SUOMI – FINLAND
(FI)

PATENTTI- JA REKISTERIHALLITUS
PATENT- OCH REGISTERSTYRELSEN

(12) PATENTTIJULKAISET
PATENTSKRIFTER

(10) FI 122223 B

(45) Patenti myönnetty - Patent beviljats 14.10.2011

(51) Kv.ik. - Int.ik.

C10G 3/00 (2006.01)
C10L 1/08 (2006.01)

(21) Patentinhamen - Patentansökning 20021595

(22) Saapumispäivity - Ankomstdag 06.09.2002

(24) Tekemispäivity - Ingivningsdag 06.09.2002

(41) Tullut julkiseksi - Blivit officiell 07.03.2004

(73) Haltija - Innehavare

1+Neste Oil Oyj, Keilaranta 21, 00095 NESTE OIL, SUOMI - FINLAND, (FI)

(72) Keksi - Uppfinnare

1+Jakkula, Juha, Kerava, SUOMI - FINLAND, (FI)
2+Niemi, Vesa, Porvoo, SUOMI - FINLAND, (FI)
3+Nikkonen, Jouko, Hamari, SUOMI - FINLAND, (FI)
4+Purola, Veli-Matti, Hamari, SUOMI - FINLAND, (FI)
5+Myllyoja, Jukka, Helsinki, SUOMI - FINLAND, (FI)
6+Aalto, Pekka, Porvoo, SUOMI - FINLAND, (FI)
7+Lehtonen, Juha, Porvoo, SUOMI - FINLAND, (FI)

(74) Asiakas - Ombud

Berggren Oy Ab, Antinkatu 3 C, 00100 Helsinki

(54) Keksinomin - Uppfinningens benämning

Prosessi biologista alkuperää olevan hiihdytyskomponentin valmistamiseksi
Process för framställning av en kolvätekomponent av biologiskt ursprung

(56) Viitejulkaisu - Anförda publikationer

FI 100248 B, US 5888376 A, US 5705722 A

(57) Tiivistelmä - Sammanfattning

Keksinomin kohteena on prosessi biologista alkuperää olevan hiihdytyskomponentin valmistamiseksi. Prosessi käsittää vähintään kaksi vaihetta, joista ensimmäinen vaihe on hydrodeoxygenaatiolaihe ja toinen vaihe on isomerointilaihe, joka toimii vastavirtausiusuveriaatteella. Syöttöön käytetään rasvahappoja ja/tai rasvahappoesteristä sisältäviä biologista raaka-ainetta.

PROSESSI BIOLOGISTA ALKUPERÄÄ OLEVAN HIILIVETYKOMPONENTIN VALMISTAMISEKSI

PROCESS FÖR FRAMSTÄLLNING AV EN KOLVÄTEKOMPONENT AV BIOLOGISK URSPRUNG

TEKNIIKAN ALA

Keksinnön kohteena on parannettu prosessi erityisesti dieselpolttoaineissa käytökkelpoisen, biologista alkuperää olevan hiilivetykomponentin valmistamiseksi biologisista raaka-aineista kuten kasviöljyistä, eläinrasvoista ja vastaavista materiaaleista.

TEKNIIKAN TASO

Biologista alkuperää olevien hiilivetykomponenttien käyttö polttainoisissa on kasvavan mielenkiinnon kohteena, koska fossiilisia raaka-aineita korvaavia uusiutuvia bioraaka-aineita on saatavilla ja niiden käyttö on yleisesti toivottavaa, tavoitteena on myös bioraaka-aineita sisältävien jätteiden, kuten eläinruhojen hyötykäytön tehostaminen. Tekniikan tasosta tunnetaan useita prosesseja polttainoiden valmistamiseksi kasvi- ja eläinpohjaisista raaka-aineista. FI 100248 esittää kaksivaiheisen prosessin, jossa kasviöljystä valmistetaan keskitislettä vedettämällä kasviöljyn rasvahapot tai triglyseridit n-parafiineiksi ja isomeroimalla n-parafiinit sitten haarottuneiksi parafiineiksi. Menetelmän mukaisesti vedettämällä ja isomeroimalla valmistetun hiilivetykomponentin kylmäominaisuuksia on pystytty parantamaan. Tuotteen on todettu soveltuvan liuottimiin ja dieselkomponentiksi ilman seosrajoituksia.

Biomassasyöön konversio tunnetaan patentista US 5,705,722, jossa esitetään menetelmä dieselpolttoaineille soveltuvin, setaaniilukua parantavien lisääneiden valmistamiseksi syötöstä, joka voi olla mäntyöljyä, lehtipuuperäistä puuöljyä,
eläinrasvoja ja edellä olevien seoksia. Biomassasyöttö hydroprosessedoidaan saatamalla syöttö kosketuksiin kaasumaisen vedyn kanssa hydroprosessoointiosuhteissa katalyytin läsnäollessa. Nämä sujuvat tuotoseos erotetaan fraktoina, jolloin saadaan hiilivetykomponentit, joka kiehuu dieselpoltoaineen kiehumavälillä. Tämän komponentin heikkojen kylmäominaisuksien vuoksi sitä ei voida käyttää kylmissä olosuhteissa.

