
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0221277 A1

Owen et al.

US 2004O221277A1

(43) Pub. Date: Nov. 4, 2004

(54) ARCHITECTURE FOR GENERATING
INTERMEDIATE REPRESENTATIONS FOR
PROGRAM CODE CONVERSION

(76)

(21)

(22)

Inventors: Daniel Owen, Macclesfield (GB);
Jonathan Jay Andrews, Greater
Manchester (GB); Miles Philip
Howson, Manchester (GB); David
Haikney, Manchester (GB)

Correspondence Address:
Bradley D. Blanche
Paul, Hastings, Janofsky & Walker LLP
12390 El Camino Real
San Diego, CA 92130-2081 (US)

Appl. No.: 10/730,817

Filed: Dec. 8, 2003

909
N

Base
Nodes

Subject ASNs

Subject
Optimizations

Subject ASNs
Conversion

Mixed IR
GENERIC

OPTIMIZATIONS

TARGET
OPTIMIZATIONS

Mixed IR

IMPLEMENTATION
Target Code

Target Code

Subject Code

Subject Code

(30) Foreign Application Priority Data

Nov. 13, 2003 (GB).. O3 26437.1
May 2, 2003 (GB).. O3 10180.5

Publication Classification

(51) Int. Cl. ... G06F 9/45
(52) U.S. Cl. .. 717/138; 717/152
(57) ABSTRACT
An improved architecture for a program code conversion
apparatus and method for generating intermediate represen
tations for program code conversion. The program code
conversion apparatus determines which types of IR nodes to
generate in an intermediate representation of Subject code to
be translated. Depending upon the particular Subject and
target computing environments involved in the conversion,
the program code conversion apparatus utilizes either base
nodes, complex nodes, polymorphic nodes, and architecture
Specific nodes, or Some combination thereof, in generating
the intermediate representation.

901 N

903

> Frontend
904 3.

905

907

915 -
916

97 33

99

Sheet 1 of 11 US 2004/0221277 A1 Patent Application Publication Nov. 4, 2004

FIGURE 1

US 2004/0221277 Al Nov. 4, 2004 Sheet 2 of 11 Patent Application Publicatio

Patent Application Publication Nov. 4, 2004 Sheet 3 of 11 US 2004/0221277 A1

100 102 O8

Subject Translator Translated
Code Code

Operating System
(e.g., Unix) 104

Target Processor -
106

Figure 3

US 2004/0221277 Al 2004 Sheet 4 of 11 Patent Application Publication Nov. 4,

CCRS2ONNG
R. (ENg3-...sic

SSS ON 20 RNS

Patent Application Publication Nov. 4, 2004 Sheet 5 of 11 US 2004/0221277 A1

Frontend 31 , Kernel 32 Backend 33

O
Base IR

K

Complex IR
202

Patent Application Publication Nov. 4, 2004 Sheet 6 of 11 US 2004/0221277 A1

Instruction: addi r1, it 10

Base Node Representation Complex Node Representation

70

72

74.

FIG. 6

Patent Application Publication Nov. 4, 2004 Sheet 7 of 11 US 2004/0221277 A1

FIG. 7 MIPS-MIPS ACCELERATOR

“addi r1, r2, #10” -- 701

703

MIPS ADD1 Less “addi r1, r2, #10' 1.

FIG. 8 MIPS-X86 TRANSLATOR

“addi r1, r2, #10"

813

“ADD SEAX #10" 1

Patent Application Publication Nov. 4, 2004 Sheet 8 of 11 US 2004/0221277 A1

Subj ect Code

Subject Code

Subject ASNs

. Subject
Optimizations

Subject ASNs
C

901 FIG. 9

903

Frontend
904 31

905

909

Kernel
32

911

Mixed IR
Forest 913

Mixed IR

GENERIC
OPTIMIZATIONS 915

TARGET
OPTIMIZATIONS

Mixed IR

IMPLEMENTATION
Target Code

Target Code

916

Backend
917 33

919

Patent Application Publication Nov. 4, 2004 Sheet 9 of 11 US 2004/0221277 A1

Binary Decoder

lui all, OX1234
orial, al, 0x5678

Base IR Nodes
SHL

304

FIG. 10

Patent Application Publication Nov. 4, 2004 Sheet 10 of 11 US 2004/0221277 A1

300
Binary Decoder

310 lui a 1, 0x1234
312 orial, al., 0x5678

ASN Nodes.
MIPS X86 LUI
MIPS X86 ORI

330

304

IR Manager

- A - \
/1 X86 N * Gisel)

FIG. 11

Patent Application Publication Nov. 4, 2004 Sheet 11 of 11 US 2004/0221277 A1

300
Binary Decoder

310- luial, 0x1234
312- orial, a 1, 0x5678

ASN Nodes
MIPS MIPS LUI
MIPS MIPS ORI

304 - . . .
IR Manager

US 2004/0221277 A1

ARCHITECTURE FOR GENERATING
INTERMEDIATE REPRESENTATIONS FOR

PROGRAM CODE CONVERSION

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The subject invention relates generally to the field
of computers and computer Software and, more particularly,
to program code conversion methods and apparatus useful,
for example, in code translators, emulators and accelerators.
0003 2. Description of Related Art
0004 Across the embedded and non-embedded CPU
market, one finds predominant Instruction Set Architectures
(ISAS) for which large bodies of software exist that could be
“Accelerated” for performance, or “Translated” to a myriad
of capable processors that could present better cost/perfor
mance benefits, provided that they could transparently
access the relevant Software. One also finds dominant CPU
architectures that are locked in time to their ISA, and cannot
evolve in performance or market reach and would benefit
from “Synthetic CPU” co-architecture.
0005. It is often desired to run program code written for
a computer processor of Oa first type (a “Subject’ processor)
on a processor of a Second type (a "target” processor). Here,
an emulator or translator is used to perform program code
translation, Such that the Subject program is able to run on
the target processor. The emulator provides a virtual envi
ronment, as if the Subject program were running natively on
a Subject processor, by emulating the Subject processor.
0006. In the past, subject code is converted to an inter
mediate representation of a computer program during run
time translation using So-called base nodes, as described in
co-pending patent application entitled Program Code Con
version, U.S. patent application Ser. No. 09/827,971, in
connection with FIGS. 1 through 5 of this application.
Intermediate representation is a term widely used in the
computer industry to refer to forms of abstract computer
language in which a program may be expressed, but which
is not specific to, and is not intended to be directly executed
on, any particular processor. Program code conversion meth
ods and apparatus which facilitate Such acceleration, trans
lation and co-architecture capabilities utilizing intermediate
representations are, for example, addressed in the co-pend
ing patent application, U.S. application Ser. No. 09/827,971.

SUMMARY OF THE INVENTION

0007. The following is a summary of various aspects and
advantages realizable according to various embodiments of
the improved architecture for program code conversion
according to the present invention. It is provided as an
introduction to assist those skilled in the art to more rapidly
assimilate the detailed discussion of the invention that
ensues and does not and is not intended in any way to limit
the Scope of the claims that are appended hereto.
0008. The various embodiments described below relate
to improved architectures for a program code conversion
apparatus and an associated method for converting Subject
code executable in a Subject computing environment to
target code executable in a target computing environment.
The program code conversion apparatus creates an interme

Nov. 4, 2004

diate representation (IR) of the subject code which may then
be optimized for the target computing environment in order
to more efficiently generate the target code. Depending upon
the particular architectures of the Subject and target com
puting environments involved in the conversion, the pro
gram code conversion apparatus of one embodiment deter
mines which of the following types of IR nodes to generate
in the intermediate representation (IR): base nodes, complex
nodes, polymorphic nodes, and architecture-specific nodes.
The program code conversion architecture will by default
generate base nodes when creating the intermediate repre
Sentation, unless it is determined that another one of the
types of nodes would more applicable to the particular
conversion being effectuated.
0009 Base nodes provide a minimal set of nodes (i.e.,
abstract expressions) needed to represent the Semantics of
any Subject architecture running the Subject code, Such that
base nodes provide a RISC-like functionality. Complex
nodes are generic nodes that represent CISC-like Semantics
of a Subject architecture running the Subject code in a more
compact representation than base nodes. While all complex
nodes could be decomposed into base node representations
with the same Semantics, complex nodes preserve the
Semantics of complex instructions in a single IR node in
order to improve the performance of the translator. Complex
nodes essentially augment the set of base nodes for CISC
like instructions in the Subject code. Base nodes and com
pleX nodes are both generically used over a wide range of
possible Subject and target architectures, thus allowing
generic optimizations to be performed on the corresponding
IR trees comprised of base nodes and complex nodes.
0010. The program code conversion apparatus utilizes
polymorphic nodes in the intermediate representation when
the features of the target computing environment would
cause the Semantics of the particular Subject instruction to be
lost if realized as a generic IR node. The polymorphic nodes
contain a function pointer to a function of the target com
puting environment specific to a particular Subject instruc
tion in the Source code. The program code conversion
apparatus further utilizes architecture-specific nodes to pro
vide target-Specialized conversion components for perform
ing Specialized code generation functions for certain target
computing environments.
0011. The improved IR generation methods hereafter
described allow the program code conversion apparatus to
be configurable to any Subject and target processor archi
tecture pairing while maintaining an optimal level of per
formance and maximizing the Speed of translation.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The features of the present invention, which are
believed to be novel, are set forth with particularity in the
appended claims. The present invention, both as to its
organization and manner of operation, together with further
advantages, may best be understood by reference to the
following description, taken in connection with the accom
panying drawings in which the reference numerals designate
like parts throughout the figures thereof and wherein:
0013 FIG. 1 shows an example computing environment
including Subject and target computing environments,
0014 FIG.2 shows a preferred program code conversion
apparatus,

