

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(10) International Publication Number

WO 2018/027203 A1

(43) International Publication Date
08 February 2018 (08.02.2018)

(51) International Patent Classification:

C07K 16/30 (2006.01) *A61K 39/395* (2006.01)
C07K 16/28 (2006.01) *A61P 35/00* (2006.01)
A61K 39/00 (2006.01)

los, California 94070 (US). **LUEHRSEN, Kenneth**; c/o 75 Shoreway Rd., Suite A, San Carlos, California 94070 (US).

(21) International Application Number:

PCT/US2017/045641

(74) Agent: **LOCKYER, Jean M.** et al.; KILPATRICK TOWNSEND & STOCKTON LLP, Mailstop: IP Docketing - 22, 1100 Peachtree Street, Suite 2800, Atlanta, Georgia 30309 (US).

(22) International Filing Date:

04 August 2017 (04.08.2017)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

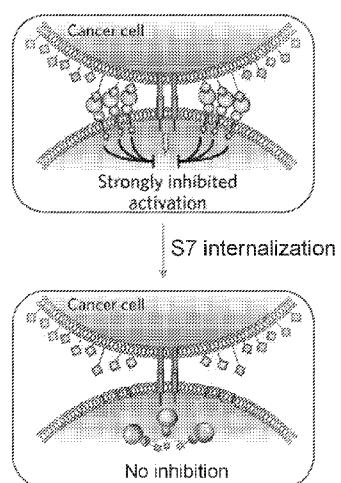
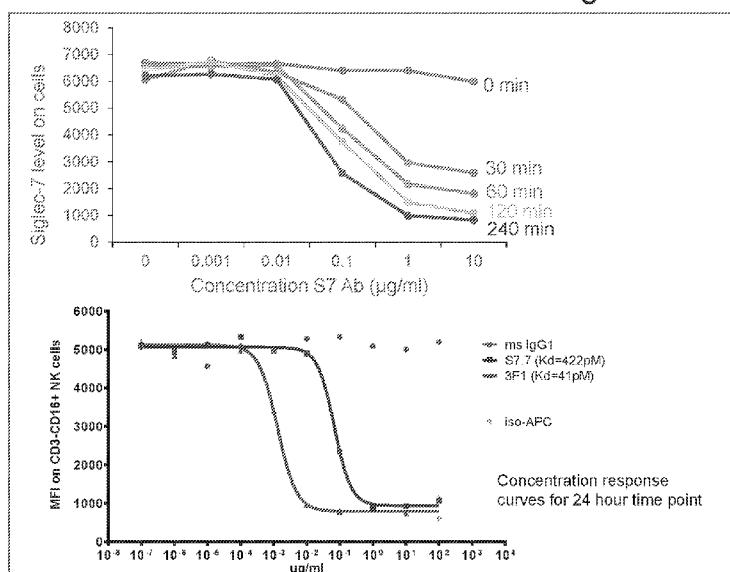
(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:



62/371,680 05 August 2016 (05.08.2016) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(71) Applicant: **ALLAKOS, INC.** [US/US]; 75 Shoreway Rd, Suite A, San Carlos, California 94070 (US).(72) Inventors: **BEBBINGTON, Christopher**; c/o 75 Shoreway Rd., Suite A, San Carlos, California 94070 (US). **KO-RVER, Wouter**; c/o 75 Shoreway Rd., Suite A, San Carlos, California 94070 (US). **TOMASEVIC, Nenad**; c/o 75 Shoreway Rd., Suite A, San Carlos, California 94070 (US). **EL BADER, Suzy**; c/o 75 Shoreway Rd., Suite A, San Car-

(54) Title: ANTI-SIGLEC-7 ANTIBODIES FOR THE TREATMENT OF CANCER

Figure 10

(57) Abstract: The invention provides methods and compositions for the treatment of cancer using anti-Siglec-7 antibodies.

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

ANTI-SIGLEC-7 ANTIBODIES FOR THE TREATMENT OF CANCER

5 CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claim priority benefit of U. S. provisional application no. 62/371,680, filed August 5, 2016, which is herein incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] Siglec-7, also known as p75 or AIRM, is a member of the sialic acid-binding lectins (Siglec) of the immunoglobulin (Ig) superfamily. Siglec receptors bind glycans containing sialic acid, but differ in their recognition of the linkage regiochemistry and spatial distribution of sialic residues. The members of the family also have distinct expression patterns. High level expression of Siglec-7 has been observed on Natural Killer (NK) cells. Expression has also been observed on a subset CD8+ T cells. Siglec-7 has also been observed to have an inhibitory role on NK cell-mediated tumor clearance (Jandus, *et al.*, *J. Clin. Invest.* 124: 1810-20, 2014); Hudak *et al.*, *Nat. Chem. Biol.* 10:69-77, 2014).

[0003] A broad range of human malignancies overexpress Siglec-7 ligands sialoglycans, including sialoglycans that are the ligands for Siglec-7. Siglec-7 has also been observed to have an inhibitory role on NK cell-mediated tumor clearance (Jandus, *et al.*, *J. Clin. Invest.* 124: 1810-20, 2014).

BRIEF SUMMARY OF ASPECTS OF THE DISCLOSURE

[0004] The disclosure is based, in part, on the discovery that an elevated level of tumor-infiltrating CD8+ T cells express Siglec-7; and further, that an antibody that blocks Siglec-7-ligand binding interactions and/or decreases the level of Siglec-7 that is expressed on CD8+ cells increases killing of tumor cells. Accordingly, the disclosure provides antibodies and uses of such antibodies for inhibiting tumor growth.

[0005] In one aspect, the disclosure provides a method of inhibiting proliferation of tumor cells, the method comprising administering a therapeutically effective amount of an anti-Siglec-7 antibody to a patient that has cancer, wherein the patient has a primary tumor or metastatic lesion that comprises an elevated level of CD8+ infiltrating-T cells that express Siglec-7, and further, wherein the tumor or metastatic lesion comprises cancer cells that express sialylated Siglec-7 ligands. In some embodiments, the anti-Siglec-7 antibody has a K_D

of 50 pM or less. In some embodiments, the anti-Siglec-7 antibody blocks ligand binding at an IC₅₀ of less than about 4000 pM, or blocks ligand binding at an IC₅₀ of less than about 3500 pM, and optionally may have a K_D of 50 pM or less. In some embodiments, which may be combined with the foregoing embodiments, the anti-Siglec-7 antibody has an internalization 5 activity of less than about 70 pM or than about 25 pM. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 70 pM or than about 25 pM; and does not block ligand binding.

[0006] In some embodiments, the anti-Siglec-7 antibody for use in the method blocks binding of ligand to Siglec-7 and competes with an antibody QA79 produced from the 10 hybridoma deposited under accession number ICLC PD99003 for binding to Siglec-7, but does not compete with antibody Z176 or antibody S7.7 for binding to Siglec-7. In some embodiments, the antibody competes with an antibody comprising the V_H and V_L of 2G12 as designated in Figures 1 and 2 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy 15 chain variable region sequence of SEQ ID NO:2. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:2. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:2. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises at 20 least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:16. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:16. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID NO:16. In some embodiments, the antibody has six 25 CDRs of antibody 2G12 as designated in Figures 1 and 2.

[0007] In some embodiments, the anti-Siglec-7 antibody for use in the method has internalization activity, does not block ligand binding to Siglec-7, and competes with antibody S7.7, but not with antibody QA79 or antibody Z176 for binding to Siglec-7. In some embodiments, the antibody competes with an antibody comprising the V_H and V_L of 8A2 as 30 designated in Figures 1 and 2 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:4. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence of

SEQ ID NO:4. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:4. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:18. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:18. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID NO:18. In some embodiments, the anti-Siglec-7 antibody has six CDRs of the antibody designated as 8A2 in Figures 1 and 2.

10 [0008] In some embodiments, the anti-Siglec-7 antibody for use in the method, has internalization activity, does not block ligand binding to Siglec-7, and competes with antibody Z176, but not with QA79 or S7.7 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody competes with an antibody comprising the V_H and V_L of the antibody designated as 5D1 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:3. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:3. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:3. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:17. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:17. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID NO:17. In some embodiments, the antibody has six CDRs of the antibody designated as 5D1 in Figures 1 and 2.

20 [0009] In some embodiments, the anti-Siglec-7 antibody for use in the method has internalization activity, does not block ligand binding to Siglec-7, and does not compete with antibody Z176, QA79, or S7.7 for binding to Siglec-7. In some embodiments, the antibody competes with an antibody comprising a V_H and V_L of the antibody designated as 4B12 in Figures 1 and 2 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:11. In some embodiments, the anti-Siglec-7 antibody has a

VH region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:11. In some embodiments, the anti-Siglec-7 antibody has a VH region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:11. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises at least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:25. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:25. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID NO:25. In some embodiments, the anti-Siglec-7 antibody has six CDRs of the antibody designated as 4B12 in Figures 1 and 2.

[0010] In any of the foregoing embodiments, the antibody may be in a monovalent format or may be in an Fv, Fab, Fab', scFv, diabody, or F(ab')₂ fragment. In some embodiments, such an antibody is PEGylated.

[0011] In some embodiments, the patient that is administered the antibody has a solid tumor, such as melanoma, lung cancer, or colorectal cancer.

[0012] In a further aspect, the disclosure provide an anti-Siglec-7 antibody that blocks binding of ligand to Siglec-7 and competes with antibody QA79 produced from the hybridoma deposited under accession number ICLC PD99003 for binding to Siglec-7, but does not compete with antibody Z176 or antibody S7.7 for binding to Siglec-7. In some embodiments, the antibody competes with an antibody comprising the V_H and V_L of 2G12 as designated in Figures 1 and 2 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:2. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:2. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:2. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:16. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:16. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID

NO:16. In some embodiments, the antibody has six CDRs of antibody 2G12 as designated in Figures 1 and 2.

[0013] In another aspect, the disclosure provides an anti-Siglec-7 antibody that has internalization activity, does not block ligand binding to Siglec-7, and competes with antibody 5 S7.7, but not with antibody QA79 or antibody Z176 for binding to Siglec-7. In some embodiments, the antibody competes with an antibody comprising the V_H and V_L of 8A2 as designated in Figures 1 and 2 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106. In 10 some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:4, SEQ ID 15 NO:104, or SEQ ID NO:106. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light 20 chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107. In some emodiments, the anti-Siglec-7 antibody has six CDRs of the antibody designated as 8A2 in Figures 1 and 2.

[0014] In still another aspect, the disclosure provides an anti-Siglec-7 antibody that has internalization activity, does not block ligand binding to Siglec-7, and competes with antibody 25 Z176, but not with QA79 or S7.7 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody competes with an antibody comprising the V_H and V_L of the antibody designated as 5D1 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:3. In some embodiments, the anti-Siglec-7 antibody 30 has a V_H region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:3. In some embodiments, the anti-Siglec-7 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:3. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises at least one

CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:17. In some embodiments, the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:17. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID NO:17. In some embodiments, the antibody has six CDRs of the antibody designated as 5D1 in Figures 1 and 2.

[0015] In a further aspect, the disclosure provide an anti-Siglec-7 antibody that has internalization activity, does not block ligand binding to Siglec-7, and does not compete with antibody Z176, QA79, or S7.7 for binding to Siglec-7. In some embodiments, the antibody competes with an antibody comprising a V_H and V_L of the antibody designated as 4B12 in Figures 1 and 2 for binding to Siglec-7. In some embodiments, the anti-Siglec-7 antibody has a VH region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable region sequence of SEQ ID NO:11. In some embodiments, the anti-Siglec-7 antibody has a VH region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:11. In some embodiments, the anti-Siglec-7 antibody has a VH region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence of SEQ ID NO:11. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises at least one CDR, or at least two CDRs, of a light chain variable region sequence of SEQ ID NO:25. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises a CDR3 of a light chain variable region sequence of SEQ ID NO:25. In some embodiments, the anti-Siglec-7 antibody has a VL region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence of SEQ ID NO:25. In some embodiments, the anti-Siglec-7 antibody has six CDRs of the antibody designated as 4B12 in Figures 1 and 2.

[0016] The disclosure additionally provides an anti-Siglec-7 antibody having a V_H region that comprises at least one CDR, or at least two CDRs, of a V_H region sequence set forth in Figure 1; or an anti-Siglec-7 antibody having a V_H region that comprises a CDR1, CDR2, and CDR3 of one of the heavy chain variable region sequences set forth in Figure 1.

[0017] The disclosure further provides an anti-Siglec-7 antibody having a V_L region that comprises at least one CDR, or at least two CDRs, of a V_L region sequence set forth in Figure 2; or an anti-Siglec-7 antibody having a VL region that comprises a CDR1, CDR2, and CDR3 of one of the light chain variable region sequences set forth in Figure 2.

[0018] In some aspects, the invention provides an anti-Siglec-7 antibody comprising a V_H region that comprises at least one CDR, or at least two CDRs, of a V_H region sequence set forth in Figure 1; and a V_L region that comprises at least one CDR, or at least two CDRs, of a V_L region sequence set forth in Figure 2, where the V_L sequence in Figure 2 has the same antibody designation as the V_H sequence in Figure 1.

[0019] In some embodiment an anti-Siglec-7 antibody of the disclosure comprises a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequences set forth in Figure 1; and a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable region sequence set forth in Figure 2, where the V_L sequence in Figure 2 has the same antibody designation as the VH sequence in Figure 1.

[0020] In another aspect, provided herein is an anti-Siglec-7 antibody that competes with an antibody having a variable heavy chain sequence of SEQ ID NO:1 and a variable light chain sequence of SEQ ID NO:15 for binding to Siglec-7. In some embodiments, the antibody comprises a heavy chain variable region comprising a CDR3 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61, in which 1, 2, or 3 amino acids are substituted; or comprises a heavy chain variable region comprising a CDR3 as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61. In some embodiments, the heavy chain variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are substituted; and/or a CDR2 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are substituted. In some embodiments, the heavy chain variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 and a CDR2 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61. In some emodiments, which can be combined with any of the preceding embodiments in this paragraph, the anti-Siglec-7 antibody comprises a light chain variable region comprising a CDR3 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino acids are substituted; or comprises a light chain variable region comprising a CDR3 as set forth in any one of SEQ ID NOS:62 and 64-78. In some embodiments, the light chain variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino acids are substituted; and/or a CDR2 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino acids are substituted. In some embodiments, the light chain variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78 and a CDR2 having a sequence as set forth in any

one of SEQ ID NOS:62 and 64-78. In some embodiments, the anti-Siglec-7 antibody has ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of about 70 pM or less. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 25 pM.

[0021] In another aspect, provided herein is an anti-Siglec-7 antibody that comprises a heavy chain variable region having at least 80%, or at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of any one of SEQ ID NOS:29-31, 33, and 35-61; and/or a light chain variable region having at least 80%, or at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of any one of SEQ ID NOS:62 and 64-78. In some embodiments, the anti-Siglec-7 antibody comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of any of SEQ ID NOS:41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60 or 61; and a light chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of SEQ ID NO:69, 70, 71, 72, 73, 74, 75, 76, 77, or 78. In some embodiments, the anti-Siglec-7 antibody has ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of about 70 pM or less. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 25 pM.

[0022] In a further aspect, provided herein is an anti-Siglec-7 antibody comprises a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in a heavy chain variable region sequence selected from SEQ ID NO:43, 45, 46, 47, 48, 49, 50, 51, 54, 55, 57, and 58; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences of SEQ ID NO:69. Additionally provided herein is an anti-Siglec-7 antibody that comprises a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences

as set forth in a heavy chain variable region sequence selected from SEQ ID NO:53, 54, 51, 55, 58, and 59; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences of SEQ ID NO:78. In some embodiments, the anti-Siglec-7 antibody has ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent 5 Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of about 70 pM or less. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 25 pM.

10 [0023] In a further aspect, provided herein is an anti-Siglec-7 antibody that comprises:
a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:43, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;
b) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set 15 forth in SEQ ID NO:45, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;
c) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:46, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;
20 (d) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:47, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;
e) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set 25 forth in SEQ ID NO:48, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;
(f) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:49, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;
(g) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set 30 forth in SEQ ID NO:50, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(h) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:51, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

5 (i) CDR1, CDR2, and CDR3 sequences as set forth in a heavy chain variable region sequence SEQ ID NO:54, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(j) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:55, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

10 (k) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:57, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69; or

(l) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:58, and a light chain variable region comprising the CDR1, CDR2, and 15 CDR3 sequences as set forth in SEQ ID NO:69. In some embodiments, the anti-Siglec-7 antibody has ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an 20 internalization activity of about 70 pM or less. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 25 pM.

[0024] In an additional aspect, provided herein is an anti-Siglec-7 antibody that comprises:

a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:53; and a light chain variable region comprising the CDR1, CDR2, and 25 CDR3 sequences as set forth in SEQ ID NO:78;

(b) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:54; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

(c) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set 30 forth in SEQ ID NO:51; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

(d) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:55; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

(e) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:58; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78; or

(f) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:59; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78. In some embodiments, the anti-Siglec-7 antibody has 10 ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of about 70 pM or less. In some embodiments, the anti-Siglec-7 antibody has an 15 internalization activity of less than about 25 pM.

[0025] In a further aspect, provided herein is an anti-Siglec-7 antibody that comprises:

a) a heavy chain variable region comprising the amino acid sequence SEQ ID NO:43 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(b) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:45 and a 20 light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(c) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:46 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(d) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:47 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

25 (e) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:48 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(f) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:49 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(g) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:50 and a 30 light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(h) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:51 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(i) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:54 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

(j) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:55 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69;

5 (k) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:57 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69; or

(l) a heavy chain variable comprising the amino acid sequence of SEQ ID NO:58 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:69. In some embodiments, the anti-Siglec-7 antibody has ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of about 70 pM or less. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 25

10 pM.

15

[0026] In an additional aspect, provided herein is an anti-Siglec-7 antibody that comprises:

a) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:53 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:78;

(b) heavy chain variable region comprising the amino acid sequence of SEQ ID NO:54 and a

20 light chain variable region comprising the amino acid sequence of SEQ ID NO:78;

(c) heavy chain variable region comprising the amino acid sequence of SEQ ID NO:51 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:78;

(d) heavy chain variable region comprising the amino acid sequence of SEQ ID NO:55 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:78;

25 (e) heavy chain variable region comprising the amino acid sequence of SEQ ID NO:58 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:78; or

(f) heavy chain variable region comprising the amino acid sequence of SEQ ID NO:59 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:78. In some embodiments, the anti-Siglec-7 antibody has ligand blocking activity; and/or has a K_D of less than about 100 pM when measured as a monovalent Fab; and/or has an internalization activity of less than about 100 pM. In some embodiments, the anti-Siglec-7 antibody has a K_D of less than about 75 pM when measured as a monovalent Fab. In some embodiments, the anti-Siglec-7 antibody has an internalization activity of about 70 pM or less. In some

30

embodiments, the anti-Siglec-7 antibody has an internalization activity of less than about 25 pM.

[0027] In some embodiments, the anti-Siglec-7 antibody of the disclosure as described in the foregoing paragraphs is in a monovalent format, or an antibody fragment format, such as an 5 Fv, Fab, Fab', scFv, diabody, or F(ab')₂ fragment.

[0028] In some emodiments, the anti-Siglec-7 antibody of the disclosure as described in the foregoing paragraphs is a multivalent form or bivalent form. In some embodiments, the antibody isn IgG, such as an IgG1, IgG2, IgG3, or IgG4.

[0029] In a further aspect, the invention provides a bispecific or multi-specific antibody that 10 comprises an antibody of any one of the foregoing embodiments.

[0030] In an additional aspect, the invention provides a method of inhibiting proliferation of tumor cells, the method comprising administering a therapeutically effective amount of an antibody of any of the antibodies described in the foregoing paragraphs, or a bispecific or multi-specific antibody comprising such an antibody, to a patient that has a tumor that 15 expresses sialylated Siglec-7 ligands. In some embodiments, the tumor expresses sialylated Siglec-7 ligands in an amount above that which is detected in normal cells of the corresponding cell type. In some embodiments, the tumor comprises an elevated level of CD8+ infiltrating T cells that express Siglec-7.

[0031] In a further aspect, the invention provides a method of identifying a patient that is a 20 candidate for treatment with an anti-Siglec-7 antibody, the method comprising determining the proportion of CD8+ T cells that have infiltrated a tumor, or a metastatic lesion, that express detectable Siglec-7 on the cell surface. In some embodiments, a patient that has a tumor that is a candidate for treatment with an anti-Siglec-7 antibody, has at least 10% or at least 20%, or greater of tumor-infiltrating CD8+ T cells in the tumor or a metastatic lesion that express 25 detectable Siglec-7 on the cell surface. In some embodiments, the level of Siglec-7 expression is determined using an anti-Siglec-7 antibody. In some embodiments, the level of expression is determined by flow cytometry or immunohistochemistry.

[0032] The disclosure additionally provides a method of identifying a patient that has a tumor that is a candidate for treatment with an anti-Siglec-7 antibody, the method comprising 30 determining the proportion of CD8+ infiltrating T cells in a tumor or metastatic lesion that express detectable Siglec-7, wherein a patient that has a tumor or metastatic lesion in which at

least 10%, or at least 20%, of infiltrating CD8+ T express Siglec-7 is a candidate for treatment with an anti-Siglec-7 antibody. In some embodiments, the level of Siglec-7 expression is determined using an anti-Siglec-7 antibody. In some embodiments, the level of expression is determined by flow cytometry or immunohistochemistry.

5 [0033] In a further aspect, the disclosure provides a method of inhibiting proliferation of tumor cells, the method comprising administering a therapeutically effective amount of an anti-Siglec-7 antibody to a patient that has cancer, wherein the patient has a primary tumor or metastatic lesion that comprises an elevated level of CD8+ infiltrating-T cells that express Siglec-7; and further, wherein the tumor or metastatic lesion comprises cancer cells that
10 express sialylated Siglec-7 ligands, *e.g.*, express sialylated Siglec-7 ligands at a level higher than normal tissue. In some embodiments, the anti-Siglec-7 antibody has a K_D of 70 pM or less when measured as a monovalent Fab.

[0034] In a further aspect, the disclosure further provides use of an anti-Siglec-7 antibody as described herein in a method of treating a cancer as described herein.

15 **BRIEF DESCRIPTION OF THE DRAWINGS**

[0035] Figure 1 provides illustrative heavy chain variable region sequences of anti-Siglec-7 antibodies of the invention. The CDRs as defined by Kabat are underlined.

[0036] Figure 2 provides illustrative heavy chain variable region sequences of anti-Siglec-7 antibodies of the invention. The CDRs as defined by Chothia are underlined.

20 [0037] Figure 3 provides illustrative light chain variable region sequences of anti-Siglec-7 antibodies of the invention. The CDRs as defined by both Kabat and Chothia are underlined.

[0038] Figure 4 provides illustrative data showing that Siglec-7 is detected on a high percentage of tumor-infiltrating CD8+ cells in fresh primary tumors.

25 [0039] Figure 5 provides data illustrating that CD8+ T cells isolated from subsets of tumors have a high level of Siglec-7.

[0040] Figure 6 data illustrating that Siglec-7 ligands are expressed on subsets of tumors.

[0041] Figure 7 provides data showing anti-Siglec-7 antibodies of the present disclosure that have improved K_D values compared to antibodies Z176, S7.7, or QA79.

[0042] Figure 8 provides data showing anti-Siglec-7 antibodies of the present disclosure that have improved ligand blocking activity compared to antibodies Z176, S7.7, or QA79.

[0043] Figure 9 provides data showing anti-Siglec-7 antibodies of the present disclosure that have improved internalization activity compared to antibodies Z176, S7.7, or QA79.

5 **[0044]** Figure 10 provides data illustrating rapid concentration-dependent, antibody-induced internalization of Siglec-7 on human NK cells using an antibody of the present disclosure.

[0045] Figure 11 provides data illustrating non-ligand blocking, internalization activity of an antibody of the present disclosure.

DETAILED DESCRIPTION OF ASPECTS FO THE DISCLOSURE

10 **Terminology**

[0046] As used in herein, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “an antibody” optionally includes a combination of two or more such molecules, and the like.

15 **[0047]** The term “about” as used herein refers to the usual error range for the respective value readily known to the skilled person in this technical field, for example $\pm 20\%$, $\pm 10\%$, or $\pm 5\%$, are within the intended meaning of the recited value.

20 **[0048]** Siglec-7, also known as p75 or AIRM, is a member of the sialic acid-binding lectins (Siglec) of the immunoglobulin (Ig) superfamily. Siglec receptors bind glycans containing sialic acid, but differ in their recognition of specific carbohydrate structures. A human Siglec-7 protein sequence available under accession number NP_055200.1 is

1 mllllllpl1 wgrerveggk snrkdy1tm qssvtvqegm cvhvrcsfy pvdsqtdsdp
61 vhgywfragn diswkapvat nnpawavqee trdrfh11gd pqtknctls1i rdarmsdagr
121 yffrmekgni kwnykydqls vnvttalthr1p nilipgtles gcfqnltcsv pwaceqgtpp
181 miswmgtsvs plhpsttrss vltlipqpqh htgtslctqvt lpgagvttnr tiqlnvsypp
241 qnltvtvfqg egtastalgn sss1svlegq slrlvcavds nppar1swtw rsltl1psqp
301 snplvlelqv hlgdegeftc raqns1gqsh vslnls1lqqe ytgkmrpvsg vllgavggag
361 atalvflsfc vifivvrscr kksarpaadv gdigmkdant irgsasqgnl teswaddnpr
421 hhglaahssg eereiqyapl sfhkgepqdl sgqeatnney seikipk (SEQ ID
NO:108) .

30 **[0049]** The term "antibody" is used herein in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies, such as bispecific antibodies, and antibody fragments so long as they exhibit the desired antigen-binding activity.

[0050] The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variant antibodies, *e.g.*, containing naturally occurring mutations or arising during production of a

5 monoclonal antibody preparation, such variants generally being present in minor amounts. In contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. Thus, the modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially 10 homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including but not limited to the hybridoma method, recombinant DNA methods, phage-display methods, and methods utilizing transgenic animals containing all or part of the human immunoglobulin loci.

15 **[0051]** An "antibody fragment" refers to a molecule other than an intact antibody that comprises a portion of an intact antibody and that binds the antigen to which the intact antibody binds. Examples of antibody fragments include but are not limited to Fv, Fab, Fab', Fab'-SH, F(ab')₂; diabodies; linear antibodies; single-chain antibody molecules, such as scFv molecules; and multispecific antibodies formed from antibody fragments.