Yleensä HDO/HDS-vaiheessa vety sekoitetaan syöttöön ja seos ajetaan katalyyttiperin suhteen myötävirtaisen yksi- tai kaksifaasisyöttöön. HDV/HDS-vaiheen jälkeen tuotefraktio erotetaan ja johdetaan erilliseen isomerointireaktoriihin. Biora-
ka-aineen isomerointireaktori on kuvattu kirjallisuudessa (FI 100 248) myötävirtaisena reaktorina.

Patentihakemuksesta *FI 933982* tunnetaan menetelmä dieselpolttoaineen valmis-
tamiseksi hiilivetyysööttöä hydraamalla, jossa menetelmässä syöttö johdetaan myötä-
tävirtaisena vetykaasun kanssa ensimmäisen hydrausvyöhykkeen läpi, jonka jäl-
keen hiilivetypoiste edelleen hydrataan toisessa hydrausvyöhykkeessä johtamalla
toiseen hydrausvyöhykkeeseen vetykaasua hiilivetypoisteen suhteen vastavirtai-
sena. Patentissa US 5 888 376 kuvataan prosessi, jossa pääasiassa parafiiinista
syöttää valinnaistem vetykäsitellään myötävirtaisesti ja sitten hydroisomeroidaan
vastavirtaisesti. Syöttää sisältää etupäässä parafiiineja ja lisäksi mahdollisesti hete-
roatomeja sisältäviä yhdisteitä, joiden poistamiseksi käytetään valinnaista vetykäs-
sittelyvaihetta.

HDO-vaiheessa katalyyttinä käytetään yleensä NiMo- tai CoMo-katalyyttiä, jotka
jossain määrin sietävät katalyyttimyrkkyyjä. HDO-vaiheen reaktiot ovat voimak-
kaasti eksoterminisiä ja vaativat runsaasti vetyä. Isomerointivaiheessa taas käyte-
tään jalometallikatalyyttejä, jotka ovat hinnaltaan kalliita ja erittäin herkkii katal-
lyyttimyrkylle ja vedelle. Lisäksi biokomponentit aiheuttavat usein sakkamaisia
sivutootteita, jotka voivat mm. aikaansaada suuren painehäviön. Bioraaka-aineen
HDO-vaiheen ja isomerointiprosessin yhdistämiselle korkealaatuisen dieselkom-
ponentin valmistamiseksi ei ole esitetty toistaiseksi prosessikonfiguraatiota, joka
huomioisi bioraaka-aineen ominaisuuDET.

Edellä esitetyn perusteella voidaan havaita, että on olemassa ilmeinen tarve pa-
ranetulle ja yksinkertaistetulle prosessille hiilivykonponentin valmistamisestä
biologisista raaka-aineista, jonka prosessin avulla voidaan välttää tai ainakin
oleellisesti vähentää teknikan tason ratkaisujen ongelma.
KEKSINNÖN YLEINEN KUVAUSS

Keksinnön päämääränä on prosessi hiilivetykomponentin valmistamiseksi biologisista raaka-aineista.

Keksinnön päämääränä on myös prosessi dieselpolttotaineeksi tai sen komponenttiksi soveltuvan hiilivetykomponentin valmistamiseksi biologisista raaka-aineista.

Keksinnön mukainen prosessi käsittelee vähintään kaksi vaihetta, joista ensimmäinen on HDO-vaihe ja toinen on isomeroointivaihe, jossa hyödynnetään vastavirtaisuusperiaatetta, ja syöttömä käytetään biologista raaka-ainetta.

Keksinnön mukaisen prosessin hiilivetykomponentin valmistamiseksi biologisista raaka-aineista tunnusomaiset piirteet on esitetty patenttivaatimuksissa.

KEKSINNÖN YKSITYISCOHTAINEN KUVAUSS

Syöttönä käytetään rasvahappojaa ja/ta rasvahappoestereitä sisältävää kasvi-, eläint- tai kalaperäistä biologista raaka-ainetta, joka on valittu kasviöljyjen, eläinrasvojen, kalaöljyjen ja niiden seoksien joukosta. Sopivia biologisia raaka-aineita...
ovat esimerkiksi ryysiöljy, rapsiöljy, canolaöljy, mäntyöljy, auringonkukkaöljy, soijaöljy, hamppuöljy, oliiviöljy, pellavaöljy, sinappiöljy, palmuöljy, maapähkinäöljy, risiiniöljy, kookosöljy, eläinrasvat kuten ihra, tali ja traani sekä elintarvikekierrätysrasvat.

Tyypillisen syötöksi soveltuva kasvi- tai eläinrasvan perusrakenneysikkö on triglyseridi eli glyserolin ja kolmen rasvahappomolekyylin triesteri, jolla on seuraavassa esitetty rakenne:

![Räätäppäinen diagrammi](image)

missä R_1, R_2 ja R_3 ovat hiilivetyketjuja. Rasvahappokoostumus voi vaihdella huomattavasti eri alkuperää olevissa syööissä.

Syöttöä voidaan käyttää myös biologisen raaka-aineen ja hiilivedyn seosta, ja tuotteen saattaa hiilivetykomponenttia voidaan kierrättää haluttaessa syötön joukkoon reaktioiden eksoteremisyynen hallitsemiseksi.

