发明名称
一种非重氮法合成 1,2,4-三氯唑-3-羧酸甲酯的新方法

摘要
本发明公开了一种非重氮法合成 1,2,4-三氯唑-3-羧酸甲酯的新方法。该方法以氨基硫脲(2)为原料，以水为溶剂，和草酸(3)反应，一锅法制得中间体4，继而用硝酸脱除硫基，得到中间体5，最后在硫酸催化下和甲醇发生酯化反应，得到目标产物 1,2,4-三氯唑-3-羧酸甲酯。本方法的反应仅需要三步，路线短，不需要柱层析分离，操作简便。该路线的优点是：(1) 本方法原料易得，避免了重氮化步骤，增加了操作的安全性与简便性；(2) 反应溶剂为水，绿色环保；(3) 中间体4不用分离，不仅简化了步骤，降低了能耗，而且提高了收率，总收率达58%以上，易于规模化生产及工业化应用。
1. 一种非重氮化合成 1, 2, 4-三氯嚏-3-羧酸甲酯的新方法，包括目标产物及中间体的制备、分离，其特征在于，具体包括以下步骤：

步骤 1：以水为溶剂，氨基硫脲 2 和草酸 3 在加热条件下发生缩合反应，生成中间体 4；中间体 4 不用分离，直接加入碱进行环合反应，反应结束，用酸中和，即可以使产物结晶出来，得到中间体 5；

步骤 2：以硝酸溶液为溶剂，加入中间体 5，加热反应脱除硫基，得到中间体 6；

步骤 3：以甲醇为溶剂，在硫酸催化下，中间体 6 和甲醇发生酯化反应，得到目标产物 1, 2, 4-三氯嚏-3-羧酸甲酯 1；具体合成路线如图所示。

2. 根据权利要求 1 所述的一种非重氮化合成 1, 2, 4-三氯嚏-3-羧酸甲酯的新方法，其特征在于，步骤 1 中氨基硫脲和草酸的物质的量之比为 1:1.4。

3. 根据权利要求 1 所述的一种非重氮化合成 1, 2, 4-三氯嚏-3-羧酸甲酯的新方法，其特征在于，步骤 1 中加入的碱为固体氢氧化钠，中和使用的酸为浓盐酸。

4. 根据权利要求 1 所述的一种非重氮化合成 1, 2, 4-三氯嚏-3-羧酸甲酯的新方法，其特征在于，步骤 2 脱除硫基中硝酸浓度为 40% -69%，反应温度为 60℃，反应时间为 6 小时。

5. 根据权利要求 1 所述的一种非重氮化合成 1, 2, 4-三氯嚏-3-羧酸甲酯的新方法，其特征在于，步骤 2 脱除硫基中硝酸浓度为 50%。
一种非重氮法合成 1, 2, 4- 三氮唑 -3- 羧酸甲酯的新方法

技术领域
[0001] 本发明涉及一种医药中间体的制备，属于化学与医药化学领域，更具体涉及一种非重氮法合成 1, 2, 4- 三氮唑 -3- 羧酸甲酯的新方法，这种中间体是合成抗病毒药物利巴韦林的必须原料。

背景技术
[0002] 1, 2, 4- 三氮唑 -3- 羧酸甲酯 (1) 是合成抗病毒药物利巴韦林的必须原料，而利巴韦林是广谱性的抗病毒药品，对多种病毒有抑制作用。利巴韦林应用广泛，市场需求量巨大，所以，对 1, 2, 4- 三氮唑 -3- 羧酸甲酯的需求也十分巨大。但是现有的 1, 2, 4- 三氮唑 -3- 羧酸甲酯的合成工艺是：草酸和氨基酸直接反应，生成 5- 氨基三氮唑甲酸，5- 氨基三氮唑甲酸酯化，最后重氮法脱氮氨基，得到目标产物。这个工艺最大的技术瓶颈是重氮步骤中生成的重氮盐非常容易爆炸，造成安全事故频发，限制了 1, 2, 4- 三氮唑 -3- 羧酸甲酯的生产规模的扩大，同时抬高了 1, 2, 4- 三氮唑 -3- 羧酸甲酯和利巴韦林的价格，最终限制了利巴韦林对很多病毒性疾病的治疗。
[0003] 文献中也有一些其他的工艺，如以三氮唑为原料，经过多步反应得到【薛峰，路有昌，栗桂荣，韩素辉，中国医药工业杂志，2005，36 (12)，733-734】。这种路线仅具有理论研究价值，不具有应用价值，所以，开发一条非重氮法合成 1, 2, 4- 三氮唑 -3- 羧酸甲酯的路线非常重要。

