162 and register 
node r(x) 61 using add node 63. The complex node repre 
sentation consists of a single “add to immediate” IR node 70 
containing the constant value 10 at portion 72 of the node 70 
and a reference to register r174. In the base node Scenario, 
the backend 33 would need to perform idiom recognition 
capable of recognizing a four node pattern, shown in FIG. 
6, in order to recognize and generate an "add to immediate' 
target instruction. In the absence of idiom recognition, the 
backend 33 would emit an extra instruction to load the 
constant value 10 into a register prior to performing a 
register-register addition. 

0059 Complex nodes reduce the need for idiom recog 
nition in the backend 33, because complex nodes contain 
more Semantic information than their base node equivalents. 
Specifically, complex nodes avoid the need for backend 33 
idiom recognition of constant operands. By comparison, if 
an immediate type Subject instruction were decomposed into 
base nodes (and the target architecture also contained imme 
diate type instructions), then the translator 30 would either 
need expensive backend 33 idiom recognition to identify the 
multiple node cluster as an immediate instruction candidate, 
or generate inefficient target code (i.e., more instructions 
than necessary, using more target registers than necessary. In 
other words, by utilizing base nodes alone, performance is 
lost either in the translator 30 (through idiom recognition) or 
the translated code (through extra generated code without 
idiom recognition). More generally, because complex nodes 
are a more compact representation of Semantic information, 
they reduce the number of IR nodes that the translator 30 
must create, traverse, and delete. 

0060 Immediate type instructions are common to many 
architectures. Therefore, complex nodes are generic in that 
they are reusable acroSS a range of architectures. However, 
not every complex node is present in the IR node Set of every 
translator. Certain generic features of the translator are 
configurable, meaning that when a translator is being com 
piled for a particular pair of Source and target architectures, 
features that do not apply to that translator configuration can 
be excluded from compilation. For example, in a MIPS 
MIPS (MIPS to MIPS) translator, complex nodes that do not 
match the semantics of any MIPS instructions are excluded 
from the IR node set because they would never be utilized. 
0061 Complex nodes can further improve the perfor 
mance of the target code generated using an in order 
traversal. In order traversal is one of several alternative IR 
traversal algorithms that determines the order in which IR 
nodes within an IR tree are generated into target code. 
Specifically, in order traversal generates each IR node as it 
is first traversed, which precludes backend 33 idiom recog 
nition due to the absence of a separate optimization pass 
over the entire IR tree. Complex nodes represent more 
Semantic information per node than base nodes, and thus 
Some of the work of idiom recognition is implicit within the 
complex nodes themselves. This allows the translator 30 to 
use in order traversal without Suffering much of a penalty in 
target code performance as it would with base nodes alone. 

0062) When the translator 30 generates complex nodes 
(i.e., the paths traveling through the Complex IR block 210 
in FIG. 5), the translation process is similar to the translation 
process described above for the base nodes. The only 
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difference is that Subject instructions that match the Seman 
tics of a complex node are realized as complex nodes in 
Realize block 202 rather than base nodes (as illustrated by 
the dotted line separating Realize block 202). Complex 
nodes are Still generic acroSS a wide range of architectures, 
which enables the kernel 32 optimizations to still apply to 
the entire IR forest. Furthermore, target code generation for 
complex nodes on CISC type target architectures may be 
more efficient than the base node equivalents. 
0063 Polymorphic Nodes 
0064. A preferred embodiment of the translator 30 as 
illustrated in FIG. 5 may further utilize polymorphic inter 
mediate representation. Polymorphic intermediate represen 
tation is a mechanism by which the backend 33 can provide 
Specialized code generation to efficiently utilize target archi 
tecture features for Specific, performance critical Subject 
instructions. The polymorphic mechanism is implemented 
as a generic polymorphic node which contains a function 
pointer to a backend 33 code generation function. Each 
function pointer is specialized to a particular Subject instruc 
tion. This polymorphic mechanism preempts the Standard 
frontend 31 IR generation mechanism, which would other 
wise decode the Subject instruction into base or complex 
nodes. Without the polymorphic mechanism, the generation 
of those base nodes would, in the backend 33, either result 
in Suboptimal target code or require expensive idiom rec 
ognition to reconstruct the Semantics of the Subject instruc 
tion. 

0065. Each polymorphic function is specific to a particu 
lar Subject instruction and target architecture function pair 
ing. Polymorphic nodes expose minimal information about 
their function to the kernel 32. Polymorphic nodes are able 
to take part in normal kernel 32 optimizations, Such as 
expression sharing and expression folding. The kernel 32 
can use the function pointer to determine if two polymorphic 
nodes are the same. Polymorphic nodes do not retain any 
Semantic information of the Subject instruction, but Such 
Semantic information can be inferred from the function 
pointer. 

0.066 Polymorphic nodes are used for subject instruc 
tions, which can be expressed by a Series of carefully chosen 
target instructions, removing the need for the kernel 32 to 
determine the best target instructions are run-time. When 
polymorphic nodes are not realized by the frontend 31 which 
uses bases nodes, the kernel 32 may choose to realize these 
nodes as polymorphic nodes. 

0067 Furthermore, polymorphic nodes can contain reg 
ister allocation hints. AS the target instructions are known, 
the respective registers that may be required on CISC 
architectures may also be known. Polymorphic nodes allow 
their operand and results to appear in registers chosen at the 
time of IR construction. 

0068. In order for the translator 30 to utilize polymorphic 
nodes (i.e., the path traveling through polymorphic IR block 
212 in FIG. 5), the backend 33 provides a list of subject 
instruction target function pointer pairs to the frontend 31. 
Subject instructions that are on the provided list are realized 
as polymorphic nodes containing the corresponding backend 
33 function pointer. Subject instructions that are not on the 
list are realized as complex or base IR trees as discussed 
above. In FIG. 5, the path reflected by the arrow 214 from 
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the backend 33 to the frontend 31 shows the list of subject 
instruction target function pointer pairs being provided to 
the realize block 215 at the frontend 31. While the frontend 
31 performs realization in the realize block 215 (i.e., map 
ping of Subject instructions to IR nodes), the process is 
modified by information received from the backend 33 
through path 214. 
0069. In the polymorphic IR block 212 of the kernel32, 
polymorphic nodes can Still participate in generic optimiza 
tions, because the kernel 32 can infer their Semantics from 
the function pointers in each node. In the backend 33, the 
target function pointers which point to target code genera 
tion functions are simply dereferenced and executed. This 
Situation is different from the base node and complex node 
cases where the backend 33 maps particular IR nodes to 
particular code generation functions. With polymorphic 
nodes, the polymorphic function is encoded directly in the 
node itself, So that the backend 33 performs less computa 
tion. In FIG. 5, this difference is shown by the fact that the 
polymorphic plant block 216 is contiguous with both the 
polymorphic IR block 212 and the backend 33(i.e., no 
arrows designating nontrivial computations are shown 
between the polymorphic IR block 212 and the polymorphic 
plant block 216). 