US 2004/0221277 A1

0.015 FIG. 3 is a schematic diagram of an illustrative
computing environment illustrating translation of Subject
code to target code,
0016 FIG. 4 is a schematic illustration of various inter
mediate representations realized by a program code conver
Sion apparatus in accordance with a preferred embodiment
of the present invention;
0017 FIG. 5 is a detailed schematic diagram of a pre
ferred program code conversion apparatus,
0.018 FIG. 6 shows example IR trees generated using
base nodes and complex nodes,
0.019 FIG. 7 is a schematic diagram illustrating an
example of ASN generation for implementation of the
present invention in an accelerator;
0020 FIG. 8 is a schematic diagram illustrating an
example of ASN generation for implementation of the
present invention in a translator;
0021 FIG. 9 is an operational flow diagram of the
translation proceSS when utilizing ASNS in accordance with
a preferred embodiment of the present invention;
0022 FIG. 10 is a schematic diagram illustrating an
example of a translation proceSS and corresponding IR
generated during the process,

0023 FIG. 11 is a schematic diagram illustrating another
example of a translation process and corresponding IR
generated during the process, and

0024 FIG. 12 is a schematic diagram illustrating a
further example of a translation proceSS and corresponding
IR generated during the process.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0.025 The following description is provided to enable any
person skilled in the art to make and use the invention and
sets forth the best modes contemplated by the inventors of
carrying out their invention. Various modifications, how
ever, will remain readily apparent to those skilled in the art,
Since the general principles of the present invention have
been defined herein Specifically to provide an improved
architecture for a program code conversion apparatus.
0.026 Referring to FIG. 1, an example computing envi
ronment is shown including a Subject computing environ
ment 1 and a target computing environment 2. In the Subject
environment 1, Subject code 10 is executable natively on a
Subject processor 12. The Subject processor 12 includes a Set
of Subject registers 14. Here, the subject code 10 may be
represented in any Suitable language with intermediate lay
ers (e.g., compilers) between the Subject code 10 and the
Subject processor 12, as will be familiar to a person skilled
in the art.

0027. It is desired to run the subject code 10 in the target
computing environment 2, which provides a target processor
22 using a set of target registers 24. These two processors 12
and 22 may be inherently non-compatible, Such that these
two processors use different instruction Sets. Hence, a pro
gram code conversion architecture 30 is provided in the
target computing environment 2, in order to run the Subject
code 10 in that non-compatible environment. The program

Nov. 4, 2004

code conversion architecture 30 may comprise a translator,
emulator, accelerator, or any other architecture Suitable for
converting program code designed for one processor type to
program code executable on another processor type. For the
purposes of the discussion of the present invention following
hereafter, the program code conversion architecture 30 will
be referred to as the “translator 30.’ It should be noted that
the two processors 12 and 22 may also be of the same
architecture type, Such as in the case of an accelerator.
0028. The translator 30 performs a translation process on
the subject code 10 and provides a translated target code 20
for execution by the target processor 22. Suitably, the
translator 30 performs binary translation, wherein subject
code 10 in the form of executable binary code appropriate to
the Subject processor 12 is translated into executable binary
code appropriate to the target processor 22. Translation can
be performed Statically or dynamically. In Static translation,
an entire program is translated prior to execution of the
translated program on the target processor. This involves a
significant delay. Therefore, the translator 30 preferably
dynamically translates Small Sections of the Subject code 10
for execution immediately on the target processor 22. This
is much more efficient, because large Sections of the Subject
code 10 may not be used in practice or may be used only
rarely.

0029) Referring now to FIG. 2, a preferred embodiment
of the translator 30 is illustrated in more detail, comprising
a front end 31, a kernel 32 and a back end 33. The front end
31 is configured Specific to the Subject processor 12 asso
ciated with the subject code. The front end 31 takes a
predetermined section of the subject code 10 and provides a
block of a generic intermediate representation (an “IR
block”). The kernel32 optimizes each IR block generated by
the front end 31 by employing optimization techniques, as
readily known to those skilled in the art. The back end 33
takes optimized IR blocks from the kernel 32 and produces
target code 20 executable by the target processor 22.
0030) Suitably, the front end 31 divides the subject code
10 into basic blocks, where each basic block is a sequential
Set of instructions between a first instruction at a unique
entry point and a last instruction at a unique exit point (Such
as a jump, call or branch instruction). The kernel 32 may
Select a group block comprising two or more basic blockS
which are to be treated together as a single unit. Further, the
front end 31 may form iso-blockS representing the same
basic block of Subject code under different entry conditions.
In use, a first predetermined section of the subject code 10
is identified, Such as a basic block, and is translated by the
translator 30 running on the target processor 22 in a trans
lation mode. The target processor 22 then executes the
corresponding optimized and translated block of target code
2O.

0031. The translator 30 includes a plurality of abstract
registers 34, Suitably provided in the kernel 32, which
represent the physical Subject registers 14 that would be
used within the Subject processor 12 to execute the Subject
code 10. The abstract registers 34 define the state of the
Subject processor 12 being emulated by representing the
expected effects of the Subject code instructions on the
Subject processor registers.

0032. A structure employing such an implementation is
shown in FIG. 3. As shown, compiled native subject code is

US 2004/0221277 A1

shown residing in an appropriate computer memory Storage
medium 100, the particular and alternative memory Storage
mechanisms being well-known to those skilled in the art.
The Software components include native Subject code to be
translated, translator code, translated code, and an operating
System. The translator code, i.e., the compiled version of the
Source code implementing the translator, is similarly resi
dent on an appropriate computer memory Storage medium
102. The translator runs in conjunction with the memory
stored operating system 104 Such as, for example, UNIX
running on the target processor 106, typically a micropro
ceSSor or other Suitable computer. It will be appreciated that
the structure illustrated in FIG. 3 is exemplary only and that,
for example, methods and processes according to the inven
tion may be implemented in code residing with or beneath
an operating System. The translated code is shown residing
in an appropriate computer memory Storage medium 108.
The Subject code, translator code, operating System, trans
lated code and Storage mechanisms may be any of a wide
variety of types, as known to those skilled in the art.
0033. In a preferred embodiment of the present invention,
program code conversion is performed dynamically, at run
time, while the translated program is running in the target
computing environment. The translator 30 runs inline with
the translated program. The execution path of the translated
program is a control loop comprising the Steps of executing
translator code which translates a block of the Subject code
into translated code, and then executing that block of trans
lated code; the end of each block of translated code contains
instructions to return control back to the translator code. In
other words, the Steps of translating and then executing the
Subject code are interlaced, Such that only portions of the
Subject program are translated at a time.
0034. The translator 30’s fundamental unit of translation
is the basic block, meaning that the translator 30 translates
the Subject code one basic block at a time. A basic block is
formally defined as a Section of code with exactly one entry
point and exactly one exit point, which limits the block code
to a single control path. For this reason, basic blocks are the
fundamental unit of control flow.

0035)
0036). In the process of generating translated code, inter
mediate representation (“IR”) trees are generated based on
the Subject instruction Sequence. IR trees comprise nodes
that are abstract representations of the expressions calcu
lated and operations performed by the Subject program. The
translated code is then generated based on the IR trees. The
collections of IR nodes described herein are colloquially
referred to as “trees”. We note that, formally, such structures
are in fact directed acyclic graphs (DAGs), not trees. The
formal definition of a tree requires that each node have at
most one parent. Because the embodiments described use
common Subexpression elimination during IR generation,
nodes will often have multiple parents. For example, the IR
of a flag-affecting instruction result may be referred to by
two abstract registers, those corresponding to the destination
Subject register and the flag result parameter.

Intermediate Representation (IR) Trees

0037 For example, the subject instruction (add 7% r1, 9%
r2, 9% r3) performs the addition of the contents of subject
registers % r2 and % r3 and stores the result in subject
register % r1. Thus, this instruction corresponds to the
abstract expression “% r1=% r2+%3.”. This example con

Nov. 4, 2004

tains a definition of the abstract register % r1 with an add
expression containing two Subexpressions representing the
instruction operands % r1 and % r2. In the context of a
Subject program, these Subexpressions may correspond to
other, prior Subject instructions, or they may represent
details of the current instruction Such as immediate constant
values.

0038. When the “add” instruction is parsed, a new 'Y' IR
node is generated, corresponding to the abstract mathemati
cal operator for addition. The 'Y' IR node stores references
to other IR nodes that represent the operands (held in Subject
registers, represented as Subexpression trees). The Y node
is itself referenced by the appropriate Subject register defi
nition (the abstract register for % r1, the instruction's
destination register). AS those skilled in the art may appre
ciate, in one embodiment the translator is implemented
using an object-oriented programming language Such as
C++. For example, an IR node is implemented as a C++
object, and references to other nodes are implemented as
C++ references to the C++ objects corresponding to those
other nodes. An IR tree is therefore implemented as a
collection of IR node objects, containing various references
to each other.

0039) Abstract Registers
0040. Further, in the embodiment under discussion, IR
generation uses a set of abstract registers 34. These abstract
registers 34 correspond to specific features of the Subject
architecture. For example, there is a unique abstract register
34 for each physical register 14 on the Subject architecture
12. Abstract registers 34 serve as placeholders for IR trees
during IR generation. For example, the value of Subject
register % r2 at a given point in the Subject instruction
Sequence is represented by a particular IR expression tree,
which is associated with the abstract register 34 for subject
register % r2. In one embodiment, an abstract register 34 is
implemented as a C++ object, which is associated with a
particular IR tree via a C++ reference to the root node object
of that tree.

0041. In the example instruction sequence described
above, the translator 30 has already generated IR trees
corresponding to the values of % r2 and % r3 while parsing
the subject instructions that precede the “add” instruction. In
other words, the Subexpressions that calculate the values of
% r2 and % r3 are already represented as IR trees. When
generating the IR tree for the “add % r1, 9% r2, % r3
instruction, the new 'Y' node contains references to the IR
Subtrees for % r2 and % r3.