Ennen HDO-vaihetta biologiselle raaka-aineelle voidaan valinnaisesti suorittaa esi-
hydraus miedommissa olosuhteissa kaksoissidosten sivureaktioiden välttämiseksi.
Esihydraus suoritetaan hydraulikatalyytin läsnäollessa 150 - 250 °C lämpötilassa ja
10 -100 bar vetypainessa. Hydraulikatalyytti voi sisältää jaksoollisen järjestelmän
ryhmän VIII ja/tai VIB metalleja. Edullisesti esihydraulikatalyytti on Pd-, Pt-, Ni,-
NiMo- tai CoMo-katalyytti kantajalla, joka on alumini- ja/tai piidioksidi. Tyypillis-
esti esihydraus toimii myötävirtaperiaatteella. Kun esihydraus tapahtuu lähennes täy-
dellisesti, saadaan valkoista, huoneenlämpötilassa kiinteää tyydytettyä triglyseridiä,
jonka jodiluku on alle 2.

HDO-vaiheen jälkeen reaktiotuote voidaan puhdistaa strippaamalla vesihöyryllä tai
sopivalla kaasulla kuten kevyellä hiilivedyllä, typellä tai vedyllä. Strippaus vaikuttaa
myönteisesti epäpuhauksien poistoon.

HDO-vaiheesta tuleva vetypitoinen kaasuvirta jähdytetään ja siitä poistetaan hiilih-
monoksidia, hiilidioksidia, typpi-, fosfori- ja rikkiyhdisteitä, kaasumaisia kevyitä
hiilivetyjä ja muita epäpuhauksia. Komprimoinnin jälkeen puhdistettu vety eli kier-
tovety palautetaan ensimmäisen katalyyttipedin päälle tai/ja katalyyttipetien välisiin
korvaamaan ulosotettua kaasuvirtaa. Laihtuneesta nesteestä poistetaan vesi. Neste
johdetaan ensimmäiselle katalyyttipetille tai katalyyttipetien väliihi. Prosessin kannalta on oleellista, että epäpuhaukset poistetaan mahdollisimman tehokkaasti ennen
isomerointivaihetta.

Katalyyttipetien välistä ja/tai jälkeen HDO-vaiheesta voidaan valinnaisesti ottaa ulos
nestevirta. Nestevirta jähdytetään ja siitä poistetaan vesi ja se palautetaan katalyytt-
petien päälle.

HDO-vaiheen syöttöön voidaan valinnaisesti myös lisätä isomerointituotetta tai
muuta soveltuvaa hiilivetyä.
HDO-vaiheen jälkeen tuote johdetaan isomerointivaiheeseen, jossa vetykaasu ja hydtrattava biokomponentti sekä valinnaisesti n-parafiniiseos johdetaan aina vastavirtaisena isomerointikatalyytipidille, joka käsittää yhden tai useamman katalyytipedin. Tuorevety syötetään joko kokonaan tai osittain isomerointivaiheen katalyytipetiiin.

Isomerointivaihe ja HDO-vaihe voidaan suorittaa samassa paineastiossa tai eri paineastioissa. Valinnainen esihydraus voidaan suorittaa samassa tai eri paineastiossa kuin HDO- ja isomerointivaiheet. Isomerointivaiheessa paine on aina korkeampi kuin HDO-vaiheessa ja paine vaihtelee välillä 50–100 bar ja lämpötila vaihtelee välillä 300–400 °C. Isomerointivaiheessa voidaan tyypillisesti käyttää sinänsä tunnettuja isomerointikatalyyttejä, joita on kuvattu esimerkiksi patentissa FI 100248. Tuotteena saadaan korkealaatuista, erityisesti dieselpolttotaineeksi tai sen komponentiksi soveltuvaa biologista alkuperää olevaa hiilivetykomponenttia, jonka tiheys, setaanluku ja kylmäominaisuudet ovat erinomaiset.

Keksintöä havainnollistetaan seuraavassa kuvioiden 1–4 avulla.

Kuviossa 1 esitetään kaaviomaisesti keksinnön mukaisen prosessin toiminta.
Kuviossa 2 esitetään kaaviomaisesti toinen keksinnön mukainen suoritusmuoto.
Kuviossa 3 esitetään kaaviomaisesti kolmas keksinnön mukainen suoritusmuoto.
Kuviossa 4 esitetään kaaviomaisesti neljäs keksinnön mukainen suoritusmuoto, jossa on esihydraus ennen HDO-vaihetta.

Kuviossa 1 on kuvattu eräs keksinnön mukainen suoritusmuoto, jossa kaaviomaisesti kuvataan prosessin toiminta. Kuviossa on esitetty HDO-vaihe myötävirtaisena ja isomerointivaihe vastavirtaisena. Sekä HDO-vaihe että isomerointivaihe voidaan suorittaa samassa paineastiossa tai erillisissä paineastioissa.

