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SLEEP STAGING BASED ON CARDIO-RESPIRATORY SIGNALS

CROSS-REFERENCE TO RELATED APPLICATION
This application is a Continuation-In-Part of U.S. Patent Application 10/995,817, filed
November 22, 2004. This application is also related to U.S. Patent Application 10/677,176,
filed October 2, 2003 (published as US 2004/0073098 Al), and to PCT Patent Application
PCT/I1.2004/000412, filed May 15, 2003. All of these related applications are assigned to the
assignee of the present patent application, and their disclosures are incorporated herein by

reference.

FIELD OF THE INVENTION
The present invention relates generally to physiological monitoring and diagnosis, and

specifically to sleep recording and analysis.

BACKGROUND OF THE INVENTION
Human sleep is generally described as a succession of five recurring stages (plus
waking, which is sometimes classified as a sixth stage). Sleep stages are typically monitored
using a polysomnograph to collect physiological signals from the sleeping subject, including
brain waves (EEG), eye movements (EOG), muscle activity (EMG), heartbeat (ECG), blood
oxygen levels (Sp02) and respiration. The commonly-recognized stages include:

o Stage 1 sleep, or drowsiness. The eyes are closed during Stage 1 sleep, but if aroused
from it, a person may feel as if he or she has not slept.

e Stage 2 is a period of light sleep, during which the body prepares to enter deep sleep.

o Stages 3 and 4 are deep sleep stages, with Stage 4 being more intense than Stage 3.

e Stage 5, REM (rapid eye movement) sleep, is distinguishable from non-REM (NREM)
sleep by changes in physiological states, including its characteristic rapid eye
movements.

Polysomnograms show brain wave patterns in REM to be similar to Stage 1 sleep. In normal

sleep, heart rate and respiration speed up and become erratic, while the muscles may twitch.

Intense dreaming occurs during REM sleep, but paralysis occurs simultaneously in the major

voluntary muscle groups.

Although sleep staging is most often performed by a human operator, who reads and
scores the polysomnogram, there are also methods known in the art for computerized sleep

staging. Penzel et al review such methods in “Computer Based Sleep Recording and
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Analysis,” Sleep Medicine Reviews 4:2 (2000), pages 131-148, which is incorporated herein by
reference. According to this article, the minimum requirements for digital polysomnography
as a basis for automatic sleep scoring include measurement of EEG, EOG and EMG, along
with respiratory, cardiovascular and movement-related parameters. 4

Although automated sleep-staging is typically based primarily on analysis of the EEG
signal, ECG analysis is frequently used along with the EEG to provide complementary
information. For example, Telser et al. describe a method for detecting sleep transitions using
ECG signals in “Can One Detect Sleep Stage Transitions for On-Line Sleep Scoring by
Monitoring the Heart Rate Variability?” Somnologie 8 (2004), pages 33-41, which is
incorporated herein by reference. The authors state that analysis of heart rate variability
(HRV) can be used to distinguish NREM sleep from REM and wakefulness, but cannot
distinguish between wakefulness and REM.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide novel methods and systems for
automated sleep staging, without dependence on electroencephalogram (EEG) or electro-
oculogram (EOG) signals. In these embodiments, sleep staging is based on physiological
signals provided by sensors that are coupled to points on the patient’s lower body, i.e., the part
of the body from the neck down, such as on the thorax or limbs. Typically, these signals
indicate the heart rate and/or respiration rate. The signals are analyzed automatically in order
to distinguish between wakefulness, REM sleep and NREM sleep, and possibly between light
NREM and deep NREM sleep, as well.

Although EEG monitoring may be considered the “gold standard” of sleep staging, it is
cumbersome, uncomfortable and difficult to perform. Therefore, sleep studies are usually
performed in a sleep lab or other dedicated facilify with EEG capabilities. The methods of the
present invention alleviate the need for EEG monitoring in many cases. Therefore, in some
embodiments, the principles of the present invention are implemented in a bedside sleep
monitoring system, which may be used to collect signals from the patient’s thorax during sleep
in a home or hospital ward environment. The signals may be analyzed to determine the
patient’s sleep staging in situ, or they may alternatively be transmitted over a communication
network for remote analysis. Alternatively or additionally, the methods of analysis described
herein may be used in conjunction with a Holter monitoring system or with the telemetry

capabilities of an implanted device, such as a pacemaker or intracardiac defibrillator (ICD).
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In other embodiments, signal processing methods taught by the present invention may
be used in conjunction with EEG and other monitoring modalities.

There is therefore provided, in accordance with an embodiment of the present
invention, a method for diagnosis of a sleep-related condition of a patient, the method
including:

receiving physiological signals from sensors coupled to a lower body of the patient;
and

analyzing the physiological signals, independently of any electroencephalogram (EEG)
or electro-oculogram (EOG) signals, in order to identify sleep stages of the patient.

In disclosed embodiments, analyzing the physiological signals includes detecting
motion of the patient based on at least one of the physiological signals. Typically, the at least
one of the physiological signals includes at least one of an electrocardiogram (ECG) signal, a
respiration signal, a heart rate signal, and an oxygen saturation signal.

In some of these embodiments, detecting the motion includes measuring an energy of
the at least one of the physiological signals in a selected frequency band as a function of time,
finding a respective characteristic of the energy in each of a plurality of time segments, and
determining the patient to have moved during one or more of the time segments responsively
to the respective variance. Typically, finding the respective characteristic includes finding a
respective variance of each of the time segments. Additionally or alternatively, finding the
respective characteristic includes performing an adaptive segmentation in order to identify the
time segments such that the energy of the at least one of the signals is quasi-stationary during
each of the time segments.

Additionally or alternatively, detecting the motion includes identifying a desaturation
event caused by the motion in the oxygen saturation signal.

Typically, analyzing the physiological signals includes distinguishing, responsively to
detecting the motion, between a waking stage and a REM sleep stage.

In a disclosed embodiment, detecting the motion includes detecting two or more
motion events within a time frame of a given length, and combining the two or more motion
events into a single fused motion event. Detecting the two or more motion events may include
identifying a first motion event responsively to one of the physiological signals, and a second
motion event responsively to another of the physiological signals, wherein the first and second

motion events overlap in time, and wherein combining the two or more motion events includes
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fusing the first and second motion events. Alternatively or additionally, detecting the two or
more motion events may include identifying first and second motion events occurring in
succession and separated in time by no more than a predetermined duration, and wherein
combining the two or more motion events includes fusing the first and second motion events.
Further additionally or alternatively, detecting the motion includes determining an average
measure of motion in each of a succession of uniform time epochs.

In some embodiments, analyzing the physiological signals includes performing an
adaptive segmentation of at least one of the signals so as to identify time segments in which a
characteristic of the at least one of the signals is quasi-stationary, and based on the adaptive
segmentation, identifying transient events during which the characteristic of the at least one of
the signals is not quasi-stationary. In one embodiment, analyzing the physiological signals
includes determining at least one of the sleep stages to have been disturbed by occurrence of
the transient events during the at least one of the sleep stages.

In some embodiments, analyzing the physiological signals includes detecting an
arousal to a wake stage. In one of these embodiments, receiving the physiological signals
includes determining a heart rate of the patient, and detecting the arousal includes identifying
the arousal responsively to a change in the heart rate over time. In another embodiment,
analyzing the physiological signals includes extracting complexity features from the
physiological signals, and detecting the arousal includes identifying the arousal responsively to
a change in the complexity features over time.

In disclosed embodiments, receiving the physiological signals includes receiving an
electrocardiogram (ECG) signal. In some of these embodiments, analyzing the physiological
signals includes measuring a variability of a heart rate of the patient responsively to the ECG
signal, and identifying at least one of the sleep stages based on the variability. In one
embodiment, identifying the at least one of the sleep stages includes computing a variance
associated with the variability of the heart rate, and finding, responsively to the variance, a
period during which the heart rate was decoupled from a respiratory function of the patient.
Typically, identifying the period includes classifying the period as a REM sleep period.

Additionally or alternatively, identifying the at least one of the sleep stages includes
measuring first and second energies respectively contained in first and second frequency bands
of the variability of the heart rate during a selected epoch, and classifying the sleep stages

responsively to a function of the first and second energies. Typically, the function includes a



10

15

20

25

30

WO 2006/054306 PCT/IL2005/001233

ratio of the first and second energies. In one embodiment, the first and second frequency
bands respectively include low and high frequency bands, and classifying the sleep stages
includes distinguishing between light and deep sleep stages based on the function.

In another aspect of the invention, receiving the physiological includes receiving a
respiration signal, and analyzing the physiological signals includes analyzing the respiration
signal together with the ECG signal in order to identify the sleep stages. Alternatively, the
method may include receiving a respiration signal from an airway of the patient, wherein
analyzing the physiological signals includes analyzing the respiration signal together with the
ECG signal in order to identify the sleep stages.

In some embodiments, receiving the physiological signals includes receiving a
respiration signal. In a disclosed embodiment, analyzing the physiological signals includes
evaluating a complexity of the respiration signal during a selected epoch, and identifying at
least one of the sleep stages responsively to the complexity. Typically, evaluating the
complexity inclﬁdes quantizing and compressing the respiration signal, and measuring the
complexity based on an efficiency of compression of the quantized respiration signal.
Additionally or alternatively, identifying the at least one of the sleep states includes
determining the patient to be in NREM sleep if the complexity is below a predetermined
threshold. |

In another embodiment, analyzing the physiological signals includes identifying a
periodic respiration event, which includes a sequence of individual respiration events that are
separated by time gaps whose respective durations are within predetermined limits.
Additionally or alternatively, analyzing the physiological signals includes detecting a
respiration event in the respiration signal, and identifying an onset of sleep responsively to the
respiration event.

In a disclosed embodiment, analyzing the physiological signals includes constructing a
hidden Markov model (HMM) having model states corresponding to the sleep stages, and
identifying a state sequence in the model that accords with the physiological signals.
Constructing the HMM may include associating the patient with a population, and training the
HMM using data gathered from members of the population.

In a disclosed embodiment, receiving the physiological signals includes collecting the

physiological signals at a bedside of the patient, and analyzing the physiological signals
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includes transmitting the physiological signals over a communication network for processing
by a diagnostic processor remote from the bedside.

In alternative embodiments, receiving the physiological signals includes collecting the
physiological signals -from a Holter monitor coupled to the patient, or collecting the
physiological signals from a device implanted in the thorax of the patient.

There is also provided, in accordance with an embodiment of the present invention, a
method for diagnosis of a sleep-related condition of a patient, the method including:

receiving at least one of an electrocardiogram (ECG) signal and a respiration signal
from a sensor coupled to the patient during sleep;

measuring an energy of the at least one of the ECG and respiration signals in a selected
frequency band as a function of time;

finding a respective characteristic of the energy in each of a plurality of time segments;
and

determining the patient to have moved during one or more of the time segments
responsively to the respective characteristic.

Typically, the respective characteristic includes a respective variance of the energy.

In disclosed embodiments, the method includes identifying a sleep stage of the patient
during the one or more of the time segments responsively to determining the patient to have
moved, wherein identifying the sleep stage includes distinguishing a REM sleep stage from a
waking stage.

