PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07C 39/12, 43/23, 49/83, 49/84, C07D 311/20

(11) International Publication Number:

WO 98/39279

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number:

PCT/KR98/00039

A1

(22) International Filing Date:

2 March 1998 (02.03.98)

(30) Priority Data:

1997/7452

6 March 1997 (06.03.97)

KR

(71) Applicant (for all designated States except US): LG CHEM-ICAL LTD. [KR/KR]; 20, Yoido-dong, Yongdungpo-ku, Seoul 150-010 (KR).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): RHEE, Young, Ho [KR/KR]; LG Apt. #5-103, 381-42, Doryong-dong, Youseong-ku, Daejeon 305-340 (KR). KIM, Kyung, Ae [KR/KR]; LG Yeonrip #301, 388-11, Doryong-dong, Youseong-ku, Daejeon 305-340 (KR). LEE, Hyun, Ho [KR/KR]; LG Apt. #9-305, 381-42, Doryong-dong, Youseong-ku, Daejeon 305-340 (KR). CHOI, Jong, Kwon [KR/KR]; Lucky Hana Apt. #101-1101, Shinsung-dong, Youseong-ku, Daejeon 305-345 (KR). LEE, Sang, Hwa [KR/KR]; Eunhasoo Apt. #104-108, Doonsan-dong, Seo-ku, Daejeon 302-173 (KR).
- (74) Agents: CHOI, Kyu, Pal et al.; 824-20, Yeoksam-dong, Kangnam-ku, Seoul 135-080 (KR).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NOVEL 1,3-DIPHENYLPROPANE DERIVATIVES HAVING INHIBITORY ACTIVITY AGAINST TYROSINASE AND PROCESS FOR PREPARATION THEREOF

$$R_{5}$$
 R_{6}
 R_{1}
 R_{2}
 R_{2}
 OH
 OH

(57) Abstract

The present invention relates to a novel 1,3-diphenylpropane derivative having an inhibitory activity against tyrosinase represented by formula (I) and process for the preparation thereof: in which — represents double or single bond; R₁ represents hydrogen or C₁-C₁₀ alkyl; R2 represents C1-C5 alkyl or C1-C5 alkoxyalkyl, or R1 and R2 together represent a 5- to 6- membered heterocycle which can be substituted by C₁-C₅ alkyl and which contains oxygen as the hetero atom; R₃ represents hydrogen or C₁-C₇ alkyl; R₄ represents hydrogen, hydroxy, or oxo; and R₅ and R₆ independently of one another represent hydrogen or C₁-C₅ alkyl.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	\mathbf{UZ}	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
\mathbf{DE}	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

1

NOVEL 1,3-DIPHENYLPROPANE DERIVATIVES HAVING INHIBITORY ACTIVITY AGAINST TYROSINASE AND PROCESS FOR PREPARATION THEREOF

TECHNICAL FIELD

The present invention relates to a novel 1,3-diphenylpropane derivative having an inhibitory activity against tyrosinase represented by the following formula (I):

$$R_{5}$$
 R_{6}
 R_{2}
 R_{1}
 R_{2}
 OH
 OH
 OH
 OH

in which

= represents double or single bond,

R₁ represents hydrogen or C₁-C₁₀ alkyl,

R₂ represents C₁-C₅ alkyl or C₁-C₅ alkoxyalkyl, or

R₁ and R₂ together represent a 5 to 6 membered heterocycle which can be substituted by C₁-C₅ alkyl and which contains oxygen as the hetero atom,

R₃ represents hydrogen or C₁-C₇ alkyl,

R₄ represents hydrogen, hydroxy, or oxo, and

R₅ and R₆ independently of one another represent hydrogen or C₁-C₅ alkyl.

The present invention also relates to novel processes for preparation of the compound of formula (I) as defined above.

BACKGROUND ART

Melanin is prepared through the conversion of Tyrosine into DOPA,

Dopaquinone by the action of Tyrosinase located in the chromatophore then through the non-enzymatic oxidation. Melanin is distributed over the skin and has an important function to protect the body from various stimuli. However, it has been reported that excess production of melanin is closely related to melanoma and may also induce melanistic skin, freckles, etc. Accordingly, a variety of cosmetics and medicaments for the prevention of excess production of melanin are actively developed in these days.

As the preventive agent for the excess production of melanin, hydroquinone has been mainly used heretofore. This compound, however, also exhibits side effects such as degeneration or lethal mutation of melanin, damage of the cellular function, etc., and therefore the use of hydroguinone in cosmetics is now prohibited in Korea, Japan, etc.(see, J. Soc. Cosmet. Chem., 42, 361, 1991). In addition, arbutin, a sugar derivative of hydroquinone, was commercialized but to have been identified as having little whitening effect, and ascorbic acid, kojic acid, etc. have so poor product stability that they can only be restrictively used. While, extracts from licorice root, mori cortex radicis, etc. have been widely known to have a skin-whitening effect since ancient times. But, those extracts occasionally represent so poor effect according to the place of production that it is difficult to keep the quality of the product constant(see, Fragrance J., 6, 59, 1990). Carzinol F extracted from a paper mulberry tree(see, Chem. Parm, Bull., 34(5), 1968, 1986; Cosmetics & Toiletries, 101, 51, 1995) was recently commercialized due to its good inhibitory activity against tyrosinase. However, this substance also has the problem that it is difficult to keep the quality of the product constant because carzinol F is an extract too. Particularly, sufficient data on stimulating property and stability of carzinol F are not available and it has a demerit that it cannot be easily synthesized because of the prenylcatechol group included therein.

DISCLOSURE OF INVENTION

Thus, the present inventors have intensively studied to develop a novel compound having an excellent inhibitory acitivity against tyrosinase in a small quantity. Further, the desired compound should be easily synthesized from the starting material and be stable. During the study, the present inventors analyzed the effect and structure of various natural substances known to have a whitening effect. As a result, we have developed a novel 1,3-diphenyl-propane derivative of formula (I), which satisfies the purpose as mentioned above, and thus completed the present invention.

Therefore, it is an object of the present invention to provide a novel 1,3-diphenylpropane derivative represented by the following formula (I):

$$R_{5}$$
 R_{6}
 R_{2}
 R_{2}
 OH
 OH
 OH

in which

= represents double or single bond,

R₁ represents hydrogen or C₁-C₁₀ alkyl,

 R_2 represents C_1 - C_5 alkyl or C_1 - C_5 alkoxyalkyl, or

R₁ and R₂ together represent a 5 to 6 membered heterocycle which can be substituted by C₁-C₅ alkyl and which contains oxygen as the hetero atom,

R₃ represents hydrogen or C₁-C₇ alkyl,

R₄ represents hydrogen, hydroxy, or oxo, and

R₅ and R₆ independently of one another represent hydrogen or C₁-C₅ alkyl.

Among the foregoing definitions for the substituents of the compound of formula (I), the term "alkyl" defines straight or branched saturated

hydrocarbon radicals such as methyl, ethyl, n-propyl, isopropyl or several butyl isomers when it is used alone or in the composite form such as "alkyloxy" or "alkoxyalkyl".