Biologinen raaka-aine 10 syötetään ensimmäiselle HDO-katalyytipidille 20, jonka johdetaan myös lauhutunutta hiilivetyä kiertovirtana 41, josta vesi on poistettu. Kiertovety 40 sekoitetaan syöttöön 10 ja kiertovirtaan 41.
Viimeisen HDO-katalyyttipedin 21 jälkeen sekä katalyyttipetien 20 ja 21 välistä otetaan kaasuvirtua 42 ulos ja johdetaan prosessin osaan 43, jossa ulosotetut kaasu- viritat jähdytetään ja osittain lauhdotetaan, vesi erotetaan ja puhdistettu vetykaasu komprimoidaan kiertovedyksi 40. Kevyet hiilivedyt, vesi, hiilimonoksid, hiilidioksid, typi-, rikki- ja fosforihiidestet ja muuta epäpuhtautet poistetaan virtana 44. Lauhtuneet hiilivedyt palautetaan jähdytysvirtoihna (kiertovirtoina) 41 sopiville katalyyttipedioille. Kierto vety 40 jaetaan eri katalyyttipedöille.

10 HDO-vaiheen tuote johdetaan isomeroointikatalyyttipedöille 30, jonka johdetaan vastavirtaisesti tuorevetyä virtana 50 ja jähdytys toteutetaan virtana 41. Isomeroinnin jälkeen tuotteet johdetaan virtana 60 tuotteiden erotukseen 70, jossa kevyet komponentit erotetaan virtana 80, raskaat komponentit virtana 81 ja hiilivytkomponentti /biodieseltuote virtana 82.

15 Kaavion 1 esitys pätee myös ratkaisuille, joissa bioraaka-aineeseen on sekoitettu hiilivytyä. Kuvattussa ratkaisussa HDO-vaiheen katalyyttipetetjä voi olla 1 tai useampi. Tällöin katalyyttipetien väliset ulosotot ja palautukset katalyyttipedöille voivat puuttua tai niitä voi olla ennen tai jälkeen jokaista katalyyttipiä. Prosessiosassa 43 voidaan lauhhtuneesta hiilivedystä poistaa myös haitallisia orgaanisia tai epäorgaanisia happeja ennen hiilivytyvirran palauttamista prosessiin. Samoin isomeroointiosan katalyyttipetetjä voi olla yksi tai useampi.

25 Biologinen raaka-aineen 10 syötetään ensimmäiselle HDO-katalyyttipedöille 20. Ensimmäiselle katalyyttipedöillä johdetaan myös lauhhtunut hiilivyty virtana 41, josta
vesi on poistettu. Ulosotettujen virtojen puhdistus ja jäähdytys tehdään osassa 43, josta virrat palautetaan kuten kuviossa 1.

Vastavirtaisen HDO-katalyyttipedin/stripauspedin 21 yläpuolelta otetaan kaasuvirta 42 ulos ja johdetaan prosessin osaan 43, jossa ulosotetut kaasuvirrat jäähdytetään ja lauhdutetaan ja puhdistetaan kuten kuviossa 1.

HDO-vaiheen tuote johdetaan isomeroinnin katalyyttipedille, jossa isomerointi suoritetaan samoin kuin kuviossa 1.

Kuvion 2 esitys pätee myös ratkaisuille, joissa HDO-vaiheen katalyyttipeteytä tai stripausvaiheita voi olla 1 tai useampi. Tällöin katalyyttipetien väliset ulosotot ja kierrätysten palautukset voivat puuttua tai niitä voi olla ennen tai jälkeen jokaisen katalyyttipedin. Prosessiosassa 43 voidaan lauhduneesta hiilivedystä poistaa myös haitallisia organoasia tai epäorganisia happeja ennen hiilivetyvirran palauttamista prosessiin. Samoin isomerointiosan katalyyttipeteytä voi olla yksi tai useampi. Strippausvetyä voidaan käyttää myös kiertovetyä.

Kuviossa 3 on kuvattu eräs toinen keksinnön mukainen suoritusmuoto, jossa kaaviomaisesti kuvataan prosessin toiminta. Kuviossa on esitetty HDO-vaihe myötävirtaisena ja isomerointi vastavirtaisena. Suoritusmuodon mukaan HDO-osan jälkeen otetaan nestevirta, joka puhdistetaan ja palautetaan isomerointiosaan.

Kaavion 3 esitys pätee myös ratkaisuille, joissa HDO-vaiheen katalyyttipetujärjestelmä on ollut 1 tai useampi. Tällöin katalyyttipetien väliset ulosotot ja kierrätysten palautukset voivat puuttua tai niitä voi olla ennen tai jälkeen jokaisen katalyyttipedin. Ratkaisu käsittelee myös tapauksia, jossa nestevirta voidaan ottaa useammasta kohtaa HDO-osasta ja palauttaa eri katalyyttipetien välillä. Puhdistusosassa 30 erottuutu vety ja muut kaasumaiset komponentit voidaan valinnaisesti ohjata osaan 43 puhdistusta varten. Prosessiosassa 43 ja 90 voidaan hiilivedystä poistaa myös haitallisia organisia tai epäorganisia happoja ennen hiilivetyvirran palauttamista prosessiin.

Kuviossa 4 on kuvattu eräs keksinnön mukainen suoritusmuoto. Kuviossa on esitetty myötävirtainen esihiydraus ennen HDO-vaihetta, HDO-vaihe myötävirtaisena ja isomerointivaihe vastavirtaisena.