In an alternative embodiment, the method includes receiving an electroencephalogram
(EEG) signal from the patient, wherein identifying the sleep stage includes processing the EEG
signal together with the at least one of the ECG and respiration signals.

There is additionally provided, in accordance with an embodiment of the present
invention, a method for diagnosis of a sleep-related condition of a patient, the method
including:

receiving an electrocardiogram (ECG) signal from a sensor coupled to the patient
during sleep;

measuring a variability of a heart rate of the patient responsively to the ECG signal;

computing a characteristic of the variability of the heart rate; and

finding, responsively to the characteristic, a period during which the heart rate was

decoupled from a respiratory function of the patient.
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Typically, the characteristic includes a variance associated with the variability of the
heart rate.

There is further provided, in accordance with an embodiment of the present invention,
a method for diagnosis of a sleep-related condition of a patient, the method including:

receiving a signal from a sensor coupled to the patient during sleep, wherein the signal
is indicative of at least one of a heart rate and respiration activity of the patient;

evaluating a complexity of the signal during a selected time period; and

identifying a sleep stage of the patient responsively to the complexity.

In a disclosed embodiment, evaluating the complexity includes quantizing and
compressing the signal, and measuring the complexity based on an efficiency of compression
of the quantized signal. Typically, identifying the sleep stage includes determining the patient
to be in NREM sleep if the complexity is below a predetermined threshold.

In another embodiment, evaluating the complexity includes computing a variability of
the signal, and extracting a variance of the variability as a measure of the complexity.

In some embodiments, evaluating the complexity includes determining respective
values of a set of complexity features in each of a succession of time segments, and identifying
the sleep stage includes constructing a complexity feature matrix (CFM), which includes a
sequence of feature vectors including the respective values of the complexity features in the
succession of time segments, and processing the CFM in order to classify the complexity of
the complexity features in each of the time segments. Optionally, processing the CFM
includes assigning the patient to a population group, and processing the feature vectors using a
probabilistic model of the population group. Typically, the probabilistic model includes a
Gaussian mixture model. Additionally or alternatively, processing the CFM includes
determining, responsively to the complexity of the complexity features, an average measure of
the complexity in each of a succession of uniform epochs.

In an alternative embodiment, the method includes receiving an electroencephalogram
(EEG) signal from the patient, wherein identifying the sleep stage includes processing the EEG
signal together with the signal received from the sensor.

There is also provided, in accordance with an embodiment of the present invention, a
computer-implemented method for diagnosis of a sleep-related condition of a patient, the

method including:
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receiving a signal that is indicative of breathing activity from a sensor coupled to the
patient during sleep;

processing the signal so as to detect individual events that are indicative of disturbance
of the breathing;

identifying a periodic event, which includes a sequence of the individual events that are
separated by time gaps whose respéctive durations are within predetermined limits; and

classifying a sleep stage of the patient responsively to the complexity.

Typically, the signal includes at least one of a respiration signal and an oxygen
saturation signal.

In one embodiment, identifying the periodic event includes determining that the event
was associated with Cheyne-Stokes breathing.

In some embodiments, classifying the sleep stage includes analyzing the periodic event
so as to determine whether the periodic event was associated with REM or non-REM sleep.
Typically, analyzing the periodic event includes associating the event with REM sleep
responsively to at least one of a duration and a symmetry of the event.

There is moreover provided, in accordance with an embodiment of the present
invention, apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
including:

one or more sensors, coupled to a lower body of the patient, which are adapted to
receive physiological signals; and

a diagnostic processor, which is coupled to receive and process the physiological
signals, independently of any electroencephalogram (EEG) or electro-oculogram (EOG)
signals, in order to identify sleep stages of the patient.

In a disclosed embodiment, the apparatus includes a console, which is coupled to
collect the physiological signals at a bedside of the patient, and to transmit the physiological
signals over a communication network for processing by the diagnostic processor at a location
remote from the bedside.

There is furthermore provided, in accordance with an embodiment of the present
invention, apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
including:

a sensor, which is adapted to be coupled to the patient during sleep so as to receive

from the patient at least one of an electrocardiogram (ECG) signal and a respiration signal; and
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a diagnostic processor, which is coupled to measure an energy of the at least one of the
ECG and respiration signals in a selected frequency band as a function of time, to find a
respective characteristic of the energy in each of a plurality of time segments, and to determine
the patient to have moved during one or more of the time segments responsively to the
respective characteristic.

There is also provided, in accordance with an embodiment of the present invention,
apparatus for diagnosis of a sleep-related condition of a patient, the apparatus including:

one or more electrodes, which are adapted to receive an electrocardiogram (ECG)
signal from the patient during sleep; and

a diagnostic processor, which is coupled to measure a variability of a heart rate of the
patient responsively to the ECG signal, to compute a characteristic of the variability of the
heart rate, and to find, responsively to the characteristic, a period during which the heart rate
was decoupled from a respiratory function of the patient.

There is additionally provided, in accordance with an embodiment of the present
invention, apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
including:

a respiration sensor, which is adapted to receive a signal from the patient during sleep,
wherein the signal is indicative of at least one of a heart rate and respiration activity of the
patient; and

a diagnostic processor, which is coupled to evaluate a complexity of the signal during a
selected time period, and to identify a sleep stage of the patient responsively to the complexity.

There is also provided, in accordance with an embodiment of the present invention,
apparatus for diagnosis of a sleep-related condition of a patient, the apparatus including:

a sensor, which is adapted to be coupled to the patient during sleep so as to receive
from the patient a signal that is indicative of breathing activity; and

a diagnostic processor, which is coupled to process the signal so as to detect individual
events that are indicative of disturbance of the breathing, to identify a periodic event, which
includes a sequence of the individual events that are separated by time gaps whose respective
durations are within predetermined limits, and to classify a sleep stage of the patient
responsively to the complexity.

There is further provided, in accordance with an embodiment of the present invention,

a computer software product for diagnosis of a sleep-related condition of a patient, the product
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including a computer-readable medium, in which program instructions are stored, which
instructions, when read by a computer, cause the computer to receive physiological signals
from one or more sensors coupled to a lower body of the patient during sleep, and to process
the physiological signals, independently of any electroencephalogram (EEG) or electro-
oculogram (EOG) signals, in order to identify sleep stages of the patient.

There is moreover provided, in accordance with an embodiment of the present
invention, a computer software product for diagnosis of a sleep-related condition of a patient,
the product including a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive from the patient at
least one of an electrocardiogram (ECG) signal and a respiration signal during sleep, and to
measure an energy of the at least one of the ECG and respiration signals in a selected
frequency band as a function of time, to find a respective variance of the energy in each of a
plurality of time segments, and to determine the patient to have moved during one or more of
the time segments responsively to the respective characteristic.

There is also provided, in accordance with an embodiment of the present invention, a
computer software product for diagnosis of a sleep-related condition of a patient, the product
including a computer-readable medium, in which program instructions are stored, which
instructions, when read by a computer, cause the computer to receive an electrocardiogram
(ECG) signal from the patient during sleep, and to measure a variability of a heart rate of the
patient responsively to the ECG signal, to compute a variance associated with the variability of
the heart rate, and to find, responsively to the characteristic, a period during which the heart
rate was decoupled from a respiratory function of the patient.

There is additionally provided, in accordance with an embodiment of the present
invention, a computer software product for diagnosis of a sleep-related condition of a patient,
the product including a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive a signal from the
patient during sleep, wherein the signal is indicative of at least one of a heart rate and
respiration activity of the patient, and to evaluate a complexity of the signal during a selected
time period, and to identify a sleep stage of the patient responsively to the complexity.

There is further provided, in accordance with an embodiment of the present invention,
a computer software product for diagnosis of a sleep-related condition of a patient, the product

including a computer-readable medium, in which program instructions are stored, which

10



10

15

20

25

30

WO 2006/054306 PCT/IL2005/001233

instructions, when read by a computer, cause the computer to receive from the patient a signal
that is indicative of breathing activity, and to process the signal so as to detect individual
events that are indicative of disturbance of the breathing, to identify a periodic event, which
comprises a sequence of the individual events that are separated by time gaps whose respective
durations are within predetermined limits, and to classify a sleep stage of the patient
responsively to the complexity.

The present invention will be more fully understood from the following detailed

description of the embodiments thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic, pictorial illustration of a system for sleep monitoring, in
accordance with an embodiment of the present invention;

Fig. 2 is a flow chart that schematically illustrates a method for processing
physiological signals, in accordance with an embodiment of the present invention;

Fig. 3 is a schematic plot of an ECG signal and of a movement signal derived
therefrom, in accordance with an embodiment of the present invention;

Fig. 4 is a schematic plot of a respiration signal and of a movement signal derived
therefrom, in accordance with another embodiment of the present invention;

Fig. 5 is a flow chart that schematically illustrates a method for processing a heart rate
signal, in accordance with an embodiment of the present invention;

Figs. 6A-6D are time plots of event start and end points that schematically illustrate a
method for detecting movement events, in accordance with an embodiment of the present
invention;

Fig. 7A is a time plot that schematically illustrates start and end points of movement
events over a succession of epochs, in accordance with an embodiment of the present
invention;

Fig. 7B is a time plot showing averaged movement event scoring based on the
movement events of Fig. 7A, in accordance with an embodiment of the present invention;

Figs. 8A and 8B are time plots that schematically illustrate a method for detecting
periodic respiration events, in accordance with an embodiment of the present invention;

Fig. 9 is a time plot that schematically shows an oxygen saturation signal, illustrating

desaturation events, in accordance with an embodiment of the present invention;
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Fig. 10 is a flow chart that schematically illustrates a method for detecting complexity
of respiration patterns, in accordance with an embodiment of the present invention;

Fig. 11 is a flow chart that schematically illustrates a method for processing a heart-rate
variability (HRV) signal, in accordé.nce with an embodiment of the present invention;

Fig. 12 is a schematic plot illustrating a variance analysis of a HRV signal, in
accordance with an embodiment of the present invention;

Fig. 13 is a flow chart that schematically illustrates a method for automated sleep
staging, in accordance with an embodiment of the present invention; ,

Fig. 14A is a schematic plot that schematically illustrates a complexity analysis of a
thoracic signal, in accordance with an embodiment of the present invention;

Fig. 14B is a schematic plot of a histogram derived from the complexity analysis of
Fig. 14A, in accordance with an embodiment of the present invention;

Fig. 14C is a schematic plot of a manually-scored histogram;

Fig. 15 is a state diagram that schematically illustrates a Hidden Markov Model of
sleep states, in accordance with an embodiment of the present invention; and

Fig. 16 is a flow chart that schematically illustrates a method of sleep staging, in

accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

SYSTEM OVERVIEW

Fig. 1 is a schematic, pictorial illustration of a system 20 for sleep monitoring and
diagnosis, in accordance with an embodiment of the present invention. In this embodiment,
system 20 is used to monitor a patient 22 in a home or hospital ward environment, although
the principles of the present invention may similarly be applied in dedicated sleep laboratories.
System 20 receives and analyzes physiological signals generated by the patient’s body,
including an ECG signal measured by skin electrodes 24, which serve as ECG sensors, and a
respiration signal measured by a respiration sensor 26. Optionally, the system also comprises
an oxygen saturation sensor 27, which provides a signal indicative of the level of oxygen
saturation in the patient’s blood and may also be used to provide a heart rate signal. The
signals are collected, amplified and digitized by a console 28. No EEG or EOG electrodes are
required on the patient’s head in system 20, although the techniques of ECG and respiration

12
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monitoring and analysis that are described herein may alternatively be combined with EEG,
EOG and other sleep monitoring modalities that are known in the art.

| Respiration sensor 26 typically makes electrical measurements of thoracic and
abdominal movement. For example, sensor 26 may comprise two or more skin electrodes,
which are driven by console 28 to make a plethysmographic measurement of the change in
impedance or inductance between the electrodes as a result of the patient’s respiratory effort.
(It is also possible to use the ECG electrodes for this purpose.) Alternatively, the respiration
sensor may comprise a belt, which is placed around the patient’s chest or abdomen and senses
changes in the body perimeter. Additionally or alternatively, air flow measurement may be
used for respiration sensing. For example, the air flow from the patient’s nose and/or mouth
may be measured using a pressure cannula, thermistor, or CO2 sensor. Any other suitable
respiration sensor known in the art may also be used, in addition to or instead of the above
sensor types.