0042. The implementation of the abstract registers 34 is
divided between components in both the translator 30 and
the translated code. In the context of the translator, an
abstract register is a placeholder used in the course of IR
generation, Such that the abstract register 34 is associated
with the IR tree that calculates the value of the subject
register 14 to which a particular abstract register 34 corre
sponds. AS Such, abstract registers 34 in the translator may
be implemented as a C++ object which contains a reference
to an IR node object (i.e., an IR tree). In the context of the
translated code, an abstract register 34 is a specific location
within the abstract register Store, to and from which Subject
register 14 values are Synchronized with the actual target
registers 24. Alternatively, when a value has been loaded
from the abstract register Store, an abstract register 34 in the

US 2004/0221277 A1

translated code could be understood to be the target register
26 which temporarily holds a Subject register value during
the execution of the translated code, prior to being Saved
back to the register Store.
0.043 An example of program translation as described is
illustrated in FIG. 4. FIG. 4 shows the translation of two
basic block of x86 instructions, and the corresponding IR
trees that are generated in the process of translation. The left
side of FIG. 4 shows the execution path of the emulator
during translation. The translator 30 translates 151 a first
basic block of subject code 153 into target code and then
executes 155 that target code. When the target code finishes
execution, control is returned to the emulator 157. The
translator 30 then translates 157 the next basic block of
subject code 159 into target code and executes 161 that
target code, and So on.
0044) In the course of translating 151 the first basic block
of subject code 153 into target code, the translator 30
generates an IR tree 163 based on that basic block. In this
case, the IR tree 163 is generated from the Source instruction
“add%eex, %edx,” which is a flag-affecting instruction. In
the course of generating the IR tree 163, four abstract
registers are defined by this instruction: the destination
Subject register %ecX 167, the first flag-affecting instruction
parameter 169, the Second flag-affecting instruction param
eter 171, and the flag-affecting instruction result 173. The,
IR tree corresponding to the “add” instruction is simple a “Y”
(arithmetic addition) operator 175, whose operands are the
subject registers %ecx 177 and %edx 179.
004.5 Emulation of the first basic block puts the flags in
a pending State by Storing the parameters and result of the
flag-affecting instruction. The flag-affecting instruction is
“add%ecx, %edx.” The parameters of the instruction are the
current values of emulated subject registers %ecx 177 and
%edx 179. The “G” symbol preceding the subject register
uses 177, 179 indicate that the values of the Subject registers
are retrieved from the global register Store, from the loca
tions corresponding to %ecX and %edX, respectively, as
these particular Subject registers were not previously loaded
by the current basic block. These parameter values are then
stored in the first 169 and second 171 flag parameter abstract
registers. The result of the addition operation 175 is stored
in the flag result abstract register 173.
0046. After the IR tree is generated, the corresponding
target code is generated based on the IR. The process of
generating target code from a generic IR is well understood
in the art. Target code is inserted at the end of the translated
block to Save the abstract registers, including those for the
flag result 173 and the flag parameters 169,171, to the global
register Store. After the target code is generated, it is then
executed 155.

0047. In the course of translating 157 the second basic
block of subject code 159, the translator 30 generates an IR
tree 165 based on that basic block. The IR tree 165 is
generated from the Source instruction “pushf,” which is a
flag-using instruction. The Semantics of the “pushf instruc
tion are to Store the values of all condition flags onto the
Stack, which requires that each flag be explicitly calculated.
AS Such, the abstract registers corresponding to four condi
tion flag Values are defined during IR generation: the Zero
flag ("ZF") 181, the sign flag (“S17”) 183, the carry flag
(“CF”) 185, and the overflow flag (“OF”) 187. Node 195 is

Nov. 4, 2004

the arithmetic comparison operator “unsigned less-than.”
The calculation of the condition flags is based on informa
tion from the prior flag-affecting instruction, which in this
case is the "add 76ecX, 76edx' instruction from the first basic
block 153. The IR calculating the condition flag values 165
is based on the result 189 and parameters 191, 193 of the
flag-affecting instruction. AS above, the “1” symbol preced
ing the flag parameter labels indicates that the emulator
inserts target code to load those values from the global
register Store prior to their use.
0048 Thus, the second basic block forces the flag values
to be normalized. After the flag Values are calculated and
used (by the target code emulating the “pushf instruction),
they will be stored into the global register store. Simulta
neously, the pending flag abstract registers (parameters and
result) are put into an undefined State to reflect the fact that
the flag values are Stores explicitly (i.e., the flags have been
normalized).
0049 FIG. 5 shows the translator 30 formed in accor
dance with a preferred embodiment of the present invention
capable of generating Several different types of IR nodes that
may be used in translation as well as illustrating how the
implementations of those different types of IR nodes are
distributed between the frontend 31, kernel32, and backend
33 components of the translator 30. The term “realize” refers
to IR generation, which is performed in the frontend 31 as
Subject instructions of the Subject code 10 are decoded (i.e.,
parsed). The term "plant” refers to target code generation,
which is performed in the backend 33.
0050. Note that while the translation process is described
below in terms of a single Subject instruction, these opera
tions actually take place for an entire basic block of Subject
instructions at once as described above. In other words, the
entire basic block is initially decoded to generate an IR
forest, then the kernel 32 applies optimizations to the whole
IR forest. Lastly, the backend 33 performs target code
generation for the optimized IR forest one node at a time.
0051 When generating an IR forest for a basic block, the
translator 30 may generate either base nodes, complex
nodes, polymorphic nodes, or architecture Specific nodes
(ASN), or any combination thereof, depending upon the
desired translator performance and the particular architec
tures of the Source processor and target processor pairing.
0.052 Base Nodes
0053 Base nodes are abstract representations of the
Semantics (i.e., the expressions, calculations, and opera
tions) of any Subject architecture and provide the minimal
Set of Standard or basic nodes needed to represent the
Semantics of the Subject architecture. AS Such, base nodes
provide simple Reduced Instruction Set Computer (RISC)-
like functionality, Such as, for instance, an “add’’ operation.
In contrast to other types of nodes, each base node is
irreducible, meaning that it cannot be broken down any
further into other IR nodes. Due to their simplicity, base
nodes are also easily translated by the translator 30 into
target instructions on all backends 33 (i.e., target architec
tures).
0054 When utilizing only base IR nodes, the translation
process takes place entirely at the top portion of FIG. 5 (i.e.,
paths traveling through the “Base IR” block 204). The
front-end 31 decodes a subject instruction from the subject

US 2004/0221277 A1

program code 10 in decode block 200, and realizes (gener
ates) in realize block 202 a corresponding IR tree made of
base nodes. The IR tree is then passed from the front-end 31
to the Base IR block 204 in kernel 32, where optimizations
are applied to an entire IR forest. As the IR forest optimized
by the Base IR block 204 consists only of base nodes, it is
entirely generic to any processor architecture. The optimized
IR forest is then passed from the Base IR block 204 in the
kernel 32 to the backend 33, which plants (generates)
corresponding target code instructions for each IR node in
Plant block 206. The target code instructions are then
encoded by encode block 208 for execution by the target
processor.

0.055 As noted above, base nodes are easily translated
into target instructions on all backbends 33, and the trans
lated code can typically be generated entirely through exclu
sive utilization of base nodes. While the exclusive use of
base nodes is very quick to implement for the translator 30,
it yields Suboptimal performance in the translated code. In
order to increase the performance of the translated code, the
translator 30 can be specialized to exploit features of the
target processor architecture by using alternative types of IR
nodes, Such as complex nodes, polymorphic nodes, and
architecture-specific nodes (ASNs).
0056 Complex Nodes
0057 Complex nodes are generic nodes that represent the
Semantics of a Subject architecture in a more compact
representation than base nodes. Complex nodes provide a
“Complex Instruction Set Computer (CISC)-like” function
ality Such as "add imm” (add register and immediate con
Stant), for example. Specifically, complex nodes typically
represent instructions with immediate constant fields. Imme
diate-type instructions are instructions in which a constant
operand value is encoded into the instruction itself in an
“immediate” field. For constant values that are small enough
to fit into immediate fields, Such instructions avoid the use
of one register to hold the constant. For complex instruc
tions, complex nodes can represent the Semantics of the
complex instructions with much fewer nodes than equivalent
base node representations characterizing the same Seman
tics. While compleX nodes can essentially be decomposed
into base node representations having the same Semantics,
complex nodes are useful in preserving the Semantics of
immediate-type instructions in a single IR node, thus
improving the performance of the translator 30. Further
more, in Some situations, the Semantics of the complex
instructions would be lost by representing the complex
instructions in terms of base nodes, and complex nodes thus
essentially augment the base node Set to include IR nodes for
Such “CISC-like' instructions.

0.058 With reference to FIG. 6, an example of the
efficiency achieved by using a complex node as compared to
that of base nodes will now be described. For example, the
Semantics of the MIPS add-immediate instruction “addi r1,it
10” adds ten to the value held in register r1. Rather than
loading the constant value (10) into a register and then
adding two registers, the addi instruction Simply encodes the
constant value 10 directly into the instruction field itself,
thus avoiding the need to use a Second register. When
generating an intermediate representation of these Semantics
Strictly using base nodes, the base node representation for
this instruction would first load the constant value 10 from

Nov. 4, 2004

the const(#10) node 60 into a register node r(x) 61, and then
perform an addition of the register node r162 and register
node r(x) 61 using add node 63. The complex node repre
sentation consists of a single “add to immediate” IR node 70
containing the constant value 10 at portion 72 of the node 70
and a reference to register r174. In the base node Scenario,
the backend 33 would need to perform idiom recognition
capable of recognizing a four node pattern, shown in FIG.
6, in order to recognize and generate an "add to immediate'
target instruction. In the absence of idiom recognition, the
backend 33 would emit an extra instruction to load the
constant value 10 into a register prior to performing a
register-register addition.