Biologinen raaka-aine 10, johon on tuotu tuorevetyä virtana 50, syötetään esihiydysreaktorin 15, josta esihiydrattu tuote syötetään virtana 16 ensimmäiselle HDO-katalyyttipedille 20, jonne johdetaan myös lauhuntutta hiilivetyä kiertovirtana 41, josta vesi on poistettu. Kiertovety 40 sekoitetaan biologiseen raakaaineeseen syöttöön 10 ja kiertovirtaan 41. Tuorevetyen sisään biologiseen raakaaineeseen 10 voidaan myös syöttää kiertovetyä 40 ennen esihiydrausta. Esihiydysreaktorin 15 on tyyppillisesti myötävirtaisesti toimiva kiinteäpäetireaktori.
Viimeisen HDO-katalyyttipedin 21 jälkeen sekä katalyyttipetien 20 ja 21 vällistä otetaan kaasuvirta 42 ulos ja johdetaan prosessin osaan 43, jossa ulosotetut kaasuviirrat jäähdytetään ja osittain lauhdutetaan, vesi erotetaan ja puhdistettu vetykaasus komprimoidaan kiertovedyksi 40. Kevyet hiilivedyt, vesi, hiilimonoksidit, hiilidioksidit, typpi-, rikki- ja fosforiyhteenet ja muuta epäpuhtaudet poistetaan virtana 44. Lauhtuneet hiilivedyt palautetaan jäähdytysvirtoina (kiertovirtoina) 41 sopiville katalyyttipedelle. Kiervotyv 40 jaetaan eri katalyyttipedille.

HDO-vaiheen tuote johdetaan isomerointikatalyyttipedille 30, jonne johdetaan vastavirtaisesti tuorevetä virtana 50 ja jäähdyltyse toteutetaan virtana 41. Isomeroinnin jälkeen tuotteet johdetaan virtana 60 tuotteiden erotukseen 70, jossa kevyet komponentit erotetaan virtana 80, raskaat komponentit virtana 81 ja hiilivetykomponentti /biodieseltuote virtana 82.

Kaavio 4 kuvaa suoritusmuotoa, jossa esihidraus on liitetty kaavion 1 mukaiseen suoritusmuotoon. Esihidraus voidaan myös liittää kaavioiden 2 ja 3 mukaisiin suoritusmuotoihin ja edellä mainittujen suoritusmuotojen variaatioihin. Hydraulireaktori voi myös olla fluidisoitu, liikkuvapainen, CSTR-tyyppinen sekoitusäiliöreaktori tai vastavirtainen kiinteäpetireaktori.

Selvää kuitenkin on, ettei keksintö rajoitu edellä kuvattuihin suoritusmuotoihin tai niiden yhdistelmiin. Keksintö voidaan toteuttaa muullakin kuin edellä erityisesti kuvatulla tavalla esitetystä patentissaan muokkauksista kuitenkaan poikkeamatta.

Keksinnön mukaisessa prosessissa vastavirtaisuutta hyödynnetään uudentyyppisen raaka-aineen käsitellyssä. HDO-vaiheessa tyypillisesti käytetty myötävirtaisuus johtaa pienen vedyn osapaineeseen ja suureen kaasuvirtaan ja katalyytin myrkyttymiseen katalyyttipedin loppupäässä. Katalyytin myrkyttymistä edistävät HDO-vaiheessa vesi, hiilimonoksidit ja hiilidioksidit. Lisäksi HDO-vaiheessa reagoinet typpi-, rikki- ja fosforiyhteenet siirtyvät osaksi kaasuaasiin. Hyödyntämällä vastavirtaisuutta isomerointiosassa ja valinnaisesti vastavirtaisuutta tai
myötävirtaisuutta HDO-osassa sekä poistamalla katalyyttimyrkkyjä ja syntyneitä sivutuotteita ulosotetuista ja kierrätettävistä virroista voidaan katalyyttien kestoai- kaa pidentää sekä HDO-vaiheessa että isomerointivaiheessa.

Valinnaisen esihiidraussvaiheen avulla voidaan vähentää kaksoissidosten sivureak- tioita kuten polymeroitumista, renkaan muodostumista ja aromatisoitumista, jotka aiheuttavat katalyytin koksaaantumista ja näin lyhentävät käytäntöjakoia. Esihiidraus johtaa myös loppuotoiteen (diesel) saanon huomattavaan parantumiseen.