Additionally or alternatively, console 28 may gather signals from an existing set of
sensors coupled to patient 22. For example, while patient 22 is undergoing Holter monitoring,
as is known in the art, the monitored physiological signals may also be used for sleep staging,
as described hereinbelow. As another example, implantable cardiac devices, such as
pacemakers and ICDs, typically sense the patient’s ECG and are capable of transmitting
telemetry signals out to a suitable receiver. Such implantable devices sometimes include
motion sensors, as well, such as an accelerometer, whose output may also be used, along with
the ECG, in sleep staging. Additionally or alternatively, the implantable device may generate
and transmit impedance-based respiration measurements (known in the art as “minute
ventilation™).

Console 28 may process and analyze the ECG, respiration and other signals locally,
using the methods descfibed hereinbelow. In the present embodiment, however, console 28 is
coupled to communicate over a network 30, such as a telephone network or the Internet, with a
diagnostic processor 32. This configuration permits sleep studies to be performed
simultaneously in multiple different locations. Processor 32 typically comprises a general-
purpose computer with suitable software for carrying out the functions described herein. This
software may be downloaded to processor 32 in electronic form, or it may alternatively be

provided on tangible media, such as optical, magnetic or non-volatile electronic memory.
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Processor 32 analyzes the signals conveyed by console 28 in order to identify sleep stages of
patient 22 and to display the results of the analysis to an operator 34, such as a physician.

Typically, processor 32 identifies sleep stages based on a combination of different
analyses that are applied to the signals received from patient 22. Exemplary multi-parameter
sleep staging methods are shown in Figs. 13 and 16 and are described hereinbelow with
refgrence thereto. Before describing this combined methods, however, a number of the

specific analyses that may be used in the method will first be explained.

MOTION DETECTION

Fig. 2 is a flow chart that schematically illustrates a method for detecting motion of
patient 22 based on ECG measurements made using electrodes 24, in accordance with an
embodiment of the present invention. This motion measurement may be used to distinguish
between REM (in which the voluntary muscles are paralyzed) and other states. No dedicated
motion sensor is required.

The method of Fig. 2 is based on measuring the energy content of motion-related
frequency bands in the ECG signal, at an energy measurement step 40. The inventors have
found that the ECG “noise bands,” below 2 Hz and above 20 Hz, can be used for this purpose.
Alternatively or additionally, other bands that contain motion information may be used. To

perform the energy measurement, processor 32 divides the ECG signal into overlapping
segments Sj, each & seconds long, with the starting times of successive segments spaced €

seconds apart. Typically, 6 =5, and € = 0.5, but other values of these parameters, larger or

smaller, may alternatively be used. The noise measure for each segment i is given by:

E;(0,2)+ E; (20,F%)
;= . (o, - %)

(M

wherein E; is the integrated energy in the range [x,y] (in Hz), and Fg is the sampling rate. An

AR (autoregressive) spectrum offers an efficient, accurate means for frequency estimation for

short data segments. The inventors have used it for computing the ECG power spectrum and
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found that for an ECG sampling rate of 100 Hz, using four AR coefficients gives satisfactory
results.

Processor 32 assembles the noise energy values 77; as a time series with a spacing of €

seconds between series elements. The processor may apply spline interpolation, typically with
a cubic spline, to interpolate series values between these measured values. For example, the
noise energy may initially be computed with 2 Hz resolution, followed by cubic spline fitting
to give a continuous noise signal, and concluding with resampling of the continuous noise

signal at 6 Hz.
The processor then divides the time series into new segments R; by an adaptive

segmentation process, at a segmentation step 42. Methods of adaptive segmentation that may
be applied to physiological signals (particularly in the context of sleep analysis) are described
in detail in the above-mentioned PCT Patent Application PCT/IL.2004/000412. Briefly, the
adaptive segmentation process divides the time series into segments, each of which is
characterized by quasi-stationary behavior. “Quasi-stationary” means that certain statistical
properties of each segment, such as spectral amplitude variations, are contained within
predefined bounds Those segments of the time series that are not quasi-stationary over at least
a predefined minimum duration may be identified as transient events.

In one embodiment, processor 32 uses a procedure to define and segment quasi-

stationary segments based on a similarity measure D as follows: Let A={aj...a;} and
B= {bl bm} be two segments of length 7 and m respectively. Let o 4,05 be the standard

deviations of 4 and B, respectively, and let o4p be the standard deviation of the

concatenation of 4 and B. Segments 4 and B are considered similar if:

n_m

o 0

_%4°B

D(4,B)=—4L <7 2)
AB

wherein T is a predefined threshold. Other similarity measures may alternatively be used, for

example, log D(A, B ) . Now, taking 2/ to be the minimal length of a quasi-stationary segment
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(typically 2/ > 5 sec), and X = {xl,x2,...} to be the series to be segmented, and denoting the

segment { XjseersX j} as [z’, J ] , the segmentation procedure at step 42 is expressed as follows:

Initially i=1;
While (signal is not fully segmented) {
Look for min j >i such that [, j+/] and

[/ +1+1,+2I] are similar

(j>i){
[, j—1] is a non-stationary segment;
i=j}

Else {

Look for max j > i+ such that [4, /] and
[j+1,j+I] are similar
[,/ +1] is a quasi-stationary segment;

i=j+l+1}}

Processor 32 next computes the statistical variance of the energy values in each
segment R;, at a variance computation step 44. The variance of each segment is compared to

those of its neighboring segments, at a burst detection step 46. If the variance ratio between
the neighboring segments is greater than a predetermined threshold, processor 32 concludes
that patient 22 moved during the high-variance segment. Typically, the processor compares
the noise measure of each segment to that of the closest preceding and subsequent segments
that are of at least a predetermined minimum length (typically at least 60 sec). If the noise
measure in a given segment is at least 15 times greater than these preceding and succeeding
segments, the patient is considered to have moved during the segment. Alternatively, other
characteristics of the energy may be used, such as the entropy.

Fig. 3 is a schematic plot showing an ECG signal and a movement signal derived
therefrom, in accordance with an embodiment of the present invention. An upper plot 50

shows the ECG signal taken from a patient during sleep. The signal includes a number of
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quasi-stationary segments 52 with relatively high variance. A lower plot 54 shows the
movement signal derived from the ECG (on a condensed time scale). Segments 52 are
reflected in a peak 56 appearing in the movement signal. Processor 32 records this peak as an
indication that patient 22 moved during the time frame in question.

The method of Fig. 2 may similarly be applied to detect patient movement based on
respiration signals. In this case, at step 40, the high-frequency component of the respiration
signal is considered to contain the motion information. Typically, the energy is measured in a
high-pass band above 1.5 Hz. An energy time series is thus created, as described above, and
adaptively segmented at step 42. The variance of each segment in the energy series is
computed at step 44, and high-variance bursts are detected at step 46. Let o be the variance of

a segment S, and let 7,03 be the variances of previous and succeeding neighboring segments

o O
—_——

(of sufficient length). The segment S is considered a burst if max[ )> T. Typically, a

O] Oy
segment meeting this criterion with T'=5 is regarded as indicative of patient motion, as long
as the neighboring segments are at least 10 sec long.

Fig. 4 is a schematic plot showing a respiration signal and a movement signal derived
therefrom, in accordance with another embodiment of the present invention. An upper plot 60
shows the actual respiration signal, including a high-variance segment 62. The corresponding
motion signal is shown in a lower plot 64. The high variance of segment 62 is evident in a
corresponding segment 66 in the motion signal, indicating that patient motion occurred during
this segment.

Fig. 5 is a flow chart that schematically illustrates a method for detecting patient
motion based on heart rate measurement, in accordance with an alternative embodiment of the
present invention. This method is based on the realization that spontaneous elevation and
depression of the heart rate during sleep may be associated with body movements. For the
purposes of this method (and other methods described herein that are based on heart rate
analysis), the heart rate may be derived from the ECG, oxygen saturation signal, or any other
suitable heart rate indicator received from patient 22.

In order to detect heart rate changes that may be indicative of movement, processor 32
eliminates the long-term trend of the heart rate from the heart rate signal, at a trend elimination
step 70. Any suitable filtering method may be used for this purpose, for example, Kalman

filtering, as is known in the art. The processor then segments the signal remaining after trend
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removal into quasi-stationary segments, at a segmentation step 72. This step may use the same
sort of technique as was described above for segmentation of ECG signals. The processor
computes the duration and variance of each segment, at a segment analysis step 74.

Processor 32 compares the variance of each segment to those of its neighboring
segments, at a movement detection step 76, in similar fashion to the comparison used in step
46 (Fig. 2). If the duration of a given high-variance segment is greater than a predetermined
minimum, and the variance ratio between the high-variance segment and its neighboring
segments is greater than a predetermined threshold, processor 32 concludes that patient 22
moved during the high-variance segment. For example, the minimum duration may be set to 5
sec, and the threshold ratio may be set to 125%. Alternatively, other thresholds and other
characteristic measures of segment energy may be used

The heart rate signal may also be used to detect arousals. For this purpose, processor
32 detects peaks in the heart rate, and then seeks the nadir point in the heart rate within a
certain time window prior to each peak. If the ratio of the peak value to the corresponding
nadir value of the heart rate is greater than a certain threshold, the peak is considered to
indicate an arousal. For example, the inventors have found that a peak/nadir ration of 120%
over a time window of 5 min is a good indicator of patient arousal. This arousal indicator may
be used in conjunction with other indicators in automated sleep staging, using the method of
Fig. 13 or Fig. 16, for example.

Additionally or alternatively, patient movement may be detected using oxygen
saturation values, such as those provided by saturation sensor 27. De-saturation events that are
characterized by high de-saturation slope and low subsequent saturation level are typically
indicative of patient movement. A method for detection of de-saturation events that may be
used in this context is described by Taha et al., in “Automated Detection and Classification of
Sleep-Disordered Breathing from Conventional Polysomnography,” Sleep 20:11 (1997), pages
991-1001, which is incorporated herein by reference.