It is another object of the present invention to provide novel processes for preparing the compound of formula (I).

BEST MODE FOR CARRYING OUT THE INVENTION

Among the novel compound of formula (I), as defined above, the preferred compounds include those wherein R₁ represents hydrogen, methyl or

ethyl, R_2 represents methyl, or R_1 and R_2 together represent , R_3 represents hydrogen or methyl, R_4 represents hydrogen or hydroxy, R_5 and R_6 independently of one another represent methyl.

Among the compound of formula (I), a compound represented by the following formula (Ia) wherein R_4 is hydroxy can be prepared conveniently by reducing a compound represented by the following formula (IV) in a solvent to a compound represented by the following formula (V) then by removing the protecting groups, as depicted in the following reaction scheme 1.

Reaction Scheme 1

in which

P₁, P₂ and P₃ are hydroxy protecting groups, that is

P₁ represents benzyl, methyl, ethyl, tetrahydropyranyl, methoxymethyl, methoxymethyl or p-methoxybenzyl,

P₂ represents benzyl, methyl or ethyl,

P₃ represents benzyl, tetrahydropyranyl, methoxymethyl, methoxyethoxy methyl or p-methoxybenzyl,

R₁ to R₃, R₅ and R₆ are defined as previously described.

The process described in the reaction scheme 1 above will be more specifically explained in the following.

In the reaction step for preparing the compound (V) by reducing the compound (IV), ethers such as diethylether, tetrahydrofuran(THF), etc. can be preferably used as the solvent and lithium aluminum hydride(LAH) can be preferably used as the reducing agent. It is desirable to carry out the reaction at temperatures ranging from -30 to 30℃. After the reduction is completed,

protecting groups included in the compound (V) are eliminated to produce the compound (Ia). The protecting groups may be readily removed by conventionally known processes depending on the protecting groups to be removed. The selection of an appropriate deprotection condition can be made by a person having ordinary skill in this art. Particularly, when the protecting group is benzyl, the compound (Ia) can be prepared by carrying out a hydrogenation reaction in ethylacetate or by refluxing in a solvent mixture of hydrochloric acid and acetic acid.

Reduction of the compound (IV) to the compound (V) may be commonly carried out according to the aforementioned processes. However, the compound (V) can also be prepared by reducing in advance the double bond of the compound (IV) through a hydrogenation(H₂, Pd-C) to obtain a ketone compound represented by the following formula (V') and then by converting the ketone group of the compound (V') to an alcohol group of the compound (V).

On the other hand, a compound represented by the following formula (Ib) wherein R₄ is oxo can be prepared by removing the protecting groups contained in the compound (V') instead of reducing the same. The compound (Ib) can also be reduced into the compound (Ia) in the presence of sodium borohydride or lithium aluminum hydride.

The processes as explained above are summarized in the reaction scheme 2 below.

Reaction Scheme 2

$$\begin{array}{c} P_1 \\ P_2 \\ (IV) \end{array}$$

$$\begin{array}{c} P_3 \\ P_2 \\ (IV) \end{array}$$

$$\begin{array}{c} P_1 \\ P_2 \\ (IV) \end{array}$$

$$\begin{array}{c} P_1 \\ P_2 \\ (V') \end{array}$$

$$\begin{array}{c} P_1 \\ P_2 \\ (V) \end{array}$$

$$\begin{array}{c} P_1 \\ P_2 \\ (V) \end{array}$$

$$\begin{array}{c} P_1 \\ P_2 \\ (V) \end{array}$$

in which

 P_1 , P_2 , P_3 , R_1 to R_3 , R_5 and R_6 are defined as previously described.

In the above reaction scheme 2, the reduction from the compound (IV) to the compound (V') is achieved by hydrogenating the double bond contained in the compound (IV) for 2 hours under normal temperature and pressure in a solvent such as ethylacetate. The ketone compound (V') is reduced to the alcohol compound (V) through a treatment by sodium borohydride or lithium aluminum hydride. The process for obtaining the compound (Ib) by carrying out a deprotection on the compound (V') is identical to that explained for the reaction scheme 1 above. Particularly, when the protecting group is benzyl, the compound (Ib) can be prepared from the compound (V') by hydrogenating (i) in a solvent of ethylacetate for 10 to 15 hours under normal temperature

and 2 to 4 atms, or (ii) in a solvent mixture of ethylacetate and a lower alcohol (methanol, ethanol, isopropanol, etc.) for 20 minutes to one hour under temperatures ranging from 35 to 55°C and normal pressure, or it is also possible to obtain the compound (Ib) directly from the compound (IV) by the hydrogenation under the condition (i) or (ii).

The compound (IV) used as a starting material in the reaction scheme 1 can be prepared by condensing a compound of formula (II) with a compound of formula (III) in a solvent in the presence of a base, as depicted in the following reaction scheme 3.

Reaction Scheme 3

$$R_5$$
 P_1
 P_2
 P_3
 P_2
 P_3

in which

P₁, P₂, P₃, R₂, R₅ and R₆ are defined as previously described.

In this reaction, it is preferable to use one or more selected from a group consisting of ethanol, tetrahydrofuran and dimethylformamide as the solvent, and to use one or more selected from a group consisting of sodium hydroxide, potassium hydroxide and sodium hydride as the base. The desired product is obtained by stirring the reactants for about 5 to 24 hours. When P₁ and P₂ are different from each other, the compound of formula (II) can readily be prepared from the existing compounds(see, Chem. Ber., 95, 1413, 1962; J. Med. Chem., 34, 2152, 1991).

Among the compounds of formula (Ia), the compound wherein R_1 and R_2 together form a heterocycle can be prepared according to the same procedure as explained above using a compound represented by the following formula (IIa)(see, J. Chem. Soc. Perkin Trans I, 1437, 1981) instead of the compound of formula (II).

$$R_{5}$$
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}

Finally, a compound represented by the following formula (Ic) wherein R₄ is hydrogen can be prepared, as depicted in the following reaction scheme 4, by dehydrating the compound (V) in a solvent in the presence of an acid to produce a compound represented by the following formula (VI) and then by reducing and deprotecting the compound (VI) thus produced.

Reaction Scheme 4

1) Reduction
$$R_5$$
 R_2 OH OH OH OH OH OH OH

in which

P₁ to P₃, R₁ to R₃, R₅ and R₆ are defined as previously described.

The process described in reaction scheme 4 will be specifically explained below.

The compound (V) is dehydrated in one or more solvents selected from a group consisting of benzene, toluene and xylene in the presence of one or more acids selected from a group consisting of sulfuric acid, phosphoric acid and p-toluenesulfonic acid to produce the compound (VI). This dehydration reaction is preferably carried out at temperatures ranging from 80 to $100\,^{\circ}\text{C}$. The desired compound (Ic) is obtained by reducing the compound (VI) through a hydrogenation reaction and then by removing the protecting groups. Process for removing the protecting groups is carried out according to the same procedure as reaction scheme 1.

Typical examples of the compound (I) prepared according to the processes as explained above are represented in the following Table 1.

Table 1.