Isomerointivaiheessa kaasu ja neste ajetaan vastavirtaisesti katalyyttippedissä ja vastavirtaisuussperiaatetta voidaan soveltaa tarpeen mukaan yhdessä tai myös useammassa katalyyttippedissä, lisäksi vastavirtaisuuden avulla voidaan tehokkaasti suojata arvokas jalometallikatalyytti. Isomerointivaiheesta tuleva tuorevetky menee suoraan HDO-reactooriin ilman komprimointia. Isomerointivaiheessa isomeroinnin paine on selvästi korkeampi kuin HDO-vaiheessa eikä isomeroinnista tule merkit- tävästi katalyyttimyrkkyjä vedyn mukana. Isomerointivaihe kuluttaa hyvin vähän vetyä, ja HDO-vaiheen tarvitsema vetymäärä taas on niin suuri, että vedyn kierrätystä ei isomeroinnissa tarvita. HDO- ja isomerointivaiheisiin riittää yksi kierrätyskompressorin. Sijoittamalla HDO- ja isomerointivaihe samaan vaippaan saavu-
tetaan merkittäviä säästöjä investoinnissa.
Keksinnön mukaisen ratkaisun avulla voidaan säilyttää korkea vedyn osapaine läpi koko reaktorin ja pitää epäpuhtaude alhaisella tasolla. Keksinnön avulla voidaan hiilimonoksiidi, hiilidioksiidi ja vesipitoisuudet saada niin alhaisiksi, että kevyt stripperaus HDO-vaiheessa tai erillisessä kaasu/neste-erotussäiliössä on riittävä poistamaan loput epäpuhtaude syötöstä ennen isomerointia.

Keksinnön mukaisen, yksinkertaistetun prosessin etuja on myös isomerointikatalyytin suojaaminen, jolloin voidaan estetään katalyytin deaktivoituminen ja vastavirtaisuudesta johtuen myös veden määrä nestefaasissa vähenee. Vesi poistetaan ennen isomerointivaihetta, joka osaltaan vähentää isomerointikatalyytin deaktivoitumista. Lisäksi on yllättävää, että prosessissa voidaan käyttää biosyöttöä.

Keksinnön mukaisella prosessilla valmistetun tuotteen kylmäominaisuudet ovat huomattavasti paremmat kuin teknikan tason mukaisilla menetelmillä saadut. Tuotteen samepiste voi olla jopa alle -30°C, joten se soveltuu hyvin käytettäväksi myös vaativissa kylmissä olosuhteissa.

Keksintöä havainnollistetaan seuraavien esimerkkien avulla, joihin sitä ei kuitenkaan ole tarkoitus rajoittaa.

ESIMERKIT

Esimerkki 1

Hiilivetykomponentin valmistus mäntyöljyn rasvahappofraktiosta (TOFA)

keksinnön mukaisella prosessilla

Syöttöä käytettiin TOFA:aa, jonka tyypilliset ominaisuudet on esitetty seuraavassa taulukossa 1.
Taulukko 1. TOFA (Tall Oil Fatty Acid)

<table>
<thead>
<tr>
<th>Omnaisuus</th>
<th>Lukuarvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happoluku</td>
<td>194</td>
</tr>
<tr>
<td>Saippuouitumisluku</td>
<td>195</td>
</tr>
<tr>
<td>Hartshappoja</td>
<td>1,9 %</td>
</tr>
<tr>
<td>Saippuoinmattomia</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Jodiluku (Wijs)</td>
<td>152</td>
</tr>
<tr>
<td>Väri °G</td>
<td>4–5</td>
</tr>
<tr>
<td>Tiheys (20 °C)</td>
<td>910 kg/m³</td>
</tr>
<tr>
<td>Taitekerroin nD20</td>
<td>1,471</td>
</tr>
</tbody>
</table>

Rasvahappokostumus % (tyyppillinen)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>0,4</td>
</tr>
<tr>
<td>17:0 ai</td>
<td>0,6</td>
</tr>
<tr>
<td>18:0</td>
<td>1,1</td>
</tr>
<tr>
<td>18:1 (9)</td>
<td>30,2</td>
</tr>
<tr>
<td>18:1 (11)</td>
<td>1,1</td>
</tr>
<tr>
<td>18:2 (5,9)</td>
<td>1,0</td>
</tr>
<tr>
<td>18:2 (9,12)</td>
<td>41,7</td>
</tr>
<tr>
<td>19:1 (9) ai</td>
<td>0,6</td>
</tr>
<tr>
<td>18:3 (5,9,12)</td>
<td>9,0</td>
</tr>
<tr>
<td>19:2 (5,9) ai</td>
<td>0,3</td>
</tr>
<tr>
<td>19:2 (9,12) ai</td>
<td>0,3</td>
</tr>
<tr>
<td>18:3 (9,12,15)</td>
<td>0,6</td>
</tr>
<tr>
<td>20:0</td>
<td>0,4</td>
</tr>
<tr>
<td>18:2 konjug.</td>
<td>5,5</td>
</tr>
<tr>
<td>18:3 konjug.</td>
<td>2,1</td>
</tr>
<tr>
<td>20:2 (11,14)</td>
<td>0,2</td>
</tr>
<tr>
<td>20:3 (5,11,14)</td>
<td>1,1</td>
</tr>
<tr>
<td>20:3 (7,11,14)</td>
<td>0,2</td>
</tr>
<tr>
<td>Muut</td>
<td>3,6</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>100,0</td>
</tr>
</tbody>
</table>
HDO-vaihe

HDO-vaiheessa TOFA vedytettiin normaalilla keskitisleiden rikinpoistokatalyytillä, NiMo/Al₂O₃. Tuotteesta erotettiin vesifaasi, jota oli muodostunut n. 10 p-%.