EXAMPLE 1. 

0070 Polymorphic IR Example 
0071 To illustrate the process of optimizing the translator 
30 for utilizing polymorphic nodes in the IR, the following 
example describes the translation of a PPC (PowerPC 
“SHL64” instruction (left shift, 64bit) required in a PPC P4 
(PowerPC to Pentium4) translator using first base nodes and 
then polymorphic nodes. 
0072 Without optimizing the translator for the imple 
mentation of polymorphic nodes, the translation of the PPC 
SHL64 instruction would use only base nodes: 

0.073 PPC SHL64=>Base IR multiple nodes=>P4 
multiple instructions 

0074 The frontend decoder 200 of an unoptimized trans 
lator decodes the current block and encounters the PPC 
SHL64 instruction. Next, the frontend realize block 202 
instructs the kernel 32 to construct an IR consisting of 
multiple base nodes. Then the kernel 32 optimizes the IR 
forest (generated from the current block of instructions) and 
performs an ordering traversal to determine the order of 
code generation in Base IR block 204. Next, the kernel 32 
performs code generation for each IR node in order, instruct 
ing the backend 33 to plant appropriate RISC type instruc 
tions. Finally, the backend 33 plants code in plant block 206 
and encodes each RISC type instruction with one or more 
target architecture instructions in encode block 208. 
0075) When optimized for a specific target architecture 
by specialization of the frontend 31 and backend 33 for 
performance critical instructions: 

0.076 PPC SHL64>Poly IR single node >P4 single/ 
few instructions 

0077. The frontend decoder 200 of the optimized trans 
lator 30 decodes the current block and encounters the PPC 
SHL6instruction. Next, the frontend realize block 202 
instructs the kernel 32 to construct an IR consisting of a 
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Single polymorphic IR node. When the Single polymorphic 
node is created, the backend 33 knows that the shift operand 
of SHL6must be in a specific register (%ecx on P4). This 
requirement is encoded in the polymorphic node. Then the 
kernel 32 optimizes the IR forest for current block and 
performs an ordering traversal to fix the code generation 
order in the polymorphic IR block 212. Next, the kernel 32 
performs code generation for each node, instructing the 
backend 33 to plant appropriate RISC type instructions. 
During code generation, however, polymorphic nodes are 
treated differently than base nodes. Each polymorphic node 
causes the invocation of a specialized code generator func 
tion which resides in the backend 33. The backend 33 
Specialized code generator function plants code in plant 
block 216 and encodes each Subject architecture instruction 
with one or more target architecture instructions in encode 
block 208. During register allocation in the generation 
phase, the Specific register information is used to allocate the 
correct register. This reduces the computation performed by 
the backend 33 which would be required if unsuitable 
registers had been allocated. This code generation may 
involve register allocation for temporary registers. 

EXAMPLE 2 

0078. Difficult Instructions 
0079 The following example illustrates the translation 
and optimization of the PPC MFFS instruction (move 32 bit 
FPU control register to 64 bit general FPU register) which 
would be performed by the translator 30 of the present 
invention. This Subject instruction is too complex to be 
represented by base nodes. 
0080. In the unoptimized case, this instruction would be 
translated using a Substitute function. Substitute functions 
are explicit translations for Special cases of Subject instruc 
tions that are particularly difficult to translate using the 
Standard translation Scheme. Substitute function translations 
are implemented as target code functions that perform the 
Semantics of the Subject instruction. They incur a much 
higher execution cost than the Standard IR instruction based 
translation Scheme. The unoptimized translation Scheme for 
this instruction is thus: 

0081 PPC MFFS instruction=>Base IR substitute 
function=>P4 Substitute function 

0082 In a translator 30 using polymorphic IR, such 
Special case instructions are translated using a polymorphic 
node. The polymorphic node's function pointer provides a 
more efficient mechanism for the backend 33 to supply a 
custom translation of the difficult subject instruction. The 
optimized translation Scheme for the same instruction is 
thus: 

0.083 PPC MFFS instruction=>single Polymorphic 
IR node=>P4 SSE2 instructions 

0084 Architecture Specific Nodes 
0085. In another preferred embodiment of the translator 
30 of the present invention, the translator 30 may utilize 
architecture specific nodes (ASNs), as shown in FIG. 5, 
which are specific to particular architectures (i.e., a particu 
lar Source architecture target architecture combination). 
Each architecture specific node (ASN) is specifically tai 
lored to a particular instruction, thus rendering ASNS Spe 
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cific to particular architectures. When utilizing the ASN 
mechanism, architecture Specific optimizations can be 
implemented which comprehend the ASNs semantics and 
can therefore operate on the ASNs. 
0086) IR nodes may contain up to three components: a 
data component, an implementation component, and a con 
version component. The data component holds any Semantic 
information which is not inherent in the node itself (e.g., the 
value of a constant immediate instruction field). The imple 
mentation component performs code generation, and, there 
fore, is specifically related to a particular architecture. The 
conversion component converts the node into IR nodes of a 
different type, either ASN nodes or base nodes. In a given 
implementation of the present invention in a translator, each 
base node and ASN in the generated IR contains either a 
conversion component or an implementation component, 
but not both. 

0087 Each base node has an implementation component 
which is specific to the target architecture. Base nodes do not 
have conversion components, because base nodes encode 
the least possible amount of Semantic information in the IR 
node hierarchy, thus converting base nodes into other types 
of IR nodes would not provide any benefit. Any such 
conversion of base nodes into other types of IR nodes would 
require the recollection of Semantic information through 
idiom recognition. 
0088. The implementation component of an ASN is spe 
cific to the nodes architecture, Such that it generates an 
architecture Specific instruction corresponding to that ASK 
For example, the implementation component of a MIPS 
Load ASN generates a MIPS “Id” (load) instruction. When 
using the translator of the present invention with the same 
Subject and target architectures (i.e., as an accelerator), 
Subject ASNS will possess implementation components. 
When utilizing the translator with different subject and 
target architectures, Subject ASNS will have conversion 
components. 