COM. NO.	R_1	R ₂	R ₃	R ₄	R ₅	R ₆
1	-Н	-Me	-H	-OH	-Me	-Me
2	-Н	-Me	-Н	-H	-Me	-Me
3	-H	-Me	-Me	-OH	-Me	-Me
4	-Н	-Me	-Me	-H	-Me	-Me
5	-Me	-Me	-H	-ОН	-Me	-Me
6	-Me	-Me	-H	- H	-Me	-Me
7	-Et	-Me	- H	-ОН	-Me	-Me
8	× ×		-Н	-ОН	-Me	-Me
9	\		-Н	-Н	-Me	-Ме

Next, the present inventors have identified the inhibitory activity against tyrosinase of the compound (I) of the present invention according to the following procedure. That is, a sample is introduced into a microplate, to which are added a phosphate buffer solution(pH 6.8) and a L-tyrosine solution. Enzymatic reaction is started by the addition of a tyrosinase enzyme solution to the above mixture and then absorbance at 475nm was measured to calculate the inhibition(%) against tyrosinase(see, Experimental Example 1).

In addition, in order to determine the inhibitory activity of the compound (I) againt melanin biosynthesis, this compound is added to a culture media comprising B-16 melanoma cells and incubated. Then, the cells are

centrifuged to extract melanin and the amount of melanin produced is measured based on the absorbance(see, Experimental Example 2).

As a result, the compound of formula (I) according to the present invention is identified to have a superior or similar inhibitory effect against tyrosinase activity and melanin biosynthesis to that of the existing whitening substances. Therefore, it is possible to apply the compound of the present invention having such an effect to medicaments, non-medicinal supplies and cosmetics. The applying dosage of the compound (I) can be varied with the formulation type, purpose of use, etc.

The present invention will be more specifically explained by the following preparations, examples and experimental examples. However, it should be understood that the examples are intended to illustrate but not to in any manner limit the scope of the present invention.

Preparation 1

Synthesis of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6-trimethyl-phenyl)-propenone

$$BnO$$
 OBn
 OBn
 OBn
 OBn
 OBn
 OBn
 OBn
 OBn
 OBn

1.7g(4.54mmol) of 1-(2,5-dibenzyloxy-3,4,6-trimethyl-phenyl)-ethanone and 2.9g(9.08mmol) of 2,4-dibenzyloxy-benzaldehyde were dissolved in $32\text{m}\ell$ of a solvent mixture of ethanol and tetrahydrofuran(1/1, v/v), to which was slowly added dropwise $6\text{m}\ell$ of 50% aqueous sodium hydroxide solution. After the addition was completed, the reaction mixture was stirred for 16 hours at normal temperature. The solvent was removed by distillation under reduced

pressure and the resulting residue was diluted with 25ml of water, which was then neutralized to pH 7 with 10% aqueous HCl solution. This reaction solution was extracted with ethylacetate and then the solvent contained therein was removed by distillation under reduced pressure. The resulting mixture having a high viscosity was subjected to a silica gel column chromatography (eluent: n-hexane/ethylacetate=7/1, v/v) to obtain 1.8g(2.61mmol, Yield 58%) of the title compound.

Example 1

Synthesis of 4-[3-hydroxy-3-(2,5-dihydroxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

Step 1: Preparation of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6-trimet-hyl-phenyl)-propan-1-ol

Method 1

0.57g(0.83mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6-trimethyl-phenyl)-propenone prepared in Preparation 1 was dissolved in $5m\ell$ of dry tetrahydrofuran and 0.1g(2.52mmol) of lithium aluminum hydride(LAH) was added thereto little by little while stirring at -30°C. The reaction solution was stirred for one hour, $0.1m\ell$ of water, $0.1m\ell$ of 15% aqueous NaOH solution and $0.3m\ell$ of water were added to the solution in order and then the whole mixture was stirred for further 30 minutes. The resulting precipitate was filtered off and the filtrate was distilled to obtain a white solid, which was then purified by a silica gel column chromatography(eluent: n-hexane/ethylacetate=5/1, v/v) to obtain 0.56g(Yield~98%) of the title compound.

Method 2

0.15g(0.22mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6trimethyl-phenyl)-propenone prepared in Preparation 1 was dissolved in 4ml of To this solution was slowly added 5mg of 10% ethylacetate(EtOAc). palladium-carbon catalyst, which was reacted for 30minutes under pressurized hydrogen atmosphere(2atm). The reaction solution was diluted with 50ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to produce 0.17g of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6trimethyl-phenyl)-propanone. 0.17g(0.22mmol) of the compound thus produced dissolved in 2ml of methanol, 20mg(0.53mmol) of sodium boro was hydride(NaBH₄) was added thereto little by little at 0℃. The mixture was stirred for 10minutes at 0°C and then the solvent was eliminated by distillation under reduced pressure. The residue was diluted with 10ml of water. extracted with ethylacetate and dried over anhydrous sodium sulfate. The solvent was distilled under reduced pressure and the residue was subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=1/1, v/v) to obtain 0.1g (Yield 66%) of the title compound.

Step 2: Preparation of 4-[3-hydroxy-3-(2,5-dihydroxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

0.31g(0.45mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6-trimethyl-phenyl)-propan-1-ol was dissolved in 6ml of ethylacetate. To this solution was slowly added 10mg of 10% palladium-carbon catalyst, which was reacted for 12.5hours under pressurized hydrogen atmosphere(4atm). The

reaction solution was diluted with 50 ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 0.14g (Yield 100%) of the title compound.

Example 2

Synthesis of 4-[3-(2,5-dihydroxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

$$\bigcup_{OBn}^{OBn} \bigcup_{OBn}^{OH} \bigcup_{OBn}^{OBn} \bigcup_{OBn}^{OH} \bigcup_{OH}^{OH} \bigcup_{OH}^{OH$$

2.39g(3.46mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(2,5-dibenzyloxy-3,4,6trimethyl-phenyl)-propan-1-ol was diluted with 100ml of dry benzene and 30mg of p-toluenesulfonic acid was added thereto. The mixture was stirred for 4hours while refluxing to eliminate water. The solution thus produced was cooled down to room temperature and washed once(x1) with saturated aqueous sodium hydrogen carbonate solution. The washings was extracted with dichloromethane and the extract was combined with the original organic layer. Then, the combined mixture was dried, distilled under reduced pressure and subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate= 10/1, v/v) to obtain 2.1g(Yield 90%) of 4-[3-(2,5-dibenzyloxy-3,4,6-trimethylphenyl)-allyl]-1,3-dibenzyloxy-benzene. 2.1g(3.12mmol) of the compound thus obtained was diluted with 30ml of ethylacetate, to which was slowly added 45 mg of 10% palladium catalyst. The resulting solution was stirred for 72hours under hydrogen atmosphere of 60psi, diluted with 50ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure and subjected to a silical gel column chromatography(eluent: n-hexane/ethylacetate =1/1, v/v) to obtain 0.74g (Yield 79%) of the title compound.