Figs. 6A-6D are time plots of event start and end points, which schematically illustrate
a method for detec;cing movement events, in accordance with an embodiment of the present
invention. This method emulates the behavior of a human sleep scorer in fusing movement
indications from different sources, such as ECG, respiration, heart rate and saturation signals.

By way of example, let Figs. 6A and 6B represent movement events from two different

sources, A and B, such as respiration and ECG. Two events 80 and 82 were detected in the
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signals from source A, and two events 88 and 90, overlapping in time with events 80 and 82,
were detected in the signals from source B. Processor 32 marks each event with a respective
start point 84 and end point 86. The processor then projects all the start and end points onto a
common time axis, as shown in Fig. 6C. When events from different sources overlap in time,
they are fused into a single event that starts with the earliest start point and ends with the last
end point in the group. An algorithm for fusing events in this manner could be expressed as

follows:

(2) Open event at first start; set score = 1.

(b) Get next boundary point (start or end).

(c) If start, then increment score; else decrement
score.

(d) If score = 0, close event; else go to (b).

The result of the fusion process is shown in Fig. 6D, in which events 80 and 88 have resulted
in a fused movement event (FME) 92, and events 82 and 90 have resulted in another FME 94.

Additionally or alternatively, processor 32 may fuse movement events that are closely
spaced in time into a single FME. Typically, if the time span between the end point of a first
event and the start point of the next event is less than a predetermined threshold, the two
events are fused into one FME. The start point of the FME in this case is that of the first
event, while the end point is that of the second event. This process may be repeated to fuse the
FME with the next event in the sequence if the time span until the next event is also short.
Typically, however, a maximum event length is set, and processor 32 refrains from fusing a
given event (whether an original, single event or a FME) with another event if the given event
is longer in duration than the maximum event length.

Fig. 7A is a time plot showing fused movement events 92 and 94 projected onto a time
axis that is divided into uniform epochs, in accordance with an embodiment of the present
invention. The epochs are of uniform, 30 sec duration, in order to emulate the 30 sec epochs
used by human scorers in manual sleep staging. Alternatively, different epoch lengths may be
used. For each epoch in Fig. 7A, processor 32 determines the relative duration of fused
movement events and scores the epoch according to the relative duration. For example, as

shown in the figure, assuming start point 84 of FME 92 to have occurred at time = 15 sec, and
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end point 86 of this FME to have occurred at time = 75 sec, processor 32 assigns an averaged
FME (AFME) score of 50% to each of the first and third epochs, and an AFME score of 100%
to the second epoch (meaning that the entire epoch was filled with a movement event).
Subsequent epochs are scored in like manner.

Fig. 7B is a time plot that shows the result of this event scoring, in accordance with an
embodiment of the present invention. The AFME scores determined in Fig. 7A are shown as a
function of time in 30 sec epochs. Each epoch is thus rated in terms of the relative amount of

patient movement occurring during the epoch.

DETECTION OF PERIODIC EVENTS

Fig. 8A is a time plot that schematically illustrates a periodic sequence of respiration
events 100, 102, 104, 106, 108, 110, in accordance with an embodiment of the present
invention. Such respiration events may comprise, for example, periods during which
processor 32 detected a cessation of breathing (apnea), or other types of ‘disturbed breathing
patterns. Periodic respiration events, such as that shown in Fig. 8A, are common in sleep
states of patients suffering from sleep-disturbed breathing. Detection of such events is useful,
inter alia, in distinguishing between sleep and wake states of such patients.

Fig. 8B shows a periodic respiration event (PRE) 112 detected by processor 32 on the
basis of the event sequence shown in Fig. 8A, in accordance with an embodiment of the
present invention. The processor detects a PRE upon the occurrence of a certain minimum
number of successive respiratory events, with certain regular time gaps between successive
events. For example, a PRE may be defined as a sequence of at least five consecutive
respiration events, such that the mean of the time gaps between the end point of each event and
the start point of the succeeding event is no greater than a certain threshold length, and the
standard deviation of the time gaps is no greater than a certain maximum variance. The
inventors have found that setting the threshold length for the mean gap between events to 4
min, while setting the maximum variance of the gaps to 20 sec, gives good results in
automatically detecting PREs.

Periodic respiratory events may further be classified into REM-oriented and non-REM
(NREM) oriented PREs. Typically, the duration of PREs in NREM sleep is longer than that in
REM sleep, because the muscular paralysis in REM sleep makes it more difficult for the body
to recover from respiration events. PREs in REM sleep are also typically more symmetrical, in

terms of onset and recovery times, than in NREM sleep.
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On the other hand, periodic Cheyne-Stokes respiration events, which are common in
patients suffering from congestive heart failure (CHF), for example, occur only in NREM
sleep. (Cheyne-Stokes is a breathing pattern marked by shallow breathing alternating with
periods of rapid heavy breathing found in some medical conditions and also occurring at high
altitude.) Processor 32 determines that a certain PRE is a periodic Cheyne-Stokes respiration
event by computing the time gaps between the peaks in the respiration rate that correspond to
the start and end points of each respiration event in the succession of respiration events making
up the PRE. If the mean of these time gaps is within a certain range, and the standard
deviation of the time gaps is no greater than a certain maximum value, and if the amplitude
envelope of the respiration signal during the PRE is sinusoidal, then the PRE is considered to
be a Cheyne-Stokes PRE. The inventors have gotten good results by setting processor 32 to
detect a Cheyne-Stokes PRE when the mean time gap between respiration peaks in each event
is between 88 and 92 sec, with a standard deviation no greater than 2 sec.

Based on the criteria explained above, processor 32 detects PREs and classifies them
into REM- and NREM-oriented types. For this purpose, the processor typically separates out
the Cheyne-Stokes PREs (if any), and then uses fuzzy clustering to group the remaining PREs
into long- and short-duration clusters. As noted above, the long-duration PREs are classified
as REM-oriented, and the short-duration PREs are classified as NREM-oriented, as are the
Cheyne-Stokes PREs. The PREs are projected onto a time axis of uniform epochs, and are
used to compute average REM and NREM PRE scores per epoch in the manner shown above
in Figs. 7A and 7B.

Fig. 9 is a time plot that schematically illustrates a blood oxygen saturation signal
received from sensor 27, in accordance with an embodiment of the present invention. The

signal exhibits desaturation events 120 and 122, which are detected on the basis of significant

drops in the blood oxygen saturation level. Each of events 120 and 122 has a start time aj, an

end time ¢;, and a nadir time b; (i = 1 for event 120, and i = 2 for event 122), which may be
detected by processor 32 using any suitable method of signal processing known in the art. The

duration of each desaturation event is given by c; ~ aj; the depth of each event is given by the
difference between the baseline saturation value and the value at bj; and the symmetry of each

event is given by:
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I(ci _Z):Ezbl)_al)l 3)
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Patients with sleep-disturbed breathing may also exhibit periodic desaturation events
(PDEs), which are similar in many respects to the PREs described above. A PDE may be
defined, like a PRE, as a sequence of at least five consecutive desaturation events, such that
the mean of the time gaps between the end point of each event and the start point of the
succeeding event is no greater than a certain threshold length, and the standard deviation of the
time gaps is no greater than a certain maximum variance. The same sort of parameter values
that were defined above for detecting PREs may be applied in detecting PDEs.

PDEs may also be classified into REM-oriented and NREM-oriented clusters,
depending on the duration, depth and symmetry of the desaturation events in each PDE. Asin
the case of PREs, REM-oriented PDEs tend to be longer, deeper and more symmetrical than
NREM-oriented PDEs, due to the muscular paralysis that occurs during REM. Processor 32
therefore uses fuzzy clustering to group the PDEs according to these criteria into REM and
NREM group, and then computes average REM and NREM scores per epoch based on the

PDE classification, in the manner described above.

DETECTION OF COMPLEXITY OF RESPIRATION PATTERNS

Complexity of the patient’s respiration patterns, based on the signal measured by

 respiration sensor 26 and/or other respiration signals, gives another useful indication of the

patient’s sleep stage in system 20. NREM sleep is known to be characterized by even
breathing, i.e., low-complexity respiration signals, whereas waking and REM typically have
more complex, irregular breathing patterns. Various methods may be used to calculate a
measure of signal complexity in order to distinguish between these states.

In, an exemplary embodiment, processor 32 divides the respiration signal into time
segments, and determines the measure of complexity for each segment. The segments may be
quasi-stationary time segments, determined by adaptive segmentation, as described above.
Alternatively, the segments may be overlapping segments of fixed length, for example,
segments 30 sec long with a time offset between successive segments of 1 sec. As the first

step in finding the signal complexity, the processor finds the mean m and the standard
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deviation o for each segment, and uses the values of m and ¢ to quantize the respiration signal

s in each segment into #n levels, for example, n = 4:

xzm+o

'p' m+o>x=>m ,
5= 4)
c' m>x>m—-o

'd' m<m-o

The processor then compresses the string of quantized signal values in the segment
using a complexity-dependent compression scheme. For example, the processor may use
Lempel-Ziv compression, as described by Lempel et al., in “A Universal Algorithm for
Sequential Data Compression,” IEEE Transactions on Information Theory, IT-23:3 (1977),
pages 337-349. The signal complexity may be defined in terms of the compression efficiency

oM

8=LlognN
N

&)
wherein N is the length of the segment, and L is the length of the compressed string. A typical
calculation of respiratory signal complexity over time is illustrated below in Fig. 14A.

Alternatively or additionally, processor 32 may compute other measures of complexity
of the segmented respiration signal, such as the fractal dimension or entropy of each segment.

Further alternatively or additionally, the processor may compute the respiration rate
variability (RRV) over time. The processor then segments the RRV (into either quasi-
stationary or fixed-length segments) and computes the variance of each segment as a measure
of its complexity.

Fig. 10 is a flow chart that schematically illustrates a method for classifying complexity
of respiration patterns, in accordance with an embodiment of the present invention. For this
purpose, the respiration complexity is represented in terms of a respiratory complexity feature
matrix (CFM), which is generated by processor 32 at a CFM generation step 130. To generate
the CFM, processor 32 segments the respiration signal and then extracts from each segment
one or more complexity features, such as those described above. The complexity feature
values for each segment are arranged in a feature vector, and the feature vectors are arranged in
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sequential order to form the CFM. Thus, each column of the matrix corresponds to a
successive segment, and each row contains the successive values of one of the features.

In preparation for classifying the complexity of the CFM, the patient is assigned to a
population group, at a patient assignment step 132. This assignment is desirable because of
the characteristic variation in respiration sleep behavior with age, gender and severity of sleep-
disturbed breathing (SDB). As a result of this variation, a certain sleep pattern might be
classified as complex in one population group and non-complex in another. The patient may
be classified at step 132 based either on a priori information or using a probabilistic
(Bayesian) classification method, based on estimated probability density functions that have

been computed in advance for different population groups.