20 **[0052]** An "antibody that binds to the same epitope" as a reference antibody refers to an antibody that blocks binding of the reference antibody to its antigen in a competition assay by 50% or more, and conversely, the reference antibody blocks binding of the antibody to its antigen in a competition assay by 50% or more. An exemplary competition assay is provided herein.

25 **[0053]** As used herein, "V-region" refers to an antibody variable region domain comprising the segments of Framework 1, CDR1, Framework 2, CDR2, and Framework 3, including CDR3 and Framework 4, which segments are added to the V-segment as a consequence of rearrangement of the heavy chain and light chain V-region genes during B-cell differentiation.

30 **[0054]** As used herein, "complementarity-determining region (CDR)" refers to the three hypervariable regions (HVRs) in each chain that interrupt the four "framework" regions established by the light and heavy chain variable regions. The CDRs are the primary contributors to binding to an epitope of an antigen. The CDRs of each chain are referred to as

CDR1, CDR2, and CDR3, numbered sequentially starting from the N-terminus, and are also identified by the chain in which the particular CDR is located. Thus, a VH CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found, whereas a VL CDR1 is the CDR1 from the variable domain of the light chain of the antibody in which it is found. The term "CDR" may be used interchangeably with "HVR".

5 [0055] The amino acid sequences of the CDRs and framework regions can be determined using various well known definitions in the art, e.g., Kabat, Chothia, international ImMunoGeneTics database (IMGT), and AbM (see, e.g., Johnson et al., *supra*; Chothia & Lesk, 1987, Canonical structures for the hypervariable regions of immunoglobulins. *J. Mol. 10 Biol.* 196, 901-917; Chothia C. et al., 1989, Conformations of immunoglobulin hypervariable regions. *Nature* 342, 877-883; Chothia C. et al., 1992, structural repertoire of the human VH segments *J. Mol. Biol.* 227, 799-817; Al-Lazikani et al., *J.Mol.Biol* 1997, 273(4)). Definitions of antigen combining sites are also described in the following: Ruiz et al., IMGT, the international ImMunoGeneTics database. *Nucleic Acids Res.*, 28, 219–221 (2000); and 15 Lefranc,M.-P. IMGT, the international ImMunoGeneTics database. *Nucleic Acids Res.* Jan 1;29(1):207-9 (2001); MacCallum et al, Antibody-antigen interactions: Contact analysis and binding site topography, *J. Mol. Biol.*, 262 (5), 732-745 (1996); and Martin et al, *Proc. Natl Acad. Sci. USA*, 86, 9268–9272 (1989); Martin, et al, *Methods Enzymol.*, 203, 121–153, (1991); Pedersen et al, *Immunomethods*, 1, 126, (1992); and Rees et al, In Sternberg M.J.E. 20 (ed.), *Protein Structure Prediction*. Oxford University Press, Oxford, 141–172 1996).

Reference to CDRs as determined by Kabat numbering are based, for example, on Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institute of Health, Bethesda, MD (1991)). Chothia CDRs are determined as defined by Chothia (see, e.g., Chothia and Lesk *J. Mol. Biol.* 196:901-917 (1987)).

25 [0056] "Epitope" or "antigenic determinant" refers to a site on an antigen to which an antibody binds. Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope 30 typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., *Epitope Mapping Protocols in Methods in Molecular Biology*, Vol. 66, Glenn E. Morris, Ed (1996).

[0057] As used herein, "chimeric antibody" refers to an immunoglobulin molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region, or portion thereof, having a different or altered antigen specificity; or with corresponding sequences from another species or from another antibody class or subclass.

[0058] An "Fc region" refers to the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus, Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM, and the flexible hinge N-terminal to these domains. For IgA and IgM Fc may include the J chain. For IgG, Fc comprises immunoglobulin domains C γ 2 and C γ 3 and the hinge between C γ 1 and C γ . It is understood in the art that the boundaries of the Fc region may vary, however, the human IgG heavy chain Fc region is usually defined to comprise residues C226 or P230 to its carboxyl-terminus, using the numbering according to the EU index as in Kabat et al. (1991, NIH Publication 91-3242, National Technical Information Service, Springfield, Va.). The term "Fc region" may refer to this region in isolation or this region in the context of an antibody or antibody fragment. "Fc region" includes naturally occurring allelic variants of the Fc region as well as modifications that modulate effector function. Fc regions also include variants that don't result in alterations to biological function. For example, one or more amino acids can be deleted from the N-terminus or C-terminus of the Fc region of an immunoglobulin without substantial loss of biological function. Such variants can be selected according to general rules known in the art so as to have minimal effect on activity (see, e.g., Bowie, *et al.*, *Science* 247:306-1310, 1990). For example, for IgG4 antibodies, a single amino acid substitution (S228P according to Kabat numbering; designated IgG4Pro) may be introduced to abolish the heterogeneity observed in recombinant IgG4 antibody (see, e.g., Angal, *et al.*, *Mol Immunol* 30:105-108, 1993).

[0059] The term "equilibrium dissociation constant" abbreviated (K_D), refers to the dissociation rate constant (k_d, time⁻¹) divided by the association rate constant (k_a, time⁻¹ M⁻¹). Equilibrium dissociation constants can be measured using any method. Thus, in some embodiments antibodies of the present disclosure have a K_D of less than about 50 nM, typically less than about 25 nM, or less than 10 nM, e.g., less than about 5 nM or than about 1 nM and

often less than about 10 nM as determined by surface plasmon resonance analysis using a biosensor system such as a Biacore® system performed at 37°C. In some embodiments, an antibody of the present disclosure has a K_D of less than 5×10^{-5} M, less than 10^{-5} M, less than 5×10^{-6} M, less than 10^{-6} M, less than 5×10^{-7} M, less than 10^{-7} M, less than 5×10^{-8} M, less than 10^{-8} M, less than 5×10^{-9} M, less than 10^{-9} M, less than 5×10^{-10} M, less than 10^{-10} M, less than 5×10^{-11} M, less than 10^{-11} M, less than 5×10^{-12} M, less than 10^{-12} M, less than 5×10^{-13} M, less than 10^{-13} M, less than 5×10^{-14} M, less than 10^{-14} M, less than 5×10^{-15} M, or less than 10^{-15} M or lower as measured as a bivalent antibody. In the context of the present invention, an “improved” K_D refers to a lower K_D . In some embodiments, an antibody of the present disclosure has a K_D of less than 5×10^{-5} M, less than 10^{-5} M, less than 5×10^{-6} M, less than 10^{-6} M, less than 5×10^{-7} M, less than 10^{-7} M, less than 5×10^{-8} M, less than 10^{-8} M, less than 5×10^{-9} M, less than 10^{-9} M, less than 5×10^{-10} M, less than 10^{-10} M, less than 5×10^{-11} M, less than 10^{-11} M, less than 5×10^{-12} M, less than 10^{-12} M, less than 5×10^{-13} M, less than 10^{-13} M, less than 5×10^{-14} M, less than 10^{-14} M, less than 5×10^{-15} M, or less than 10^{-15} M or lower as measured as a monovalent antibody, typically a monovalent Fab. In some embodiments, an anti-Siglec-7 antibody of the present disclosure has K_D less than 100 pM, *e.g.*, or less than 75 pM, *e.g.*, in the range of 1 to 100 pM, when measured as a monovalent Fab by surface plasmon resonance analysis using a biosensor system such as a Biacore® system performed at 37°C. In some embodiments, an anti-Siglec-7 antibody of the present disclosure has K_D less than 500 pM, *e.g.*, in the range of 1 to 500 pM, or 1 to 200, or 1 to 250 pM, when measured as a monovalent Fab by surface plasmon resonance analysis using a biosensor system such as a Biacore® system performed at 37°C. In the context of the present invention, an “improved” K_D refers to a lower K_D .

[0060] The term "monovalent molecule" as used herein refers to a molecule that has one antigen-binding site, *e.g.*, a Fab.

[0061] The term "bivalent molecule" as used herein refers to a molecule that has two antigen-binding sites. In some embodiments, a bivalent molecule of the present invention is a bivalent antibody or a bivalent fragment thereof. In some embodiments, a bivalent molecule of the present invention is a bivalent antibody. In some embodiments, a bivalent molecule of the present invention is an IgG. In general monoclonal antibodies have a bivalent basic structure. IgG and IgE have only one bivalent unit, while IgA and IgM consist of multiple bivalent units (2 and 5, respectively) and thus have higher valencies. This bivalence increases the avidity of antibodies for antigens.

[0062] The terms "monovalent binding" or "monovalently binds to" as used herein refer to the binding of one antigen-binding site to its antigen.

[0063] The terms "bivalent binding" or "bivalently binds to" as used herein refer to the binding of both antigen-binding sites of a bivalent molecule to its antigen. Preferably both 5 antigen-binding sites of a bivalent molecule share the same antigen specificity.

[0064] The term "valency" as used herein refers to the number of different binding sites of an antibody for an antigen. A monovalent antibody comprises one binding site for an antigen. A bivalent antibody comprises two binding sites for the same antigen.

[0065] The term "avidity" as used herein in the context of antibody binding to an antigen 10 refers to the combined binding strength of multiple binding sites of the antibody. Thus, "bivalent avidity" refers to the combined strength of two binding sites.

[0066] The phrase "specifically (or selectively) binds" to an antigen or target or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction whereby the antibody binds to the antigen or target of interest. In the context 15 of this invention, the antibody binds to SIGLEC-7 with a K_D that is at least 100-fold greater than its affinity for other antigens.

[0067] The terms "identical" or percent "identity," in the context of two or more polypeptide 20 sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same (e.g., at least 70%, at least 75%, at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher) identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region. Alignment for purposes of determining percent amino acid sequence identity can be performed in various methods, including those using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign 25 (DNASTAR) software. Examples examples of algorithms that are suitable for determining percent sequence identity and sequence similarity the BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990). Thus, BLAST 2.0 can be used with the default parameters described to determine percent sequence.

[0068] A "conservative" substitution as used herein refers to a substitution of an amino acid 30 such that charge, hydrophobicity, and/or size of the side group chain is maintained. Illustrative

sets of amino acids that may be substituted for one another include (i) positively-charged amino acids Lys, Arg and His; (ii) negatively charged amino acids Glu and Asp; (iii) aromatic amino acids Phe, Tyr and Trp; (iv) nitrogen ring amino acids His and Trp; (v) large aliphatic nonpolar amino acids Val, Leu and Ile; (vi) slightly polar amino acids Met and Cys; (vii) 5 small-side chain amino acids Ser, Thr, Asp, Asn, Gly, Ala, Glu, Gln and Pro; (viii) aliphatic amino acids Val, Leu, Ile, Met and Cys; and (ix) small hydroxyl amino acids Ser and Thr. Reference to the charge of an amino acid in this paragraph refers to the charge at physiological pH.

Anti-Siglec-7 antibodies

10 [0069] Anti-Siglec-7 antibodies of the invention have improved binding characteristics compared to known anti-Siglec 7 antibodies, such as improved internalization activity and/or improved ligand-blocking activity. In some embodiments, an antibody of the invention has internalizing activity, but does not block ligand binding.

15 [0070] An antibody of the invention typically has a lower K_D when compared to known anti-Siglec 7 monoclonal antibodies such as Z176, QA79, and S7.7. In some embodiments, an antibody of the invention has a K_D of less than about 100 pM, or less than about 75 pM, or less than about 50 pM, or less than about 40 pM or less than about 35 pM. In some embodiments, an antibody of the invention has a K_D of about 1 pM or less. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence of the 20 antibody designated as 16H11, 3F1, SL9, 8A2, 5D1, or 5G10 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention that has an improved K_D has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 16H11, 3F1, SL9, 8A2, 5D1, or 5G10 in Figure 3. In embodiments has six CDRs of an antibody designated as 16H11, 3F1, SL9, 8A2, 5D1, or 5G10 in Figures 1-3.

25 [0071] In some embodiments, has an enhanced ability to block ligand binding compared to previously characterized anti-Siglec 7 monoclonal antibodies. In the context of the present invention, the ability to block ligand binding refers to the concentration of monoclonal antibody at which 50% of Siglec-7 does not bind ligand. In some embodiments, an antibody of the invention is more potent in ligand-blocking activity, i.e., the IC_{50} for an antibody for ligand 30 blocking, is lower than that of a known antibody, such as such as Z176, QA79, and S7. Ligand blocking activity can be assessed using known assays. For example, ligand blocking activity may be determined using a cell line, such as the human melanoma cell line A375, that

expresses high levels of ligands for Siglec-7 on the cell surface. IC₅₀ values for blocking can be determined, for example, as explained in the examples section. In some embodiments, an antibody of the invention that has improved ligand blocking activity has an IC₅₀ of less than 4000 pM, or less than about 3500 pM or less than about 3000 pM or less than about 2000 pM
5 or less than about 1500 pM or less than about 1000 pM or about 500 pM or less when assayed under the assay conditions described in the Examples section. In some embodiments, an antibody of the invention that exhibits improved ligand blocking activity has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 9D4, SL13, or 5G10 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 9D4, SL13, or 5G10
10 in Figure 3. In embodiments has six CDRs of an antibody designated as 9D4, SL13, or 5G10 in Figures 1-3.

[0072] In some embodiments, an anti-Siglec-7 antibody of the present invention exhibits improved internalization compared to previously characterized anti-Siglec-7 monoclonal
15 antibodies. In the present disclosure, internalization activity refers to the concentration of antibody at which 50% of Siglec-7 is internalized in 24 hours on healthy donor Natural Killer (NK) cells. In the context of the present invention, an “enhanced” or “improved” internalization activity means that the IC₅₀ for internalization is lower than that of a known antibody, such as such as Z176, QA79, and S7. Internalization can be assessed using known assays. For example, PBMC obtained from healthy donors may be used to determine internalization activity of anti-Siglec-7 antibodies. IC₅₀ values for internalization can be determined, for example, as described in the Examples section. In some embodiments, an antibody of the invention has an internalizing IC₅₀ of less than about 70 pM, In some embodiments, an antibody has an internalizing IC₅₀ of less than about 60 pM, or less than
20 about 50 pM, or less than about 40 pM, or less than about 30 pM, or less than about 25 pM, or less than about 20, or less than about 10 pM when assayed under the assay conditions described in the Examples section. In some embodiments, an antibody of the invention having an improved internalization activity has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 3F1, SL9, 16H11, 8A2, SL2, 5D1, or 10E11 in Figure
25 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 3F1, SL9, 16H11, 8A2, SL2, 5D1, or 10E11 in Figure 3. In embodiments has six CDRs of an antibody designated as 3F1, SL9, 16H11, 8A2, SL2, 5D1, or 10E11 in Figures 1-3. In some embodiments, an antibody of
30

the invention having an improved internalization activity has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 3F1 or 16H11 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 3F1 or 16H11 in Figure 3. In 5 embodiments has six CDRs of an antibody designated as 9D4, SL13, or 5G10 in Figures 1-3.

[0073] In some embodiments, an anti-Siglec 7 antibody of the present invention, internalizes Siglec-7, but does not block binding of the Siglec-7 ligand to Siglec-7. In the context of the present invention, an antibody that does not block binding of ligand to Siglec-7 refers to an antibody that does not result in more than a 25% reduction in ligand binding when assayed 10 under conditions as explained in the Examples section. In some embodiments, an antibody of the invention that internalizes Siglec-7 ligand, but does not block ligand binding to Siglec-7 has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 4B12 or 8A2 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, three CDRs of a V_L sequence of the antibody designated as 4B12 or 15 8A2 in Figure 3. In embodiments has six CDRs of an antibody designated as 4B12 or 8A2 in Figures 1-3.

[0074] In some embodiments, an anti-Siglec 7 antibody of the present invention binds to distinct epitopes relative to described anti-Siglec-7 antibodies such as such as Z176, QA79, and S7. Z176, and S7.7 are commercially available anti-Siglec-7 antibodies. QA79 is 20 commercially available from eBiosciences. The hybridoma that produces QA79 is also available under ICLC accession number PD99003. Z176 is available from Beckman Coulter and S7.7 is available from BioLegend.

[0075] In some embodiments an antibody of the present invention does not compete with any of Z176, QA79, and S7 for binding to Siglec-7 ligand. In some embodiments, an antibody 25 of the present invention competes with an antibody designated as 4B12 in Figures 1-3 for binding to Siglec-7. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 4B12 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 4B12 in Figure 3. In embodiments 30 has six CDRs of an antibody designated as 4B12 in Figures 1-3.

[0076] In some embodiments, an anti-Siglec-7 antibody of the present invention that binds to an epitope comprising W132 such that a W132A mutation compromises binding activity. In

some embodiments, such an antibody competes with an antibody designated as 2G12 in Figures 1-3 for binding to Siglec-7. In some embodiments, such an antibody competes with an antibody designated as 2G12 in Figures 1-3 for binding to Siglec-7 ligand. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 2G121 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 2G12 in Figure 3. In embodiments has six CDRs of an antibody designated as 2G12 in Figures 1-3.

[0077] In some embodiments, an anti-Siglec-7 antibody of the present invention competes with an antibody designated as 5D1 in Figures 1-3 for binding to Siglec-7. In some embodiments, such an antibody competes with an antibody designated as 2G12 in Figures 1-3 for binding to Siglec-7 ligand. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 5D1 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 5D1 in Figure 3. In embodiments has six CDRs of an antibody designated as 5D1 in Figures 1-3.

[0078] In some embodiments, an anti-Siglec-7 antibody of the present invention competes with an antibody designated as 8A2 in Figures 1-3 for binding to Siglec-7. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 8A2 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 8A2 in Figure 3. In embodiments has six CDRs of an antibody designated as 8A2 in Figures 1-3.

[0079] In some embodiments, an anti-Siglec-7 antibody of the invention comprises at least one, two, or three CDRs selected from a heavy chain variable amino acid sequence set forth in Figure 1 or Figure 2. In some embodiments, an anti-Siglec-7 antibody of the invention comprise one, two, or three CDRs selected from a light chain variable region set forth in Figure 3. In some embodiments, an anti-Siglec-7 antibody comprises an HCDR3 selected from the HC DR3 sequence presented in Figure 1 and an LCDR3 selected from the LCDR3 sequences presented in Figure 3.

[0080] In some embodiments, an anti-Siglec-7 antibody of the present invention competes with an antibody designated as 16H11 in Figures 1-3 for binding to Siglec-7. In some

embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence of the antibody designated as 8A2 in Figure 1 or Figure 2. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence of the antibody designated as 8A2 in Figure 3. In embodiments has six CDRs of an antibody 5 designated as 8A2 in Figures 1-3.

[0081] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of Figure 1. In certain embodiments, a V_H sequence having at least 80%, 85%, 10 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of a heavy chain variable region of Figure 1 or Figure 2 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-Siglec-7 antibody comprising that sequence retains the ability to bind to Siglec-7. In certain embodiments, a total of 1 to 20 amino acids have been substituted, inserted and/or 15 deleted in the amino acid sequence of a heavy chain variable region of Figure 1. In certain embodiments, the substitutions, insertions, or deletions occur in the framework regions.

[0082] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a light chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of Figure 3. In certain embodiments, a V_L sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of a light chain variable region of Figure 3 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-Siglec-7 antibody comprising that sequence retains the ability to bind to Siglec-7. In certain 20 embodiments, a total of 1 to 20 amino acids have been substituted, inserted and/or deleted in the amino acid sequence of a light chain variable region of Figure 3. In certain embodiments, the substitutions, insertions, or deletions occur in the framework regions.

[0083] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 30 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of Figure 1 or Figure 2; and a light chain variable region of the corresponding antibody of Figure 3, where the light chain variable region has at least 80%, 85%, 90%, 91%,

92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of the light chain variable region of Figure 3. In some embodiments, the anti-Siglec-7 antibody has a modification to the heavy chain variable region and/or the light chain variable region as described in the preceding two paragraphs.

5 [0084] In some embodiments, an anti-Siglec-7 antibody comprises a heavy chain variable region that comprises a CDR3 as set forth in Figure 1 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, a heavy chain variable region comprises three CDRs of a variable region sequence set forth in Figure 1 in which the CDR1 has 1, 2, or 3 amino acid substitutions and/or the CDR2 has at least 1, 2, 3, 4, 5, 6, 7, or 10 8 amino acid substitutions. In some embodiments, a heavy chain variable region comprises three CDRs of a variable region sequence set forth in Figure 2 in which the CDR1 has 1, 2, 3, or 4 amino acid substitutions and/or the CDR2 has at least 1, 2, or 3 amino acid substitutions.

15 [0085] In some embodiments, an anti-Siglec-7 antibody comprises a heavy chain variable region that comprises a CDR3 as set forth in Figure 2 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, such a heavy chain variable region comprises three CDRs of a variable region sequence set forth in Figure 2 in which the CDR1 has 1, 2, or 3 amino acid substitutions and/or the CDR2 has at least 1, 2, 3, 4, 5, 6, 7, or 8 amino acid substitutions; or comprises three CDRs of a variable region sequence set forth in Figure 2 in which the CDR1 has 1, 2, 3, or 4 amino acid substitutions and/or the CDR2 has at least 1, 2, or 3 amino acid substitutions.

20

[0086] In some embodiments, an anti-Siglec-7 antibody comprises a light chain variable region comprising a CDR3 as set forth in Figure 3 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, a light chain variable region comprises three CDRs of a variable region sequence set forth in Figure 3 in which the CDR1 and/or the CDR2 have at least 1, 2, 3, or 4 amino acid substitutions.

25

[0087] In some embodiments, an anti-Siglec-7 antibody of the present invention internalizes Siglec-7 and competes with an antibody designated as 16H11 in Figures 1-3 for binding to Siglec-7. In some embodiments, an anti-Siglec-7 antibody of the present invention internalizes Siglec-7 and competes with an antibody designated as 16H11 in Figures 1-3 for binding to 30 Siglec-7 ligand. In some embodiments, an antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61. In some embodiments, an antibody of the invention has at least one, at least two, or

three CDRs of a V_L sequence as set forth in any one of SEQ ID NOS:62 and 64-78. In some embodiments, an anti-Siglec-7 antibody comprises an HCDR3 selected from the HCDR3 sequences as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 and an LCDR3 selected from the LCDR3 sequences as set forth in any one of SEQ ID NOS:62 and 64-78. In 5 embodiments has six CDRs as set forth in any one of the VH-VL region pairs set forth in Table 1.

[0088] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain 10 variable region of any one of SEQ ID NOS:29-31, 33, and 35-61. In certain embodiments, a V_H sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of a heavy chain variable region of any one of SEQ ID NOS:29-31, 33, and 35-61 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-Siglec-7 antibody 15 comprising that sequence retains the ability to bind to Siglec-7. In certain embodiments, a total of 1 to 20 amino acids have been substituted, inserted and/or deleted in the amino acid sequence of a heavy chain variable region of any one of SEQ ID NOS:29-31, 33, and 35-61. In certain embodiments, all of the substitutions, insertions, or deletions occur in the framework regions. In certain embodiments, 1, 2, or 3 substitutions occur in a CDR region.

[0089] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a light chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of any one of SEQ ID NOS:62 and 64-78. In certain embodiments, a V_L sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of a light chain variable region of any one of SEQ ID 20 NOS:62 and 64-78 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-Siglec-7 antibody comprising that sequence retains the ability to bind to Siglec-7. In certain embodiments, a total of 1 to 20 amino acids have been substituted, inserted and/or deleted in the amino acid sequence of a light 25 chain variable region of any one of SEQ ID NOS:62 and 64-78. In certain embodiments, all of the substitutions, insertions, or deletions occur in the framework regions. In certain embodiments, 1, 2, or 3 substitutions occur in a CDR region.

[0090] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of any of SEQ ID NOS:41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

5 57, 58, 59, 60 or 61; and a light chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of SEQ ID NO:69, 70, 71, 72, 73, 74, 75, 76, 77, or 78. In some embodiments, the anti-Siglec-7 antibody has a modification to the heavy chain variable region and/or the light chain variable region as described in the preceding two

10 paragraphs.

[0091] In some embodiments, an anti-Siglec-7 antibody comprises a heavy chain variable region that comprises a CDR3 as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted; or 1 or 2 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, a heavy chain

15 variable region comprises a CDR3 as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which one amino acid is substituted, *e.g.*, conservatively substituted. In some embodiments, a heavy chain variable region comprises three CDRs of a variable region sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which the CDR1 has 1, 2, or 3 amino acid substitutions, *e.g.*, conservative substitutions and/or the CDR2 has 1, 2, or 20 3 amino acid substitutions, *e.g.*, conservative substitutions. In some embodiments, a heavy chain variable region comprises three CDRs of a variable region sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which the CDR1 has 1 or 2 amino acid substitutions, *e.g.*, conservative substitutions; and/or the CDR2 has 1 or 2 amino acid substitutions, *e.g.*, conservative substitutions. In some embodiments, the heavy chain variable 25 region comprises three CDRs of a variable region sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which the CDR1 and/or the CDR2 has 1 amino acid substitution *e.g.*, a conservative substitution.

[0092] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain CDR1 sequence G(G/Y)(K/T)FS(W/S/Y)(F/Y), a heavy chain CDR2 sequence

30 YP(G/I)(D/F)GE, and a heavy chain CDR3 sequence DYLRAMD(Y/I/V). In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region comprising: a heavy chain CDR3 (HCDR3) sequence DDYLRAMDY (SEQ ID NO:81), DDYLRAMDV (SEQ ID NO:91), or DDYLRAMDI (SEQ ID NO:92); a heavy

chain CDR1 (HCDR1) sequence GYDFSNF (SEQ ID NO:79), GYTFSNF (SEQ ID NO:82), GGDFSNF (SEQ ID NO:83), GYDFSSY (SEQ ID NO:87), GYDFSSF (SEQ ID NO:88), or GYDFSNY (SEQ ID NO:89); and a heavy chain CDR2 (HCDR2) sequence YPGDGE (SEQ ID NO:80), YPIDGE (SEQ ID NO:85), or YPGFGE (SEQ ID NO:90). Illustrative CDR2 sequences having mutations that abolish binding are IPGDGE (SEQ ID NO:84) and YPGDGT (SEQ ID NO:86).