Preparation 2

Synthesis of 3-(2,4-dibenzyloxy-phenyl)-1-(5-benzyloxy-2-methoxy-3,4,6-trimethyl-phenyl)-propenone

1-(5-benzyloxy-2-methoxy-3,4,6-trimethyl-phenyl)-0.23g(0.77mmol)of ethanone and 0.62g(1.94mmol) of 2,4-dibenzyloxybenzaldehyde were dissolved in 7ml of a solvent mixture of ethanol and tetrahydrofuran(1/1, v/v) and then 1.5ml of 50% aqueous sodium hydroxide solution was slowly added dropwise After the addition was completed, the mixture was stirred for thereto. 16hours at normal temperature. The solvent contained therein was removed, the residue was diluted with water and neutralized to pH 7 using 10% aqueous hydrochloric acid solution. This solution was extracted with ethylacetate and the solvent was removed by distillation under reduced pressure. The residue having a high viscosity was subjected to a silica gel column chromatography (eluent: n-hexane/ethylacetate=7/1, v/v) to obtain 0.30g(Yield 65%) of the title compound.

Example 3

Synthesis of 4-[3-hydroxy-3-(5-hydroxy-2-methoxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

290mg(0.48mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(5-benzyloxy-2-methoxy-3,4,6-trimethyl-phenyl)-propenone prepared in Preparation 2 was dissolved in 5ml of ethylacetate. To this solution was slowly added 15mg of 10% palladium-carbon catalyst, which was reacted for 12 hours under pressurized hydrogen atmosphere(4atm). The reaction solution was diluted with 100ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 160mg(0.48mmol, Yield 98%) of 3-(2,4-dihydroxy-phenyl)-1-(5-hydroxy-2-methoxy-3,4,6-trimethyl-phenyl)-propanone. 160 mg (0.48 mmol) of the compound thus obtained was dissolved in 2ml of diethylether and 160mg (4.21mmol) of lithium aluminum hydride was added thereto little by little at 0 $^{\circ}$ C. After stirring for one hour, $0.1\,\text{ml}$ of water, $0.1\,\text{ml}$ of 15% aqueous NaOH solution and 0.3 ml of water were added thereto in order and the mixture was stirred for further 30 minutes. The resulting precipitate was filtered off and the filtrate was distilled to obtain a white solid which was then subjected to a silical gel column chromatography(eluent: n-hexane/ ethylacetate=5/1, v/v) to obtain 158mg(Yield 98%) of the title compound.

Example 4
Synthesis of 4-[3-(2-methoxy-5-hydroxy-3,4,6-trimethyl-phenyl)-propyl]-ben-zene-1,3-diol

$$\bigcup_{OBn}^{OMe} \bigcup_{OBn}^{OMe} \bigcup_{OBn}^{OMe} \bigcup_{OH}^{OMe} \bigcup_{OH}^{OH}$$

 $550 \,\mathrm{mg}(0.92 \,\mathrm{mmol})$ of $3\text{-}(2,4\text{-}\mathrm{dibenzyloxy\text{-}phenyl})\text{-}1\text{-}(5\text{-}\mathrm{benzyloxy\text{-}2\text{-}met-}hoxy\text{-}3,4,6\text{-}\mathrm{trimethyl\text{-}phenyl})\text{-}propenone}$ was dissolved in $7\,\mathrm{ml}$ of ethylacetate. To this solution was slowly added $15\,\mathrm{mg}$ of 10% palladium-carbon catalyst, and reacted for 2 hours under hydrogen atmosphere of normal pressure(1atm). The reaction solution was diluted with $15\,\mathrm{ml}$ of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain $552\,\mathrm{mg}(\mathrm{Yield}\ 100\%)$ of

3-(2,4-dibenzyloxy-phenyl)-1-(2-methoxy-5-benzyloxy-3,4,6-trimethyl-phenyl)-propa 225mg(0.37mmol) of the compound thus obtained was reduced by none. NaBH₄ to an alcohol compound which was then diluted with 10mℓ of dry 30mg of p-toluenesulfonic acid was added thereto and the mixture was stirred for 4hours while refluxing. The reaction solution was cooled down to room temperature and then washed with saturated aqueous sodium hydrogen carbonate solution once(x1). The washings was extracted again with dichloromethane and the extract was combined with the original organic layer. Then, the combined mixture was dried, distilled under reduced pressure and subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate =10/1, v/v) to obtain 169 mg(0.29 mmol), Yield 78%) of 4-[3-(2-methoxy-5benzyloxy-3,4,6-trimethyl-phenyl)-allyl]-1,3-dibenzyloxy-benzene. 160 mg(0.27)mmol) of the compound thus obtained was diluted with 30ml of ethylacetate, to which was slowly added 45mg of 10% palladium catalyst. The resulting mixture was stirred for 48 hours under hydrogen atmosphere of 60psi, diluted with 10ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure and the residue was subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=1/1, v/v) to obtain 74mg(0.234 mmol, Yield 86%) of the title compound.

Preparation 3

Synthesis of 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-propenone

$$\begin{array}{c} \text{MeO} \\ \\ \text{OBn} \end{array} \begin{array}{c} \text{CHO} \\ \\ \text{OBn} \end{array} \begin{array}{c} \text{OBn} \\ \\ \text{OBn} \end{array}$$

1.22g(4.09mmol) of 1-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-ethanone and 2.8g(9mmol) of 2,4-dibenzyloxy-benzaldehyde were dissolved in

40 ml of a solvent mixture of ethanol and tetrahydrofuran(1/1, v/v), to which was slowly added dropwise 10 ml of 50% aqueous sodium hydroxide solution. After the addition was completed, the mixture was stirred for 16 hours at normal temperature. The solvent contained in the reaction solution was removed by distillation under reduced pressure, the resulting residue was diluted with 40 ml of water and then neutralized to pH 7 using 10% aqueous hydrochloric acid solution. This solution was extracted with ethylacetate and the solvent contained in the extract was removed by distillation under reduced pressure. The resulting mixture having a high viscosity was subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=7/1, v/v) to obtain 2.37g(Yield 97%) of the title compound.

Example 5

Synthesis of 4-[3-hydroxy-3-(2-hydroxy-5-methoxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

1.28g(0.21mmol)of 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-propenone prepared in Preparation 3 was dissolved in $6m\ell$ of ethylacetate. To this solution was slowly added 45 mg of 10% palladium-carbon catalyst, which was reacted for 12 hours under pressurized hydrogen atmosphere(4atm). The reaction solution was diluted with 50ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 660mg(Yield 95%) of 3-(2,4-dihydroxy-phenyl)-1-(2-hydroxy-5-methoxy-3,4,6-trimethyl-phenyl)-propanone. 660mg(2mmol) of the compound thus obtained was dissolved in $12\,\text{m}\ell$ of diethylether, $750\,\text{mg}$ of lithium aluminum hydride was added thereto little by little at 0°C and then the mixture was stirred for one hour. After 1ml of water, 1ml of 15% aqueous NaOH

solution and 3 ml of water were added to the reaction solution in order, the resulting solution was stirred for further 30 minutes. The precipitate produced was filtered off and the filtrate was distilled to obtain a white solid which was then subjected to a silica gel column chromatography(eluent: n-hexane/ ethylacetate=5/1, v/v) to obtain 524 mg(1.58 mmol, Yield 79%) of the title compound.