0059 Complex nodes reduce the need for idiom recog
nition in the backend 33, because complex nodes contain
more Semantic information than their base node equivalents.
Specifically, complex nodes avoid the need for backend 33
idiom recognition of constant operands. By comparison, if
an immediate type Subject instruction were decomposed into
base nodes (and the target architecture also contained imme
diate type instructions), then the translator 30 would either
need expensive backend 33 idiom recognition to identify the
multiple node cluster as an immediate instruction candidate,
or generate inefficient target code (i.e., more instructions
than necessary, using more target registers than necessary. In
other words, by utilizing base nodes alone, performance is
lost either in the translator 30 (through idiom recognition) or
the translated code (through extra generated code without
idiom recognition). More generally, because complex nodes
are a more compact representation of Semantic information,
they reduce the number of IR nodes that the translator 30
must create, traverse, and delete.

0060 Immediate type instructions are common to many
architectures. Therefore, complex nodes are generic in that
they are reusable acroSS a range of architectures. However,
not every complex node is present in the IR node Set of every
translator. Certain generic features of the translator are
configurable, meaning that when a translator is being com
piled for a particular pair of Source and target architectures,
features that do not apply to that translator configuration can
be excluded from compilation. For example, in a MIPS
MIPS (MIPS to MIPS) translator, complex nodes that do not
match the semantics of any MIPS instructions are excluded
from the IR node set because they would never be utilized.
0061 Complex nodes can further improve the perfor
mance of the target code generated using an in order
traversal. In order traversal is one of several alternative IR
traversal algorithms that determines the order in which IR
nodes within an IR tree are generated into target code.
Specifically, in order traversal generates each IR node as it
is first traversed, which precludes backend 33 idiom recog
nition due to the absence of a separate optimization pass
over the entire IR tree. Complex nodes represent more
Semantic information per node than base nodes, and thus
Some of the work of idiom recognition is implicit within the
complex nodes themselves. This allows the translator 30 to
use in order traversal without Suffering much of a penalty in
target code performance as it would with base nodes alone.

0062) When the translator 30 generates complex nodes
(i.e., the paths traveling through the Complex IR block 210
in FIG. 5), the translation process is similar to the translation
process described above for the base nodes. The only

US 2004/0221277 A1

difference is that Subject instructions that match the Seman
tics of a complex node are realized as complex nodes in
Realize block 202 rather than base nodes (as illustrated by
the dotted line separating Realize block 202). Complex
nodes are Still generic acroSS a wide range of architectures,
which enables the kernel 32 optimizations to still apply to
the entire IR forest. Furthermore, target code generation for
complex nodes on CISC type target architectures may be
more efficient than the base node equivalents.
0063 Polymorphic Nodes
0064. A preferred embodiment of the translator 30 as
illustrated in FIG. 5 may further utilize polymorphic inter
mediate representation. Polymorphic intermediate represen
tation is a mechanism by which the backend 33 can provide
Specialized code generation to efficiently utilize target archi
tecture features for Specific, performance critical Subject
instructions. The polymorphic mechanism is implemented
as a generic polymorphic node which contains a function
pointer to a backend 33 code generation function. Each
function pointer is specialized to a particular Subject instruc
tion. This polymorphic mechanism preempts the Standard
frontend 31 IR generation mechanism, which would other
wise decode the Subject instruction into base or complex
nodes. Without the polymorphic mechanism, the generation
of those base nodes would, in the backend 33, either result
in Suboptimal target code or require expensive idiom rec
ognition to reconstruct the Semantics of the Subject instruc
tion.

0065. Each polymorphic function is specific to a particu
lar Subject instruction and target architecture function pair
ing. Polymorphic nodes expose minimal information about
their function to the kernel 32. Polymorphic nodes are able
to take part in normal kernel 32 optimizations, Such as
expression sharing and expression folding. The kernel 32
can use the function pointer to determine if two polymorphic
nodes are the same. Polymorphic nodes do not retain any
Semantic information of the Subject instruction, but Such
Semantic information can be inferred from the function
pointer.

0.066 Polymorphic nodes are used for subject instruc
tions, which can be expressed by a Series of carefully chosen
target instructions, removing the need for the kernel 32 to
determine the best target instructions are run-time. When
polymorphic nodes are not realized by the frontend 31 which
uses bases nodes, the kernel 32 may choose to realize these
nodes as polymorphic nodes.

0067 Furthermore, polymorphic nodes can contain reg
ister allocation hints. AS the target instructions are known,
the respective registers that may be required on CISC
architectures may also be known. Polymorphic nodes allow
their operand and results to appear in registers chosen at the
time of IR construction.

0068. In order for the translator 30 to utilize polymorphic
nodes (i.e., the path traveling through polymorphic IR block
212 in FIG. 5), the backend 33 provides a list of subject
instruction target function pointer pairs to the frontend 31.
Subject instructions that are on the provided list are realized
as polymorphic nodes containing the corresponding backend
33 function pointer. Subject instructions that are not on the
list are realized as complex or base IR trees as discussed
above. In FIG. 5, the path reflected by the arrow 214 from

Nov. 4, 2004

the backend 33 to the frontend 31 shows the list of subject
instruction target function pointer pairs being provided to
the realize block 215 at the frontend 31. While the frontend
31 performs realization in the realize block 215 (i.e., map
ping of Subject instructions to IR nodes), the process is
modified by information received from the backend 33
through path 214.
0069. In the polymorphic IR block 212 of the kernel32,
polymorphic nodes can Still participate in generic optimiza
tions, because the kernel 32 can infer their Semantics from
the function pointers in each node. In the backend 33, the
target function pointers which point to target code genera
tion functions are simply dereferenced and executed. This
Situation is different from the base node and complex node
cases where the backend 33 maps particular IR nodes to
particular code generation functions. With polymorphic
nodes, the polymorphic function is encoded directly in the
node itself, So that the backend 33 performs less computa
tion. In FIG. 5, this difference is shown by the fact that the
polymorphic plant block 216 is contiguous with both the
polymorphic IR block 212 and the backend 33(i.e., no
arrows designating nontrivial computations are shown
between the polymorphic IR block 212 and the polymorphic
plant block 216).

EXAMPLE 1.

0070 Polymorphic IR Example
0071 To illustrate the process of optimizing the translator
30 for utilizing polymorphic nodes in the IR, the following
example describes the translation of a PPC (PowerPC
“SHL64” instruction (left shift, 64bit) required in a PPC P4
(PowerPC to Pentium4) translator using first base nodes and
then polymorphic nodes.
0072 Without optimizing the translator for the imple
mentation of polymorphic nodes, the translation of the PPC
SHL64 instruction would use only base nodes:

0.073 PPC SHL64=>Base IR multiple nodes=>P4
multiple instructions

0074 The frontend decoder 200 of an unoptimized trans
lator decodes the current block and encounters the PPC
SHL64 instruction. Next, the frontend realize block 202
instructs the kernel 32 to construct an IR consisting of
multiple base nodes. Then the kernel 32 optimizes the IR
forest (generated from the current block of instructions) and
performs an ordering traversal to determine the order of
code generation in Base IR block 204. Next, the kernel 32
performs code generation for each IR node in order, instruct
ing the backend 33 to plant appropriate RISC type instruc
tions. Finally, the backend 33 plants code in plant block 206
and encodes each RISC type instruction with one or more
target architecture instructions in encode block 208.
0075) When optimized for a specific target architecture
by specialization of the frontend 31 and backend 33 for
performance critical instructions:

0.076 PPC SHL64>Poly IR single node >P4 single/
few instructions

0077. The frontend decoder 200 of the optimized trans
lator 30 decodes the current block and encounters the PPC
SHL6instruction. Next, the frontend realize block 202
instructs the kernel 32 to construct an IR consisting of a

US 2004/0221277 A1

Single polymorphic IR node. When the Single polymorphic
node is created, the backend 33 knows that the shift operand
of SHL6must be in a specific register (%ecx on P4). This
requirement is encoded in the polymorphic node. Then the
kernel 32 optimizes the IR forest for current block and
performs an ordering traversal to fix the code generation
order in the polymorphic IR block 212. Next, the kernel 32
performs code generation for each node, instructing the
backend 33 to plant appropriate RISC type instructions.
During code generation, however, polymorphic nodes are
treated differently than base nodes. Each polymorphic node
causes the invocation of a specialized code generator func
tion which resides in the backend 33. The backend 33
Specialized code generator function plants code in plant
block 216 and encodes each Subject architecture instruction
with one or more target architecture instructions in encode
block 208. During register allocation in the generation
phase, the Specific register information is used to allocate the
correct register. This reduces the computation performed by
the backend 33 which would be required if unsuitable
registers had been allocated. This code generation may
involve register allocation for temporary registers.