[0093] In some embodiments, an anti-Siglec-7 antibody comprises a light chain variable region that comprises a CDR3 as set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted; or 1 or 2 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, a light chain variable region comprises a CDR3 as set forth in any one of SEQ ID NOS:62 and 64-78 in which one amino acid is substituted, *e.g.*, conservatively substituted. In some embodiments, a light chain variable region comprises three CDRs of a variable region sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which the CDR1 has 1, 2, 3, or 4 amino acid substitutions, or 1, 15 2, or 3 amino acid substitutions, *e.g.*, conservative substitutions; and/or the CDR2 has 1, 2, 3, or 4 amino acid substitutions, or 1, 2, or 3 amino acid substitutions, *e.g.*, conservative substitutions. In some embodiments, a light chain variable region comprises three CDRs of a variable region sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which the CDR1 and/or the CDR2 has 1 or 2 amino acid substitutions, *e.g.*, conservative substitutions. In 20 some embodiments, a light chain variable region comprises three CDRs of a variable region sequence as set forth in any one SEQ ID NOS:62 and 64-78 in which the CDR1 and/or the CDR2 has 1 amino acid substitution *e.g.*, a conservative substitution.

[0094] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a light chain CDR1 sequence RAS(G/Q)(N/G)I(H/S)NYLA, a heavy chain CDR2 sequence (S/A)A(K/S)RL(E/A)(S/D) and a heavy chain CDR3 sequence QHFWSSPYT. In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a light chain variable region comprising: a light chain CDR3 (LCDR3) sequence QHFWSSPYT (SEQ ID NO:95); a light chain CDR1 (LCDR1) sequence RASGNIHNLYA (SEQ ID NO:93), RASGGIHNLYA (SEQ ID NO:99), RASQNIHNLYA (SEQ ID NO:100), or 25 RASGNISNYLA (SEQ ID NO:101); and a light chain CDR2 (LCDR2) sequence SAKRLES (SEQ ID NO:94), AASRLES (SEQ ID NO:97), SASRLES (SEQ ID NO:98), SAKRLAS (SEQ ID NO:102), or SAKRLED (SEQ ID NO:103). An illustrative CDR1 mutation that abolishes binding is RASGNIHNNSLA (SEQ ID NO:96).

[0095] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region, wherein the heavy chain variable region comprises: a heavy chain CDR3 (HCDR3) sequence DDYLRAMDY (SEQ ID NO:81), DDYLRAMDV (SEQ ID NO:91), or DDYLRAMDI (SEQ ID NO:92); a heavy chain CDR1 (HCDR1) sequence

5 GYDFSNF (SEQ ID NO:79), GYTFNSNF (SEQ ID NO:82), GGDFSNF (SEQ ID NO:83), GYDFSSY (SEQ ID NO:87), GYDFSSF (SEQ ID NO:88), or GYDFSNY (SEQ ID NO:89); and a heavy chain CDR2 (HCDR2) sequence YPGDGE (SEQ ID NO:80), YPIDGE (SEQ ID NO:85), or YPGFGE (SEQ ID NO:90); and a light chain variable region, wherein the light chain variable region comprises: a light chain CDR3 (LCDR3) sequence QHFWSSPYT (SEQ 10 ID NO:95); a light chain CDR1 (LCDR1) sequence RASGNIHNYLA (SEQ ID NO:93), RASGGIHNYLA (SEQ ID NO:99), RASQNIHNYLA (SEQ ID NO:100), or RASGNISNYLA (SEQ ID NO:101); and a light chain CDR2 (LCDR2) sequence SAKRLES (SEQ ID NO:94), AASRLES (SEQ ID NO:97), SASRLES (SEQ ID NO:98), SAKRLAS (SEQ ID NO:102), or SAKRLED (SEQ ID NO:103).

15 **[0096]** In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region comprises CDR1, CDR2, and CDR3 sequences as set forth in a heavy chain variable region sequence selected from SEQ ID NO:43, 45, 46, 47, 48, 49, 50, 51, 54, 55, 57, and 58; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences of SEQ ID NO:69. In some embodiments, the heavy chain variable region 20 comprises CDR1, CDR2, and CDR3 sequences as set forth in a heavy chain variable region sequence selected from SEQ ID NO:53, 54, 51, 55, 58, and 59; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences of SEQ ID NO:78.

[0097] In some embodiments, an anti-Siglec-7 of the present invention comprises:

(a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences 25 as set forth in SEQ ID NO:43, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(b) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:45, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

30 (c) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:46, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(d) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:47, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

5 (e) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:48, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(f) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:49, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

10 (g) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:50, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

15 (h) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:51, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(i) CDR1, CDR2, and CDR3 sequences as set forth in a heavy chain variable region sequence SEQ ID NO:54, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

20 (j) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:55, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

(k) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:57, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69; or

25 (l) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:58, and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69.

[0098] In some embodiments, an anti-Siglec-7 of the present invention comprises:

30 (a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:53; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

(b) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:54; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

5 (c) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:51; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

(d) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:55; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

10 (e) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:58; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78; or

15 (f) heavy chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:59; and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78.

[0099] In some embodiments, an anti-Siglec-7 antibody of the present invention internalizes Siglec-7 and competes with an antibody designated as 8A2 in Figures 1-3 for binding to Siglec-7. In some embodiments, an anti-Siglec-7 antibody of the invention has at least one, at least two, or three CDRs of a V_H sequence as set forth in any one of SEQ ID NO:104 or 106.

20 In some embodiments, an anti-Siglec-7 antibody of the invention has at least one, at least two, or three CDRs of a V_L sequence as set forth in SEQ ID NO:105 or 107. In some embodiments, an anti-Siglec-7 antibody comprises an HCDR3 sequence as set forth in SEQ ID NO:104 or 106 and an LCDR3 sequence as set forth in SEQ ID NO:105 or 107.

[0100] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of SEQ ID NO:104 or 106. In certain embodiments, a V_H sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of a heavy chain variable region of SEQ ID NO:104 or 106 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-Siglec-7 antibody comprising that sequence retains the ability to bind to Siglec-7 and has internalization activity. In certain embodiments, a total of 1 to 20 amino acids have been substituted, inserted and/or deleted in the amino acid sequence of a heavy chain

variable region of SEQ ID NO:104 or 106. In certain embodiments, all of the substitutions, insertions, or deletions occur in the framework regions. In certain embodiments, 1, 2, or 3 substitutions occur in a CDR region.

[0101] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a light chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of SEQ ID NO:105 or 107. In certain embodiments, a V_L sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of a light chain variable region of SEQ ID NO:105 or 107 contains

10 substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-Siglec-7 antibody comprising that sequence retains the ability to bind to Siglec-7. In certain embodiments, a total of 1 to 20 amino acids have been substituted, inserted and/or deleted in the amino acid sequence of a light chain variable region of SEQ ID NO:105 or 107. In certain embodiments, all of the substitutions, insertions, or deletions occur in the 15 framework regions. In certain embodiments, 1, 2, or 3 substitutions occur in a CDR region.

[0102] In some embodiments, an anti-Siglec-7 antibody of the present invention comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy chain variable region of SEQ ID NO:104 or 106; and a light chain variable region having at least

20 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a light chain variable region of SEQ ID NO:105 or 107. In some embodiments, the anti-Siglec-7 antibody has a modification to the heavy chain variable region and/or the light chain variable region as described in the preceding two paragraphs.

25 **[0103]** In some embodiments, an anti-Siglec-7 antibody comprises a heavy chain variable region that comprises a CDR3 as set forth SEQ ID NO:104 or 106 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted; or 1 or 2 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, a heavy chain variable region comprises a CDR3 as set forth in SEQ ID NO:104 or 106 in which one amino acid is

30 substituted, *e.g.*, conservatively substituted. In some embodiments, a heavy chain variable region comprises three CDRs of a variable region sequence as set forth in SEQ ID NO:104 or

106 in which the CDR1 has 1, 2, or 3 amino acid substitutions, *e.g.*, conservative substitutions and/or the CDR2 has 1 or 2, or 1 only, amino acid substitution, *e.g.*, conservative substitutions.

[0104] In some embodiments, an anti-Siglec-7 antibody comprises a light chain variable region that comprises a CDR3 as set forth SEQ ID NO:105 or 107 in which 1, 2, or 3 amino acids are substituted, *e.g.*, conservatively substituted; or 1 or 2 amino acids are substituted, *e.g.*, conservatively substituted. In some embodiments, a light chain variable region comprises a CDR3 as set forth in SEQ ID NO:105 or 107 in which one amino acid is substituted, *e.g.*, conservatively substituted. In some embodiments, a light chain variable region comprises three CDRs of a variable region sequence as set forth in SEQ ID NO:105 or 107 in which the 10 CDR1 has 1, 2, or 3 amino acid substitutions, *e.g.*, conservative substitutions and/or the CDR2 has 1 or 2, or 1 only, amino acid substitution, *e.g.*, conservative substitutions.

[0105] In a further aspect of the invention, an anti-Siglec-7 antibody according to any of the above embodiments is a monoclonal antibody, including a chimeric, humanized or human antibody. In one embodiment, an anti-Siglec-7 antibody is an antibody fragment, *e.g.*, a Fv, 15 Fab, Fab', scFv, diabody, or F(ab')₂ fragment. In another embodiment, the antibody is a substantially full length antibody, *e.g.*, an IgG antibody or other antibody class or isotype as defined herein. For a review of certain antibody fragments, see Hudson et al. *Nat. Med.* 9: 129-134 (2003). Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host 20 cells (*e.g.* *E. coli* or phage), as described herein.

[0106] In some embodiments an anti-Siglec-7 antibody in accordance with the present disclosure is a ligand blocking antibody in a monovalent format. In some embodiments, the anti-Siglec-7 antibody is in a fragment format, *e.g.*, a Fv, Fab, Fab', scFv, diabody, or F(ab')₂ fragment. In some embodiments, an antibody in a monovalent or fragment format is modified, 25 for example by PEGylation, to extend half-life.

[0107] In some embodiments, an anti-Siglec-7 antibody of the present invention is employed in a bispecific or multi-specific format. For example, in some embodiments, the antibody may be incorporated into a bispecific or multi-specific antibody that comprises a therapeutic antibody, as further discussed below.

Fc engineering

[0108] In some embodiments, an antibody of the present disclosure comprises an Fc region. The Fc region may be an Fc region engineered to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-

5 dependent cellular cytotoxicity. Furthermore, an antibody of the disclosure may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, again to alter one or more functional properties of the antibody

[0109] In one embodiment, the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is 10 described further in U.S. Patent No. 5,677,425 by Bodmer et al. The number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody.

[0110] In one embodiment, an antibody of invention may have a human IgG4 Fc region modified to include a S228P substitution, where the amino acid residues are numbered 15 according to the EU index as in Kabat.

[0111] In other embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions of the antibody. For example, one or more amino acids can be replaced with a different amino acid residue such that the antibody has an altered binding for an effector ligand but retains the antigen-binding 20 ability of the parent antibody. The effector ligand to which binding is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Patent Nos. 5,624,821 and 5,648,260, both by Winter et al.

[0112] In another embodiment, one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered C1 q 25 binding and/or reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Patent Nos. 6,194,551.

[0113] In another embodiment, one or more amino acid residues are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication W01994/29351 by Bodmer et al..

30 **[0114]** In yet another embodiment, the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the

affinity of the antibody for an Fc receptor by modifying one or more amino acids. This approach is described further in PCT Publication WO2000/42072 by Presta. Moreover, the binding sites on human IgG1 for Fc γ RI, Fc γ RII, Fc γ RIII and FcR have been mapped and variants with improved binding have been described (see Shields et al., (2001) *J. Biol. Chem.* 5 276:6591 -6604).

[0115] In still another embodiment, the glycosylation of an antibody is modified. For example, an aglycoslated antibody or antibody having an altered glycosylation pattern can be made. Glycosylation can be altered, for example, to increase the affinity of the antibody for an antigen or, if made in the Fc region, to influence effector function. Such carbohydrate 10 modifications can be accomplished by, for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen. Such an approach is described in further detail in U.S. Patent Nos. 15 5,714,350 and 6,350,861 by Co et al.

[0116] Additionally or alternatively, an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated antibody preparation having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. 20 Such carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of the disclosure to thereby produce an antibody with altered glycosylation. For example, EP 1,176,195 by Hang et al. describes a cell line with a 25 functionally disrupted FUT8 gene, which encodes a fucosyl-transferase, such that antibodies expressed in such a cell line exhibit hypofucosylation. PCT Publication WO2003/035835 by Presta describes a variant CHO cell line, Lec13 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields et al., (2002) *J. Biol. Chem.* 277:26733-26740). PCT 30 Publication W01999/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyl-transferases (e.g., beta (1,4)-N acetylglucosaminyl-transferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit

increased bisecting GlcNac structures which results in increased ADCC activity of the antibodies (see also Umana et al., (1999) *Nat. Biotech.* 17:176-180).

[0117] In another embodiment, the antibody is modified to increase its biological half-life. Various approaches are possible. For example, one or more of the following mutations can be 5 introduced: T252L, T254S, and T256F, as described in U.S. Patent No. 6,277,375 to Ward. Alternatively, to increase the biological half-life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 region of an Fc region of an IgG, as described in U.S. Patent Nos. 5,869,046 and 6,121,022 by Presta et al.

10 Treatment of Cancer

[0118] Anti-Siglec-7 antibodies of the invention can be used to treat any number of cancers. In some aspects of the present disclosure antibodies are used to treat cancers that exhibit infiltration of immune cells, such as CD8+ T cells, with high levels of Siglec-7 expression. In some embodiments, anti-Siglec-7 antibodies of the invention can be used to treat cancers that 15 exhibit infiltration of NK cells or monocytes that express Siglec-7.

[0119] In some aspects, the disclosure thus provides methods of identifying subjects who are candidates for treatment with an anti-Siglec-7 antibody. Thus, in one embodiment, the invention provides a method of identifying the level of infiltration of Siglec-7 expressing CD8+ T cells in a tumor sample obtained from a patient. In some embodiments, the tumor 20 sample is from a primary tumor. In alternative embodiments, the tumor sample is a metastatic lesion. The level of expression of Siglec-7 on the surface of cells, *e.g.*, T cells, can be measured using any assay, such as immunohistochemistry or flow cytometry. In the context of the determination of levels of expression of Siglec-7 on tumor-infiltrating T cells, “overexpression” of Siglec-7 is considered to be where at least 10%, at least 20%, or at least 25% 25, or at least 30%, or greater, of the cells being analyzed, *e.g.*, CD8+ T cells, express detectable Siglec-7 on the cell surface. Thus, “overexpress” in this context refers to the percentage of T cells that express detectable Siglec-7. “Overexpression” in this context is synonymous with the term “elevated numbers” or “elevated levels” of T cells that express detectable Siglec-7 in referring to the percentage of T cells that express detectable Siglec-7.

30 [0120] The level of Siglec-7 ligand expressed by a tumor is also typically evaluated. A tumor is considered to express Siglec-7 ligand when detectable binding of Siglec-7 is observed on the surface of tumor cells. In some embodiments, expression of Siglec-7 ligand on at least

10%, at least 20%, at least 30%, at least 50%, or greater of the tumor cells in a sample that is evaluated may be used as a selection criteria for determining a patient to be treated with an anti-Siglec-7 antibody.

[0121] Any cancer can be treated with an anti-Siglec-7 antibody as described herein. In some embodiments, the cancer is a carcinoma or a sarcoma. In some embodiments, the cancer is a hematological cancer. In some embodiments, the cancer is breast cancer, prostate cancer, testicular cancer, renal cell cancer, bladder cancer, ovarian cancer, cervical cancer, endometrial cancer, lung cancer, colorectal cancer, anal cancer, pancreatic cancer, gastric cancer, esophageal cancer, hepatocellular cancer, head and neck cancer, glioblastoma, mesothelioma, melanoma, or a bone or soft tissue sarcoma. In some embodiments, the cancer is acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, basal-cell carcinoma, bile duct cancer, bladder cancer, bone tumor, brainstem glioma, brain cancer, cerebellar astrocytoma, cerebral astrocytoma, ependymoma, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic glioma, breast cancer, bronchial adenomas, Burkitt's lymphoma, central nervous system lymphoma, cerebellar astrocytoma, cervical cancer, chondrosarcoma, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative disorders, colon cancer, cutaneous T-cell lymphoma, desmoplastic small round cell tumor, endometrial cancer, ependymoma, epithelioid hemangioendothelioma (EHE), esophageal cancer, Ewing's sarcoma, extracranial germ cell tumor, extragonadal germ cell tumor, extrahepatic bile duct cancer, eye cancer, intraocular melanoma, retinoblastoma, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), germ cell tumor, gestational trophoblastic tumor, gastric carcinoid, hairy cell leukemia, head and neck cancer, heart cancer, hepatocellular cancer, Hodgkin lymphoma, hypopharyngeal cancer, hypothalamic and visual pathway glioma, childhood, intraocular melanoma, islet cell carcinoma, Kaposi sarcoma, kidney cancer, laryngeal cancer, leukaemias, lip and oral cavity cancer, liposarcoma, liver cancer, non-small cell lung cancer, small-cell lung cancer, lymphomas, macroglobulinemia, male breast cancer, malignant fibrous histiocytoma of bone, medulloblastoma, melanoma, Merkel cell cancer, mesothelioma, metastatic squamous neck cancer, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fungoides, myelodysplastic syndromes, myelogenous leukemia, myeloid leukemia, adult acute, myeloproliferative disorders, chronic, myxoma, nasal cavity and paranasal sinus cancer, nasopharyngeal carcinoma, neuroblastoma, non-Hodgkin lymphoma, oligodendrolioma, oral

cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, ovarian low malignant potential tumor, pancreatic cancer, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pineal astrocytoma, pineal germinoma, pineoblastoma, supratentorial primitive

5 neuroectodermal tumors, pituitary adenoma, plasma cell neoplasia, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell carcinoma, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, Ewing sarcoma, Kaposi sarcoma, soft tissue sarcoma, uterine sarcoma, Sézary syndrome, non-melanoma skin cancer, melanoma
10 Merkel cell skin carcinoma, small intestine cancer, squamous cell carcinoma, squamous neck cancer, stomach cancer, cutaneous T-Cell lymphoma, testicular cancer, throat cancer, thymoma, thyroid cancer, transitional cell cancer of the renal pelvis and ureter, trophoblastic tumor, gestational, urethral cancer, uterine cancer, vaginal cancer, vulvar cancer, Waldenström macroglobulinemia, or Wilms tumor.

15 [0122] In one aspect, methods of the disclosure comprise administering an anti-Siglec-7 antibody as a pharmaceutical composition to a cancer patient in a therapeutically effective amount using a dosing regimen suitable for treatment of the cancer. The composition can be formulated for use in a variety of drug delivery systems. One or more physiologically acceptable excipients or carriers can also be included in the compositions for proper formulation. Suitable formulations for use in the present invention are found, *e.g.*, in
20 Remington: The Science and Practice of Pharmacy, 21st Edition, Philadelphia, PA. Lippincott Williams & Wilkins, 2005.

25 [0123] The anti-Siglec-7 antibody is provided in a solution suitable for administration to the patient, such as a sterile isotonic aqueous solution for injection. The antibody is dissolved or suspended at a suitable concentration in an acceptable carrier. In some embodiments the carrier is aqueous, *e.g.*, water, saline, phosphate buffered saline, and the like. The compositions may contain auxillary pharmaceutical substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, and the like.

30 [0124] The pharmaceutical compositions are administered to a patient in an amount sufficient to cure or at least partially arrest the disease or symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." A therapeutically effective dose is determined by monitoring a patient's

response to therapy. Typical benchmarks indicative of a therapeutically effective dose include amelioration of symptoms of the disease in the patient. Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health, including other factors such as age, weight, gender, administration route, etc. Single or multiple 5 administrations of the antibody may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the methods provide a sufficient quantity of anti-Siglec-7 antibody to effectively treat the patient.

[0125] An anti-Siglec-7 antibody can be administered by any suitable means, including, for example, parenteral, intrapulmonary, and intranasal, administration, as well as local 10 administration, such as intratumor administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In some embodiments, the antibody may be administered by insufflation. In an illustrative embodiment, the antibody may be stored at 10 mg/ml in sterile isotonic aqueous saline solution for injection at 4°C and is diluted in either 100 ml or 200 ml 0.9% sodium chloride for 15 injection prior to administration to the patient. In some embodiments, the antibody is administered by intravenous infusion over the course of 1 hour at a dose of between 0.01 and 25 mg/kg. In other embodiments, the antibody is administered by intravenous infusion over a period of between 15 minutes and 2 hours. In still other embodiments, the administration procedure is via sub-cutaneous bolus injection.

[0126] The dose of antibody is chosen in order to provide effective therapy for the patient and is in the range of less than 0.01 mg/kg body weight to about 25 mg/kg body weight or in the range 1 mg – 2 g per patient. Preferably the dose is in the range 0.1 – 10 mg/kg or approximately 50 mg – 1000 mg / patient. The dose may be repeated at an appropriate frequency which may be in the range once per day to once every three months, or every six 25 months, depending on the pharmacokinetics of the antibody (e.g., half-life of the antibody in the circulation) and the pharmacodynamic response (e.g., the duration of the therapeutic effect of the antibody). In some embodiments, the in vivo half-life of between about 7 and about 25 days and antibody dosing is repeated between once per week and once every 3 months or once every 6 months. In other embodiments, the antibody is administered approximately once per 30 month.

[0127] An anti-Siglec-7 antibody of may be administered with one or more additional therapeutic agents, e.g., chemotherapeutic agents and/or additional immunotherapies.

[0128] In some embodiments, an anti-Siglec-7 antibody can be administered in conjunction with another checkpoint inhibitor. In one aspect, the checkpoint inhibitor is a biologic therapeutic or a small molecule. In another aspect, the checkpoint inhibitor is a monoclonal antibody, a humanized antibody, a fully human antibody, a fusion protein or a combination thereof. In certain embodiments, the checkpoint inhibitor inhibits a checkpoint protein which may be CTLA-4, PDL1, ICOS, PDL2, IDO1, IDO2, PDI, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, GITR, HAVCR2, LAG3, KIR, LAIR1, LIGHT, MARCO, OX-40, SLAM, , 2B4, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD39, VISTA, TIGIT, CGEN-15049, 2B4, CHK 1, CHK2, A2aR, B-7 family ligands or a combination thereof. In some embodiments, the immune checkpoint inhibitor is an inhibitor of PD-L1 . In some embodiments, the immune checkpoint inhibitor is an inhibitor of PD-1. In some embodiments, the immune checkpoint inhibitor is an inhibitor of CTLA-4. In some embodiments, the immune checkpoint inhibitor is an inhibitor of LAG3. In some embodiments, the immune checkpoint inhibitor is an inhibitor of TIM3. In some embodiments, the immune checkpoint inhibitor is ICOS.

[0129] In some embodiments, an anti-Siglec-7 antibody can be administered in conjunction with a therapeutic antibody, such as an antibody that targets a tumor cell antigen. Examples of therapeutic antibodies include as rituximab, trastuzumab, tositumomab, ibritumomab, alemtuzumab, epratuzumab, bevacizumab, elotuzumab, necitumumab, blinatumomab, brentuximab, cetuximab, daratumumab, denosumab, dinutuximab, gemtuzumab ibritumomab ipilimumab, nivolumab, obinutuzumab, ofatumumab, ado-trastuzumab, panitumumab, pembrolizumab, pertuzumab, ramucirumab, and ranibizumab.

[0130] In some embodiments, an anti-Siglec-7 antibody is administered with a chemotherapeutic agent. Examples of cancer chemotherapeutic agents include alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylololomelamine; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysins, actinomycin, authramycin, azaserine,

bleomycins, cactinomycin, calicheamicin, carabacin, caminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin, epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, 5-rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; antimetabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprime, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens such as calusterone, dromostanolone propionate, epitostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; 15 mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; razoxane; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2',2"-trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside; cyclophosphamide; thiotepa; taxoids, e.g. paclitaxel and doxetaxel; chlorambucil; gemcitabine; 20 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; docetaxel, platinum; etoposide (VP- 16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-11 ; topoisomerase inhibitor RFS 2000; difluoromethylomithine (DMFO); retinoic acid derivatives such as bexarotene, alitretinoin; 25 denileukin diftitox; esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, mifepristone, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY 1 17018, onapristone, and toremifene (Fareston); 30 and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Further cancer therapeutic agents include sorafenib and other protein kinase inhibitors such as afatinib, axitinib, crizotinib, dasatinib, erlotinib, fostamatinib, gefitinib, imatinib, lapatinib, lenvatinib, mubritinib, nilotinib, pazopanib, pegaptanib, ruxolitinib, vandetanib, vemurafenib, and

sunitinib; sirolimus (rapamycin), everolimus and other mTOR inhibitors. Examples of additional chemotherapeutic agents include topoisomerase I inhibitors (e.g., irinotecan, topotecan, camptothecin and analogs or metabolites thereof, and doxorubicin); topoisomerase II inhibitors (e.g., etoposide, teniposide, and daunorubicin); alkylating agents (e.g., melphalan, 5 chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, semustine, streptozocin, decarbazine, methotrexate, mitomycin C, and cyclophosphamide); DNA intercalators (e.g., cisplatin, oxaliplatin, and carboplatin); DNA intercalators and free radical generators such as bleomycin; and nucleoside mimetics (e.g., 5-fluorouracil, capecitabine, gemcitabine, fludarabine, cytarabine, mercaptopurine, thioguanine, pentostatin, and hydroxyurea).

10 Illustrative chemotherapeutic agents additionally include paclitaxel, docetaxel, and related analogs; vincristine, vinblastin, and related analogs; thalidomide, lenalidomide, and related analogs (e.g., CC-5013 and CC-4047); protein tyrosine kinase inhibitors (e.g., imatinib mesylate and gefitinib); proteasome inhibitors (e.g., bortezomib); NF- κ B inhibitors, including inhibitors of I κ B kinase and other inhibitors of proteins or enzymes known to be upregulated, 15 over-expressed or activated in cancers, the inhibition of which down regulates cell replication. Additional agents include asparaginase and a *Bacillus Calmette-Guérin* preparation.