Example 6

Synthesis of 4-[3-(2-hydroxy-5-methoxy-3,4,6-trimethyl-phenyl)-propyl]-ben-zene-1,3-diol

$$\bigcup_{\mathrm{OMe}}^{\mathrm{OBn}} \bigcup_{\mathrm{OBn}}^{\mathrm{OBn}} \bigcup_{\mathrm{OMe}}^{\mathrm{OBn}} \bigcup_{\mathrm{OMe}}^{\mathrm{OH}} \bigcup_{\mathrm{OMe$$

300 mg(0.50 mmol)of 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-propenone was dissolved in 3ml of ethylacetate. To this solution was slowly added 15mg of 10% palladium-carbon catalyst, which was reacted for 3 hours under hydrogen atmosphere of normal pressure (1atm). The reaction solution was diluted with 20ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-propanone. The compound thus obtained was not further purified and reduced by 40mg of NaBH₄ in 5ml of methanol to an alcohol compound. The reaction solution containing the alcohol compound was distilled under reduced pressure to remove methanol and extracted with dichloromethane to obtain 277mg(Yield 92%) of the alcohol compound, which was then diluted with 10ml of dry 30mg of p-toluenesulfonic acid was added thereto and the mixture benzene. was stirred for 4 hours while refluxing. The reaction solution was cooled down to room temperature and then washed with saturated aqueous sodium hydrogen carbonate solution once(x1). The washings was extracted again

with dichloromethane and the extract was combined with the original organic layer. Then, the combined mixture was dried, distilled under reduced pressure and subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=10/1, v/v) to obtain 244mg(0.42mmol, Yield 91%) of 4-[3-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-allyl]-1,3-dibenzyloxy-benzene.

The compound thus obtained was diluted with $30\,\text{ml}$ of ethylacetate, to which was slowly added $45\,\text{mg}$ of 10% palladium catalyst. The resulting mixture was stirred for 20 hours under hydrogen atmosphere of $60\,\text{psi}$, diluted with $10\,\text{ml}$ of ethylacetate and then filtered. The filtrate was distilled under reduced pressure and the residue was subjected to a silica gel column chromatography (eluent: n-hexane/ethylacetate=1/1, v/v) to obtain $118\,\text{mg}$ (Yield 88%) of the title compound.

Preparation 4

Synthesis of 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-ethoxy-3,4,6-trimet-hyl-phenyl)-propenone

310mg(1mmol) of 1-(2-benzyloxy-5-ethoxy-3,4,6-trimethyl-phenyl)-ethanone and 650mg(2.1mmol) of 2,4-dibenzyloxy-benzaldehyde were dissolved in 15ml of a solvent mixture of ethanol and tetrahydrofuran(1/1, v/v), to which was slowly added dropwise 5ml of 50% aqueous sodium hydroxide solution. After the addition was completed, the mixture was stirred for 24 hours at normal temperature. The solvent contained in the reaction solution was removed by distillation under reduced pressure, the resulting residue was diluted with 10ml of water and then neutralized to pH 7 using 10% aqueous hydrochloric acid solution. This solution was extracted with ethylacetate and

the solvent contained in the extract was removed by distillation under reduced pressure. The residue was subjected to a silica gel column chromatography (eluent: n-hexane/ethylacetate=7/1, v/v) to obtain 440mg(Yield 72%) of the title compound.

Example 7

Synthesis of 4-[3-hydroxy-3-(2-hydroxy-5-ethoxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

440mg(0.72mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-ethoxy-3,4,6-trimethyl-phenyl)-propenone prepared in Preparation 4 was dissolved in 6 ml of ethylacetate. To this solution was slowly added 15mg of 10% palladium-carbon catalyst, which was then reacted for 15 hours under pressurized hydrogen atmosphere(4atm). The reaction solution was diluted with 30ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 205 mg(Yield 91%) of 3-(2,4-dihydroxy-phenyl)-1-(2-hydroxy-5-ethoxy-3,4,6-trimethyl-phenyl)-propanone. 205 mg(0.66 mmol) of the compound thus obtained was dissolved in 12ml of diethylether, 200mg of lithium aluminum hydride was added thereto little by little at 0°C and then the mixture was stirred for one hour. After 0.2ml of water, 0.2ml of 15% aqueous NaOH solution and 0.6ml of water were added to the reaction solution in order, the resulting solution was stirred for further 30minutes. precipitate produced was filtered off and the filtrate was distilled to obtain a white solid. which was then subjected to a silica gel chromatography(eluent: n-hexane/ ethylacetate=5/1, v/v) to obtain 160mg(Yield 70%) of the title compound.

Preparation 5

Synthesis of 3-(2,4-dibenzyloxy-phenyl)-1-(6-benzyloxy-2,2,7,8-tetramethyl-chroman-5-yl)-propenone

 $1.69 \mathrm{g}(5 \mathrm{mmol})$ of $1\text{-}(6\text{-}\mathrm{benzyloxy-}2,2,7,8\text{-}\mathrm{tetramethyl-chroman-}5\text{-}\mathrm{yl})\text{-}\mathrm{ethanone}$ and $3.2 \mathrm{g}(10.5 \mathrm{mmol})$ of $2,4\text{-}\mathrm{dibenzyloxy-benzaldehyde}$ were dissolved in $50 \mathrm{m}\ell$ of a solvent mixture of ethanol and tetrahydrofuran(1/1, v/v), to which was slowly added dropwise $10 \mathrm{m}\ell$ of 50% aqueous sodium hydroxide solution. After the addition was completed, the mixture was stirred for $16 \mathrm{\ hours}$ at normal temperature. After the solvent contained in the reaction solution was removed by distillation under reduced pressure, the residue was diluted with $50 \mathrm{\ m}\ell$ of water and then neutralized to pH 7 using 10% aqueous hydrochloric acid solution. This solution was extracted with ethylacetate and the solvent contained in the extract was removed by distillation under reduced pressure. The residue was subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=7/1, v/v) to obtain $2.13 \mathrm{\ g}(Yield\ 68\%)$ of the title compound.

Example 8

Synthesis of 4-[3-hydroxy-3-(6-hydroxy-2,2,7,8-tetramethyl-chroman-5-yl)-propyl]-benzene-1,3-diol

2.13g(3.33mmol)of 3-(2,4-dibenzyloxy-phenyl)-1-(6-benzyloxy-2,2,7,8tetramethyl-chroman-5-yl)-propenone prepared in Preparation 5 was dissolved in 5ml of ethylacetate. To this solution was slowly added 30 mg of 10% palladium-carbon catalyst, which was then reacted for 12 hours under pressurized hydrogen atmosphere(4atm). The reaction solution was diluted with 50ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 1.14g(0.31mmol, Yield 94%) of 3-(2,4-dihydroxyphenyl)-1-(6-hydroxy-2,2,7,8-tetramethyl-chroman-5-yl)-propanone. compound thus obtained was dissolved in 10ml of diethylether, 1.0g of lithium aluminum hydride was added thereto little by little at 0°C and then the mixture was stirred for one hour. After 1ml of water, 1ml of 15% aqueous NaOH solution and 3ml of water were added to the reaction solution in order, the resulting solution was stirred for further 30minutes. The precipitate produced was filtered off and the filtrate was distilled to obtain a white solid, which was then subjected to a silica gel column chromatography(eluent: n-hexane/ ethylacetate=1/1, v/v) to obtain 1.04g(2.80mmol, Yield 90%) of the title compound.

