The selected/identified protein is a conditionally active protein.

Methods for assessing and identifying or evolving conditionally active therapeutic proteins.
METHODS FOR ASSESSING AND IDENTIFYING OR EVOLVING CONDITIONALLY ACTIVE THERAPEUTIC PROTEINS

RELATED APPLICATIONS

Benefit of priority is claimed to U.S. Provisional Application Serial No. 61/402,979, entitled "METHODS FOR ASSESSING AND IDENTIFYING OR EVOLVING CONDITIONALLY ACTIVE THERAPEUTIC PROTEINS AND CONDITIONALLY ACTIVE THERAPEUTIC PROTEINS," filed on September 8, 2010 to Lalitha Kodandapani, Philip Lee Sheridan, Harold Michael Shepard, Louis H. Bookbinder and Gregory I. Frost.

FIELD OF THE INVENTION

Methods for evolving or selecting therapeutic proteins with reduced adverse side-effects and the resulting proteins are provided.

BACKGROUND

Proteins have a role as pharmaceutical or therapeutic agents for the treatment of a wide range of human diseases, such as cancer, hemophilia, anemia and diabetes, and for a number of diseases are the only effective treatment. As such, there is a need to identify protein therapeutics with altered or improved activities or properties. It is an object herein to provide a method to identify or generate such proteins.

SUMMARY

Provided are methods for identifying/selecting conditionally active proteins. In the method, the activity of the protein is tested under conditions in which normal or increased activity is desired, and the activity of the protein is tested under conditions in which reduced activity compared to normal is desired. The activity of the protein under conditions in which normal or increased activity is desired can be compared to the activity of the protein under conditions in which reduced activity compared to normal is desired. Proteins can be selected and/or identified that have greater activity under conditions in which normal or increased activity is desired compared to conditions in which reduced activity compared to normal is desired.

In the methods, the activity of the protein under conditions in which reduced activity compared to normal is desired can be reduced compared to normal. In the methods, the conditions in which normal or increased activity is desired and the conditions in which reduced activity compared to normal is desired can be identical,

RECTIFIED SHEET (RULE 91) ISA/EP
except for a condition or conditions that render the protein conditionally active. In the methods herein, the activity that is tested can be binding to a target of the protein. The target can be immobilized on a solid support. In the methods herein, binding can be assessed by an immunoassay. Immunoassays include ELISA immunoassays, heterogeneous immunoassays and homogeneous immunoassays.

In the methods herein, the conditions in which normal or increased activity of the protein is desired can simulate a disease microenvironment, and the conditions in which reduced activity compared to normal is desired can simulate a healthy tissue environment. Exemplary of a healthy tissue environment is a non-tumor tissue environment, such as a systemic environment or a healthy tissue. Exemplary of healthy tissues are the GI tract, the skin, the vasculature, the blood, and the extracellular matrix. Exemplary of diseased microenvironments is a tumor microenvironment. A tumor or disease microenvironment can have lower than neutral pH or lower pH than a healthy tissue microenvironment. A tumor or disease microenvironment can include one or more of increased vascularization, hypoxia, lowered pH, increased interstitial fluid pressure, altered metabolites or metabolism indicative of a tumor or other disease. For example, a tumor or other disease microenvironment can have elevated lactate concentration and/or increased pyruvate compared to a healthy microenvironment.

Also provided herein are methods in which conditions in which normal or increased activity of the protein is desired can include lower than neutral pH and elevated lactic acid compared to the conditions in which reduced activity compared to normal is desired.

In the methods herein, the protein tested can be a therapeutic protein and/or a protein with undesirable side effects manifested in healthy tissue. In the methods herein, reducing the activity of the protein under conditions in which reduced activity compared to normal is desired can ameliorate or prevent the undesirable side-effects.

In the methods provided herein, the activity of the protein can be tested in the presence of human serum. Human serum can be present in an amount that simulates physiological conditions, and the amount of serum present under conditions in which normal or increased activity is desired can be the same as the amount of serum present under conditions in which reduced activity compared to normal is desired. For
For example, the methods provided herein can be performed in the presence of at least about or at any of 3 %-30 %, inclusive, or 5%-30%, inclusive, or 5%-25%, inclusive, 10%-30 %, inclusive, or 15%-30%, inclusive, or 15%-25%, inclusive, of human serum by volume, including at or about 25% (plus or minus 10%) of human serum by volume.

In the methods provided herein, a plurality of proteins can be tested under conditions in which normal or increased activity is desired and under conditions in which reduced activity compared to normal is desired. In this particular method, each protein is tested under both conditions, and any proteins that have greater activity under conditions in which normal or increased activity is desired than under conditions in which reduced activity compared to normal is desired can be selected. In some examples, the activity is greater by a predetermined amount or ratio. For example, the activity is increased by at least 5%, 10%, 15%, 20%, 25%, 35%, 50%, 100%, 2-fold, 5-fold, 10-fold, 20-fold or more.

In the methods provided herein, the target protein can be a receptor or a portion thereof that binds to a ligand. Exemplary of a target protein is a receptor that is a tumor antigen. For example, the target protein is a member of the Her family of receptors or the target protein is the EGFR receptor or the extracellular domain thereof. In the methods provided herein, the protein whose activity is tested (the tested protein) can be a therapeutic protein that treats a tumor or other disease. In some examples, the therapeutic protein is an antibody, an enzyme, a hormone, a cytokine or active portion thereof, and reference to an antibody herein refers to an antibody or antigen-binding fragment thereof. In other examples of the method provided herein, the proteins can be modified variants of a therapeutic protein.

Exemplary of a therapeutic protein is a ligand for a target receptor. In some examples of the method provided herein, the protein contains a multimerization domain, such as, for example, a multimerization domain that contains an Fc domain or modified Fc domain. In exemplary methods, the therapeutic protein is an antibody, an enzyme, a hormone or a cytokine. For example, the therapeutic protein is an antibody.

In the methods provided herein, the protein tested in the method can be an anti-tumor antibody, selected from among those listed in Table 5 (the table(s) in the specification that list exemplary anti-tumor antibodies). In some examples, the anti-
tumor antibody exhibits undesirable side effects in healthy tissues. For example, the antibody is an anti-EGFR antibody or an anti-CTLA4 antibody that exhibits undesirable side effects in healthy tissues.

In other examples of the method provided herein, the proteins can be modified variants of a therapeutic protein. The modified variants can contain amino acid replacements, insertions and/or deletions. In some examples, a collection of variants are tested. In some examples, each variant differs from the wildtype or unmodified protein and all other variants by a single amino acid. In other examples, each variant contains two, three, four, five, six, seven, eight, nine or more different amino acids from the unmodified or wildtype protein. In the methods provided herein, in the collection of variants, the amino acid at each changed position is replaced by up to 1-19 other amino acids than the original amino acid. In other examples, histidine is a replacing amino acid or the histidines in the protein are replaced by a non-basic or uncharged amino acid. Each variant protein can be tested individually. For example, each variant protein can be tested in a high throughput format or an automated method.

In the methods provided herein, the selected protein can be conditionally active such that it has greater activity in the tumor or other disease microenvironment compared to the non-tumor environment. The methods provided herein can be repeated a plurality of times, wherein in each repetition, further variants of a selected protein or proteins are tested, whereby the therapeutic protein is evolved to exhibit reduced toxicity or adverse side-effects. In the methods provided herein, variant proteins can be produced by expression from a vector that contains a nucleic acid molecule encoding a variant protein.

In some examples of the methods provided herein, the protein that is tested is a variant antibody that contains one or more amino acid replacements in a CDR. In specific examples, every amino acid along the length of the protein or a selected portion thereof is replaced, one-by-one with up to 19 other amino acids. In other examples, the protein is an antibody and the selected portion is a CDR.

In one example, the therapeutic protein is an anti-EGFR antibody and the reduced adverse side effects are reduced dermal toxicities associated with systemic exposure to the antibody. In some examples of the methods provided herein, the pH of
the tumor or other disease microenvironment is about or is 5.8-6.8, inclusive. In other examples, the selected protein is anti-EGFR antibody that preferentially binds to EGFR within the tumor microenvironment of reduced pH of 5.8-6.8 and lactate concentrations of about 12-20 mM compared to a normal physiologic pH of 7.3-7.4 and normal lactate concentrations below 12 mM.

Provided herein is a method for identifying a conditionally active protein in which the method is performed by contacting a solid support coated with EGFR or the EGFR ECD with buffer at about pH 7.3-7.4 containing 1 mM lactic acid and about 25% human serum; contacting a second duplicate support with buffer at about pH 6 containing 12-20 mM, such as 16.6 mM, lactic acid and about 25% human serum; washing the supports with the corresponding buffer (pH 6.0 or pH 7.4); binding anti-EGFR-tagged, such as FLAG-tagged, standard in either the pH 7.4 buffer with lactic acid and human serum, or the pH 6.0 buffer with lactic acid and human serum to the corresponding support; and detecting binding of the anti-EGFR to the EGFR by adding goat-anti-Tag-enzyme, such as horse radish peroxidase (HRP), in the corresponding buffer and enzyme substrate to detect or quantitate binding of the anti-EGFR to each support.

Also provided herein are therapeutic proteins that are selected/identified or evolved by any of the methods provided herein. Also provided herein is a variant anti-tumor antibody that exhibits reduced dermal toxicity compared to an unmodified antibody. Also provided herein is an anti-EGFR antibody that exhibits reduced dermal toxicity compared to Erbirux.

Provided are methods for identifying/selecting a therapeutic protein that treats tumors and that is more active in low pH than at neutral pH. In the method, the activity of the protein is tested under conditions the comprise a low pH, and the activity of the protein is tested under conditions that comprise a neutral pH. The activity of the protein under conditions that comprise low pH can be compared to the activity of the protein under conditions that comprise neutral pH. Proteins can be selected and/or identified that are more active at low pH than at high pH. Low pH can be any pH that is less than 7.4, such as between or about between 5.8 to 6.8. Neutral pH can also be any pH is or is about between 7.2 to 7.6, such as 7.4.
In the methods, conditions that comprise low pH can include one or more conditions selected from among increased lactate concentration, increased pyruvate concentration and hypoxia. For example, the conditions that comprise low pH can include increased lactate concentration selected from among 10 mM to 20 mM lactic acid or 15 mM to 18 mM lactic acid; or at least about or 16 mM, 16.5 mM or 17 mM lactic acid. In the methods, conditions that comprise neutral pH can include a lactate concentration selected from among 0.5 to 5 mM or 0.2 mM to 4 mM lactic acid; or at or about 0.5, 1, 2, 3, 4, or 5 mM lactic acid.

Also provided herein are methods for identifying/selecting a therapeutic protein that is more active in a tumor microenvironment than in a non-tumor microenvironment. In the method, the activity of the protein is tested under a condition that exists in a tumor microenvironment but not a non-tumor environment in which activity is desired, and the activity of the protein is tested under a condition that exists in a non-tumor microenvironment. The activity of the protein under a condition that exists in a tumor microenvironment can be compared to the activity of the protein under a condition that exists in a non-tumor microenvironment. Proteins can be selected and/or identified that have greater activity under a condition that exists in a tumor microenvironment compared to under a condition that exists in a non-tumor microenvironment, thereby identifying a protein that is more active in a tumor microenvironment than in a non-tumor microenvironment. The non-tumor microenvironment can be a systemic microenvironment and/or a healthy tissue, such as the gastrointestinal (GI) tract, the skin, the vasculature, the blood or the extracellular matrix.

The testing of the activity of the protein under conditions that comprise low pH and under conditions that comprise neutral pH can be performed under identical conditions, except for a condition or conditions that exists in a tumor microenvironment but not in a non-tumor microenvironment. Exemplary of conditions that exist in a tumor microenvironment include one or more properties such as increased vascularization, hypoxia, lowered pH, increased lactate concentration, increased pyruvate concentration, increased interstitial fluid pressure and altered metabolites or metabolism indicative of a tumor.
The conditions that exist in a tumor microenvironment can include lower than neutral pH or lower pH than the non-tumor microenvironment. For example, the condition that exists in a tumor microenvironment can be a pH below 7.4. In some examples, the pH of the tumor is about or is 5.8-6.8, inclusive, and the condition that exists in a tumor microenvironment is a pH between or about between 5.8 to 6.8. The conditions that exist in a tumor microenvironment can include elevated lactate concentration and/or increased pyruvate compared to the conditions that exist in a non-tumor microenvironment.

The condition in which the protein is tested that exists in a tumor microenvironment but not a non-tumor environment in which activity is desired, can include lower than neutral pH and elevated lactic acid concentration compared to the conditions in which the protein is tested that includes a condition that exists in a non-tumor microenvironment. For example, the lower than neutral pH can be between 5.8 and 6.8, inclusive, or 5.8 and 6.5, inclusive. The condition in which the protein is tested that exists in a tumor microenvironment but not a non-tumor environment in which activity is desired can include increased lactate concentration selected from among 10 mM to 20 mM lactic acid or 15 mM to 18 mM lactic acid; or at least about or 16 mM, 16.5 mM or 17 mM lactic acid. The condition in which the protein is tested that exists in a non-tumor microenvironment can include a lactate concentration selected from among 0.5 to 5 mM or 0.2 mM to 4 mM lactic acid; or at or about 0.5, 1, 2, 3, 4, or 5 mM lactic acid. In some examples of the methods, the protein is a therapeutic protein that treats a tumor. In some examples, a therapeutic protein is an antibody, an enzyme, a hormone, a cytokine or active portion thereof. Reference herein to an antibody herein includes an antibody or antigen-binding fragment thereof.

In some examples, the therapeutic protein is a ligand for a target receptor, and/or an anti-tumor antibody.

Anti-tumor antibodies for use in the methods provided herein include Cetuximab (Erbitux®), Trastuzumab (Herceptin®), Rituximab (Rituxan®, MabThera®), Bevacizumab (Avastin®), Alemtuzumab (Campath®), Panitumumab (Vectibix®), Ranibizumab (Lucentis®), Ibritumomab, Ibritumomab tiuxetan (Zevalin®, Tositumomab, Iodine 1131 Tositumomab (BEXXAR®), Catumaxomab (Removab®), Gemtuzumab, Gemtuzumab ozogamicine (Mylotarg®), Abatacept.
(CTLA4-Ig, Orencia®), Belatacept (L104EA29YIg; LEA29Y; LEA), Ipilimumab (MDX-010, MDX-101), Tremelimumab (ticilimumab, CP-675,206), PRS-010, PRS-050, Aflibercept (VEGF Trap, AVE005), Volociximab (M200), F200, MORAb-009, SS1P (CAT-5001), Cixutumumab (IMC-A12), Matuzumab (EMD72000), Nimotuzumab (h-R3), Zalutumumab (HuMax-EGFR), Necitumumab IMC-1IF8, mAb806/ch806, Sym004 and mAb-425. In some examples, the anti-tumor antibody is Cetuximab (Erbitux®).

The methods provided herein can be performed in vitro or in vivo.

In the methods provided, a plurality of proteins can be tested, and proteins that have greater activity in low pH conditions compared to neutral pH can be selected. In the methods provided, a plurality of proteins can be tested and proteins that have greater activity under a condition that exists in a tumor microenvironment than a non-tumor microenvironment can be selected. The plurality of proteins can include modified variants of a therapeutic protein, and a collection of variants can be tested.

The therapeutic proteins can include a multimerization domain, and the multimerization domain can include an Fc domain or modified Fc domain. A therapeutic protein can be an antibody (including an anti-tumor antibody), an enzyme, a hormone or a cytokine. In the methods provided, an anti-tumor antibody can be selected from among Cetuximab (Erbitux®), Trastuzumab (Herceptin®), Rituximab (Rituxan®, MabThera®), Bevacizumab (Avastin®), Alemtuzumab (Campath®), Panitumumab (Vectibix®), Ranibizumab (Lucentis®), Ibritumomab, Ibritumomab tiuxetan (Zevalin®), Tositumomab, Iodine 1131 Tositumomab (BEXXAR®), Catumaxomab (Removab®), Gemtuzumab, Gemtuzumab ozogamicine (Mylotarg®), Abatacept (CTLA4-Ig, Orencia®), Belatacept (L104EA29YIg; LEA29Y; LEA), Ipilimumab (MDX-010, MDX-101), Tremelimumab (ticilimumab, CP-675,206), PRS-010, PRS-050, Aflibercept (VEGF Trap, AVE005), Volociximab (M200), F200, MORAb-009, SS1P (CAT-5001), Cixutumumab (IMC-A12), Matuzumab (EMD72000), Nimotuzumab (h-R3), Zalutumumab (HuMax-EGFR), Necitumumab IMC-1 IF8, mAb806/ch806, Sym004 and mAb-425.

Modified variants of a therapeutic protein or plurality of therapeutic proteins can include amino acid replacements, insertions and/or deletions of an amino acid
residue or residues compared to an unmodified form of the therapeutic protein. For example, each variant protein can contain a single amino acid replacement compared to an unmodified form of the therapeutic protein. Each variant protein can contain two, three, four, five, six, seven, eight, nine or more amino acid replacements compared to an unmodified form of a variant protein, such as a therapeutic antibody.

In some examples, the protein that is tested is a variant antibody that comprises one or more amino acid replacements in a complementarity determining region (CDR) compared to an unmodified form of the antibody.

In the methods provided, variants of a therapeutic protein can be tested that include replacement of the amino acid at each changed position by up to 1-19 other amino acids than the original amino acid at the position, and every amino acid can be replaced along the length of the therapeutic protein, or a selected portion thereof. Provided are methods in which a modified protein is an antibody and the selected portion that is modified is a CDR.

Replacement amino acids can be selected from among Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val, with the proviso that the replacement amino acid differs from the amino acid at the corresponding position in the therapeutic protein. An example of a replacement amino acid is histidine. In some examples, the histidines in a protein are replaced by a non-basic or uncharged amino acid. In some methods, modifications comprise amino acid replacement with an amino acid selected from among Arg, Asp, Glu, His and Lys, in some examples, replacement with His.

In the methods provided, each variant protein, such as a variant protein in a collection can be tested individually, such as, for example, in an array, including an addressible array.

In the methods provided, the activity that is tested can be binding to a target protein of the therapeutic protein. Binding can be assessed by an immunoassay, such as, for example, an ELISA. Examples of an immunoassay is a heterogeneous immunoassay that can include immobilizing the target protein on a solid support; contacting the therapeutic protein with the target protein, wherein the therapeutic protein is detectably labeled; removing unbound therapeutic protein; and detecting or measuring the binding of the labeled therapeutic protein to the target protein. The
immunoassay can be homogenous, comprising contacting the therapeutic protein vsath a target protein, wherein the therapeutic protein is detectably labeled; and detecting or measuring the binding of the labeled therapeutic protein to the target protein.

Provided are methods in which binding activity is assessed using a cell surface expression system comprising a cell or cells expressing therapeutic protein on the surface. The therapeutic protein can be expressed on the surface of cells, a target protein can be contacted with a population of the cells; and a cell or cells can be identified that binds to the target protein, thereby identifying a therapeutic protein that exhibits binding activity. The target protein can be detectably labeled or can be detected. The target protein can be fluorescently labeled or detected by a secondary reagent that is fluorescently labeled.

Binding can be detected or measured by fluorescence activated cell sorting (FACS).

Binding activity can be tested in the methods using a cell surface expression system comprising cells expressing a therapeutic protein, and a cell or cells can be selected that bind to the target protein and a cell or cells can be selected that do not bind to the target protein. The cell or cells that are selected that do not bind to the target protein can be isolated and grown in a cell culture medium to generate a second population of cells expressing the therapeutic protein on the surface. In some examples binding activity is tested under conditions whereby cells from the second population of cells are contacted with the target protein, and a cell or cells are identified that bind to the target protein.

BRIEF DESCRIPTION OF THE FIGURES

FIGURE 1. Sequence of monoclonal antibody Erbitux®. Figure 1 depicts the sequence of Erbitux® (SEQ ID NO: 1 and 2). FIGURE 1A depicts the sequence of the heavy chain. FIGURE 1B depicts the sequence of the light chain. The variable chains are underlined and the residues selected for modification are in boldface, italic type.

DETAILED DESCRIPTION

Outline

A. DEFINITIONS
B. OVERVIEW OF METHOD
C. In Vitro PHYSIOLOGIC SENSITIVE METHOD
1. Support Containing Target Protein
2. Contacting Binding Biomolecule Under Simulated Binding Conditions
 a. Generation of Variant Proteins
 b. Antibody Variants
5. Exemplary Antibody Binding Molecule: anti-EGFR Antibody
3. Detection and Identification of Tumor-Specific Binding Molecules

D. METHODS OF EXPRESSING PROTEINS
1. Vectors
2. Cells and Expression Systems
 a. Prokaryotic Expression
 b. Yeast
 c. Insects
 d. Mammalian Cells
 e. Plants
15. Purification
E. Examples

A. DEFINITIONS

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the invention(s) belongs/belong. All patents, patent applications, published applications and publications, Genbank sequences, databases, websites and other published materials referred to throughout the entire disclosure herein, unless noted otherwise, are incorporated by reference in their entirety. In the event that there are a plurality of definitions for terms herein, those in this section prevail. Where reference is made to a URL or other such identifier or address, it is understood that such identifiers can change and particular information on the internet can come and go, but equivalent information can be found by searching the internet. Reference thereto evidences the availability and public dissemination of such information.

As used herein, a conditionally active protein is more active in one environment, particularly one in vivo environment, compared to a second environment. For example, a conditionally active protein can be more active in a tumor environment than in a non-tumor environment, such as a non-tumor environment in the skin, GI tract or other non-tumor environment.

As used herein, a therapeutic protein is a protein that has been used for therapy to treat a subject having a disease or condition, can be used for therapy or is a candidate for therapy. For example, a candidate for therapy is a variant (e.g. containing amino acid modifications) of a therapeutic protein that has been used for therapy. For purposes herein, a therapeutic protein, including a protein that has been used for therapy, can be used for therapy or is a candidate for therapy, can be used in
the practice of the method herein as a test protein to identify therapeutic proteins that exhibit more activity under one set of conditions than another, and hence are conditionally active.

As used herein, a "test protein," "tested protein," "binding molecule," "binding protein" or other variations thereof refer to molecules or proteins that are employed in the method herein. Any molecule or protein can be employed in the method herein to identify proteins that are conditionally active and exhibit activity under a condition or conditions that exist in a diseased microenvironment (e.g. tumor microenvironment) compared to a condition or conditions that exist in a non-diseased microenvironment. Exemplary of tested proteins are therapeutic proteins in order to evolve the therapeutic as conditionally active. Exemplary tested proteins are set forth in Table 3.

As used herein, an antibody refers to immunoglobulins and immunoglobulin portions, whether natural or partially or wholly synthetic, such as recombinantly produced, including any portion thereof containing at least a portion of the variable region of the immunoglobulin molecule that is sufficient to form an antigen binding site. Hence, an antibody or portion thereof includes any protein having a binding domain that is homologous or substantially homologous to an immunoglobulin antigen binding site. For example, an antibody refers to an antibody that contains two heavy chains (which can be denoted H and H') and two light chains (which can be denoted L and L'), where each heavy chain can be a full-length immunoglobulin heavy chain or a portion thereof sufficient to form an antigen binding site (e.g. heavy chains include, but are not limited to, VH, chains, V_{H}^{C_{H}} chains and VH-CH1-CH2-CH3 chains), and each light chain can be a full-length light chain or a portion thereof sufficient to form an antigen binding site (e.g. light chains include, but are not limited to, VL chains and VL-CL chains). Each heavy chain (H and H') pairs with one light chain (L and L', respectively). Typically, antibodies minimally include all or at least a portion of the variable heavy (VH) chain and/or the variable light (VL) chain. The antibody also can include all or a portion of the constant region.

For purposes herein, the term antibody includes full-length antibodies and portions thereof including antibody fragments, such as, but not limited to, Fab, Fab', F(ab')2, single-chain Fvs (scFv), Fv, dsFv, diabody, Fd and Fd' fragments, Fab
fragments, Fd fragments and scFv fragments. Other known fragments include, but are not limited to, scFab fragments (Hust et al., BMC Biotechnology (2007), 7:14). Antibodies include members of any immunoglobulin class, including IgG, IgM, IgA, IgD and IgE.

As used herein, a full-length antibody is an antibody having two full-length heavy chains (e.g. VH-C_h 1-C_h 2-CH3 or V_H-CH1-CH2-CH3-C_h 4) and two full-length light chains (VL-CL) and hinge regions, such as human antibodies produced by antibody secreting B cells and antibodies with the same domains that are produced synthetically.

As used herein, antibody fragment or antibody portion with reference to a "portion thereof" or "fragment thereof" of an antibody refers to any portion of a full-length antibody that is less than full length but contains at least a portion of the variable region of the antibody sufficient to form an antigen binding site (e.g. one or more CDRs) and thus retains the binding specificity and/or an activity of the full-length antibody; antibody fragments include antibody derivatives produced by enzymatic treatment of full-length antibodies, as well as synthetically, e.g. recombinantly produced derivatives. Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab') 2, single-chain Fvs (scFv), Fv, dsFv, diabody, Fd and Fd' fragments (see, for example, Methods in Molecular Biology, Vol 207: Recombinant Antibodies for Cancer Therapy Methods and Protocols (2003); Chapter 1; p 3-25, Kipriyanov). The fragment can include multiple chains linked together, such as by disulfide bridges and/or by peptide linkers. An antibody fragment generally contains at least about 50 amino acids and typically at least 200 amino acids.

Hence, reference to an "antibody or portion thereof that is sufficient to form an antigen binding site" means that the antibody or portion thereof contains at least 1 or 2, typically 3, 4, 5 or all 6 CDRs of the VH and VL sufficient to retain at least a portion of the binding specificity of the corresponding full-length antibody containing all 6 CDRs. Generally, a sufficient antigen binding site at least requires CDR3 of the heavy chain (CDRH3). It typically further requires the CDR3 of the light chain (CDRL3). As described herein, one of skill in the art knows and can identify the CDRs based on kabat or Chothia numbering (see e.g., Kabat, E.A. et al. (1991)

As used herein, complementary determining regions (CDRs; also called hypervariable regions) are regions within antibodies that determine the protein's affinity and specificity for specific antigents. Hence, a CDR is a restricted region within the variable region of antibodies that bind to antigenic determinants. The CDR of antibodies are known or can be determined based on Kabat or Chothia numbering as is known to one of skill in the art.

As used herein, "antigen-binding site" refers to the interface formed by one or more complementary determining regions (CDRs; also called hypervariable regions). Each antigen binding site contains three CDRs from the heavy chain variable region and three CDRs from the light chain variable region. An antibody molecule has two antigen combining sites, each containing portions of a heavy chain variable region and portions of a light chain variable region. The antigen combining sites can contain other portions of the variable region domains in addition to the CDRs.

As used herein, an Fv antibody fragment is composed of one variable heavy domain (VH) and one variable light (VL) domain linked by noncovalent interactions.

As used herein, a dsFv refers to an Fv with an engineered intermolecular disulfide bond, which stabilizes the VH-VL pair.

As used herein, an Fd fragment is a fragment of an antibody containing a variable domain (VH) and one constant region domain (CHI) of an antibody heavy chain.

As used herein, "Fab fragment" is an antibody fragment that contains the portion of the full-length antibody that would results from digestion of a full-length immunoglobulin with papain, or a fragment having the same structure that is produced synthetically, e.g. recombinantly. An Fab fragment contains a light chain (containing a VL and CLportion) and another chain containing a variable domain of a heavy chain (VH) and one constant region domain portion of the heavy chain (CHI); it can be recombinantly produced.

As used herein, an F(ab')2 fragment is an antibody fragment that results from digestion of an immunoglobulin with pepsin at pH 4.0-4.5, or a synthetically, e.g.
recombinantly, produced antibody having the same structure. The F(\text{ab}')2 fragment contains two Fab fragments but where each heavy chain portion contains an additional few amino acids, including cysteine residues that form disulfide linkages joining the two fragments; it can be recombinantly produced.

An Fab' fragment is a fragment containing one half (one heavy chain and one light chain) of the F(\text{ab}')2 fragment.

As used herein, an Fd' fragment is a fragment of an antibody containing one heavy chain portion of an F(\text{ab}')2 fragment.

As used herein, an Fv' fragment is a fragment containing only the V_H and V_L domains of an antibody molecule.

As used herein, an scFv fragment refers to an antibody fragment that contains a variable light chain (V_L) and variable heavy chain (V_H), covalently connected by a polypeptide linker in any order. The linker is of a length such that the two variable domains are bridged without substantial interference. Exemplary linkers are (Gly-Ser)_n residues with some Glu or Lys residues dispersed throughout to increase solubility.

As used herein, diabodies are dimeric scFv; diabodies typically have shorter peptide linkers than scFvs, and they preferentially dimerize.

As used herein, hsFv refers to antibody fragments in which the constant domains normally present in an Fab fragment have been substituted with a heterodimeric coiled-coil domain (see, e.g., Amdt et al. (2001) J Mol Biol. 7:3 12:22 1-228).

As used herein, a "variable domain" with reference to an antibody is a specific Ig domain of an antibody heavy or light chain that contains a sequence of amino acids that varies among different antibodies. Each light chain and each heavy chain has one variable region domain (V_L and V_H). The variable domains provide antigen specificity, and thus are responsible for antigen recognition. Each variable region contains CDRs that are part of the antigen binding site domain and framework regions (FRs).