[0131] An anti-Siglec-7 antibody may also be administered to a cancer patient in conjunction with a cell based therapy, such as NK cell therapy or a cancer vaccine. In some instances, a cancer vaccine is a peptide-based vaccine, a nucleic acid based vaccine, a cell-based vaccine, a

20 virus-based or viral fragment based vaccine or an antigen presenting cell (APC) based vaccine (e.g. dendritic cell based vaccine). Cancer vaccines include Gardasil®, Cervarix®, sipuleucel-T (Provenge®), NeuVax™, HER-2 ICD peptide-based vaccine, HER-2/neu peptide vaccine, AdHER2/neu dendritic cell vaccine, HER-2 pulsed DC1 vaccine, Ad-sig-hMUC-1/ecdCD40L fusion protein vaccine, MVX-ONCO-1, hTERT/survivin/CMV multipeptide vaccine, E39, J65,

25 PIOS-PADRE, rV-CEA-Tricom, GVAX®, Lucanix®, HER2 VRP, AVX901, ONT-10, ISAl01, ADXSl 1-001, VGX-3100, INO-9012, GSK1437173A, BPX-501, AGS-003, IDC-G305, HyperAcute®-Renal (HAR) immunotherapy, Prevenar13, MAGER-3.A1, NA17.A2, DCVax-Direct, latent membrane protein-2 (LMP2)-loaded dendritic cell vaccine

(NCT02115126), HS410-101 (NCT02010203, Heat Biologics), EAU RF 2010-01

30 (NCT01435356, GSK), 140036 (NCT02015104, Rutgers Cancer Institute of New Jersey), 130016 (NCTO 1730118, National Cancer Institute), MVX-201101 (NCT02193503, Maxivax SA), ITL-007-ATCR-MBC (NCT01741038, Immunovative Therapies, Limited), CDR0000644921 (NCT00923143, Abramson cancer center of the University of Pennsylvania),

SuMo-Sec-01 (NCT00108875, Julius Maximilians Universitaet Hospital), or MCC-15651 (NCT01176474, Medarex, Inc, BMS).

[0132] In the context of the present invention a therapeutic agent that is administered in conjunction with an anti-Siglec-7 antibody of the present invention can be administered prior 5 to administrations of the anti-Siglec-7 antibody or after administration of the anti-Siglec-7 antibody. In some embodiments, an anti-Siglec-7 antibody may be administered at the same time as the additional therapeutic agent.

[0133] The following examples are offered for illustrative purposes, and are not intended to limit the invention. Those of skill in the art will readily recognize a variety of non-critical 10 parameters that can be changed or modified to yield essentially the same results.

EXAMPLES

Example 1. Siglec-7 detection on tumor-infiltrating T cells.

[0134] Samples comprising cells from primary human tumor specimens were prepared using the Mylteni GentleMACS instrument according to the manufacturer's instructions. Cells were 15 analyzed by fluorescent-activated cell sorting to determine immune cell surface markers including CD3, CD8, CD16, CD45 and 7-AAD as a viability marker. CD8+ T cells were identified and gated as 7-AAD- CD45+ CD3+ CD8+. Anti-Siglec-7-PE (clone S7.7 Biolegend) was used to detect Siglec-7 levels. The results demonstrated that both the percentage (Figure 4) and the level (Figure 5) of Siglec-7 expression is enhanced on CD8+ 20 tumor-infiltrating T cells in a subset of tumors.

Example 2. Siglec-7 ligand detection on tumor cells

[0135] Ligand levels on tumor cells were also evaluated. Specific binding of recombinant Siglec-7-Fc fusion protein was used to assess Siglec-7 ligand levels on cells isolated from fresh primary tumors. As a specificity control, cells were treated with sialidase/neuraminidase 25 (Roche) at 0.1U/mL to remove sialic acids from the cell surface. The results demonstrated that Siglec-7 ligands are detected on tumor cells from various subsets of tumors (Figure 6). Sialidase treatment of cells (i.e. "stripping" of sialoglycans from the cell membrane) eliminated binding.

Example 3. Antibodies with Improved K_D

[0136] A panel of antibodies was evaluated for binding to Siglec-7. The results identified anti-Siglec-7 antibodies that have improved K_D values compared to commercially available anti-Siglec-7 antibodies (Figure 7).

Example 4. Antibodies with Siglec-7 ligand blocking activity

5 **[0137]** Recombinant Siglec-7-Fc was added to A375 cells in the presence of anti-Siglec-7 antibodies at increasing concentrations and binding of the complex was detected on the cell surface. The results showed that anti-Siglec-7 antibodies blocked the interaction of Siglec-7 with ligands present on the surface of A375 melanoma human cells with various potencies (Figure 8) and demonstrated antibodies that have improved ligand blocking activity relative to
10 commercially available anti-Siglec-7 antibodies.

Example 5. Antibodies with Siglec-7 internalization activity

15 **[0138]** Primary human peripheral blood mononuclear cells (PBMC) were incubated with increasing concentrations of anti-Siglec-7 antibodies for 24 hours and remaining Siglec-7 in the cell surface of NK cells was detected using a non-competing anti-Siglec-7 antibody. The results showed that anti-Siglec-7 antibodies caused internalization of Siglec-7 on primary human NK cells with various potencies (Figure 9) and demonstrated antibodies that have improved internalization activity compared to commercially available, or previously described, anti-Siglec-7 antibodies. Rapid, concentration-dependent antibody-induced internalization of Siglec-7 on human NK cells was further evaluated using monoclonal antibody 3F1. 3F1
20 showed more potent internalization activity compared to commercially available S7.7 antibody (Figure 10)

[0139] Evaluation of monoclonal antibody 8A2 (Figure 11) demonstrated that the antibody did not block Siglec-7/ligand interaction (left panel), but caused internalization (right panel) of Siglec-7 on primary human immune cells.

25 Example 6. Humanized sequences

[0140] Humanized antibodies were generated using monoclonal antibodies 16H11 and 8A2 to generate humanized internalizing anti-Siglec 7 antibodies.

30 **[0141]** Humanized antibodies derived from 16H11 were evaluated for binding to Siglec 7. Antibody binding results (measured in the form of a monovalent Fab) are shown in Table 1. Antibodies having the following heavy and light chain variable regions demonstrated K_D

values (monovalent Fab) of about 75 nM or lower: VH438-4 and VL418-2; VH440-2 and VL418-2; VH441-2 and VL418-2; VH443-1 and VL418-2; VH444-2 and VL418-2, VH445-3 and VL418-2; VH449-4 and VL448-3; VH449-6 and VL418-2; VH387-11 and VL418-2; VH446-7 and VL418-2; VH 446-7 and VL448-3; VH463-2 and VL418-2; Vh463-2 and VL448-3; FH465-17 and VL418-2; VH484-6 and VL418-2; VH484-6 and VL448-3; and VH484-7 and VL448-3. The ligand blocking activity of the 16H11 anti-Siglec-7 antibody is preserved, as indicated by analysis of selected antibodies (indicated by the VH/VL pairs in Table 1): AK410-1/AK418-2, AK446-7/AK418-2, and AK446-7/AK448-3.

10 Table 1. K_D values of humanized antibodies derived from 16H11 measured as monovalent Fabs:

No.	VH	VL	K_D (pM)
1	AK410-1 (SEQ ID NO:44)	AK418-2 (SEQ ID NO:69)	250-500
2	AK417-17 (SEQ ID NO:42)	AK418-2 (SEQ ID NO:69)	250-500
3	AK417-8 (SEQ ID NO:41)	AK421-3 (SEQ ID NO:71)	>500
4	AK417-8 (SEQ ID NO:41)	AK419-2 (SEQ ID NO:70)	>500
5	AK417-17 (SEQ ID NO:42)	AK421-3 (SEQ ID NO:71)	250-500
6	AK417-17 (SEQ ID NO:42)	AK419-2 (SEQ ID NO:70)	>500
7	AK417-17 (SEQ ID NO:42)	AK424-1 (SEQ ID NO:72)	>500
8	AK417-17 (SEQ ID NO:42)	AK425-3 (SEQ ID NO:73)	>500
9	AK417-17 (SEQ ID NO:42)	AK426-2 (SEQ ID NO:74)	>500
10	AK417-17 (SEQ ID NO:42)	AK427-1 (SEQ ID NO:75)	>500
12	AK417-17 (SEQ ID NO:42)	AK418-2 (SEQ ID NO:69)	>500
13	AK417-17 (SEQ ID NO:42)	AK419-2 (SEQ ID NO:70)	>500
14	AK417-17 (SEQ ID NO:42)	AK435-7 (SEQ ID NO:76)	>500
15	AK417-8 (SEQ ID NO:41)	AK419-2 (SEQ ID NO:70)	>500
16	AK417-8 (SEQ ID NO:41)	AK435-7 (SEQ ID NO:76)	>500
17	AK438-4 (SEQ ID NO:45)	AK418-2 (SEQ ID NO:69)	<75
18	AK440-2 (SEQ ID NO:46)	AK418-2 (SEQ ID NO:69)	<100
19	AK441-2 (SEQ ID NO:47)	AK418-2 (SEQ ID NO:69)	<75
20	AK417-17 (SEQ ID NO:42)	AK435-7 (SEQ ID NO:76)	250-500
21	AK417-17 (SEQ ID NO:42)	AK439-5 (SEQ ID NO:77)	250-500
22	AK417-8 (SEQ ID NO:41)	AK439-5 (SEQ ID NO:77)	250
23	AK443-1 (SEQ ID NO:48)	AK418-2 (SEQ ID NO:69)	<75
24	AK444-2 (SEQ ID NO:49)	AK418-2 (SEQ ID NO:69)	<75
25	AK445-3 (SEQ ID NO:50)	AK418-2 (SEQ ID NO:69)	<75
26	AK447-2 (SEQ ID NO:52)	AK418-2 (SEQ ID NO:69)	75-150
27	AK447-2 (SEQ ID NO:52)	AK448-3 (SEQ ID NO:78)	75-150
28	AK449-4 (SEQ ID NO:53)	AK418-2 (SEQ ID NO:69)	75-150
29	AK449-4 (SEQ ID NO:53)	AK448-3 (SEQ ID NO:78)	<100
30	AK449-6 (SEQ ID NO:54)	AK418-2 (SEQ ID NO:69)	<100
31	AK449-6 (SEQ ID NO:54)	AK448-3 (SEQ ID NO:78)	50-100
32	AK387-11 (SEQ ID NO:43)	AK418-2 (SEQ ID NO:69)	<75
33	AK446-7 (SEQ ID NO:51)	AK418-2 (SEQ ID NO:69)	<75

34	AK446-7 (SEQ ID NO:51)	AK448-3 (SEQ ID NO:78)	<75
35	AK463-2 (SEQ ID NO:55)	AK418-2 (SEQ ID NO:69)	<75
36	AK463-2 (SEQ ID NO:55)	AK448-3 (SEQ ID NO:78)	<75
37	AK446-7 (SEQ ID NO:51)	AK419-2 (SEQ ID NO:70)	>500
38	AK463-2 (SEQ ID NO:55)	AK419-2 (SEQ ID NO:70)	>500
39	AK465-17 (SEQ ID NO:57)	AK418-2 (SEQ ID NO:69)	<75
40	AK465-17 (SEQ ID NO:57)	AK419-2 (SEQ ID NO:70)	150-250
41	AK465-17 (SEQ ID NO:57)	AK448-3 (SEQ ID NO:78)	100-150
42	AK484-6 (SEQ ID NO:58)	AK418-2 (SEQ ID NO:69)	<100
43	AK484-6 (SEQ ID NO:58)	AK448-3 (SEQ ID NO:78)	<75
44	AK484-7 (SEQ ID NO:59)	AK448-3 (SEQ ID NO:78)	<75
45	AK485-5 (SEQ ID NO:61)	AK418-2 (SEQ ID NO:69)	>500
46	AK485-5 (SEQ ID NO:61)	AK448-3 (SEQ ID NO:78)	>500
47	AK485-4 (SEQ ID NO:60)	AK448-3 (SEQ ID NO:78)	>500

Methods

K_D measurements

[0142] Antibody binding analysis was carried out by bio-layer interferometry (ForteBio).

5 The assay was conducted at 25°C in 1x ForteBio Kinetics buffer (ForteBio18-132) in ultrapure water. Antibodies were captured on anti-mouse kinetic sensors at 0.5 ug/mL; Siglec-7-ECD was used as analyte and diluted in assay buffer from 50 nM to 1.56 nM with 2x dilutions. Two-minute associations were conducted, followed by 10-minute dissociations. Results were determined relative to a control empty reference AHC sensor, and analyzed using ForteBio 10 analysis software with 1:1 global fit parameters.

Antibody competition using Fortebio

[0143] Siglec-7-ECD-huFc was captured on anti-human IgG kinetic sensors at 0.5 ug/ml under saturating conditions (15 min at 1 ug/ml), after which the competing antibody was tested for binding. Each anti-Siglec-7 antibody was tested both ways (i.e. as saturating antibody and 15 as competing antibody) against all other antibodies. When the antibody on the sensor competes with the antibody in solution, no additional binding to the antigen is observed. When a binding signal is observed, the two antibodies bind to the antigen in a non-competitive manner.

Ligand blocking assay

20 **[0144]** Human melanoma cell line A375, which expresses high level of ligands for Siglec-7, was used to determine the blocking activity of anti-Siglec-7 antibodies in a cell based assay.

Two-fold serial dilutions of anti-Siglec-7 antibodies (40 nM to 40 pM) were combined with 10nM Siglec-7-ECD-Fc in FACS buffer (PBS/2% BSA) and incubated on ice for 30 minutes. 2.5x10e4 A375 cells per well were added to round bottom 96-well tissue culture plates in FACS buffer, plates were centrifuged at 400g for 2 min, supernatant was removed and cells 5 were re-suspended in 100 ul of the antibody-Siglec-7 complexes. After a 1 hour incubation on ice, cells were washed twice and incubated for 30 minutes with goat anti-human F(ab')₂ fragment conjugated to AF647 (Jackson IR labs) at 1ug/ml in FACS buffer. After two more washes, cells were fixed in PBS/2%PFA and acquired on a Novocyte flow cytometer (ACEA biosciences). IC₅₀ values for blocking were determined based on plotting mean fluorescence in 10 the APC channel and analysis using Prism Graphpad software.

Internalization assay

[0145] Healthy donor peripheral blood mononuclear monocytes (PBMC) were used to determine internalization activity of anti-Siglec-7 antibodies. Previously cryopreserved PBMC were thawed and incubated for 90 minutes at 37°C in complete medium (RPMI medium 15 supplemented with 10% fetal bovine serum). Five-fold serial dilutions of anti-Siglec-7 antibodies (100 nM-0.01 pM) were prepared in complete medium. Cells (5x10e4 per well) and antibody dilutions were combined in 96-well tissue culture plates and incubated at 37°C for 24 hours. Cells were re-suspended in huFc block (Becton Dickinson) in FACS buffer and stained with an antibody cocktail containing CD3-FITC, CD16-PE and anti-Siglec-7 antibody 4B12- 20 AF647 for 1 hour on ice. After two washes, cells were fixed in PBS/2%PFA and acquired on a Novocyte flow cytometer. IC₅₀ values for internalization were determined based on plotting mean fluorescence in the APC channel on NK cells (gated as CD3-CD16+) and analysis using Prism Graphpad software.

Primary tumor analysis

[0146] Single cells from primary human tumor specimens were prepared using the Mylteni GentleMACS instrument according to the manufacturer's instructions. Cells were re-suspended in huFc block (Becton Dickinson) in FACS buffer and staining was performed using cocktails containing conjugated antibodies against immune cell surface markers, including CD3, CD8, CD16, CD45 and 7-AAD as a viability marker. CD8+ T cells were 25 identified and gated as 7-AAD- CD45+ CD3+ CD8+. Anti-Siglec-7-PE (clone S7.7 Biolegend) was used to detect Siglec-7 levels. Cells were fixed in PBS/2%PFA and acquired 30 on a Novocyte cytometer. Gating and analysis was performed using Flowjo software (Tristar).

[0147] Ligand levels on tumor cells were detected using Siglec-7-ECD-Fc as described under Ligand blocking assay above. As a specificity control, cells were treated with sialidase/neuraminidase (Roche) at 0.1U/mL to remove sialic acids from the cell surface.

[0148] It is understood that the examples and embodiments described herein are for 5 illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, accession numbers, and patent applications cited herein are hereby incorporated by reference for the purposes in the context of which they are cited.

10 **Table of illustrative sequences**

SEQ ID NO:1 heavy chain variable region sequence (16H11); CDRs as defined by Kabat: underline; CDRs as defined by Chothia: bold, italics

QVQLHQSGAELVKPGASVKISCKGS**GYDFSNF**WMNWKQRPKGLEWIGQI**YPGDGE**IKYNGKFKGKATLTA
DESSSTAYIHLSSLTSEDSAVYFCAR**DYDYL****RAMDY**WGQGTSVTVSS

15

SEQ ID NO:2 heavy chain variable region sequence (2G12); CDRs as defined by Kabat: underlined; CDRs as defined by Chothia: bold, italics

QVQLQQPGAELVKPGASVKLSCKAS**GYTFTS**YWMQWVKQRPQGLEWIGE**IDPSVSY**TEYNQKFKGKAT
LTVDTSSSTAYMQLSSLTSEDSAVYFCAR**WSKDYYGMDY**WGQGTSVTVSS

20

SEQ ID NO:3 heavy chain variable region sequence (5D1); CDRs as defined by Kabat: underlined; CDRs as defined by Chothia: bold, italics

QVQLQQPGAELVKPGASVKMSCKAS**GYTFTSS**WITWVKDRPGQGLEWIGDI**YPGNGNT**NYNEKFKSKAT
LTVDTSSNTVYMQLSSLTSEDSAVHYCAR**DGRGYFDY**WGP GTTLTVSS

25

SEQ ID NO:4 heavy chain variable region sequence (8A2); CDRs as defined by Kabat: underlined; CDRs as defined by Chothia: bold, italics

QVQLKESGPGLVAPSQSLSICTVS**GFSLT****TYGVD**WVRQFPKGLEWLGV**WGGGN**TNYNSALMSRLSI
SKDTSKSQVFLKMNSLQTDDTAMYCAK**HKGTSHAMEY**WGQGTSVTVSS

SEQ ID NO:11 heavy chain variable region sequence (4B12); CDRs as defined by Kabat: underlined; CDRs as defined by Chothia: bold, italics

EVQLQQSGPELVKPGASVKIPCKAS **GYTFTDYNMDWVKQSHEKSLEWIGDIDPHNGVTLYNQKFKD**KAT
5 LTIDKSSNTAYMELRSLTSEDSAVYYCAL **TGSTY**WGQGTLVTVSA

SEQ ID NO:15 light chain variable region sequence (16H11); CDRs as defined by both Kabat and Chothia are underlined

DIQMTQSPASLSASVGETVTITCRASGNIHNYLAWFQQKQGKSPHFLVYSAKALADGVPSRFSGSGSGT
10 QYSLKINSLQPEDFGTYYCQHFWSSPYTFGGGTKLEIK

SEQ ID NO:16 light chain variable region sequence (2G12); CDRs as defined by both Kabat and Chothia are underlined.

DIVLTQSHKFMSTSVGDRVITCKASQDVSTAVAWYQQKPGQSPKLLIYWTSTRHTGVPDRFTGSGSGT
15 DHTLT

SEQ ID NO:18 light chain variable region sequence (8A2); CDRs as defined by both Kabat and Chothia are underlined.

QIVLTQSPAAMSASPGEKVTMTCSASSRVIFMWYQQKPGSSPRLLIYDTTSNLASGGPVRFSGGSGTS
20 YSLTISRMEAEDAATYYCQQWSSYPPTFGAGTKLEIK

SEQ ID NO:17 light chain variable region sequence (5D1); CDRs as defined by both Kabat and Chothia are underlined.

DIQMTQTSSLSASLGDRVIICRASQDISNFLWYQQKPDGTVKLLMYDTSILQSGGPVPSRFSGRGSGA
25 DYSLTINNLEQEDLATYFCQQGKTLPYTFGGGTKLEIK

SEQ ID NO:25 light chain variable region sequence (4B12); CDRs as defined by both Kabat and Chothia are underlined.

DIVMTQSQKFMSTVGDRSVTCKASQNVGTNVAWYQQKPGQSPKAVIYSASYRNSGVPDRFTGSGSGT
DFTLTISNVQSEDLTEYFCQQYNNYPTFGGGTKLEIK

5

SEQ ID NOS:29-78—humanized variable region sequences derived from 16A11:

SEQ ID NO:29 Humanized V_H region 386-1 amino acid sequence; CDRs as defined by Chothia are underlined

10 QVQLVQSGAEVKKPGSSVKVSCKASGYDFSNFWISWVRQAPGQGLEWMGGIYPGDG
EINYAQKFQGRVTTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

SEQ ID NO:30 Humanized V_H region 392-3 amino acid sequence; CDRs as defined by Chothia are underlined

15 QVQLVQSGAEVKKPGSSVKVSCKASGYTFSNFWISWVRQAPGQGLEWMGGIYPGDG
EINYAQKFQGRVTTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

SEQ ID NO:31 Humanized V_H region 392-4 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKKPGSSVKVSCKASGGDFSNFWISWVRQAPGQGLEWMGGIYPGDG
EINYAQKFQGRVTTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

25 **SEQ ID NO:32 Humanized VH region 393-4 amino acid sequence; CDRs as defined by Chothia are underlined**

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWISWVRQAPGQGLEWMGGIYPGDGE
INYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

5 **SEQ ID NO:33 Humanized V_H region 393-8 amino acid sequence; CDRs as defined by Chothia are underlined**

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWISWVRQAPGQGLEWMGGIYPIDGE
INYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

10

SEQ ID NO:34 Humanized V_H region 394-2 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWISWVRQAPGQGLEWMGGIYPGDG
TINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
15 VTVSS

SEQ ID NO:35 Humanized V_H region 394-4 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWISWVRQAPGQGLEWMGGIYPGDG
20 EINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGT
LTVSS

SEQ ID NO:36 Humanized V_H region 400-5 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSSYAISWVRQAPGQGLEWMGGIYPGDG
25 EINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

SEQ ID NO:37 Humanized V_H region 400-7 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSSFWISWVRQAPGQGLEWMGGIYPGDG
EINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

5 **SEQ ID NO:38 Humanized V_H region 400-9 amino acid sequence; CDRs as defined by Chothia are underlined**

QVQLVQSGAEVKPGSSVKVSCKASGYDFSSYWISWVRQAPGQGLEWMGGIYPGDG
EINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

10 **SEQ ID NO:39 Humanized V_H region 400-14 amino acid sequence; CDRs as defined by Chothia are underlined**

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNYAISWVRQAPGQGLEWMGGIYPGDG
EINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
VTVSS

15

SEQ ID NO:40 Humanized V_H region 401-1 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWISWVRQAPGQGLEWMGGIYPGFG
EINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQGTL
20 VTVSS

SEQ ID NO:41 Humanized V_H region 417-8 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGGIYPGD
25 GEINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDVWGQG
TMVTVSS

SEQ ID NO:42 Humanized V_H region 417-17 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGGIYPGD
GEINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

5 **SEQ ID NO:43 Humanized V_H region 387-11 amino acid sequence; CDRs as defined by Chothia are underlined**

QVQLVQSGAEVKPGSSVKVSCKGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
GEIKYNQKFQGRVTLTADESTSTAYMELSSLRSEDTAVYFCARDDYLRAMDYWGQG
TLVTVSS

10

SEQ ID NO:44 Humanized V_H region 410-1 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGGIYPGD
GEINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQG

15 TLVTVSS

SEQ ID NO:45 Humanized V_H region 438-4 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
20 GEIKYNQKFQGRVTLTADESTSTAYMELSSLRSEDTAVYFCARDDYLRAMDYWGQG
TLVTVSS

SEQ ID NO:46 Humanized V_H region 440-2 amino acid sequence; CDRs as defined by Chothia are underlined

25 QVQLVQSGAEVKPGSSVKVSCKGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYFCARDDYLRAMDYWGQGT
LTVSS

SEQ ID NO:47 Humanized V_H region 441-2 amino acid sequence; CDRs as defined by Chothia are underlined

5 QVQLVQSGAEVKKPGSSVKVSCKGSGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTLTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

SEQ ID NO:48 Humanized V_H region 443-1 amino acid sequence; CDRs as defined by Chothia are underlined

10 QVQLVQSGAEVKKPGSSVKVSCKGSGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

SEQ ID NO:49 Humanized V_H region 444-2 amino acid sequence; CDRs as defined by Chothia are underlined

15 QVQLVQSGAEVKKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTTADESTSTAYMELSSLRSEDTAVYFCARDDYLRAMDYWGQGT
LTVSS

SEQ ID NO:50 Humanized V_H region 445-3 amino acid sequence; CDRs as defined by Chothia are underlined

20 QVQLVQSGAEVKKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTLTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

25 **SEQ ID NO:51 Humanized V_H region 446-7 amino acid sequence; CDRs as defined by Chothia are underlined**

 QVQLVQSGAEVKKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTTADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

SEQ ID NO:52 Humanized V_H region 447-2 amino acid sequence; CDRs as defined by Chothia are underlined

5 QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
 MVTVSS

SEQ ID NO:53 Humanized V_H region 449-4 amino acid sequence; CDRs as defined by Chothia are underlined

10 QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGGIYPGD
 GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
 MVTVSS

SEQ ID NO:54 Humanized V_H region 449-6 amino acid sequence; CDRs as defined by Chothia are underlined

15 QVQLVQSGAEVKPGSSVKVSCKGSGYDFSNFWMNWVRQAPGQGLEWMGGIYPGD
 GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
 MVTVSS

20 **SEQ ID NO:55 Humanized V_H region 463-2 amino acid sequence; CDRs as defined by Chothia are underlined**

 QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQG
 TLVTVSS

25

SEQ ID NO:56 Humanized V_H region 465-2 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
GEINYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

5 **SEQ ID NO:57 Humanized V_H region 465-17 amino acid sequence; CDRs as defined by Chothia are underlined**

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFWMNWVRQAPGQGLEWMGQIYPGD
GEIKYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
MVTVSS

10

SEQ ID NO:58 Humanized V_H region 484-6 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNYWMNWVRQAPGQGLEWMGQIYPGD
GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT

15 MVTVSS

SEQ ID NO:59 Humanized V_H region 484-7 amino acid sequence; CDRs as defined by Chothia are underlined

QVQLVQSGAEVKPGSSVKVSCKASGYDFSNYWMNWVRQAPGQGLEWMGQIYPGD
20 GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQG
TLTVVSS

SEQ ID NO:60 Humanized V_H region 485-4 amino acid sequence; CDRs as defined by Chothia are underlined

25 QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFAMWVRQAPGQGLEWMGQIYPGD
GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDYWGQG
TLTVVSS

SEQ ID NO:61 Humanized V_H region 485-5 amino acid sequence; CDRs as defined by Chothia are underlined

5 QVQLVQSGAEVKPGSSVKVSCKASGYDFSNFAMNWVRQAPGQGLEWMGQIYPGD
 GEIKYNQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDDYLRAMDIWGQGT
5 MVTVSS

SEQ ID NO:62 Humanized V_L region 381-1 amino acid sequence; CDRs as defined by Chothia are underlined