发明内容
[0004] 为了解决现有技术的不足，本发明提供了一种非重氮法合成 1, 2, 4- 三氮唑 -3- 羧酸甲酯的新方法。该反应避免了现有方法中的重氮化步骤，操作更加安全，不需要柱层析分离，操作简便，易于产业化。
[0005] 本发明的技术方案是：一种非重氮法合成 1, 2, 4- 三氮唑 -3- 羧酸甲酯的新方法，包括目标产物及中间体的制备、分离，具体包括以下步骤：
[0006] 步骤 1 : 以水为溶剂，氨基硫脲 2 和草酸 3 在加热条件下发生缩合反应，生成中间体 4；中间体 4 不用分离，直接加入氨进行环合反应，反应结束，用酸中和，即可以使产物结晶出来，得到中间体 5；
[0007] 步骤 2 : 以硝酸溶液为溶剂，加入中间体 5，加热反应脱除硫基，得到中间体 6；
[0008] 步骤 3 : 以甲醇为溶剂，在硫酸催化下，中间体 6 和甲醇发生酯化反应，得到目标产物 1, 2, 4- 三氮唑 -3- 羧酸甲酯 1；具体合成路线如下

![合成路线图](attachment:image)

3
步骤1: 以水为溶剂，氨基硫脲和草酸在加热条件下发生反应，加热温度为50～80°C，优先为60°C，反应6小时，加入氢氧化钠(4g, 100mmol)，继续反应8小时，降至室温，再用酸中和至中性，即缓慢析出白色固体，过滤，烘干，得到中间体4。

步骤2: 以50%的硝酸溶液为溶剂，加入中间体4，加热80°C，反应6小时，蒸馏即被氧化脱除掉，降至室温，用氢氧化钠固体中和，除去副产物硝酸钠，即得到中间体5。

步骤3: 以甲醇为溶剂，在催化剂浓硫酸（使用量：中间体5质量的2%）催化下，中间体5和甲醇发生酯化反应，得到目标产物1。

本发明的进一步改进包括：

步骤1中氨基硫脲和草酸的物质的量之比为1:1.4。

步骤1中加入的碱为固体氢氧化钠，中和使用的酸为浓盐酸。

步骤2脱除硫基中硝酸浓度为40%～69%，优选为50%，反应时间为40°C，反应时间为6小时。

该路线的优点是：(1) 避免了重氯化步骤，增加了操作的安全性与简便性；(2) 反应溶剂为水，绿色环保；(3) 中间体4不用分离，不仅简化了步骤，而且提高了收率，降低了能耗，更适宜于工业化生产。

具体实施方式

下面结合实施例对本发明做详细说明。

实施例1:

步骤1: 以水为溶剂，氨基硫脲和草酸在加热条件下发生反应，加热温度为50～80°C，优先为60°C，氨基硫脲：草酸＝1:1，反应6小时，加入氢氧化钠(4g, 100mmol)，继续反应8小时，降至室温，用浓盐酸中和至中性，即缓慢析出白色固体，过滤，烘干，得到中间体4。