EXAMPLE 2

0078. Difficult Instructions
0079 The following example illustrates the translation
and optimization of the PPC MFFS instruction (move 32 bit
FPU control register to 64 bit general FPU register) which
would be performed by the translator 30 of the present
invention. This Subject instruction is too complex to be
represented by base nodes.
0080. In the unoptimized case, this instruction would be
translated using a Substitute function. Substitute functions
are explicit translations for Special cases of Subject instruc
tions that are particularly difficult to translate using the
Standard translation Scheme. Substitute function translations
are implemented as target code functions that perform the
Semantics of the Subject instruction. They incur a much
higher execution cost than the Standard IR instruction based
translation Scheme. The unoptimized translation Scheme for
this instruction is thus:

0081 PPC MFFS instruction=>Base IR substitute
function=>P4 Substitute function

0082 In a translator 30 using polymorphic IR, such
Special case instructions are translated using a polymorphic
node. The polymorphic node's function pointer provides a
more efficient mechanism for the backend 33 to supply a
custom translation of the difficult subject instruction. The
optimized translation Scheme for the same instruction is
thus:

0.083 PPC MFFS instruction=>single Polymorphic
IR node=>P4 SSE2 instructions

0084 Architecture Specific Nodes
0085. In another preferred embodiment of the translator
30 of the present invention, the translator 30 may utilize
architecture specific nodes (ASNs), as shown in FIG. 5,
which are specific to particular architectures (i.e., a particu
lar Source architecture target architecture combination).
Each architecture specific node (ASN) is specifically tai
lored to a particular instruction, thus rendering ASNS Spe

Nov. 4, 2004

cific to particular architectures. When utilizing the ASN
mechanism, architecture Specific optimizations can be
implemented which comprehend the ASNs semantics and
can therefore operate on the ASNs.
0086) IR nodes may contain up to three components: a
data component, an implementation component, and a con
version component. The data component holds any Semantic
information which is not inherent in the node itself (e.g., the
value of a constant immediate instruction field). The imple
mentation component performs code generation, and, there
fore, is specifically related to a particular architecture. The
conversion component converts the node into IR nodes of a
different type, either ASN nodes or base nodes. In a given
implementation of the present invention in a translator, each
base node and ASN in the generated IR contains either a
conversion component or an implementation component,
but not both.

0087 Each base node has an implementation component
which is specific to the target architecture. Base nodes do not
have conversion components, because base nodes encode
the least possible amount of Semantic information in the IR
node hierarchy, thus converting base nodes into other types
of IR nodes would not provide any benefit. Any such
conversion of base nodes into other types of IR nodes would
require the recollection of Semantic information through
idiom recognition.
0088. The implementation component of an ASN is spe
cific to the nodes architecture, Such that it generates an
architecture Specific instruction corresponding to that ASK
For example, the implementation component of a MIPS
Load ASN generates a MIPS “Id” (load) instruction. When
using the translator of the present invention with the same
Subject and target architectures (i.e., as an accelerator),
Subject ASNS will possess implementation components.
When utilizing the translator with different subject and
target architectures, Subject ASNS will have conversion
components.

0089 For example, FIG. 7 illustrates the ASN for a
MIPS instruction when using an embodiment of the present
invention in a MIPS-MIPS accelerator. The frontend 31
decodes the MIPS “addi” (add immediate) instruction 701
and generates an IR to include the corresponding ASN,
MIPS ADDI 703. The subject and target architectures are
the same for an accelerator, and thus the conversion com
ponent “CVT'707 is undefined. The implementation com
ponent “IMPL 705 is defined to generate the same MIPS
“addi’ instruction 709, Subject to register allocation differ
ences in the code generation pass.

0090 FIG. 8 illustrates the ASNs in the IR for the same
MIPS instruction when using an embodiment of the present
invention in a MIPS X86 translator. The frontend 31 decodes
the MIPS “addi” subject instruction and generates a corre
sponding subject ASN, MIPS ADDI 801. The source and
target architectures are different for this translator, and the
implementation component 803 of the subject ASN 801 is
thus undefined. The conversion component 805 of the MIPS
ADDI is a specialized conversion component, which con
verts the subject ASN 801 into a target ASN 807. By
comparison, a generic conversion component would convert
the subject ASN 801 into a base node representation. The
target ASN representation of the MIPSADDI node 801 is a
single X86 ADDI node 807. The conversion component 811

US 2004/0221277 A1

of the target ASN 807 is undefined. The implementation
component 809 of the target ASN 807 generates the a target
instruction 813, in this case the X86 instruction “ADD
SEAX, #10.”

0091) When the translator 30 is utilizing ASNs, all sub
ject instructions are realized as Subject Specific ASNS. In
FIG. 5, the fact that the frontend decode block 200, the ASN
realize block 218, and the subject ASN block 220 are
contiguous with each other represents the fact that the ASNs
are defined by the frontend 31 and that realization is trivial,
because there is a one to one relationship between Subject
instruction types and subject ASNs types. The frontend 31
contains Subject Specific optimizations which understand the
Semantics of, and can operate on, Subject ASNS. In other
words, the Subject code is initially realized as an IR forest
consisting entirely of Subject ASNS, to which Subject Spe
cific optimizations are then applied.
0092. By default, a subject ASN has a generic conversion
component which generates an IR tree of base nodes. This
allows Support for a new Subject architecture to be imple
mented quickly using generic IR nodes. Subject ASNS are
realized as base nodes through the path extending through
the ASN Base IR block 222 and plant block 206 in FIG. 5,
which are translated into target code in a similar manner to
other base nodes as described in detail above.

0.093 For subject instructions that are significant to per
formance, the corresponding Subject ASN nodes provide
specialized conversion components, which generate IR trees
of target ASN nodes. Factors considered in whether to
implement a specialized conversion component include (1)
whether the target architectural features provide for particu
larly efficient translation that would be lost in a base node
translation and (2) whether a Subject instruction occurs with
Such frequency that it has a Significant impact on perfor
mance. These Specialized conversion components are spe
cific to the Subject target architecture pair. Target ASNS
(which by definition have the same architecture as the target)
include implementation components.
0094. When implementing the specialized conversion
components, the corresponding Subject ASN nodes provide
target Specialized conversion components which convert the
subject ASNs into target ASNs through the target ASN block
224. The target ASN's implementation component is then
invoked to perform code generation in the target ASN plant
block 226. Each target ASN corresponds to one particular
target instruction, Such that the code generated from a target
ASN is simply the corresponding target instruction that the
ASN encodes. AS Such, code generation using target ASNS
is computationally minimal (represented in reflected in FIG.
5 by the illustration of the target ASN plant block 226 being
contiguous with both the target ASN block 224 and the
encode block 208 in the backend 33, with no arrows
designating nontrivial computations being shown between
these components). Furthermore, the IR traversal, conver
Sion, and code generation processes are all controlled by the
kernel 32.

0.095 FIG. 9 illustrates the translation process performed
in accordance with a preferred embodiment of the translator
of the present invention that utilizes the ASN mechanism. In
the frontend 31, the translator decodes the subject code 901
in step 903 into subject ASNs 904. The translator performs
subject specific optimizations in step 905 on the IR tree

Nov. 4, 2004

made up of Subject ASNs. Each subject ASN 904 is then
converted in step 907 into target compatible IR nodes (target
ASNs 911) by invoking the subject ASN's conversion
component. Subject ASN nodes which have generic conver
Sion components by default are converted into base nodes
909. Subject ASN nodes which have specialized conversion
components, as provided by the backend 925, are converted
into target ASN's 911. The conversion thus produces a mixed
IR forest 913, containing both base nodes 909 and target
ASNs 911. In the kernel 32, the translator performs generic
optimizations in step 915 on the base nodes in mixed IR
forest 913. The translator then performs target specific
optimizations in step 916 on the target ASNs in the mixed IR
forest 913. Finally, code generation invokes the implemen
tation component of each node in the mixed tree (both base
nodes and target ASN nodes have implementation compo
nents) in step 917, which then generates target code 919.

0096. In the special case of a code accelerator, the subject
and target architectures are both the Same. In this Scenario,
subject ASNs persist throughout translation. In the frontend
31, decoding generates Subject ASNS from the Subject
instructions. In the kernel 32, the subject ASNs are passed
through architecture Specific optimizations. Code generation
invokes the Subject ASNs implementation components to
generate the corresponding instructions. AS Such, in a code
accelerator the use of ASNS prevents code explosion, by
ensuring a minimum Subject to target instruction conversion
ratio of 1:1, which can be increased by optimizations.

0097. The various embodiments of the translator of the
present invention can be configured for Specific translator
applications (i.e., particular Subject architecture target archi
tecture pairs). AS Such, the translator of the present invention
is configurable to convert Subject code designed to run on
any Subject architecture to target code executable on any
target architecture. AcroSS multiple translator applications,
each base node has multiple implementation components,
one for each Supported target architecture. The particular
configuration being undertaken (i.e., conditional compila
tion) determines which IR nodes and which components of
those nodes to include in a particular translator application.

0098. The use of ASNs in a preferred embodiment of the
present invention provides a plurality of advantageous ben
efits. First, a translator product built from Scratch can be
developed quickly using generic IR implementations of
Subject instructions. Second, existing translator products can
be incrementally augmented, by implementing target spe
cific conversion components for Subject instructions that are
critical to performance (as known beforehand or as empiri
cally determined). Third, as more translator products are
developed, the library of ASN nodes (and implemented
functionality) grows over time, so future translator products
can be implemented or optimized quickly.

0099. This embodiment of the present invention backend
implementations to pick and choose which Subject instruc
tions are worth optimizing (by defining target-specialized
conversion components). The generic conversion compo
nent allows an ASN-based translator to be developed
quickly, while the Specialized conversion components
allows performance critical instructions to be selectively and
incrementally optimized.

US 2004/0221277 A1

EXAMPLE 3

0100 Difficult Instructions. Using ASN
0101 Returning to the PowerPC SHL6instruction of
Example 2 above, the translator 30 using ASNs performs the
following steps. The frontend decoder 200 decodes the
current block and encounters the PowerPCSHL6instruction.
The frontend 31 then realizes a single ASN for that instruc
tion, SHL6PPC P4. The kernel32 then optimizes the IR for
the current block of instructions and performs an ordering
traversal of the IR in preparation for code generation. The
kernel 32 then performs code generation for the ASN nodes
by invoking each particular ASN node's code generator
function, which is an element of the implementation com
ponent. The backend 33 then encodes subject architecture
(PPC) instructions into one or more target architecture (P4)
instructions.