10 DIQMTQSPSSLSASVGDRVTITCRASGNIHNLYAWYQQKPGKAPKLLLYSAKRLESGV
 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKVEIK

SEQ ID NO:63 Humanized V_L region 390-8 amino acid sequence; CDRs as defined by Chothia are underlined

15 DIQMTQSPSSLSASVGDRVTITCRASGNIHNLSAWYQQKPGKAPKLLLYSAKRLESGV
 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKVEIK

SEQ ID NO:64 Humanized V_L region 391-1 amino acid sequence; CDRs as defined by Chothia are underlined

20 DIQMTQSPSSLSASVGDRVTITCRASGNIHNLYAWYQQKPGKAPKLLLYAASRLESGV
 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKVEIK

SEQ ID NO:65 Humanized V_L region 391-8 amino acid sequence; CDRs as defined by Chothia are underlined

25 DIQMTQSPSSLSASVGDRVTITCRASGNIHNLYAWYQQKPGKAPKLLLYSASRLESGV
 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKVEIK

SEQ ID NO:66 Humanized V_L region 395-1 amino acid sequence; CDRs as defined by Chothia are underlined

DIQMTQSPSSLSASVGDRVITCRASGGIHNYLAWYQQKPGKAPKLLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHF~~WSSPY~~TFGGGT~~K~~VEIK

SEQ ID NO:67 Humanized V_L region 395-4 amino acid sequence; CDRs as defined by
5 Chothia are underlined

DIQMTQSPSSLSASVGDRVITCRASQNIHNYLAWYQQKPGKAPKLLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHF~~WSSPY~~TFGGGT~~K~~VEIK

SEQ ID NO:68 Humanized V_L region 396-2 amino acid sequence; CDRs as defined by
10 Chothia are underlined

DIQMTQSPSSLSASVGDRVITCRASGNISNY~~LA~~WYQQKPGKAPKLLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHF~~WSSPY~~TFGGGT~~K~~VEIK

SEQ ID NO:69 Humanized V_L region 418-2 amino acid sequence; CDRs as defined by
15 Chothia are underlined

DIQMTQSPSSLSASVGDRVITCRASGNIHN~~YLA~~WYQQKPGKAPKFLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHF~~WSSPY~~TFGGGT~~K~~VEIK

SEQ ID NO:70 Humanized V_L region 419-2 amino acid sequence; CDRs as defined by
20 Chothia are underlined

DIQMTQSPSSLSASVGDRVITCRASQNIHN~~YLA~~WYQQKPGKAPKFLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHF~~WSSPY~~TFGGGT~~K~~VEIK

SEQ ID NO:71 Humanized V_L region 421-3 amino acid sequence; CDRs as defined by
25 Chothia are underlined

DIQMTQSPSSLSASVGDRVITCRASGNIHN~~YLA~~WYQQKPGKAPKFLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHF~~WSSPY~~TFGQGT~~K~~LEIK

SEQ ID NO:72 Humanized V_L region 424-1 amino acid sequence; CDRs as defined by Chothia are underlined

DIQMTQSPSSLSASVGDRVТИCRASGNIHNYLAWYQQKPGKAPKLLYSAKRLASGV
5 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGTKVEIK

SEQ ID NO:73 Humanized V_L region 425-3 amino acid sequence; CDRs as defined by Chothia are underlined

DIQMTQSPSSLSASVGDRVТИCRASGNIHNYLAWYQQKPGKAPKLLYSAKRLEGV
10 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGTKVEIK

SEQ ID NO:74 Humanized V_L region 426-2 amino acid sequence; CDRs as defined by Chothia are underlined

DIQMTQSPSSLSASVGDRVТИCRASQNIHNYLAWYQQKPGKAPKLLYSAKRLASGV
15 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGTKVEIK

SEQ ID NO:75 Humanized V_L region 427-1 amino acid sequence; CDRs as defined by Chothia are underlined

DIQMTQSPSSLSASVGDRVТИCRASQNIHNYLAWYQQKPGKAPKLLYSAKRLEGV
20 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGTKVEIK

SEQ ID NO:76 Humanized V_L region 435-7 amino acid sequence; CDRs as defined by Chothia are underlined

DIQMTQSPSSLSASVGDRVТИCRASQNIHNYLAWYQQKPGKAPKFLYSAKRLEGV
25 PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGGTKVEIK

SEQ ID NO:77 Humanized V_L region 439-5 amino acid sequence

DIQMTQSPSSLSASVGDRVITCRASQNIHNYLAWYQQKPGKAPKFLYSAKRLEDGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGQGTKLEIK

SEQ ID NO:78 Humanized V_L region 448-3 amino acid sequence

5 DIQMTQSPSSLSASVGDRVITCRASQNIHNYLAWYQQKPGKAPKFLYSAKRLESGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWSSPYTFGQGTKLEIK

SEQ ID NOS:104-107 humanized variable region sequences derived from 8A2:

SEQ ID NO:104 humanized heavy chain variable region sequence RHA; CDRs as defined by Chothia are underlined

10 QVQLQESGPGLVKPSETSLTCTVSGFSLTTYGWSWIRQPPGKGLEWIGYIWGGGNTN
YNPSLKSRTVTISVDTSKNQFSLKLSSVTAADTAVYYCAKHKGTSHAMEYWGQGTMV
TVSS

SEQ ID NO:105: humanized light chain variable region sequence RKA; CDRs as defined by Chothia are underlined

EIVLTQSPATLSLSPGERATLSCRASSRVIFAWYQQKPGQAPRLLIYDTSNKATGVPA
RFSGSGSGTDFTLTISSLEPEDFAVYYCQQWSSYPPTFGGGTKVEIK

SEQ ID NO:106 humanized heavy chain variable region sequence RHB; CDRs as defined by Chothia are underlined

QVQLQESGPGLVKPSETSLTCTVSGFSLTTYGVDWVRQPPGKGLEWIGVIWGGGNT
NYNSSLKSRTVTISKDTSKNQVFLKLSSVTAADTAVYYCAKHKGTSHAMEYWGQGTM
TVSS

25 **SEQ ID NO:107 humanized light chain variable region sequence RKB; CDRs as defined by Chothia are underlined**

QIVLTQSPATLSLSPGERATLSCRASSRVIFMYWYQQKPGQSPRLLIYDTSNLATGVPA
RFSGGGSGTDYTLTISSLEPEDFAVYYCQQWSSYPPTFGGGTKVEIK

WHAT IS CLAIMED IS:

1 1. A method of inhibiting proliferation of tumor cells, the method
2 comprising administering a therapeutically effective amount of an anti-Siglec-7 antibody to a
3 patient that has cancer, wherein the patient has a primary tumor or metastatic lesion that
4 comprises an elevated level of CD8+ infiltrating-T cells that express Siglec-7, and further,
5 wherein the tumor or metastatic lesion comprises cancer cells that express sialylated Siglec-7
6 ligands.

1 2. The method of claim 1, wherein the anti-Siglec-7 antibody has a
2 bivalent avidity of 50 pM or less.

1 3. The method of claim 1 or 2, wherein the anti-Siglec-7 antibody blocks
2 ligand binding at an IC₅₀ of less than about 4000 pM.

1 4. The method of claim 1 or 2, wherein the anti-Siglec-7 antibody blocks
2 ligand binding at an IC₅₀ of less than about 3500 pM.

1 5. The method of claim 1 or 2, wherein the anti-Siglec-7 antibody has an
2 internalization activity of less than about 70 pM.

1 6. The method of claim 1 or 2, wherein the anti-Siglec-7 antibody has an
2 internalization activity of less than about 25 pM.

1 7. The method of claim 5 or 6, wherein the anti-Siglec-7 antibody does
2 not block ligand binding.

1 8. The method of claim 1 or 2, wherein the anti-Siglec-7 antibody
2 competes with an antibody having a variable heavy chain sequence of SEQ ID NO:1 and a
3 variable light chain sequence of SEQ ID NO:15 for binding to Siglec-7.

1 9. The method of claim 8, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable
3 region sequence of SEQ ID NO:1.

1 10. The method of claim 8, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:1.

1 11. The method of claim 8, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:1.

1 12. The method of any one of claims 8 to 11, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light
3 chain variable region sequence of SEQ ID NO:15.

1 13. The method of any one of claims 8 to 11, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of
3 SEQ ID NO:15.

1 14. The method of any one of claims 8 to 11, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable
3 region sequence of SEQ ID NO:15.

1 15. The method of claim 8, wherein the anti-Siglec-7 antibody comprises a
2 heavy chain variable region comprising a CDR3 having a sequence as set forth in any one of
3 SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are substituted.

1 16. The method of claim 8, wherein the anti-Siglec-7 antibody comprises a
2 heavy chain variable region comprising a CDR3 as set forth in any one of SEQ ID NOS:29-
3 31, 33, and 35-61.

1 17. The method of claim 15 or 16, where the heavy chain variable region
2 comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and
3 35-61 in which 1, 2, or 3 amino acids are substituted; and/or a CDR2 having a sequence as set
4 forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are
5 substituted.

1 18. The method of claim 15 or 16, where the heavy chain variable region
2 comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and
3 35-61 and a CDR2 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and
4 35-61.

1 19. The method of any one of claims 8, and 15-18, wherein the anti-Siglec-
2 7 antibody comprises a light chain variable region comprising a CDR3 having a sequence as
3 set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino acids are
4 substituted.

1 20. The method of any one of claims 8, and 15-18, wherein the anti-Siglec-
2 7 antibody comprises a light chain variable region comprising a CDR3 as set forth in any one
3 of SEQ ID NOS:62 and 64-78.

1 21. The method of claim 19 or 20, where the light chain variable region
2 comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in
3 which 1, 2, or 3 amino acids are substituted; and/or a CDR2 having a sequence as set forth in
4 any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino acids are substituted.

1 22. The method of claim 19 or 20, where the light chain variable region
2 comprises a CDR1 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78
3 and a CDR2 having a sequence as set forth in any one of SEQ ID NOS:62 and 64-78.

1 23. The method of claim 8, wherein the anti-Siglec-7 antibody comprises a
2 heavy chain variable region having at least 80%, or at least 85%, 90%, 91%, 92%, 93%, 94%,
3 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a
4 heavy chain variable region of any one of SEQ ID NOS:29-31, 33, and 35-61.

1 24. The method of claim 8 or 23, wherein the anti-Siglec-7 antibody
2 comprises a light chain variable region having at least 80%, or at least 85%, 90%, 91%, 92%,
3 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid
4 sequence of a light chain variable region of any one of SEQ ID NOS:62 and 64-78.

1 25. The method of claim 8, wherein the anti-Siglec-7 antibody comprises a
2 heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%,
3 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a heavy
4 chain variable region of any of SEQ ID NOS:41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
5 54, 55, 57, 58, 59, 60 or 61; and a light chain variable region having at least 80%, 85%, 90%,
6 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino

7 acid sequence of a light chain variable region of SEQ ID NO:69, 70, 71, 72, 73, 74, 75, 76,
8 77, or 78.

1 26. The method of claim 8, wherein the anti-Siglec-7 antibody comprises a
2 heavy chain variable region comprising CDR1, CDR2, and CDR3 sequences as set forth in a
3 heavy chain variable region sequence selected from SEQ ID NO:43, 45, 46, 47, 48, 49, 50,
4 51, 54, 55, 57, and 58; and a light chain variable region comprising the CDR1, CDR2, and
5 CDR3 sequences of SEQ ID NO:69.

1 27. The method of claim 8, wherein the anti-Siglec-7 antibody comprises a
2 heavy chain variable region comprising CDR1, CDR2, and CDR3 sequences as set forth in a
3 heavy chain variable region sequence selected from SEQ ID NO:53, 54, 51, 55, 58, and 59;
4 and a light chain variable region comprising the CDR1, CDR2, and CDR3 sequences of SEQ
5 ID NO:78.

1 28. The method of claim 8, wherein the anti-Siglec-7 antibody comprises:

2 a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
3 sequences as set forth in SEQ ID NO:43, and a light chain variable region comprising the
4 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

5 (b) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
6 sequences as set forth in SEQ ID NO:45, and a light chain variable region comprising the
7 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

8 (c) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
9 sequences as set forth in SEQ ID NO:46, and a light chain variable region comprising the
10 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

11 (d) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
12 sequences as set forth in SEQ ID NO:47, and a light chain variable region comprising the
13 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

14 (e) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
15 sequences as set forth in SEQ ID NO:48, and a light chain variable region comprising the
16 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

17 (f) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
18 sequences as set forth in SEQ ID NO:49, and a light chain variable region comprising the
19 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

20 (g) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
21 sequences as set forth in SEQ ID NO:50, and a light chain variable region comprising the
22 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

23 (h) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
24 sequences as set forth in SEQ ID NO:51, and a light chain variable region comprising the
25 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

26 (i) CDR1, CDR2, and CDR3 sequences as set forth in a heavy chain variable
27 region sequence SEQ ID NO:54, and a light chain variable region comprising the CDR1,
28 CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

29 (j) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
30 sequences as set forth in SEQ ID NO:55, and a light chain variable region comprising the
31 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

32 (k) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
33 sequences as set forth in SEQ ID NO:57, and a light chain variable region comprising the
34 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69; or

35 (l) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
36 sequences as set forth in SEQ ID NO:58, and a light chain variable region comprising the
37 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69.

1 29. The method of claim 8, wherein the anti-Siglec-7 antibody comprises:

2 a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
3 sequences as set forth in SEQ ID NO:53; and a light chain variable region comprising the
4 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

5 (b) heavy chain variable region comprising the CDR1, CDR2, and CDR3
6 sequences as set forth in SEQ ID NO:54; and a light chain variable region comprising the
7 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

8 (c) heavy chain variable region comprising the CDR1, CDR2, and CDR3
9 sequences as set forth in SEQ ID NO:51; and a light chain variable region comprising the
10 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

11 (d) heavy chain variable region comprising the CDR1, CDR2, and CDR3
12 sequences as set forth in SEQ ID NO:55; and a light chain variable region comprising the
13 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

14 (e) heavy chain variable region comprising the CDR1, CDR2, and CDR3
15 sequences as set forth in SEQ ID NO:58; and a light chain variable region comprising the
16 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78; or

17 (f) heavy chain variable region comprising the CDR1, CDR2, and CDR3
18 sequences as set forth in SEQ ID NO:59; and a light chain variable region comprising the
19 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78.

1 30. The method of claim 1, wherein the anti-Siglec-7 antibody blocks
2 binding of ligand to Siglec-7 and competes with an antibody QA79 produced from the
3 hybridoma deposited under accession number ICLC PD99003 for binding to Siglec-7, but
4 does not compete with antibody Z176 or antibody S7.7 for binding to Siglec-7.

1 31. The method of claim 30, wherein the anti-Siglec-7 antibody competes
2 with an antibody comprising a V_H sequence and V_L sequence designated as 2G12 in Figures
3 1 and 2 for binding to Siglec-7.

1 32. The method of claim 30, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable
3 region sequence of SEQ ID NO:2.

1 33. The method of claim 30, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:2.

1 34. The method of claim 30, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:2.

1 35. The method of any one of claims 30 to 34, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light
3 chain variable region sequence of SEQ ID NO:16.

1 36. The method of any one of claims 30 to 34, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of
3 SEQ ID NO:16.

1 37. The method of any one of claims 30 to 34, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable
3 region sequence of SEQ ID NO:16.

1 38. The method of claim 1, wherein the anti-Siglec-7 antibody has
2 internalization activity, does not block ligand binding to Siglec-7, and competes with antibody
3 S7.7, but not with antibody QA79 or antibody Z176 for binding to Siglec-7.

1 39. The method of claim 38, wherein the anti-Siglec-7 antibody competes
2 with an antibody comprising a V_H sequence and V_L sequence designated as 8A2 in Figures 1
3 and 2.

1 40. The method of claim 38, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises at least one CDR, or at least two CDRs, as set forth in a heavy chain
3 variable region sequence of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106.

1 41. The method of claim 38, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR3 as set forth in a heavy chain variable region sequence of SEQ
3 ID NO:4, SEQ ID NO:104, or SEQ ID NO:106.

1 42. The method of claim 38, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR1, CDR2, and CDR3 as set forth in a heavy chain variable region
3 sequence of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106.

1 43. The method of any one of claims 38 to 42, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, as set forth
3 in a light chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID
4 NO:107.

1 44. The method of any one of claims 38 to 42, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR3 as set forth in a light chain variable region
3 sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107.

1 45. The method of any one of claims 38 to 42, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 as set forth in a light
3 chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107.

1 46. The method of claim 1, wherein the anti-Siglec-7 antibody has
2 internalization activity, does not block ligand binding to Siglec-7, and competes with
3 antibody Z176, but not with QA79 or S7.7 for binding to Siglec-7.

1 47. The method of claim 46, wherein the anti-Siglec-7 antibody competes
2 with an antibody comprising a V_H sequence and V_L sequence designated as 5D1 in Figures 1
3 and 2.

1 48. The method of claim 46, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable
3 region sequence of SEQ ID NO:3.

1 49. The method of claim 46, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:3.

1 50. The method of claim 46, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:3.

1 51. The method of any one of claims 46 to 50, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light
3 chain variable region sequence of SEQ ID NO:17.

1 52. The method of any one of claims 46 to 50, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of
3 SEQ ID NO:17.

1 53. The method of any one of claims 46 to 50, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable
3 region sequence of SEQ ID NO:17.

1 54. The method of claim 1, wherein the anti-Siglec-7 antibody has
2 internalization activity, does not block ligand binding to Siglec-7, and does not compete with
3 antibody Z176, QA79, or S7.7 for binding to Siglec-7.

1 55. The method of claim 54, wherein the anti-Siglec-7 antibody competes
2 with an antibody comprising a V_H sequence and V_L sequence designated as 4B12 in Figures 1
3 and 2.

1 56. The method of claim 54, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises at least one CDR, or at least two CDRs, of a heavy chain variable
3 region sequence of SEQ ID NO:11.

1 57. The method of claim 54, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR3 of a heavy chain variable region sequence of SEQ ID NO:11.

1 58. The method of claim 54, wherein the anti-Siglec-7 antibody has a V_H
2 region that comprises a CDR1, CDR2, and CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:11.

1 59. The method of any one of claims 54 to 58, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises at least one CDR, or at least two CDRs, of a light
3 chain variable region sequence of SEQ ID NO:25.

1 60. The method of any one of claims 54 to 58, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR3 of a light chain variable region sequence of
3 SEQ ID NO:25.

1 61. The method of any one of claims 54 to 58, wherein the anti-Siglec-7
2 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light chain variable
3 region sequence of SEQ ID NO:25.

1 62. The method of any one of claims 1 to 61, wherein the antibody is in a
2 monovalent format or a fragment format.

1 63. The method of claim 62, wherein the antibody is PEGylated.

1 64. The method of any one of claims 1 to 63, wherein the patient has
2 melanoma, lung cancer, or colorectal cancer.

1 65. An anti-Siglec-7 antibody that competes with an antibody having a
2 variable heavy chain sequence of SEQ ID NO:1 and a variable light chain sequence of SEQ
3 ID NO:15 for binding to Siglec-7.

1 66. The anti-Siglec-7 antibody of claim 65, wherein the antibody
2 comprises a heavy chain variable region comprising a CDR3 having a sequence as set forth in
3 any one of SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are substituted.

1 67. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises a heavy chain variable region comprising a CDR3 as set forth in any one
3 of SEQ ID NOS:29-31, 33, and 35-61.

1 68. The anti-Siglec-7 antibody of claim 66 or 67, where the heavy chain
2 variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID
3 NOS:29-31, 33, and 35-61 in which 1, 2, or 3 amino acids are substituted; and/or a CDR2
4 having a sequence as set forth in any one of SEQ ID NOS:29-31, 33, and 35-61 in which 1, 2,
5 or 3 amino acids are substituted.

1 69. The anti-Siglec-7 antibody of claim 66 or 67, where the heavy chain
2 variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID
3 NOS:29-31, 33, and 35-61 and a CDR2 having a sequence as set forth in any one of SEQ ID
4 NOS:29-31, 33, and 35-61.

1 70. The anti-Siglec-7 antibody of any one of claims 65 to 69, wherein the
2 anti-Siglec-7 antibody comprises a light chain variable region comprising a CDR3 having a
3 sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino
4 acids are substituted.

1 71. The anti-Siglec-7 antibody of any one of claims 65 to 69, wherein the
2 anti-Siglec-7 antibody comprises a light chain variable region comprising a CDR3 as set forth
3 in any one of SEQ ID NOS:62 and 64-78.

1 72. The anti-Siglec-7 antibody of claim 70 or 71, where the light chain
2 variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID
3 NOS:62 and 64-78 in which 1, 2, or 3 amino acids are substituted; and/or a CDR2 having a

4 sequence as set forth in any one of SEQ ID NOS:62 and 64-78 in which 1, 2, or 3 amino
5 acids are substituted.

1 73. The anti-Siglec-7 antibody of claim 70 or 71, where the light chain
2 variable region comprises a CDR1 having a sequence as set forth in any one of SEQ ID
3 NOS:62 and 64-78 and a CDR2 having a sequence as set forth in any one of SEQ ID NOS:62
4 and 64-78.

1 74. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises a heavy chain variable region having at least 80%, or at least 85%, 90%,
3 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino
4 acid sequence of a heavy chain variable region of any one of SEQ ID NOS:29-31, 33, and 35-
5 61.

1 75. The anti-Siglec-7 antibody of claim 65 or 74, wherein the anti-Siglec-7
2 antibody comprises a light chain variable region having at least 80%, or at least 85%, 90%,
3 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino
4 acid sequence of a light chain variable region of any one of SEQ ID NOS:62 and 64-78.

1 76. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises a heavy chain variable region having at least 80%, 85%, 90%, 91%, 92%,
3 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid
4 sequence of a heavy chain variable region of any of SEQ ID NOS:41, 42, 43, 44, 45, 46, 47,
5 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60 or 61; and a light chain variable region having at
6 least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence
7 identity to the amino acid sequence of a light chain variable region of SEQ ID NO:69, 70, 71,
8 72, 73, 74, 75, 76, 77, or 78.

1 77. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises a heavy chain variable region comprising the CDR1, CDR2, and CDR3
3 sequences as set forth in a heavy chain variable region sequence selected from SEQ ID
4 NO:43, 45, 46, 47, 48, 49, 50, 51, 54, 55, 57, and 58; and a light chain variable region
5 comprising the CDR1, CDR2, and CDR3 sequences of SEQ ID NO:69.

1 78. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises a heavy chain variable region comprising the CDR1, CDR2, and CDR3

3 sequences as set forth in a heavy chain variable region sequence selected from SEQ ID
4 NO:53, 54, 51, 55, 58, and 59; and a light chain variable region comprising the CDR1,
5 CDR2, and CDR3 sequences of SEQ ID NO:78.

1 79. The method of claim 8, wherein the anti-Siglec-7 antibody comprises:

2 a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
3 sequences as set forth in SEQ ID NO:43, and a light chain variable region comprising the
4 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

5 b) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
6 sequences as set forth in SEQ ID NO:45, and a light chain variable region comprising the
7 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

8 c) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
9 sequences as set forth in SEQ ID NO:46, and a light chain variable region comprising the
10 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

11 d) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
12 sequences as set forth in SEQ ID NO:47, and a light chain variable region comprising the
13 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

14 e) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
15 sequences as set forth in SEQ ID NO:48, and a light chain variable region comprising the
16 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

17 f) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
18 sequences as set forth in SEQ ID NO:49, and a light chain variable region comprising the
19 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

20 g) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
21 sequences as set forth in SEQ ID NO:50, and a light chain variable region comprising the
22 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

23 h) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
24 sequences as set forth in SEQ ID NO:51, and a light chain variable region comprising the
25 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

26 i) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
27 sequences as set forth in a heavy chain variable region sequence SEQ ID NO:54, and a light
28 chain variable region comprising the CDR1, CDR2, and CDR3 sequences as set forth in SEQ
29 ID NO:69;

30 (j) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
31 sequences as set forth in SEQ ID NO:55, and a light chain variable region comprising the
32 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69;

33 (k) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
34 sequences as set forth in SEQ ID NO:57, and a light chain variable region comprising the
35 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69; or

36 (l) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
37 sequences as set forth in SEQ ID NO:58, and a light chain variable region comprising the
38 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:69.

1 80. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises:

3 a) a heavy chain variable region comprising the CDR1, CDR2, and CDR3
4 sequences as set forth in SEQ ID NO:53; and a light chain variable region comprising the
5 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

6 (b) heavy chain variable region comprising the CDR1, CDR2, and CDR3
7 sequences as set forth in SEQ ID NO:54; and a light chain variable region comprising the
8 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

9 (c) heavy chain variable region comprising the CDR1, CDR2, and CDR3
10 sequences as set forth in SEQ ID NO:51; and a light chain variable region comprising the
11 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

12 (d) heavy chain variable region comprising the CDR1, CDR2, and CDR3
13 sequences as set forth in SEQ ID NO:55; and a light chain variable region comprising the
14 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78;

15 (e) heavy chain variable region comprising the CDR1, CDR2, and CDR3
16 sequences as set forth in SEQ ID NO:58; and a light chain variable region comprising the
17 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78; or

18 (f) heavy chain variable region comprising the CDR1, CDR2, and CDR3
19 sequences as set forth in SEQ ID NO:59; and a light chain variable region comprising the
20 CDR1, CDR2, and CDR3 sequences as set forth in SEQ ID NO:78.

1 81. The method of claim 8, wherein the anti-Siglec-7 antibody comprises:

2 a) a heavy chain variable region comprising the amino acid sequence of SEQ
3 ID NO:43 and a light chain variable region comprising the amino acid sequence of SEQ ID
4 NO:69;

5 (b) a heavy chain variable region comprising the amino acid sequence of SEQ
6 ID NO:45 and a light chain variable region comprising the amino acid sequence of SEQ ID
7 NO:69;

8 (c) a heavy chain variable region comprising the amino acid sequence of SEQ
9 ID NO:46 and a light chain variable region comprising the amino acid sequence of SEQ ID
10 NO:69;

11 (d) a heavy chain variable region comprising the amino acid sequence of ID
12 NO:47 and a light chain variable region comprising the amino acid sequence of SEQ ID
13 NO:69;

14 (e) a heavy chain variable region comprising the amino acid sequence of SEQ
15 ID NO:48 and a light chain variable region comprising the amino acid sequence of SEQ ID
16 NO:69;

17 (f) a heavy chain variable region comprising the amino acid sequence of SEQ
18 ID NO:49 and a light chain variable region comprising the amino acid sequence of SEQ ID
19 NO:69;

20 (g) a heavy chain variable region comprising the amino acid sequence of SEQ
21 ID NO:50 and a light chain variable region comprising the amino acid sequence of SEQ ID
22 NO:69;

23 (h) a heavy chain variable region comprising the amino acid sequence of SEQ
24 ID NO:51 and a light chain variable region comprising the amino acid sequence of SEQ ID
25 NO:69;

26 (i) a heavy chain variable region comprising the amino acid sequence of SEQ
27 ID NO:54 and a light chain variable region comprising the amino acid sequence of SEQ ID
28 NO:69;

29 (j) a heavy chain variable region comprising the amino acid sequence of SEQ
30 ID NO:55 and a light chain variable comprising the amino acid sequence of SEQ ID NO:69;

31 (k) a heavy chain variable region comprising the amino acid sequence of SEQ
32 ID NO:57 and a light chain variable region comprising the amino acid sequence of SEQ ID
33 NO:69; or

34 (l) a heavy chain variable region comprising the amino acid sequence of SEQ
35 ID NO:58 and a light chain variable comprising the amino acid sequence of SEQ ID NO:69.