0089 For example, FIG. 7 illustrates the ASN for a 
MIPS instruction when using an embodiment of the present 
invention in a MIPS-MIPS accelerator. The frontend 31 
decodes the MIPS “addi” (add immediate) instruction 701 
and generates an IR to include the corresponding ASN, 
MIPS ADDI 703. The subject and target architectures are 
the same for an accelerator, and thus the conversion com 
ponent “CVT'707 is undefined. The implementation com 
ponent “IMPL 705 is defined to generate the same MIPS 
“addi’ instruction 709, Subject to register allocation differ 
ences in the code generation pass. 

0090 FIG. 8 illustrates the ASNs in the IR for the same 
MIPS instruction when using an embodiment of the present 
invention in a MIPS X86 translator. The frontend 31 decodes 
the MIPS “addi” subject instruction and generates a corre 
sponding subject ASN, MIPS ADDI 801. The source and 
target architectures are different for this translator, and the 
implementation component 803 of the subject ASN 801 is 
thus undefined. The conversion component 805 of the MIPS 
ADDI is a specialized conversion component, which con 
verts the subject ASN 801 into a target ASN 807. By 
comparison, a generic conversion component would convert 
the subject ASN 801 into a base node representation. The 
target ASN representation of the MIPSADDI node 801 is a 
single X86 ADDI node 807. The conversion component 811 



US 2004/0221277 A1 

of the target ASN 807 is undefined. The implementation 
component 809 of the target ASN 807 generates the a target 
instruction 813, in this case the X86 instruction “ADD 
SEAX, #10.” 

0091) When the translator 30 is utilizing ASNs, all sub 
ject instructions are realized as Subject Specific ASNS. In 
FIG. 5, the fact that the frontend decode block 200, the ASN 
realize block 218, and the subject ASN block 220 are 
contiguous with each other represents the fact that the ASNs 
are defined by the frontend 31 and that realization is trivial, 
because there is a one to one relationship between Subject 
instruction types and subject ASNs types. The frontend 31 
contains Subject Specific optimizations which understand the 
Semantics of, and can operate on, Subject ASNS. In other 
words, the Subject code is initially realized as an IR forest 
consisting entirely of Subject ASNS, to which Subject Spe 
cific optimizations are then applied. 
0092. By default, a subject ASN has a generic conversion 
component which generates an IR tree of base nodes. This 
allows Support for a new Subject architecture to be imple 
mented quickly using generic IR nodes. Subject ASNS are 
realized as base nodes through the path extending through 
the ASN Base IR block 222 and plant block 206 in FIG. 5, 
which are translated into target code in a similar manner to 
other base nodes as described in detail above. 

0.093 For subject instructions that are significant to per 
formance, the corresponding Subject ASN nodes provide 
specialized conversion components, which generate IR trees 
of target ASN nodes. Factors considered in whether to 
implement a specialized conversion component include (1) 
whether the target architectural features provide for particu 
larly efficient translation that would be lost in a base node 
translation and (2) whether a Subject instruction occurs with 
Such frequency that it has a Significant impact on perfor 
mance. These Specialized conversion components are spe 
cific to the Subject target architecture pair. Target ASNS 
(which by definition have the same architecture as the target) 
include implementation components. 
0094. When implementing the specialized conversion 
components, the corresponding Subject ASN nodes provide 
target Specialized conversion components which convert the 
subject ASNs into target ASNs through the target ASN block 
224. The target ASN's implementation component is then 
invoked to perform code generation in the target ASN plant 
block 226. Each target ASN corresponds to one particular 
target instruction, Such that the code generated from a target 
ASN is simply the corresponding target instruction that the 
ASN encodes. AS Such, code generation using target ASNS 
is computationally minimal (represented in reflected in FIG. 
5 by the illustration of the target ASN plant block 226 being 
contiguous with both the target ASN block 224 and the 
encode block 208 in the backend 33, with no arrows 
designating nontrivial computations being shown between 
these components). Furthermore, the IR traversal, conver 
Sion, and code generation processes are all controlled by the 
kernel 32. 

0.095 FIG. 9 illustrates the translation process performed 
in accordance with a preferred embodiment of the translator 
of the present invention that utilizes the ASN mechanism. In 
the frontend 31, the translator decodes the subject code 901 
in step 903 into subject ASNs 904. The translator performs 
subject specific optimizations in step 905 on the IR tree 
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made up of Subject ASNs. Each subject ASN 904 is then 
converted in step 907 into target compatible IR nodes (target 
ASNs 911) by invoking the subject ASN's conversion 
component. Subject ASN nodes which have generic conver 
Sion components by default are converted into base nodes 
909. Subject ASN nodes which have specialized conversion 
components, as provided by the backend 925, are converted 
into target ASN's 911. The conversion thus produces a mixed 
IR forest 913, containing both base nodes 909 and target 
ASNs 911. In the kernel 32, the translator performs generic 
optimizations in step 915 on the base nodes in mixed IR 
forest 913. The translator then performs target specific 
optimizations in step 916 on the target ASNs in the mixed IR 
forest 913. Finally, code generation invokes the implemen 
tation component of each node in the mixed tree (both base 
nodes and target ASN nodes have implementation compo 
nents) in step 917, which then generates target code 919. 

0096. In the special case of a code accelerator, the subject 
and target architectures are both the Same. In this Scenario, 
subject ASNs persist throughout translation. In the frontend 
31, decoding generates Subject ASNS from the Subject 
instructions. In the kernel 32, the subject ASNs are passed 
through architecture Specific optimizations. Code generation 
invokes the Subject ASNs implementation components to 
generate the corresponding instructions. AS Such, in a code 
accelerator the use of ASNS prevents code explosion, by 
ensuring a minimum Subject to target instruction conversion 
ratio of 1:1, which can be increased by optimizations. 

0097. The various embodiments of the translator of the 
present invention can be configured for Specific translator 
applications (i.e., particular Subject architecture target archi 
tecture pairs). AS Such, the translator of the present invention 
is configurable to convert Subject code designed to run on 
any Subject architecture to target code executable on any 
target architecture. AcroSS multiple translator applications, 
each base node has multiple implementation components, 
one for each Supported target architecture. The particular 
configuration being undertaken (i.e., conditional compila 
tion) determines which IR nodes and which components of 
those nodes to include in a particular translator application. 