The estimated probability density functions P(XI Ck) for each population group
Cr (k=1,..,K) are computed in advance based on CFMs X that have been gathered from a

large number of representatives of the population group in question. Let X= [xl,...,x N],

wherein Xx,, denotes the n'™ feature vector. Assuming that the vectors {xn}"y | are identical

N
independently distributed (i.i.d.), then P(X| c;j)=TI P(xn |C;). The probability density
n=1

function P (x |C j) may be modeled using a Gaussian mixture model (GMM):
M A
P(xICj)= X 7p, N (xsbip, ¥ p, ) ©)
p=1

M
Here { 7 P j} 1 is the set of estimated weights of the Gaussian functions N in the model of
2 p:

the jth population, and M is the model order (i.e., the number of Gaussians used in the model).

The form of the Gaussians is

N(x;ﬁp,j;‘i’p’j) = det(27r‘i’p=j )—0'5 exp[—(x—ﬁp’j )T ‘i’;}J (x—ﬁp,j )} , Wherein the

P A P
sets {ft } and {‘I’ } contain the estimated mean vectors and covariance matrices
DsJ p=1 D] p=1
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of the Gaussians, respectively. The values of the GMM parameters are estimated from
equation (6) using an expectation maximization (EM) algorithm, as described, for example by
Verbeek et al., in “Efficient Greedy Learning of Gaussian Mixture Models,” Neural
Computation 5:2 (2003), pages 469-485, which is incorporated herein by reference.

To perform Bayes classification at step 132, the specific CFM of the patient in

question, X, is classified into population group £ using the formula:

k=argma_1xP(X]Cj)P(Cj) j=1..K )
J

wherein P (Ck) is the a priori probability of being related to population Cy, .

After the patient has been assigned to one of the population groups, processor 32
adaptively classifies each of the feature vectors in the patient’s CFM as either complex or non-

complex, at a feature classification step 134. For this purpose, the probability density function

P(xle) may be written as:
P(chk)=P(Wc|Ck)P(X|Ck$Wc)+P(Wnc|Ck)P(X|Ck5Wnc) ®)

wherein W, and W, respectively denote the complex and non-complex classes. The
probability density functions P(x|Cy;W) and P(x|Cy;Wy) are typically estimated in
advance using the above-mentioned EM algorithm for GMM parameter estimation. The a

priori probabilities P(W,|Cy) and P(Wy.|Ck) are also estimated in advance using the

formula:
plk)
P(WCICk)= ik) and P(WnC[Ck)=1—P(WC|Ck) )
D

wherein Dg ) is the total duration of complex respiration segments in a specified population,

and D(k) is the total duration of all respiration segments in the same population.
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Processor 32 models x using a GMM, with probability density function

M X A n ) . M N M
f(x)= Z Wm,jN(XQFm,jETm,j)- In this case, {um’j}mﬂ and {Tm’j}mﬂ are the
m=1

mean vectors and covariance matrices of the Gaussian functions N in the model of the

M
population group to which the patient was classified at step 132. {ﬁ’m j} ) is the set of
2 m=

estimated weights of the Gaussians, which may be determined using the above-mentioned EM

algorithm.
. . M. e 1
Each mean vector in the set { iy, j} | is classified into the complex/non-complex
>J V=

classes according to the Bayesian rule:

u=argmax P(wy, j | Ci:W; ) P(W; |Cy) 1=0,1 (10)
t

wherein » is a class index such that =0 refers to the complex class, and u=1 refers to the

non-complex class. The patient-adaptive probability density functions for each class are then

given by:
FEIT) =Y N (Kb, ¥, ) Soan
meSy
. ﬁ’m, J T
wherein ¢, ; = —=—>—, and Sg €[L,..,M] and Sj €[L,..,M] are the sets of indices of the
’ Ym,j
meS;

mean vectors that have been classified into the non-complex and complex classes,

respectively.

The a priori probability of each class is taken to be f (%} ) = Z W, j - Each feature
meSy

vector in the CFM of the given patient is then classified according to:

= scgmax £ (s | ) £ (%) =0, (12)
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Step 134 thus results in a sequence of binary values, indicating the complexity or non-
complexity of each successive feature vector in the CFM. This sequence is projected onto a
uniformly-spaced time axis, at a projection step 136. The sequence is projected, in a manner
similar to that shown above in Figs. 7A and 7B, by computing the relative duration of complex
respiration segments within non-overlapping time frames, which are typically 30 sec epochs.

The outputs of this process is the averaged complexity ratio (ACR) of the respiration signal.

DETECTION OF HEART RATE COMPLEXITY AND RESPIRATORY DECOUPLING

Complex heart rate (HR) patterns may be detected and classified in the same manner as
that described above for respiration patterns. In this case, the HR complexity feature matrix is
processed to generate a HR complexity sequence, which may then be projected onto a uniform
time axis to determine an averaged complexity ratio of the HR. Alternatively or additionally,
heart rate complexity may be determined on the basis of the heart-rate variability (HRV)
signal, as described hereinbelow.

Reference is now made to Figs. 11 and 12, which schematically illustrate a method for
detecting respiratory decoupling in the HRV signal, in accordance with an embodiment of the
present invention. This method is based on the observation that during NREM sleep, the heart
rate varies, typically in synchronization with the patient’s respiration. In REM, however, the
heart rate is decoupled from respiration, i.e., it fails to exhibit the variation characteristic of
NREM sleep. Fig. 11 is a flow chart showing the steps in the present method, while Fig. 12
shows a plot 180 of a HRV signal to which the method is applied. HRYV is expressed and
plotted in terms of the length (in seconds) of the R-R interval (RRI) in the ECG signal.

Processor 32 processes the ECG signal received from electrodes 24 to detect the R
waves and thus measure the HRV, at a HRV measurement step 170. The processor then filters
the HRV signal that it has derived, at a HRV processing step 172. Typically, at this step, the
processor uses a bandpass filter with a passband corresponding to the respiratory frequency
range, for example, 0.15 to 0.4 Hz. The processor then calculates the second derivative of the
filtered HRV signal. It calculates the variance of this second derivative signal, at a variance
computation step 174. Typically, the variance is computed over a series of overlapping time
frames, for example, 30 sec time frames with starting times spaced 1 sec apart.

| Processor 32 analyzes the time sequence of variance values to identify periods of low
variance, at a variance analysis step 176. Typically, for this purpose, the processor uses a
27
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hierarchical clustering algorithm to divide the time sequence into segments. In other words,
the processor recursively partitions the time sequence into smaller and smaller segments until
it finds a period or periods whose variance is lower than the neighboring periods by a
predetermined ratio, or until it reaches a minimal segment length. Let o 4 be the variance of a
segment of length #, let o be the variance of a neighboring segment of length m, and let
o 4B be the variance of the concatenated segment. As noted earlier, the two segments may be

n_m

oo
considered similar if log ‘i_}_i <T. The similarity threshold, T, for identifying a low

4B

variance segment is typically 15, i.e., similarity in excess of this threshold indicates that
respiratory decoupling occurred during this segment. Low-variance segments 182 of this sort,
indicative of respiratory decoupling, can be seen in Fig. 12.

The output of this phase is the respiration decoupling sequence (RDS), which may be
projected onto a uniformly-spaced time axis to find the averaged RDS, in the manner

described above.

AUTOMATIC SLEEP STAGING

Fig. 13 is a flow chart that schematically illustrates a method for automated sleep
staging using the signal processing techniques described above, in accordance with an
embodiment of the present invention. In this sleep staging process, processor 32 analyzes the
ECG and respiration data in epochs of 30 sec each, at an epoch input step 190. This period is
chosen because it is the standard epoch length used in manual sleep staging.

The processor determines whether the ECG and respiratory signals were quasi-
stationary (as defined above) within the current epoch, at a stationarity evaluation step 192. If
quasi-stationarity was not maintained for at least a minimal, predetermined length of time
(typically 5 sec) in the epoch, then the processor notes the possible occurrence of a transient
event. The processor may further analyze this transient event to identify short-term variations
in the patient’s sleep state, such as micro-arousals. The processing and significance of
transient events are further described in the above-mentioned PCT Patent Application
PCT/IL2004/000412.

Assuming the signals to have been quasi-stationary in the epoch under analysis,

processor 32 next computes the complexity of the respiratory signal, at a complexity
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evaluation step 194. The method of computation is described above. If the average
complexity over the epoch is less than a predetermined threshold, for example, 0.6, then the
patient is determined to be in NREM sleep.

Optionally, the frequency content of the ECG signal may be evaluated in order to
determine the depth of NREM sleep, at a frequency assessment step 196. It has been found
that a low range of HRV frequencies (in the 0.04-0.15 Hz range, referred to hereinbelow as the
LF range) is associated with baroreflex sympathetic control, encountered in light sleep; while a
higher range (0.15-0.4 Hz, referred to hereinbelow as the HF range) is associated with
parasympathetic control, which is characteristic of deep sleep. Results of this sort are reported,
for example, by Akselrod et al., in “Power Spectrum Analysis of Heart Rate Fluctuation: A
Quantitative Probe of Beat-to-Beat Cardiovascular Control,” Science 213 (1981), pages 220-
222, which is incorporated herein be reference. Thus, at step 196, processor 32 measures the
energy contained in the LF and HF ranges of the HRV during the current epoch and computes
the ratio of energies in the two bands, LF energy/HF energy. If the ratio is greater than a
predetermined threshold, for example, 1.8, the patient is considered to be in light sleep, i.e.,
stage 1 or 2. Otherwise, the patient is considered to be in deep sleep, stage 3 or 4.

Alternatively or additionally, the HRV time series may be segmented into quasi-
stationary segments, and the LF/HF ratio may calculated from the power spectrum of each
segment to give a LF/HF time sequence. The values in this sequence are then compared to a
threshold in order to give a binary sequence indicating which segments had high LF/HF ratio.
The binary sequence is projected onto a uniformly-spaced time axis and then averaged over
non-overlapping time frames, in the manner described above. These averaged LF/HF values
may be used in step 196 or in other sleep staging methods described hereinbelow.

Returning now to step 194, if processor 32 finds the average complexity of the
respiratory signal over the current epoch to be greater than the complexity threshold, the
processor concludes that the patient is not in NREM sleep, and checks whether the patient has
moved during this epoch or the preceding or succeeding epoch, at a movement checking step
198. Movement may be assessed, for example, by applying the method of Fig. 2 to ECG or
respiration signals, as described above. If the patient is determined to have moved, the
processor concludes that the patient is awake. Typically, average movement activity over 30
sec greater than 0.5, coupled with respiration signal complexity greater than 0.6, is indicative

of a state of wakefulness.
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If the patient is found at step 198 not to have moved during the current epoch,
processor 32 checks the HRV signal for respiratory decoupling, at a decoupling detection step
200. Respiratory decoupling may be detected using the method described above with
reference to Fig. 11. If the HRV variance, as defined above, is sufficiently low to qualify as
decoupling, and is accompanied by an absence of movement, the processor then classifies the
current epoch as REM sleep. If the HRV variance is not low, despite the lack of movement,
processor 32 marks the current epoch as anomalous. Such anomalies may occur, for example,
due to sleep apneas.