步骤2: 以50%的硝酸溶液为溶剂，加入中间体4，加热80°C，反应6小时，蒸馏即被氧化脱除掉，降至室温，用氢氧化钠固体中和，除去副产物硝酸钠，即得到中间体5。

步骤3: 以甲醇为溶剂，在催化剂浓硫酸（使用量：中间体5质量的2%）催化下，中间体5和甲醇发生酯化反应，得到目标产物1。

实施例2:

氨基硫脲(10g, 110mmol)，草酸(9.9g, 110mmol)，加入到水(100ml)中，加热到80°C，并在此温度下反应6小时，加入氢氧化钠(4g, 100mmol)，继续反应8小时，降至室温，用浓盐酸中和至中性，即缓慢析出白色固体，过滤，烘干，得到中间体4，收率87%。

白色固体。^1H NMR (DMSO-d6, 400MHz) δ 11.06 (brs, 1H), 8.12 (brs, 1H), 8.05 (brs, 2H)；^13C NMR (DMSO-d6, 100MHz) δ 149.5, 109.1, 106.2；HRMS calcd for C6H6N6O5S [M+H]^+ 146.0019, found 146.0020。
说明书

实施例3：

氨基琥珀酸（100g, 1.1mmol），草酸（9.9g, 1.1mmol），加入到水（500mL）中，加热到80℃，并在此温度下反应6小时，加入氢氧化钠（40g, 1.0mmol），继续反应8小时，降至室温，用浓盐酸中和至中性，即缓慢析出白色固体，过滤，烘干，得到中间体4，收率82%。

实施例4：

中间体4（5g, 34.5mmol），加入到20%的硝酸溶液（20mL）中，加热到80℃，并在此温度下反应6小时，降至室温，用氢氧化钠固体中和至中性，将反应液转移到有机层中，旋转薄膜蒸发器上除去溶剂，加入乙醇（50mL），搅拌10分钟，过滤，母液在旋转薄膜蒸发器上蒸干至干，再加入乙醇（20mL），加热到60℃，缓慢溶解至澄清，静置结晶，过滤分离，烘干，即得到中间体5，收率89%。

实施例5：

中间体4（100g, 345mmol），加入到50%的硝酸溶液（500mL）中，加热到80℃，并在此温度下反应6小时，降至室温，用氢氧化钠固体中和至中性，将反应液转移到有机层中，旋转薄膜蒸发器上除去溶剂，加入乙醇（100mL），搅拌10分钟，过滤，母液在旋转薄膜蒸发器上蒸干至干，再加入乙醇（100mL），加热到60℃，缓慢溶解至澄清，静置结晶，过滤分离，烘干，即得到中间体5，收率86%。

实施例6：

中间体5（10g, 0.1mol）加入到甲醇（50mL）溶液中，加入浓硫酸（0.1mL），室温反应24小时，反应毕减压浓缩，剩余物用饱和NaHCO₃溶液调至中性，析出白色结晶，过滤，滤饼烘干，得粗品。另用乙酸乙酯（40mL×2）萃取滤液，萃取液浓缩至干，剩余物和上面得到的粗品合并后用甲醇重结晶，得亮白色柱状晶体8.5g，收率75%，纯度98%（HPLC归一化法）。

实施例7：

中间体5（50g, 0.1mol）加入到甲醇（200mL）溶液中，加入浓硫酸（1mL），室温反应24小时，反应毕减压浓缩，剩余物用饱和NaHCO₃溶液调至中性，析出白色结晶，过滤，滤饼烘干，得粗品。另用乙酸乙酯（100mL×2）萃取滤液，萃取液浓缩至干，剩余物和上面得到的粗品合并后用甲醇重结晶，得亮白色柱状晶体，收率78%，纯度98%（HPLC归一化法）。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解，本发明不受上述实施例的限制，上述实施例和说明书描述的只是说明本发明的原理，在不脱离本发明精神和范围的前提下，本发明还会有各种变化和改进，这些变化和改进都将落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。