0098. The use of ASNs in a preferred embodiment of the 
present invention provides a plurality of advantageous ben 
efits. First, a translator product built from Scratch can be 
developed quickly using generic IR implementations of 
Subject instructions. Second, existing translator products can 
be incrementally augmented, by implementing target spe 
cific conversion components for Subject instructions that are 
critical to performance (as known beforehand or as empiri 
cally determined). Third, as more translator products are 
developed, the library of ASN nodes (and implemented 
functionality) grows over time, so future translator products 
can be implemented or optimized quickly. 

0099. This embodiment of the present invention backend 
implementations to pick and choose which Subject instruc 
tions are worth optimizing (by defining target-specialized 
conversion components). The generic conversion compo 
nent allows an ASN-based translator to be developed 
quickly, while the Specialized conversion components 
allows performance critical instructions to be selectively and 
incrementally optimized. 
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EXAMPLE 3 

0100 Difficult Instructions. Using ASN 
0101 Returning to the PowerPC SHL6instruction of 
Example 2 above, the translator 30 using ASNs performs the 
following steps. The frontend decoder 200 decodes the 
current block and encounters the PowerPCSHL6instruction. 
The frontend 31 then realizes a single ASN for that instruc 
tion, SHL6PPC P4. The kernel32 then optimizes the IR for 
the current block of instructions and performs an ordering 
traversal of the IR in preparation for code generation. The 
kernel 32 then performs code generation for the ASN nodes 
by invoking each particular ASN node's code generator 
function, which is an element of the implementation com 
ponent. The backend 33 then encodes subject architecture 
(PPC) instructions into one or more target architecture (P4) 
instructions. 

01.02 MIPS Examples 
0103) Referring now to FIGS. 10, 11 and 12, examples 
illustrating the different IR trees that are generated from the 
Same MIPS instruction Sequence using base IR nodes, 
MIPS-MIPS ASN IR nodes, and MIPS-X86 ASN IR nodes, 
respectively, are shown. The semantics of the example MIPS 
Subject instruction Sequence (load upper immediate, then 
bitwise-or immediate) is to load the 32 bit constant value 
OxI2345678 into subject register “all”. 
0104. In FIG. 10, the Binary Decoder 300 is a frontend 
31 component of the translator 30 which decodes (parses) 
the Subject code into individual Subject instructions. After 
the Subject instructions are decoded, they are realized as 
base nodes 302 and added to the working IR forest for the 
current block of instructions. The IR Manager 304 is the 
portion of the translator 30 that holds the working IR forest 
during IR generation. The IR Manager 304 consists of 
abstract registers and their associated IR trees (the roots of 
the IR forest are abstract registers). For example, in FIG. 10, 
the abstract register “a V3 06 is the root of an IR tree 308 
of five nodes, which is part of the current block's working 
IR forest. In a translator 30 implemented in C++, the IR 
Manager. 304 may be implemented as a C++ object that 
includes a set of abstract register objects (or references to IR 
node objects). 
0105 FIG. 10 illustrates an IR tree 308 generated by a 
MIPS to X86 translator using base nodes only. The MIPS 
LUI instruction 310 realizes a “SHL' (shift left) base node 

314 with two operand nodes 316 and 318, which in this case 
are both constants. The semantics of the MIPS LUI instruc 
tion 310 are to shift a constant value (OxI234) left by a 
constant number of bits (16). The MIPS ORI instruction 
312 realizes an “ORI” (bitwise or immediate) base node 
320 with two operand nodes 314 and 322, the result of the 
SHL node 314 and a constant value. The semantics of the 
MIPS ORI instruction 312 are to perform a bitwise-or of the 
existing register contents with a constant value (OX5678). 
0106. In an unoptimized code generator, the base nodes 
include no immediate-type operators other than load imme 
diate, So each constant node results in the generation of a 
load immediate instruction. The unoptimized base node 
translator therefore requires five RISC type operations (load, 
load, shift, load, or) for this Subject instructions sequence. 
Backend 33 idiom recognition can reduce this number from 
five to two, by coalescing the constant nodes with their 
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parent nodes, to generate immediate type target instructions 
(i.e., shift immediate and or immediate). This reduces the 
number of target instructions to two, but for an increased 
translation cost in performing the idiom recognition in the 
code generator. 

0107 Using complex nodes in the IR can realize imme 
diate type IR nodes, which eliminates the need to perform 
idiom recognition in the backend 33 and reduces the trans 
lation cost of the code generator. Complex nodes preserve 
more of the Semantics of the original Subject instructions, 
and, with fewer IR nodes being realized, the translation cost 
of node generation is also reduced when using complex 
nodes. 

0108 FIG. 11 illustrates the IR tree generated by a MIPS 
X86 (MIPS to X86) translator using ASNs. After the subject 
instructions are decoded by the binary decoder 300, they are 
realized as MIPS X86 ASN nodes 330, which are then 
added to the working IR forest for the current block. First, 
the MIPS X86 LUI ASN node is converted into an X86 
32-bit constant node 332 by the ASN's convert component. 
Second, the MIPS X86 ORI ASN node produces an X86 
ORI node which is immediately folded with the previous 
X86 constant node (constant folding), resulting in a single 
X8632-bit constant node 334. This node 334 is encoded into 
a single X86 load constant instruction, “mov %eax, SOX 
12345678. AS can be seen, ASN nodes result in fewer nodes 
than the base node example, thus reducing translation cost 
and providing better target code. 

0109 FIG. 12 illustrates an IR tree generated by a 
MIPS-MIPS translator (i.e., a MIPS accelerator) using 
ASNs. After the subject instructions 310, 312 are decoded 
by the binary decoder 300, they are realized as MIPS MIPS 
ASN nodes 340, which are then added to the working IR 
forest for the current block. Because the Source and target 
architectures are the same for the MIPS-MIPS translator, the 
MIPS MIPS LUI and MIPS MIPS ORI ASN nodes 340 
have null (undefined) convert components. AS Such, there is 
a direct correspondence between the Subject instructions and 
the final IR nodes used to generate code. This guarantees a 
1:1. Subject to target instruction translation ratio, even before 
any optimizations are applied. In other words, ASN nodes 
eliminate code explosion for Same-same translators (accel 
erators). ASN nodes also allow 16 bit constant nodes to be 
shared, which is useful for efficient translation of contiguous 
memory accesses on the MIPS platform. 

0110 Basic blocks of instructions are translated one 
Subject instruction at a time. Each Subject instruction results 
in the formation of (realizes) an IR tree. After the IR tree for 
a given instruction is created, it is then integrated into the 
working IR forest for the current block. The roots of the 
working IR forest are abstract registers, which correspond to 
the Subject registers and other features of the Subject archi 
tecture. When the last Subject instruction has been decoded, 
realized, and its IR tree integrated with the working IR 
forest, the IR forest for that block is complete. 