As noted above, processor 32 detects transient events in the ECG and/or respiratory
signals at step 192. After classifying a given epoch as belonging to a REM or NREM sleep
state, the processor checks the record of transient events to determine whether the patient’s
sleep in the current epoch has been interrupted by such events, at an interruption checking step
202. If the current epoch is uninterrupted, it is classified as normal sleep. If one or more
transient events interrupted the current epoch, however, processor 32 notes that the quality of
sleep during this epoch was disturbed. This information may be used in diagnosing certain
pathological conditions affecting the quality of sleep of patient 22.

Figs. 14A-14C are schematic plots showing the results of sleep staging performed by
processor 32, in accordance with an embodiment of the present invention. Fig. 14A shows the
results of a computation of complexity of the respiration signal received from sensor 26, as
determined at step 194 (Fig. 13) and described above. Fig. 14B shows a hypnogram, generated
automatically by processor 32 using the method of Fig. 13, and based on the complexity signal
shown in Fig. 14A, along with other respiratory and ECG data. The computer-generated
hypnogram is compared with a hypnogram generated manually by an expert human scorer,
which is shown in Fig. 14C.

In this embodiment, the LF/HF ratio (step 196) was not computed, and the processor
was thus unable to distinguish between different stages of NREM sleep. Therefore, Fig. 14B
shows only stages 0 (wakefulness), 2 (representing all NREM sleep stages) and 5 (REM
sleep). With this reservation, there is still a good correlation between the sleep stages derived
automatically, as shown in Fig. 14B, and the manual scoring results shown in Fig. 14C. As
noted above, this result was achieved based on thoracic measurements only, without the use of

EEG or EOG signals.
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In another embodiment of the present invention, processor 32 uses the processed
signals described above in a two-phase process of automatic sleep staging. In the first phase,
the processor performs macro-analysis, to classify each epoch as wake, light sleep, deep sleep
or REM using a Continuous Hidden Markov Model (CHMM) classifier. In the second phase,
the processor performs micro-analysis in order to fine-tune the sleep stages.

Fig. 15 is a state diagram showing a HMM used in classifying patient sleep stages, in
accordance with an embodiment of the present invention. The model includes a wake state
220, a light sleep state 222, a deep sleep state 224, and a REM state 226. Each state is
connected to every other state by a positive transition coefficient ay, so that the state transition

probability matrix is given by:

a1 a2 a3 a4
a2] a2 a3 a4 (13)
431 a32 a33 az4
441 42 43 44

Every state j has a respective GMM probability density function b; for determining the

likelihood that a given feature vector yy, is associated with that state:

M
k=1

wherein  the  mixture  weights ¢jy  satisfy the  stochastic  constraint

M
z Cjk =1, Cjk 2 0, j=1,2,3,4,1<k<M. For convenience, we denote the HMM as

k=1
A=(4,B,7), wherein B={b;(y,)} is the observation probability distribution, and 7 = {=}

is the initial state vector, i.e., the set of probabilities of being initially in each state i.

The unknown parameters of Ap for each population p are determined based on the

training data (feature matrices) that have been gathered from members of each population,

31



10

15

20

25

30

WO 2006/054306 PCT/IL2005/001233

resulting in {lp }ij:

1 models. The model order M for each state is also defined in the training
phase. The model parameters may be estimated, for example, using the Baum-Welch
algorithm, as described by Rabiner in “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proceedings of the IEEE T7:2 (1989), pages 257-286,
which is incorporated herein by reference.

The feature matrix used in training the HMM (and subsequently in classifying sleep
stages of patient 22) may include any of the features described above, as well as other features

derived from monitoring the patient during sleep. In an exemplary embodiment, the feature

matrix Y = [yl,...,y N] comprises successive vectors of the following features:

e Averaged fused movement events

e Averaged NREM periodic respiration events

o Averaged REM periodic respiration events

e Averaged NREM periodic desaturation events

e Averaged REM periodic desaturation events

e Averaged complexity ratio of respiration

e Averaged complexity ratio of heart rate

e Averaged respiration decoupling sequence

e Averaged LF/HF ratio sequence

Fig. 16 is a flow chart that schematically illustrates a method for automated sleep
staging using the HMM of Fig. 15, in accordance with an embodiment of the present
invention. Once the HMM has been suitably trained for each population of interest, processor

32 collects signals from patient 22, and processes the signals to produce a sequence of feature
vectors, {yl’z}nN=1= at a vector collection step 230. The patient is assigned to one of the

predefined population groups, based either on a priori information or Bayesian classification,

as described above, at a patient classification step 232. Processor 32 then compares the feature

vector sequence to the HMM Ap of the assigned population group in order to choose the

sequence of sleep states that best fits the observed sequence of feature vectors, at a fitting step
234. Any suitable algorithm known in the art may be used at step 234, such as the well-known
Viterbi algorithm. The result of this step is a hypnogram, similar to that shown above in Fig.
14B.
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The hypnogram derived at step 234 includes nominal points of sleep onset, generally at

transitions from state 220 (wake) to state 222 (light sleep). Processor 32 may next perform

micro-analysis in order to more accurately identify the point of sleep onset, at a hypnogram

refinement step 236. This step may use, for example, detailed analysis of the respiration signal

in the following manner:

1.

Processor 32 finds the first respiration central event in the period immediately
preceding the nominal point of sleep onset. The “immediately preceding” period may
typically be taken to be approximately 5 min long. A “central event” refers to an event
related to 100% of flow and effort reduction, which is typically detected upon
occurrence of simultaneous flow reduction in the flow and effort respiration channels if
the reduction in the respiration volume is greater than 100% and there is no respiration
within the boundaries of the suspected event.

When such a respiration event is found during a given epoch in the allotted period, the
processor identifies the next epoch as sleep onset and scores this next epoch as stage 1
(light sleep).

The processor scores the next epoch after sleep onset as stage 3 (deep sleep).

Processor 32 may next use arousal and/or movement signals, such as the heart rate-

derived signals and/or respiration-derived signals described above, in order to more accurately

identify wake states in the hypnogram, at an arousal identification step 238. Some of the rules

applied by the processor at this step may depend on changes in certain feature vectors. For this

purpose, the percentage of change D between successive feature vectors x and y may be

defined as follows:

D(x,y):%.loo (15)

wherein (a,b) denotes the correlation coefficient of vectors a and b. The respiratory

complexity feature vectors may be defined, for example, as
mean RRV
mean peak to peak amplitude |

.

In an exemplary embodiment, processor 32 applies the following rules at step 238:
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1. If the respiration signal is indicative of an arousal lasting more than 50% of an epoch,
processor 32 scores the epoch as wake stage.

2. If the respiration or heart rate complexity feature vectors change by more than a

* threshold percentage over at least a certain time period before and after an arousal
event, processor 32 scores the epochs following the arousal as wake stage. In an
exemplary embodiment, the threshold percentage may be set to 10%, and the minimum
time period during which the change must take place is one 30 sec epoch. When the
complexity feature vectors subsequently change again by at least the threshold
percentage, the processor determines that the wake stage has ended.

3. If the change in the complexity feature vectors during the time period before and after
an arousal is less than the threshold percentage, processor 32 scores the epoch
following the arousal as stage 1 sleep, and then scores the next epoch as either REM or
stage 3 sleep, depending upon the stage of sleep prior to the arousal.

Although the embodiments described above rely only on measurements made using
certain sensors, particularly on the patient’s thorax and other parts of the lower body, the
principles of the present invention may similarly be applied to measurements of heart rate,
respiration and/or oxygen saturation using sensors of other types and in other locations. The
measurements and signal processing techniques taught by the present invention may also be
combined with collection and processing of other physiological signals, including EEG and
EOG. It will thus be appreciated that the embodiments described above are cited by way of
example, and that the present invention is not limited to what has been particularly shown and
described hereinabove. Rather, the scope of the present invention includes both combinations
and subcombinations of the various features described hereinabove, as well as variations and
modifications thereof which would occur to persons skilled in the art upon reading the

foregoing description and which are not disclosed in the prior art.
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CLAIMS

1. A computer-implemented method for diagnosis of a sleep-related condition of a
patient, the method comprising:

receiving physiological signals from sensors coupled to a lower body of the patient;
and

analyzing the physiological signals, independently of any electroencephalogram (EEG)
or electro-oculogram (EOQG) signals, in order to identify sleep stages of the patient.

2. The method according to claim 1, wherein analyzing the physiological signals

comprises detecting motion of the patient based on at least one of the physiological signals.

3. The method according to claim 2, wherein the at least one of the physiological signals
comprises at least one of an electrocardiogram (ECG) signal, a respiration signal, a heart rate

signal, and an oxygen saturation signal.

4. The method according to claim 2, wherein detecting the motion comprises:

measuring an energy of the at least one of the physiological signals in a selected
frequency band as a function of time;

finding a respective characteristic of the energy in each of a plurality of time segments;
and

determining the patient to have moved during one or more of the time segments

responsively to the respective variance.

5. The method according to claim 4, wherein finding the respective characteristic

comprises finding a respective variance of each of the time segments.

6. The method according to claim 4, wherein finding the respective characteristic
comprises performing an adaptive segmentation in order to identify the time segments such
that the energy of the at least one of the signals is quasi-stationary during each of the time

segments.

7. The method according to claim 2, wherein detecting the motion comprises identifying a

desaturation event caused by the motion in the oxygen saturation signal.

8. The method according to claim 2, wherein analyzing the physiological signals
comprises distinguishing, responsively to detecting the motion, between a waking stage and a

REM sleep stage.
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9. The method according to claim 2, wherein detecting the motion comprises detecting
two or more motion events within a time frame of a given length, and combining the two or

more motion events into a single fused motion event.

10.  The method according to claim 9, wherein detecting the two or more motion events
comprises identifying a first motion event responsively to one of the physiological signals, and
a second motion event responsively to another of the physiological signals, wherein the first
and second motion events overlap in time, and wherein combining the two or more motion

events comprises fusing the first and second motion events.

11.  The method according to claim 9, wherein detecting the two or more motion events
comprises identifying first and second motion events occurring in succession and separated in
time by no more than a predetermined duration, and wherein combining the two or more

motion events comprises fusing the first and second motion events.

12. The method according to claim 2, wherein detecting the motion comprises determining

an average measure of motion in each of a succession of uniform time epochs.

13.  The method according to claim 1, wherein analyzing the physiological signals
comprises:
performing an adaptive segmentation of at least one of the signals so as to identify time
segments in which a characteristic of the at least one of the signals is quasi-stationary; and
based on the adaptive segmentation, identifying transient events during which the

characteristic of the at least one of the signals is not quasi-stationary.

14.  The method according to claim 13, wherein analyzing the physiological signals
comprises determining at least one of the sleep stages to have been disturbed by occurrence of

the transient events during the at least one of the sleep stages.

15. The method according to claim 1, wherein analyzing the physiological signals

comprises detecting an arousal to a wake stage.

16.  The method according to claim 15, wherein receiving the physiological signals
comprises determining a heart rate of the patient, and wherein detecting the arousal comprises

identifying the arousal responsively to a change in the heart rate over time.

17.  The method according to claim 15, wherein analyzing the physiological signals

comprises extracting complexity features from the physiological signals, and wherein detecting
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the arousal comprises identifying the arousal responsively to a change in the complexity

features over time.

18.  The method according to any of claims 1-17, wherein receiving the physiological

signals comprises receiving an electrocardiogram (ECG) signal.