01.02 MIPS Examples
0103) Referring now to FIGS. 10, 11 and 12, examples
illustrating the different IR trees that are generated from the
Same MIPS instruction Sequence using base IR nodes,
MIPS-MIPS ASN IR nodes, and MIPS-X86 ASN IR nodes,
respectively, are shown. The semantics of the example MIPS
Subject instruction Sequence (load upper immediate, then
bitwise-or immediate) is to load the 32 bit constant value
OxI2345678 into subject register “all”.
0104. In FIG. 10, the Binary Decoder 300 is a frontend
31 component of the translator 30 which decodes (parses)
the Subject code into individual Subject instructions. After
the Subject instructions are decoded, they are realized as
base nodes 302 and added to the working IR forest for the
current block of instructions. The IR Manager 304 is the
portion of the translator 30 that holds the working IR forest
during IR generation. The IR Manager 304 consists of
abstract registers and their associated IR trees (the roots of
the IR forest are abstract registers). For example, in FIG. 10,
the abstract register “a V3 06 is the root of an IR tree 308
of five nodes, which is part of the current block's working
IR forest. In a translator 30 implemented in C++, the IR
Manager. 304 may be implemented as a C++ object that
includes a set of abstract register objects (or references to IR
node objects).
0105 FIG. 10 illustrates an IR tree 308 generated by a
MIPS to X86 translator using base nodes only. The MIPS
LUI instruction 310 realizes a “SHL' (shift left) base node

314 with two operand nodes 316 and 318, which in this case
are both constants. The semantics of the MIPS LUI instruc
tion 310 are to shift a constant value (OxI234) left by a
constant number of bits (16). The MIPS ORI instruction
312 realizes an “ORI” (bitwise or immediate) base node
320 with two operand nodes 314 and 322, the result of the
SHL node 314 and a constant value. The semantics of the
MIPS ORI instruction 312 are to perform a bitwise-or of the
existing register contents with a constant value (OX5678).
0106. In an unoptimized code generator, the base nodes
include no immediate-type operators other than load imme
diate, So each constant node results in the generation of a
load immediate instruction. The unoptimized base node
translator therefore requires five RISC type operations (load,
load, shift, load, or) for this Subject instructions sequence.
Backend 33 idiom recognition can reduce this number from
five to two, by coalescing the constant nodes with their

Nov. 4, 2004

parent nodes, to generate immediate type target instructions
(i.e., shift immediate and or immediate). This reduces the
number of target instructions to two, but for an increased
translation cost in performing the idiom recognition in the
code generator.

0107 Using complex nodes in the IR can realize imme
diate type IR nodes, which eliminates the need to perform
idiom recognition in the backend 33 and reduces the trans
lation cost of the code generator. Complex nodes preserve
more of the Semantics of the original Subject instructions,
and, with fewer IR nodes being realized, the translation cost
of node generation is also reduced when using complex
nodes.

0108 FIG. 11 illustrates the IR tree generated by a MIPS
X86 (MIPS to X86) translator using ASNs. After the subject
instructions are decoded by the binary decoder 300, they are
realized as MIPS X86 ASN nodes 330, which are then
added to the working IR forest for the current block. First,
the MIPS X86 LUI ASN node is converted into an X86
32-bit constant node 332 by the ASN's convert component.
Second, the MIPS X86 ORI ASN node produces an X86
ORI node which is immediately folded with the previous
X86 constant node (constant folding), resulting in a single
X8632-bit constant node 334. This node 334 is encoded into
a single X86 load constant instruction, “mov %eax, SOX
12345678. AS can be seen, ASN nodes result in fewer nodes
than the base node example, thus reducing translation cost
and providing better target code.

0109 FIG. 12 illustrates an IR tree generated by a
MIPS-MIPS translator (i.e., a MIPS accelerator) using
ASNs. After the subject instructions 310, 312 are decoded
by the binary decoder 300, they are realized as MIPS MIPS
ASN nodes 340, which are then added to the working IR
forest for the current block. Because the Source and target
architectures are the same for the MIPS-MIPS translator, the
MIPS MIPS LUI and MIPS MIPS ORI ASN nodes 340
have null (undefined) convert components. AS Such, there is
a direct correspondence between the Subject instructions and
the final IR nodes used to generate code. This guarantees a
1:1. Subject to target instruction translation ratio, even before
any optimizations are applied. In other words, ASN nodes
eliminate code explosion for Same-same translators (accel
erators). ASN nodes also allow 16 bit constant nodes to be
shared, which is useful for efficient translation of contiguous
memory accesses on the MIPS platform.

0110 Basic blocks of instructions are translated one
Subject instruction at a time. Each Subject instruction results
in the formation of (realizes) an IR tree. After the IR tree for
a given instruction is created, it is then integrated into the
working IR forest for the current block. The roots of the
working IR forest are abstract registers, which correspond to
the Subject registers and other features of the Subject archi
tecture. When the last Subject instruction has been decoded,
realized, and its IR tree integrated with the working IR
forest, the IR forest for that block is complete.

0111. In FIG. 12, the first subject instruction 310 is “lui
al, OxI234'. The semantics of this instruction 310 are to load
the constant value OxI234 into the upper 16 bits of subject
register “al”342. This instruction 310 realizes a MIPS MI
PS LUI node 344, with an immediate field constant value of
OxI234. The translator adds this node to the working IR

US 2004/0221277 A1

forest by setting abstract register “al”342 (the destination
register of the subject instruction) to point to the MIPS MI
PS LUI IR node 344.
0112) In the same example in FIG. 12, the second subject
instruction 312 is 44orial, al, Ox5678”. The semantics of
this instruction 312 are to perform a bitwise-or of the
constant value Ox5678 with the current contents of subject
register 4"al'342 and to store the result in Subject register
4“al”346. This instruction 312 realizes a MIPS MIPS ORI
node 348, with an immediate field constant value of
Ox5678. The translator adds this node to the working IR
forest by first setting the ORI node to point to the IR tree that
is currently pointed to by abstract register “al'342 (the
Source register of the Subject instruction), and then Setting
the abstract register “al'346 (the destination, register of the
subject instruction) to point to the ORI node 348. In other
words, the existing “al' tree rooted with abstract register 342
(i.e., the LUI node) becomes a subtree 350 of the ORI node
348, and then the ORI node 348 becomes the new all tree.
The old “al” tree (after LUI but before ORI) is rooted from
abstract register 342 and shown as linked by line 345, while
the current “all” tree (after ORI) is rooted from abstract
register 346.
0113 AS can be seen from the foregoing, an improved
program code conversion apparatus formed in accordance
with the present invention is configurable to any Subject and
target processor architecture pairing while maintaining an
optimal level of performance and balancing the Speed of
translation with the efficiency of the translated target code.
Moreover, depending upon the particular architectures of the
Subject and target computing environments involved in the
conversion, the program code conversion apparatus of the
present invention, can be designed with a hybrid design of
generic and Specific conversion features by utilizing a com
bination of base nodes, complex nodes, polymorphic nodes,
and architecture Specific nodes in its intermediate represen
tation.

0114. The different structures of the improved program
code conversion apparatus of the present invention are
described Separately in each of the above embodiments.
However, it is the full intention of the inventors of the
present invention that the Separate aspects of each embodi
ment described herein may be combined with the other
embodiments described herein. For instance, the translator
formed in accordance with the present invention may com
prise hybrid optimizations of various IR types. Those skilled
in the art will appreciate that various adaptations and modi
fications of the just-described preferred embodiment can be
configured without departing from the Scope and Spirit of the
invention. Therefore, it is to be understood that, within the
Scope of the appended claims, the invention may be prac
ticed other than as Specifically described herein.

What is claimed:
1. A method of generating an intermediate representation

of program code, comprising the Steps of:
decoding instructions in the program code;

generating an intermediate representation (IR) of the
decoded program code to include at least one type of IR
nodes out of a plurality of possible types of IR nodes,
and

Nov. 4, 2004

determining which type of IR nodes to generate in the
intermediate representation for each respective instruc
tion in the decoded program code,

wherein the IR nodes in the intermediate representation
(IR) are abstract representations of the expressions,
calculations, and operations performed by the program
code.

2. The method of claim 1, wherein the plurality of
possible types of IR nodes 2 include base nodes and complex
nodes.

3. The method of claim 2, wherein base nodes represent
the most basic Semantics of any Subject architecture running
the program code, Such that the Semantics of base nodes
cannot be decomposed into other nodes representing more
Simple Semantics.

4. The method of claim 3, wherein base nodes are generic
acroSS a plurality of possible Subject architectures.

5. The method of claim 3, wherein complex nodes provide
a more compact representation of the Semantics of complex
instructions in the program code than that of base node
representations.

6. The method of claim 5, wherein complex nodes rep
resent immediate type instructions in which a constant
operand value is encoded into the immediate type instruction
itself in an immediate field.

7. The method of claim 5, wherein a complex node may
be decomposed into a plurality of base nodes to represent the
same Semantics of an instruction in the decoded program
code.

8. The method of claim 5, wherein the program code is
designed to be executed by a Subject architecture, the
method further comprising the Step of generating complex
nodes only for those features correspondingly configurable
on the Subject architecture.

9. The method of claim 2, wherein the plurality of
possible types of IR nodes further include polymorphic
nodes.

10. The method of claim 9, wherein the program code is
Subject code designed for execution on a Subject architecture
and is dynamically translated into target code for execution
on a target architecture, Said method further comprising:

generating the intermediate representation to include
polymorphic nodes,

wherein polymorphic nodes contain a function pointer to
a function of the target architecture Specific to a par
ticular instruction in the Subject code.

11. The method of claim 10, said method further com
prising generating polymorphic nodes when the features of
the target architecture would cause the Semantics of a
particular Subject instruction to be lost if realized as base
nodes.