0111. In FIG. 12, the first subject instruction 310 is “lui 
al, OxI234'. The semantics of this instruction 310 are to load 
the constant value OxI234 into the upper 16 bits of subject 
register “al”342. This instruction 310 realizes a MIPS MI 
PS LUI node 344, with an immediate field constant value of 
OxI234. The translator adds this node to the working IR 
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forest by setting abstract register “al”342 (the destination 
register of the subject instruction) to point to the MIPS MI 
PS LUI IR node 344. 
0112) In the same example in FIG. 12, the second subject 
instruction 312 is 44orial, al, Ox5678”. The semantics of 
this instruction 312 are to perform a bitwise-or of the 
constant value Ox5678 with the current contents of subject 
register 4"al'342 and to store the result in Subject register 
4“al”346. This instruction 312 realizes a MIPS MIPS ORI 
node 348, with an immediate field constant value of 
Ox5678. The translator adds this node to the working IR 
forest by first setting the ORI node to point to the IR tree that 
is currently pointed to by abstract register “al'342 (the 
Source register of the Subject instruction), and then Setting 
the abstract register “al'346 (the destination, register of the 
subject instruction) to point to the ORI node 348. In other 
words, the existing “al' tree rooted with abstract register 342 
(i.e., the LUI node) becomes a subtree 350 of the ORI node 
348, and then the ORI node 348 becomes the new all tree. 
The old “al” tree (after LUI but before ORI) is rooted from 
abstract register 342 and shown as linked by line 345, while 
the current “all” tree (after ORI) is rooted from abstract 
register 346. 
0113 AS can be seen from the foregoing, an improved 
program code conversion apparatus formed in accordance 
with the present invention is configurable to any Subject and 
target processor architecture pairing while maintaining an 
optimal level of performance and balancing the Speed of 
translation with the efficiency of the translated target code. 
Moreover, depending upon the particular architectures of the 
Subject and target computing environments involved in the 
conversion, the program code conversion apparatus of the 
present invention, can be designed with a hybrid design of 
generic and Specific conversion features by utilizing a com 
bination of base nodes, complex nodes, polymorphic nodes, 
and architecture Specific nodes in its intermediate represen 
tation. 

0114. The different structures of the improved program 
code conversion apparatus of the present invention are 
described Separately in each of the above embodiments. 
However, it is the full intention of the inventors of the 
present invention that the Separate aspects of each embodi 
ment described herein may be combined with the other 
embodiments described herein. For instance, the translator 
formed in accordance with the present invention may com 
prise hybrid optimizations of various IR types. Those skilled 
in the art will appreciate that various adaptations and modi 
fications of the just-described preferred embodiment can be 
configured without departing from the Scope and Spirit of the 
invention. Therefore, it is to be understood that, within the 
Scope of the appended claims, the invention may be prac 
ticed other than as Specifically described herein. 

What is claimed: 
1. A method of generating an intermediate representation 

of program code, comprising the Steps of: 
decoding instructions in the program code; 

generating an intermediate representation (IR) of the 
decoded program code to include at least one type of IR 
nodes out of a plurality of possible types of IR nodes, 
and 
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determining which type of IR nodes to generate in the 
intermediate representation for each respective instruc 
tion in the decoded program code, 

wherein the IR nodes in the intermediate representation 
(IR) are abstract representations of the expressions, 
calculations, and operations performed by the program 
code. 

2. The method of claim 1, wherein the plurality of 
possible types of IR nodes 2 include base nodes and complex 
nodes. 

3. The method of claim 2, wherein base nodes represent 
the most basic Semantics of any Subject architecture running 
the program code, Such that the Semantics of base nodes 
cannot be decomposed into other nodes representing more 
Simple Semantics. 

4. The method of claim 3, wherein base nodes are generic 
acroSS a plurality of possible Subject architectures. 

5. The method of claim 3, wherein complex nodes provide 
a more compact representation of the Semantics of complex 
instructions in the program code than that of base node 
representations. 

6. The method of claim 5, wherein complex nodes rep 
resent immediate type instructions in which a constant 
operand value is encoded into the immediate type instruction 
itself in an immediate field. 

7. The method of claim 5, wherein a complex node may 
be decomposed into a plurality of base nodes to represent the 
same Semantics of an instruction in the decoded program 
code. 

8. The method of claim 5, wherein the program code is 
designed to be executed by a Subject architecture, the 
method further comprising the Step of generating complex 
nodes only for those features correspondingly configurable 
on the Subject architecture. 

9. The method of claim 2, wherein the plurality of 
possible types of IR nodes further include polymorphic 
nodes. 

10. The method of claim 9, wherein the program code is 
Subject code designed for execution on a Subject architecture 
and is dynamically translated into target code for execution 
on a target architecture, Said method further comprising: 

generating the intermediate representation to include 
polymorphic nodes, 

wherein polymorphic nodes contain a function pointer to 
a function of the target architecture Specific to a par 
ticular instruction in the Subject code. 

11. The method of claim 10, said method further com 
prising generating polymorphic nodes when the features of 
the target architecture would cause the Semantics of a 
particular Subject instruction to be lost if realized as base 
nodes. 

12. The method of claim 10, wherein each polymorphic 
node is specific to a combination of a particular instruction 
in the Subject code and a function of the target architecture. 

13. The method of claim 10, wherein said determining the 
type of IR nodes Step further comprises identifying an 
instruction in Subject code which corresponds an instruction 
on a list of polymorphic instructions to be realized as 
polymorphic nodes, and 
when a Subject instruction corresponds to an instruction 

on the list of polymorphic instructions, Said IR gener 
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ating Step generates polymorphic nodes only for those 
Subject instructions corresponding to those on the list of 
polymorphic instructions. 

14. The method of claim 1, wherein the plurality of 
possible types of IR nodes further include base nodes and 
architecture Specific nodes. 

15. The method of claim 14, wherein the program code is 
Subject code designed for execution on a Subject architecture 
and is dynamically translated into target code for execution 
on a target architecture, Said method further comprising: 

generating the intermediate representation to include 
architecture Specific nodes which are specific to a 
particular combination of a Subject architecture and a 
target architecture. 