As used herein, reference to a variable heavy (V_H) chain or a variable light (V_L) chain (also termed V_H domain or V_L domain) refers to the polypeptide chains that make up the variable domain of an antibody.
As used herein, framework regions (FRs) are the regions within the antibody variable region domains that are located within the beta sheets; the FR regions are comparatively more conserved, in terms of their amino acid sequences, than the hypervariable regions.

As used herein, a constant domain is a domain in an antibody heavy or light chain that contains a sequence of amino acids that is comparatively more conserved among antibodies than the variable region domain. Each light chain has a single light chain constant region (C\textsubscript{L}) domain and each heavy chain contains one or more heavy chain constant region (C\textsubscript{H}) domains, which include, CH\textsubscript{I}, CH\textsubscript{2}, CH\textsubscript{3} and CH\textsubscript{4}. Full-length IgA, IgD and IgG isotypes contain CH\textsubscript{I}, CH\textsubscript{2}, CH\textsubscript{3} and a hinge region, while IgE and IgM contain CH\textsubscript{I}, CH\textsubscript{2}, CH\textsubscript{3} and C\textsubscript{H4}. C\textsubscript{H1} and C\textsubscript{L} domains extend the Fab arm of the antibody molecule, thus contributing to the interaction with antigen and rotation of the antibody arms. Antibody constant regions can serve effector functions, such as, but not limited to, clearance of antigens, pathogens and toxins to which the antibody specifically binds, e.g. through interactions with various cells, biomolecules and tissues.

As used herein, a form of an antibody refers to a particular structure of an antibody. Antibodies herein include full length antibodies and portions thereof, such as, for example, an Fab fragment or other antibody fragment. Thus, an Fab is a particular form of an antibody.

As used herein, reference to a "corresponding form" of an antibody means that when comparing a property or activity of two antibodies, the property is compared using the same form of the antibody. For example, if it's stated that an antibody has less activity compared to the activity of the corresponding form of a first antibody, that means that a particular form, such as an Fab of that antibody, has less activity compared to the Fab form of the first antibody.

As used herein, corresponding with reference to corresponding residues, for example "amino acid residues corresponding to", refers to residues compared among or between two polypeptides that are related sequences (e.g. allelic variants, genes of the same family, species variants). One of skill in the art can readily identify residues that correspond between or among polypeptides. For example, by aligning two sequences, one of skill in the art can identify corresponding residues, using conserved
and identical amino acids as guides. One of skill in the art can manually align a
sequence or can use any of the numerous alignment programs available (for example,
BLAST). Hence, amino acid residues or positions that correspond to each other are
those residues that are determined to correspond to one another based on sequence
and/or structural alignments with a specified reference polypeptide.

As used herein, "linker" or "spacer" peptide refers to short sequences of amino
acids that join two polypeptide sequences (or nucleic acid encoding such an amino
acid sequence). "Peptide linker" refers to the short sequence of amino acids joining
the two polypeptide sequences. Exemplary of polypeptide linkers are linkers joining
a peptide transduction domain to an antibody or linkers joining two antibody chains in
a synthetic antibody fragment such as an scFv fragment. Linkers are well-known and
any known linkers can be used in the provided methods. Exemplary of polypeptide
linkers are (Gly-Ser)_n amino acid sequences, with some Glu or Lys residues dispersed
throughout to increase solubility. Other exemplary linkers are described herein; any
of these and other known linkers can be used with the provided compositions and
methods.

As used herein, "human serum" refers to normal serum that can be obtained by
pooling approximately equal amounts of the liquid portion of coagulated whole blood
from persons who are free from any disease transmissible by transfusion.

As used herein, reference to "detectable" or "detectably labeled" refers to an
atom, molecule or composition, wherein the presence of the atom, molecule or
composition can be directly or indirectly measured. Detectable labels can be used to
identify one or more of proteins in the methods provided herein. Detectable labels
can be used in any of the methods provided herein. Detectable labels include, for
example, chemiluminescent moieties, bioluminescent moieties, fluorescent moieties,
radionuclides, and metals. Methods for detecting labels are well known in the art.
Such a label can be detected, for example, by visual inspection, by fluorescence
spectroscopy, by reflectance measurement and by flow cytometry. Indirect detection
refers to measurement of a physical phenomenon of an atom, molecule or
composition that binds directly or indirectly to the detectable label, such as energy or
particle emission or absorption, of an atom, molecule or composition that binds
directly or indirectly to the detectable label. In a non-limiting example of indirect
detection, a detectable label can be biotin, which can be detected by binding to avidin. Thus, included within the scope of a detectable label or detectable moiety is a bindable label or bindable moiety, which refers to an atom, molecule or composition, wherein the presence of the atom, molecule or composition can be detected as a result of the label or moiety binding to another atom, molecule or composition.

As used herein, a label is a detectable marker that can be attached or linked directly or indirectly to a molecule or associated therewith. The detection method can be any method known in the art.

As used herein, "screening" refers to identification or selection of a protein, such as an antibody or portion thereof from a plurality of antibodies, such as a collection or library of antibodies and/or portions thereof, based on determination of the activity or property of an antibody or portion thereof. Screening can be performed in any of a variety of ways and generally involves contacting members of the collection with a target protein or antigen and assessing a property or activity, for example, by assays assessing direct binding (e.g. binding affinity) of the antibody to a target protein or by functional assays assessing modulation of an activity of a target protein.

As used herein the term "assessing" or "testing" is intended to include quantitative and qualitative determination in the sense of obtaining an absolute value for the binding of an antibody or portion thereof with a target protein and/or modulation of an activity of a target protein by an antibody or portion thereof, and also of obtaining an index, ratio, percentage, visual or other value indicative of the level of the binding or activity. Assessment can be direct or indirect. For example, binding can be determined by directly labeling an antibody or portion thereof with a detectable label and/or by using a secondary antibody that itself is labeled. In addition, functional activities can be determined using any of a variety of assays known to one of skill in the art, for example, neutralization assays and others as described herein, and comparing the activity of the membrane-associated antigen (e.g. cell such as a virus) in the presence versus the absence of an antibody or portion thereof.

As used herein, "high-throughput" refers to a large-scale method or process that permits manipulation of large numbers of molecules or compounds, generally
tens to hundred to thousands of compounds. For example, methods of purification and screening can be rendered high-throughput. High-throughput methods can be performed manually. Generally, however, high-throughput methods involve automation, robotics or software.

As used herein, "target protein" or "target of the protein" is a protein, antigen or substrate that is capable of binding or interacting with a test molecule or protein.

As used herein, "disease" refers to a pathological condition in an organism resulting from cause or condition including, but not limited to, infections, acquired conditions, genetic conditions, and characterized by identifiable symptoms. Diseases include cancer and tumors. As used herein, a "diseased microenvironment" refers to the particular conditions in a particular microenvironment that are altered or changed in disease tissues compared to normal tissues. These conditions include, for example, altered or elevated or changed vascularization, hypoxia, altered pH, co-factors, interstitial fluid pressure, and altered metabolite levels such as altered lactate or pyruvate levels.

As used herein, conditions of a "non-diseased microenvironment" or "healthy tissue environment" refer to conditions that exist under normal physiologic conditions. For example, under normal physiologic conditions the pH of a non-diseased microenvironment, such as non-diseased tissues, can be neutral. As used herein, "conditions that simulate" a diseased or non-diseased microenvironment, refer to in vitro or in vivo assay conditions that correspond to a condition or conditions that exist in the environment in vivo. For example, if a microenvironment is characterized by low pH, then conditions that simulate the microenvironment include buffer or assay conditions having a low pH.

As used herein, conditions that exist in a tumor microenvironment include conditions that exist therein compared to a non-tumor microenvironment (e.g. a healthy or non-diseased cell or tissue). Conditions that exist in a tumor microenvironment include increased vascularization, hypoxia, low pH, increased lactate concentration, increased pyruvate concentration, increased interstitial fluid pressure and altered metabolites or metabolism indicative of a tumor. For example, a condition that exists in a tumor microenvironment is low pH less than 7.4, typically between or about between 5.6 to 6.8, such as less than or about or pH 5.6, 5.7, 5.8,
5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, or 6.8. In another example, a condition that exists in a tumor microenvironment is high lactate concentration at or about between 5 mM to 20 mM lactic acid, for example 10 mM to 20 mM lactic acid such as 15 mM to 18 mM, and in particular at least or at least about or 16 mM, 16.5 mM or 17 mM lactic acid.

As used herein, conditions that exist in a non-tumor microenvironment include a condition or conditions that are not present in a tumor microenvironment. For purposes herein, the conditions or condition is the corresponding property or characteristic that is present in a tumor microenvironment and non-tumor environment, such as pH, lactate concentration or pyruvate concentration, but that differs between the two microenvironments. A condition that exists in a non-tumor microenvironment is pH from about 7.0 to about 7.8, such as at least or about or pH 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 or 7.8 (see, e.g., US Patent No. 7781405), in some examples pH 7.4. A condition that exists in a non-tumor microenvironment is lactate concentration that is 0.5 to 5 mM lactate, such as, for example 0.2 mM to 4 mM lactic acid, such as 0.5, 1, 2, 3, 4, or 5 mM lactic acid.

As used herein, a "collection of proteins" or "collection of antibodies" refers to a collection containing at least 10 different proteins and/or active portions thereof, and generally containing at least 50, 100, 500, 1000, 10^4, 10^5 or more members. The collections typically contain proteins to be screened for activity. Included in the collections are naturally occurring proteins (or active portions thereof) and/or modified proteins, in particular antibody variants or active fragments thereof. The modifications include random mutations along the length of the protein and/or modifications in targeted or selected regions (i.e., focused mutations). The modifications can be combinatorial and can include all permutations, by substitution of all amino acids at a particular locus or at all loci or subsets thereof. The collections can include proteins of full length or shorter. The size of the collection and particular collection is determined by the user. The term collection herein is used interchangeably with the term "library" and mean the same thing.

As used herein, a "template protein" or "protein not containing the mutations" refers to a protein having a sequence of amino acids that is used for mutagenesis.

5
A template protein can be the sequence of a wild-type protein, or it can be the sequence of a variant protein, for which additional mutations are made.

As used herein, "select" or grammatical variations thereof refers to picking or choosing a protein based on one or more activities of the protein. The selection can be based on the absolute activity of the protein, or selection can be based on a comparison of the relative activity of the protein compared to another protein under different conditions, the same protein under different conditions, or a different protein under different conditions.

As used herein, "identify" and grammatical variations thereof refer to the recognition of or knowledge of a protein that has a defined activity under desired conditions. Typically, in the methods herein, the protein is identified by its preferential binding under conditions that simulate a diseased environment compared to a non-diseased or normal physiologic environment.

As used herein, a molecule that is labeled for detection or separation means that the molecule, such as an antibody or protein, is associated with a detectable label, such as a fluorophore, or is associated with a tag or other moiety, such as for purification or isolation or separation. Detectably labeled refers to a molecule that is labeled for detection or separation.

As used herein, epitope tag refers to a short stretch of amino acid residues corresponding to an epitope to facilitate subsequent biochemical and immunological analyses of the epitope tagged protein or peptide. Epitope tagging can be achieved by adding the sequence of the epitope tag to a protein-encoding sequence in an appropriate expression vector. Epitope tagged proteins can be affinity purified using highly specific antibodies raised against the tags.

As used herein, homogeneous with reference to a reaction mixture means that the reactants are in the liquid phase as a mixture, including as a solution or suspension.

As used herein, heterogeneous with reference to a reaction mixture means that the reactants are in a solid phase or are in a liquid phase as a mixture, including as a solution or suspension. An example of a heterogeneous reaction mixture is an ELISA assay.
As used herein, a "variant protein" "modified protein," or "mutein," or variations thereof, refers to a polypeptide (protein) that has one or more modifications in primary sequence compared to a wild-type or template protein. The one or more mutations can be one or more amino acid replacements (substitutions), insertions, deletions and any combination thereof. A modified protein polypeptide includes those with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more modified positions. A modified protein can be a full-length protein, such as a full-length antibody or can be an antibody fragment thereof. A modified protein typically has 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to a corresponding sequence of amino acids of a wildtype or scaffold protein not containing the mutations.

As used herein, reference to a "critical amino acid residue" refers to a residue in a protein that, when changed (e.g. by amino acid replacement), reduces or ablates the activity of the protein. Typically, the activity is reduced less than 70%, 60%, 50%, 40%, 30%, 20%, 10% or less than the activity of the unmodified protein that does not contain the changed or replaced amino acid.

As used herein, reference to a "key residue" refers to a residue that is near to or adjacent to a critical amino acid position, and that when changed (e.g. by amino acid replacement) does not result in a protein that exhibits an undesired or predetermined activity or condition, for example, reduced or no expression of the protein or activity under a condition that is not desired (e.g. activity at pH 7.4 but no pH 6.0). Hence, key residues are residues that, when changed, are expressed and exhibit a desired activity.

As used herein, activity refers to a functional activity or activities of a polypeptide or portion thereof associated with a full-length (complete) protein. Functional activities include, but are not limited to, biological activity, catalytic or enzymatic activity, antigenicity (ability to bind to or compete with a polypeptide for binding to an anti-polypeptide antibody), immunogenicity, ability to form multimers, and the ability to specifically bind to a receptor or ligand for the polypeptide.

As used herein, binding activity refer to characteristics of a molecule, e.g. a polypeptide, relating to whether or not, and how, it binds one or more binding partners. Binding activities include the ability to bind the binding partner(s), the affinity
with which it binds to the binding partner (e.g. high affinity), the avidity with which it binds to the binding partner, the strength of the bond with the binding partner and specificity for binding with the binding partner.

As used herein, "bind," "bound" or grammatical variations thereof refers to the participation of a molecule in any attractive interaction with another molecule, resulting in a stable association in which the two molecules are in close proximity to one another. Binding includes, but is not limited to, non-covalent bonds, covalent bonds (such as reversible and irreversible covalent bonds), and includes interactions between molecules such as, but not limited to, proteins, nucleic acids, carbohydrates, lipids, and small molecules, such as chemical compounds including drugs.

Exemplary of bonds are antibody-antigen interactions and receptor-ligand interactions. When an antibody "binds" a particular antigen, bind refers to the specific recognition of the antigen by the antibody, through cognate antibody-antigen interaction, at antibody combining sites. Binding also can include association of multiple chains of a polypeptide, such as antibody chains which interact through disulfide bonds.

As used herein, "specifically bind" or "immunospecifically bind" with respect to an antibody or antigen-binding fragment thereof are used interchangeably herein and refer to the ability of the antibody or antigen-binding fragment to form one or more noncovalent bonds with a cognate antigen, by noncovalent interactions between the antibody combining site(s) of the antibody and the antigen. Typically, an antibody that immunospecifically binds (or that specifically binds) to an antigen is one that binds to the antigen with an affinity constant K_a of about or 1×10^{-7} M$^{-1}$ or 1×10^8 M$^{-1}$ or greater (or a dissociation constant (K_d) of 1×10^{-7} M or 1×10^{-8} M or less).

(e.g., BiaCore 2000, Biacore AB, Upsala, Sweden and GE Healthcare Life Sciences; Malmqvist (2000) Biochem. Soc. Trans. 27:335).

As used herein, the term "bind selectively" or "selectively binds," in reference to a polypeptide or an antibody provided herein, means that the polypeptide or antibody binds with an epitope, antigen or substrate without substantially binding to another epitope, antigen or substrate. Typically, an antibody or fragment thereof that selectively binds to a selected epitope specifically binds to the epitope, such as with an affinity constant K_a of about or $1 \times 10^{-7} \text{M}^{-1}$ or $1 \times 10^{-8} \text{M}^{-1}$ or greater.

As used herein, "affinity" or "binding affinity" refers to the strength with which an antibody molecule or portion thereof binds to an epitope on a target protein or antigen. Affinity is often measured by equilibrium association constant (K_A) or equilibrium dissociation constant (K_D). Low-affinity antibody-antigen interaction is weak, and the molecules tend to dissociate rapidly, while high affinity antibody-antigen binding is strong and the molecules remain bound for a longer amount of time. A high antibody affinity means that the antibody specifically binds to a target protein with an equilibrium association constant (K_A) of greater than or equal to about 10^6M^{-1}, greater than or equal to about 10^7M^{-1}, greater than or equal to about 10^8M^{-1}, or greater than or equal to about 10^9M^{-1}, 10^{10}M^{-1}, 10^{11}M^{-1} or 10^{12}M^{-1}. Antibodies also can be characterized by an equilibrium dissociation constant (K_D) 10^4M to 10^7M, or 10^{7}M, 10^{10}M, 10^{11}M or 10^{12}M or lower. Generally, antibodies having a nanomolar or sub-nanomolar dissociation constant are deemed to be high affinity antibodies. Such affinities can be readily determined using conventional techniques, such as by equilibrium dialysis; by using the BIAcore 2000 instrument, using general procedures outlined by the manufacturer; by radioimmunoassay using radiolabeled target antigen; or by another method known to the skilled artisan. The affinity data can be analyzed, for example, by the method of Scatchard et al., Ann N.Y. Acad. ScL, 51:660 (1949).

As used herein, "addressable" means that members are identifiable or known a priori, for example, identifiable by their address, the position in a spatial array, such as a well of a microtiter plate, or on a solid phase support, or by virtue of an identifiable or detectable label, such as by color, fluorescence, electronic signal (i.e.
RF, microwave or other frequency that does not substantially alter the interaction of the molecules of interest), bar code or other symbology, chemical or other such label.

As used herein, an addressable array is one in which the members of the array are located at identifiable loci on the surface of a solid phase or directly or indirectly linked to or otherwise associated with the identifiable label, such as affixed to a microsphere or other particulate support (herein referred to as beads) and suspended in solution or spread out on a surface.

As used herein, fluorescence activated cell sorting (FACS) refers to a method of identifying or sorting cells based on fluorescence. For example, in FACS, cells are stained with or express one or more fluorescent markers. In this method, cells are passed through an apparatus that excites and detects fluorescence from the marker(s). Upon detection of fluorescence in a given portion of the spectrum by the cell, the FACS apparatus allows the separation of that cell from those not expressing that fluorescence spectrum.

As used herein, reference to a "cell surface expression system" or "cell surface display system" refers to the display or expression of a protein or portion thereof on the surface of a cell. Typically, a cell is generated that expresses proteins of interest fused to a cell-surface protein. For example, a protein is expressed as a fusion protein with a transmembrane domain.

As used herein, a "multimerization domain" refers to a sequence of amino acids that promotes stable interaction of a polypeptide molecule with one or more additional polypeptide molecules, each containing a complementary multimerization domain, which can be the same or a different multimerization domain to form a stable multimer with the first domain. Generally, a polypeptide is joined directly or indirectly to the multimerization domain. Exemplary multimerization domains include the immunoglobulin sequences or portions thereof, leucine zippers, hydrophobic regions, hydrophilic regions, and compatible protein-protein interaction domains. The multimerization domain, for example, can be an immunoglobulin constant region or domain, such as, for example, the Fc domain or portions thereof from IgG, including IgG1, IgG2, IgG3 or IgG4 subtypes, IgA, IgE, IgD and IgM and modified forms thereof.
As used herein, a human protein is one encoded by a nucleic acid molecule, such as DNA, present in the genome of a human, including all allelic variants and conservative variations thereof. A variant or modification of a protein is a human protein if the modification is based on the wildtype or prominent sequence of a human protein.

As used herein, the residues of naturally occurring a-amino acids are the residues of those 20 a-amino acids found in nature which are incorporated into protein by the specific recognition of the charged tRNA molecule with its cognate mRNA codon in humans.

As used herein, non-naturally occurring amino acids refer to amino acids that are not genetically encoded.

As used herein, nucleic acids include DNA, RNA and analogs thereof, including peptide nucleic acids (PNA) and mixtures thereof. Nucleic acids can be single or double-stranded. When referring to probes or primers, which are optionally labeled, such as with a detectable label, such as a fluorescent or radiolabel, single-stranded molecules are contemplated. Such molecules are typically of a length such that their target is statistically unique or of low copy number (typically less than 5, generally less than 3) for probing or priming a library. Generally a probe or primer contains at least 14, 16 or 30 contiguous nucleotides of sequence complementary to or identical to a gene of interest. Probes and primers can be 10, 20, 30, 50, 100 or more nucleic acids long.

As used herein, a peptide refers to a polypeptide that is from 2 to 40 amino acids in length.

As used herein, the amino acids which occur in the various sequences of amino acids provided herein are identified according to their known, three-letter or one-letter abbreviations (Table 1). The nucleotides which occur in the various nucleic acid fragments are designated with the standard single-letter designations used routinely in the art.

As used herein, an "amino acid" is an organic compound containing an amino group and a carboxylic acid group. A polypeptide contains two or more amino acids. For purposes herein, amino acids include the twenty naturally-occurring amino acids,
non-natural amino acids and amino acid analogs (i.e., amino acids wherein the a-carbon has a side chain).

As used herein, "amino acid residue" refers to an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages. The amino acid residues described herein are presumed to be in the "L" isomeric form. Residues in the "D" isomeric form, which are so designated, can be substituted for any L-amino acid residue as long as the desired functional property is retained by the polypeptide. N\(^3\)N refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxyl terminus of a polypeptide. In keeping with standard polypeptide nomenclature described in *J. Biol. Chem.*, 243: 3557-3559 (1968), and adopted 37 C.F.R. §§ 1.821-1.822, abbreviations for amino acid residues are shown in Table 1:

Table 1 - Table of Correspondence

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>1-Letter</th>
<th>3-Letter</th>
<th>AMINO ACID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Tyr</td>
<td>Tyrosine</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gly</td>
<td>Glycine</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Phe</td>
<td>Phenylalanine</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Met</td>
<td>Methionine</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ala</td>
<td>Alanine</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Ser</td>
<td>Serine</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Ile</td>
<td>Isoleucine</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Leu</td>
<td>Leucine</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Thr</td>
<td>Threonine</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Val</td>
<td>Valine</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Pro</td>
<td>Proline</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Lys</td>
<td>Lysine</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>His</td>
<td>Histidine</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Gln</td>
<td>Glutamine</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Glu</td>
<td>Glutamic acid</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Glx</td>
<td>Glu and/or Gln</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Trp</td>
<td>Tryptophan</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Arg</td>
<td>Arginine</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Asp</td>
<td>Aspartic acid</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Asn</td>
<td>Asparagine</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Asx</td>
<td>Asn and/or Asp</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Cys</td>
<td>Cysteine</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Xaa</td>
<td>Unknown or other</td>
<td></td>
</tr>
</tbody>
</table>

It should be noted that all amino acid residue sequences represented herein by formulae have a left to right orientation in the conventional direction of amino-
terminus to carboxyl-terminus. In addition, the phrase "amino acid residue" is broadly defined to include the amino acids listed in the Table of Correspondence (Table 1) and modified and unusual amino acids, such as those referred to in 37 C.F.R. §§ 1.821-1.822, and incorporated herein by reference. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino acid residues, to an amino-terminal group such as NH₂ or to a carboxyl-terminal group such as COOH.

As used herein, "naturally occurring amino acids" refer to the 20 L-amino acids that occur in polypeptides.

As used herein, "non-natural amino acid" refers to an organic compound that has a structure similar to a natural amino acid but has been modified structurally to mimic the structure and reactivity of a natural amino acid. Non-naturally occurring amino acids thus include, for example, amino acids or analogs of amino acids other than the 20 naturally-occurring amino acids and include, but are not limited to, the D-isostereomers of amino acids. Exemplary non-natural amino acids are described herein and are known to those of skill in the art.

As used herein, an isokinetic mixture is one in which the molar ratios of amino acids has been adjusted based on their reported reaction rates (see, e.g., Ostresh et al., (1994) Biopolymers 34:1681).

As used herein, modification is in reference to modification of a sequence of amino acids of a polypeptide or a sequence of nucleotides in a nucleic acid molecule and includes deletions, insertions, and replacements of amino acids and nucleotides, respectively. Methods of modifying a polypeptide are routine to those of skill in the art, such as by using recombinant DNA methodologies.

As used herein, suitable conservative substitutions of amino acids are known to those of skill in this art and can be made generally without altering the biological activity of the resulting molecule. Those of skill in the art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson et al. Molecular Biology of the Gene, 4th Edition, 1987, The Benjamin/Cummings Pub. co., p.224). Such substitutions can be made in accordance with those set forth in TABLE 2 as follows:

TABLE 2

- (Table content continues...)

RECTIFIED SHEET (RULE 91) ISA/EP
Other substitutions also are permissible and can be determined empirically or in accord with known conservative substitutions.

As used herein, a DNA construct is a single or double stranded, linear or circular DNA molecule that contains segments of DNA combined and juxtaposed in a manner not found in nature. DNA constructs exist as a result of human manipulation, and include clones and other copies of manipulated molecules.

As used herein, a DNA segment is a portion of a larger DNA molecule having specified attributes. For example, a DNA segment encoding a specified polypeptide is a portion of a longer DNA molecule, such as a plasmid or plasmid fragment, which, when read from the 5' to 3' direction, encodes the sequence of amino acids of the specified polypeptide.

As used herein, the term polynucleotide means a single- or double-stranded polymer of deoxyribonucleotides or ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and can be isolated from natural sources, synthesized *in vitro*, or prepared from a combination of natural and synthetic molecules. The length of a polynucleotide molecule is given herein in terms of nucleotides (abbreviated "nt") or base pairs (abbreviated "bp"). The term nucleotides is used for single- and double-stranded molecules where the context permits. When the term is applied to double-stranded molecules it is used to denote overall length and will be understood to be equivalent to the term base pairs. It will be recognized

<table>
<thead>
<tr>
<th>Original residue</th>
<th>Exemplary conservative substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>Gly, Ser</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Gln, His</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser</td>
</tr>
<tr>
<td>Gln (Q)</td>
<td>Asn</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>Ala, Pro</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn, Gln</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu, Val</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>Ile, Val</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg, Gln, Glu</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu, Tyr, Ile</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Met, Leu, Tyr</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp, Phe</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Ile, Leu</td>
</tr>
</tbody>
</table>
by those skilled in the art that the two strands of a double-stranded polynucleotide can differ slightly in length and that the ends thereof can be staggered; thus all nucleotides within a double-stranded polynucleotide molecule can not be paired. Such unpaired ends will, in general, not exceed 20 nucleotides in length.

As used herein, "similarity" between two proteins or nucleic acids refers to the relatedness between the sequence of amino acids of the proteins or the nucleotide sequences of the nucleic acids. Similarity can be based on the degree of identity and/or homology of sequences of residues and the residues contained therein. Methods for assessing the degree of similarity between proteins or nucleic acids are known to those of skill in the art. For example, in one method of assessing sequence similarity, two amino acid or nucleotide sequences are aligned in a manner that yields a maximal level of identity between the sequences. "Identity" refers to the extent to which the amino acid or nucleotide sequences are invariant. Alignment of amino acid sequences, and to some extent nucleotide sequences, also can take into account conservative differences and/or frequent substitutions in amino acids (or nucleotides). Conservative differences are those that preserve the physico-chemical properties of the residues involved. Alignments can be global (alignment of the compared sequences over the entire length of the sequences and including all residues) or local (the alignment of a portion of the sequences that includes only the most similar region or regions).

As used herein, homologous (with respect to nucleic acid and/or amino acid sequences) means about greater than or equal to 25% sequence homology, typically greater than or equal to 25%, 40%, 50%, 60%, 70%, 80%, 85%, 90% or 95% sequence homology; the precise percentage can be specified if necessary. For purposes herein the terms "homology" and "identity" are often used interchangeably, unless otherwise indicated. In general, for determination of the percentage homology or identity, sequences are aligned so that the highest order match is obtained (see, e.g.: Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; Carrillo et al. (1988) SIAM J Applied Math 48\#73). By sequence homology, the number of conserved amino acids is determined by standard alignment algorithm programs, and can be used with default gap penalties established by each supplier. Substantially homologous nucleic acid molecules would hybridize typically at moderate stringency or at high stringency all along the length of the nucleic acid of interest. Also contemplated are nucleic acid molecules that contain degenerate codons in place of codons in the hybridizing nucleic acid molecule.

Whether any two molecules have nucleotide sequences or amino acid sequences that are at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% "identical" or "homologous" can be determined using known computer algorithms such as the "FASTA" program, using for example, the default parameters as in Pearson et al (1988) Proc. Natl. Acad. Sci. USA 55:2444 (other programs include the GCG program package (Devereux, J., et al, Nucleic Acids Research 12(l):38l (1984)), BLASTP, BLASTN, FASTA (Altschul, S.F., et al, JMolec Biol 215:403 (1990)); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, and Carrillo et al (1988) SIAM J Applied Math 48:1072). For example, the BLAST function of the National Center for Biotechnology Information database can be used to determine identity. Other commercially or publicly available programs include, DNAStar "MegAlign" program (Madison, WI) and the University of
Wisconsin Genetics Computer Group (UWG) "Gap" program (Madison WI). Percent homology or identity of proteins and/or nucleic acid molecules can be determined, for example, by comparing sequence information using a GAP computer program (e.g., Needleman *et al.* (1970) *J. Mol. Biol.* 48:443, as revised by Smith and Waterman ((1981) *Adv. Appl. Math.* 2:482). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids), which are similar, divided by the total number of symbols in the shorter of the two sequences. Default parameters for the GAP program can include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of Gribskov *et al.* (1986) *Nucl. Acids Res.* 14:6745, as described by Schwartz and Dayhoff, eds., *ATLAS OF PROTEIN SEQUENCE AND STRUCTURE*, National Biomedical Research Foundation, pp. 353-358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

Therefore, as used herein, the term "identity" or "homology" represents a comparison between a test and a reference polypeptide or polynucleotide. As used herein, the term at least "90% identical to" refers to percent identities from 90 to 99.99 relative to the reference nucleic acid or amino acid sequence of the polypeptide. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polypeptide length of 100 amino acids are compared. No more than 10% (i.e., 10 out of 100) of the amino acids in the test polypeptide differs from that of the reference polypeptide. Similar comparisons can be made between test and reference polynucleotides. Such differences can be represented as point mutations randomly distributed over the entire length of a polypeptide or they can be clustered in one or more locations of varying length up to the maximum allowable, *e.g.* 10/100 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, insertions or deletions. At the level of homologies or identities above about 85-90%, the result should be independent of the program and gap parameters set; such high levels of identity can be assessed readily, often by manual alignment without relying on software.
As used herein, an aligned sequence refers to the use of homology (similarity and/or identity) to align corresponding positions in a sequence of nucleotides or amino acids. Typically, two or more sequences that are related by 50% or more identity are aligned. An aligned set of sequences refers to 2 or more sequences that are aligned at corresponding positions and can include aligning sequences derived from RNAs, such as ESTs and other cDNAs, aligned with genomic DNA sequence.