12. The method of claim 10, wherein each polymorphic
node is specific to a combination of a particular instruction
in the Subject code and a function of the target architecture.

13. The method of claim 10, wherein said determining the
type of IR nodes Step further comprises identifying an
instruction in Subject code which corresponds an instruction
on a list of polymorphic instructions to be realized as
polymorphic nodes, and
when a Subject instruction corresponds to an instruction

on the list of polymorphic instructions, Said IR gener

US 2004/0221277 A1

ating Step generates polymorphic nodes only for those
Subject instructions corresponding to those on the list of
polymorphic instructions.

14. The method of claim 1, wherein the plurality of
possible types of IR nodes further include base nodes and
architecture Specific nodes.

15. The method of claim 14, wherein the program code is
Subject code designed for execution on a Subject architecture
and is dynamically translated into target code for execution
on a target architecture, Said method further comprising:

generating the intermediate representation to include
architecture Specific nodes which are specific to a
particular combination of a Subject architecture and a
target architecture.

16. The method of claim 15, the intermediate represen
tation generating Step further comprising:

initially representing all of the instructions in the Subject
code as Subject architecture Specific nodes, where each
Subject architecture specific node corresponds to a
respective instruction in the Subject code,

determining whether an instruction in the Subject code is
one in which to provide a target architecture Specialized
conversion function,

converting Subject architecture Specific nodes into target
architecture Specific nodes for those instructions deter
mined to provide a target architecture specialized con
version function; and

generating base nodes from the remaining Subject archi
tecture Specific nodes which are not identified as pro
Viding a target architecture Specialized code generation
function.

17. The method of claim 16, further comprising generat
ing corresponding target code from the target architecture
Specific nodes which is Specialized for the target architec
ture.

18. The method of claim 15, further comprising generat
ing corresponding target code from the base nodes which is
not Specialized for the target architecture.

19. A computer readable recording medium containing
program code for performing the method of claim 1.

20. A computer readable Storage medium having transla
tor Software resident thereon in the form of computer
readable code executable by a computer to perform the
following Steps during translation of Subject program code
to target program code:

decoding instructions in the Subject program code,
generating an intermediate representation (IR) of the

decoded Subject program code to include at least one
type of IR nodes out of a plurality of possible types of
IR nodes;

determining which type of IR nodes to generate in the
intermediate representation for each respective instruc
tion in the decoded Subject program code,

wherein the IR nodes in the intermediate representation
(IR) are abstract representations of the expressions,
calculations, and operations performed by the program
code; and

generating target program code using the intermediate
representation (IR).

Nov. 4, 2004

21. The computer readable Storage medium of claim 20,
wherein the plurality of possible types of IR nodes include
base nodes and complex nodes.

22. The computer readable Storage medium of claim 21,
wherein base nodes represent the most basic Semantics of
any Subject architecture running the program code, Such that
the Semantics of base nodes cannot be decomposed into
other nodes representing more Simple Semantics.

23. The computer readable Storage medium of claim 22,
wherein base nodes are generic acroSS a plurality of possible
Subject architectures.

24. The computer readable Storage medium of claim 22,
wherein complex nodes provide a more compact represen
tation of the Semantics of complex instructions in the
program code than that of base node representations.

25. The computer readable Storage medium of claim 24,
wherein complex nodes represent immediate type instruc
tions in which a constant operand value is encoded into the
immediate type instruction itself in an immediate field.

26. The computer readable Storage medium of claim 24,
wherein a complex node may be decomposed into a plurality
of base nodes to represent the same Semantics of an instruc
tion in the decoded program code.

27. The computer readable Storage medium of claim 24,
wherein the Subject program code is designed to be executed
by a Subject architecture, the method further comprising the
Step of generating complex nodes only for those features
correspondingly configurable on the Subject architecture.

28. The computer readable storage medium of claim 21,
wherein the, plurality of possible types of IR nodes further
include polymorphic nodes.

29. The computer readable storage medium of claim 28,
wherein the Subject program code is designed for execution
on a Subject architecture and is dynamically translated into
target code for execution on a target architecture, Said
translator Software further containing computer readable
code executable by a computer to perform the following
Steps:

generating the intermediate representation to include
polymorphic nodes,

wherein polymorphic nodes contain a function pointer to
a function of the target architecture Specific to a par
ticular instruction in the Subject code.

30. The computer readable storage medium of claim 29,
Said translator Software further containing computer read
able code executable by a computer to generate polymorphic
nodes when the features of the target architecture would
cause the Semantics of a particular Subject instruction to be
lost if realized as base nodes.

31. The computer readable storage medium of claim 29,
wherein each polymorphic node is specific to a combination
of a particular instruction in the Subject code and a function
of the target architecture.

32. The computer readable storage medium of claim 29,
wherein Said computer readable code executable by a com
puter for determining the type of IR nodes further:

identifies an instruction in Subject code which corre
sponds an instruction on a list of polymorphic instruc
tions to be realized as polymorphic nodes, and

when a Subject instruction corresponds to an instruction
on the list of polymorphic instructions, generates poly

US 2004/0221277 A1

morphic nodes only for those Subject instructions cor
responding to those on the list of polymorphic instruc
tions.

33. The computer readable storage medium of claim 20,
wherein the plurality of possible types of IR nodes further
include base nodes and architecture Specific nodes.

34. The computer readable storage medium of claim 33,
wherein the Subject program code is designed for execution
on a Subject architecture and is dynamically translated into
target code for execution on a target architecture, Said
translator Software further containing computer readable
code executable by a computer to perform the following
Steps:

generating the intermediate representation to include
architecture Specific nodes which are specific to a
particular combination of a Subject architecture and a
target architecture.

35. The computer readable storage medium of claim 34,
Said translator Software further containing computer read
able code executable by a computer to perform the following
Steps:

initially representing all of the instructions in the Subject
code as Subject architecture-specific nodes, where each
Subject architecture specific node corresponds to a
respective instruction in the Subject code,

determining whether an instruction in the Subject code is
one in which to provide a target architecture specialized
conversion function,

converting Subject architecture Specific nodes into target
architecture Specific nodes for those instructions deter
mined to provide a target architecture specialized con
version function; and

generating base nodes from the remaining Subject archi
tecture Specific nodes which are not identified as pro
Viding a target architecture Specialized code generation
14 function.

36. The computer readable storage medium of claim 35,
Said translator Software further containing computer read
able code executable by a computer to generate correspond
ing target code from the target architecture Specific nodes
which is Specialized for the target architecture.

37. The computer readable storage medium of claim 34,
Said translator Software further containing computer read
able code executable by a computer to generate correspond
ing target code from the base nodes which is not specialized
for the target architecture.

38. A translator apparatus for use in a target computing
environment having a processor and a memory coupled to
the processor for translating Subject program code appro
priate in a Subject computing environment to produce target
program code appropriate to the target computing environ
ment, the translator apparatus comprising:

a decoding mechanism configured to decode instructions
in the Subject program code;

an intermediate representation generating mechanism
configured to generate an intermediate representation
(IR) of the decoded program code to include at least
one type of IR nodes out of a plurality of possible types
of IR nodes; and

Nov. 4, 2004

an intermediate representation (IR) type determining
mechanism configured to determine which type of IR
nodes to generate in the intermediate representation for
each respective instruction in the decoded program
code,

wherein the IR nodes in the intermediate representation
(IR) are abstract representations of the expressions,
calculations, and operations performed by the program
code.

39. The translator apparatus of claim 38, wherein the
plurality of possible types of IR nodes include base nodes
and complex nodes.

40. The translator apparatus of claim 39, wherein base
nodes represent the most basic Semantics of any Subject
architecture running the program code, Such that the Seman
tics of base nodes cannot be decomposed into other nodes
representing more Simple Semantics.

41. The translator apparatus of claim 40, wherein base
nodes are generic acroSS a plurality of possible Subject
architectures.

42. The translator apparatus of claim 40, wherein complex
nodes provide a more compact representation of the Seman
tics of complex instructions in the program code than that of
base node representations.

43. The translator apparatus of claim 42, wherein complex
nodes represent immediate type instructions in which a
constant operand value is encoded into the immediate type
instruction itself in an immediate field.

44. The translator apparatus of claim 42, wherein a
complex node may be decomposed into a plurality of base
nodes to represent the same Semantics of an instruction in
the decoded program code.

45. The translator apparatus of claim 42, wherein the
program code is designed to be executed by a Subject
architecture, the intermediate representation generating
mechanism further comprising a complex node generating
mechanism for generating complex nodes only for those
features correspondingly configurable on the Subject archi
tecture.

46. The translator apparatus of claim 39, wherein the
plurality of possible types of IR nodes further include
polymorphic nodes.

47. The translator apparatus of claim 46, wherein the
program code is Subject code designed for execution on a
Subject architecture and is dynamically translated into target
code for execution on a target architecture, the intermediate
representation generating mechanism further comprising:

a polymorphic node generating mechanism for generating
the intermediate representation to include polymorphic
nodes,

wherein polymorphic nodes contain a function pointer to
a function of the target architecture Specific to a par
ticular instruction in the Subject code.

48. The translator apparatus of claim 47, said polymor
phic node generating mechanism generating polymorphic
nodes when the features of the target architecture would
cause the Semantics of a particular Subject instruction to be
lost if realized as base nodes.

49. The translator apparatus of claim 47, wherein each
polymorphic node is specific to a combination of a particular
instruction in the Subject code and a function of the target
architecture.

US 2004/0221277 A1

50. The translator apparatus of claim 47, wherein said
intermediate representation (IR) type determining mecha
nism further comprises a polymorphic identification mecha
nism for identifying an instruction in Subject code which
corresponds an instruction on a list of polymorphic instruc
tions to be realized as polymorphic nodes, and
when a Subject instruction corresponds to an instruction

on the list of polymorphic instructions, Said interme
diate representation generating mechanism generates
polymorphic nodes only for those Subject instructions
corresponding to those on the list of polymorphic
instructions.