16. The method of claim 15, the intermediate represen 
tation generating Step further comprising: 

initially representing all of the instructions in the Subject 
code as Subject architecture Specific nodes, where each 
Subject architecture specific node corresponds to a 
respective instruction in the Subject code, 

determining whether an instruction in the Subject code is 
one in which to provide a target architecture Specialized 
conversion function, 

converting Subject architecture Specific nodes into target 
architecture Specific nodes for those instructions deter 
mined to provide a target architecture specialized con 
version function; and 

generating base nodes from the remaining Subject archi 
tecture Specific nodes which are not identified as pro 
Viding a target architecture Specialized code generation 
function. 

17. The method of claim 16, further comprising generat 
ing corresponding target code from the target architecture 
Specific nodes which is Specialized for the target architec 
ture. 

18. The method of claim 15, further comprising generat 
ing corresponding target code from the base nodes which is 
not Specialized for the target architecture. 

19. A computer readable recording medium containing 
program code for performing the method of claim 1. 

20. A computer readable Storage medium having transla 
tor Software resident thereon in the form of computer 
readable code executable by a computer to perform the 
following Steps during translation of Subject program code 
to target program code: 

decoding instructions in the Subject program code, 
generating an intermediate representation (IR) of the 

decoded Subject program code to include at least one 
type of IR nodes out of a plurality of possible types of 
IR nodes; 

determining which type of IR nodes to generate in the 
intermediate representation for each respective instruc 
tion in the decoded Subject program code, 

wherein the IR nodes in the intermediate representation 
(IR) are abstract representations of the expressions, 
calculations, and operations performed by the program 
code; and 

generating target program code using the intermediate 
representation (IR). 
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21. The computer readable Storage medium of claim 20, 
wherein the plurality of possible types of IR nodes include 
base nodes and complex nodes. 

22. The computer readable Storage medium of claim 21, 
wherein base nodes represent the most basic Semantics of 
any Subject architecture running the program code, Such that 
the Semantics of base nodes cannot be decomposed into 
other nodes representing more Simple Semantics. 

23. The computer readable Storage medium of claim 22, 
wherein base nodes are generic acroSS a plurality of possible 
Subject architectures. 

24. The computer readable Storage medium of claim 22, 
wherein complex nodes provide a more compact represen 
tation of the Semantics of complex instructions in the 
program code than that of base node representations. 

25. The computer readable Storage medium of claim 24, 
wherein complex nodes represent immediate type instruc 
tions in which a constant operand value is encoded into the 
immediate type instruction itself in an immediate field. 

26. The computer readable Storage medium of claim 24, 
wherein a complex node may be decomposed into a plurality 
of base nodes to represent the same Semantics of an instruc 
tion in the decoded program code. 

27. The computer readable Storage medium of claim 24, 
wherein the Subject program code is designed to be executed 
by a Subject architecture, the method further comprising the 
Step of generating complex nodes only for those features 
correspondingly configurable on the Subject architecture. 

28. The computer readable storage medium of claim 21, 
wherein the, plurality of possible types of IR nodes further 
include polymorphic nodes. 

29. The computer readable storage medium of claim 28, 
wherein the Subject program code is designed for execution 
on a Subject architecture and is dynamically translated into 
target code for execution on a target architecture, Said 
translator Software further containing computer readable 
code executable by a computer to perform the following 
Steps: 

generating the intermediate representation to include 
polymorphic nodes, 

wherein polymorphic nodes contain a function pointer to 
a function of the target architecture Specific to a par 
ticular instruction in the Subject code. 

30. The computer readable storage medium of claim 29, 
Said translator Software further containing computer read 
able code executable by a computer to generate polymorphic 
nodes when the features of the target architecture would 
cause the Semantics of a particular Subject instruction to be 
lost if realized as base nodes. 

31. The computer readable storage medium of claim 29, 
wherein each polymorphic node is specific to a combination 
of a particular instruction in the Subject code and a function 
of the target architecture. 

32. The computer readable storage medium of claim 29, 
wherein Said computer readable code executable by a com 
puter for determining the type of IR nodes further: 

identifies an instruction in Subject code which corre 
sponds an instruction on a list of polymorphic instruc 
tions to be realized as polymorphic nodes, and 

when a Subject instruction corresponds to an instruction 
on the list of polymorphic instructions, generates poly 
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morphic nodes only for those Subject instructions cor 
responding to those on the list of polymorphic instruc 
tions. 

33. The computer readable storage medium of claim 20, 
wherein the plurality of possible types of IR nodes further 
include base nodes and architecture Specific nodes. 

34. The computer readable storage medium of claim 33, 
wherein the Subject program code is designed for execution 
on a Subject architecture and is dynamically translated into 
target code for execution on a target architecture, Said 
translator Software further containing computer readable 
code executable by a computer to perform the following 
Steps: 

generating the intermediate representation to include 
architecture Specific nodes which are specific to a 
particular combination of a Subject architecture and a 
target architecture. 

35. The computer readable storage medium of claim 34, 
Said translator Software further containing computer read 
able code executable by a computer to perform the following 
Steps: 

initially representing all of the instructions in the Subject 
code as Subject architecture-specific nodes, where each 
Subject architecture specific node corresponds to a 
respective instruction in the Subject code, 

determining whether an instruction in the Subject code is 
one in which to provide a target architecture specialized 
conversion function, 

converting Subject architecture Specific nodes into target 
architecture Specific nodes for those instructions deter 
mined to provide a target architecture specialized con 
version function; and 

generating base nodes from the remaining Subject archi 
tecture Specific nodes which are not identified as pro 
Viding a target architecture Specialized code generation 
14 function. 

36. The computer readable storage medium of claim 35, 
Said translator Software further containing computer read 
able code executable by a computer to generate correspond 
ing target code from the target architecture Specific nodes 
which is Specialized for the target architecture. 

37. The computer readable storage medium of claim 34, 
Said translator Software further containing computer read 
able code executable by a computer to generate correspond 
ing target code from the base nodes which is not specialized 
for the target architecture. 

38. A translator apparatus for use in a target computing 
environment having a processor and a memory coupled to 
the processor for translating Subject program code appro 
priate in a Subject computing environment to produce target 
program code appropriate to the target computing environ 
ment, the translator apparatus comprising: 

a decoding mechanism configured to decode instructions 
in the Subject program code; 

an intermediate representation generating mechanism 
configured to generate an intermediate representation 
(IR) of the decoded program code to include at least 
one type of IR nodes out of a plurality of possible types 
of IR nodes; and 
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an intermediate representation (IR) type determining 
mechanism configured to determine which type of IR 
nodes to generate in the intermediate representation for 
each respective instruction in the decoded program 
code, 

wherein the IR nodes in the intermediate representation 
(IR) are abstract representations of the expressions, 
calculations, and operations performed by the program 
code. 