1 82. The anti-Siglec-7 antibody of claim 65, wherein the anti-Siglec-7
2 antibody comprises:

3 a) a heavy chain variable region comprising the amino acid sequence of SEQ
4 ID NO:53 and a light chain variable region comprising the amino acid sequence of SEQ ID
5 NO:78;

6 (b) heavy chain variable region comprising the amino acid sequence of SEQ
7 ID NO:54 and a light chain variable region comprising the amino acid sequence of SEQ ID
8 NO:78;

9 (c) heavy chain variable region comprising the amino acid sequence of SEQ
10 ID NO:51 and a light chain variable region comprising the amino acid sequence of SEQ ID
11 NO:78;

12 (d) heavy chain variable region comprising the amino acid sequence of SEQ
13 ID NO:55 and a light chain variable region comprising the amino acid sequence of SEQ ID
14 NO:78;

15 (e) heavy chain variable region comprising the amino acid sequence of SEQ
16 ID NO:58 and a light chain variable region comprising the amino acid sequence of ; or

17 (f) heavy chain variable region comprising the amino acid sequence of SEQ
18 ID NO:59 and a light chain variable region comprising the amino acid sequence of SEQ ID
19 NO:78.

1 83. An anti-Siglec-7 antibody that blocks binding of ligand to Siglec-7 and
2 competes with antibody QA79 produced from the hybridoma deposited under accession
3 number ICLC PD99003 for binding to Siglec-7, but does not compete with antibody Z176 or
4 antibody S7.7 for binding to Siglec-7.

1 84. The anti-Siglect antibody of claim 83, wherein the anti-Siglec-7
2 antibody competes with an antibody comprising a V_H sequence and V_L sequence designated
3 as 2G12 in Figures 1 and 2.

1 85. The anti-Siglec-7 antibody of claim 83, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy
3 chain variable region sequence of SEQ ID NO:2.

1 86. The anti-Siglec-7 antibody of claim 83, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:2.

1 87. The anti-Siglec-7 antibody of claim 83, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain
3 variable region sequence of SEQ ID NO:2.

1 88. The anti-Siglec-7 antibody of any one of claims 83 to 87, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs,
3 of a light chain variable region sequence of SEQ ID NO:16.

1 89. The anti-Siglec-7 antibody of any one of claims 83 to 87, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region
3 sequence of SEQ ID NO:16.

1 90. The anti-Siglec-7 antibody of any one of claims 83 to 87, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light
3 chain variable region sequence of SEQ ID NO:16.

1 91. An anti-Siglec-7 antibody that has internalization activity, does not
2 block ligand binding to Siglec-7, and competes with antibody S7.7, but not with antibody
3 QA79 or antibody Z176, for binding to Siglec-7.

1 92. The anti-Siglec-7 antibody of claim 91, wherein the anti-Siglec-7
2 antibody competes with an antibody comprising a V_H sequence and V_L sequence designated
3 as 8A2 in Figures 1 and 2.

1 93. The anti-Siglec-7 antibody of claim 91, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy
3 chain variable region sequence of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106.

1 94. The anti-Siglec-7 antibody of claim 91, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106.

1 95. The anti-Siglec-7 antibody of claim 91, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain
3 variable region sequence of SEQ ID NO:4, SEQ ID NO:104, or SEQ ID NO:106.

1 96. The anti-Siglec-7 antibody of any one of claims 91 to 95, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs,
3 of a light chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID
4 NO:107.

1 97. The anti-Siglec-7 antibody of any one of claims 91 to 95, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region
3 sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107.

1 98. The anti-Siglec-7 antibody of any one of claims 91 to 95, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light
3 chain variable region sequence of SEQ ID NO:18, SEQ ID NO:105, or SEQ ID NO:107.

1 99. An anti-Siglec-7 antibody has internalization activity, does not block
2 ligand binding to Siglec-7, and competes with antibody Z176, but not with antibody QA79 or
3 antibody S7.7 for binding to Siglec-7.

1 100. The anti-Siglec antibody of claim 99, wherein the anti-Siglec-7
2 antibody competes with an antibody comprising a V_H sequence and V_L sequence designated
3 as 5D1 in Figures 1 and 2.

1 101. The anti-Siglec-7 antibody of claim 99, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy
3 chain variable region sequence of SEQ ID NO:3.

1 102. The anti-Siglec-7 antibody of claim 99, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:3.

1 103. The anti-Siglec-7 antibody of claim 99, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain
3 variable region sequence of SEQ ID NO:3.

1 104. The anti-Siglec-7 antibody of any one of claims 99 to 103, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two CDRs,
3 of a light chain variable region sequence of SEQ ID NO:17.

1 105. The anti-Siglec-7 antibody of any one of claims 99 to 103, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable region
3 sequence of SEQ ID NO:17.

1 106. The anti-Siglec-7 antibody of any one of claims 99 to 103, wherein the
2 anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a light
3 chain variable region sequence of SEQ ID NO:17.

1 107. The anti-Siglec-7 antibody of claim 1, wherein the anti-Siglec-7
2 antibody has internalization activity, does not block ligand binding to Siglec-7, and does not
3 compete with antibody Z176, antibody QA79, or antibody S7.7 for binding to Siglec-7.

1 108. The anti-Siglec-7 antibody of claim 107, wherein the anti-Siglec-7
2 antibody competes with an antibody comprising a V_H sequence and V_L sequence designated
3 as 4B12 in Figures 1 and 2.

1 109. The anti-Siglec-7 antibody of claim 107, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises at least one CDR, or at least two CDRs, of a heavy
3 chain variable region sequence of SEQ ID NO:11.

1 110. The anti-Siglec-7 antibody of claim 107, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR3 of a heavy chain variable region sequence
3 of SEQ ID NO:11.

1 111. The anti-Siglec-7 antibody of claim 107, wherein the anti-Siglec-7
2 antibody has a V_H region that comprises a CDR1, CDR2, and CDR3 of a heavy chain
3 variable region sequence of SEQ ID NO:11.

1 112. The anti-Siglec-7 antibody of any one of claims 107 to 111, wherein
2 the anti-Siglec-7 antibody has a V_L region that comprises at least one CDR, or at least two
3 CDRs, of a light chain variable region sequence of SEQ ID NO:25.

1 113. The anti-Siglec-7 antibody of any one of claims 107 to 111, wherein
2 the anti-Siglec-7 antibody has a V_L region that comprises a CDR3 of a light chain variable
3 region sequence of SEQ ID NO:25.

1 114. The anti-Siglec-7 antibody of any one of claims 107 to 111, wherein
2 the anti-Siglec-7 antibody has a V_L region that comprises a CDR1, CDR2, and CDR3 of a
3 light chain variable region sequence of SEQ ID NO:25.

1 115. An anti-Siglec-7 antibody having a V_H region that comprises at least
2 one CDR, or at least two CDRs, of a V_H region sequence set forth in Figure 1.

1 116. An anti-Siglec-7 antibody having a V_H region that comprises a CDR1,
2 CDR2, and CDR3 of one of the heavy chain variable region sequences set forth in Figure 1.

1 117. The anti-Siglec-7 antibody of claim 116, having a V_H region that
2 comprises a heavy chain variable region sequence set forth in Figure 1.

1 118. An anti-Siglec-7 antibody having a V_L region that comprises at least
2 one CDR, or at least two CDRs, of a V_L region sequence set forth in Figure 2.

1 119. An anti-Siglec-7 antibody having a V_H region that comprises a CDR1,
2 CDR2, and CDR3 of one of the light chain variable region sequences set forth in Figure 2.

1 120. The anti-Siglec-7 antibody of claim 119, having a V_L region that
2 comprises a light chain variable region sequence set forth in Figure 2.

1 121. The anti-Siglec-7 antibody of any one of claims 83 to 120, wherein the
2 antibody is in a monovalent form.

1 122. The anti-Siglec-7 antibody of any one of claims 83 to 120, wherein the
2 antibody is a multivalent Fab form.

1 123. The anti-Siglec-7 antibody of any one of claims 83 to 120, wherein the
2 antibody is an IgG.

1 124. A bispecific or multi-specific antibody that comprises an antibody of
2 any one of claims 83 to 120.

1 125. A method of inhibiting proliferation of tumor cells, the method
2 comprising administering a therapeutically effective amount of an antibody of any one of
3 claims 83 to 123, or a bispecific or multi-specific antibody of claim 124, to a patient that has
4 a tumor that expresses sialylated Siglec-7 ligands.

1 126. The method of claim 125, wherein the tumor has an elevated number
2 of CD8+ infiltrating T cells that express Siglec-7.

1 127. A method of identifying a patient that is a candidate for treatment with
2 an anti-Siglec-7 antibody, the method comprising determining the proportion of CD8+ T cells
3 that have infiltrated a tumor, or a metastatic lesion, that express Siglec-7.

1 128. A method of identifying a patient that has a tumor that is a candidate
2 for treatment with an anti-Siglec-7 antibody, the method comprising determining that at least
3 10% of tumor-infiltrating CD8+ T cells in the tumor or a metastatic lesion, express Siglec-7.

1 129. A method of identifying a patient that has a tumor that is a candidate
2 for treatment with an anti-Siglec-7 antibody, the method comprising determining the
3 proportion of CD8+ infiltrating T cells in a tumor or metastatic lesion that express Siglec-7,
4 wherein a patient that has a tumor or metastatic lesion in which at least 10% of infiltrating
5 CD8+ T express Siglec-7 is a candidate for treatment with an anti-Siglec-7 antibody.

1 130. The method of claim 127, 128, or 129, wherein the level of Siglec-7
2 expression is determined using an anti-Siglec-7 antibody.

1 131. The method of claim 130, wherein the level of expression is
2 determined by flow cytometry or immunohistochemistry.

1

Figure

1 QVQLHQSGAELVKPGASVVKISCKGSGYDFSNEMNNWKQRPKGKGLEWIGQIYPGDEI¹ KIYNGKFKGKATLTADESSSTAYLHSSL
 1 QVQLQQPGAEIYKPGASVVKISCKGSGYFTFTS² WVKQRPQGLEWIGEIDPSSVSYTEYN³ KFKGKATLTVDTSNTVYMQQLSL
 1 QVQLQQPGAEIYKPGASVVKISCKGSGYFTFTSSW⁴ IWKDRPGQGLEWIGEIDIY⁵ PGNGNTN⁶ YNEKFKSKATLTVDTSNTVYMQQLSL
 1 QVQLKESGPGLVAPSQSL⁷ SITCTVSGE⁸ SLLT⁹ YGVDWVVRQFFPGKGLEWIGIY¹⁰ VIGWGGNTN¹¹ YNSALMSRLS¹² ISKDTSKSQVFLKMANV
 1 QVTLKESGPGLVAPSQSL⁷ SITCTVSGE⁸ SLLT⁹ YGVDWVVRQFFPGKGLEWIGIY¹⁰ VIGWGGNTN¹¹ YNSALMSRLS¹² ISKDTSKSQVFLKMANV
 1 DVLQESGPGMVKPSQSL⁷ SITCTV⁸ TGY⁹ SITSDY¹⁰ DWDW¹¹ WIRHFPGNKLEWIGY¹² ISYSGSTKYNESLKSRLS¹³ ISITDTSK¹⁴ SKNHEFFLKLNSV
 1 DVLQESGPGLVKPSQSL⁷ SITCTV⁸ TGY⁹ SITSDY¹⁰ DWDW¹¹ WIRHFPGNKLEWIGY¹² ISYSGSTKYNESLKSRLS¹³ ISITDTSK¹⁴ SKNHEFFLKLNSV
 1 EVKLEESGGGLVQPGSMKVSCVASGFTFSNYWMNNWVRQSPEK¹⁵ GLEWVAQ¹⁶ IRLKS¹⁷ DNYATHYAESVKG¹⁸ RFT¹⁹ TISRD²⁰ SKSSVY²¹ LQMN²² N
 1 EVQLQQSGP²³ EVELVKPGASV²⁴ KISCKGSGYFT²⁵ D²⁶ YY²⁷ IN²⁸ WVKQSHGKS²⁹ SLEWIGIY³⁰ QM³¹ N³² P³³ N³⁴ G³⁵ S³⁶ P³⁷ K³⁸ G³⁹ K⁴⁰ A⁴¹ T⁴² M⁴³ N⁴⁴ E⁴⁵ L⁴⁶ R⁴⁷ S⁴⁸ L⁴⁹ R⁵⁰ S⁵¹ L⁵² I⁵³ T⁵⁴ D⁵⁵ K⁵⁶ S⁵⁷ N⁵⁸ T⁵⁹ A⁶⁰ Y⁶¹ M⁶² E⁶³ L⁶⁴ R⁶⁵ S⁶⁶ L⁶⁷ R⁶⁸ S⁶⁹ L⁷⁰ I⁷¹ T⁷² D⁷³ K⁷⁴ A⁷⁵ T⁷⁶ L⁷⁷ F⁷⁸ D⁷⁹ K⁸⁰ S⁸¹ T⁸² A⁸³ M⁸⁴ E⁸⁵ L⁸⁶ R⁸⁷ S⁸⁸ L⁸⁹ I⁹⁰ F⁹¹ P⁹² G⁹³ K⁹⁴ A⁹⁵ T⁹⁶ D⁹⁷ S⁹⁸ T⁹⁹ A¹⁰⁰ Y¹⁰¹ M¹⁰² Q¹⁰³ V¹⁰⁴ N¹⁰⁵ R¹⁰⁶ S¹⁰⁷ L¹⁰⁸ I¹⁰⁹ F¹¹⁰ D¹¹¹ P¹¹² G¹¹³ N¹¹⁴ T¹¹⁵ Y¹¹⁶ K¹¹⁷ Y¹¹⁸ D¹¹⁹ G¹²⁰ H¹²¹ T¹²² P¹²³ A¹²⁴ G¹²⁵ H¹²⁶ T¹²⁷ Y¹²⁸ V¹²⁹ S¹³⁰ V¹³¹ S¹³² T¹³³ A¹³⁴ G¹³⁵ N¹³⁶ T¹³⁷ Y¹³⁸ M¹³⁹ H¹⁴⁰ S¹⁴¹ L¹⁴² I¹⁴³ F¹⁴⁴ D¹⁴⁵ P¹⁴⁶ A¹⁴⁷ G¹⁴⁸ N¹⁴⁹ T¹⁵⁰ K¹⁵¹ Y¹⁵² D¹⁵³ P¹⁵⁴ G¹⁵⁵ N¹⁵⁶ T¹⁵⁷ Y¹⁵⁸ M¹⁵⁹ H¹⁶⁰ S¹⁶¹ L¹⁶² I¹⁶³ F¹⁶⁴ D¹⁶⁵ P¹⁶⁶ A¹⁶⁷ G¹⁶⁸ N¹⁶⁹ T¹⁷⁰ K¹⁷¹ Y¹⁷² D¹⁷³ P¹⁷⁴ G¹⁷⁵ N¹⁷⁶ T¹⁷⁷ Y¹⁷⁸ M¹⁷⁹ H¹⁸⁰ S¹⁸¹ L¹⁸² I¹⁸³ F¹⁸⁴ D¹⁸⁵ P¹⁸⁶ A¹⁸⁷ G¹⁸⁸ N¹⁸⁹ T¹⁹⁰ K¹⁹¹ Y¹⁹² D¹⁹³ P¹⁹⁴ G¹⁹⁵ N¹⁹⁶ T¹⁹⁷ Y¹⁹⁸ M¹⁹⁹ H²⁰⁰ S²⁰¹ L²⁰² I²⁰³ F²⁰⁴ D²⁰⁵ P²⁰⁶ A²⁰⁷ G²⁰⁸ N²⁰⁹ T²¹⁰ K²¹¹ Y²¹² D²¹³ P²¹⁴ G²¹⁵ N²¹⁶ T²¹⁷ Y²¹⁸ M²¹⁹ H²²⁰ S²²¹ L²²² I²²³ F²²⁴ D²²⁵ P²²⁶ A²²⁷ G²²⁸ N²²⁹ T²³⁰ K²³¹ Y²³² D²³³ P²³⁴ G²³⁵ N²³⁶ T²³⁷ Y²³⁸ M²³⁹ H²⁴⁰ S²⁴¹ L²⁴² I²⁴³ F²⁴⁴ D²⁴⁵ P²⁴⁶ A²⁴⁷ G²⁴⁸ N²⁴⁹ T²⁵⁰ K²⁵¹ Y²⁵² D²⁵³ P²⁵⁴ G²⁵⁵ N²⁵⁶ T²⁵⁷ Y²⁵⁸ M²⁵⁹ H²⁶⁰ S²⁶¹ L²⁶² I²⁶³ F²⁶⁴ D²⁶⁵ P²⁶⁶ A²⁶⁷ G²⁶⁸ N²⁶⁹ T²⁷⁰ K²⁷¹ Y²⁷² D²⁷³ P²⁷⁴ G²⁷⁵ N²⁷⁶ T²⁷⁷ Y²⁷⁸ M²⁷⁹ H²⁸⁰ S²⁸¹ L²⁸² I²⁸³ F²⁸⁴ D²⁸⁵ P²⁸⁶ A²⁸⁷ G²⁸⁸ N²⁸⁹ T²⁹⁰ K²⁹¹ Y²⁹² D²⁹³ P²⁹⁴ G²⁹⁵ N²⁹⁶ T²⁹⁷ Y²⁹⁸ M²⁹⁹ H³⁰⁰ S³⁰¹ L³⁰² I³⁰³ F³⁰⁴ D³⁰⁵ P³⁰⁶ A³⁰⁷ G³⁰⁸ N³⁰⁹ T³¹⁰ K³¹¹ Y³¹² D³¹³ P³¹⁴ G³¹⁵ N³¹⁶ T³¹⁷ Y³¹⁸ M³¹⁹ H³²⁰ S³²¹ L³²² I³²³ F³²⁴ D³²⁵ P³²⁶ A³²⁷ G³²⁸ N³²⁹ T³³⁰ K³³¹ Y³³² D³³³ P³³⁴ G³³⁵ N³³⁶ T³³⁷ Y³³⁸ M³³⁹ H³⁴⁰ S³⁴¹ L³⁴² I³⁴³ F³⁴⁴ D³⁴⁵ P³⁴⁶ A³⁴⁷ G³⁴⁸ N³⁴⁹ T³⁵⁰ K³⁵¹ Y³⁵² D³⁵³ P³⁵⁴ G³⁵⁵ N³⁵⁶ T³⁵⁷ Y³⁵⁸ M³⁵⁹ H³⁶⁰ S³⁶¹ L³⁶² I³⁶³ F³⁶⁴ D³⁶⁵ P³⁶⁶ A³⁶⁷ G³⁶⁸ N³⁶⁹ T³⁷⁰ K³⁷¹ Y³⁷² D³⁷³ P³⁷⁴ G³⁷⁵ N³⁷⁶ T³⁷⁷ Y³⁷⁸ M³⁷⁹ H³⁸⁰ S³⁸¹ L³⁸² I³⁸³ F³⁸⁴ D³⁸⁵ P³⁸⁶ A³⁸⁷ G³⁸⁸ N³⁸⁹ T³⁹⁰ K³⁹¹ Y³⁹² D³⁹³ P³⁹⁴ G³⁹⁵ N³⁹⁶ T³⁹⁷ Y³⁹⁸ M³⁹⁹ H⁴⁰⁰ S⁴⁰¹ L⁴⁰² I⁴⁰³ F⁴⁰⁴ D⁴⁰⁵ P⁴⁰⁶ A⁴⁰⁷ G⁴⁰⁸ N⁴⁰⁹ T⁴¹⁰ K⁴¹¹ Y⁴¹² D⁴¹³ P⁴¹⁴ G⁴¹⁵ N⁴¹⁶ T⁴¹⁷ Y⁴¹⁸ M⁴¹⁹ H⁴²⁰ S⁴²¹ L⁴²² I⁴²³ F⁴²⁴ D⁴²⁵ P⁴²⁶ A⁴²⁷ G⁴²⁸ N⁴²⁹ T⁴³⁰ K⁴³¹ Y⁴³² D⁴³³ P⁴³⁴ G⁴³⁵ N⁴³⁶ T⁴³⁷ Y⁴³⁸ M⁴³⁹ H⁴⁴⁰ S⁴⁴¹ L⁴⁴² I⁴⁴³ F⁴⁴⁴ D⁴⁴⁵ P⁴⁴⁶ A⁴⁴⁷ G⁴⁴⁸ N⁴⁴⁹ T⁴⁵⁰ K⁴⁵¹ Y⁴⁵² D⁴⁵³ P⁴⁵⁴ G⁴⁵⁵ N⁴⁵⁶ T⁴⁵⁷ Y⁴⁵⁸ M⁴⁵⁹ H⁴⁶⁰ S⁴⁶¹ L⁴⁶² I⁴⁶³ F⁴⁶⁴ D⁴⁶⁵ P⁴⁶⁶ A⁴⁶⁷ G⁴⁶⁸ N⁴⁶⁹ T⁴⁷⁰ K⁴⁷¹ Y⁴⁷² D⁴⁷³ P⁴⁷⁴ G⁴⁷⁵ N⁴⁷⁶ T⁴⁷⁷ Y⁴⁷⁸ M⁴⁷⁹ H⁴⁸⁰ S⁴⁸¹ L⁴⁸² I⁴⁸³ F⁴⁸⁴ D⁴⁸⁵ P⁴⁸⁶ A⁴⁸⁷ G⁴⁸⁸ N⁴⁸⁹ T⁴⁹⁰ K⁴⁹¹ Y⁴⁹² D⁴⁹³ P⁴⁹⁴ G⁴⁹⁵ N⁴⁹⁶ T⁴⁹⁷ Y⁴⁹⁸ M⁴⁹⁹ H⁵⁰⁰ S⁵⁰¹ L⁵⁰² I⁵⁰³ F⁵⁰⁴ D⁵⁰⁵ P⁵⁰⁶ A⁵⁰⁷ G⁵⁰⁸ N⁵⁰⁹ T⁵¹⁰ K⁵¹¹ Y⁵¹² D⁵¹³ P⁵¹⁴ G⁵¹⁵ N⁵¹⁶ T⁵¹⁷ Y⁵¹⁸ M⁵¹⁹ H⁵²⁰ S⁵²¹ L⁵²² I⁵²³ F⁵²⁴ D⁵²⁵ P⁵²⁶ A⁵²⁷ G⁵²⁸ N⁵²⁹ T⁵³⁰ K⁵³¹ Y⁵³² D⁵³³ P⁵³⁴ G⁵³⁵ N⁵³⁶ T⁵³⁷ Y⁵³⁸ M⁵³⁹ H⁵⁴⁰ S⁵⁴¹ L⁵⁴² I⁵⁴³ F⁵⁴⁴ D⁵⁴⁵ P⁵⁴⁶ A⁵⁴⁷ G⁵⁴⁸ N⁵⁴⁹ T⁵⁵⁰ K⁵⁵¹ Y⁵⁵² D⁵⁵³ P⁵⁵⁴ G⁵⁵⁵ N⁵⁵⁶ T⁵⁵⁷ Y⁵⁵⁸ M⁵⁵⁹ H⁵⁶⁰ S⁵⁶¹ L⁵⁶² I⁵⁶³ F⁵⁶⁴ D⁵⁶⁵ P⁵⁶⁶ A⁵⁶⁷ G⁵⁶⁸ N⁵⁶⁹ T⁵⁷⁰ K⁵⁷¹ Y⁵⁷² D⁵⁷³ P⁵⁷⁴ G⁵⁷⁵ N⁵⁷⁶ T⁵⁷⁷ Y⁵⁷⁸ M⁵⁷⁹ H⁵⁸⁰ S⁵⁸¹ L⁵⁸² I⁵⁸³ F⁵⁸⁴ D⁵⁸⁵ P⁵⁸⁶ A⁵⁸⁷ G⁵⁸⁸ N⁵⁸⁹ T⁵⁹⁰ K⁵⁹¹ Y⁵⁹² D⁵⁹³ P⁵⁹⁴ G⁵⁹⁵ N⁵⁹⁶ T⁵⁹⁷ Y⁵⁹⁸ M⁵⁹⁹ H⁶⁰⁰ S⁶⁰¹ L⁶⁰² I⁶⁰³ F⁶⁰⁴ D⁶⁰⁵ P⁶⁰⁶ A⁶⁰⁷ G⁶⁰⁸ N⁶⁰⁹ T⁶¹⁰ K⁶¹¹ Y⁶¹² D⁶¹³ P⁶¹⁴ G⁶¹⁵ N⁶¹⁶ T⁶¹⁷ Y⁶¹⁸ M⁶¹⁹ H⁶²⁰ S⁶²¹ L⁶²² I⁶²³ F⁶²⁴ D⁶²⁵ P⁶²⁶ A⁶²⁷ G⁶²⁸ N⁶²⁹ T⁶³⁰ K⁶³¹ Y⁶³² D⁶³³ P⁶³⁴ G⁶³⁵ N⁶³⁶ T⁶³⁷ Y⁶³⁸ M⁶³⁹ H⁶⁴⁰ S⁶⁴¹ L⁶⁴² I⁶⁴³ F⁶⁴⁴ D⁶⁴⁵ P⁶⁴⁶ A⁶⁴⁷ G⁶⁴⁸ N⁶⁴⁹ T⁶⁵⁰ K⁶⁵¹ Y⁶⁵² D⁶⁵³ P⁶⁵⁴ G⁶⁵⁵ N⁶⁵⁶ T⁶⁵⁷ Y⁶⁵⁸ M⁶⁵⁹ H⁶⁶⁰ S⁶⁶¹ L⁶⁶² I⁶⁶³ F⁶⁶⁴ D⁶⁶⁵ P⁶⁶⁶ A⁶⁶⁷ G⁶⁶⁸ N⁶⁶⁹ T⁶⁷⁰ K⁶⁷¹ Y⁶⁷² D⁶⁷³ P⁶⁷⁴ G⁶⁷⁵ N⁶⁷⁶ T⁶⁷⁷ Y⁶⁷⁸ M⁶⁷⁹ H⁶⁸⁰ S⁶⁸¹ L⁶⁸² I⁶⁸³ F⁶⁸⁴ D⁶⁸⁵ P⁶⁸⁶ A⁶⁸⁷ G⁶⁸⁸ N⁶⁸⁹ T⁶⁹⁰ K⁶⁹¹ Y⁶⁹² D⁶⁹³ P⁶⁹⁴ G⁶⁹⁵ N⁶⁹⁶ T⁶⁹⁷ Y⁶⁹⁸ M⁶⁹⁹ H⁷⁰⁰ S⁷⁰¹ L⁷⁰² I⁷⁰³ F⁷⁰⁴ D⁷⁰⁵ P⁷⁰⁶ A⁷⁰⁷ G⁷⁰⁸ N⁷⁰⁹ T⁷¹⁰ K⁷¹¹ Y⁷¹² D⁷¹³ P⁷¹⁴ G⁷¹⁵ N⁷¹⁶ T⁷¹⁷ Y⁷¹⁸ M⁷¹⁹ H⁷²⁰ S⁷²¹ L⁷²² I⁷²³ F⁷²⁴ D⁷²⁵ P⁷²⁶ A⁷²⁷ G⁷²⁸ N⁷²⁹ T⁷³⁰ K⁷³¹ Y⁷³² D⁷³³ P⁷³⁴ G⁷³⁵ N⁷³⁶ T⁷³⁷ Y⁷³⁸ M⁷³⁹ H⁷⁴⁰ S⁷⁴¹ L⁷⁴² I⁷⁴³ F⁷⁴⁴ D⁷⁴⁵ P⁷⁴⁶ A⁷⁴⁷ G⁷⁴⁸ N⁷⁴⁹ T⁷⁵⁰ K⁷⁵¹ Y⁷⁵² D⁷⁵³ P⁷⁵⁴ G⁷⁵⁵ N⁷⁵⁶ T⁷⁵⁷ Y⁷⁵⁸ M⁷⁵⁹ H⁷⁶⁰ S⁷⁶¹ L⁷⁶² I⁷⁶³ F⁷⁶⁴ D⁷⁶⁵ P⁷⁶⁶ A⁷⁶⁷ G⁷⁶⁸ N⁷⁶⁹ T⁷⁷⁰ K⁷⁷¹ Y⁷⁷² D⁷⁷³ P⁷⁷⁴ G⁷⁷⁵ N⁷⁷⁶ T⁷⁷⁷ Y⁷⁷⁸ M⁷⁷⁹ H⁷⁸⁰ S⁷⁸¹ L⁷⁸² I⁷⁸³ F⁷⁸⁴ D⁷⁸⁵ P⁷⁸⁶ A⁷⁸⁷ G⁷⁸⁸ N⁷⁸⁹ T⁷⁹⁰ K⁷⁹¹ Y⁷⁹² D⁷⁹³ P⁷⁹⁴ G⁷⁹⁵ N⁷⁹⁶ T⁷⁹⁷ Y⁷⁹⁸ M⁷⁹⁹ H⁸⁰⁰ S⁸⁰¹ L⁸⁰² I⁸⁰³ F⁸⁰⁴ D⁸⁰⁵ P⁸⁰⁶ A⁸⁰⁷ G⁸⁰⁸ N⁸⁰⁹ T⁸¹⁰ K⁸¹¹ Y⁸¹² D⁸¹³ P⁸¹⁴ G⁸¹⁵ N⁸¹⁶ T⁸¹⁷ Y⁸¹⁸ M⁸¹⁹ H⁸²⁰ S⁸²¹ L⁸²² I⁸²³ F⁸²⁴ D⁸²⁵ P⁸²⁶ A⁸²⁷ G⁸²⁸ N⁸²⁹ T⁸³⁰ K⁸³¹ Y⁸³² D⁸³³ P⁸³⁴ G⁸³⁵ N⁸³⁶ T⁸³⁷ Y⁸³⁸ M⁸³⁹ H⁸⁴⁰ S⁸⁴¹ L⁸⁴² I⁸⁴³ F⁸⁴⁴ D⁸⁴⁵ P⁸⁴⁶ A⁸⁴⁷ G⁸⁴⁸ N⁸⁴⁹ T⁸⁵⁰ K⁸⁵¹ Y⁸⁵² D⁸⁵³ P⁸⁵⁴ G⁸⁵⁵ N⁸⁵⁶ T⁸⁵⁷ Y⁸⁵⁸ M⁸⁵⁹ H⁸⁶⁰ S⁸⁶¹ L⁸⁶² I⁸⁶³ F⁸⁶⁴ D⁸⁶⁵ P⁸⁶⁶ A⁸⁶⁷ G⁸⁶⁸ N⁸⁶⁹ T⁸⁷⁰ K⁸⁷¹ Y⁸⁷² D⁸⁷³ P⁸⁷⁴ G⁸⁷⁵ N⁸⁷⁶ T⁸⁷⁷ Y⁸⁷⁸ M⁸⁷⁹ H⁸⁸⁰ S⁸⁸¹ L⁸⁸² I⁸⁸³ F⁸⁸⁴ D⁸⁸⁵ P⁸⁸⁶ A⁸⁸⁷ G⁸⁸⁸ N⁸⁸⁹ T⁸⁹⁰ K⁸⁹¹ Y⁸⁹² D⁸⁹³ P⁸⁹⁴ G⁸⁹⁵ N⁸⁹⁶ T⁸⁹⁷ Y⁸⁹⁸ M⁸⁹⁹ H⁹⁰⁰ S⁹⁰¹ L⁹⁰² I⁹⁰³ F⁹⁰⁴ D⁹⁰⁵ P⁹⁰⁶ A⁹⁰⁷ G⁹⁰⁸ N⁹⁰⁹ T⁹¹⁰ K⁹¹¹ Y⁹¹² D⁹¹³ P⁹¹⁴ G⁹¹⁵ N⁹¹⁶ T⁹¹⁷ Y⁹¹⁸ M⁹¹⁹ H⁹²⁰ S⁹²¹ L⁹²² I⁹²³ F⁹²⁴ D⁹²⁵ P⁹²⁶ A⁹²⁷ G⁹²⁸ N⁹²⁹ T⁹³⁰ K⁹³¹ Y⁹³² D⁹³³ P⁹³⁴ G⁹³⁵ N⁹³⁶ T⁹³⁷ Y⁹³⁸ M⁹³⁹ H⁹⁴⁰ S⁹⁴¹ L⁹⁴² I⁹⁴³ F⁹⁴⁴ D⁹⁴⁵ P⁹⁴⁶ A⁹⁴⁷ G⁹⁴⁸ N⁹⁴⁹ T⁹⁵⁰ K⁹⁵¹ Y⁹⁵² D⁹⁵³ P⁹⁵⁴ G⁹⁵⁵ N⁹⁵⁶ T⁹⁵⁷ Y⁹⁵⁸ M⁹⁵⁹ H⁹⁶⁰ S⁹⁶¹ L⁹⁶² I⁹⁶³ F⁹⁶⁴ D⁹⁶⁵ P⁹⁶⁶ A⁹⁶⁷ G⁹⁶⁸ N⁹⁶⁹ T⁹⁷⁰ K⁹⁷¹ Y⁹⁷² D⁹⁷³ P⁹⁷⁴ G⁹⁷⁵ N⁹⁷⁶ T⁹⁷⁷ Y⁹⁷⁸ M⁹⁷⁹ H⁹⁸⁰ S⁹⁸¹ L⁹⁸² I⁹⁸³ F⁹⁸⁴ D⁹⁸⁵ P⁹⁸⁶ A⁹⁸⁷ G⁹⁸⁸ N⁹⁸⁹ T⁹⁹⁰ K⁹⁹¹ Y⁹⁹² D⁹⁹³ P⁹⁹⁴ G⁹⁹⁵ N⁹⁹⁶ T⁹⁹⁷ Y⁹⁹⁸ M⁹⁹⁹ H¹⁰⁰⁰ S¹⁰⁰¹ L¹⁰⁰² I¹⁰⁰³ F¹⁰⁰⁴ D¹⁰⁰⁵ P¹⁰⁰⁶ A¹⁰⁰⁷ G¹⁰⁰⁸ N¹⁰⁰⁹ T¹⁰¹⁰ K¹⁰¹¹ Y¹⁰¹² D¹⁰¹³ P¹⁰¹⁴ G¹⁰¹⁵ N¹⁰¹⁶ T¹⁰¹⁷ Y¹⁰¹⁸ M¹⁰¹⁹ H¹⁰²⁰ S¹⁰²¹ L¹⁰²² I¹⁰²³ F¹⁰²⁴ D¹⁰²⁵ P¹⁰²⁶ A¹⁰²⁷ G¹⁰²⁸ N¹⁰²⁹ T¹⁰³⁰ K¹⁰³¹ Y¹⁰³² D¹⁰³³ P¹⁰³⁴ G¹⁰³⁵ N¹⁰³⁶ T¹⁰³⁷ Y¹⁰³⁸ M¹⁰³⁹ H¹⁰⁴⁰ S¹⁰⁴¹ L¹⁰⁴² I¹⁰⁴³ F¹⁰⁴⁴ D¹⁰⁴⁵ P¹⁰⁴⁶ A¹⁰⁴⁷ G¹⁰⁴⁸ N¹⁰⁴⁹ T¹⁰⁵⁰ K¹⁰⁵¹ Y¹⁰⁵² D¹⁰⁵³ P¹⁰⁵⁴ G¹⁰⁵⁵ N¹⁰⁵⁶ T¹⁰⁵⁷ Y¹⁰⁵⁸ M¹⁰⁵⁹ H¹⁰⁶⁰ S¹⁰⁶¹ L¹⁰⁶² I¹⁰⁶³ F¹⁰⁶⁴ D¹⁰⁶⁵ P¹⁰⁶⁶ A¹⁰⁶⁷ G¹⁰⁶⁸ N¹⁰⁶⁹ T¹⁰⁷⁰ K¹⁰⁷¹ Y¹⁰⁷² D¹⁰⁷³ P¹⁰⁷⁴ G¹⁰⁷⁵ N¹⁰⁷⁶ T¹⁰⁷⁷ Y¹⁰⁷⁸ M¹⁰⁷⁹ H¹⁰⁸⁰ S¹⁰⁸¹ L¹⁰⁸² I¹⁰⁸³ F¹⁰⁸⁴ D¹⁰⁸⁵ P¹⁰⁸⁶ A¹⁰⁸⁷ G¹⁰⁸⁸ N¹⁰⁸⁹ T¹⁰⁹⁰ K¹⁰⁹¹ Y¹⁰⁹² D¹⁰⁹³ P¹⁰⁹⁴ G¹⁰⁹⁵ N¹⁰⁹⁶ T¹⁰⁹⁷ Y¹⁰⁹⁸ M¹⁰⁹⁹ H¹¹⁰⁰ S¹⁰⁹¹ L¹⁰⁹² I¹⁰⁹³ F¹⁰⁹⁴ D¹⁰⁹⁵ P¹⁰⁹⁶ A¹⁰⁹⁷ G¹⁰⁹⁸ N¹⁰⁹⁹ T¹¹⁰⁰ K¹¹⁰¹ Y¹¹⁰² D¹¹⁰³ P¹¹⁰⁴ G¹¹⁰⁵ N¹¹⁰⁶ T¹¹⁰⁷ Y¹¹⁰⁸ M¹¹⁰⁹ H¹¹¹⁰ S¹¹¹¹ L¹¹¹² I¹¹¹³ F¹¹¹⁴ D¹¹¹⁵ P¹¹¹⁶ A¹¹¹⁷ G¹¹¹⁸ N¹¹¹⁹ T¹¹²⁰ K¹¹²¹ Y¹¹²² D¹¹²³ P¹¹²⁴ G¹¹²⁵ N¹¹²⁶ T¹¹²⁷ Y¹¹²⁸ M¹¹²⁹ H¹¹³⁰ S¹¹³¹ L¹¹³² I¹¹³³ F¹¹³⁴ D¹¹³⁵ P¹¹³⁶ A¹¹³⁷ G¹¹³⁸ N¹¹³⁹ T¹¹⁴⁰ K¹¹⁴¹ Y¹¹⁴² D¹¹⁴³ P¹¹⁴⁴ G¹¹⁴⁵ N¹¹⁴⁶ T¹¹⁴⁷ Y¹¹⁴⁸ M¹¹⁴⁹ H¹¹⁵⁰ S¹¹⁵¹ L¹¹⁵² I¹¹⁵³ F¹¹⁵⁴ D¹¹⁵⁵ P¹¹⁵⁶ A^{1157</}