As used herein, "primer" refers to a nucleic acid molecule that can act as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and a polymerization agent, such as DNA polymerase, RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. It will be appreciated that certain nucleic acid molecules can serve as a "probe" and as a "primer." A primer, however, has a 3' hydroxyl group for extension. A primer can be used in a variety of methods, including, for example, polymerase chain reaction (PCR), reverse-transcriptase (RT)-PCR, RNA PCR, LCR, multiplex PCR, panhandle PCR, capture PCR, expression PCR, 3' and 5' RACE, in situ PCR, ligation-mediated PCR and other amplification protocols.

As used herein, "primer pair" refers to a set of primers that includes a 5' (upstream) primer that hybridizes with the 5' end of a sequence to be amplified (e.g. by PCR) and a 3' (downstream) primer that hybridizes with the complement of the 3' end of the sequence to be amplified.

As used herein, "specifically hybridizes" refers to annealing, by complementary base-pairing, of a nucleic acid molecule (e.g. an oligonucleotide) to a target nucleic acid molecule. Those of skill in the art are familiar with in vitro and in vivo parameters that affect specific hybridization, such as length and composition of the particular molecule. Parameters particularly relevant to in vitro hybridization further include annealing and washing temperature, buffer composition and salt concentration. Exemplary washing conditions for removing non-specifically bound nucleic acid molecules at high stringency are 0.1 x SSPE, 0.1% SDS, 65°C, and at medium stringency are 0.2 x SSPE, 0.1% SDS, 50°C. Equivalent stringency conditions are known in the art. The skilled person can readily adjust these
parameters to achieve specific hybridization of a nucleic acid molecule to a target nucleic acid molecule appropriate for a particular application.

As used herein, substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.

As used herein, it also is understood that the terms "substantially identical" or "similar" varies with the context as understood by those skilled in the relevant art.

As used herein, an allelic variant or allelic variation references any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and can result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or can encode polypeptides having an altered amino acid sequence. The term "allelic variant" also is used herein to denote a protein encoded by an allelic variant of a gene. Typically the reference form of the gene encodes a wildtype form and/or predominant form of a polypeptide from a population or single reference member of a species. Typically, allelic variants, which include variants between and among species typically have at least 80%, 90% or greater amino acid identity with a wildtype and/or predominant form from the same species; the degree of identity depends upon the gene and whether comparison is interspecies or intraspecies. Generally, intraspecies allelic variants have at least about 80%, 85%, 90% or 95% identity or greater with a wildtype and/or predominant form, including 96%, 97%, 98%, 99% or greater identity with a wildtype and/or predominant form of a polypeptide. Reference to an allelic variant herein generally refers to variations in proteins among members of the same species.

As used herein, "allele," which is used interchangeably herein with "allelic variant" refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for that gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide or several nucleotides, and can include substitutions, deletions and
insertions of nucleotides. An allele of a gene also can be a form of a gene containing a mutation.

As used herein, species variants refer to variants in polypeptides among different species, including different mammalian species, such as mouse and human.

As used herein, a splice variant refers to a variant produced by differential processing of a primary transcript of genomic DNA that results in more than one type of mRNA.

As used herein, a peptidomimetic is a compound that mimics the conformation and certain stereochemical features of the biologically active form of a particular peptide. In general, peptidomimetics are designed to mimic certain desirable properties of a compound, but not the undesirable properties, such as flexibility, that lead to a loss of a biologically active conformation and bond breakdown. Peptidomimetics can be prepared from biologically active compounds by replacing certain groups or bonds that contribute to the undesirable properties with bioisosteres. Bioisosteres are known to those of skill in the art. For example, the methylene bioisostere CH₂S has been used as an amide replacement in enkephalin analogs (see, e.g., Spatola (1983) pp. 267-357 in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Weinstein, Ed. volume 7, Marcel Dekker, New York). Morphine, which can be administered orally, is a compound that is a peptidomimetic of the peptide endorphin. For purposes herein, cyclic peptides are included among peptidomimetics as are polypeptides in which one or more peptide bonds is/are replaced by a mimic.

As used herein, a polypeptide comprising a specified percentage of amino acids set forth in a reference polypeptide refers to the proportion of contiguous identical amino acids shared between a polypeptide and a reference polypeptide. For example, an isoform that comprises 70% of the amino acids set forth in a reference polypeptide having a sequence of amino acids set forth in SEQ ID NO:XX, which recites 147 amino acids, means that the reference polypeptide contains at least 103 contiguous amino acids set forth in the amino acid sequence of SEQ ID NO:XX.

As used herein, the term promoter means a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of
transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding region of genes.

As used herein, an isolated or purified polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. Preparations can be determined to be substantially free if they appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis and high performance liquid chromatography (HPLC), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance. Methods for purification of the compounds to produce substantially chemically pure compounds are known to those of skill in the art. A substantially chemically pure compound, however, can be a mixture of stereoisomers. In such instances, further purification might increase the specific activity of the compound.

The term substantially free of cellular material includes preparations of proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the term substantially free of cellular material includes preparations of protease proteins having less that about 30% (by dry weight) of non-protease proteins (also referred to herein as a contaminating protein), generally less than about 20% of non-protease proteins or 10% of non-protease proteins or less that about 5% of non-protease proteins. When the protease protein or active portion thereof is recombinantly produced, it also is substantially free of culture medium, *i.e.*, culture medium represents less than about or at 20%, 10% or 5% of the volume of the protease protein preparation.

As used herein, the term substantially free of chemical precursors or other chemicals includes preparations of protease proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. The term includes preparations of protease proteins having less than about 30% (by dry weight) 20%, 10%, 5% or less of chemical precursors or non-protease chemicals or components.
As used herein, synthetic, with reference to, for example, a synthetic nucleic acid molecule or a synthetic gene or a synthetic peptide refers to a nucleic acid molecule or polypeptide molecule that is produced by recombinant methods and/or by chemical synthesis methods.

As used herein, production by recombinant means by using recombinant DNA methods means the use of the well known methods of molecular biology for expressing proteins encoded by cloned DNA.

As used herein, vector (or plasmid) refers to discrete elements that are used to introduce a heterologous nucleic acid into cells for either expression or replication thereof. The vectors typically remain episomal, but can be designed to effect integration of a gene or portion thereof into a chromosome of the genome. Also contemplated are vectors that are artificial chromosomes, such as yeast artificial chromosomes and mammalian artificial chromosomes. Selection and use of such vehicles are well known to those of skill in the art.

As used herein, an expression vector includes vectors capable of expressing DNA that is operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such DNA fragments. Such additional segments can include promoter and terminator sequences, and optionally can include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like. Expression vectors are generally derived from plasmid or viral DNA, or can contain elements of both. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.

As used herein, vector also includes "virus vectors" or "viral vectors." Viral vectors are engineered viruses that are operatively linked to exogenous genes to transfer (as vehicles or shuttles) the exogenous genes into cells.

As used herein, an adenovirus refers to any of a group of DNA-containing viruses that cause conjunctivitis and upper respiratory tract infections in humans. As
used herein, naked DNA refers to histone-free DNA that can be used for vaccines and
gene therapy. Naked DNA is the genetic material that is passed from cell to cell
during a gene transfer processed called transformation. In transformation, purified or
naked DNA is taken up by the recipient cell which will give the recipient cell a new
characteristic or phenotype.

As used herein, operably or operatively linked when referring to DNA
segments means that the segments are arranged so that they function in concert for
their intended purposes, e.g., transcription initiates in the promoter and proceeds
through the coding segment to the terminator.

As used herein, protein binding sequence refers to a protein or peptide
sequence that is capable of specific binding to other protein or peptide sequences
generally, to a set of protein or peptide sequences or to a particular protein or peptide
sequence.

As used herein the term assessing is intended to include quantitative and
qualitative determination in the sense of obtaining an absolute value for the activity of
a protein, and also of obtaining an index, ratio, percentage, visual or other value
indicative of the level of the activity. Assessment can be direct or indirect and the
chemical species actually detected need not of course be the activity product itself but
can for example be a derivative thereof or some further substance.

As used herein, a control refers to a sample that is substantially identical to the
test sample, except that it is not treated with a test parameter, or, if it is a sample
plasma sample, it can be from a normal volunteer not affected with the condition of
interest. A control also can be an internal control.

As used herein, the singular forms "a," "an" and "the" include plural referents
unless the context clearly dictates otherwise. Thus, for example, reference to a
compound, comprising "an extracellular domain" includes compounds with one or a
plurality of extracellular domains.

As used herein, ranges and amounts can be expressed as "about" a particular
value or range. About also includes the exact amount. Hence "about 5 bases" means
"about 5 bases" and also "5 bases."

As used herein, "optional" or "optionally" means that the subsequently
described event or circumstance does or does not occur, and that the description
includes instances where said event or circumstance occurs and instances where it does not. For example, an optionally substituted group means that the group is unsubstituted or is substituted.

As used herein, the abbreviations for any protective groups, amino acids and other compounds, are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature (see, (1972) Biochem. 11:1726).

B. METHODS TO IDENTIFY CONDITIONALLY ACTIVE MOLECULES

Provided herein are methods for identifying or selecting a conditionally active molecule, such as a therapeutic protein, that is more active in a diseased microenvironment than a normal tissue microenvironment or vice versa. In particular, the method is for identifying a molecule, such as a therapeutic protein, that is more active in a tumor microenvironment than in a normal microenvironment or vice versa. In the methods, the activity of a molecule, such as a therapeutic protein, is tested under a first set of conditions, and the activity of the molecule is tested under a second set of conditions in which reduced activity is desired compared to the activity under the first set of conditions. A molecule, such as a protein, can be identified that is active or more active under the first set of conditions than the second set of conditions, such that a molecule is identified that is conditionally active under a predetermined set of conditions. Typically, in the method, the first set of conditions mimics or simulates conditions that exist in vivo in a diseased microenvironment, such as a tumor microenvironment. The second set of conditions mimics or simulates physiologic conditions in normal tissues or cells.

Hence, the methods herein are performed in an in vitro assay that is designed to simulate or mimic predetermined conditions that exist in a diseased microenvironment and a normal tissue microenvironment. Predetermined conditions include, for example, conditions such as pH, temperature, O₂ concentration and lactate concentration. For example, a predetermined first set of conditions can include conditions that exist in a tumor microenvironment, and a second set of conditions can include conditions that exist in a normal environment. Hence, molecules with biological efficacy, such as therapeutic proteins, can be identified that exhibit greater activity in a diseased environment, such as a tumor, than in surrounding normal tissue.
Thus, the methods provided herein can be used to identify modified molecules, such as therapeutic proteins, with conditional activity under a set of conditions.

This can be advantageous by targeting therapy only to diseased tissues, such as tumor tissues, in order to reduce or prevent side effects, including local and systemic side effects. Identified therapeutic proteins can be used as cancer therapeutics while reducing side effects associated with systemic exposure. Therapeutic proteins that are associated with reduced side effects can be used at higher dosing regimens, and can have improved efficacy and safety. Side effects that can be reduced include any undesireable nontherapeutic effect, such as nausea, emesis, chest tightness, headache, and related cardiovascular effects such as blood pressure instability and arterial constriction, dermal toxicity, bone marrow suppression, cardiotoxicity, hair loss, renal dysfunctions, stomatitis, anemia, seizures, immune reactions such as acute anaphylaxis, serum sickness, generation of antibodies, infections, cancer, autoimmune disease and cardiotoxicity.

In the first step of the method, one or more molecules or proteins are selected to be tested in the methods provided herein. The molecule(s) can be any molecule(s) with biological efficacy or any modified molecule with biological efficacy, including a small molecule, peptide, protein, enzyme, antibody or other biomolecule. The molecule(s) can be unmodified or include any modifications described herein. In some examples, a library of modified molecules are prepared. Methods of preparing test molecules are known to the skilled artisan. Section D describes methods of cloning, modifying and preparing proteins, including antibodies. Further, methods of mutagenesis and generation of libraries or collections of variant molecules is described herein and is known to one of skill in the art using standard recombinant DNA techniques.

After a molecule or molecules, such as a protein or proteins, are selected and prepared, they are tested or screened for an activity or property under a first set of conditions and under a different second set of conditions. The first and second set of conditions are conditions that simulate or mimic those that exist physiologically in diseased or normal tissues or microenvironments, respectively. For example, diseased tissue or diseased microenvironment conditions can be those that exist in a tumor microenvironment. Exemplary of such conditions include, for example, chemical
conditions, such as pH and chemical concentrations such as concentration of O$_2$ or lactate; and physical conditions, such as temperature and pressure. Hence, the first and second conditions can differ in any one or more of pH, concentration or level of O$_2$ or lactate or other chemical condition, temperature and/or pressure.

Testing of the molecules can be performed using any *in vitro* or *in vivo* method that can detect or distinguish an activity or property of the tested molecule or protein. Typically, testing is performed *in vitro*. The particular assay that is used is dependent on the tested molecule or protein. Examples of methods include any methods described herein or known to one of skill in the art, and include biochemical assays and/or cell based assays.

In one example, the molecules that are tested can be pooled and screened. In another example, the tested molecules can be physically separated and screened individually, such as by formatting in arrays, such as addressable arrays. Also testing of the molecule(s) under the second set of conditions can occur before, after, or simultaneously with the screening under the first set of conditions. For example, molecules can be screened and/or selected under the first set and second set of conditions simultaneously, or molecules can be screened and/or selected under the first set of conditions and then be screened and/or selected under a second set of conditions.

After molecules are tested under both sets of conditions, the activities of the molecules under one or both conditions are assessed in order to identify resulting molecules that are more active under a first condition than a second condition. The activity can include any observable biological, biochemical or biophysical phenomenon, such as, for example, luminescence, enzymatic activity or molecular interactions such as binding to a cognate biomolecule. The comparison of activities can be qualitative or quantitative.

In one example, after molecules are tested under both sets of conditions, the activities of each molecule under both set of conditions are compared to identify a molecule that is more active under the first condition than the second condition (i.e. that is conditionally active).

In other examples, conditionally active molecules are identified by screening and/or selection under the two different conditions in steps. For example,
conditionally active molecules can be identified by first selecting molecules that are active under the first set of conditions and/or excluding molecules that are inactive under a first set of conditions (positive selection). Subsequent rounds of screening can be performed under the second set of conditions, and molecules identified that exhibit greater activity under the first set of conditions than the second set of conditions. In another example, conditionally active molecules can be identified by first excluding molecules that are active under the second set of conditions (negative selection). In an example of negative selection, molecules that do not meet a certain criteria, such as above or below a threshold for activity, are eliminated from subsequent rounds of screening and/or selection. Subsequent rounds of screening can be performed under the first set of conditions. Hence, molecules are identified that exhibit activity only under the first set of conditions. Thus, the molecules that are screened under first and/or second set of conditions can include all or a subset of the molecules that are screened under other set of conditions. Positive and negative selection can be repeated until a molecule with a predetermined conditional activity is identified.

The method can be performed a plurality of times, whereby the steps of the method are repeated 1, 2, 3, 4, or 5 times. For example, test molecules, for example protein variants, that are identified as exhibiting increased activity under the first set of conditions compared to the second set of conditions can be rescreened to confirm the activity. The method provided herein also is iterative. In one example, after the method is performed, any identified conditionally active molecules can be modified or further modified to increase or optimize the conditional activity. For example, a secondary library can be created by introducing additional modifications in a first identified conditionally active protein. For example, modifications that were identified as increasing conditional activity can be combined. The secondary library can be tested using the assays and methods described herein. In another example of an iterative aspect of the method, molecules that are identified as not exhibiting conditional activity, such that they are not active or do not have increased activity under the first set of conditions, can be further modified and retested for conditional activity. The further modifications can be targeted near particular regions (e.g.
particular amino acid residues) associated with activity and/or stability of the molecule.

A description of the steps of the method and components of the method are provided in the subsections that follow.

1. Therapeutic Proteins

The tested molecule for use in practice of the method to identify a conditionally active molecule can be a therapeutic protein that is a protein known to treat or ameliorate one or more particular diseases or conditions. For example, the therapeutic protein is a protein known to treat or ameliorate a tumor or cancer. In some examples, the tested molecules are variants of a therapeutic protein that include one or more modifications, such as amino acid replacement(s), insertion(s) or deletion(s). Hence, the method can be used to identify variant therapeutic proteins that are conditionally active in a diseased microenvironment, such as a tumor environment, compared to a normal tissue or cell. Exemplary therapeutic proteins are tumor or cancer therapeutics, such that the method can be used to identify conditionally active therapeutics that are more active in a tumor microenvironment than a normal microenvironment.

In some examples of the method, the method is a high throughput screening method to identify molecules that exhibit altered activity in a tumor microenvironment compared to under normal physiologic conditions. Thus, the method can be used to evolve the activity, e.g. binding activity, of a therapeutic protein. In particular, the method can be used to screen for variants of existing therapeutic proteins to identify those that are preferentially active in the disease microenvironment of a tumor, but not in normal tissues. For example, therapeutic proteins that are associated with known toxicities can be mutagenized and screened in the assays provided herein to identify variant proteins with reduced side effects by virtue of the preferential activity in the tumor microenvironment only, compared to the therapeutic agent that does not contain the mutations. Thus, the method can be used to identify conditionally active biologies (CABs). The resulting identified CABs can be candidate cancer therapeutics.

a. Tumor or Cancer Therapeutics
In some examples, the test molecule is a therapeutic protein that is a variant of a known clinical candidate cancer therapeutic or of an existing cancer therapeutic. Variants of known cancer therapeutic proteins can be screened in the methods provided herein to identify evolved therapeutic proteins that exhibit activity higher in a diseased microenvironment, such as a tumor microenvironment, than in a normal environment. For example, if the activity is binding activity, then the methods provided herein can be used to identify conditionally active cancer therapeutic proteins that preferentially bind in the tumor or cancer microenvironment compared to a normal microenvironment.

For example, the therapeutic protein used as a test molecule or as a scaffold to generate variants can be a protein that interacts with a target protein that is a point of intervention in the treatment of a tumor or cancer. Such cancer-promoting target proteins include any ligand, receptor, enzyme or other agent that is associated with proliferation, angiogenesis or cell growth properties of cancer cells and tumors. The target protein can be selected based on known targets of therapeutic intervention. The target can be a cognate binding partner or surrogate protein antigen for the therapeutic protein. Targets for known cancer therapeutics are known. Exemplary of such target proteins are any set forth in Table 1, including, but not limited to EGFR, HER2, CD20, VEGF-A, EpCAM, CD3, CD33, CD80, CTLA-4, αβ integrin, Mesothelin, or IGF-1R. For example, an exemplary therapeutic molecule is a molecule or protein that interacts with or has a therapeutic effect associated with interaction with EGFR.

Exemplary tumor or cancer therapeutic proteins that can be used to generate modified proteins and screened in the assays herein are set forth in Table 3. The Table also sets forth the target protein, such as cognate or surrogate protein antigen, of the cancer therapeutic. Hence, in the methods provided herein the cancer therapeutic protein or modified cancer therapeutic protein(s) can be screened for binding to their cognate target protein, such as a surrogate protein ligand and/or can be screened for effecting altered activity of the target protein. Proteins, such as mutant proteins, identified or selected that are conditionally active in a tumor microenvironment, are those that exhibit preferential binding activity and/or other activity under in vitro conditions that simulate the tumor microenvironment compared to normal physiologic conditions. In some examples, modified proteins also can be identified that exhibit
increased activity in the tumor microenvironment compared to the unmodified protein, for example a therapeutic or parent control antibody not containing the mutations.

<table>
<thead>
<tr>
<th>Table 3.</th>
<th></th>
<th>Variable Domain (SEQ ID NO)</th>
<th>Full Length (SEQ ID NO)</th>
<th>Protein</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Therapeutic</td>
<td>Format</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetuximab (IMC-C225; Erbitux®)</td>
<td>Mouse/human chimeric IgG1</td>
<td>HC: 2</td>
<td>EGFR (extracellular domain)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab (Herceptin®)</td>
<td>Humanized IgG4</td>
<td>HC: 29, LC: 30</td>
<td>HER2/Neu (extracellular domain)</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Rituximab (Rituxan®; MabThera®)</td>
<td>Mouse/human chimeric IgG1</td>
<td>HC: 31, LC: 32</td>
<td>CD20 (large extracellular loop)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Bevacizumab (Avastin®)</td>
<td>Humanized IgG1</td>
<td>HC: 33, LC: 34</td>
<td>VEGF-A</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Alemtuzumab (Campath®; Campath-1H®; Mabcampath®)</td>
<td>Humanized IgG1</td>
<td>HC: 35, LC: 36</td>
<td>CD52 (extracellular domain)</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Panitumumab (ABX-EGF; Vectibix®)</td>
<td>Human IgG2</td>
<td>HC: 37, LC: 38</td>
<td>EGFR (extracellular domain)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ranibizumab (Lucentis®)</td>
<td>Humanized IgG1 Fab</td>
<td>HC: 39, LC: 40</td>
<td>VEGF-A</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Ibritumomab</td>
<td>Mouse IgG1</td>
<td>HC: 41, LC: 42</td>
<td>CD20 (large extracellular loop)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Ibritumomab tiuxetan (Zevalin®)</td>
<td>Mouse IgG1 coupled to tiuxetan</td>
<td>HC: 41, LC: 42</td>
<td>CD20 (large extracellular loop)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Tositumomab</td>
<td>Mouse IgG2a</td>
<td>HC: 43, LC: 44</td>
<td>CD20 (large extracellular loop)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Iodine I 131 Tositumomab (BEXXAR®)</td>
<td>Mouse IgG2a coupled to Iodine-131</td>
<td>HC: 43, LC: 44</td>
<td>CD20 (large extracellular loop)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Catumaxomab (Removab®)</td>
<td>Hybrid Ab: Mouse IgG2a, Rat IgG2b</td>
<td>EpCAM (extracellular domain)</td>
<td>CD3 (extracellular domain): γ chain, ζ chain, ε chain</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerzuzumab</td>
<td>Humanized IgG4</td>
<td>CD33 (extracellular)</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Domain</td>
<td>59</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Gemtuzumab ozogamicine (Mylotarg®)</td>
<td>Humanized IgG4 coupled to calicheamicin</td>
<td>CD33 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abatacept (CTLA4-Ig; Orencia®)</td>
<td>Soluble fusion protein: Extracellular domain of human CTLA-4 linked to modified Fc human IgG1</td>
<td>CD80 (extracellular domain)</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD86 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belatacept (L104EA29Y1g; LEA29Y; LEA)</td>
<td>Soluble fusion protein: Extracellular domain of human CTLA-4 linked to modified Fc human IgG1</td>
<td>CD80 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD86 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipilimumab (MDX-010; MDX-101)</td>
<td>Human IgG1</td>
<td>CTLA-4 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremelimumab (ticilimumab; CP-675,206)</td>
<td>Human IgG4</td>
<td>CTLA-4 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRS-010</td>
<td>Engineered human lipocalin protein (US20090042785)</td>
<td>CTLA-4 (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRS-050</td>
<td>Engineered human lipocalin protein (US7585940; US20090305982)</td>
<td>VEGF-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aflibercept (VEGF Trap, AVE005)</td>
<td>Soluble fusion protein: human extracellular domains of VEGFR-1 and VEGFR-2 with human IgG Fc (Holash et al., 2002 PNAS 99:11393-11398)</td>
<td>VEGF-A PLGF</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Volociximab (M200)</td>
<td>Chimeric (82% human, 18% murine) IgG4</td>
<td>α5β1 integrin (extracellular domain) : α5 β1</td>
<td>HC: 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC: 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>F200</td>
<td>Chimeric (human/murine) IgG4 Fab fragment of Volociximab (M200)</td>
<td>α5β1 integrin (extracellular domain) : α5 β1</td>
<td>HC: 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LC: 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>MORAb-009</td>
<td>Mouse/human chimeric IgG1 (US20050054048)</td>
<td>Mesothelin (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>SS1P (CAT-5001)</td>
<td>Soluble fusion protein: Anti-mesothelin Fv linked to a truncated Pseudomonas exotoxin A</td>
<td>Mesothelin (extracellular domain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>
b. Generating Libraries of Modified Proteins

The therapeutic protein used in the method can be an unmodified protein that is an existing therapeutic. Libraries or collections of existing therapeutics also can be screened. In other examples, the therapeutic protein includes modified proteins, such as modified peptides, modified enzymes, modified antibodies or other modified polypeptides. In examples where modified therapeutics are used in practice of the methods, assays using an unmodified protein can be performed as positive controls, or to compare with results from assays performed with modified proteins.

Therapeutic proteins can be modified by any process known to one of skill in the art that can alter the structure of a protein. Examples of modifications include replacement, addition, and deletion of one or more amino acids of the protein to form libraries or collections of modified therapeutic proteins. The libraries or collections can be screened in assays provided herein under conditions that simulate a diseased microenvironment and a normal microenvironment to identify conditionally active therapeutic proteins.

<table>
<thead>
<tr>
<th>(US20070189962)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cixutumumab (IMC-A12)</td>
<td>Human IgG1</td>
<td>HC: 48</td>
<td>IGF-1R (extracellular domain) 67</td>
</tr>
<tr>
<td>Matuzumab (EMD72000)</td>
<td>Humanized IgG1 (Kim (2005) Curr Opin Mol Ther 6:96-103)</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
<tr>
<td>Nimotuzumab (h-R3)</td>
<td>Humanized IgG2a (Spicer (2005) Curr Opin Mol Ther 7:182-191)</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
<tr>
<td>Zalutumumab (HuMax-EGFR)</td>
<td>Human IgG1 (Lammerts van Bueren et al. (2008) PNAS 105:6109-14)</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
<tr>
<td>Necitumumab IMC-11F8</td>
<td>Human IgG1 (Li et al. (2008) Structure 16:216-227)</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
<tr>
<td>mAb806 / ch806</td>
<td>IgG1 (Li et al., (2007) J Clin Invest 117:346-352)</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
<tr>
<td>Sym004</td>
<td>Chimeric/humanized IgG1 (Pederson et al. 2010 Cancer Res 70:588-597)</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
<tr>
<td>mAb-425</td>
<td>IgG2a</td>
<td></td>
<td>EGFR (extracellular domain)</td>
</tr>
</tbody>
</table>
It is within the level of one of skill in the art to generate modified or variant proteins for use in the methods herein. Methods of mutagenesis are well known in the art and include, for example, site-directed mutagenesis such as for example QuickChange (Stratagene) or saturation mutagenesis. Mutagenesis methods include, but are not limited to, site-mediated mutagenesis, PCR mutagenesis, cassette mutagenesis, site-directed mutagenesis, random point mutagenesis, mutagenesis using uracil containing templates, oligonucleotide-directed mutagenesis, phosphorothioate-modified DNA mutagenesis, mutagenesis using gapped duplex DNA, point mismatch repair, mutagenesis using repair-deficient host strains, restriction-selection and restriction-purification, deletion mutagenesis, mutagenesis by total gene synthesis, double-strand break repair, and many others known to persons of skill. In the methods herein, mutagenesis can be effected across the full length of a protein or within a region of a protein. The mutations can be made rationally or randomly.

If a test molecule is a protein, the modifications can include replacement of one or more amino acids of the protein. In some examples, the modifications are selected at random. In some examples, the modifications are selected to result in molecules with conditional activity. For example, rational mutagenesis includes mutation of amino acids known in the art or identified to be important for activity and/or structural stability of the therapeutic protein. Examples of residues that are known to be important include, for example, active site residues or amino acids in a binding pocket. For example, amino acids that are important for activity or structural stability of the therapeutic protein, can be selected to be replaced to form a library of modified therapeutic proteins that can be screened to identify conditionally active therapeutic proteins. Also, residues to mutate can be empirically identified by any method known to the skilled artisan, including site-directed mutagenesis, alanine scanning, structure/function relationships, homology modeling, theoretical modeling and any assays described herein. In addition, a library can be formed by randomly selecting amino acids to be replaced. Libraries or collections of mutant proteins can be generated and tested or screened in the method herein.