Isomeroointivaihe

Prosessilla saadun hiilivyökomponentin eli HDO- ja isomeroointivaiheen jälkeen saadun prosessorin TOFA:n ominaisuudet esitetään taulukossa 2.
Taulukko 2. Prosessoidun TOFA:n ominaisuudet

<table>
<thead>
<tr>
<th>Analyysi</th>
<th>Menetelmä ASTM</th>
<th>Prosessoitu TOFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiheys 50 °C</td>
<td>D4052</td>
<td>769,7</td>
</tr>
<tr>
<td>Rikki</td>
<td>D4294</td>
<td>0</td>
</tr>
<tr>
<td>Br-indeksi</td>
<td>D2710</td>
<td>200</td>
</tr>
<tr>
<td>Samepiste</td>
<td>D2500</td>
<td>-12</td>
</tr>
<tr>
<td>Jähmepiste</td>
<td>D97</td>
<td>-12</td>
</tr>
<tr>
<td>Suodatettavuus</td>
<td>EN116</td>
<td>-11</td>
</tr>
<tr>
<td>Tislaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA/°C</td>
<td>D86</td>
<td>122</td>
</tr>
<tr>
<td>5 ml/°C</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>10 ml/°C</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>30 ml/°C</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>50 ml/°C</td>
<td></td>
<td>297</td>
</tr>
<tr>
<td>70 ml/°C</td>
<td></td>
<td>299</td>
</tr>
<tr>
<td>90 ml/°C</td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>95 ml/°C</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>TL/ ml/°C</td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>Setaaniluku</td>
<td>D643</td>
<td>> 74</td>
</tr>
<tr>
<td>n-Parafiinit</td>
<td>GC-MS</td>
<td>13</td>
</tr>
<tr>
<td>i-Parafiinit</td>
<td>GC-MS</td>
<td>73</td>
</tr>
</tbody>
</table>

Keksinnön mukaisesti prosessoidun TOFA:n ominaisuudet ovat erinomaiset. Isomeroinnilla on pystytty parantamaan huomattavasti kylmäominaisuuksia setaanilukua laskematta. Tuote soveltuu hyvin dieselpolttoaineen komponentiksi ilman seorsajoitukseja ja se sopii myös hyvin liuottimiin.

Esimerkki 2

Alkaliraffinoidun rypsiöljyn esihydraus keksinnön mukaisesti

Esihydrauksia suoritettiin autokaavissa 100 - 290°C lämpötiloissa ja 30 - 35 bar paineessa. Syöttönä käytettiin alkaliraffinoitua rypsiöljyä. Taulukossa 3 on esitetty rypsiöljysyötön ja esihydratun tuotteen ominaisuuksia. Esihydratun tuotteen ominaisuuksista nähdään, että triglyceriderirakenne on säilynyt lähes muuttumattomana.
(GPC=geelipermetaatiokromatografia), ja rasvahappoketjujen kaksoissidokset on tyydytetty lähes täydellisesti (jodiluku).

Taulukko 3. Esihydratun tuotteen ominaisuuksia

<table>
<thead>
<tr>
<th>Analyysi</th>
<th>Rypsiöljysyöttö</th>
<th>Esihydrattu tuote/150°C</th>
<th>Esihydrattu tuote/250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPC-analyysi:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- oligomeerit %</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>- triglyseridit %</td>
<td>97</td>
<td>95,9</td>
<td>94,9</td>
</tr>
<tr>
<td>- diglyseridit %</td>
<td>2,3</td>
<td>3,1</td>
<td>3,5</td>
</tr>
<tr>
<td>- monoglyseridit %</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>- rasvahapot tai</td>
<td>0,7</td>
<td>0,9</td>
<td>1,3</td>
</tr>
<tr>
<td>hiillivedyt %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jodiluku</td>
<td>112</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Patenttivaatimukset

1. Prosessi biologista alkuperää olevan hiilivetykomponentin valmistamiseksi, **tunnettu** siitä, että prosessi käsittää vähintään kaksi vaihetta, hydrodeoksygenaatiomallin ja isomerointivaiheen ja syöttönä käytetään rasvahappoja ja/tai rasvahappoestereitä sisältävää biologista raaka-ainetta, joka on valittu kasvöljyjen, eläinrasvojen ja kalaöljyjen tai niiden seoksien joukosta, ja hydrodeoksygenaatiomallin ja/tai vastavirtaisena hydrodeoksygenaatiokatalyytipitiin ja hydrodeoksygenaatiomallin lämpötila vaihtelee välillä 300–400 °C ja paine vaihtelee välillä 50–100 bar, hydrodeoksygenaatiomallin jälkeen komponentti johdetaan vastavirtaisena isomerointivaiheeseen ja isomerointivaiheessa lämpötila vaihtelee välillä 300–400 °C ja paine vaihtelee välillä 50–100 bar, ja että ennen hydrodeoksygenaatiomallin biologiselle raaka-ainelle suoritetaan esihydraus 10-100 bar vetypainessa ja 150-250°C lämpötilassa.