Figure 2

Figure 3

16H11	1	DIQMTQSPASLAVSGTETVITCRASGNINNYLAWFQQKQGKSPHFLVYSAKALADGVPSRFSQSGSGTQYSLK	
9D4	1	DIVLTQSPASLAVSLGQRATISCRASQSVSSSYMMHWYQQKPGQPPKKLLIKYASNLKSGVPARESGSGSGTDFLT	
SL2	1	VIVLTQSPASLVEVSGRATISCRASQSVSSSYMMHWYQQKPGQPPKKLLIKYASNLKSGVPARESGSGSGTDFLT	
SL13	1	DIVLTQSPASLVSIGRATISCRASQSVSSSYMMHWYQQKPGQPPKKLLIKYASNLKSGVPARESGSGSGTDFLT	
SL9	1	DIVLTQSPASLTIIGRATISCRASQSVSTSYSYLHWYQQKPGQPPKKLLIKYASNLKSGVPARESGSGSGTDFSL	
8A2	1	QIVLTQSPAIMASPGEKVWTMCSASSRVIEMWYQQKPGQSSPRLLIYDTSNLASGVPVRFSGGSCTSYSLT	
2G12	1	DIVLTQSHKFMSTSVGDRVTITCKASQDVSTAVAWYQQKPGQSPKLLIYTSTRHTGVVPDRFTGSGSGTDFHTLT	
10E11	1	DIVMTQSQKFMSTTVGDRVSITCKASQNVGTAVAWYQQKPGHSPKLLIYASANRYTGVPDRFTGSGYGTDFLT	
4B12	1	DIVMTQSQKFMSTSVGDRVSITCKASQNVGTAVAWYQQKPGQSPKAVIYASYRNNGVFDRTGSGSGTDFLT	
13D2	1	DIVMSQSPSSQVSVGEKVTVTCTSSQSLLYGTNQKNYLAWYQQKFGQSPKLLIY WASIRESGVFDRTGSGSGTDFLT	
3F1	1	DIVMTQTPPLSLPVSLGQDASISCRSSQNIVHSNGNTYLEWFQKPGQSPKLLIYVSNRFGVFDRTGSGSGTDFLT	
5D1	1	DIQMTQTSSSLASLGLDRTVILCRASQDINSNFLNWYQQKPDGTVKLLIMYDTSLQSGVPSRSGRSGADYSLT	
5G10	1	DIVLTQSPASLIGRATISCRASQSVSSSYMMHWYQQKPDGTVKLLIYTSILHSGVPSRSGSGSGTDFLT	
9H11	1	DIVLTQSPVTLSVTPGDSVSLSCRASQSIRNNLHWYQQKSHESPRILLINYASQSISSGIPSPRSRSGSGSGTDFLIS	
16H11	75	INSLQPEDFGTYYCQHFMSSPYTFGGGTKLEIK (SEQ ID NO: 15)	
9D4	79	IHPVIEEDTAYYCQHSMWEIPTFGGGTKLEIK (SEQ ID NO: 19)	
SL2	79	IHPVIEEDTAYYCQHSMWEIPTFGGGTKLEIK (SEQ ID NO: 20)	
SL13	79	IHPVIEEDTAYYCQHSMWEIPTFGGGTKLEIK (SEQ ID NO: 21)	
SL9	79	IHPMEEEDTAYYCQHSMWEIPTFGGGTKLEIK (SEQ ID NO: 22)	
8A2	74	ISRMEAEDAATYYCQHSMWEIPTFGGGTKLEIK (SEQ ID NO: 18)	
2G12	75	ISSVQAEDLALYYCQHQQYSTPPTFGGGTKLEIK (SEQ ID NO: 16)	
10E11	75	ISNMQSEDLADYFCQQYNSYPLTFGAGTKLEIK (SEQ ID NO: 23)	
4B12	75	ISNVQSEDLTYFCQQYNNPYTFGGGTKLEIK (SEQ ID NO: 25)	
13D2	81	ISSVKAEDLAVYYCQYQSYPLTFGAGTKLEIK (SEQ ID NO: 28)	
3F1	80	ISRVEAEDLGVYYCFOGSHIPWTFGGGTKLEIK (SEQ ID NO: 24)	
5D1	75	INNLQEDLTYFCQQGKTLPYTFGGGTKLEIK (SEQ ID NO: 17)	
5G10	75	ISNLPEPDIATYYCQYQSKPPYTFGGGTKLEIK (SEQ ID NO: 26)	
9H11	75	INSVETEDFGMYFCQOSSNNWPRTFGGTLLQIKR (SEQ ID NO: 27)	