For identifying conditionally active proteins that are more active under disease conditions, for example acidic conditions that exist in a tumor environment, one or more more amino acids in the protein to be modified can be independently replaced
with an amino acid that has an ionizable group that can change protonation states between two pH conditions. The particular choice of amino acid is dependent on the particular pH condition that is being tested for conditional activity. One of skill in the art can select one or more replacement amino acids that include ionizable groups that can change ionization states between two different pH values. For example, the Henderson-Hasselbalch equation (pH = pKₐ + log ([A⁻]/[HA])) can be used to determine the ratio of protonated and unprotonated side chains of an amino acid as a function of the side chain pKₐ, which can be measured using any method known in the art (e.g., titration curves and/or Nuclear Magnetic Resonance), or can be calculated using any method known to one of skill in the art (Davies et al. (2006), BMCBiochem. 7:18; Juffer (1998), Biochem. Cell Biol. 76(2-3):198-209; Sham et al. (1997), J Phys. Chem. B 101(22):4458-4472; Nielsen (2007) J. Mol. Graph. Model. 25(5):691-699; Bas et al. (2008), Proteins 73(3):765-783), such as molecular dynamics modeling (e.g., Li et al. (2005), Proteins, 61:704-721; Bas et al. (2008), Proteins, 73:765-783) or the Poisson-Boltzmann equation (Fogolari et al. (2002) J. Mol. Recognit. 15(6):377-392). In some examples, the pKₐ of an amino acid is determined using model values for amino acid side chains (see, e.g., Nielsen (2001), Proteins 43(4):403-12. The protonation states of ionizable residues in a protein can alter one or more activities of a protein (such as affinity, catalytic activity, solubility, charge and stability) in a pH-dependent manner. (Rostkowski et al. (2011), BMC Struct. Biol. 11:6). Exemplary of such residues are Asp, Glu, Lys, Arg, and His.

In particular, for the purpose of the methods provided herein to identify proteins with altered activity in a low pH tumor microenvironment, amino acid residues of a therapeutic molecule can be changed to a histidine. For example, histidine side chains have been identified as being involved in the pH-dependent affinity of an antibody at pH 6.0 compared to pH 7.0 (see e.g. Raghavan et al. (1995) Biochemistry, 34:14649-14657).

In some examples, the methods provided herein are performed such that the identity of each mutant protein is known apriori before the protein is tested. For example, the methods provided herein can be conducive to mutagenesis and screening or testing methods that are addressable. This can permit the ease of comparisons between the activity assay conditions, such as binding assay conditions, that simulate
a diseased microenvironment and a normal microenvironment in a dual comparative
assay method. For example, site-directed mutagenesis methods can be used to
individually generate mutant proteins. Mutagenesis can be performed by the
replacement of single amino acid residues at specific target positions, one-by-one
such that each individual mutant generated is the single product of each single
mutagenesis reaction. Mutant DNA molecules can be designed, generated by
mutagenesis and cloned individually, such as in addressable arrays, such that they are
physically separated from each other and each one is the single product of an
independent mutagenesis reaction. The amino acids selected to replace the target
positions on the particular protein being optimized can be either all of the remaining
19 amino acids, or a more restricted group containing only selected amino acids. In
some methods provided herein, each amino acid that is replaced is independently
replaced by 19 of the remaining amino acids or by less than 19 of the remaining
amino acids, such as 10, 11, 12, 13, 14, 15, 16, 17 or 18 of the remaining amino acids.

Modified proteins, such as mutant protein molecules derived from the
collection of mutant DNA molecules can be physically separated from each other,
such as by formatting in arrays, such as addressable arrays. Thus, a plurality of
modified protein molecules, such as mutant protein molecules, can be produced. For
example, modified proteins used in the methods provided herein can contain a single
amino acid replacement at a target position. The methods provided herein can be
performed on each modified protein under one or more assay conditions described
herein. Once modified proteins containing single mutations are identified that exhibit
preferential activity in the diseased microenvironment, combination mutants can be
generated containing some or all permutations of single amino acid mutations, such as
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more mutations.

(a) Modified therapeutic antibodies

In some examples, the assays are performed using modified therapeutic
proteins that are modified therapeutic antibodies. The antibodies for use in the
methods provided herein typically contain a variable heavy chain and a variable light
chain, or portion thereof sufficient to form an antigen binding site. It is understood,
however, that the antibody also can include all or a portion of the constant heavy
chain (e.g. one or more CH domains, such as CH1, CH2, CH3 and CH4, and/or a
constant light chain (C_l)). Hence, the antibody can include those that are full-length antibodies, and also include fragments or portions thereof including, for example, Fab, Fab', F(ab')_2, single-chain Fvs (scFv), Fv, dsFv, diabody, Fd and Fd' fragments, Fab fragments, scFv fragments, and scFab fragments. It is understood that resulting modified antibodies can be produced as a full-length antibody or a fragment thereof, such as an Fab, Fab', F(ab')_2, single-chain Fvs (scFv), Fv, dsFv, diabody, Fd and Fd' fragments, Fab fragments, scFv fragments, and scFab fragments. Further, the constant region of any isotype can be used in the generation of full or partial antibody fragments, including IgG, IgM, IgA, IgD and IgE constant regions. Such constant regions can be obtained from any human or animal species. It is understood that activities and binding affinities can differ depending on the structure of an antibody. For example, generally a bivalent antibody, for example a bivalent F(ab')_2 fragment or full-length IgG, has a better binding affinity then a monovalent Fab antibody. As a result, where an Fab has a specified binding affinity for a particular target, it is expected that the binding affinity is even greater for a full-length IgG that is bivalent. Thus, comparison of binding affinities between antibodies are typically made between antibodies that have the same structure, e.g. Fab compared to Fab.

Antibody variants can be generated and screened in the methods provided herein. In particular, variants of existing antibody cancer therapeutics, such as mutants of anti-EGFR antibodies for example mutants of Erbitrux, can be generated. In some examples, the methods are performed with modified antibodies that contain one or more amino acid modifications located at any position in the antibody. In some examples of the methods provided herein, modifications are made in the variable heavy chain and/or the variable light chain of an antibody.

Typically, amino acid mutations are introduced into an antibody in one or more of the CDRs. For example, amino acid mutations can be introduced within sequences encoding the CDR1, CDR2, and/or CDR3 regions of the heavy and/or light chain variable regions. In some examples, mutations also can be made in the framework region (FR) of an antibody, in particular, in FR residues known to be involved in contact with an antigen. One of skill in the art knows and can identify the CDRs and FR based on Kabat or Chothia numbering (see e.g., Kabat, E.A. et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S.)
Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia, C. et al. (1987) *J. Mol. Biol.* 196:901-917. For example, based on Kabat numbering, CDR-L1 corresponds to residues L24-L34; CDR-L2 corresponds to residues L50-L56; CDR-L3 corresponds to residues L89-L97; CDR-H1 corresponds to residues H31-H35, 35a or 35b depending on the length; CDR-H2 corresponds to residues H50-H65; and CDR-H3 corresponds to residues H95-H102. For example, based on Kabat numbering, FR-L1 corresponds to residues L1-L23; FR-L2 corresponds to residues L35-L49; FR-L3 corresponds to residues L57-L88; FR-L4 corresponds to residues L98-L109; FR-H1 corresponds to residues H1-H30; FR-H2 corresponds to residues H36-H49; FR-H3 corresponds to residues H66-H94; and FR-H4 corresponds to residues H103-HI 13.

format, thereby generating individual mutants that can be easily screened in the dual assay method herein.

i. Modified Anti-EGFR Therapeutics

In some examples of the methods provided herein, the therapeutic protein that is modified for use in the methods herein is one that interacts with all or a portion of Epidermal Growth Factor Receptor (EGFR). Thus, for example, a therapeutic protein for mutagenesis and screening in the methods herein is one that can interact with the extracellular domain of EGFR, the cytoplasmic domain of EGFR or with the internal tyrosine kinase domain of EGFR. In some examples, the unmodified therapeutic protein is one that inhibits EGFR-mediated signal transduction. For example, interaction of the a protein with EGFR can prevent EGFR from interacting with one or more ligands for EGFR including, for example, EGF, TGF-a, amphiregulin, heparin-binding EGF (HB-EGF) and betacellulin. In particular examples, a therapeutic protein against EGFR prevents EGFR from interacting with EGF and/or TGF-a. The therapeutic protein can interact with EGFR and inhibit EGFR dimerization with other EGFR receptor subunits (i.e., EGFR homodimers) or heterodimerization with other growth factor receptors (e.g., HER2).

In some examples, the protein that interacts with EGFR is an anti-EGFR antibody. The anti-EGFR antibody can be a humanized anti-EGFR antibody. Hence, exemplary of modified proteins, such as antibody variants provided herein, for use in the methods provided herein, are modified anti-EGFR antibodies. Examples of anti-EGFR antibodies that can be subjected to mutagenesis and used in the methods provided herein include the antibody designated 11F8 by Zhu (WO 2005/090407), EMD 72000 (matuzumab), Vectibix™ (panitumumab; ABX-EGF), TheraCIM (nimotuzumab), and Hu-Max-EGFR (zalutumumab) and any anti-EGFR antibody described herein. In particular, variants of the anti-EGFR antibody Erbitux® are provided for screening in the methods herein for a conditionally active protein that is more active in a tumor microenvironment than a normal environment.

Anti-EGFR antibodies, as well as small molecules, can specifically bind to the EGF receptor on both normal and tumor cells, and competitively inhibit the binding of epidermal growth factor (EGF) to its cognate receptor. The blockade can prevent receptor phosphorylation and activation of the receptor-associated kinase activity,
ultimately shutting off receptor-mediated cell signaling which leads to cell death. Specifically, the anti-EGFR antibody Erbitux® (Cetuximab or C225) (SEQ ID NOS: 1 and 2) is a chimeric antibody against EGFR that is used for the treatment of colorectal carcinoma and squamous cell carcinoma. Erbitux® is a human-mouse chimeric monoclonal EGFR antagonist antibody that can bind to the extracellular domain of EGFR and block ligand binding. Erbitux® binding to EGFR can inhibit dimerisation and, ultimately, inhibit tumour growth and metastasis (Blick et al., 2007) Drugs 67(17):2585-2607). Erbitux® can also induce an antitumor effect through inhibition of angiogenesis. Erbitux® inhibits expression of VEGF, IL-8 and bFGF in the highly metastatic human TCC 253JB-V cells in a dose dependent manner and decrease microvessel density (Perrotte et al. (1999), Clin. Cancer Res., 5:257-264). Erbitux® can down-regulate VEGF expression in tumor cells in vitro and in vivo. (Petit et al. (1997), Am. J. Pathol., 151:1523-1530; Prewett et al. (1998), Clin. Cancer Res. 4:2957-2966).

In the U.S., Erbitux® has been approved for use alone or in combination with radiation therapy to treat squamous cell cancer of the head and neck (SCCHN), which is the sixth leading cause for cancer deaths worldwide. Approximately 40% of patients with SCCHN present with metastatic disease, and in one study 5-year survival rates were 91% for stage I disease, 77% for stage II, 61% for stage III, 32% for stage IVa, 25% for stage IVb and less than 4% for stage IVc disease (Lefebvre (2005) Ann. Oncol. 16(Suppl 6):vi7-vi12). Cetuximab in combination with irinotecan has been approved to treat metastatic colorectal cancer (mCRC) in patients with EGFR-expressing tumours who are refractory to irinotecan-based therapy (Blick et al., 2007) Drugs 67(17):2585-2607).

Anti-EGFR agents, such as the antibody Erbitux®, are associated with significant and characteristic adverse events such as skin toxicities and digestive disturbances (including nausea, vomiting, diarrhea), that often lead to interruption of dosing and discontinuation of treatment. Erbitux can prevent dermal EGFR ligands from binding to receptors on undifferentiated keratinocytes, leading to an accumulation of undifferentiated cells and a lack of mature cells to replenish epidermis. This can result in severe acne-like dermatologic rash (Eng C (2009) Nat. Rev. Clin. Oncol. 6:207-18). As a result of side effects, 76% of patients are associated
with dosing interruptions, 60% with dose reductions and 32% with dose discontinuations. Other possible side effects of Erbitux® include deep vein and artery thrombosis, acne, dyspnea, fatigue, abdominal pain, asthenia and atrial fibrillation (Fakih and Vincent, (2010) *Curr. Oncol.* 17(S1):S18-S30). In some cases, side effects can prevent a patient from receiving further treatments with cetuximab.

Hence, there exists a need for therapeutic molecules, such as therapeutic proteins that exhibit minimized or limited systemic side effects, yet retain their activity of target binding within the tumor microenvironment.

Antibody variants of an anti-EGFR antibody can be generated and screened in the assays provided herein, such as dual assays that are performed to simulate diseased and normal microenvironments. Provided herein are collections of antibody variants of anti-EGFR antibodies that contain single amino acid replacements in the variable heavy and light chain of the anti-EGFR antibody Erbitux® (see e.g. Example 8 and Figure 1). In particular, each of 100 residues in the CDRL1, CDRL2, CDRL3, CDRH1, CDRH2 and CDRH3 and in framework residues that are associated with contact with EGFR can be independently replaced with up to 19 other amino acids, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19 amino acids, and in particular at least or about at least 15 other amino acid residues. In the anti-EGFR antibody Erbitux, CDR-H1 corresponds to amino acids 26-35 or 31-35 of SEQ ID NO:2, CDR-H2 corresponds to amino acids 50-65 of SEQ ID NO:2, CDR-H3 corresponds to amino acids 98-108 of SEQ ID NO:2, CDR-L1 corresponds to amino acids 24-34 of SEQ ID NO:1, CDR-L2 corresponds to amino acids 50-56 of SEQ ID NO:1 and CDR-L3 corresponds to amino acids 89-97 of SEQ ID NO:1.

Amino acids selected for modification include heavy chain residues 23-37, 50-77, 93-94 and 96-12 of SEQ ID NO:2 and light chain residues 1-5, 24-34, 48-56, 86-87 and 89-100 of SEQ ID NO:1 (see Figure 1). In the collections of variant anti-EGFR antibodies, all positions in the collection can contain amino acid replacement to histidine, except for those positions where histidine is present in the parent Erbitux antibody. The collection of anti-EGFR antibodies can be provided in an addressable array.

Antibody variants of anti-EGFR antibodies, for example variant Erbitux antibodies, can be generated and screened in the dual assay herein to identify an
improved variant anti-EGFR analog for the treatment of cancer. For example, the method provided herein can be used to test anti-EGFR variant antibodies, for example variant Erbitux antibodies, and identify a variant or variants that binds to the EGFR within the tumor microenvironment of reduced pH and elevated lactate concentrations, but not at normal physiologic pH.

Screening or Testing Activity Under Two Different Physiologic Conditions for Conditional Activity

In the methods provided herein, the activity of one or more molecules, such as any described above, is screened or tested under two different sets of conditions that simulate a condition or conditions in two different physiologic environments such as, for example, a diseased microenvironment and the normal physiologic condition of a non-diseased microenvironment. Typically, the conditions are conditions that can be simulated or replicated *in vitro*. A set of conditions can include one or more conditions to simulate a microenvironment associated with a disease. Disease can alter intracellular and extracellular homeostasis. For example, the diseased microenvironment can simulate one or more conditions in a tumor microenvironment or a cancer microenvironment. Typically, the difference or differences in activity under the two sets of conditions can result in the conditional activity of the molecule. Thus, a molecule that exhibits greater activity under the first set of conditions (e.g. simulating conditions in a tumor microenvironment) compared to the second set of conditions (e.g. simulating conditions in a normal or non-diseased environment) is identified as a candidate molecule that is conditionally active.

The two sets of conditions can be selected to vary by one or more parameters that differ in two physiologic environments, such as described herein or known to one of skill in the art, including but not limited to chemical conditions, biological conditions, or physical conditions. Parameters that can be varied between the two sets of conditions can include one or more conditions selected from among pressure, temperature, pH, ionic strength, turbidity, exposure to light (including UV, infrared or visable light), concentration of one or more solutes, such as electrolytes, concentration of lactic acid, concentration of O₂, and presence of oxidants or reductants. By varying the electrolyte and buffer systems in the calibration solutions, physiological conditions such as pH, buffer capacity, ionic environment, temperature, glucose
concentration and ionic strength can be adjusted to those of the biological environment to be simulated. The set of conditions that simulate a normal physiologic environment can be selected to be different from the set of conditions that simulate a diseased microenvironment, such as a tumor microenvironment, by one or more conditions described herein.

For example, as discussed below, various parameters of the tumor microenvironment differ compared to a non-tumor microenvironment, including, but not limited to, oxygen concentration, pressure, presence of co-factors, pH, lactate concentration and pyruvate concentration. Any of these parameters can be replicated in vitro to simulate one or more conditions that exist in a tumor or cancer environment compared to conditions that exist in a non-tumor or a normal environment. The normal physiologic conditions that can be simulated include environments found in healthy or nondiseased tissue at any location of the body such as the GI tract, the skin, the vasculature, the blood, and extracellular matrix..

Typically, in the assays herein, physiologic conditions can be simulated in vitro by the choice of buffer that is used to assess the activity of the protein. For example, any one or more conditions of a diseased microenvironment (such as a tumor microenvironment) and a non-diseased environment can be simulated by differences in the assay buffer used to assess activity in the assay. Hence, in the methods herein to identify a conditionally active protein, a component or components or characteristic or characteristics of an assay buffer are altered or made to be different in a first assay to test activity under a first condition and in a second assay to test activity under a second condition. For example, as discussed herein, various parameters of the tumor microenvironment are different compared to a non-tumor environment including, but not limited to, oxygen, pressure, presence of co-factors, pH, lactate concentration (such as increased or decreased lactate concentration) and pyruvate concentration (including increased or decreased pyruvate concentration). Any one or more of these conditions can be simulated in vitro by choice of the particular assay buffer.

The composition of the assay buffer that simulates a diseased microenvironment can be selected to be identical to the composition of the assay buffer that simulate a normal environment, with the exception of one or more
conditions known or described herein that is altered in the diseased microenvironment. Further, in screening or identifying the activity of one or more test molecules under two different sets of conditions, generally the only conditions that are varied in the assay relate to the buffer conditions simulating the in vivo microenvironment. The other conditions of the assay, such as time, temperature and incubation conditions, can be the same for both sets of conditions.

Typically, the same base buffer is used in the set of conditions that simulate a diseased microenvironment and conditions that simulate a normal microenvironment, but the design of the buffer composition can be made to differ in one or more parameters such as pH, oxygen, pressure, presence of co-factors, pH, lactate concentration (such as increased or decreased lactate concentration) and/or pyruvate concentration (including increased or decreased pyruvate concentration). In the conditions that simulate a diseased microenvironment and the conditions that simulate a normal microenvironment, any base buffer known to one of skill in the art that can be used, including TAPS ((N-Tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid),), Tris (tris(hydroxymethyl)methylamine), Tricine (N-tris(hydroxymethyl)methylglycine, TAPSO (3-[N-Tris(hydroxymethyl)methylamino]-2-hydroxypropanesulfonic Acid, HEPES (4-2-hydroxyethyl-l-piperazinethanesulfonic acid), TES (2-{[tris(hydroxymethyl)methyl]amino}ethanesulfonic acid), MOPS (3-(N-morpholino)propanesulfonic acid), PIPES (piperazine-N,N'-bis(2-ethanesulfonic acid)), Cacodylate (dimethylarsinic acid), SSC (saline sodium citrate), MES (2-(N-morpholino)ethanesulfonic acid) and any of Good's buffers (MES, ADA, PIPES, ACES, Cholamine chloride, BES, TES, HEPES, Acetamidoglycine, Tricine, Glycinamide and Bicine (N,N-bis(2-hydroxyethyl)glycine)).

The skilled artisan can select an appropriate buffer by considering appropriate factors, such as buffer pKₐ; solubility; membrane impermeability; minimal salt effects; minimum influence of buffer concentration, temperature and ionic composition of the medium on buffer dissociation; stability, low optical absorbance (see, e.g., Good et al., (1966) *Biochemistry* 5(2):467-477). The choice of buffer that is used can be empirically determined by one skilled in the art depending on the particular parameter or parameters that are being simulated. Buffers that can be used
in an assay include any buffer that has an appropriate buffering capacity for the pH range. Typically, the higher the ionic strength or concentration of the buffer, the higher the buffer capacity. Typically, the buffer is selected to reflect the physiologic environment. Exemplary of physiologic buffers include, but are not limited to, phosphate buffered saline (PBS), Hank’s balanced salt solution (HBSS), Ringes or Krebs.

In addition, in any conditions that are described herein, human serum can be added to simulate a physiological environment at a concentration that simulates physiological conditions, such as 1-40% human serum, in some examples 5-30% human serum, and in some examples 5%, 10%, 15%, 20%, 25% or 30% human serum.

a. Tumor Microenvironments

A set of conditions in an assay can be selected to, for example, simulate extracellular and/or intracellular conditions within a tumor microenvironment (such as conditions found in the extracellular matrix within a tumor microenvironment), compared to a non-tumor environment or normal physiologic conditions. In some examples, a set of conditions used in an assay simulates the conditions of the tumor microenvironment, such as due to the presence of a condition that is associated with, or specific to, tumors. For example, cancer is associated with numerous biomarkers, including altered pH and increased oxidative potential, altered vascularization, hypoxia, extracellular and cellular pH, increased interstitial fluid pressure (IFP), oxygen level, pressure, lactate concentration and pyruvate concentration as well as induced co-factors (see Table 4 below) (Aluri et al. (2009), Adv. Drug. Deliv. Rev. 61(II):940-952; Gerweck and Seetharaman (1996), Cancer Res. 56(6):1194-1198; Cook et al. (2004), Semin. Radiat. Oncol. 14(3):259-266; Schafer and Buettner (2001); Free Radic. Biol. Med. 30(1 1):1 191-1212). Any one or more of these conditions can be simulated in an assay.

<table>
<thead>
<tr>
<th>Table 4. Disease Microenvironments</th>
<th>Causes and Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microenvironment</td>
<td></td>
</tr>
<tr>
<td>Vascularization</td>
<td>• pH of normal tissue is highly regulated & well maintained (7.3-7.4)</td>
</tr>
<tr>
<td></td>
<td>• Extracellular pH in tumor tissue is acidic ~5.6-7.2</td>
</tr>
<tr>
<td></td>
<td>• Intracellular pH is aggressively maintained ~7.4</td>
</tr>
<tr>
<td>Altered pH</td>
<td>Interstitial Fluid Pressure (IFP)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Co-factors (disease associated)</td>
<td>Metabolic deficiencies</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Normal O_2 levels is 80mm Hg (venus end of capillaries)</td>
</tr>
<tr>
<td></td>
<td>Hyperglycolytic tumors results in acidic tumor ECM (Warburg effect)</td>
</tr>
<tr>
<td></td>
<td>LDH and H^+ ions are actively exported into the ECM</td>
</tr>
<tr>
<td></td>
<td>Chaotic vascular causes hypoxic micro-regions</td>
</tr>
<tr>
<td></td>
<td>Hyposia causes capillary leakage & inefficient O_2 diffusion</td>
</tr>
<tr>
<td></td>
<td>Increase in IFP due to vasucalal leakage causes hypoxic conditions</td>
</tr>
<tr>
<td></td>
<td>IFP due to capillary leak & loss of contractile characteristic of the ECM</td>
</tr>
<tr>
<td></td>
<td>Inflammation results in acidic pH (-6.5-7.2)</td>
</tr>
<tr>
<td></td>
<td>Select for cells with resistance apoptic signals</td>
</tr>
<tr>
<td></td>
<td>Induces drug resistance, radioresistance and metastasis (O_2 is a radiosensitizer)</td>
</tr>
<tr>
<td></td>
<td>Upreguation of collagenases, uPA, cathepsins, VEGF, EGF, TNFa, IL-2, LOX</td>
</tr>
<tr>
<td></td>
<td>ECM degradation and metastasis</td>
</tr>
<tr>
<td></td>
<td>Asparagene synthase deficiency</td>
</tr>
</tbody>
</table>

(1) pH

In some examples of a set of conditions to simulate a tumor microenvironment, the pH of one or more of the buffers is adjusted to simulate the microenvironment of a tumor. An altered pH microenvironment is the most common microenvironment found in disease states such as tumor microenvironments, and it is the most uniform within the disease microenvironment compared to other properties such as hypoxia (see e.g. Fogh Andersen et al. (1995) Clin. Chem., 41:1522-1525; Bhujwalla et al. (2002) NMR Biomed., 15:114-119; Helmlinger et al. (1997) Nature Med., 3:177; Gerweck and Seetharaman (1996), Cancer Res. 56(6):1194-1 198). For example, in many tumors the 'Warburg effect' creates a microenvironment with a pH ranging from 5.6 to 6.8. The conditions described herein include conditions that simulate the low pH extracellular microenvironment (ECM) compared to a normal physiologic pH environment. Thus, assays that measure activity under conditions that simulate low pH and under conditions that simulate normal physiologic pH (e.g. neutral pH) can be used to identify molecules with biological efficacy that are conditionally active in the tumor microenvironment.

For example, the pH of the normal microenvironment conditions can be any pH that exists under physiologic conditions, such as any pH from about 7.0 to about 7.8, such as at least or about or pH 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 or 7.8 (see, e.g., US Patent No. 7781405), in some examples pH 7.4.
The pH of the tumor microenvironment is selected to have a pH that is more acidic from the normal microenvironment, such as any pH from about 5.6 to 6.8, such as less than or about or pH 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, or 6.8. Thus, the pH of the set of conditions that simulates a normal microenvironment can be more basic than the tumor conditions. Any buffer known to one of skill in the art or described herein can be adjusted to the desired pH.

In some examples, the pH environment of the tumor is simulated in the assay by altering the pH of a buffer used in the assay. The pH and buffering capacity is a function of the assay conditions and can be empirically determined or chosen by one of skill in the art. Any buffer known to one of skill in the art or described herein can be adjusted to the desired pH and used in an assay described herein. One of skill in the art can adjust the pH of a buffer by adding acid such as HC1, or a base such as NaOH. Typically, a buffer is allowed to equilibrate to the temperature of the assay conditions and the pH of the buffer is verified, and adjusted if necessary, before use.

For example, a physiologic buffer, such as Krebs-Ringer bicarbonate Buffer (KRB), can be adjusted to a low pH that is at or about between 5.6 to 6.8, for example 6.0 to 6.5, such as at or about 6.0. In some examples, the physiologic buffer, for example KRB, can be adjusted to a pH that is at or about 7.4. KRB buffer is a balanced salt solution that can maintain structural integrity of established cell lines and human primary cells. Furthermore, a bicarbonate buffering system is one of the major buffering systems used to maintain the pH of mammalian blood and is involved in mucosal protection and luminal buffering (Kaunitz and Akiba (2006), *Ailment Pharmacol. Ther.* 24(S4):169-176). Thus, KRB buffer is a physiologic buffer than can simulate conditions found within the body. Table 5 sets forth buffer components of Krebs-Ringer bicarbonate buffer as compared to PBS. Buffers can be adjusted to the final pH with 1 N HC1.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>MW</th>
<th>Amount</th>
<th>Concentration</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>180.16</td>
<td>1.8 g</td>
<td>10 mM</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>95.21</td>
<td>0.0468 g</td>
<td>0.5 mM</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>74.55</td>
<td>0.34 g</td>
<td>4.5 mM</td>
<td>2.7 mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>58.44</td>
<td>7 g</td>
<td>120 mM</td>
<td>137 mM</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>141.96</td>
<td>0.1 g</td>
<td>0.7 mM</td>
<td>10 mM</td>
</tr>
</tbody>
</table>
A condition that can differ between a normal environment and a diseased environment, such as a tumor environment, can include the concentration of lactate. In addition to being a gluconeogenic substrate for the liver (Gladden, 2008, Med. Sci. Sports Exerc. 40(3):477-485), lactate is an important intermediary in numerous biochemical processes, including wound repair, regeneration, aerobic metabolism (Gladden 2004, J. Physiol. 556(3):5-30). One of skill in the art is familiar with the mechanisms for production and maintenance of lactate in healthy tissue in the body (see, e.g., Brooks 2010 J. Appl. Physiol. 108(6):1450-1451) and with exemplary lactate concentrations in both healthy and diseased tissue (see, e.g., Soliman and Vincent 2010, Acta Clin. Belg. 65(3):176-181; Friedman et al. (1995), Crit. Care. Med 23(7):1184-1193; Myburgh et al. (2001), Med. Sci. Sports Exer. 33(1):152-156).

A set of conditions described herein, that simulates a tumor microenvironment, can include increased levels of lactate in one or more buffers. The lactate concentration of a tumor can be simulated in an assay by adjusting concentrations of lactic acid in one or more buffers. For example, an assay can be performed using one or more buffers can contain at or about between 5 mM to 20 mM lactic acid, for example 10 mM to 20 mM lactic acid such as 15 mM to 18 mM, and in particular at least or at least about or 16 mM, 16.5 mM or 17 mM lactic acid. In some examples, the lactate concentration of one or more buffers that simulate a normal environment for use in the assays provided herein is adjusted to be at or about between 0.5 to 5 mM lactate, such as, for example 0.2 mM to 4 mM lactic acid, such as 0.5, 1, 2, 3, 4, or 5 mM lactic acid.

(3) Hypoxia

Another example of a set of conditions that can differ between a normal environment and a diseased environment, such as a tumor environment, can include hypoxia. Hypoxia, decreased availability of oxygen, is a feature of most solid tumors and is associated with poor prognosis in several cancer types, including breast cancer

Hypoxic conditions can be simulated in an assay by any method known to the skilled artisan, including buffer degassing. For example, inert gas can be bubbled through the buffer before use (see, e.g., Nayler et al., (1979), 11(10):1053-1071).