51. The translator apparatus of claim 38, wherein the
plurality of possible types of IR nodes further include base
nodes and architecture Specific nodes.

52. The translator apparatus of claim 51, wherein the
program code is Subject code designed for execution on a
Subject architecture and is dynamically translated into target
code for execution on a target architecture, Said intermediate
representation generating mechanism further comprising:

an architecture Specific node generating mechanism for
generating the intermediate representation to include
architecture Specific nodes which are specific to a
particular combination of a Subject architecture and a
target architecture.

53. The translator apparatus of claim 52, the intermediate
representation generating mechanism being configured to:

initially represent all of the instructions in the Subject
code as Subject architecture-specific nodes, where each
Subject architecture specific node corresponds to a
respective instruction in the Subject code,

determine whether an instruction in the Subject code is
one in which to provide a target architecture Specialized
conversion function,

convert Subject architecture Specific nodes into target
architecture Specific nodes for those instructions deter
mined to provide a target architecture specialized con
version function; and

generate base nodes from the remaining Subject architec
ture Specific nodes which are not identified as providing
a target architecture specialized code generation func
tion.

54. The translator apparatus of claim 53, further compris
ing a Specialized target code generating mechanism for
generating corresponding target code from the target archi
tecture Specific nodes which is Specialized for the target
architecture.

55. The translator apparatus of claim 52, further compris
ing a non Specialized target code generating mechanism for
generating corresponding target code from the base nodes
which is not specialized for the target architecture.

56. The translator apparatus of claim 47, wherein said
generated polymorphic nodes Specify the registers to be
allocated during target code generation.

57. The translator apparatus of claim 47, wherein said
generated polymorphic nodes are utilized in generic kernel
optimizations by inferring information from the function
pointer in the polymorphic node which may otherwise be
indeterminable from the polymorphic node.

58. The translator apparatus of claim 50, wherein when a
Subject instruction corresponds to an instruction on the list

Nov. 4, 2004

of polymorphic instructions, Said intermediate representa
tion generating mechanism generates either polymorphic
nodes or base nodes for those Subject instructions corre
sponding to those on the list of polymorphic instructions.

59. The method of claim 10, wherein said generated
polymorphic nodes Specify the registers to be allocated
during target code generation.

60. The method of claim 10, wherein said generated
polymorphic nodes are utilized in generic kernel optimiza
tions by inferring information from the function pointer in
the polymorphic node which may otherwise be indetermin
able from the polymorphic node.

61. The method of claim 13, wherein when a subject
instruction corresponds to an instruction on the list of
polymorphic instructions, Said intermediate representation
generating Step generates either polymorphic nodes or base
nodes for those Subject instructions corresponding to those
on the list of polymorphic instructions.

62. The computer-readable Storage medium of claim 29,
wherein Said generated polymorphic nodes Specify the reg
isters to be allocated during target code generation.

63. The computer-readable storage medium of claim 29,
wherein Said generated polymorphic nodes are utilized in
generic kernel optimizations by inferring information from
the function pointer in the polymorphic node which may
otherwise be indeterminable from the polymorphic node.

64. The translator apparatus of claim 32, wherein said
computer readable code executable by a computer for deter
mining the type of IR nodes further, when a Subject instruc
tion corresponds to an instruction on the list of polymorphic
instructions, generates either polymorphic nodes or base
nodes for those Subject instructions corresponding to those
on the list of polymorphic instructions.

65. A method of translating Subject program code capable
of being executed on a Subject processor architecture to
target program code capable of being executed on a target
processing architecture using a translator configurable
between a plurality of possible Subject/target processing
architecture pairings, Said method comprising:

Selecting a Subject processor architecture on which the
Subject program code is designed to be executed from
a plurality of possible Subject processor architectures,

Selecting a target processor architecture on which the
target program code is to be executed from a plurality
of possible target processor architectures, and

configuring a translator to translate the Subject program
code to target program code using a pairing of the
Selected Subject processor architecture and the Selected
target processor architecture.

66. The method of claim 65, further comprising translat
ing the Subject program code to target program code
dynamically at run-time while the target program code is
being executed on the target processing architecture.

67. The method of claim 65, further comprising:
decoding instructions in the Subject program code;
determining which types of intermediate representation

(IR) nodes out of a plurality of possible types of IR
nodes to utilize in an intermediate representation of the
decoded program code for each respective instruction
in the decoded program code based upon the particular
translator configuration being undertaken based on the

US 2004/0221277 A1

pairing of the Selected Subject processor architecture
and the Selected target processor architecture; and

generating an intermediate representation (IR) of the
decoded program code to include at least one type of IR
nodes out of a plurality of possible types of IR nodes,

wherein the IR nodes in the intermediate representation
(IR) are abstract representations of the expressions,
calculations, and operations performed by the program
code.

68. The method of claim 67, further comprising generat
ing the intermediate representation (IR) to include a com
bination of generic conversion features and Specific conver
Sion features, wherein generic conversion features are
capable of being implemented acroSS a plurality of possible
processor architectures while Specific conversion features
are capable of being implemented by a specific processor
architecture.

69. The method of claim 68, wherein the particular
translator configuration being undertaken determines the
respective combination of generic conversion features and
Specific conversion features utilized.

70. A computer readable Storage medium having transla
tor Software resident thereon in the form of computer
readable code executable by a computer for performing a
method of translating Subject program code capable of being
executed on a Subject processor architecture to target pro
gram code capable of being executed on a target processing
architecture using a translator configurable between a plu
rality of possible Subject/target processing architecture pair
ings, said method comprising:

Selecting a Subject processor architecture on which the
Subject program code was designed to be executed
from a plurality of possible Subject processor architec
tures,

Selecting a target processor architecture on which the
target program code is to be executed from a plurality
of possible target processor architectures, and

configuring a translator to translate the Subject program
code to target program code using a pairing of the
Selected Subject processor architecture and the Selected
target processor architecture.

71. The computer-readable storage medium of claim 70,
Said translator Software further containing computer read
able code executable by a computer to translate the Subject
program code to target program code dynamically at run
time while the target program code is being executed on the
target processing architecture.

72. The computer-readable storage medium of claim 70,
Said translator Software further containing computer read
able code executable by a computer to perform the following
Steps:

decoding instructions in the Subject program code,
determining which types of intermediate representation

(IR) nodes out of a plurality of possible types of IR
nodes to utilize in an intermediate representation of the
decoded program code for each respective instruction
in the decoded program code based upon the particular
translator configuration being undertaken based on the
pairing of the Selected Subject processor architecture
and the Selected target processor architecture; and

14
Nov. 4, 2004

generating an intermediate representation (IR) of the
decoded program code to include at least one type of IR
nodes out of a plurality of possible types of IR nodes,

wherein the IR nodes in the intermediate representation
(IR) are abstract representations of the expressions,
calculations, and operations performed by the program
code.

73. The computer-readable storage medium of claim 72,
Said translator Software further containing computer read
able code executable by a computer to generate the inter
mediate representation (IR) to include a combination of
generic conversion features and Specific conversion features,
wherein generic conversion features are capable of being
implemented acroSS a plurality of possible processor archi
tectures while Specific conversion features are capable of
being implemented by a specific processor architecture.

74. The computer-readable storage medium of claim 73,
wherein the particular translator configuration being under
taken determines the respective combination of generic
conversion features and Specific conversion features uti
lized.

75. A translator apparatus for use in a target computing
environment having a processor and a memory coupled to
the processor for translating Subject program code capable
of being executed on a Subject processor architecture to
target program code capable of being executed on the target
processor architecture of the target computing environment
using a translator configurable between a plurality of pos
Sible Subject/target processing architecture pairings, the
translator apparatus comprising:

a Subject processor Selecting mechanism configured to
Select a Subject processor architecture on which the
Subject program code was designed to be executed
from a plurality of possible Subject processor architec
tures,

a target processor Selecting mechanism configured to
Select a target processor architecture on which the
target program code is to be executed from a plurality
of possible target processor architectures, and

a configuration mechanism configured to configure a
translator to translate the Subject program code to target
program code using a pairing of the Selected Subject
processor architecture and the Selected target processor
architecture.

76. The translator apparatus of claim 75, further compris
ing a translation mechanism configured to translate the
Subject program code to target program code dynamically at
run-time while the target program code is being executed on
the target processing architecture.

77. The translator apparatus of claim 75, further compris
ing:

a decoding mechanism configured to decode instructions
in the Subject program code;

an intermediate representation (IR) type determining
mechanism configured to determine which types of
intermediate representation (IR) nodes out of a plurality
of possible types of IR nodes to utilize in an interme
diate representation of the decoded program code for
each respective instruction in the decoded program
code based upon the particular translator configuration

US 2004/0221277 A1

being undertaken based on the pairing of the Selected
Subject processor architecture and the Selected target
processor architecture, and

an intermediate representation (IR) generating mecha
nism configured to generate an intermediate represen
tation (IR) of the decoded program code to include at
least one type of IR nodes out of a plurality of possible
types of IR nodes;

wherein the IR nodes in the intermediate representation
(IR) are abstract representations of the expressions,
calculations, and operations performed by the program
code.

78. The translator apparatus of claim 77, wherein the
intermediate representation (IR) generating mechanism is

Nov. 4, 2004

further configured to generate the intermediate representa
tion (IR) to include a combination of generic conversion
features and Specific conversion features, wherein generic
conversion features are capable of being implemented acroSS
a plurality of possible processor architectures while specific
conversion features are capable of being implemented by a
Specific processor architecture.

79. The translator apparatus of claim 78, wherein the
particular translator configuration being undertaken deter
mines the respective combination of generic conversion
features and Specific conversion features utilized.