39. The translator apparatus of claim 38, wherein the 
plurality of possible types of IR nodes include base nodes 
and complex nodes. 

40. The translator apparatus of claim 39, wherein base 
nodes represent the most basic Semantics of any Subject 
architecture running the program code, Such that the Seman 
tics of base nodes cannot be decomposed into other nodes 
representing more Simple Semantics. 

41. The translator apparatus of claim 40, wherein base 
nodes are generic acroSS a plurality of possible Subject 
architectures. 

42. The translator apparatus of claim 40, wherein complex 
nodes provide a more compact representation of the Seman 
tics of complex instructions in the program code than that of 
base node representations. 

43. The translator apparatus of claim 42, wherein complex 
nodes represent immediate type instructions in which a 
constant operand value is encoded into the immediate type 
instruction itself in an immediate field. 

44. The translator apparatus of claim 42, wherein a 
complex node may be decomposed into a plurality of base 
nodes to represent the same Semantics of an instruction in 
the decoded program code. 

45. The translator apparatus of claim 42, wherein the 
program code is designed to be executed by a Subject 
architecture, the intermediate representation generating 
mechanism further comprising a complex node generating 
mechanism for generating complex nodes only for those 
features correspondingly configurable on the Subject archi 
tecture. 

46. The translator apparatus of claim 39, wherein the 
plurality of possible types of IR nodes further include 
polymorphic nodes. 

47. The translator apparatus of claim 46, wherein the 
program code is Subject code designed for execution on a 
Subject architecture and is dynamically translated into target 
code for execution on a target architecture, the intermediate 
representation generating mechanism further comprising: 

a polymorphic node generating mechanism for generating 
the intermediate representation to include polymorphic 
nodes, 

wherein polymorphic nodes contain a function pointer to 
a function of the target architecture Specific to a par 
ticular instruction in the Subject code. 

48. The translator apparatus of claim 47, said polymor 
phic node generating mechanism generating polymorphic 
nodes when the features of the target architecture would 
cause the Semantics of a particular Subject instruction to be 
lost if realized as base nodes. 

49. The translator apparatus of claim 47, wherein each 
polymorphic node is specific to a combination of a particular 
instruction in the Subject code and a function of the target 
architecture. 
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50. The translator apparatus of claim 47, wherein said 
intermediate representation (IR) type determining mecha 
nism further comprises a polymorphic identification mecha 
nism for identifying an instruction in Subject code which 
corresponds an instruction on a list of polymorphic instruc 
tions to be realized as polymorphic nodes, and 
when a Subject instruction corresponds to an instruction 

on the list of polymorphic instructions, Said interme 
diate representation generating mechanism generates 
polymorphic nodes only for those Subject instructions 
corresponding to those on the list of polymorphic 
instructions. 

51. The translator apparatus of claim 38, wherein the 
plurality of possible types of IR nodes further include base 
nodes and architecture Specific nodes. 

52. The translator apparatus of claim 51, wherein the 
program code is Subject code designed for execution on a 
Subject architecture and is dynamically translated into target 
code for execution on a target architecture, Said intermediate 
representation generating mechanism further comprising: 

an architecture Specific node generating mechanism for 
generating the intermediate representation to include 
architecture Specific nodes which are specific to a 
particular combination of a Subject architecture and a 
target architecture. 

53. The translator apparatus of claim 52, the intermediate 
representation generating mechanism being configured to: 

initially represent all of the instructions in the Subject 
code as Subject architecture-specific nodes, where each 
Subject architecture specific node corresponds to a 
respective instruction in the Subject code, 

determine whether an instruction in the Subject code is 
one in which to provide a target architecture Specialized 
conversion function, 

convert Subject architecture Specific nodes into target 
architecture Specific nodes for those instructions deter 
mined to provide a target architecture specialized con 
version function; and 

generate base nodes from the remaining Subject architec 
ture Specific nodes which are not identified as providing 
a target architecture specialized code generation func 
tion. 

54. The translator apparatus of claim 53, further compris 
ing a Specialized target code generating mechanism for 
generating corresponding target code from the target archi 
tecture Specific nodes which is Specialized for the target 
architecture. 

55. The translator apparatus of claim 52, further compris 
ing a non Specialized target code generating mechanism for 
generating corresponding target code from the base nodes 
which is not specialized for the target architecture. 

56. The translator apparatus of claim 47, wherein said 
generated polymorphic nodes Specify the registers to be 
allocated during target code generation. 

57. The translator apparatus of claim 47, wherein said 
generated polymorphic nodes are utilized in generic kernel 
optimizations by inferring information from the function 
pointer in the polymorphic node which may otherwise be 
indeterminable from the polymorphic node. 

58. The translator apparatus of claim 50, wherein when a 
Subject instruction corresponds to an instruction on the list 
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of polymorphic instructions, Said intermediate representa 
tion generating mechanism generates either polymorphic 
nodes or base nodes for those Subject instructions corre 
sponding to those on the list of polymorphic instructions. 

59. The method of claim 10, wherein said generated 
polymorphic nodes Specify the registers to be allocated 
during target code generation. 

60. The method of claim 10, wherein said generated 
polymorphic nodes are utilized in generic kernel optimiza 
tions by inferring information from the function pointer in 
the polymorphic node which may otherwise be indetermin 
able from the polymorphic node. 

61. The method of claim 13, wherein when a subject 
instruction corresponds to an instruction on the list of 
polymorphic instructions, Said intermediate representation 
generating Step generates either polymorphic nodes or base 
nodes for those Subject instructions corresponding to those 
on the list of polymorphic instructions. 

62. The computer-readable Storage medium of claim 29, 
wherein Said generated polymorphic nodes Specify the reg 
isters to be allocated during target code generation. 

63. The computer-readable storage medium of claim 29, 
wherein Said generated polymorphic nodes are utilized in 
generic kernel optimizations by inferring information from 
the function pointer in the polymorphic node which may 
otherwise be indeterminable from the polymorphic node. 

64. The translator apparatus of claim 32, wherein said 
computer readable code executable by a computer for deter 
mining the type of IR nodes further, when a Subject instruc 
tion corresponds to an instruction on the list of polymorphic 
instructions, generates either polymorphic nodes or base 
nodes for those Subject instructions corresponding to those 
on the list of polymorphic instructions. 