Hypoxic conditions can be simulated by bubbling a buffer with a mixture of N\textsubscript{2}:CO\textsubscript{2} (19:1 vol/vol) (Martou et al., (2006) J. Appl. Physiol. 101(5):1335-1342). In addition, hypoxic conditions can be maintained during the assay by performing the reaction in an atmosphere with an oxygen (O\textsubscript{2}) concentration lower than atmospheric oxygen, for example, less than 21% O\textsubscript{2} (McCord et al. (2009), Mol. Cancer Res. 7:489-497) or by bubbling air with less than 21% O\textsubscript{2} into the reaction. Hypoxic conditions include any conditions in which oxygen concentration is less than the equilibrium concentration of oxygen from atmospheric exposure, and can include, for example, 0-20% oxygen, including 0-10% oxygen, such as 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% or 15% oxygen.

In addition, the conditions that simulate a normal microenvironment can include an O\textsubscript{2} concentration that corresponds to an O\textsubscript{2} concentration typically found under physiologic conditions. For example, an assay performed under conditions that
simulate a healthy environment can be performed in a reaction that is exposed to air (approximately 21% gas phase oxygen). Under these conditions, cells can be exposed to dissolved oxygen concentrations of 200 µM or less. However, cells can grow at oxygen concentrations above or below 200 µM such as, for example 40 µM - 400 µM. Thus, the conditions that simulate a normal microenvironment can include an oxygen concentration within a range of between or about between 40 µM to 400 µM, in some instances 40 µM to 200 µM, and in some instances 40 µM to 140 µM. If necessary, dissolved oxygen concentrations can be increased by aerating with either atmospheric air or an air/oxygen mixture. (see, e.g., Oiler et al. (1989), J. Cell Sci. 94:43-49)

3. Detection and Identification of Conditionally Active Modified Proteins

In the method, after selecting a condition or conditions, the test molecule, such as a therapeutic protein or modified therapeutic protein, for example a modified anti-EGFR antibody, is assessed for activity under the first condition and second condition. Various assays to assess activity of the molecule or protein are known to one of skill in the art and are dependent on the particular molecule or protein. For example, assays include binding assays or functional assays. Exemplary assays are described in Section C below. For example, to assess the activity of an anti-EGFR antibody, binding to EGFR can be assessed.

The resulting activity under each of the conditions is then compared. Molecules or proteins are identified or selected that exhibit greater activity under the first set of conditions, which typically are the conditions that simulate or replicate a diseased condition such as exists in a tumor environment. For example, activity (e.g. binding activity) under conditions that simulate a tumor microenvironment is compared to the same activity (e.g. binding activity) under conditions that simulate a non-tumor or normal physiologic environment. For comparison, the activity can be represented as a ratio of activity under the second condition (e.g. conditions of a disease microenvironment) compared to under the first set of conditions (e.g. of a non-diseased normal microenvironment). For example, where the parameter that differs between the first and second condition is pH, activity can be represented as a ratio of activity observed at an acidic pH versus a more neutral pH, such as a ratio of
activity at pH 6.0/7.4. A test molecule, such as a therapeutic protein or modified therapeutic protein, such as antibodies or variant antibodies for example a modified anti-EGFR antibody, are identified or selected that exhibit a ratio that is greater than 1 such that the molecule exhibits greater activity in the diseased or tumor microenvironment. For example, the ratio is at or about between 1.5 to 100, such as 2 to 50, for example 5 to 30 or more. Hence, in the methods, a conditionally active protein or variant can be identified.

In addition, activity can be compared to a control, such as a protein not containing mutations, in order to identify proteins that exhibit increased activity in the diseased or tumor microenvironment compared to the protein not containing the mutation or mutations. In some examples, the activity of modified proteins can be normalized to the activity of the unmodified protein. Thus, conditional activity of a modified protein can be determined based on a normalized activity. As an illustrative example, if an unmodified protein has activities of 10 and 1 in a normal microenvironment and a diseased microenvironment, respectively; and a modified protein has activities of 2 and 1 in a normal microenvironment and a diseased microenvironment, respectively, the normalized activities of the modified protein in the normal and diseased environment are 0.2 (2/10) and 1 (1/1), respectively. Thus, in this hypothetical example, the modified protein is twice as active in the normal microenvironment as in the diseased microenvironment, but can be conditionally active for the diseased microenvironment, because the normalized activity of the modified protein in the diseased environment is five times the normalized activity in the normal environment (1 / 0.2 = 5). Thus, the methods provided herein can be used to identify modifications that can alter the ratio of normalized activities of a modified protein.

4. Iterative Methods

In one example, after the method is performed, any identified conditionally active molecules can be modified or further modified to increase or optimize the conditional activity. For example, a secondary library can be created using the identified therapeutic protein or variant as a template and by introducing additional modifications in the first identified conditionally active protein. For example, modifications that were identified as increasing conditional activity can be combined.
The secondary library can be tested using the assays and methods described herein.

In another example of an iterative aspect of the method, optionally, molecules that are identified as not exhibiting conditional activity, such that they are not active or do not have increased activity under the first set of conditions, can be further modified and retested for conditional activity. The further modifications can be targeted near particular regions (e.g. particular amino acid residues) associated with activity and/or stability of the molecule. For example, residues that are associated with activity and/or stability of the molecule generally are critical residues and are involved in the structural folding or other activities of the molecule, such as binding.

Critical residues can be identified because, when mutated, a normal activity of the protein is ablated or reduced. For example, critical residues can be identified that, when mutated, exhibit reduced or ablated binding activity of the therapeutic protein to its cognate binding partner. Critical residues can include residues that reside in the binding pocket. In particular, for purposes herein where the conditional activity is dependent on pH differences (e.g. acidic pH environment of a tumor environment), a charge effect on protein interaction can be determined by identifying critical residues that when mutated to a charged amino acid residue (e.g. Asp, Glu, Lys, Arg, and His) ablate or reduce binding to a cognate binding partner. Critical residues are then identified as residues that should not be targeted for mutagenesis to generate a conditionally active protein, since they are required for activity. Nevertheless, residues that are adjacent to or near to the identified critical residues can be particular targets that can be changed and that can affect the particular activity, such as binding. For example, mutation of an adjacent residue can affect the pocket of binding, and thereby alter binding activity.

Hence, in an example of an optional step to the method, amino acid residues that are important for protein activity and/or stability, and in particular binding (e.g. at an acidic pH), designated herein as critical residues, can be identified. Then, a further library of modified proteins can be generated with amino acid mutations targeted near to the identified critical amino acid residues, such as adjacent to the identified critical amino acid residues. In some examples, the mutations can be amino acid replacement to any other of up to 19 other amino acid residues at the adjacent position. In other examples, the mutation can be made rationally or empirically, for example, depending
on the particular conditional activity that is being evolved. For example, where conditional activity under a pH condition is being evolved, the mutation at an amino acid residue near to or adjacent to a critical residue can be to a charged residue, and in particular to a histidine (H) residue, which is a weakly charged and has a pK of around 6.5 to 6.8. For example, a library of protein mutants can be generated in which a plurality of mutant or variant proteins are generated that each contain a single amino acid replacement to a histidine at an amino acid residue that is adjacent to or near to a critical amino acid residue.

The activity of each of the new plurality of mutants containing a mutation at a residue adjacent to a critical residue can be assessed or determined. For example, each member of the further library can be individually expressed and individually tested for activity at a first condition and a second condition as described herein above. Following testing under both conditions, protein variants that are not expressed or that exhibit preferential binding under the second condition (e.g. the non-desired environment, such as the physiologic or neutral pH environment of a normal tissue) are excluded. Hence, only variants that exhibit similar activity under either condition (i.e. don’t affect activity, such as binding), are expressed, and/or exhibit preferential activity at the first condition are selected. The identity of the mutated residue can be determined and are designated key residues.

Then, a further combinatorial library is generated that includes combinations of mutations at the key residue positions. The mutations at the key residues can be amino acid replacement to any other of up to 19 other amino acid residues. In other examples, the mutation can be made rationally or empirically depending on the particular conditional activity that is being evolved. For example, where conditional activity under a pH condition is being evolved, the mutation at a key amino acid residue can be to a charged residue, and in particular to a histidine (H) residue. For example, if 11 key residues are identified, a combinatorial library can be generated containing protein variants having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or all 11 residues varied, in any combination. As an example, where a combinatorial library is generated where only the key residue is mutated to a histidine (H) residue, the number of mutants in the library (size of library) can be calculated as 2^{11} members or 2048 combination mutants, since each position can be a wildtype amino acid or a histidine and there are
11 sites that can be mutated and combined. It is understood that excluding the
wildtype and the 11 single His mutations (already tested above), the library contains
2036 combinations. It also is understood that the size of the library can be increased
or decreased depending on the number of key residues identified, and the number of
amino acid replacements made at each key residue position. The further library then
can be screened in the methods herein described above to identify a conditionally
active protein at a predetermined condition, such as increased activity in a tumor
environment than in a non-tumor or healthy environment.

For example, to select for conditionally active modified therapeutic proteins,
such as therapeutic antibodies for example Erbitux, with increased activity under
conditions that simulate a tumor microenvironment (e.g., pH 6.0) compared to a
normal microenviroment (e.g., pH 7.4), the amino acids in the therapeutic protein can
be mutated to form a library of single amino acid modified therapeutic proteins. This
library can be assayed in an in vitro assay under conditions that simulate a tumor
microenvironment and a normal environment to identify critical residues that, when
mutated, result in loss of activity under both conditions. For example, one or more
members of the library include modified proteins that can be independently replaced
with an amino acid that has an ionizable group that can change protonation states
between the two pH conditions (such as, for example, Asp, Glu, Lys, Arg, His). The
protonation states of ionizable residues in a protein can alter one or more activities of
a protein (such as affinity, catalytic activity, solubility, charge and stability) in a pH-
dependent manner (Rostkowski et al. (201), BMC Struct. Biol. 11:6). Critical
residues can be defined as amino acid positions that, when mutated to a charged
amino acid, result is no activity under both conditions. Hence, the residue is one that
resides in the binding pocket and/or is otherwise associated with a charge effect to
binding to its cognate binding partner. From an activity screen, such as an ELISA
screen, critical residues can be identified that, when mutated to charged residues, lose
binding at pH 6.0 and 7.4.

In the second step, after critical residues are identified, the activity of protein
variants containing replacement of amino acids adjacent to the critical residues can be
determined or assessed. The replacement amino acid can be randomly selected from
all possible amino acids, or from a subset of all possible amino acids. For example,
replacement amino acids can include amino acids that can change ionization states between the tumor and normal conditions as discussed above, such as an amino acid residue that is charged. In particular examples, the amino acid that is replaced at adjacent residues is a histidine. The activity of each of the new plurality of mutants containing a mutation at a residue adjacent to a critical residue can be assessed or determined at a first condition that mimics or simulates a condition of a tumor environment (e.g. a condition of acidic pH and/or high lactic acid) and at a second condition that mimics or simulates a non-tumor environment (e.g. a condition of neutral pH, 7.4 and/or lower lactic acid concentration). Variants that exhibit similar activity under either condition (i.e. don't affect activity, such as binding), are expressed, and/or exhibit preferential activity at the first condition are selected. The identity of the mutated residue of the selected mutants is determined and designated key residues.

Then, as a final step, a further combinatorial library is generated containing all combinations of mutants at the identified key residue positions. To select for conditionally active modified therapeutic proteins, such as therapeutic antibodies for example Erbitrux, with increased activity under conditions that simulate a tumor microenvironment (e.g., pH 6.0) compared to a normal microenvironment (e.g., pH 7.4), the the replacing amino acid is one that has an ionizable group that can change protonation states between the two pH conditions (such as, for example, Asp, Glu, Lys, Arg, His). For example, a combinatorial library is generated where the replacing amino acid at each key residue is a histidine. The activity of each member of the combinatorial library can be assessed or determined at a first condition that mimics or simulates a condition of a tumor environment (e.g. a condition of acidic pH, such as pH 6.0 and/or high lactic acid) and at a second condition that mimics or simulates a non-tumor environment (e.g. a condition of neutral pH, 7.4 and/or lower lactic acid concentration). Variants that exhibit increased activity at the first condition are identified or selected as conditionally active proteins.

C. Assays to Identify Conditionally Active Molecules

The steps of the method provided in Section B above to select or identify a conditionally active therapeutic molecule, for example a therapeutic protein such as an antibody therapeutic (e.g. a variant anti-EGFR antibody such as a variant Erbitrux
antibody) can be performed in any in vitro or in vivo assay that is amenable to changing or altering one or more condition parameters associated with a physiologic environment. Typically, the assay is an in vitro assay. The assay can be any assay that can test or assess an activity of a therapeutic molecule in a detectable or otherwise measurable manner so that the activity as determined under a first condition and an activity as determined under a second condition can be compared. Hence, the assay or method is performed twice (i.e. in a dual format), whereby the only difference in the assay in the first iteration and the second iteration is a parameter or condition that differs between a first condition (e.g. diseased or tumor environment) compared to a second condition (non-diseased or normal physiologic environment).

For example, a first assay can be performed where an activity is assessed at an acidic pH and/or high lactate concentration as exists in a tumor environment and a second assay is performed that is identical to the first assay except that the activity is assessed at a higher pH (e.g. neutral pH) and/or a lower lactate concentration as exists in a non-tumor or normal physiologic environment.

Any assay described herein can be used to assess an activity of a protein in order to generate and identify a protein that is more active in one environment than another environment. For example, exemplary assays are those that measure binding activity of a therapeutic molecule to its cognate binding partner or a functional activity of a therapeutic molecule. The assays provided herein can be developed in a high throughput format in order to assess an activity of numerous test molecules, for example protein variants, at one time in dual format. Provided herein are exemplary assays that can be used in the methods provided herein. The assays are not meant to be limiting. Any assay known to one of skill in the art is contemplated for use in the methods provided herein, including assays that detect binding, and functional assays.

1. Assays that Detect Binding

In some examples, the assays for use in the methods provided herein measure binding of a test molecule, such as a therapeutic protein or variants thereof for example an antibody variant (e.g. anti-EGFR) to a cognate binding partner, such as a receptor, ligand or an antigen. Hence, provided herein is an in vitro physiologic sensitive method to identify and distinguish activity, such as binding activity of ligand-binding pair, between two different physiologic microenvironments. The
method is a comparative method to identify a protein that exhibits higher activity, for example binding activity, in one environment than another environment. For example, an \textit{in vitro} assay provided herein is a binding assay performed separately (\textit{e.g.} in parallel or sequentially) under conditions that 1) simulate binding conditions found in the extracellular matrix within a tumor microenvironment and 2) simulate physiologic binding conditions, such as found at non-diseased sites. The method can be used to identify any test molecule that preferentially binds to its ligand or receptor under the diseased state of the tumor microenvironment compared to normal physiologic conditions of a non-tumor microenvironment, such as exists in the skin, GI tract or other tissue. The method is a dual assay comparative method, whereby the cognate binding partner (\textit{e.g.} target antigen or ligand) is separately contacted with a test molecule under the two different binding conditions.

In the assay, each binding molecule (\textit{e.g.} therapeutic protein or variant) is screened individually and separately for binding to its cognate binding partner (\textit{e.g.} target antigen) under both simulated conditions. For example, a therapeutic protein can be contacted with a cognate binding partner, such as a target antigen, and the binding activity of the therapeutic protein for the cognate binding partner can be assessed and compared. Examples of assays that measure binding include solution binding assays and solid support binding assays, such as surface plasmon resonance and immunoassays, such as ELISA.

Exemplary cognate binding partners for use in the binding assays described herein include small molecules, peptides, proteins, enzymes, antibodies or other biomolecules. In some examples, the cognate binding partner is a point of intervention in the treatment of a tumor or cancer, such as any ligand, receptor, enzyme or other protein that is associated with proliferation, angiogenesis or cell growth properties of cancer cells and tumors. Hence, reference to a cognate binding partner and target protein are used interchangeably herein. The target protein can be selected based on known targets of therapeutic intervention. For example, surrogate targets for known cancer therapeutics can be selected as target proteins in the method herein. It is understood that the choice of target protein used in the binding assays herein is dependent on the test molecule target protein that is screened. Table 3 sets forth the cognate binding partners or target proteins for exemplary therapeutic
proteins. Examples of such target proteins are set forth in Table 3 above, and include, for example, EGFR (including full length protein or extracellular domain), HER2/Neu, CD20 (full length or large extracellular loop), VEGF-A, CD52 (full length or extracellular domain), EpCAM (full length or extracellular domain) CD3 (full length, extracellular domain, γ chain, ζ chain or ε chain), CD33 (full length or extracellular domain), CD80 (full length or extracellular domain), CD86 (full length or extracellular domain), CTLA-4 (full length or extracellular domain), PLGF, α5β1 integrin (full length, extracellular domain, <s>5 or β1), Mesothelin (full length or extracellular domain) and IGF-1R (full length or extracellular domain).

In addition, a fragment of a target protein can be used in the assays provided herein. For example, target proteins, such as target antigens, can be expressed as soluble proteins. For example, a soluble EGFR for use as a target protein is the soluble EGF receptor extracellular domain (sECD). Cognate binding partners also include the extracellular domain or intracellular domain of any cognate binding partners described herein that include an extracellular domain and/or an intracellular domain.

In some examples of the methods provided herein, the test molecule is an anti-EGFR antibody or variant thereof and the cognate binding partner is a ligand or soluble fragment thereof, such as, for example, soluble EGFR receptor. The epidermal growth factor receptor (EGFR, HER1, c-ErbB-1; SEQ ID NO: 10) is a target for intervention and treatment of various cancers. EGFR is a transmembrane glycoprotein that is a member of a subfamily of type I receptor tyrosine kinases, including EGFR, HER2, HER3 and HER4. EGFR is constitutively expressed in many normal epithelial tissues, including skin and hair follicles. EGFR is overexpressed in a several cancers of epidermal origin. Expression of EGFR is detected in many human cancers including those of the head and neck, colon and rectum. For example, squamous cell carcinoma of the head and neck is associated with overexpression of EGFR (Parikh et al., (2011) Indian J Cancer 48:145-147). EGFR is associated with poor patient prognosis and resistance to cytotoxic chemotherapy (Ryan and Chabner (2000), Clin. Cancer Res. 6:4607-4609; Fox et al., (1994) Breast Cancer Res. Treat., 29:41-49; Rubin Grandis et al., (1998) J. Natl. Cancer Inst. (Bethesda), 90: 824-832; Uhlman et al. (1995) Clin. Cancer Res., 1:913-920; Neal et

Binding of a ligand to the extracellular domain of EGFR can stimulate dimerization, activate an internal tyrosine kinase domain, and can activate several downstream signals, including, for example, protein kinase A, which can phosphorylate bcl-2. (Ryan and Chabner (2000), Clin. Cancer Res. 6:4607-4609; Ciardiello and Tortora (1998), Clin Cancer Res. 4:821-828).

In particular examples herein, binding activity of an anti-EGFR antibody or variants thereof to EGFR or a soluble EGFR can be assessed under conditions of low pH (< 7.4) and elevated lactic acid concentrations, and under conditions of physiologic pH of about 7.3 to 7.4 and low lactate concentrations. In addition, human serum also can be included in the binding assay to further mimic the natural environments. Binding activity can be compared between the two conditions to identify biomolecule binding agents that exhibit greater binding activity under the tumor microenvironment conditions compared to under the normal physiologic conditions. Anti-EGFR antibodies can be identified that exhibit greater binding for its EGFR cognate binding partner under conditions that simulate the tumor microenvironment as compared to conditions that simulate normal physiologic conditions.

Typically, the test molecule or cognate binding partner is detectably labeled so that the binding activity can be assessed and determined. For example, to detect binding, the test molecules, such as therapeutic proteins for example antibody variants (e.g. anti-EGFR antibody variants), can be labeled with a detectable moiety or tag in order to facilitate detection. The skilled artisan can select an appropriate detectable moiety or tag for assay conditions. For example, some secondary reagents, such as anti-Ig antibodies cannot be used to detect binding of a modified protein that is an antibody in a solution that contains human serum. In addition, an anti-IgG antibody cannot be used to detect binding of a biomolecule that is an antibody.

Any detectable moiety or other moiety known to one of skill in the art that is capable of being detected or identified can be used. The moiety or tag can be linked
to the test molecule, such as a therapeutic protein or antibody, directly or indirectly, for example using a linker. Linkage can be at the N- or C-terminus of the therapeutic antibody. Exemplary tags and moieties that can be used in the method herein, include but are not limited to, any set forth in Table 6.

Table 6.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th># of Residues</th>
<th>Size (Da)</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-Myc</td>
<td>EQKLISEEDL</td>
<td>10</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>FLAG</td>
<td>DYKDDDK</td>
<td>8</td>
<td>1012</td>
<td>3</td>
</tr>
<tr>
<td>HA</td>
<td>YPYDVPDYA</td>
<td>9</td>
<td>1102</td>
<td>15</td>
</tr>
<tr>
<td>VSV-G</td>
<td>YTDIEMNFLGK</td>
<td>11</td>
<td>1339</td>
<td>16</td>
</tr>
<tr>
<td>HSV</td>
<td>QPELAPEDPDE</td>
<td>11</td>
<td>1239</td>
<td>17</td>
</tr>
<tr>
<td>V5</td>
<td>GKP1PNPLGLDST</td>
<td>14</td>
<td>1421</td>
<td>18</td>
</tr>
<tr>
<td>Poly Arg</td>
<td>RRRRR</td>
<td>5-6</td>
<td>800</td>
<td>19</td>
</tr>
<tr>
<td>Strep-tag-II</td>
<td>NSHPQFEK</td>
<td>8</td>
<td>1200</td>
<td>20</td>
</tr>
<tr>
<td>S-</td>
<td>KETAAKFERQHMDNS</td>
<td>15</td>
<td>1750</td>
<td>21</td>
</tr>
<tr>
<td>3x FLAG</td>
<td>DYKHDGDGYKDIDYKDDDK</td>
<td>22</td>
<td>2730</td>
<td>22</td>
</tr>
<tr>
<td>HAT-</td>
<td>KDHLIHNVHKEFAAHNK</td>
<td>19</td>
<td>2310</td>
<td>23</td>
</tr>
<tr>
<td>SBP-</td>
<td>MDEKTGWRGGHVVEGLAGELEQLRARLEHHPQGQRELP</td>
<td>38</td>
<td>4306</td>
<td>24</td>
</tr>
</tbody>
</table>

Any linker known to one of skill in the art that is capable of linking the detectable moiety to the therapeutic antibodies described herein can be used. Exemplary linkers include the glycine rich flexible linkers (-G₄Sₙ), where n is a positive integer, such as 1 (SEQ ID NO:4), 2 (SEQ ID NO:70), 3 (SEQ ID NO: 71), 4 (SEQ ID NO: 72), 5 (SEQ ID NO: 73), or more.

Binding assays can be performed in solution or by affixing the test molecule or cognate binding partner to a solid support. In some examples, cognate binding molecules or test molecules can be expressed from cells and binding can be assessed in a cell-based assay.

a) Solid Support Binding Assays

The assays for use in the methods provided herein include binding assays in which binding of a test molecule, such as a therapeutic target protein or variant thereof, to a cognate binding partner is measured under conditions in which one or both is attached to a solid support. For example, a cognate binding partner in solution can interact with a test molecule immobilized on a solid support, or a test molecule in
solution can interact with a cognate binding partner immobilized on a solid support. Solid support binding assays can be advantageous compared to solution binding assays because immobilization on the solid phase can facilitate separation of bound protein from unbound protein. Any solid support binding assay known to the skilled artisan is contemplated for use in the methods provided herein, including surface plasmon resonance and ELISA.

For example, Surface Plasmon resonance (SPR) can be used to detect binding of unlabeled molecules in highly sensitive assays by measuring refractive index changes that occur upon molecular binding of analyte molecules in a sample to immobilized molecules (Piliarik et al., (2009) Methods Mol Biol. 503:65-88). SPR occurs when surface plasmon waves, which are collective oscillations of electrons in a metal, are excited at a metal/dielectric interface. SPR reduces reflected light intensity at a specific combination of angle and wavelength. Molecular binding can change the refractive index and thickness of an ultra-thin organic (dielectric) layer on the metal film, which changes the SPR resonance conditions. A solution with the cognate binding partner can be passed over an immobilized therapeutic protein or a solution with therapeutic protein can be passed over immobilized cognate binding partner. Association rates can be measured by measuring SPR signal as a function of time. After association, a blank solution can be passed over immobilized therapeutic protein or cognate binding partner and dissociation rates can be measured as a function of time. From the association and dissociation rates, an equilibrium binding constant can be calculated. (Jecklin et al. (2009), J. Mol. Recognit. 22(4):3 19-29; Nguyen et al, (2007) Methods. 42(2): 150-61; Tarious et al. (2008), Methods Cell Biol. 84:53-77). Thus, SPR can be used to measure kinetics and thermodynamics of interactions between therapeutic proteins and cognate binding partners.

In another example, binding between a therapeutic protein and a cognate binding partner can be detected by Enzyme-linked immunosorbent Assay (ELISA). ELISA is an immunological assay that can be used to detect protein/ligand interactions, such as antibody/antigen interacts. Typically, in an ELISA, the antibody/antigen interactions are detected by measuring a signal from an enzyme marker linked directly or indirectly to the antibody/antigen complex. Several ELISA methods are known to the skilled artisan, and any ELISA method known to one of
skill in the art or described herein can be used, including direct ELISA and indirect ELISA. In a direct ELISA, a labeled primary antibody that interacts with an immobilized molecule is detected. A direct ELISA can include steps of: 1) coating a solid phase with a cognate binding partner (i.e., a ligand or antigen) of a test molecule, such as an antibody; 2) incubating the solid phase with a blocking reagent to block non-specific binding sites on the solid phase; 3) incubating the solid phase with a detectable test molecule that binds to the cognate binding partner; and 4) detecting the bound detectable test molecule. In an indirect ELISA, a labeled secondary antibody that interacts with the primary antibody is detected. An indirect ELISA can include steps of: 1) coating a solid phase with a cognate binding partner (i.e., a ligand or antigen) of a test molecule, such as an antibody; 2) incubating the solid phase with a blocking reagent to block non-specific binding sites on the solid phase; 3) incubating the solid phase with a test molecule that binds to the cognate binding partner; 4) incubating with a secondary detection agent, such as a labeled secondary antibody capable of detecting the test molecule, but not human serum components contained in the assay buffers, that can bind to the therapeutic antibody; and 5) detecting the secondary detection agent. Furthermore, for the direct or indirect ELISA methods, one or more washing steps (e.g., 1, 2, 3, 4 or more washing steps) can be included between any steps of the method.

It is within the level of one of skill in the art to empirically determine the precise assay or assay conditions depending on the cognate binding protein and biomolecule being screened. The steps of the method performed in a solid support binding assay includes 1) immobilizing a cognate binding protein to a solid support; 2) contacting a test molecule or molecules (e.g. antibody variants) with the cognate binding protein; and 3) detecting and identifying bound test molecules that exhibit binding activity to the cognate binding protein. It is understood that the steps of the method can be performed such that the test molecule is immobilized to the solid support and the cognate binding molecule is contacted therewith. Any of the steps can be performed under conditions to simulate two in vivo physiologic conditions.

For example, where the assay is an ELISA, any of the steps of an ELISA, such as coating, blocking, incubation with test molecule (e.g. therapeutic antibody or variants thereof), or detection, can be performed under conditions described herein, such as
conditions that simulate a tumor microenvironment (e.g., pH 6.0) or under conditions that simulate a normal microenvironment (e.g., pH 7.4) or other suitable conditions known to one of skill in the art.

A description of the general assay method is provided below with reference to an immunoassay-based format. One of skill in the art can adapt a step or steps to perform a binding assay in other solid support format, such as by surface plasmon resonance. Any test molecule, such as a therapeutic protein or variants, described in Section B above can be tested for binding activity for its cognate binding protein as described herein. In particular, antibody variants of anti-EGFR antibodies, for example variant Erbitux antibodies, can be generated and screened in the dual assay herein to identify an improved variant anti-EGFR analog for the treatment of cancer that binds to the EGFR within the tumor microenvironment of reduced pH and elevated lactate concentrations, but not at normal physiologic pH.

1) Immobilization to a Solid Support

As a first step of the method, a cognate binding protein (e.g. ligand or antigen) of interest is adapted for use to facilitate capture of bound molecules such that detection or identification of the bound molecules can later be achieved. To facilitate capture, the cognate binding protein for screening against can be provided in solution, in suspension or can be attached to a solid support as appropriate for the assay method. For example, the cognate binding protein is immobilized to a solid support. Alternatively or in addition, the test molecule can be modified to facilitate capture. For example, the test molecule can be immobilized to a solid support or otherwise detectably labeled. Generally, the binding assay is effected on a solid support.

Solid supports that can be used in the binding assays provided herein include any carrier that is capable of being affixed with a molecule, for example a test molecule or a cognate binding partner of a protein such as a ligand, receptor or antigen. Typically, to facilitate high throughput screening of variant test molecules (e.g. a library or collection of antibody variants such as anti-EGFR antibody variants), a cognate binding partner is affixed to the solid support. Examples of carriers for use as solid supports in the methods provided herein include, but are not limited to, glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amyloses, natural and modified celluloses, polyacrylamides, agaroses and magnetic solid supports, such as...
solid supports that include magnetite. The solid support can be one or more beads or particles, microspheres, a surface of a tube or plate, a filter membrane, and other solid supports known in the art. Exemplary solid support systems include, but are not limited to, a flat surface constructed, for example, of glass, silicon, metal, nylon, cellulose, plastic or a composite, including multiwell plates or membranes; or can be in the form of a bead such as a silica gel, a controlled pore glass, a magnetic (Dynabead) or cellulose bead. Further, such methods can be adapted for use in suspension or in the form of a column.