19.  The method according to claim 18, wherein analyzing the physiological signals
comprises measuring a variability of a heart rate of the patient responsively to the ECG signal,

and identifying at least one of the sleep stages based on the variability.

20.  The method according to claim 19, wherein identifying the at least one of the sleep
stages comprises computing a variance associated with the variability of the heart rate, and
finding, responsively to the variance, a period during which the heart rate was decoupled from

a respiratory function of the patient.

21.  The method according to claim 20, wherein identifying the period comprises

classifying the period as a REM sleep period.

22.  The method according to claim 19, wherein identifying the at least one of the sleep
stages comprises measuring first and second energies respectively contained in first and second
frequency bands of the variability of the heart rate during a selected epoch, and classifying the

sleep stages responsively to a function of the first and second energies.

23.  The method according to claim 22, wherein the function comprises a ratio of the first

and second energies.

24,  The method according to claim 22, wherein the first and second frequency bands
respectively comprise low and high frequency bands, and wherein classifying the sleep stages

comprises distinguishing between light and deep sleep stages based on the function.

25.  The method according to claim 18, wherein receiving the physiological signals
comprises receiving a respiration signal, and wherein analyzing the physiological signals
comprises analyzing the respiration signal together with the ECG signal in order to identify the

sleep stages.

26.  The method according to claim 18, and comprising receiving a respiration signal from
an airway of the patient, wherein analyzing the physiological signals comprises analyzing the

respiration signal together with the ECG signal in order to identify the sleep stages.
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27.  The method according to any of claims 1-17, wherein receiving the physiological

signals comprises receiving a respiration signal.

28.  The method according to claim 27, wherein analyzing the physiological signals
comprises evaluating a complexity of the respiration signal during a selected epoch, and

identifying at least one of the sleep stages responsively to the complexity.

29.  The method according to claim 28, wherein evaluating the complexity comprises
quantizing and compressing the respiration signal, and measuring the complexity based on an

efficiency of compression of the quantized respiration signal.

30.  The method according to claim 28, wherein identifying the at least one of the sleep
states comprises determining the patient to be in NREM sleep if the complexity is below a

predetermined threshold.

31.  The method according to claim 27, wherein analyzing the physiological signals
comprises identifying a periodic respiration event, which comprises a sequence of individual
respiration events that are separated by time gaps whose respective durations are within

predetermined limits.

32. The method according to claim 27, wherein analyzing the physiological signals
comprises detecting a respiration event in the respiration signal, and identifying an onset of

sleep responsively to the respiration event.

33.  The method according to any of claims 1-17, wherein analyzing the physiological
signals comprises constructing a hidden Markov model (HMM) having model states
corresponding to the sleep stages, and identifying a state sequence in the model that accords

with the physiological signals.

34.  The method according to claim 33, wherein constructing the HMM comprises
associating the patient with a population, and training the HMM using data gathered from

members of the population.

35.  The method according to any of claims 1-17, wherein receiving the physiological
signals comprises collecting the physiological signals at a bedside of the patient, and wherein
analyzing the physiological signals comprises transmitting the physiological signals over a

communication network for processing by a diagnostic processor remote from the bedside.
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36. The method according to any of claims 1-17, wherein receiving the physiological
signals comprises collecting the physiological signals from a Holter monitor coupled to the

patient.

37.  The method according to any of claims 1-17, wherein receiving the physiological
signals comprises collecting the physiological signals from a device implanted in the ‘body of

the patient.

38. A computer-implemented method for diagnosis of a sleep-related condition of a
patient, the method comprising:

receiving at least one of an electrocardiogram (ECG) signal and a respiration signal
from a sensor coupled to the patient during sleep;

measuring an energy of the at least one of the ECG and respiration signals in a selected
frequency band as a function of time;

finding a respective characteristic of the energy in each of a plurality of time segments;
and

determining the patient to have moved during one or more of the time segments

responsively to the respective characteristic.

39.  The method according to claim 38, wherein finding the respective characteristic

comprises finding a respective variance of the energy.

40.  The method according to claim 38 or 39, and comprising identifying a sleep stage of
the patient during the one or more of the time segments responsively to determining the patient

to have moved.

41.  The method according to claim 40, wherein identifying the sleep stage comprises

distinguishing a REM sleep stage from a waking stage.

42.  The method according to claim 40, and comprising receiving an electroencephalogram
(EEG) signal from the patient, wherein identifying the sleep stage comprises processing the

EEG signal together with the at least one of the ECG and respiration signals.

43. A computer-implemented method for diagnosis of a sleep-related condition of a
patient, the method comprising:
receiving an electrocardiogram (ECG) signal from a sensor coupled to the patient

during sleep;
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measuring a variability of a heart rate of the patient responsively to the ECG signal;
computing a characteristic of the variability of the heart rate; and
finding, responsively to the characteristic, a period during which the heart rate was

decoupled from a respiratory function of the patient.

44,  The method according to claim 43, wherein computing the characteristic comprises

determining a variance associated with the variability of the heart rate.

45.  The method according to claim 43, and comprising identifying a sleep stage of the

patient during the period based on decoupling of the heart rate from the respiratory function.

46.  The method according to claim 45, wherein identifying the sleep stage comprises

classifying the period as a REM sleep period.

47.  The method according to any of claims 43-46, and comprising receiving an
electroencephalogram (EEG) signal from the patient, wherein identifying the sleep stage
comprises processing the EEG signal together with the ECG signal.

48. A computer-implemented method for diagnosis of a sleep-related condition of a
patient, the method comprising:

receiving a signal from a sensor coupled to the patient during sleep, wherein the signal
is indicative of at least one of a heart rate and respiration activity of the patient;

evaluating a complexity of the signal during a selected time period; and

identifying a sleep stage of the patient responsively to the complexity.

49.  The method according to claim 48, wherein evaluating the complexity comprises
quantizing and compressing the signal, and measuring the complexity based on an efficiency

of compression of the quantized signal.

50.  The method according to claim 48, wherein evaluating the complexity comprises
computing a variability of the signal, and extracting a variance of the variability as a measure

of the complexity.

51.  The method according to any of claims 48-50, wherein evaluating the complexity
comprises determining respective values of a set of complexity features in each of a succession
of time segments, and wherein identifying the sleep stage comprises constructing a complexity
feature matrix (CFM), which comprises a sequence of feature vectors comprising the

respective values of the complexity features in the succession of time segments, and

40



10

15

20

25

WO 2006/054306 PCT/IL2005/001233

processing the CFM in order to classify the complexity of the complexity features in each of

the time segments.

52. The method according to claim 51, wherein processing the CFM comprises assigning
the patient to a population group, and processing the feature vectors using a probabilistic

model of the population group.

53.  The method according to claim 52, wherein the probabilistic model comprises a

Gaussian mixture model.

54,  The method according to claim 51, wherein processing the CFM comprises
determining, responsively to the complexity of the complexity features, an average measure of

the complexity in each of a succession of uniform epochs.

55.  The method according to any of claims 48-50, wherein identifying the sleep stage
comprises determining the patient to be in NREM sleep if the complexity is below a

predetermined threshold.

56. The method according to any of claims 48-50, and comprising receiving an
electroencephalogram (EEG) signal from the patient, wherein identifying the sleep stage

comprises processing the EEG signal together with the signal received from the sensor.

57. A computer-implemented method for diagnosis of a sleep-related condition of a
patient, the method comprising:

receiving a signal that is indicative of breathing activity from a sensor coupled to the
patient during sleep;

processing the signal so as to detect individual events that are indicative of disturbance
of the breathing;

identifying a periodic event, which comprises a sequence of the individual events that
are separated by time gaps whose respective durations are within predetermined limits; and

classifying a sleep stage of the patient responsively to the complexity.

58.  The method according to claim 57, wherein the signal comprises at least one of a

respiration signal and an oxygen saturation signal.

59.  The method according to claim 57, wherein identifying the periodic event comprises

determining that the event was associated with Cheyne-Stokes breathing.
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60.  The method according to any of claims 57-59, wherein classifying the sleep stage
comprises analyzing the periodic event so as to determine whether the periodic event was

associated with REM or non-REM sleep.

61.  The method according to claim 60, wherein analyzing the periodic event comprises
associating the event with REM sleep responsively to at least one of a duration and a symmetry

of the event.

62.  Apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
comprising:

one or more sensors, coupled to a lower body of the patient, which are adapted to
receive physiological signals; and

a diagnostic processor, which is coupled to receive and process the physiological
signals, independently of any electroencephalogram (EEG) or electro-oculogram (EOG)

signals, in order to identify sleep stages of the patient.

63.  The apparatus according to claim 62, wherein the diagnostic processor is adapted to

detect motion of the patient based on at least one of the physiological signals.

64.  The apparatus according to claim 63, wherein the at least one of the physiological
signals comprises at least one of an electrocardiogram (ECG) signal, a respiration signal, a

heart rate signal, and an oxygen saturation signal.

65.  The apparatus according to claim 63, wherein the diagnostic processor is adapted to
measure an energy of the at least one of the physiological signals in a selected frequency band
as a function of time, to find a respective characteristic of the energy in each of a plurality of
time segments, and to determine the patient to have moved during one or more of the time

segments responsively to the respective variance.

66.  The apparatus according to claim 65, wherein the respective characteristic comprises a

respective variance of each of the time segments.

67.  The apparatus according to claim 65, wherein the diagnostic processor is operative to
perform an adaptive segmentation in order to identify the time segments such that the energy

of the at least one of the signals is quasi-stationary during each of the time segments.
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68.  The apparatus according to claim 63, wherein the diagnostic processor is adapted to
detect the motion by identifying a desaturation event caused by the motion in the oxygen

saturation signal.

69.  The apparatus according to claim 63, wherein the diagnostic processor is adapted to
distinguish, responsively to detecting the motion, between a waking stage and a REM sleep

stage.

70.  The apparatus according to claim 63, wherein the diagnostic processor is adapted to
detect two or more motion events within a time frame of a given length, and to combine the

two or more motion events into a single fused motion event.

71.  The apparatus according to claim 70, wherein the diagnostic processor is adapted to
identify a first motion event responsively to one of the physiological signals, and a second
motion event responsively to another of the physiological signals, wherein the first and second
motion events overlap in time, and to combine the first and second motion events into a single

fused event.

72.  The apparatus according to claim 70, wherein the diagnostic processor is adapted to
identify first and second motion events occurring in succession and separated in time by no
more than a predetermined duration, and to combine the first and second motion events into a

single fused event.

73.  The apparatus according to claim 63, wherein the diagnostic processor is adapted to

determine an average measure of motion in each of a succession of uniform time epochs.

74.  The apparatus according to claim 62, wherein the diagnostic processor is adapted to
perform an adaptive segmentation of at least one of the signals so as to identify time segments
in which a characteristic of the at least one of the signals is quasi-stationary, and based on the
adaptive segmentation, to identify transient events during which the characteristic of the at

least one of the signals is not quasi-stationary.

75.  The apparatus according to claim 74, wherein the diagnostic processor is adapted to
determine at least one of the sleep stages to have been disturbed by occurrence of the transient

events during the at least one of the sleep stages.