65. A method of translating Subject program code capable 
of being executed on a Subject processor architecture to 
target program code capable of being executed on a target 
processing architecture using a translator configurable 
between a plurality of possible Subject/target processing 
architecture pairings, Said method comprising: 

Selecting a Subject processor architecture on which the 
Subject program code is designed to be executed from 
a plurality of possible Subject processor architectures, 

Selecting a target processor architecture on which the 
target program code is to be executed from a plurality 
of possible target processor architectures, and 

configuring a translator to translate the Subject program 
code to target program code using a pairing of the 
Selected Subject processor architecture and the Selected 
target processor architecture. 

66. The method of claim 65, further comprising translat 
ing the Subject program code to target program code 
dynamically at run-time while the target program code is 
being executed on the target processing architecture. 

67. The method of claim 65, further comprising: 
decoding instructions in the Subject program code; 
determining which types of intermediate representation 

(IR) nodes out of a plurality of possible types of IR 
nodes to utilize in an intermediate representation of the 
decoded program code for each respective instruction 
in the decoded program code based upon the particular 
translator configuration being undertaken based on the 
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pairing of the Selected Subject processor architecture 
and the Selected target processor architecture; and 

generating an intermediate representation (IR) of the 
decoded program code to include at least one type of IR 
nodes out of a plurality of possible types of IR nodes, 

wherein the IR nodes in the intermediate representation 
(IR) are abstract representations of the expressions, 
calculations, and operations performed by the program 
code. 

68. The method of claim 67, further comprising generat 
ing the intermediate representation (IR) to include a com 
bination of generic conversion features and Specific conver 
Sion features, wherein generic conversion features are 
capable of being implemented acroSS a plurality of possible 
processor architectures while Specific conversion features 
are capable of being implemented by a specific processor 
architecture. 

69. The method of claim 68, wherein the particular 
translator configuration being undertaken determines the 
respective combination of generic conversion features and 
Specific conversion features utilized. 

70. A computer readable Storage medium having transla 
tor Software resident thereon in the form of computer 
readable code executable by a computer for performing a 
method of translating Subject program code capable of being 
executed on a Subject processor architecture to target pro 
gram code capable of being executed on a target processing 
architecture using a translator configurable between a plu 
rality of possible Subject/target processing architecture pair 
ings, said method comprising: 

Selecting a Subject processor architecture on which the 
Subject program code was designed to be executed 
from a plurality of possible Subject processor architec 
tures, 

Selecting a target processor architecture on which the 
target program code is to be executed from a plurality 
of possible target processor architectures, and 

configuring a translator to translate the Subject program 
code to target program code using a pairing of the 
Selected Subject processor architecture and the Selected 
target processor architecture. 

71. The computer-readable storage medium of claim 70, 
Said translator Software further containing computer read 
able code executable by a computer to translate the Subject 
program code to target program code dynamically at run 
time while the target program code is being executed on the 
target processing architecture. 

72. The computer-readable storage medium of claim 70, 
Said translator Software further containing computer read 
able code executable by a computer to perform the following 
Steps: 

decoding instructions in the Subject program code, 
determining which types of intermediate representation 

(IR) nodes out of a plurality of possible types of IR 
nodes to utilize in an intermediate representation of the 
decoded program code for each respective instruction 
in the decoded program code based upon the particular 
translator configuration being undertaken based on the 
pairing of the Selected Subject processor architecture 
and the Selected target processor architecture; and 
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generating an intermediate representation (IR) of the 
decoded program code to include at least one type of IR 
nodes out of a plurality of possible types of IR nodes, 

wherein the IR nodes in the intermediate representation 
(IR) are abstract representations of the expressions, 
calculations, and operations performed by the program 
code. 

73. The computer-readable storage medium of claim 72, 
Said translator Software further containing computer read 
able code executable by a computer to generate the inter 
mediate representation (IR) to include a combination of 
generic conversion features and Specific conversion features, 
wherein generic conversion features are capable of being 
implemented acroSS a plurality of possible processor archi 
tectures while Specific conversion features are capable of 
being implemented by a specific processor architecture. 

74. The computer-readable storage medium of claim 73, 
wherein the particular translator configuration being under 
taken determines the respective combination of generic 
conversion features and Specific conversion features uti 
lized. 

75. A translator apparatus for use in a target computing 
environment having a processor and a memory coupled to 
the processor for translating Subject program code capable 
of being executed on a Subject processor architecture to 
target program code capable of being executed on the target 
processor architecture of the target computing environment 
using a translator configurable between a plurality of pos 
Sible Subject/target processing architecture pairings, the 
translator apparatus comprising: 

a Subject processor Selecting mechanism configured to 
Select a Subject processor architecture on which the 
Subject program code was designed to be executed 
from a plurality of possible Subject processor architec 
tures, 

a target processor Selecting mechanism configured to 
Select a target processor architecture on which the 
target program code is to be executed from a plurality 
of possible target processor architectures, and 

a configuration mechanism configured to configure a 
translator to translate the Subject program code to target 
program code using a pairing of the Selected Subject 
processor architecture and the Selected target processor 
architecture. 

76. The translator apparatus of claim 75, further compris 
ing a translation mechanism configured to translate the 
Subject program code to target program code dynamically at 
run-time while the target program code is being executed on 
the target processing architecture. 

77. The translator apparatus of claim 75, further compris 
ing: 

a decoding mechanism configured to decode instructions 
in the Subject program code; 

an intermediate representation (IR) type determining 
mechanism configured to determine which types of 
intermediate representation (IR) nodes out of a plurality 
of possible types of IR nodes to utilize in an interme 
diate representation of the decoded program code for 
each respective instruction in the decoded program 
code based upon the particular translator configuration 
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being undertaken based on the pairing of the Selected 
Subject processor architecture and the Selected target 
processor architecture, and 

an intermediate representation (IR) generating mecha 
nism configured to generate an intermediate represen 
tation (IR) of the decoded program code to include at 
least one type of IR nodes out of a plurality of possible 
types of IR nodes; 

wherein the IR nodes in the intermediate representation 
(IR) are abstract representations of the expressions, 
calculations, and operations performed by the program 
code. 

78. The translator apparatus of claim 77, wherein the 
intermediate representation (IR) generating mechanism is 
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further configured to generate the intermediate representa 
tion (IR) to include a combination of generic conversion 
features and Specific conversion features, wherein generic 
conversion features are capable of being implemented acroSS 
a plurality of possible processor architectures while specific 
conversion features are capable of being implemented by a 
Specific processor architecture. 

79. The translator apparatus of claim 78, wherein the 
particular translator configuration being undertaken deter 
mines the respective combination of generic conversion 
features and Specific conversion features utilized. 