It is within the level of one of skill in the art to select a suitable solid support depending on the particular assay conditions. For example, nickel coated microplates can be less suitable for binding of His-tagged proteins, since buffer pH can affect antigen coating to Ni-coated but not high-bind plates. It is within the level of one of skill in the art to determine whether a solid support is suitable for use with varying pH conditions.

Test molecules or cognate binding partners can be immobilized to the solid support by any method known to one of skill in the art. Covalent or non-covalent methods for attachment can be used. Typically, the test molecule or cognate binding partner (such as a ligand or antigen) is immobilized by adsorption from an aqueous medium. In some examples, adsorption can be carried out under conditions that simulate a diseased microenvironment (such as a tumor or cancer microenvironment), under conditions that simulate a normal microenvironment, or under standard conditions known to one of skill in the art. For example, adsorption can be carried out using a buffer with a pH range of at or about between 6.0 to 7.4, in some examples at or about pH 7.4. In particular, to effect adsorption, a high binding microplate can be used as a solid support. High binding plates are known to those of skill in the art and readily available from various manufacturers (see e.g., Nunc Maxisorp flat-bottom plates available from eBioscience, San Diego, CA, Cat. No. 44-2404-21; Costar 96-well EIA/RIA Stripwell plate, Costar 2592).

Other modes of affixation, such as covalent coupling or other well known methods of affixation of the target protein to the solid matrix can also be used. Covalent methods of attachment of therapeutic proteins and/or cognate binding partners include chemical crosslinking methods. Reactive reagents can create
covalent bonds between the support and functional groups on the protein or cognate binding partner. Examples of functional groups that can be chemically reacted are amino, thiol, and carboxyl groups. N-ethylmaleimide, iodoacetamide, N-hydrosuccinimide, and glutaraldehyde are examples of reagents that react with functional groups. In other examples, test molecules and/or cognate binding partners can be indirectly attached to a solid support by methods such as, but not limited to, immunoaffinity or ligand-receptor interactions (e.g. biotin-streptavidin or glutathione S-transferase-glutathione). For example, a test molecules can be coated to an ELISA plate, or other similar addressable array.

In one example, a solid support, such as the wells of a microplate can be coated with an affinity capture agent, which binds to and captures the test molecule or cognate binding partner to affix it to the solid support. The test molecule and/or cognate binding partner can be modified to contain a tag that is compatible with any chosen affinity capture agent. Exemplary tags or moieties that can be used in the assays herein include, but are not limited to, a His, T7, Myc, HA, VSV-G, or Flag Tag (see e.g. SEQ ID NOS:3, 5, 7, 15-16, 25). Such tags are well-known to one of skill in the art. For example, a biotinylated anti-His antibody can be coated onto a streptavidin containing plate to facilitate capture of a cognate binding partner or test molecule protein containing a His-tag. Streptavidin and affinity capture agent-coated plates are available from manufacturers (see e.g. Thermo Fisher Scientific, Rockford, IL; Catalog No. 15500) or can be prepared by one of skill in the art. As noted above, the choice of adsorption or immobilization technique is generally selected to be compatible with varying pH environments.

In examples herein where the cognate binding partner is affixed to the solid support, attachment of a cognate binding partner (e.g. sEGFR) to a solid support can be performed either before, during, or subsequent to contact with a screened test molecule or library of test molecules. For example, one or more cognate binding partners can be pre-absorbed to a solid support, such as a chromatography column or a well of a Microplate, prior to incubation with a test molecule. In other examples, the cognate binding partner and test molecule are contacted in solution followed by capture of the cognate binding partner on a solid support.
In the dual format or duplicate assay, the immobilized agent, typically the cognate binding partner, is immobilized under standard conditions that are the same. Typically, the buffer that is used to facilitate adsorption or immobilization under both conditions is a neutral or physiologic buffer. Exemplary of physiologic buffers include, but are not limited to, phosphate buffered saline (PBS), Hank's balanced salt solution (HBSS), Ringers or Krebs. The pH and buffering capacity is a function of the assay conditions and can be empirically determined or chosen by one of skill in the art. Exemplary of a physiologic buffer is Krebs-Ringer Bicarbonate (KRB) buffer (Sigma Aldrich, Catalog No. K4002). Further, adsorption or immobilization of the immobilized agent, typically the cognate binding partner, on a solid support is effected in a buffer that does not contain human serum, since human serum is used in the contacting step or screen to simulate natural environment conditions.

For example, varying concentrations of a cognate binding partner, such as an antigen, in KRB buffer or other similar physiologic buffer can be adsorbed onto a solid support. For example, from at or about between 1 and 50 nM, for example, 3 and 30 nM, such as 5-20 nM, for example, at or about 3, 6, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40 or 50 nM of cognate binding partner (e.g. antigen such as a sEGFR) in KRB buffer or other similar physiologic buffer can be adsorbed. The amount of target antigen to be adsorbed is a function of the binding agent and can be empirically determined, such as by using a control known to bind the target antigen. Adsorption can proceed for any desired length of time and temperature to allow the cognate binding protein to bind to binding sites on the solid support. For example, adsorption is generally performed at 4° C-37° C, such as 4° C, room temperature (i.e., 22° C) or 37° C. The time for adsorption is generally 30 minutes to 48 hours or more, and can vary as a function of the temperature. For example, a cognate binding protein can be adsorbed to a solid support, such as a high-binding microwell plate, at 4° C for 6 hours to 48 hours, such as 12 hours to 36 hours, and typically overnight, for example, 12 hours to 24 hours. In another example, a cognate binding protein is adsorbed to a solid support, such as a high-binding microwell plate at room temperature for 30 minutes to 4 hours, such as 1 hour to 2 hours, in particular 2 hours. The solid support can be washed one or more times, such as 1, 2, 3, 4 or more times with the same buffer used for adsorption to remove any unbound target antigen.
2) Contacting Under Simulated Conditions

In the assay, binding of a binding partner and agent is effected under conditions that simulate two different physiologic conditions, a diseased microenvironment and the normal physiologic condition of a non-diseased microenvironment. For example, the diseased microenvironment can simulate conditions in a tumor microenvironment. Thus, following affixation of the target antigen to a support, the subsequent steps of the method are generally performed as two separate assays. Thus, for each target antigen, the antigen is adsorbed, attached or immobilized as described above onto duplicate solid supports. Subsequently, the duplicate supports are treated separately for performance of the binding assay under two varied assay conditions, one simulating the tumor microenvironment and the other simulating the normal physiologic environment. Such conditions are described above in Section B. As discussed above in Section B, it is understood that in performing the separate assays, the only conditions that are varied relate to the buffer conditions simulating the in vivo microenvironment. Time and temperature incubation conditions are generally the same between the parallel assays.

For example, in the method provided herein, a test molecule is contacted with a cognate binding protein in two separate assays to test for binding activity. In one assay, the test molecule is contacted or incubated with the cognate binding protein in the presence of a buffer that simulates the tumor microenvironment as described above. In the second assay, the test binding molecule is contacted or incubated with the cognate binding protein in the presence of a buffer that simulates the normal physiologic conditions as described above. Typically, the incubation reaction can proceed for any desired length of time and temperature to allow the test molecule or protein to bind to the cognate binding partner (e.g. antigen). For example, binding is generally performed at 4°C-37°C, such as 4°C, room temperature or 37°C. The time for binding is generally 30 minutes to 48 hours or more, and can be a function of the temperature. Typically, binding of the binding molecule or protein is at room temperature at or about between 30 minutes to 4 hours, such as 1 hour to 2 hours, for example about 1 hour. The solid support can be washed in the same buffer used for binding to remove any unbound target antigen.
For example, contacting can be performed with ImM lactic acid, pH 7.4, and 25% human serum to simulate a non-tumor or microenvironment. Separately, the contacting step is performed with 16.5 mM lactic acid, pH 6.0, 25% human serum to simulate a tumor microenvironment. In each contacting reaction, contacting can be performed for 1 hour at room temperature (i.e., 22°C).

Hence, in each of the assay conditions, a test molecule, such as a therapeutic antibody or antibody variants (e.g. anti-EGFR antibody variants) can be incubated with the cognate binding partner, such as a target antigen, for an appropriate length of time and temperature to allow binding to occur in the presence of the requisite buffer conditions (e.g. diseased or normal microenvironment). Except for the buffer conditions that simulate the microenvironment, the assay conditions (time and temperature) are the same. The assay can be performed in the presence of varying concentrations of test molecule. The amount of test molecule that is contacted with a cognate binding protein (e.g. antigen) is a function of, for example, the cognate binding protein and test molecule (e.g. EGFR and anti-EGFR or variants), and the particular binding conditions, and can be empirically determined. Generally, varying concentrations are tested in serial dilutions. Whole supernatant, diluted supernatant or purified protein can be tested. As discussed above, the test molecule is labeled with a detectable moiety or tag in order to facilitate detection of bound antigen-binding molecule complexes to assess binding activity.

In some examples, prior to contacting a test molecule (e.g. modified therapeutic protein) with a cognate binding protein (e.g. target antigen), non-specific protein binding sites on the surface of the solid phase support are typically blocked. Hence, the step of contacting the therapeutic antibody or variants thereof (e.g. anti-EGFR variants) and cognate binding partner (e.g. EGFR or sEGFR) typically can be performed after a blocking step. Blocking of the solid support can reduce nonspecific binding to the solid support, reduce background signal, reduce nonspecific binding to adsorbed proteins, and stabilize the adsorbed protein. The selection of conditions for blocking is within the ability of one of skill in the art. Any blocking conditions described in the art can be used in the methods provided herein.

Thus, for example, after adsorption of solid-phase bound cognate binding partner, such as a target antigen, an aqueous solution of a protein free from
interference with the assay can be admixed with the solid phase to adsorb the admixed protein onto the surface of the antigen-containing solid support at protein binding sites on the surface that are not occupied by the antigen molecule. For example, blocking solutions include those containing human, bovine, horse or other serum albumin. Typically, the blocking solution contains human serum. Blocking of a solid support, such as a plate, can be performed using a binding assay buffer to which one or more blocking agents are added. Exemplary blocking agents include 1-5% Bovine Serum Albumin, 1-5% non-fat dry milk and 25% human serum. Detergents, such as Tween-20, and preservatives, such as thimerisol, can be added to the blocking solution. Binding assay buffers include i.e. the tumor microenvironment buffer or the normal physiologic buffer. The aqueous protein solution-solid support mixture is typically maintained for a time period of 30 minutes, 1 hour, or longer, and can vary as a function of the temperature. The blocking reaction can be performed at any temperature, and generally can be performed 4°C-37°C, such as 4°C, room temperature (i.e., 22°C) or 37°C. In some examples, the reaction is allowed to proceed for at least one hour at a temperature of about 4°C-37°C. For example, blocking can be achieved at room temperature for one hour. After incubation and blocking, the resulting solid phase can be thereafter rinsed free of unbound protein prior to contact with the test molecule (e.g. therapeutic protein or antibody or variants thereof).

3). Detection and Identification of Conditionally Active Test Molecules

Test molecules, such as therapeutic proteins for example antibody variants (e.g. anti-EGFR antibodies) that specifically bind to the cognate binding partner can be selected or identified. After washing away unbound protein, the therapeutic proteins can be detected using any assay or method known to one of skill in the art. For example, detection can be facilitated by the presence of a fluorescent, radioactive or other detectable moiety. Typically, because the test molecules (e.g. therapeutic proteins, such as antibody variants) are tagged, detection is effected using an anti-tag reagent. The choice of anti-tag reagent is a function of the tag that is employed with the binding molecule or protein. In addition, an anti-tag reagent is chosen that is compatible with the environment conditions (e.g. pH) used in the assay. It is within
the level of one of skill in the art to identify or select such reagents, and test their compatibility with the assay conditions. For example, the Examples exemplify such procedures.

Anti-tag reagents are readily available such as from commercial sources or other sources. Exemplary anti-tag reagents that can be used for detection in the methods herein include, but are not limited to, an anti-FLAG antibody or anti-Myc antibody (available from vendors such as Abeam, Cambridge, MA; GeneTex, Irvine, CA).

Typically, in the methods herein, the method of detection of the bound complex is one that is capable of being quantitated such that the level of activity can be assessed. For example, a label can produce a signal, such as a colorimetric signal, a chemiluminescent signal, a chemifluorescent signal or a radioactive signal. Depending upon the nature of the label, various techniques can be employed for detecting or detecting and quantitating the label. For example, methods of quantitation include, but are not limited to, spectrophotometric, fluorescent and radioactive methods.

Examples of enzyme labels include horse radish peroxidase, alkaline phosphatase, and beta-D-galactosidase. Examples of enzyme substrates that can be added to develop the signal include PNPP (p-Nitrophenyl Phosphate, Disodium Salt), ABTS (2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt), OPD (o-phenylenediamine dihydrochloride), and TMB (3,3',5,5'-tetramethylbenzidine) (SOMA Labs, Romeo, Mich.), including Sureblue TMB Microwell Peroxidase Substrate 1-component (KPL, #52-00-03). The reaction can be stopped by adding a stopping reagent (e.g. TMB stop solution). The absorbance at a suitable wavelength (i.e. 450 nm) can be determined.

For fluorescence, a large number of fluorometers are available. For chemiluminescers, such as horse radish peroxidase (HRP), luminometers or films are available. With enzymes, a fluorescent, chemiluminescent, or colored product can be determined or measured fluorometrically, luminometrically, spectrophotometrically or visually. For example, an anti-tag reagent can be conjugated to horse radish peroxidase (HRP) or other detectable agent.
Typically, the incubation reaction can proceed for any desired length of time and temperature to allow detection of the binding molecule or protein. For example, detection is generally performed at 4°C-37°C, such as 4°C, room temperature or 37°C. The time for binding is generally 30 minutes to 48 hours or more, and is a function of the temperature. Typically, binding of the binding molecule or protein is at room temperature at or about between 30 minutes to 4 hours, such as 1 hour to 2 hours, for example about 1 hour. The solid support can be washed in the same buffer used for binding to remove any unbound target antigen.

Once binding activity is determined under each assay condition, the binding activity under the first condition (e.g. the diseased environment for example tumor environment) and the second condition (e.g. non-diseased or normal environment) are compared as described in Section B.3 above. Conditionally active molecules are identified that exhibit greater activity under the first condition than the second condition, for example, a ratio of activity that is at or about between 1.5 to 100, such as 2 to 50, for example 5 to 30 or more.

b. Solution Binding Assays

The assays for use in the methods provided herein include assays in which binding of a therapeutic protein to a cognate binding partner is measured in solution. The skilled artisan can select a solution binding assay for use in the methods provided herein. Below is a brief description of exemplary solution binding assays that can be used in the methods provided herein. However, these are not meant to be limiting, and any solution binding assay known to the skilled artisan is contemplated for use in the methods provided herein, including equilibrium dialysis, competitive binding assays (e.g., Myers et al., (1975) Proc. Natl. Acad. Sci. USA 72(9):3683-3686), radiolabeled binding assays (e.g., Feau et al., (2009) J. Biomol. Screen. 14(1):43-48), calorimetry (including isothermal titration calorimetry (ITC) and differential scanning calorimetry (e.g., Perozzo et al., (2004)J. Recept Signal. Transduct Res. 24(l-2):l-52; Holdgate (2001) Biotechniques 31(1):164-166, 168, 170), Celej et al. (2006) Anal Biochem. 350(2):277-284), and spectroscopic fluorescence aassays, including fluorescence resonance energy transfer assays. The conditions for the method herein where binding activity is determined in solution can be determined by one of skill in the art.
based on the description herein. For example, the conditions can be adapted from conditions discussed above for binding assays performed on a solid support.

1) isothermal titration calorimetry (ITC)

In ITC, one binding partner is titrated into a solution containing the other binding partner, thereby generating or absorbing heat, which is quantified by the calorimeter. ITC can be used to detect heat effects from reactants in quantities of nanomoles or less. For example, isothermal titration calorimetry assays can be performed to measure all thermodynamic parameters, including free energy of binding (ΔG), enthalpy (ΔH), and entropy (ΔS) of binding, and the heat capacity change (ACp), involved in binding of a therapeutic protein to a cognate binding partner. Analysis of these features can help elucidate the mechanism and thermodynamic parameters of binding between a therapeutic protein and a cognate binding partner (Perrozzo et al., (2004) J Recept. Signal. Transduct. Res. 24(1–2): 1-52).

2) Spectroscopic assays

Any spectroscopic assay known to one of skill in the art can be used to detect binding of a therapeutic protein in the methods provided herein. Interaction between a modified protein and a cognate binding partner can be detected by any spectroscopic assay known to one of skill in the art, including UV-vis spectroscopic techniques, fluorescence assays such as fluorescence resonance energy transfer assays and fluorescence quenching assays (Wu (2007), J. Pharm. Biomed. Anal. 44(3):796-801). For example, changes in fluorescence or UV/vis absorption as a result of a therapeutic protein binding to a cognate binding partner, such as quenching of inherent fluorescence, can be detected. In some examples, the therapeutic protein and/or the cognate binding partner can be labeled with a fluorescent label or a UV/vis label. After measuring a spectroscopic signal, the observed binding constant can be calculated (e.g., Zhang et al. (2009) Spectrochim Acta A Biomol. Spectrosc. 72(3):621-626).

c. Cell Based Assays

Assays for use in the methods provided herein to detect binding of a therapeutic protein to a cognate binding partner include cell based assays, and in particular assays performed using cell surface display systems, such as mammalian
cell surface display systems. In an exemplary method, nucleic acids encoding a therapeutic protein or a library of variant therapeutic proteins, including a library of modified therapeutic proteins, can be introduced into a vector suitable for expression in cells, such as mammalian cells. Cells are then transfected with the vector, and the therapeutic protein(s) is/are expressed by the cells. The library of cells containing surface-expressed therapeutic proteins can be contacted with a solution containing a soluble or surface-bound cognate binding partner. Binding activity can be detected using any assay that can detect the binding to the surface of the cells. Activity also can be assessed by assessing a functional activity of the test molecule or therapeutic protein. Any cell based assay known to the skilled artisan is contemplated for use in the methods provided herein, including cell proliferation assays, cell death assays, flow cytometry, cell separation techniques, fluorescence activated cell sorting (FACS), phase microscopy, fluorescence microscopy, receptor binding assays, cell signaling assays, immunocytochemistry and reporter gene assays. In some examples, the assays are fluorescence activated cell sorting (FACS) assays.

Proteins can be expressed by mammalian cells as secreted, soluble molecules, cell surface molecules, or intracellular antibodies. In an exemplary method, cells can be transfected with a library of proteins under conditions whereby most or all of the cells display a member of the protein library anchored on the cell surface. Optionally, an expression system can be used in which most of mammalian cell transfectants have only one plasmid integrated in their genome. Therefore, most (i.e., at least about 70% or about 80% or about 90%) of the transfectants express one or more molecules of one therapeutic protein. This can be verified, for example, by isolating and culturing individual transfectants; and amplifying and sequencing the expressed sequences to determine whether they have a single sequence.

In some examples of the methods provided herein, the therapeutic proteins are antibodies displayed on the surface of mammalian cells. Any antibody described herein can be expressed on the surface of mammalian cells, including full length, bivalent, functional antibodies, such as IgG antibodies. The antibody can be a fragment, for example, Fab fragments or scFv fragments. Antibodies can include an Fc region, such as an scFv-Fc or a full length antibody, which comprises two heavy and two light chains. The skilled artisan can select a suitable antibody fragment. For
example, an ScFv-Fcs and full length antibodies made in mammalian cells can have several advantages over scFv's or Fab fragments including their multimeric nature and their longer in vivo half life, higher affinity for antigen, and lesser tendency to form aggregates. For example, anti-EGFR variant antibodies are displayed on the surface of cells, and activity to a cognate binding partner (e.g. and EGFR or soluble EGFR) is assessed.

(a) Cell Surface Expression of Test Molecules

Test molecules, such as a therapeutic protein for example antibody variants (e.g. anti-EGFR antibody variants) can be expressed on the surface of cells. Nucleic acids encoding test molecules, such as therapeutic proteins, can be inserted into a suitable vector, such as a vector described herein, and used to transfect cells. Cell lines that can be used include any cell lines described in the art or that can be obtained from repositories such as the American Type Culture Collection. The skilled artisan can select cell lines with desired properties. For example, an antibody made in mammalian cells is more likely to be properly folded and glycosylated than one made in prokaryotic cells. In some examples, the therapeutic proteins are expressed in mammalian cells, such as Chinese hamster ovary (CHO) cells.

Any vectors known in the art for displaying proteins, such as antibodies, on the surface of mammalian cells can be used in the methods provided herein (see, e.g., Zhou et al. (2010), MAbs 2(5):508-518). For example, the vectors can express the nucleic acids encoding therapeutic proteins as secreted proteins, soluble proteins or as cell surface proteins. Optionally, the vector is suitable for expression in cells for the purpose of producing nucleic acids of adequate purity and quantity for a mammalian transfection. These cells can be, for example, bacterial cells, such as Escherichia coli or Bacillus subtilus, or fungal cells such as Saccharomyces cerevisiae. The vector can be selected so that only one type of therapeutic protein from the transformed library is expressed by the host cell. Methods of transfection of cells are known to one of skill in the art (e.g., Hahn and Scanlan (2010) Top. Curr. Chem. 296:1-13), and include, for example, chemical methods such as polycationic cyclodextrin vectors (e.g., Cryan et al. (2004) Eur JPharm Sci. 21(5):625-33) and liposome complexes, including cationic liposomes (e.g., Gao and Huang (1995) Gene Ther. 2(10):710-722). Exemplary cationic liposomes which may be used include those described in

In some examples the transfecteds can express therapeutic proteins as cell surface proteins. The skilled artisan can select a vector to express the modified proteins described herein. For example, a vector can be used that integrates into a specific site in the genome of a mammalian cell line. One example of a vector that can be used is a FLP-IN™ vector (Invitrogen), that can be transfected into cells that contain an appropriate site for site-specific chromosomal integration. The FLP-IN™ vector can integrate into a specific site in the genome of a mammalian cell line that has been genetically engineered to contain a FLP recombination target (FRT) site, using the FLP recombinase of Saccharomyces cerevisiae (see, e.g., U.S. Patent Nos. 5,654,182; 5,677,177; 5,885,836; 6,956,146; and 7,884,054; and O'Gorman et al. (1991), Science 251:1351-1355). Other vector systems that can be used are a Cre-LoxP system (Trinh and Morrison (2000), J. Immunol. Methods 244:185-193). Cre recombinase, can catalyze recombination between two LoxP sites. In some embodiments, two LoxP sites with slightly different sequences (such that recombination between the two different sites cannot be catalyzed by the Cre recombinase) may be present in a mammalian cell that is transfected with modified antibody-encoding sequences that are flanked by the same two different LoxP sites. In this situation, an antibody-encoding sequence can be inserted between the two
different LoxP sites without the possibility of also being excised by Cre recombinase. In other embodiments, the LoxP sites may be identical. In another aspect, the expression or activity of Cre recombinase may be conditionally controllable.

Regulatory sequences used in vectors are typically derived from mammalian, microbial, viral, and/or insect genes. Examples of regulatory sequences include transcriptional promoters, operators, and enhancers, a ribosomal binding site (see e.g. Kozak (1991), *J. Biol. Chem.* 266:19867-19870), an internal ribosome entry site, appropriate sequences to control transcriptional and translational initiation and termination, polyadenylation signals (see e.g. McLauchlan et al. (1988), *Nucleic Acids Res.* 16:5323-5333), and matrix and scaffold attachment sites (see Phi-Van et al. (1988), *Mol. Cell. Biol.* 10:2302-2307; Stief et al. (1989), *Nature* 341:343-345; Bonifer et al. (1990), *EMBOJ.* 9:2843-2848). Nucleotide sequences are operably linked when the regulatory sequence functionally relates to the polypeptide coding sequence. Thus, a promoter nucleotide sequence can be operably linked to a polypeptide coding sequence if the promoter nucleotide sequence controls the transcription of the coding sequence.

An expression vector will typically comprise a promoter that can direct transcription in a mammalian cell operably linked to the nucleic acids encoding a therapeutic protein. Often the promoters will be capable of a high level of transcription. Expression vectors may be advantageous in comparison with FLP-IN™-type vectors in situations where a high level of expression is required to detect binding. Examples of such promoters include the CMV and SV40 viral promoters, mammalian actin promoters, the promoter contained within the 3’ long terminal repeat of Rous Sarcoma virus, the herpes thymidine kinase promoter, or the promoter of the metallothionine gene. For example, the human CMV promoter/enhancer of immediate early gene 1 may be used (see e.g. Paterson et al. (1994), *Applied Microbiol. Biotechnol.* 40:691-698). DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites can be used to provide other genetic elements for expression of a structural gene sequence in a mammalian host cell. Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment, which can also contain a viral origin of replication (Fiers et al. (1978),
Promoters from other highly expressed mammalian genes could also be used. An expression vector also typically comprises a bacterial origin of DNA replication, sequences encoding a gene product that can be positively selected for in bacteria, a polyadenylation site, a ribosome binding site, and, optionally, sequences encoding a gene product that can be positively selected for in mammalian cells, such as a sequences conferring resistance to hygromycin, neomycin, or G418. An example of an expression vector is pDC302 (Mosley et al. (1989), Cell 59:335-348). Other examples of expression vectors include commercially available vectors such as pTriE™-4 Ek/LIC vector (Novagen, Wis., USA) or the pGEN vectors (Promega, Wis., USA).

In some examples, the therapeutic protein is expressed with one or more transmembrane domain(s) for display on the surface of cells, such as by attachment of the transmembrane domain to the N-terminus and/or the C-terminus of the protein. Transmembrane domains that can be used as membrane association sequences in the methods provided herein include any transmembrane domain described herein, known in the art, or that can be predicted (see, e.g., Kahsay et al. (2005) Bioinformatics 21(9):1853-1858). Exemplary membrane association sequences include transmembrane domains and glycophaspatidylinositol (GPI) anchor sequences known to one of skill in the art (see, e.g., Udenfriend and Kodukula (1995), Methods Enzymol. 250:571-582). Exemplary vectors that can attach a trans-membrane domain to a therapeutic protein include the vector FVTM (Zhou et al. (2010), MAbs 2(5):508-518).

The skilled artisan can select other expression systems that provide for expression of the therapeutic protein. For example, if the therapeutic protein is an antibody, a vector can be selected that is suited for expression of antibodies. Many vectors for mammalian expression of antibodies on the surface of cells are known to one of skill in the art. For example, a vector can be selected in which the heavy and light chain coding sequences can be transcribed and translated separately or a vector
can be selected in which the heavy and light chain coding sequences can be transcribed and translated together. A membrane association sequence, such as a trans-membrane domain can be attached to the heavy chain or to the light chain, or a trans-membrane domain can be attached to the heavy chain and light chain. The membrane association sequence can be attached to the N-terminus or the C-terminus of the heavy chain and/or light chain.

(b) Binding And Detection by Fluorescence Activated Cell Sorting (FACS)

Fluorescence Activated Cell Sorting (FACS) is a cell separation technique that distinguishes fluorescent cells from non-fluorescent cells (Current Protocols in Cytometry, Robinson et al., eds., John Wiley & Sons (2004); Edidin (1989), Methods in Cell Biology 29:87-102; Herzenberg et al., (1976) Set. Am. 234(3): 108-117; US Patent Nos. 5,968,738 and 5,804,387). Flow sorters are capable of rapidly examining a large number of individual cells that contain library inserts (e.g., 10-100 million cells per hour) (Shapiro et al., Practical Flow Cytometry, 1995). Briefly, cells in suspension are passed in front of a laser in droplets, each containing a single cell. A charge is applied to the droplet and an electrostatic deflection system collects charged droplets into appropriate collection tubes (Basu et al. (2010), J. Vis. Exp (41): 1546). Flow cytometers for sorting and examining biological cells are well known in the art. Known flow cytometers are described, for example, in U.S. Pat. Nos. 4,347,935; 5,464,581; 5,483,469; 5,602,039; 5,643,796; and 6,211,477. Other known flow cytometers are the FACS Vantage™ system manufactured by Becton Dickinson and Company, and the COPAS™ system manufactured by Union Biometrica.

FACS can be used to select for cells that display a protein with desireable binding properties. In the methods provided herein, conditionally active test molecules, such as proteins, can be identified by FACS assay by screening proteins for binding to a cognate binding partner under different conditions. In an exemplary method, cells are transfected with vectors encoding for proteins that are displayed on the cell surface. The cells are then contacted with a cognate binding partner. Binding of a protein displayed on a cell surface to a cognate binding partner can result in cell-associated fluorescence. Fluorescent cells are separated from non-fluorescent cells, thus separating cells that display an active protein that binds to a
cognate binding partner from cells that display a protein that does not bind to a
cognate binding partner. Nucleic acid encoding active and/or inactive proteins can be
isolated and sequenced to identify the protein that interacts with a cognate binding
partner. In addition, separated cells can be subjected to further assays, such as assays
described herein, including further FACS assays.