Example 9

Synthesis of 4-[3-(6-hydroxy-2,2,7,8-tetramethyl-chroman-5-yl)-propyl]-ben-zene-1,3-diol

550mg(0.86mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(6-benzyloxy-2,2,7,8tetramethyl-chroman-5-yl)-propenone prepared in Preparation 5 was dissolved in To this solution was slowly added 10mg of 10% 7ml of ethylacetate. palladium-carbon catalyst, which was then reacted for 2hours under hydrogen atmosphere of normal pressure(1atm). The reaction solution was diluted with 50ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure to obtain 478mg(0.75mmol, Yield 87%) of 3-(2,4-dibenzyloxyphenyl)-1-(6-benzyloxy-2,2,7,8-tetramethyl-chroman-5-yl)-propanone. 200 mg(0.31)mmol) of the compound thus obtained was reduced by 125mg of NaBH4 to an alcohol compound, which was then diluted with 10ml of dry benzene. 30mg of p-toluenesulfonic acid was added thereto and the mixture was stirred for 4hours while refluxing. The reaction solution was cooled down to room temperature and then washed with saturated aqueous sodium hydrogen carbonate The washings was extracted again with dichloromethane solution once(x1). and the extract was combined with the original organic layer. combined mixture was dried, distilled under reduced pressure and subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=10/1, v/v) to obtain 169mg(0.271mmol, Yield 88%) of an olefin compound. 160mg (0.26mmol) of this olefin compound thus obtained was diluted with 30ml of ethylacetate, to which was slowly added 4.5 mg of 10% palladium catalyst. The resulting mixture was stirred for 48hours under hydrogen atmosphere of 60psi, diluted with 10ml of ethylacetate and then filtered. The filtrate was distilled under reduced pressure and the residue was subjected to a silica gel column chromatography(eluent: n-hexane/ethylacetate=3/1, v/v) to obtain 74mg (0.21mmol, Yield 80%) of the title compound.

Example 10

Synthesis of 4-[3-hydroxy-3-(2-hydroxy-5-methoxy-3,4,6-trimethyl-phenyl)-propyl]-benzene-1,3-diol

5.5g(9.2mmol) of 3-(2,4-dibenzyloxy-phenyl)-1-(2-benzyloxy-5-methoxy-3,4,6-trimethyl-phenyl)-propenone prepared in Preparation 3 was dissolved in 20 ml of a solvent mixture of ethanol and ethylacetate(1/3, v/v), to which was slowly added 50mg of 10% palladium-carbon catalyst. The temperature of the mixture was raised to 40°C and then hydrogenation was carried out for The reaction solution was diluted with 60 ml of 0.5hours at normal pressure. ethylacetate, filtered and then the filtrate was distilled under reduced pressure. The residue was diluted with diethylether, washed with aqueous sodium hydrogen carbonate solution, dried over anhydrous sodium sulfate and then filtered. The filtrate was distilled under reduced pressure to obtain 2.88g(8.73mmol,Yield 95%) of 3-(2,4-dihydroxy-phenyl)-1-(2-hydroxy-5methoxy-3,4,6-trimethyl-phenyl)-propanone. 2.88g(8.73mmol) of the compound thus obtained was dissolved in 12ml of methanol and 165mg(4.37mmol) of

filtered. The filtrate was distilled under reduced pressure to obtain 2.88g(8.73mmol, Yield 95%) of 3-(2,4-dihydroxy-phenyl)-1-(2-hydroxy-5-methoxy-3,4,6-trimethyl-phenyl)-propanone. 2.88g(8.73mmol) of the compound thus obtained was dissolved in $12m\ell$ of methanol and 165mg(4.37mmol) of sodium borohydride was added thereto at 0° C little by little. The reaction solution was stirred for one hour at normal temperature, distilled under reduced pressure, diluted with $10m\ell$ of ethylacetate and then washed with $10m\ell$ of water three times(x3). The organic layer separated was dried over anhydrous sodium sulfate and then filtered. The filtrate was distilled under reduced pressure and the residue was subjected to silica gel column chromatography (eluent: n-hexane/ethylacetate=5/1, v/v) to obtain 767mg(2.31mmol), Yield 80%) of the title compound.

The compounds represented in Table 1 were synthesized according to

the Preparations and Examples above, and their physico-chemical properties are represented in the following Table 2.

Table 2.

COM.		m.p.			
ļ	¹ H NMR ppm(solvent)				
NO.					
	6.90(d,1H), 6.35(d,1H), 6.25(dd,1H), 5.06(dd,1H), 2.72~2.82(m,				
1	1H), $2.55 \sim 2.70$ (m,1H), 2.10 (s,3H), 2.04 (s,3H), 1.94 (s,3H), 1.82	202			
	\sim 1.94(m,2H) (acetone d-6)				
2	6.87(d,1H), 6.37(d,1H), 6.25(dd,1H), 2.58(t,2H), 2.51(t,2H), 2.06				
2	(s,3H), 2.04(s,3H), 1.95(s,3H), 1.69(m,2H) (acetone d-6)	194			
	6.86(d,1H), 6.26(d,1H), 6.20(dd,2H), 5.12(dd,1H), 3.56(s,3H),				
3	$2.60 \sim 2.72$ (m,1H), $2.42 \sim 2.55$ (m,1H), 2.25 (s,3H), 2.15 (s,3H), 2.13	` ' '			
	(s,3H), $1.80 \sim 1.95$ (m,2H) (CDCl ₃)				
	$6.89(d,1H), 6.20 \sim 6.26(m,2H), 3.53(s,3H), 2.60(t,2H), 2.53(t,2H),$				
4	2.28(s,3H), 2.20(s,3H), 2.17(s,3H), $1.70 \sim 1.80$ (m,2H) (CDCl ₃)	58			
	6.93(d,1H), 6.40(d,1H), 6.29(dd,1H), 5.07(dd,1H), 3.51(s,3H),				
5	2.85(m,1H), 2.68(m,1H), 2.10(s,3H), 2.06(m,1H), 1.95(s,3H),				
	1.85(m,1H) (acetone-d ₆)				
	6.88(d,1H), 6.38(d,1H), 6.25(dd,1H), 3.54(s,3H), 2.60~2.80	153			
6	(m,4H), 2.12(s,9H), 1.75~1.95(m,2H) (acetone-d ₆)				
	6.96(d,1H), 6.39(d,1H), 6.28(dd,1H), 5.08(dd,1H), 3.65(q,2H),				
7	$2.69 \sim 2.75 \text{(m,1H)}, 2.78 \sim 2.85 \text{(m,1H)}, 2.10 \text{(s,3H)}, 2.06 \text{(s,3H)}, 2.00$				
	(s,3H), $1.80 \sim 1.95$ (m,2H), 1.31 (t,3H) (acetone-d-6)				
	7.00(d,1H), 6.36(d,1H), 6.27(m,1H), 5.10(dd,1H), 2.72~2.82				
8	(1H,m), 2.56~2.70(m,3H), 2.14(s,3H), 2.12(s,3H), 1.70~1.95	156			
	(m,4H), 1.36(s,3H), 1.28(s,3H) (CDCl ₃)				
	6.97(d,1H), 6.31~6.36(m,2H), 5.10~5.20(br,s,1H), 4.80~4.90				
9	(br,s,1H), $2.55 \sim 2.65$ (m,6H), 2.13 (s,3H), 2.09 (s,3H), $1.65 \sim 1.85$				
	(m,4H), 1.28(s,6H) (CDCl ₃)				

The inhibitory effects against tyrosinase and melanin biosynthesis of the compound (I) of the present invention was measured according to the procedures described in the following Experimental Examples 1 and 2.