Figure 4

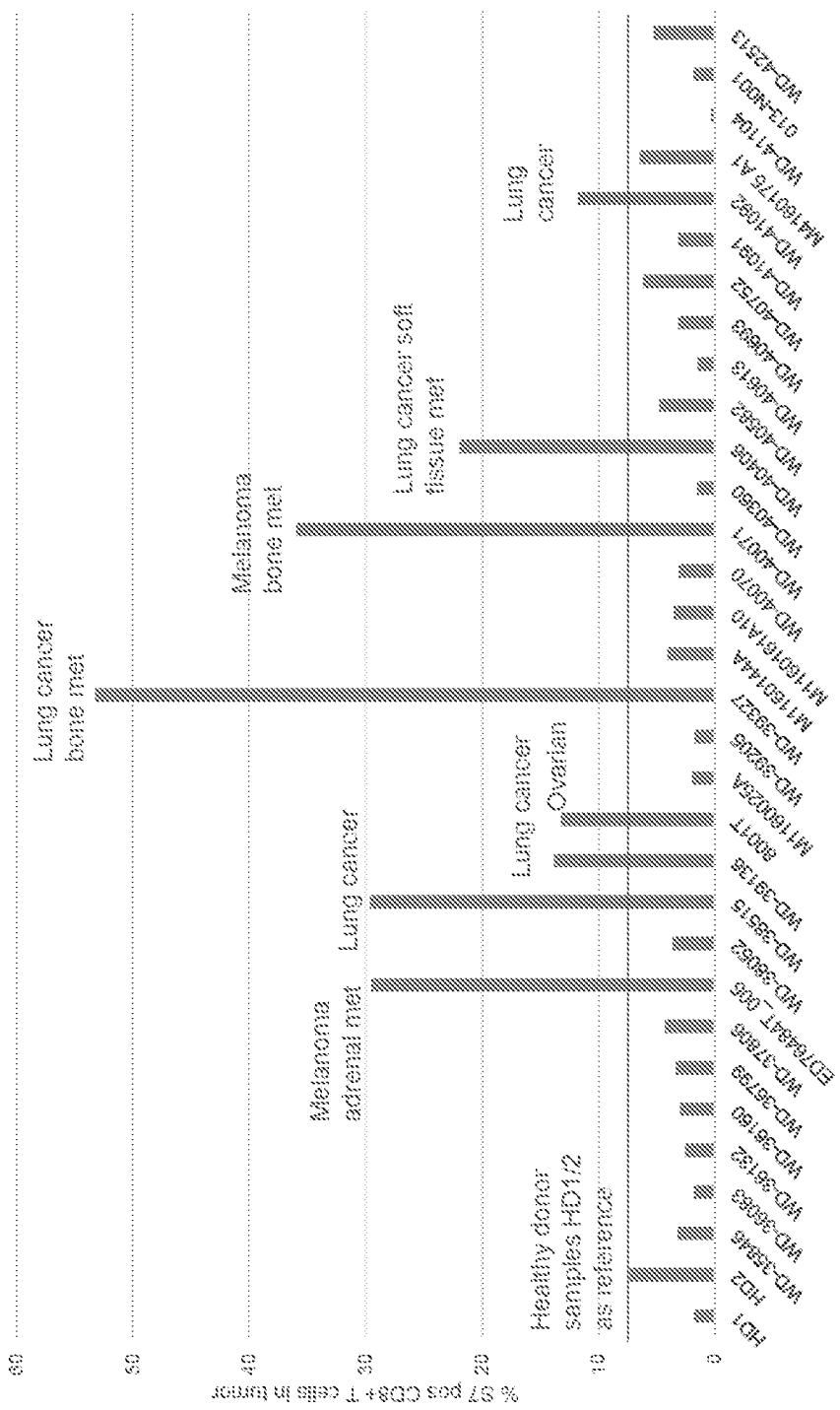


Figure 5

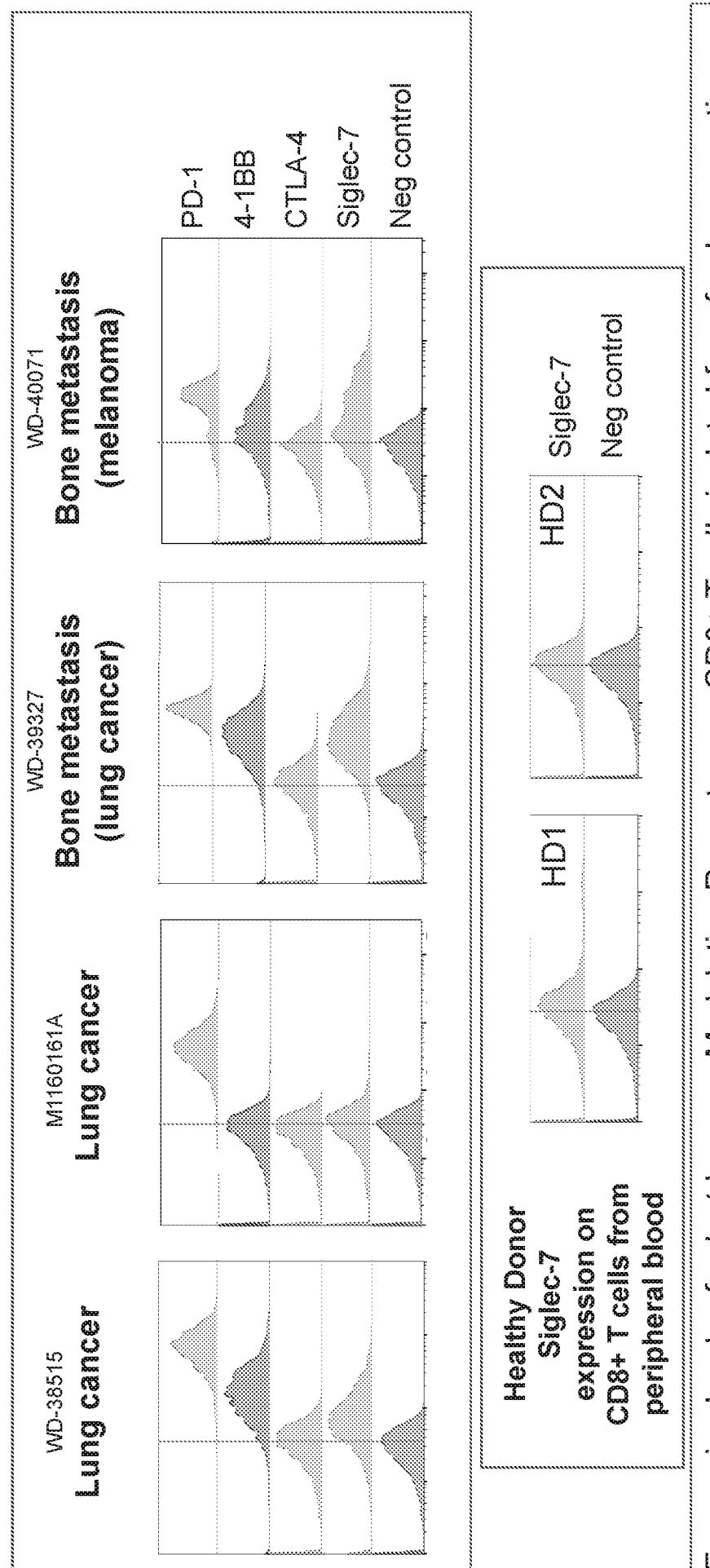


Figure 6

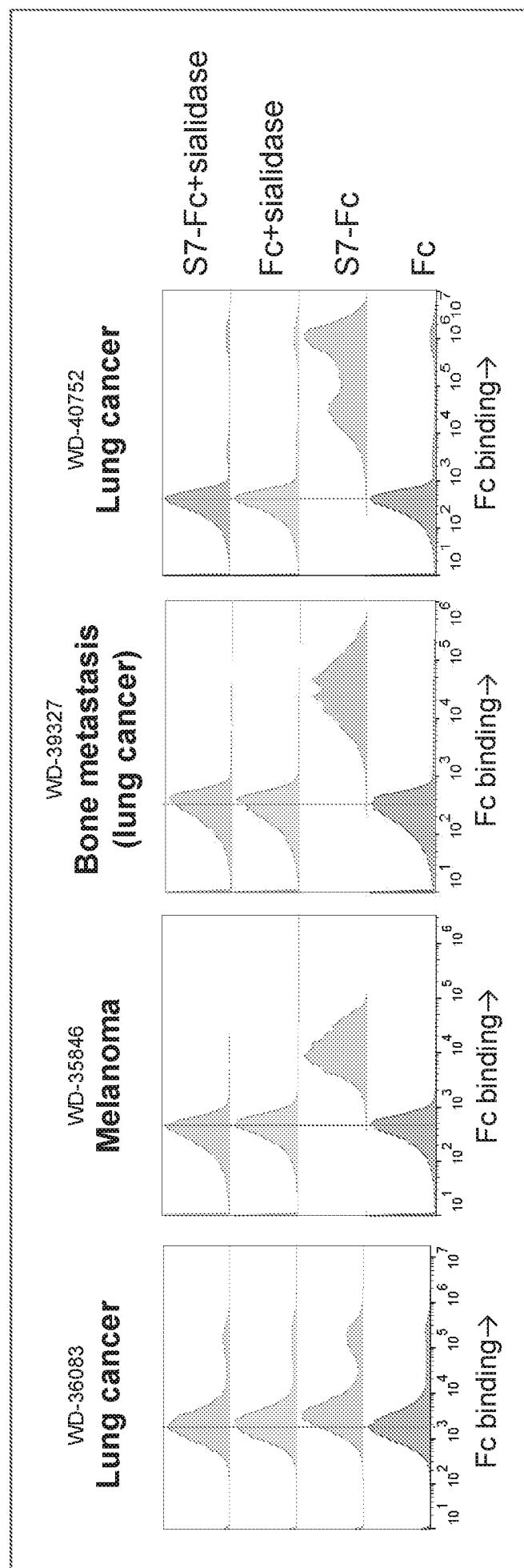


Figure 7

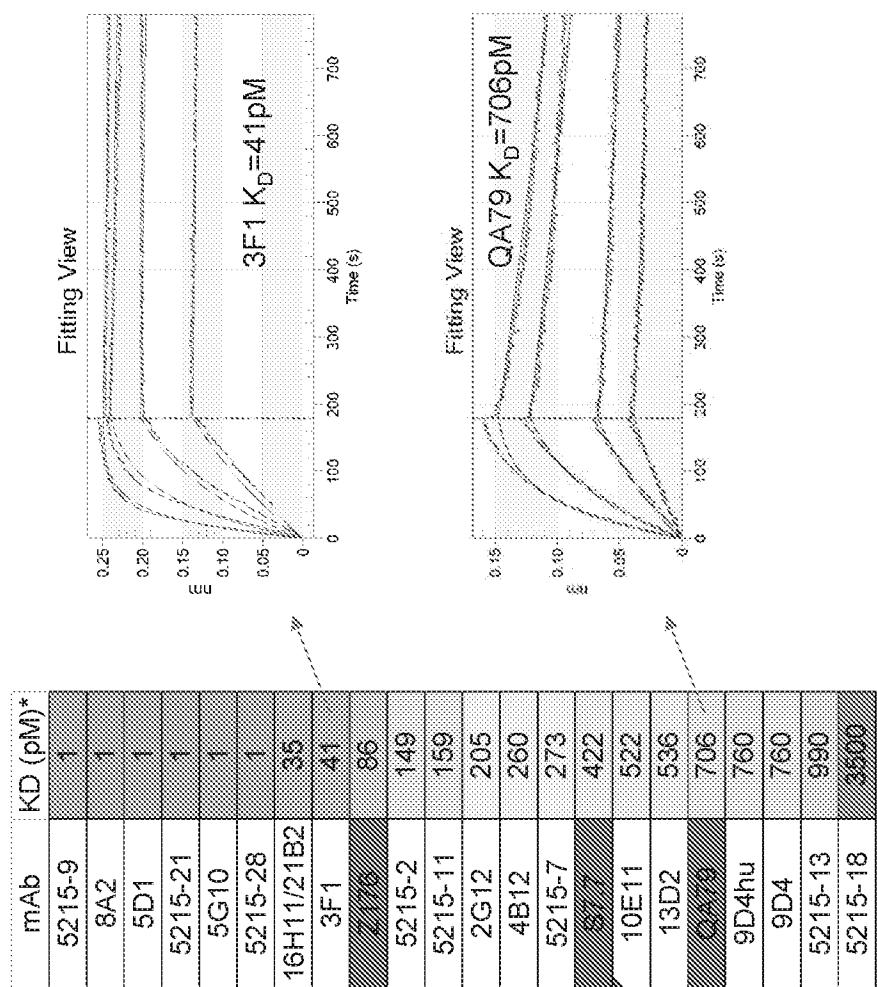


Figure 8

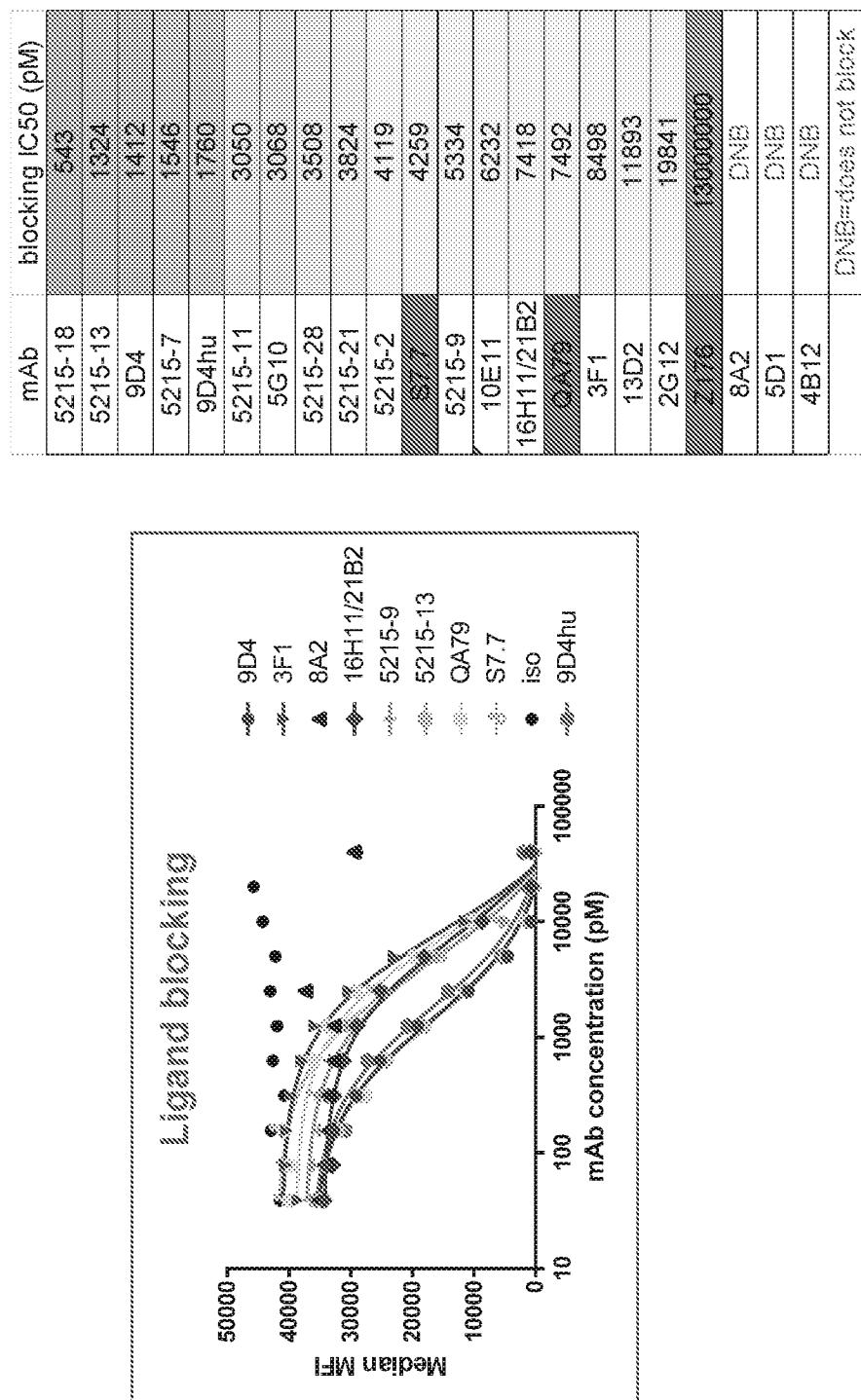


Figure 9

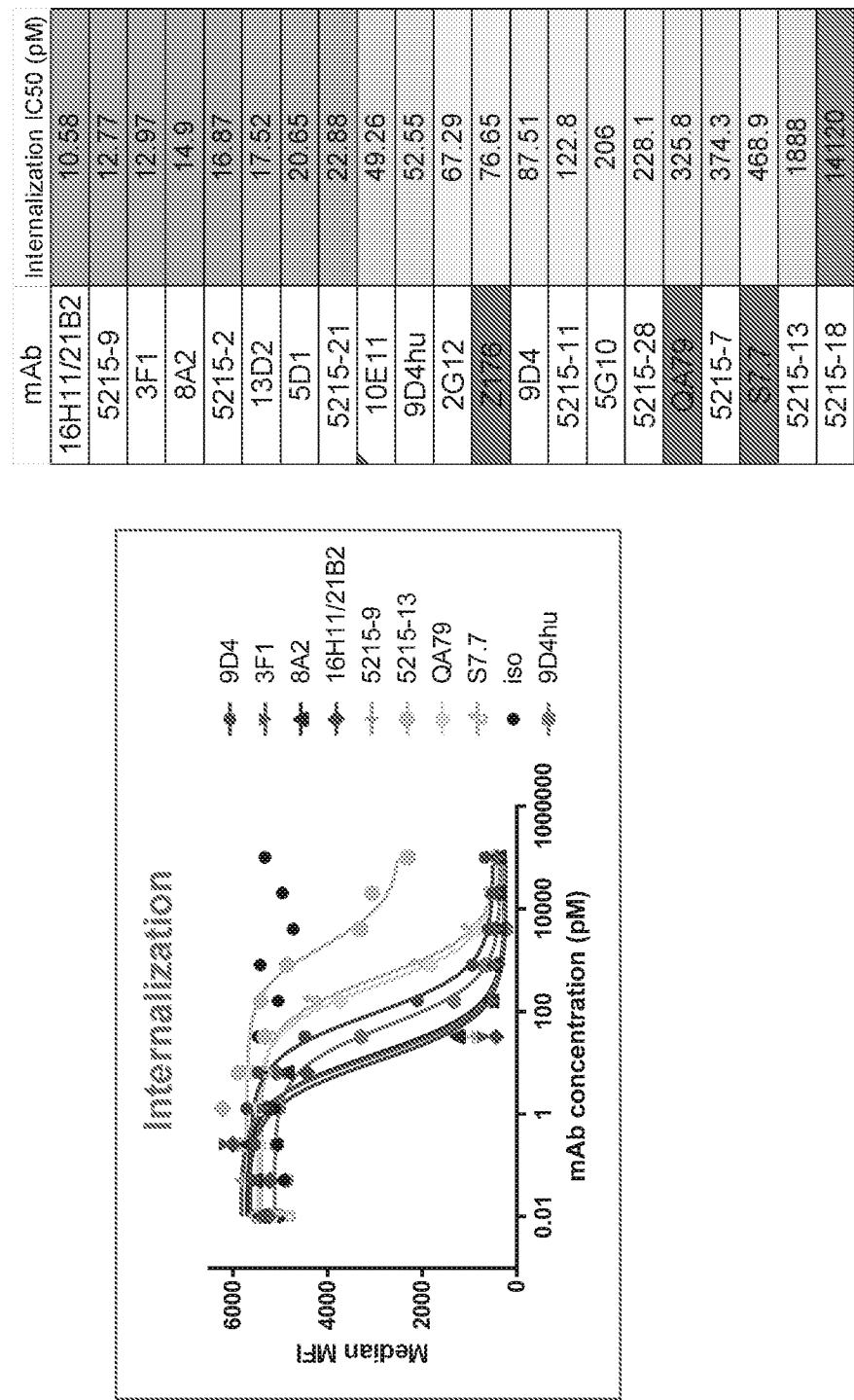


Figure 10

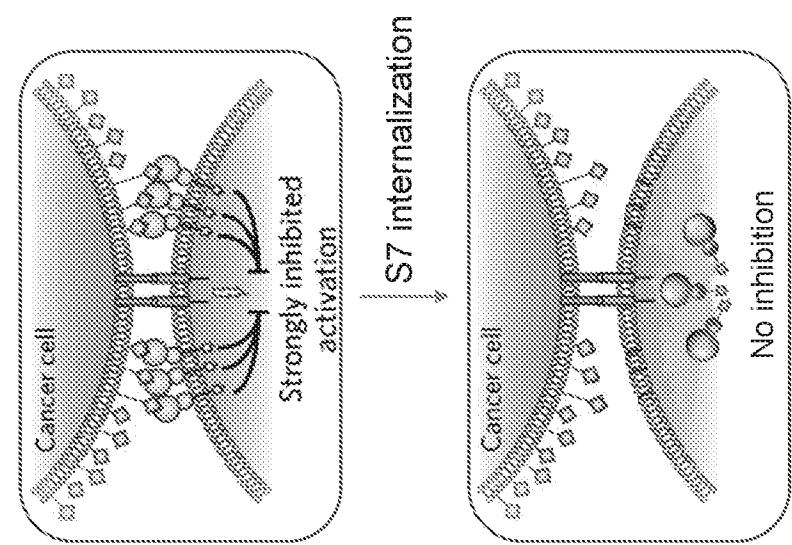
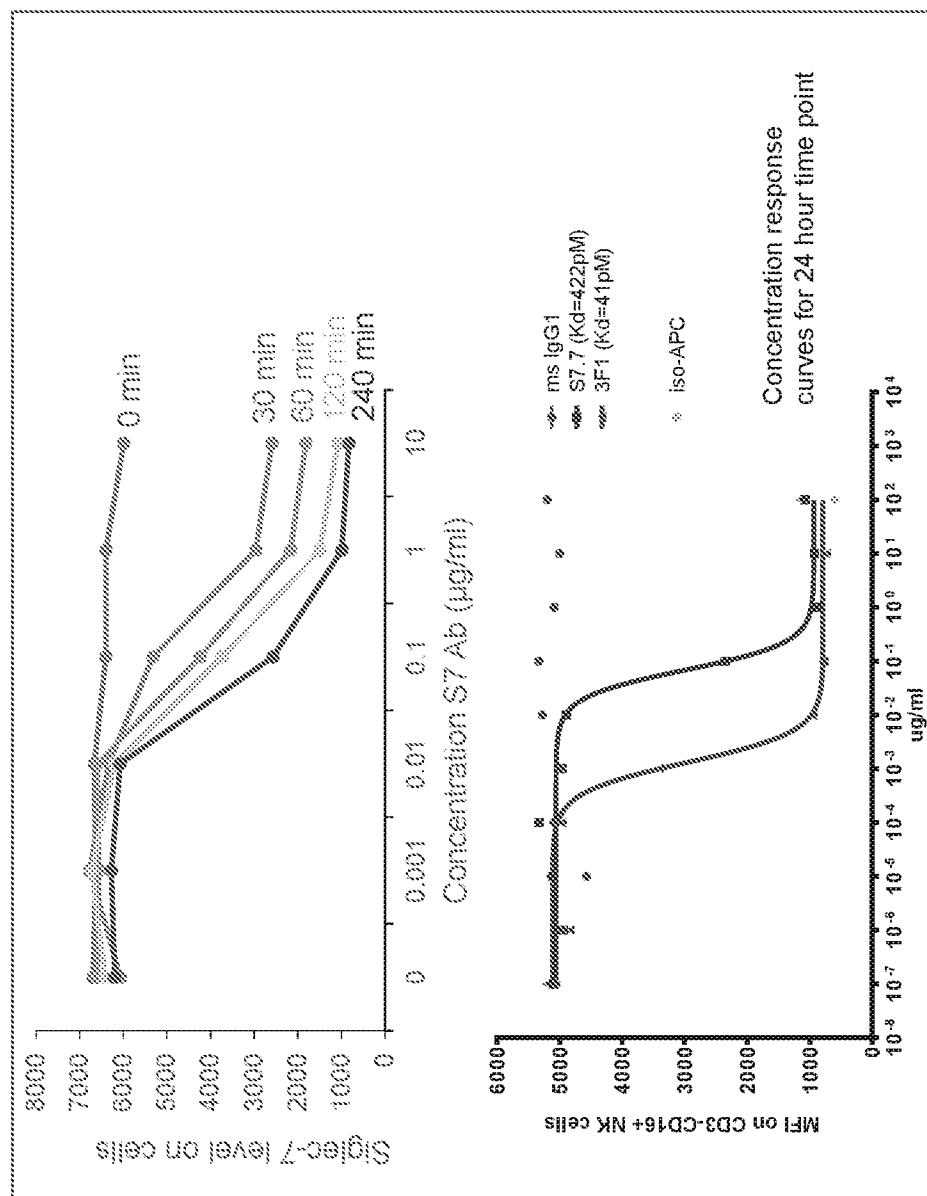
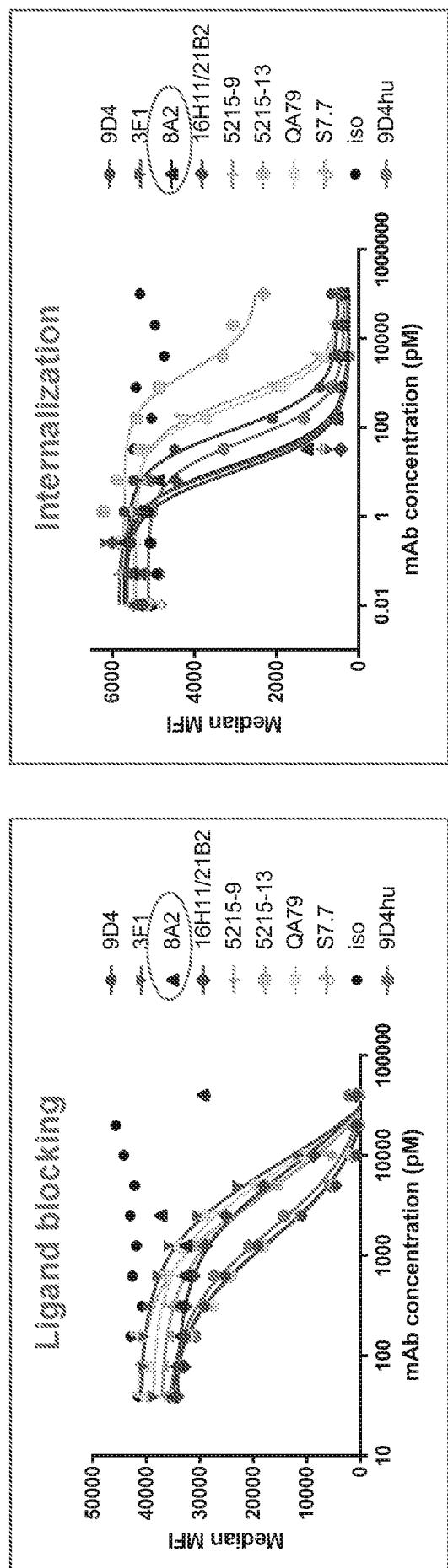




Figure 11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 17/45641

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - C07K 16/30, 16/28; A61K 39/00, 39/395; A61P 35/00 (2017.01)

CPC - C07K 16/30, 16/28, 2317/73, 2317/76, 16/2803; A61K 39/395, 39/39558, 2039/505

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History Document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History Document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History Document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X ---- A	WO 2016/038064 A1 (Innate Pharma) 17 March 2016 (17.03.2016). Especially pg 5 ln 10-14, pg 6 ln 5-10, pg 9 ln 2-3, pg 44 ln 16-28, pg 46 ln 9-12	1-4, 127-131 ----- 5, 6, 8-11, 65, 115-117, 119-120
X ---- A	US 2014/0193427 A1 (Aveo Pharmaceuticals, Inc) 10 July 2014 (10.07.2014). Especially SEQ ID NO: 84	118 ----- 8-11, 65, 119, 120
A	US 2007/0244038 A1 (Varki et al.) 18 October 2007 (18.10.2007). Especially para [0074]	5, 6
A	US 2010/0240872 A1 (Nakano) 23 September 2010 (23.09.2010). Especially SEQ ID NO: 19	8-11, 65, 115-117

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 December 2017

Date of mailing of the international search report

04 JAN 2018

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 17/45641

Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:
 - a. forming part of the international application as filed:
 in the form of an Annex C/ST.25 text file.
 on paper or in the form of an image file.
 - b. furnished together with the international application under PCT Rule 13*ter*.1(a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
 - c. furnished subsequent to the international filing date for the purposes of international search only:
 in the form of an Annex C/ST.25 text file (Rule 13*ter*.1(a)).
 on paper or in the form of an image file (Rule 13*ter*.1(b) and Administrative Instructions, Section 713).
2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:
GenCore ver 6.4.1 SEQ ID NOs: 1, 15

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 17/45641

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 7, 12-14, 17-22, 24, 62-64, 70-73, 121-126 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
-----Go to Extra Sheet for continuation-----

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Claims 1-6, 8-11, 15, 16, 23, 25-61, 65-69, 74-120, 127-131, limited to SEQ ID NOS: 1, 15 (Claims 1-6, 8-11, 65, 115-120, 127-131)

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 17/45641

Continuation of Box III: Observations where certain claims were found unsearchable

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I+: Claims 1-6, 8-11, 15, 16, 23, 25-61, 65-69, 74-120, 127-131, drawn to a method of using or a composition comprising an anti-Siglec-7 antibody.

The method or composition will be searched to the extent that the anti-Siglec-7 antibody is defined by its competition with an antibody for binding to Siglec-7, with the first named competitive antibody, an antibody having a heavy chain variable (VH) sequence SEQ ID NO: 1 (claim 8) [defined as first named antibody VH sequence in Fig 1, 16H11, with CDR1, CDR2, CDR3 underlined] and light chain variable (VL) sequence SEQ ID NO: 15 (claim 8) [defined as first named antibody VL sequence in Fig 3, 16H11, with CDR1, CDR2, CDR3 underlined]. It is believed that claims 1-6, 8-11, 65, 115-120, 127-131 read on this first named invention and thus these claims will be searched without fee to the extent that they encompass SEQ ID NOs: 1, 15 [note: Claims 30-61 and 83-114 are specifically excluded from the first invention because the instant application does not teach or suggest that commercially available anti-Siglec-7 antibodies QA79, Z176, or S7.7 [see instant application para [0074] for commercial vendors] as defined in claims 30, 38, 46, 54, 83, 91, 99 and 107 comprise VH, VL or CDRs included in SEQ ID NOs: 1, 15]. Additional anti-Siglec-7 antibody VH, VL or CDRs will be searched upon payment of additional fees. Applicant must specify the claims that encompass any additional elected antibody. Applicants must further indicate, if applicable, the claims which read on the first named invention if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined. An exemplary election would be: Antibody 2G12 [VH= SEQ ID NO: 2 in sheet 1 fig 1, VL=SEQ ID NO: 16 in sheet 3 fig 3] (Claims 1-7, 115-120, 127-131).

The inventions listed as Groups I+ do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Special Technical Features:

Among the inventions listed as Groups I+ are the specific sequences recited therein. The inventions do not share a special technical feature, because no significant structural similarities can readily be ascertained among sequences.

Common Technical Features:

1. An anti-Siglec-7 antibody for treating cancer
2. CD8+ infiltrating T cells expressing Siglec-7
3. An anti-Siglec-7 antibody with defined VH and VL sequences including CDRs.
4. A specific anti-Siglec-7 antibody that competes with another specific anti-Siglec-7 antibodies, but not all other anti-Siglec-7 antibodies.

However, said common technical features do not represent a contribution over the prior art, and is anticipated by WO 2016/038064 A1 to Innate Pharma (hereinafter "Innate") (published 17 March 2016).

As to common technical features #1 and #2, Innate teaches (claim 1), a method of inhibiting proliferation of tumor cells, the method comprising administering a therapeutically effective amount of an anti-Siglec-7 antibody to a patient that has cancer, wherein the patient has a primary tumor or metastatic lesion that comprises an elevated level of CD8+ infiltrating-T cells that express Siglec-7 (pg 5 In 10-14; "provided is an antibody that can bind both Siglec-7 and Siglec-9 and which can neutralize both Siglec-7 and Siglec-9-mediated inhibition of lymphocytes (e.g. NK cell, CD8+ T cell) cytotoxicity. In one aspect, the antibody increases lymphocyte activation in the presence of a target cell (e.g. a cell that expresses a ligand of Siglec-7 and a ligand of Siglec-9, a tumor cell). In one embodiment, the antibody increases NK cell and/or CD8+ T cell activation"), and further, wherein the tumor or metastatic lesion comprises cancer cells that express sialylated Siglec-7 ligands (pg 6 In 5-10; "upon binding to a Siglec on a human lymphocyte, the monoclonal antibody has the ability to enhance or reconstitute lysis of a target human cell bearing a sialic acid ligand of the Siglec on the target cell surface, and/or has the ability to increase lymphocyte activation (e.g., as determined by an increase in CD107 and/or CD137 expression on a lymphocyte), when said target cell comes into contact with said lymphocyte (e.g. an effector lymphocyte, an NK or a CD8+ T cell)").

As to common technical feature #3, Innate teaches an anti-Siglec-7 antibody with defined VH and VL sequences including CDRs, Innate teaches (claim 14; "14. An isolated antibody that competes for binding to Siglec-7 and/or Siglec-9 with an antibody selected from the group consisting of: (a) a monoclonal antibody comprising (i) a heavy chain comprising CDR 1, 2 and 3 of the heavy chain variable region of SEQ ID NO: 3 and (ii) a light chain comprising CDR 1, 2 and 3 of the light chain variable region of SEQ ID NO: 4").

As to common technical feature #4, Innate teaches (pg 10 In 1-5; "Provided in one aspect are monoclonal antibodies that compete for binding to an epitope on Siglec-7 and/or Siglec-9 bound by 3A1 1, 1 H9 and/or 2B4, (e.g., that competes for binding to an epitope on a Siglec-7 and/or Siglec-9 polypeptide with an antibody having the heavy and light chain CDRs or variable regions of any of 3A1 1, 1 H9 or 2B4)").

-----continued on next sheet-----

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 17/45641

-----continued from previous sheet-----

As the common technical features were known in the art at the time of the invention, this cannot be considered a common special technical feature that would otherwise unify the groups. The inventions lack unity with one another.

Therefore, Group I+ lack unity of invention under PCT Rule 13 because they do not share a same or corresponding special technical feature.

Note concerning item 4: Claims 7, 12-14, 17-22, 24, 62-64, 70-73, 121-126 are multiple dependent claims and are not drafted according to the second and third sentences of PCT Rule 6.4(a).

Note concerning Claim 118: Claim 118 is in error because there are no VL region sequences set forth in Figure 2. However, Figure 3 sets forth VL region sequences. For the purposes of the International Search & Opinion, claim 118 is interpreted to read as follows: 118. An anti-Siglec-7 antibody having a VL region that comprises at least one CDR, or at least two CDRs, of a VL region sequence set forth in Figure 3.

Note concerning Claim 120. Claim 120 is in error because there are no VL region sequences set forth in Figure 2. However, Figure 3 sets forth VL region sequences. For the purposes of the International Search & Opinion, claim 120 is interpreted to read as follows: 120. The anti-Siglec-7 antibody of claim 119, having a VL region that comprises a light chain variable region sequence set forth in Fig 3.