Typically, the cognate binding partner is detectably labeled to aid in detection.
Alternatively, the cognate binding partner is not labeled, but can be detected by the
use of a secondary agent. Labels for the cognate binding partner of secondary reagent
include a fluorescent label (e.g., Francisco et al. (1993), Proc. Natl. Acad. Sci. USA
90:10444-10448) or a label that interacts with a fluorescent secondary label. Any
fluorophore known to one of skill in the art can be used as a fluorescent label, such as,
for example, a fluorescent label on the cognate binding partner or the secondary label.
Exemplary fluorophores include fluorescein, rhodamine or Texas Red, FLUOR X®,
ALEXA FLUOR, OREGON GREEN, TMR (tetramethylrhodamine), ROX (X-
rhodamine), BODIPY 630/650 and Cy5 (available from Amersham Pharmacia
Biotech of Piscataway, N.J. or from Molecular Probes Inc. of Eugene, Oreg.), or any
other fluorescent label known to one of skill in the art (see, e.g., Giepmans et al.
fluorescent samples are summarized by Alexay et al. (1996) The PCT International
Society of Optical Engineering 2705/63.

In further examples, to aid in interaction with the secondary reagent, the
cognate binding partner can include a label that interacts with a fluorescent secondary
label. Any secondary label can be used that interacts with a label on the cognate
binding partner. In some examples, the cognate binding partner, such as EGFR or
EGFR sECD, is labeled with Biotin with a linker known to one of skill in the art or
described herein, and the cells are mixed with with a fluorescent secondary label
attached to a molecule that interacts with biotin, such as streptavidin. In some
examples, the secondary label is Streptavidin attached to fluorescein.

In one example, the FACS analysis can be performed as two separate assays
under different sets of conditions performed simultaneously or in parallel. In one
example, the assays are performed in parallel and a population of cells expressing the
test molecule or therapeutic protein is divided into two populations. One population
is contacted with the test molecule or therapeutic protein in an assay buffer that simulates a first condition in which activity is desired (e.g. a diseased microenvironment or tumor environment). A second population is contacted with the test molecule in an assay buffer that simulates a condition in which activity is not desired (e.g., a physiologically normal environment). In the FACS assay, any of the steps, such as contacting can be performed under conditions that simulate a diseased microenvironment, such as a tumor, or conditions that simulate a normal microenvironment. Exemplary conditions that simulate a tumor microenvironment is a set of conditions such as 16.5 mM lactic acid, pH 6.0, 25% human serum. An exemplary set of conditions that simulates a normal microenvironment is a set of conditions such as 1mM lactic acid, pH 7.4, and 25% human serum to simulate a non-tumor or microenvironment.

For example, the cells expressing therapeutic proteins can be contacted with a labeled cognate binding partner, for example, by mixing with a solution or buffer containing the cognate binding partner, where the binding buffer is one that mimics or simulates a desired condition (either a first condition or second condition as described herein). Separately (performed simultaneously or as an iterative step after positive or negative selection as described herein), a second identical population of cells expressing the assayed therapeutic proteins can be contacted with a labeled cognate binding partner, for example, by mixing with a solution or buffer containing the cognate binding partner, where the binding buffer is one that mimics or simulates the other condition. In each step the contacting steps are identical, except for the particular binding buffer or solution. The contacting step can be performed for any desired length of time and temperature to allow the cell-surface protein to bind to the cognate binding partner (e.g. antigen). For example, binding is generally performed at 4°C-37°C, such as 4°C, room temperature or 37°C. The time for binding is generally 30 minutes to 48 hours or more, and can be a function of the temperature. Typically, binding of the binding molecule or protein is at room temperature at or about between 30 minutes to 4 hours, such as 1 hour to 2 hours, for example about 1 hour. The cells can be washed in the same buffer used for binding to remove any unbound cognate binding partner. Additionally, specific parameters that can be varied for optimization include, but are not limited to, the concentration of cognate binding
partner, kinetic competition time, and FACS stringency. In addition, FACS screening can be performed under equilibrium or kinetic conditions.

If a secondary reagent is used in the detection step, after washing the cells to remove unbound cognate binding partner, the cells are contacted with appropriate secondary reagents. This further contacting step can be performed for any desired length of time and temperature to allow the secondary reagent to bind to the cognate binding protein. For example, binding is generally performed at 4°C-37°C, such as 4°C, room temperature or 37°C. The time for binding is generally 5 minutes to 2 hours or more, and can be a function of the temperature. Typically, binding of the secondary reagent and cells is at room temperature at or about between 30 minutes to 4 hours, such as 1 hour to 2 hours, for example about 1 hour. The cells can be washed in the same buffer used for binding to remove any unbound secondary reagent.

Fluorescent cells can be separated from non fluorescent cells to separate cells that display proteins that bind to the cognate binding partner from cells that display proteins that do not bind to the cognate binding partner. Nucleic acid can be isolated from the separated fluorescent cells and non fluorescent cells, and the nucleic acid can be sequenced to identify expressed proteins that interact or do not interact with the cognate binding partner.

Typically, the binding assays are performed by first performing a positive or negative selection step. The flow sorter can collect or sort cells that have specified fluorescent properties. This feature can be employed to select or exclude a first population of cells that are identified as exhibiting binding and/or not exhibiting binding, depending on the particular binding characteristic that is desired. For example, in a positive selection step, the contacting and binding reaction is performed as described above, and cells are separated to enrich cells that display proteins that bind to a cognate binding partner under a set of conditions. Typically, in a positive selection step, contacting, labeling, and sorting are performed under a set of conditions that simulates physiological conditions in which activity of the protein is desired. Examples of conditions for a positive selection step are conditions that simulate physiological conditions of a tumor microenvironment. In a negative selection step, cells are separated to separate and/or enrich cells that do display proteins that have little or no binding to a cognate binding partner under a set of
conditions. Typically, in a negative selection step, contacting, labeling, and sorting are performed under a set of conditions that simulates a physiological conditions in which activity of the protein is not desired. Examples of conditions for a negative selection step are conditions that simulate physiological conditions of a normal microenvironment.

A selection step or a series of alternative selection steps can be performed once or multiple times, for example, at least about 2, 3, 4, 5, 6, or 7 times. If desired, two or more different selection steps can be performed either simultaneously or in succession. For example, a positive selection step can be followed by a negative selection step, and the combination of a positive selection step and a negative selection step can be repeated as often as necessary to isolate cells that display conditionally active proteins. In some examples, any FACS selection parameters known to one of skill in the art or described herein can be attuned to increase or decrease the stringency of selection. For example, the stringency of selection can be low in initial rounds of selection and increased in later rounds as the cells become enriched with a population of cells that display conditionally active proteins. Sort gates can be established to select for cells that show the highest affinity or lowest affinity for a cognate binding partner. Sort gates can be established empirically by one skilled in the art. In addition, libraries can be oversampled by at least 10-fold to improve the probability of isolating rare clones.

Between each round of selection cells can be regrown and/or induced to allow cells to recover and/or increase protein expression on cell surfaces. Although not intending to be bound by a particular mode of action, this iterative process helps enrich the population of the cells that express conditionally active proteins.

D. **Methods of Expressing Proteins**

Test molecules, and in particular therapeutic proteins or antibodies, for use in the screening assay herein can be expressed using standard cell culture and other expression systems known in the art. Prior to use in the screening methods, the proteins can be purified. Alternatively, whole supernatant or diluted supernatant can be screened in the dual assay herein.

The binding molecules, proteins and target antigens used in the methods herein can be produced recombinantly or can be purchased from commercial vendors.
For example, binding molecules such as antibodies, can be made by recombinant DNA methods that are within the purview of those skilled in the art. DNA encoding a protein of interest can be synthetically produced or can be readily isolated and sequenced using conventional procedures (e.g. by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody). For example, any cell source known to produce or express the protein or antibody of interest can serve as a preferred source of such DNA. In another example, once the sequence of the DNA encoding the antibodies is determined, nucleic acid sequences can be constructed using gene synthesis techniques.

Further, mutagenesis techniques also can be employed to generate variant forms of any protein. The DNA also can be modified. For example, gene synthesis or routine molecular biology techniques can be used to effect insertion, deletion, addition or replacement of nucleotides. For example, additional nucleotide sequences can be joined to a nucleic acid sequence. In one example linker sequences can be added, such as sequences containing restriction endonuclease sites for the purpose of cloning the synthetic gene into a vector, for example, a protein expression vector. Furthermore, additional nucleotide sequences specifying functional DNA elements can be operatively linked to a nucleic acid molecule. Examples of such sequences include, but are not limited to, promoter sequences designed to facilitate intracellular protein expression, and leader peptide sequences designed to facilitate protein secretion.

Proteins, such as antibodies, can be expressed as full-length proteins or less then full length proteins. For example, antibody fragments can be expressed. Nucleic acid molecules and proteins provided herein can be made by any method known to one of skill in the art. Such procedures are routine and are well known to the skill artisan. They include routine molecular biology techniques including gene synthesis, PCR, ligation, cloning, transfection and purification techniques. A description of such procedures is provided below.

Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells. Choice of vector can depend on the desired application. For example, after insertion of the nucleic acid, the vectors typically are used to transform host cells, for example, to amplify the protein genes for replication and/or
expression thereof. In such examples, a vector suitable for high level expression is used.

For expression of antibodies, generally, nucleic acid encoding the heavy chain of an antibody is cloned into a vector and the nucleic acid encoding the light chain of an antibody is cloned into a vector. The genes can be cloned into a single vector for dual expression thereof, or into separate vectors. If desired, the vectors also can contain further sequences encoding additional constant region(s) or hinge regions to generate other antibody forms. The vectors can be transfected and expressed in host cells. Expression can be in any cell expression system known to one of skill in the art.

For example, host cells include cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of antibodies in the recombinant host cells. For example, host cells include, but are not limited to, simian COS cells, Chinese hamster ovary (CHO) cells, 293FS cells, HEK293-6E cells. NSO cells or other myeloma cells. Other expression vectors and host cells are described below.

In one example, nucleic acid encoding the heavy chain of an antibody, is ligated into a first expression vector and nucleic acid encoding the light chain of an antibody, is ligated into a second expression vector. The expression vectors can be the same or different, although generally they are sufficiently compatible to allow comparable expression of proteins (heavy and light chain) therefrom. The first and second expression vectors are generally co-transfected into host cells, typically at a 1:1 ratio. Exemplary of vectors include, but are not limited to, pylHC and pKLC (Tiller et al. (2008) J Immunol. Methods, 329:1 12-24). Other expression vectors include the light chain expression vector pAG4622 and the heavy chain expression vector pAH4604 (Coloma et al. (1992) J Immunol. Methods, 152:89-104). The pAG4622 vector contains the genomic sequence encoding the C-region domain of the human κ L chain and the gpt selectable marker. The pAH4604 vectors contains the hisD selectable marker and sequences encoding the human H chain γι C-region domain. In another example, the heavy and light chain can be cloned into a single vector that has expression cassettes for both the heavy and light chain.

Hence, antibodies provided herein can be generated or expressed as full-length antibodies or as antibodies that are less than full length, including, but not limited to Fab, Fab hinge fragment, scFv fragment, scFv tandem fragment and scFv hinge and
scFv hinge(AE) fragments. Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see e.g. Morimoto et al. (1992) Journal of Biochemical and Biophysical Methods, 24:107-17; Brennan et al. (1985) Science, 229:81). Fragments also can be produced directly by recombinant host cells. Fab, Fv and scFv antibody fragments can all be expressed in and secreted from host cells, such as E. coli, thus allowing the facile production of large amounts of these fragments. Also, Fab'-SH fragments can be chemically coupled to form F(ab')2 fragments (Carter et al. (1992) Bio/Technology, 10:163-167). According to another approach, F(ab')2 fragments can be isolated directly from recombinant host cell culture. In other examples, the antibody of choice is a single chain Fv fragment (scFv) (see e.g. W093/16185; US Patent No. 5,571,894 and U.S. Patent No. 5,587,458). Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use.

sFv fusion proteins can be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. The antibody fragment can also be a linear antibody (see e.g. U.S. Patent No. 5,641,870). Such linear antibody fragments can be monospecific or bispecific. Other techniques for the production of antibody fragments are known to one of skill in the art.

For example, upon expression, antibody heavy and light chains pair by disulfide bond to form a full-length antibody or fragments thereof. For example, for expression of a full-length Ig, sequences encoding the $V_H^1-C_H^1$-hinge-$C_H^2-C_H^3$ can be cloned into a first expression vector and sequences encoding the V_L-CL domains can be cloned into a second expression vector. Upon co-expression with the second expression vector encoding the VL-CL domains, a full-length antibody is expressed. In another example, to generate an Fab, sequences encoding the VH-CH1 can be cloned into a first expression vector and sequences encoding the VL-CL domains can be cloned into a second expression vector. The heavy chain pairs with a light chain and an Fab monomer is generated. Sequences of CH1, hinge, CH2 and/or CH3 of various IgG sub-types are known to one of skill in the art (see e.g. U.S. Published Application No. 20080248028). Similarly, sequences of CL lambda or kappa, also are known (see e.g. U.S. Published Application No. 20080248028).
Exemplary sequences that can be inserted into vectors for expression of whole antibodies and antibody fragments include sequences of antibody fragments provided in Table 3. For example, the heavy chain and light chain sequences of Erbitux® (Cetuximab) (SEQ ID NOs: 2 and 1, respectively) or the heavy chain and light chain sequences of any other antibody (i.e., SEQ ID NOs: 74 and 75, respectively (Herceptin®); SEQ ID NOs: 76 and 77, respectively (Rituxan®); SEQ ID NOs: 78 and 79, respectively (Avastin®); SEQ ID NOs: 80 and 81, respectively (Cempath®); SEQ ID NOs: 82 and 83, respectively (Vectibix®); SEQ ID NOs: 41 and 42, respectively (Ibritumomab®); SEQ ID NOs: 43 and 44, respectively (Tositumomab®); SEQ ID NOs: 45 and 46, respectively (Volociximab); SEQ ID NOs: 47 and 46, respectively (F200); or SEQ ID NOs: 48 and 49, respectively (Cixutumumab) can be inserted into a suitable expression vector described herein or known to one of skill in the art for expression of IgG antibodies. In addition, VH-CHI and VL-CL sequences, such as SEQ ID NOs 84 and 85, respectively (Lucentis®) can be inserted into a suitable expression vector for expression of Fab molecules. Variable heavy chain and variable light chain domains of an antibody (i.e., SEQ ID NOs: 29 and 30, respectively (Herceptin®); SEQ ID NOs: 31 and 32, respectively (Rituxan®); SEQ ID NOs: 33 and 34, respectively (Avastin®); SEQ ID NOs: 35 and 36, respectively (Cempath®); SEQ ID NOs: 37 and 38, respectively (Vectibix®); and SEQ ID NOs: 39 and 40, respectively (Lucentis®) can also be expressed in a suitable expression vector, such as a vector encoding for a linker between the variable heavy chain and variable light chain. Exemplary linkers include the glycine rich flexible linkers (-GₙSₙ)ₚ, where n is a positive integer, such as 1 (SEQ ID NO:4), 2 (SEQ ID NO:70), 3 (SEQ ID NO: 71), 4 (SEQ ID NO: 72), 5 (SEQ ID NO: 73), or more.

1. Vectors

Choice of vector can depend on the desired application. Many expression vectors are available and known to those of skill in the art for the expression of recombined antibodies or portions thereof. The choice of an expression vector is influenced by the choice of host expression system. Such selection is well within the level of skill of the skilled artisan. In general, expression vectors can include transcriptional promoters and optionally enhancers, translational signals, and
transcriptional and translational termination signals. Expression vectors that are used for stable transformation typically have a selectable marker which allows selection and maintenance of the transformed cells. In some cases, an origin of replication can be used to amplify the copy number of the vectors in the cells. Vectors also generally can contain additional nucleotide sequences operably linked to the ligated nucleic acid molecule (e.g. His tag, Flag tag). For applications with antibodies, vectors generally include sequences encoding the constant region. Thus, antibodies or portions thereof also can be expressed as protein fusions. For example, a fusion can be generated to add additional functionality to a polypeptide. Examples of fusion proteins include, but are not limited to, fusions of a signal sequence, an epitope tag such as for localization, e.g. a his6 tag or a myc tag, or a tag for purification, for example, a GST fusion, and a sequence for directing protein secretion and/or membrane association.

For example, expression of the proteins can be controlled by any promoter/enhancer known in the art. Suitable bacterial promoters are well known in the art and described herein below. Other suitable promoters for mammalian cells, yeast cells and insect cells are well known in the art and some are exemplified below. Selection of the promoter used to direct expression of a heterologous nucleic acid depends on the particular application. Promoters which can be used include but are not limited to eukaryotic expression vectors containing the SV40 early promoter (Bernoist and Chambon, Nature 290:304-310 (1981)), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al. Cell 22:787-797 (1980)), the herpes thymidine kinase promoter (Wagner et al., Proc. Natl. Acad. Sci. USA 75:1441-1445 (1981)), the regulatory sequences of the metallothionein gene (Brinster et al., Nature 296:39-42 (1982)); prokaryotic expression vectors such as the β-lactamase promoter (Jay et al., (1981) Proc. Natl. Acad. Sci. USA 78:5543) or the tac promoter (DeBoer et al., Proc. Natl. Acad. Sci. USA 80:21-25 (1983)); see also "Useful Proteins from Recombinant Bacteria": in Scientific American 242:79-94 (1980); plant expression vectors containing the nopaline synthetase promoter (Herrera-Estrella et al., Nature 303:209-213 (1984)) or the cauliflower mosaic virus 35S RNA promoter (Gardner et al., Nucleic Acids Res. P:2871 (1981)), and the promoter of the photosynthetic enzyme ribulose bisphosphate carboxylase (Herrera-Estrella et al., Nature 310:15-120 (1984)); promoter elements from yeast and other
fungi such as the Gal4 promoter, the alcohol dehydrogenase promoter, the phosphoglycerol kinase promoter, the alkaline phosphatase promoter, and the following animal transcriptional control regions that exhibit tissue specificity and have been used in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., Cell 35:639-646 (1984); Ornitz et al., Cold Spring Harbor Symp. Quant. Biol. 50:399-409 (1986); MacDonald, Hepatology 7:425-515 (1987)); insulin gene control region which is active in pancreatic beta cells (Hanahan et al, Nature 315:15-122 (1985)), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al, Cell 35:647-658 (1984); Adams et al, Nature 3/5:533-538 (1985); Alexander et al, Mol. Cell Biol. 7:1436-1444 (1987)), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al, Cell 45:485-495 (1986)), albumin gene control region which is active in liver (Pinkert et al, Genes and Devel 7:268-276 (1987)), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al, Mol. Cell Biol 5:1639-1648 (1985); Hammer et al, Science 235:53-58 (1987)), alpha-1 antitrypsin gene control region which is active in liver (Kelsey et al, Genes and Devel 7:161-171 (1987)), beta globin gene control region which is active in myeloid cells (Magram et al, Nature 375:338-340 (1985); Kollias et al, Cell 4t:89-94 (1986)), myelin basic protein gene control region which is active in oligodendrocyte cells of the brain (Readhead et al, Cell 45:703-712 (1987)), myosin light chain-2 gene control region which is active in skeletal muscle (Shani, Nature 374:283-286 (1985)), and gonadotrophs releasing hormone gene control region which is active in gonadotrophs of the hypothalamus (Mason et al, Science 234:1372-1378 (1986)).

In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the antibody, or portion thereof, in host cells. A typical expression cassette contains a promoter operably linked to the nucleic acid sequence encoding the protein and signals required for efficient polyadenylation of the transcript, ribosome binding sites and translation termination. Additional elements of the cassette can include enhancers. In addition, the cassette typically contains a transcription termination region downstream of the structural gene to provide for
efficient termination. The termination region can be obtained from the same gene as
the promoter sequence or can be obtained from different genes.

Some expression systems have markers that provide gene amplification such
as thymidine kinase and dihydrofolate reductase. Alternatively, high yield expression
systems not involving gene amplification are also suitable, such as using a
baculovirus vector in insect cells, with a nucleic acid sequence encoding a protein
under the direction of the polyhedron promoter or other strong baculovirus promoter.

For purposes herein with respect to expression of antibodies or antibody
variants, vectors are provided that contain a sequence of nucleotides that encodes a
constant region of an antibody operably linked to the nucleic acid sequence encoding
the r variable region of the antibody. The vector can include the sequence for one or
all of a CH1, CH2, hinge, CH3 or CH4 and/or CL. Generally, such as for expression of
Fabs, the vector contains the sequence for a CH1 or CL (kappa or lambda light chains).
The sequences of constant regions or hinge regions are known to one of skill in the art
(see e.g. U.S. Published Application No. 20080248028).

Exemplary expression vectors include any mammalian expression vector such
as, for example, pCMV. For bacterial expression, such vectors include pBR322,
pUC, pSKF, pET23D, and fusion vectors such as MBP, GST and LacZ. Other
eukaryotic vectors, for example any containing regulatory elements from eukaryotic
viruses can be used as eukaryotic expression vectors. These include, for example,
SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Bar virus.
Other exemplary eukaryotic vectors include pMSG, pAV009/A+, pMT010/A+,
pMAMneo-5, baculovirus pSCE, and any other vector allowing expression of
proteins under the direction of the CMV promoter, SV40 early promoter, SV40 late
promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous
sarcoma virus promoter, polyhedron promoter, or other promoters shown effective for
expression in eukaryotes.

Any methods known to those of skill in the art for the insertion of DNA
fragments into a vector can be used to construct expression vectors containing a
nucleic acid encoding a protein or an antibody chain. These methods can include in
vitro recombinant DNA and synthetic techniques and in vivo recombinants (genetic
recombination). The insertion into a cloning vector can, for example, be
accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. If the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules can be enzymatically modified. Alternatively, any site desired can be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers can contain specific chemically synthesized nucleic acids encoding restriction endonuclease recognition sequences.

2. **Cells and Expression Systems**

Cells containing the vectors also are provided. Generally, any cell type that can be engineered to express heterologous DNA and has a secretory pathway is suitable. Expression hosts include prokaryotic and eukaryotic organisms such as bacterial cells (e.g. *E. coli*), yeast cells, fungal cells, Archea, plant cells, insect cells and animal cells including human cells. Expression hosts can differ in their protein production levels as well as the types of post-translational modifications that are present on the expressed proteins. Further, the choice of expression host is often related to the choice of vector and transcription and translation elements used. For example, the choice of expression host is often, but not always, dependent on the choice of precursor sequence utilized. For example, many heterologous signal sequences can only be expressed in a host cell of the same species (i.e., an insect cell signal sequence is optimally expressed in an insect cell). In contrast, other signal sequences can be used in heterologous hosts such as, for example, the human serum albumin (hHSA) signal sequence which works well in yeast, insect, or mammalian host cells and the tissue plasminogen activator pre/pro sequence which has been demonstrated to be functional in insect and mammalian cells (Tan et al., 2002) *Protein Eng.* 15:337. The choice of expression host can be made based on these and other factors, such as regulatory and safety considerations, production costs and the need and methods for purification. Thus, the vector system must be compatible with the host cell used.

Expression in eukaryotic hosts can include expression in yeasts such as *Saccharomyces cerevisiae* and *Pichia pastoris*, insect cells such as *Drosophila* cells and *lepidopteran* cells, plants and plant cells such as tobacco, corn, rice, algae, and lemma. Eukaryotic cells for expression also include mammalian cells lines such as
Chinese hamster ovary (CHO) cells or baby hamster kidney (BHK) cells. Eukaryotic expression hosts also include production in transgenic animals, for example, including production in serum, milk and eggs.

Recombinant molecules can be introduced into host cells via, for example, transformation, transfection, infection, electroporation and sonoporation, so that many copies of the gene sequence are generated. Generally, standard transfection methods are used to produce bacterial, mammalian, yeast, or insect cell lines that express large quantities of antibody chains, which are then purified using standard techniques (see e.g., Colley et al. (1989) J. Biol. Chem., 264:17619-17622; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed.), 1990). Transformation of eukaryotic and prokaryotic cells is performed according to standard techniques (see, e.g., Morrison (1977) J. Bact. 132:349-351; Clark-Curtiss and Curtiss (1983) Methods in Enzymology, 101, 347-362). For example, any of the well-known procedures for introducing foreign nucleotide sequences into host cells can be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, biolistics, liposomes, microinjection, plasma vectors, viral vectors and any other the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell. Generally, for purposes of expressing an antibody, host cells are transfected with a first vector encoding at least a V\text{H} chain and a second vector encoding at least a V\text{L} chain. Thus, it is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least both genes into the host cell capable of expressing antibody polypeptide, or modified form thereof.

Transformation of host cells with recombinant DNA molecules that incorporate cDNA, or synthesized DNA sequence enables generation of multiple copies of the gene. Thus, the gene can be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted gene from the isolated recombinant DNA.

Proteins, including antibodies and portions thereof, can be produced using a high throughput approach by any methods known in the art for protein production including in vitro and in vivo methods such as, for example, the introduction of nucleic acid molecules encoding proteins into a host cell or host animal and
expression from nucleic acid molecules encoding recombined antibodies in vitro. Prokaryotes, especially *E. coli*, provide a system for producing large amounts of recombined antibodies or portions thereof, and are particularly desired in applications of high-throughput expression and purification of proteins. Transformation of *E. coli* is a simple and rapid technique well known to those of skill in the art. *E. coli* host strains for high throughput expression include, but are not limited to, BL21 (EMD Biosciences) and LMG194 (ATCC). Exemplary of such an *E. coli* host strain is BL21. Vectors for high throughput expression include, but are not limited to, pBR322 and pUC vectors.

a. **Prokaryotic Expression**

Prokaryotes, especially *E. coli*, provide a system for producing large amounts of recombined antibodies or portions thereof. Transformation of *E. coli* is a simple and rapid technique well known to those of skill in the art. Expression vectors for *E. coli* can contain inducible promoters that are useful for inducing high levels of protein expression and for expressing proteins that exhibit some toxicity to the host cells. Examples of inducible promoters include the lac promoter, the trp promoter, the hybrid tac promoter, the T7 and SP6 RNA promoters and the temperature regulated λP_l promoter.

Proteins, including antibodies or portions thereof can be expressed in the cytoplasmic environment of *E. coli*. The cytoplasm is a reducing environment and for some molecules, this can result in the formation of insoluble inclusion bodies. Reducing agents such as dithiothreitol and β-mercaptoethanol and denaturants (e.g., such as guanidine-HCl and urea) can be used to resolubilize the proteins. An exemplary alternative approach is the expression of recombined antibodies or fragments thereof in the periplasmic space of bacteria which provides an oxidizing environment and chaperonin-like and disulfide isomerases leading to the production of soluble protein. Typically, a leader sequence is fused to the protein to be expressed which directs the protein to the periplasm. The leader is then removed by signal peptidases inside the periplasm. There are three major pathways to translocate expressed proteins into the periplasm, namely the Sec pathway, the SRP pathway and the TAT pathway. Examples of periplasmic-targeting leader sequences include the pelB leader from the pectate lyase gene, the StII leader sequence, and the DsbA leader.
sequence. An exemplary leader sequence is a DsbA leader sequence. In some cases, periplasmic expression allows leakage of the expressed protein into the culture medium. The secretion of proteins allows quick and simple purification from the culture supernatant. Proteins that are not secreted can be obtained from the periplasm by osmotic lysis. Similar to cytoplasmic expression, in some cases proteins can become insoluble and denaturants and reducing agents can be used to facilitate solubilization and refolding. Temperature of induction and growth also can influence expression levels and solubility. Typically, temperatures between 25 °C and 37 °C are used. Mutations also can be used to increase solubility of expressed proteins.

Typically, bacteria produce aglycosylated proteins. Thus, if proteins require glycosylation for function, glycosylation can be added in vitro after purification from host cells.

Yeast

Yeast such as *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*, *Yarrowia lipolytica*, *Kluyveromyces lactis*, and *Pichia pastoris* are useful expression hosts for recombinant antibodies or portions thereof. Yeast can be transformed with episomal replicating vectors or by stable chromosomal integration by homologous recombination. Typically, inducible promoters are used to regulate gene expression. Examples of such promoters include AOX1, GAL1, GAL7, and GAL5 and metallothionein promoters such as CUP1. Expression vectors often include a selectable marker such as LEU2, TRP1, HIS3, and URA3 for selection and maintenance of the transformed DNA. Proteins expressed in yeast are often soluble. Co-expression with chaperonins such as Bip and protein disulfide isomerase can improve expression levels and solubility. Additionally, proteins expressed in yeast can be directed for secretion using secretion signal peptide fusions such as the yeast mating type alpha-factor secretion signal from *Saccharomyces cerevisiae* and fusions with yeast cell surface proteins such as the Aga2p mating adhesion receptor or the *Arxula adeninivorans* glucoamylase. A protease cleavage site such as for the Kex-2 protease, can be engineered to remove the fused sequences from the expressed polypeptides as they exit the secretion pathway. Yeast also is capable of glycosylation at Asn-X-Ser/Thr motifs.