Experimental Example 1 Inhibitory activity against tyrosinase

Enzyme tyrosinase extracted from mushrooms(manufactured by Sigma) was used in the present experiment. First, a substrate L-tyrosine was dissolved in phosphate buffer solution(0.05M, pH 6.8) to a concentration of 1.5mM and then $0.01\,\text{m}\ell$ of this solution was introduced to a $0.3\,\text{m}\ell$ cuvette in a spectrophotometry. Dopa as a cofacter was prepared as a solution in a concentration of 0.06 mM and $0.01 m\ell$ of this dopa solution was added to the To the resulting mixture were added the inhibitor of substrate solution. formula (I) and phosphate buffer solution to a total volume of 0.31ml. The reaction was started by adding $0.1\,\text{m}\ell$ of an enzyme solution in which tyrosinase was dissolved in phosphate buffer solution in a concentration of 60U/ml. 0.1 ml of phosphate buffer solution instead of the enzyme solution was added to the blank sample. The reaction was carried out for 10 minutes at 37°C and then absorbance at 475nm was measured using Spectrophotometer (Beckman DU-7500).

Inhibition(%) against tyrosinase of the compound (I) is calculated based on the absorbance at 475nm and IC_{50} value is determined as the concentration of the inhibitor when the inhibition(%) against enzyme activity reaches 50%. The Inhibition(%) can be calculated according to the following formula and the results are represented in the following Table 3.

Inhibition(%) =
$$\frac{\text{(A-B)}}{A} \times 100$$

in the above formula

- A represents absorbance at 475nm when the inhibitor is added, and
- B represents absorbance at 475nm when the inhibitor is not added.

Table 3. Inhibitory activity against tyrosinase

Compound No.	IC ₅₀ (μg/mℓ)
1	0.5
2	1
3	50
4	20
5	0.1
6	0.1
7	1.0
8	0.3
9	0.3
Arbutin	113
Kojic acid	3.1
Hydroquinone	0.5

As can be seen from the results in Table 3 above, the compound of formula (I) according to the present invention shows a similar or superior inhibitory activity against tyrosinase to the existing inhibitors. Thus, the present compounds can be used advantageously for such a purpose.

Experiment 2 Inhibitory effect against melanin biosynthesis in B-16 mouse melanoma cell

The compound according to the present invention was added to a culture media of B-16 mouse melanoma cell and observed in order to examine its whitening effect in cellular level.

B-16 mouse melanoma cells were cultured to a density of 10^6 cells/dish in culture media, compounds in various concentrations were respectively added thereto and then cultured for 3days. The cells were separated from the culture dish by the treatment with trypsin and then centrifuged to extract melanin(wherein a pellet was extracted using 2N perchloric acid). Im ℓ of 1N aqueous sodium hydroxide solution was added to the melanin extracted and the resulting mixture was heated to dissolve melanin. The absorbance at 400nm was measured by a spectrophotometer and the amount of the melanin produced was represented by the absorbance per unit cell numbers(10^6 cell). IC₅₀ value is determined as the concentration of the inhibitor when the inhibition(%) against enzyme activity reaches 50% and the results are represented in the following Table 4.

Table 4.

Compound No.	$IC_{50}(\mu g/m\ell)$
1	10
2	5
3	40
4	45
5	5
6	10
7	20
8	2
9	3
Arbutin	300
Kojic acid	15

The results of Table 4 shows that the compound according to the present invention exhibits an excellent inhibitory activity against melanin

biosynthesis in mouse melanoma cell. Therefore, it is recognized that the compound of the present invention exhibits a distinguished whitening effect through the prevention of melanin synthesis which is fundamentally due to the inhibition against tyrosinase.

WHAT IS CLAIMED IS:

1. 1,3-diphenylpropane derivative represented by the following formula (I):

$$R_{5}$$
 R_{6}
 R_{2}
 OH
 OH
 OH
 OH

in which

= represents double or single bond,

R₁ represents hydrogen or C₁-C₁₀ alkyl,

R₂ represents C₁-C₅ alkyl or C₁-C₅ alkoxyalkyl, or

R₁ and R₂ together represent a 5 to 6 membered heterocycle which can be substituted by C₁-C₅ alkyl and which contains oxygen as the hetero atom,

R₃ represents hydrogen or C₁-C₇ alkyl,

R₄ represents hydrogen, hydroxy, or oxo, and

R₅ and R₆ independently of one another represent hydrogen or C₁-C₅ alkyl.

2. The compound of claim 1, wherein R₁ represents hydrogen, methyl or

ethyl, R_2 represents methyl, or R_1 and R_2 together represent , R_3 represents hydrogen or methyl, R_4 represents hydrogen or hydroxy, and R_5 and R_6 independently of one another represent methyl.

3. A process for preparing a compound represented by the following formula (Ia),

in which R_1 to R_3 , R_5 and R_6 are as defined in claim 1, which comprises reducing a compound represented by the following formula (IV),

$$R_{5}$$
 R_{2}
 P_{2}
 P_{3}
 P_{3}
 P_{3}
 P_{4}
 P_{5}
 P_{5}

in which

P₁ represents benzyl, methyl, ethyl, tetrahydropyranyl, methoxymethyl, methoxymethyl or p-methoxybenzyl,

P₂ represents benzyl, methyl or ethyl,

P₃ represents benzyl, tetrahydropyranyl, methoxymethyl, methoxyethoxy methyl or p-methoxybenzyl, and

 R_2 , R_5 and R_6 are as defined in claim 1, in a solvent to produce a compound represented by the following formula (V),

$$R_{5}$$
 R_{6}
 R_{2}
 P_{2}
 P_{3}
 P_{3}
 P_{3}
 P_{3}
 P_{3}
 P_{4}
 P_{5}
 P_{5}
 P_{5}

in which P_1 to P_3 are defined as above and R_2 , R_5 and R_6 are as defined in claim 1, and then removing the protecting groups in the compound of formula (V).