2. Patenttivaatimuksen 1 mukainen prosessi, **tunnettu** siitä, että syöttönä käytetään rypsiöljyä, rapsiöljyä, canolaöljyä, mäntyöljyä, aurinkokukkaöljyä, soijaöljyä, hamppuöljyä, oliiviöljyä, pellavaöljyä, sinappiöljyä, palmuöljyä, maapähkinäöljyä, risiiniöljyä, kookosöljyä, eläinrasvoja kuten ihraa, talia tai traania tai elintarvikekierrätysrasvoja.

3. Patenttivaatimuksen 1 tai 2 mukainen prosessi, **tunnettu** siitä, että syöttönä käytetään biologisen raaka-aineen ja hiilivedyn/hiilivetyjen seosta.

4. Jonkin patenttivaatimuksen 1–3 mukainen prosessi, **tunnettu** siitä, että hydrodeoksygenaatiomallin katalyytipiti käsittelee yhden tai useamman katalyytipedin.
5. Patenttivaatimuksen 4 mukainen prosessi, tunnettu siitä, että hydrodeoksygenaatiovaiheen katalyytipeti käsitää kaksi tai useampia katalyytipetejä ja niistä yksi tai useampi toimii vastavirtaperiaatteella.

7. Patenttivaatimuksen 6 mukainen prosessi, tunnettu siitä, että jäähdytyksessä lauhtuneesta hiilivedystä poistetaan vesi ennen kuin se palautetaan hydrodeoksygenaatiovaiheeseen.

15. Patenttivaatimuksen 14 mukainen prosessi, tunnettu siitä, että hydraulikatyytti on Pd-, Pt-, Ni-, NiMo- tai CoMo-katalyytti kantajalla ja kantajana on alumiini- ja/tai piikoksidi.

Patentkrav

1. Process för framställning av en kolvätekomponent av biologiskt ursprung, kännetecknad av att processen omfattar åtminstone två steg, ett hydrodeoxygenationsteg och ett isomeriseringssteg och som inmatning används ett biologiskt råmaterial som innehåller fettsyror och/eller fettsyraestrar, som valts i gruppen bestående av växtoljor, djurfetter och fiskoljor eller blandningar av dessa, och att vätegas och det biologiska rå materialet leds i hydrodeoxygenationssteget antingen med- eller motströms till en hydrodeoxygenationskatalysatorbädd och att i hydrodeoxygenationssteget varierar temperaturen mellan 300-400 °C och trycket varierar mellan 50-100 bar, efter hydrodeoxygenationssteget leds komponenten motströms till isomeriseringssteget och i isomeriseringssteget varierar temperaturen mellan 300-400 °C och trycket varierar mellan 50-100 bar, och att en förhydrering utförs på det biologiska råmaterialet före hydrodeoxygenationssteget under ett vätetryck om 10-100 bar och vid en temperatur om 150-250 °C.

2. Process enligt patentkrav 1, kännetecknad av att som inmatning används rypsolja, rapsolja, canolaolja, tallolja, solrosolja, sojaolja, hampolja, olivolja, linolja, senapsolja, palmolja, jordnötsolja, ricinolja, kokosolja, djurfetter såsom ister, tälg eller tran eller livsmedelsåtervinningsfetter.

3. Process enligt patentkrav 1 eller 2, kännetecknad av att som inmatning används en blandning av biologiskt råmaterial och kolväte/kolväten.

4. Process enligt något av patentkraven 1-3, kännetecknad av att katalysatorbädden i hydrodeoxygenationssteget omfattar en eller flera katalysatorbäddar.

5. Process enligt patentkrav 4, kännetecknad av att katalysatorbädden i hydrodeoxygenationssteget omfattar två eller flera katalysatorbäddar och en eller flera av dem fungerar enligt motströmsprincipen.

6. Process enligt något av patentkraven 1-5, kännetecknad av att gasflödet som kommer från hydrodeoxygenationssteget nedkyls och från det avlägsnas
kolmonoxid, koldioxid, kväve-, fosfor- och svavelföreningar, gasformiga lätta kolväten och andra orenheter, och det sålunda renade väten returneras till hydrodeoxygenations- eller isomeriseringssteget.

7. Process enligt patentkrav 6, kännetecknad av att från det under nedkylningen kondenserade kolvälet avlägsnas vatten innan det returneras till hydrodeoxygenationssteget.

8. Process enligt något av patentkraven 5-7, kännetecknad av att en eller flera av motströmskatalysatorbäddarna i hydrodeoxygenationssteget ersätts med ett inert skikt av fyllnadsbitar, varvid strippning av den från hydrodeoxygenationssteget erhållna produkten utförs med värme.

11. Process enligt något av patentkraven 1-10, kännetecknad av att trycket i isomeriseringssteget är högre än i hydrodeoxygenationssteget.

12. Process enligt något av patentkraven 1-11, kännetecknad av att hydrodeoxygenationssteget och isomeriseringssteget utförs i samma tryckkärl eller i olika tryckkärl.

13. Process enligt något av patentkraven 1-12, kännetecknad av att förhydrieringen utförs i samma tryckkärl som eller i andra tryckkärl än hydrodeoxygenations- och isomeriseringsstegen.
14. Process enligt något av patentkraven 1-13, kännenetecknad av att förhydreringen utförs i närvaro av en hydrieringskatalysator och att hydrieringskatalysatorn innefattar metaller i den periodiska gruppen VIII och/eller VIB.