76.  The apparatus according to claim 62, wherein the diagnostic processor is adapted to

analyze the physiological signals so as to detect an arousal to a wake stage.
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77.  The apparatus according to claim 77, wherein the physiological signals are indicative
of a heart rate of the patient, and wherein the diagnostic processor is adapted to identify the

arousal responsively to a change in the heart rate over time.

78.  The apparatus according to claim 77, wherein the diagnostic processor is adapted to
extract complexity features from the physiological signals, and to identify the arousal

responsively to a change in the complexity features over time.

79.  The apparatus according to any of claims 62-79, wherein the physiological signals

comprise an electrocardiogram (ECG) signal.

80.  The apparatus according to claim 79, wherein the diagnostic processor is adapted to
measure a variability of a heart rate of the patient responsively to the ECG signal, and to

identify at least one of the sleep stages based on the variability.

81.  The apparatus according to claim 80, wherein the diagnostic processor is adapted to
compute a variance associated with the variability of the heart rate, and to find, responsively to
the variance, a period during which the heart rate was decoupled from a respiratory function of

the patient.

82.  The apparatus according to claim 81, wherein the diagnostic processor is adapted to
classify the period as a REM sleep period responsively to decoupling of the heart rate from the
respiratory function.

83.  The apparatus according to claim 80, wherein the diagnostic processor is adapted to
measure first and second energies respectively contained in first and second frequency bands
of the variability of the heart rate during a selected epoch, and to classify the sleep stages

responsively to a function of the first and second energies.

84.  The apparatus according to claim 83, wherein the function comprises a ratio of the first

and second energies.

85.  The apparatus according to claim 83, wherein the first and second frequency bands
respectively comprise low and high frequency bands, and wherein the diagnostic processor is

adapted to distinguish between light and deep sleep stages based on the function.

86.  The apparatus according to claim 79, wherein the physiological signals comprise a
respiration signal, and wherein the diagnostic processor is adapted to analyze the respiration

signal together with the ECG signal in order to identify the sleep stages.
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87.  The apparatus according to claim 79, wherein the diagnostic processor is coupled to
receive a respiration signal from an airway sensor in an airway of the patient, and wherein the
diagnostic processor is adapted to analyze the respiration signal together with the ECG signal

in order to identify the sleep stages.

88.  The apparatus according to any of claims 62-79, wherein the physiological signals

comprise a respiration signal.

89.  The apparatus according to claim 88, wherein the diagnostic processor is adapted to
evaluate a complexity of the respiration signal during a selected epoch, and to identify at least

one of the sleep stages responsively to the complexity.

90.  The apparatus according to claim 89, wherein the diagnostic processor is adapted to
quantize and compress the respiration signal, and to measure the complexity based on an

efficiency of compression of the quantized respiration signal.

91.  The apparatus according to claim 89, wherein the diagnostic processor is adapted to
determine the patient to be in NREM sleep if the complexity is below a predetermined
threshold.

92.  The apparatus according to claim 88, wherein the diagnostic processor is adapted to
analyze the respiration signal so as to identify a periodic respiration event, which comprises a
sequence of individual respiration events that are separated by time gaps whose respective

durations are within predetermined limits.

93.  The apparatus according to claim 88, wherein the diagnostic processor is adapted to
detect a respiration event in the respiration signal, and to identify an onset of sleep

responsively to the respiration event.

94.  The apparatus according to any of claims 62-79, wherein the diagnostic processor is
adapted to process the physiological signals using a hidden Markov model (HMM) having
model states corresponding to the sleep stages, and to identify the sleep stages by finding a

state sequence in the model that accords with the physiological signals.

95.  The apparatus according to claim 94, wherein the patient is associated with a
population, and wherein the HMM is trained using data gathered from members of the

population.
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96.  The apparatus according to any of claims 62-79, and comprising a console, which is
coupled to collect the physiological signals at a bedside of the patient, and to transmit the
physiological signals over a communication network for processing by the diagnostic

processor at a location remote from the bedside.

97.  The apparatus according to any of claims 62-79, wherein the diagnostic processor is

coupled to receive the physiological signals from a Holter monitor coupled to the patient.

98.  The apparatus according to any of claims 62-79, wherein the diagnostic processor is

coupled to receive the physiological signals from a device implanted in the body of the patient.

99.  Apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
comprising:

a sensor, which is adapted to be coupled to the patient during sleep so as to receive
from the patient at least one of an electrocardiogram (ECG) signal and a respiration signal; and

a diagnostic processor, which is coupled to measure an energy of the at least one of the
ECG and respiration signals in a selected frequency band as a function of time, to find a
respective characteristic of the energy in each of a plurality of time segments, and to determine
the patient to have moved during one or more of the time segments responsively to the

respective characteristic.

100. The apparatus according to claim 100, wherein the characteristic comprises a

respective variance of the energy in each of the plurality of time segments.

101. The apparatus according to claim 100 or 101, wherein the diagnostic processor is
adapted to identify a sleep stage of the patient during the one or more of the time segments

responsively to determining the patient to have moved.

102. The apparatus according to claim 102, wherein the diagnostic processor is adapted to

distinguish a REM sleep stage from a waking stage.

103. The apparatus according to claim 102, wherein the diagnostic processor is coupled to
receive an electroencephalogram (EEG) signal from the patient, and to process the EEG signal

together with the at least one of the ECG and respiration signals.

104. Apparatus for diagnosis of a sleep-related condition of a patient, the apparatus

comprising:
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one or more electrodes, which are adapted to receive an electrocardiogram (ECG)
signal from the patient during sleep; and
a diagnostic processor, which is coupled to measure a variability of a heart rate of the
patient responsively to the ECG signal, to compute a characteristic of the variability of the
heart rate, and to find, responsively to the characteristic, a period during which the heart rate

was decoupled from a respiratory function of the patient.

105. The apparatus according to claim 104, wherein the characteristic comprises a

respective variance associated with the variability of the heart rate.

106. The apparatus according to claim 104, wherein the diagnostic processor is adapted to
identify a sleep stage of the patient during the period based on decoupling of the heart rate
from the respiratory function.

107. The apparatus according to claim 106, wherein the processor is adapted to classify the

period as a REM sleep period based on the decoupling.

108. The apparatus according to any of claims 104-107, wherein the diagnostic processor is
coupled to receive an electroencephalogram (EEG) signal from the patient, and to process the

EEG signal together with the ECG signal.

109. Apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
comprising:

a respiration sensor, which is adapted to receive a signal from the patient during sleep,
wherein the signal is indicative of at least one of a heart rate and respiration activity of the
patient; and

a diagnostic processor, which is coupled to evaluate a complexity of the signal during a

selected time period, and to identify a sleep stage of the patient responsively to the complexity.

110. The apparatus according to claim 109, wherein the diagnostic processor is adapted to
quantize and compress the signal, and to measure the complexity based on an efficiency of

compression of the quantized signal.

111. The apparatus according to claim 109, wherein the diagnostic processor is adapted to
compute a variability of the signal, and to extract a variance of the variability as a measure of

the complexity.
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112.  The apparatus according to any of claims 109-111, wherein the diagnostic processor is
adapted to determine respective values of a set of complexity features in each of a succession
of time segments, and to construct a complexity feature matrix (CFM), which comprises a
sequence of feature vectors comprising the respective values of the complexity features in the
succession of time segments, and to process the CFM in order to classify the complexity of the

complexity features in each of the time segments.

113. The apparatus according to claim 112, wherein the patient is assigned to a population
group, and wherein the diagnostic processor is adapted to process the feature vectors using a

probabilistic model of the population group.

114. The apparatus according to claim 113, wherein the probabilistic model comprises a

Gaussian mixture model.

115. The apparatus according to claim 112, wherein the diagnostic processor is adapted to
determine, responsively to the complexity of the complexity features, an average measure of

the complexity in each of a succession of uniform epochs.

116. The apparatus according to any of claims 109-111, wherein the diagnostic processor is
adapted to determine the patient to be in NREM sleep if the complexity is below a
predetermined threshold.

117. The apparatus according to any of claims 109-111, wherein the diagnostic processor is
coupled to receive an electroencephalogram (EEG) signal from the patient, and to process the

EEG signal together with the signal received from the sensor.

118. Apparatus for diagnosis of a sleep-related condition of a patient, the apparatus
comprising:

a sensor, which is adapted to be coupled to the patient during sleep so as to receive
from the patient a signal that is indicative of breathing activity; and

a diagnostic processor, which is coupled to process the signal so as to detect individual
events that are indicative of disturbance of the breathing, to identify a periodic event, which
comprises a sequence of the individual events that are separated by time gaps whose respective
durations are within predetermined limits, and to classify a sleep stage of the patient

responsively to the complexity.
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119. The apparatus according to claim 118, wherein the signal comprises at least one of a

respiration signal and an oxygen saturation signal.

120. The apparatus according to claim 118, wherein the diagnostic processor is adapted to

determine that the periodic event was associated with Cheyne-Stokes breathing.

121.  The apparatus according to any of claims 118-120, wherein the diagnostic processor is
adapted to analyze the periodic event so as to determine whether the periodic event was

associated with REM or non-REM sleep.

122. The apparatus according to claim 121, wherein the diagnostic processor is adapted to
associate the event with REM sleep responsively to at least one of a duration and a symmetry

of the event.

123. A computer software product for diagnosis of a sleep-related condition of a patient, the
product comprising a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive physiological
signals from one or more sensors coupled to a lower body of the patient during sleep, and to
process the physiological signals, independently of any electroencephalogram (EEG) or

electro-oculogram (EOG) signals, in order to identify sleep stages of the patient.

124. A computer software product for diagnosis of a sleep-related condition of a patient, the
product comprising a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive from the patient at
least one of an electrocardiogram (ECG) signal and a respiration signal during sleep, and to
measure an energy of the at least one of the ECG and respiration signals in a selected
frequency band as a function of time, to find a respective variance of the energy in each of a
plurality of time segments, and to determine the patient to have moved during one or more of

the time segments responsively to the respective characteristic.

125. A computer software product for diagnosis of a sleep-related condition of a patient, the
product comprising a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive an
electrocardiogram (ECG) signal from the patient during sleep, and to measure a variability of a
heart rate of the patient responsively to the ECG signal, to compute a variance associated with
the variability of the heart rate, and to find, responsively to the characteristic, a period during
which the heart rate was decoupled from a respiratory function of the patient.
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126. A computer software product for diagnosis of a sleep-related condition of a patient, the
product comprising a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive a signal from the
patient during sleep, wherein the signal is indicative of at least one of a heart rate and
respiration activity of the patient, and to evaluate a complexity of the signal during a selected

time period, and to identify a sleep stage of the patient responsively to the complexity.

127. A computer software product for diagnosis of a sleep-related condition of a patient, the
product comprising a computer-readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the computer to receive from the patient a
signal that is indicative of breathing activity, and to process the signal so as to detect
individual events that are indicative of disturbance of the breathing, to identify a periodic
event, which comprises a sequence of the individual events that are separated by time gaps
whose respective durations are within predetermined limits, and to classify a sleep stage of the

patient responsively to the complexity.
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