- 4. The process of claim 3, wherein the reduction is carried out in a solvent selected from a group consisting of diethylether and tetrahydrofuran (THF) in the presence of lithium aluminum hydride(LAH).
- 5. The process of claim 4, wherein the reduction is carried out at temperatures ranging from -30 to $30\,^{\circ}$ C.
- 6. A process for preparing a compound represented by the following formula (Ib),

in which R_1 to R_3 , R_5 and R_6 are as defined in claim 1, which comprises hydrogenating the double bond in a compound represented by the following formula (IV),

in which P_1 to P_3 are as defined in claim 3 and R_2 , R_5 and R_6 are as defined in claim 1, in a solvent to produce a compound represented by the following

35

formula (V'),

$$R_5$$
 P_2
 P_3
 P_3
 P_3
 P_3
 P_3
 P_3

in which P_1 to P_3 are as defined in claim 3 and R_2 , R_5 and R_6 are as defined in claim 1, and then removing the protecting groups in the compound of formula (V').

- 7. The process of claim 6, wherein the solvent is ethylacetate.
- 8. The process of claim 6, wherein the protecting group is benzyl and the compound of formula (Ib) is produced from the compound of formula (V') or directly produced from the compound of formula (IV) by carrying out the hydrogenation in ethylacetate or a solvent mixture of ethylacetate and a lower alcohol.
- 9. The process of claim 8, wherein the solvent is ethylacetate and the hydrogenation is carried out for 10 to 15 hours under normal temperature and pressures ranging from 2 to 4atms.
- 10. The process of claim 8, wherein the solvent is a mixture of ethylacetate and a lower alcohol and the hydrogenation is carried out for 20 minutes to one hour under temperatures ranging from 35 to 55°C and normal pressure.
- 11. A process for preparing a compound represented by the following formula (Ic),

$$R_{5}$$
 R_{6}
 R_{2}
 OH
 OH
 OH

in which R₁ to R₃, R₅ and R₆ are as defined in claim 1, which comprises dehydrating a compound represented by the following formula (V),

$$R_{5}$$
 R_{2}
 P_{2}
 P_{3}
 P_{3}
 P_{3}
 P_{3}
 P_{3}

in which P_1 to P_3 are as defined in claim 3 and R_2 , R_5 and R_6 are as defined in claim 1, in a solvent in the presence of an acid to produce a compound represented by the following formula (VI),

$$R_{5}$$
 R_{6}
 R_{2}
 P_{2}
 P_{3}
 P_{3}
 P_{3}
 P_{3}

in which P_1 to P_3 are as defined in claim 3 and R_2 , R_5 and R_6 are as defined in claim 1, and then reducing and deprotecting the compound of formula (VI) thus produced.

- 12. The process of claim 11, wherein the dehydration is carried out in a solvent selected from a group consisting of benzene, toluene and xylene in the presence of an acid selected from a group consisting of sulfuric acid, phosphoric acid and p-toluenesulfonic acid.
- 13. The process of claim 12, wherein the dehydration is carried out at temperatures ranging from 80 to 100°C.

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 98/00039

A. CLASSIFICATION OF SUBJECT MATTER

IPC⁶: C 07 C 39/12, 43/23, 49/83, 49/84; C 07 D 311/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC⁶: C 07 C 39/00, 43/00, 49/00; C 07 D 311/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
А	WO 94/14 477 Al (MALLINCKRODT) 07 July 1994 (07.07.94), abstract.	1
Α	WO 91/16 293 A1 (CHINOIN) 31 October 1991 (31.10.91), abstract.	1
Α	WO 91/05 757 A1 (SCHERING) 02 May 1991 (02.05.91), claim 1.	1
Α	EP 0 292 576 Al (TSUMURA JUNTENDO) 30 november 1988 (30.11.88), claim l.	1
Α	DE 22 58 304 A (CHINOIN) 05 July 1973 (05.07.73), claims 1,8.	1,3,6
Α	EP 0 721 930 Al (MITSUBISHI) 17 July 1996 (17.07.96), abstract.	1
Α	EP 0 112 587 A2 (RICHTER) 04 July 1984 (04.07.84), abstract.	1

l				
	Further documents are listed in the continuation of Box C.	X See patent family annex.		
•	Special categories of cited documents:	"T" later document published after the international filing date or priority		
"A"	document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
"E"	earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive		
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	sten when the document is taken alone		
	special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be		
"0"	document referring to an oral disclosure, use, exhibition or other means	compined with one or more other such documents, such compination being obvious to a person skilled in the art		
"P"	document published prior to the international filing date but later than the priority date claimed			
Date	of the actual completion of the international search	Date of mailing of the international search report		
	03 April 1998 (03.04.98)	15 April 1998 (15.04.98)		
Nam	e and mailing address of the ISA/AT	Authorized officer		
	AUSTRIAN PATENT OFFICE Kohlmarkt 8-10	Reif		
Facs	A-1014 Vienna imile No. 1/53424/535	Telephone No. 1/53424/323		

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

PCT/KR 98/00039

Doc dans	führte latent in sea ument le ra	erchenbericht es Patentdokument document cited arch report de brevet cité apport de recherche	Datum der Veröffentlichung Publication date Date de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la familie de brevets	Datum der Veröffentlichung Publication Mate Date de publication
 MO	A1	9414477	07-07-94	AU A1 58718/94 EP A1 674530 EP A4 674530 JP 72 9505801	04-10-95 21-08-96
 MO	* NAME AND ALES	911629 3	31-10-91	AU A1 54 A5	17-12-91 17-12-91 28-08-95
 MO	A1	9105757	02-05-91	AU A1 67272/90 EP A1 495917 JP T2 5503923 US A 5563292	
=P		292576	30-11-88	WO A1 8804288 EP A4 5102571 US A 5105251526 HU A2 202352515 HU B 202342522 HU B 2 1023522 US A2 10236241	16-06-88 03-10-90 21-04-92 28-08-91 14-02-93 14-08-88
DE	M	2258304		9772566747996654333264004452103175964497775535188338489884483330025587755377287666988977583566677882772876669886559911521727195599115217271955991152172719559911521727195599115217271955991152172719559911521727195599115217271955991152172719559911527795991152771955991152777719559911527771955991152777719559911527777195599115277771955991152777719559911527777195599115277771955991152777719559911527771955991152777719559911527777195599115277771955991152777719559911527777195599115277771955991152777771955991152777771955991152777719559911527777719559911527777777777	735496644350137757366323777994401239312234 1362267777777777777778877777777778877777777

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/KR 98/00039

			949662995880477302244232909283 23222979854888487799854450709283 20000011332229995779457704 22222 1113 17 11 3378687996330 22222 1113 5 011338687996330 222322 1113 5 011338687996330 223323 5 012338687996330 223323 5 012338687996330 223323 7 1 33786 7 2 3372 2 223323 7 1 33786 7 2 3372 2 223323 7 1 33786 7 2 3372 2 223323 8 1 5 01144 8 2 2 3372 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	017774893992614654335011803-120032335-2
EF A1	721930	17-07-96	WD A1 9603364 EP A4 721930 CA AA 2178914	08-02-96 16-07-97 08-02-96
EF A2	112587	04-07-84	4333123339977999992377007597734087 512988177992999923770075977936 22136611355114242007387735577936 2213661135556688 22136611155556688 22136611155556688 2213661115557773677367793677936777367793677936779	04750340140464645499456474054