Insects

108
Insect cells, particularly using baculovirus expression, are useful for expressing antibodies or portions thereof. Insect cells express high levels of protein and are capable of most of the post-translational modifications used by higher eukaryotes. Baculovirus have a restrictive host range which improves the safety and reduces regulatory concerns of eukaryotic expression. Typical expression vectors use a promoter for high level expression such as the polyhedrin promoter and pI0 promoter of baculovirus. Commonly used baculovirus systems include the baculoviruses such as Autographa californica nuclear polyhedrosis virus (AcNPV), and the Bombyx mori nuclear polyhedrosis virus (BmNPV) and an insect cell line such as Sf9 derived from Spodoptera frugiperda and TN derived from Trichoplusia ni. For high-level expression, the nucleotide sequence of the molecule to be expressed is fused immediately downstream of the polyhedrin initiation codon of the virus. To generate baculovirus recombinants capable of expressing human antibodies, a dual-expression transfer, such as pAcUW5 1 (PharMingen) is utilized. Mammalian secretion signals are accurately processed in insect cells and can be used to secrete the expressed protein into the culture medium. An alternative expression system in insect cells is the use of stably transformed cells. Cell lines such as Sf9 derived cells from Spodoptera frugiperda and TN derived cells from Trichoplusia ni can be used for expression. The baculovirus immediate early gene promoter IE1 can be used to induce consistent levels of expression. Typical expression vectors include the pIEl-3 and pI31-4 transfer vectors (Novagen). Expression vectors are typically maintained by the use of selectable markers such as neomycin and hygromycin.

d. Mammalian Cells

Mammalian expression systems can be used to express modified proteins, including antibodies or portions thereof. Expression constructs can be transferred to mammalian cells by viral infection such as adenovirus or by direct DNA transfer such as liposomes, calcium phosphate, DEAE-dextran and by physical means such as electroporation and microinjection. Expression vectors for mammalian cells typically include an mRNA cap site, a TATA box, a translational initiation sequence (Kozak consensus sequence) and polyadenylation elements. Such vectors often include transcriptional promoter-enhancers for high-level expression, for example the SV40
promoter-enhancer, the human cytomegalovirus (CMV) promoter and the long
terminal repeat of Rous sarcoma virus (RSV). These promoter-enhancers are active
in many cell types. Tissue and cell-type promoters and enhancer regions also can be
used for expression. Exemplary promoter/enhancer regions include, but are not
limited to, those from genes such as elastase 1, insulin, immunoglobulin, mouse
mammary tumor virus, albumin, alpha fetoprotein, alpha 1 antitrypsin, beta globin,
myelin basic protein, myosin light chain 2, and gonadotropic releasing hormone gene
control. Selectable markers can be used to select for and maintain cells with the
expression construct. Examples of selectable marker genes include, but are not
limited to, hygromycin B phosphotransferase, adenosine deaminase, xanthine-guanine
phosphoribosyl transferase, aminoglycoside phosphotransferase, dihydrofolate
reductase and thymidine kinase. Antibodies are typically produced using a
NEO®/G418 system, a dihydrofolate reductase (DHFR) system or a glutamine
synthetase (GS) system. The GS system uses joint expression vectors, such as
pEE12/pEE6, to express both heavy chain and light chain. Fusion with cell surface
signaling molecules such as TCR-ζ and FcγRI-y can direct expression of the proteins
in an active state on the cell surface.

Many cell lines are available for mammalian expression including mouse, rat
human, monkey, chicken and hamster cells. Exemplary cell lines include but are not
limited to CHO, Balb/3T3, HeLa, MT2, mouse NSO (nonsecreting) and other
myeloma cell lines, hybridoma and heterohybridoma cell lines, lymphocytes,
fibroblasts, Sp2/0, COS, NIH3T3, HEK293, 293S, 2B8, and HKB cells. Cell lines
also are available adapted to serum-free media which facilitates purification of
secreted proteins from the cell culture media. One such example is the serum free

e. Plants

Transgenic plant cells and plants can be used to express proteins such as any
antibody or portion thereof described herein. Expression constructs are typically
transferred to plants using direct DNA transfer such as microprojectile bombardment
and PEG-mediated transfer into protoplasts, and with agrobacterium-mediated
transformation. Expression vectors can include promoter and enhancer sequences,
transcriptional termination elements and translational control elements. Expression
vectors and transformation techniques are usually divided between dicot hosts, such as *Arabidopsis* and tobacco, and monocot hosts, such as corn and rice. Examples of plant promoters used for expression include the cauliflower mosaic virus CaMV 35S promoter, the nopaline synthase promoter, the ribose bisphosphate carboxylase promoter and the maize ubiquitin-1 (*ubi-1*) promoter promoters. Selectable markers such as hygromycin, phosphomannose isomerase and neomycin phosphotransferase are often used to facilitate selection and maintenance of transformed cells. Transformed plant cells can be maintained in culture as cells, aggregates (callus tissue) or regenerated into whole plants. Transgenic plant cells also can include algae engineered to produce proteases or modified proteases (see for example, Mayfield et al. (2003) *PNAS* 700:438-442). Because plants have different glycosylation patterns than mammalian cells, this can influence the choice of protein produced in these hosts.

3. Purification

Proteins, including antibodies and antigen binding portions thereof are purified by any procedure known to one of skill in the art. Proteins can be purified to substantial purity using standard protein purification techniques known in the art including but not limited to, SDS-PAGE, size fraction and size exclusion chromatography, ammonium sulfate precipitation, chelate chromatography, ionic exchange chromatography or column chromatography. For example, antibodies can be purified by column chromatography. Exemplary of a method to purify antibodies is by using column chromatography, wherein a solid support column material is linked to Protein G, a cell surface-associated protein from *Streptococcus*, that binds immunoglobulins with high affinity. The antibodies can be purified to 60%, 70%, 80% purity and typically at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% purity. Purity can be assessed by standard methods such as by SDS-PAGE and coomassie staining.

Methods for purification of proteins, including antibodies or portions thereof from host cells depend on the chosen host cells and expression systems. For secreted molecules, proteins are generally purified from the culture media after removing the cells. For intracellular expression, cells can be lysed and the proteins purified from the extract. When transgenic organisms such as transgenic plants and animals are
used for expression, tissues or organs can be used as starting material to make a lysed cell extract. Additionally, transgenic animal production can include the production of polypeptides in milk or eggs, which can be collected, and if necessary further the proteins can be extracted and further purified using standard methods in the art.

When proteins are expressed by transformed bacteria in large amounts, typically after promoter induction, although expression can be constitutive, the polypeptides can form insoluble aggregates. There are several protocols that are suitable for purification of polypeptide inclusion bodies known to one of skill in the art. Numerous variations will be apparent to those of skill in the art.

For example, in one method, the cell suspension is generally centrifuged and the pellet containing the inclusion bodies resuspended in buffer which does not dissolve but washes the inclusion bodies, e.g., 20 mM Tris-HCL (pH 7.2), 1 mM EDTA, 150 mM NaCl and 2% Triton-X 100, a non-ionic detergent. It can be necessary to repeat the wash step to remove as much cellular debris as possible. The remaining pellet of inclusion bodies can be resuspended in an appropriate buffer (e.g., 20 mM sodium phosphate, pH 6.8, 150 mM NaCl). Other appropriate buffers are apparent to those of skill in the art.

Alternatively, proteins can be purified from bacteria periplasm. Where the polypeptide is exported into the periplasm of the bacteria, the periplasmic fraction of the bacteria can be isolated by cold osmotic shock in addition to other methods known to those of skill in the art. For example, in one method, to isolate recombinant polypeptides from the periplasm, the bacterial cells are centrifuged to form a pellet. The pellet is resuspended in a buffer containing 20% sucrose. To lyse the cells, the bacteria are centrifuged and the pellet is resuspended in ice-cold 5 mM MgSO₄ and kept in an ice bath for approximately 10 minutes. The cell suspension is centrifuged and the supernatant decanted and saved. The recombinant polypeptides present in the supernatant can be separated from the host proteins by standard separation techniques well known to those of skill in the art. These methods include, but are not limited to, the following steps: solubility fractionation, size differential filtration, and column chromatography.

E. EXAMPLES
The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

Example 1

Vectors and Expression Plasmids

In this example, expression constructs to allow for the production of EGF receptor antigen in CHO mammalian cells, and Erbitux® anti-EGFR antibody in CHO mammalian cells, were generated. The use of CHO cells allows production of μg/mL quantities of antibodies and relevant post-translational modifications (e.g. glycosylation).

The EGFR antigen (SEQ ID NO: 10) was produced as a soluble extracellular domain (sECD) encompassing the complete ECD (N-terminal 640 amino acids, SEQ ID NO: 13, DNA set forth in SEQ ID NO: 12). A histidine tag (His-tag, SEQ ID NO: 7) was incorporated at the C-terminal domain to allow purification. The plasmids additionally contain either a native (SEQ ID NO: 11) or IgG HC (SEQ ID NO: 6) leader sequence, a Kozak consensus sequence and optionally a Gly\textsubscript{4}Ser linker (SEQ ID NO: 4) between the EGFR extracellular domain and the tag.

Erbitux® anti-EGFR antibody (SEQ ID NOS:1 and 2, DNA set forth in SEQ ID NOS:9 and 8, light and heavy chains, respectively) plasmids were generated in which an affinity tag (c-Myc, SEQ ID NO: 5 or FLAG, SEQ ID NO: 3) is linked to the C-terminal end of the Fc domain of Erbitux® anti-EGFR antibody. The plasmids contain genes for both the heavy chain and the light chain, such that upon expression, an IgG antibody was produced. The plasmids optionally contain a Gly\textsubscript{4}Ser linker (SEQ ID NO: 4) between the Fc domain and the affinity tag. The plasmid descriptions are set forth in Table 7 below.

<table>
<thead>
<tr>
<th>Plasmid description</th>
<th>Affinity Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR Extracellular Domain (aa 1-640; native leader) with His-tag</td>
<td>His</td>
</tr>
<tr>
<td>EGFR Extracellular Domain (aa 1-640; native leader) with Gly\textsubscript{4}Ser linker and His-tag</td>
<td>His</td>
</tr>
<tr>
<td>EGFR Extracellular Domain (aa 25-640; IgG HC Leader) with His-tag</td>
<td>His</td>
</tr>
<tr>
<td>EGFR Extracellular Domain (aa 25-640; IgG HC Leader) with Gly\textsubscript{4}Ser linker and His-tag</td>
<td>His</td>
</tr>
<tr>
<td>Erbitux® anti-EGFR antibody with C-terminal FLAG-tag</td>
<td>FLAG</td>
</tr>
<tr>
<td>Erbitux® anti-EGFR antibody with C-terminal Gly\textsubscript{4}Ser linker and FLAG-tag</td>
<td>FLAG</td>
</tr>
</tbody>
</table>
Example 2

Binding Assay Development

In this example, an ELISA assay was developed as a preliminary binding assay using commercially available reagents. In this assay, soluble EGFR receptor was bound to a 96-well plate, Erbitux® anti-EGFR antibody was added and allowed to bind, and binding was detected using a rabbit anti-human-Fc-HRP conjugated secondary antibody. Buffer pH was evaluated for its effect on binding of 1) the soluble EGFR receptor to either Hi-bind or Ni-coated plates, 2) secondary antibody binding and 3) soluble EGFR receptor-Erbitux® anti-EGFR antibody binding.

Standard Direct ELISA Protocol Using Commercial Reagents:

A 96-well Hi-bind plate (Hi bind, Costar #2592) was coated overnight at 4 °C with 100 µE sEGFR-H6 antigen (Sino Biologies, Cat #10001-H08H) at 12 nM (1.32 µg/mL) in PBS. The plate was then washed 3x with 250 µE/well of PBS and subsequently blocked for 1 hour at RT with 250 µE of PBS/BSA (PBS, pH 7.4, 5 mg/mL BSA). Serial dilutions (3x, starting concentration 500 ng/mL, followed by 1:3 dilutions) of Erbitux® anti-EGFR antibody were prepared in PBS/BSA and 100 µE was added per well and the plate was incubated at RT for 1 hr. The plate was then washed 3x with 250 µE/well PBS/BSA. 100 µE/well rabbit anti-human-Fc-HRP conjugated secondary antibody (diluted 1:5000 in PBS/BSA) was added to each well and the plate was incubated for 1 hr at RT. The plate was then washed 3x with 250 µE/well of PBS/BSA. Finally, 100 µE HRP substrate was added to each well and the plate was allowed to develop for 15 minutes at RT (away from light). The reaction was stopped by adding 100 µE stop solution to each well and the plate was read within 30 min at OD₅₅₀ nM using a Microplate Spectrophotometer (Molecular Devices, Spectra Max M2). The dynamic range was ~ 3 logs and sensitivity was ~ 50 pg (in PBS, pH 7.4, with 5 mg/mL BSA)

Effect of buffer pH on coating of EGFR sECD-H6 antigen to 96-well plates

The assay described above was performed with the following modifications:

1) either Hi Bind or Ni coated plates were used; 2) the sEGFR-H6 antigen was
coated at 3, 6, 12 and 24 nM in either PBS or KRB (Krebs-Ringer bicarbonate buffer), pH 7.4; (3) the plates were blocked with 5 mg/mL BSA in PBS or KRB, pH 7.4, 6.5 or 6.0; and (4) Erbitux® anti-EGFR antibody was added at 250 ng/mL in 5 mg/mL BSA in PBS or KRB, pH 7.4. The results show that buffer pH had no effect on the ability of EGFR sECD-H6 to bind to a Hi-Bind plate but impacted binding through the His tag (H6) to the nickel plates.

Effect of buffer pH on secondary antibody detection

The effect of buffer pH on secondary antibody binding was assessed in an assay modified from that described above in which Erbitux® anti-EGFR antibody was coated directly on the Hi-bind plate and then secondary antibody binding was assessed in the presence of 5 mg/mL BSA with PBS, pH 7.4, or KRB, pH 7.4, 6.5 or 6.0. The results indicated that secondary antibody detection of Erbitux® anti-EGFR antibody was unaffected at pH 6.0 to 7.4.

Effect of buffer pH of EGFR sECD- Erbitux® anti-EGFR antibody binding

To assess the effect of buffer pH of EGFR sECD-Erbitux® anti-EGFR antibody binding, the concentration of Erbitux® anti-EGFR antibody in the assay was varied as well as the buffer pH. Three times (3x) serial dilutions of Erbitux® anti-EGFR antibody, starting at 100 ng/mL, in KRB, pH 7.4, 6.5 or 6.0, were used in the assay described above. The results indicated that at high Erbitux® anti-EGFR antibody concentrations (i.e., greater than 3 ng/mL), variations in binding occur for each pH, with pH 7.4 having better binding than pH 6.0.

Example 3

Effect of Addition of Human Serum on ELISA

In this example, the effect of the addition of human serum on the ELISA binding assay was determined. Human serum was added to mimic the tumor microenvironment. The ELISA was performed as described in Example 2 above. Normal human serum was added at a level of 5 % of the buffer. IgG-depleted human serum was added at 1 % or 5 % of the buffer. Five (5) mg/mL BSA was added as a control. All experiments were performed in KRB, pH 7.4.

The results indicated that the addition of normal or IgG-depleted human serum significantly affected the ELISA assay. The addition of 5 % human serum resulted in
an increased K_D, as human serum contains IgG and thus the goat anti-human-Fc-HRP conjugated secondary antibody binds to the serum as well as the Erbitux® anti-EGFR antibody. The addition of IgG-depleted human serum resulted in a 30% reduced dynamic range for the assay.

Example 4

Effect of use of anti-mouse Fab secondary antibodies

In this example, 6 different anti-mouse Fab antibodies were evaluated for use as the secondary antibody in the assay described in Example 2 above. Erbitux® anti-EGFR antibody is a chimeric antibody that was originally generated in mouse. These secondary antibodies were evaluated to determine if a different secondary antibody could be used to avoid the interaction of the goat anti-human-Fc secondary when human serum is used in the assay.

It was observed that none of the anti-mouse secondary antibodies recognized Erbitux® anti-EGFR antibody in the ELISA assay.

Example 5

Tagged-surrogate protein indirect ELISA

In this example, a tagged-surrogate protein indirect ELISA assay was used as model for development of an epitope-tag specific indirect ELISA. The use of an epitope-tag specific indirect ELISA was evaluated in order to allow the use of human serum as a reagent/buffer in the assay. Human serum contains antibodies and thus, the use of an anti-human-Fc secondary antibody would result in signal from binding to the antibody, i.e., Erbitux, as well as the serum. In this assay, Erbitux® anti-EGFR antibody was conjugated to a protein tag directly at its c-terminus and an anti-Epitope Tag antibody that binds the tag on Erbitux® anti-EGFR antibody was used as the secondary antibody. Common protein epitope tags are set forth in Table 8 below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th># of Residues</th>
<th>Size (Da)</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-Myc</td>
<td>EQKLISEEDL</td>
<td>10</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>FLAG</td>
<td>DYKDDDK</td>
<td>8</td>
<td>1012</td>
<td>3</td>
</tr>
<tr>
<td>HA</td>
<td>YPYDVPDYA</td>
<td>9</td>
<td>1102</td>
<td>15</td>
</tr>
<tr>
<td>VSV-G</td>
<td>YTDIEHRLGK</td>
<td>11</td>
<td>1339</td>
<td>16</td>
</tr>
<tr>
<td>HSV</td>
<td>QPELAPEDPED</td>
<td>11</td>
<td>1239</td>
<td>17</td>
</tr>
<tr>
<td>V5</td>
<td>GKIPNPLLGLDST</td>
<td>14</td>
<td>1421</td>
<td>18</td>
</tr>
</tbody>
</table>
Assay reagents and conditions were evaluated using a simplified tagged-surrogate protein indirect ELISA, in which a 96-well plate was coated directly with a tagged-surrogate protein and binding of the secondary anti-tag antibody to the tagged-surrogate protein was detected. Three epitope tagged surrogate proteins were used (see Table 9 below). Six epitope tags were evaluated, using commercially available anti-tag antibodies, including an anti-myc antibody (GenScript, #A00173, Abeam, #abl326 or Abeam, #1261), an anti-FLAG antibody (GenScript, #A01428), an anti-HA antibody (GenScript, #A00169) and an anti-VSV-G antibody (GenScript, #A00872).

<table>
<thead>
<tr>
<th>Protein</th>
<th>Tag(s)</th>
<th>Alpha Diagnostic Cat #</th>
<th>Concentration for ELISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifusion-tagged marker</td>
<td>His, T7, Myc, HA and VSV-G</td>
<td>MFPM20-C</td>
<td>10 µg/mL</td>
</tr>
<tr>
<td>Myc-tag marker</td>
<td>Myc</td>
<td>Myc15-R</td>
<td>5 µg/mL</td>
</tr>
<tr>
<td>FLAG-tag marker</td>
<td>FLAG</td>
<td>FLAG15-R</td>
<td>5 µg/mL</td>
</tr>
</tbody>
</table>

Testing of Tag Detection Antibodies

In order to test detection by anti-tag antibodies, Hi bind 96-well plates were coated with a surrogate tagged protein diluted in PBS, according to Table 8 above. The plates were blocked with 5 mg/mL BSA. Epitope tags were then detected with an anti-tag antibody diluted in PBS with 5 mg/mL BSA to concentrations of 1000, 500, 250, 120 and 0 ng/mL.

The results demonstrated that anti-HA and anti-FLAG antibodies gave a higher signal than anti-Myc antibodies.

Effect of Buffer pH on coating tagged protein on Hi bind plates

In order to test the effect of buffer pH on coating tagged proteins on Hi bind plates, the c-Myc-, FLAG and multifusion- tagged proteins were coated at concentrations of 10, 5, 2.5 and 1 µg/mL in either PBS, pH 7.4 or Krebs-Ringers.
Buffer (KRB), pH 7.4. The plates were then blocked with 5 mg/mL BSA in either PBS or KRB, pH 7.4, 6.5 and 6.0. Epitope tags were detected with anti-tag Ab (500 ng/mL with 5 mg/mL BSA) diluted in PBS or KRB, pH 7.4.

The results demonstrated that buffer pH has no effect on coating stability of tagged proteins on Hi bind plates, as no difference was observed between plates blocked with PBS or KRB at pH 7.4, 6.5 or 6.0.

Effect of Buffer pH on detection of tagged protein on Hi bind plates

In order to test the effect of buffer pH on detection of tagged protein, Hi bind plates were coated with c-Myc- and FLAG-tagged proteins serially diluted 2x, starting at a concentration of 250 ng/mL in PBS or KRB, pH 7.4. Plates were blocked with 5 mg/mL BSA in either PBS or KRB, pH 7.4, 6.5 and 6.0. Epitope tags were detected with anti-tag Ab (1 μg/mL for anti-c-Myc-tag Ab, 0.5 μg/mL for anti-FLAG-tag Ab, with 5 mg/mL BSA) diluted in PBS or KRB, pH 7.4, 6.5 and 6.0.

The results demonstrated that buffer pH has a small effect on epitope tag detection by the anti-FLAG-tag antibody, as binding was slightly reduced at pH 7.4 compared to pH 6.5 and 6.0. The same overall effect was observed for the anti-c-Myc-tag antibody.

pH Sensitivity of anti-Myc-tag antibodies

The three anti-Myc-tag antibodies (GenScript, #A00173, Abcam, #abl326 or Abeam, #1261) were further evaluated for their pH sensitivity. Hi bind plates were coated with the multifusion tag protein in 4x serial dilutions starting at a concentration of 250 ng/mL, in either PBS or KRB, pH 7.4. Plates were blocked with 5 mg/mL BSA in either PBS or KRB, pH 7.4, 6.5 and 6.0. Tagged protein was detected with goat or rabbit anti-c-Myc tag Ab (200 or 500 ng/mL) in either PBS or KRB, pH 7.4, 6.5 and 6.0.

The results show that the Abeam antibodies are more sensitive than the GenScript antibody. Additionally, buffer pH had only a minimal effect on epitope tag detection by the goat or rabbit anti-c-myc antibodies from Abeam.

Effect of Buffer pH on anti-Myc-tag antibodies

Buffer pH was further evaluated for its effect on binding of Abeam anti-Myc-tag antibodies (Abeam, #abl326 or Abeam, #1261). Hi bind plates were coated with the multifusion tag protein in 3x serial dilutions starting at a concentration of 250
ng/mL in PBS, pH 7.4. Plates were blocked with 5 mg/mL BSA in KRB, pH 7.4, 6.5 and 6.0. Tagged protein was detected with goat or rabbit anti-c-Myc tag Ab (250 or 500 ng/mL) in KRB, pH 7.4, 6.5 and 6.0.

The results demonstrated that buffer pH had only a minimal effect on epitope tag detection by the goat or rabbit anti-c-myc antibodies from Abeam.

Evaluation of additional anti-Myc-tag antibodies

Three additional anti-Myc-tag antibodies were evaluated and compared to the Abeam anti-Myc-tag antibodies (Abeam, #abl326 or Abeam, #1261) and to the anti-VSV-G antibody (Genscript, #A00872). The antibodies were goat anti-c-Myc tag Ab (GeneTex, Cat # GTX21261), rabbit anti-c-Myc tag Ab (GeneTex, Cat # GTX19312) and goat anti-c-Myc tag Ab (Alpha Diagnostics, Cat #MYC13-HRP). Hi bind plates were coated with the multifusion tag protein at a concentration of 250 ng/mL, in PBS, pH 7.4. Plates were blocked with 5 mg/mL BSA in PBS pH 7.4. Tagged protein was detected with goat or rabbit anti-c-Myc tag Ab (serial dilutions, starting at 250 ng/mL) in PBS pH 7.4.

The results demonstrated that the Abeam antibodies and the goat anti-c-Myc tag Ab from GeneTex all bind the multifusion tag protein with similar affinity with the rabbit anti-c-Myc tag Ab from GeneTex having a slightly lower affinity. The anti-VSV-G antibody and the goat anti-c-Myc tag Ab from Alpha Diagnostics both have about 5 times lower affinity than the other antibodies tested.

Effect of Human Serum as a blocking agent on anti-c-Myc versus anti-HA antibodies

The five anti-c-myc antibodies (see above) were compared to the anti-HA-tag antibody (GenScript, #A00169) for binding in the presence of 5 % human serum. Hi bind plates were coated with the Multifusion-tagged marker protein in 3x serial dilutions starting at a concentration of 250 ng/mL in PBS, pH 7.4. The plates were blocked with 5 % human serum in KRB, pH 7.4. Tagged protein was detected with goat or rabbit anti-c-Myc tag Ab or goat anti-HA antibody (3x serial dilutions, starting at 250 ng/mL) in KRB, pH 7.4.

The results indicated that the anti-HA antibody did not bind as well as the anti-c-Myc antibody in the presence of 5 % human serum. The Abeam and GeneTex anti-
c-myc antibodies all had similar affinity. The results also indicated that human serum did not interfere with detection of tagged-protein by the secondary antibody.

Tagged protein detection in the presence of 25 % human serum

The anti-FLAG antibody (Abeam, abl238) was evaluated for its detection of FLAG-tag protein in the presence of 25 % human serum in KRB buffer, pH 6.0 and 7.4. The K_D at pH 7.4 was approximately 224 ng/mL whereas the K_D at pH 6.0 was approximately 135 ng/mL.

The anti-myc antibody (Abeam, abl326) also was evaluated for its detection of myc-tag protein in the presence of 25 % human serum in KRB buffer, pH 6.0 and 7.4. The K_D at pH 7.4 was approximately 7.98 ng/mL whereas the K_D at pH 6.0 was approximately 7.73 ng/mL.

The anti-Myc antibody (Abeam, abl326) was evaluated for its detection of the multifusion tag protein in the presence of 25 % human serum in KRB buffer, pH 7.4. The K_D was approximately 20 ng/mL.

Example 6

Effect of human serum on Anti-EGFR-FL MAb pH Sensitive ELISA

In this example, the effect of increasing the amount of human serum was evaluated using FLAG-tagged Erbitux® anti-EGFR antibody and goat anti-FLAG-HRP conjugated secondary antibody. The experiments were performed using KRB at either pH 7.4 or 6.0 with either 5% or 25% human serum and differing amounts of lactic acid (see Table 9 below). Human serum and lactic acid were added to mimic the tumor microenvironment.

Briefly, a 96-well Hi-bind plate (Costar #2592) was coated overnight at 4 °C with 100 µL sEGFR-HG antigen (Sino Biologies, Cat#10001-H08H) at 12 nM (1.32 µg/mL) in KRB, pH 7.4. The plate was then washed 3x with 250 µL/well of KRB, pH 7.4 and subsequently blocked for 1 hour at RT with 250 µL of KRB with human serum and lactic acid at pH 7.4 and 6.0 (set forth in Table 9 below). Serial dilutions (3x, starting concentration 100 ng/mL, followed by 1:3 dilutions) of FLAG-EGFR MAb standard or test standards were prepared in KRB with human serum and lactic acid at pH 7.4 and 6.0 and 100 µL was added per well and the plate was incubated at RT for 1 hr. The plate was then washed 3x with 250 µL/well KRB with human serum and lactic acid at pH 7.4 and 6.0. 100 µL/well goat anti-FLAG-HRP conjugated
secondary antibody (diluted 1:2000 in KRB with 25 % human serum and lactic acid at pH 7.4 and 6.0) was added to each well and the plate was incubated for 1 hr at RT. The plate was then washed 3x with 250 µL/well of KRB with human serum and lactic acid at pH 7.4 and 6.0. Finally, 100 µL Sureblue TMB Microwell Peroxidase Substrate 1-component (KPL, #52-00-03) solution was added to each well and the plate was allowed to develop for 15-20 minutes at RT (away from light). The reaction was stopped by adding 100 µL TMB stop solution (KPL, #50-85-06) to each well and the plate was read within 30 min at OD450 nm using a Microplate Spectrophotometer (Molecular Devices, Spectra Max M2).

The results were consistent for each tested pH regardless of human serum concentration. For example, the K_D for binding of the anti-EGFR antibody in 25 % human serum, pH 6.0 was 2.21 ng/mL whereas for assays utilizing 5 % human serum, pH 6.0, the K_D was 2.12 ng/mL. The same effect was observed for pH 7.4. The results were confirmed for three experiments each run by three different operators.

Since the results indicate no difference between the two percentages of human serum, and 25 % more closely mimics physiological conditions, 25 % was selected for future experiments. The suitability criteria for robustness for both 5 % and 25 % human serum are set forth in Tables 11-12 below.

<p>| Table 10. ELISA Assay Buffer Conditions |</p>
<table>
<thead>
<tr>
<th>Buffer</th>
<th>Lactic Acid</th>
<th>Human Serum</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRB</td>
<td>11 mM</td>
<td>5 %</td>
<td>7.4</td>
</tr>
<tr>
<td>KRB</td>
<td>16.5 mM</td>
<td>5 %</td>
<td>6.0</td>
</tr>
<tr>
<td>KRB</td>
<td>1 mM</td>
<td>25 %</td>
<td>7.4</td>
</tr>
<tr>
<td>KRB</td>
<td>16.5 mM</td>
<td>25 %</td>
<td>6.0</td>
</tr>
</tbody>
</table>

The suitability criteria for robustness for both 5 % and 25 % human serum are set forth in Tables 11-12 below.

<p>| Table 11. Suitability Criteria for Robustness – 5 % human serum |</p>
<table>
<thead>
<tr>
<th>Buffer pH</th>
<th>Buffer components</th>
<th>LLOQ</th>
<th>ULOQ</th>
<th>K_D</th>
<th>S/N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>11 mM lactate, 5 % human serum</td>
<td>2.7 pM</td>
<td>74 pM</td>
<td>15.4 pM ± 30 %</td>
<td>≥ 20</td>
</tr>
<tr>
<td>6.8</td>
<td>16.5 mM lactate, 5 % human serum</td>
<td>2.7 pM</td>
<td>74 pM</td>
<td>11.1 pM ± 30 %</td>
<td>≥ 20</td>
</tr>
</tbody>
</table>

Change in concentration of (α-EGFR-FLAG antibody) 1.0 Log corresponds to change in OD ~ 2.5.

<p>| Table 12. Suitability Criteria for Robustness – 25 % human serum |</p>
<table>
<thead>
<tr>
<th>Buffer pH</th>
<th>Buffer components</th>
<th>LLOQ</th>
<th>ULOQ</th>
<th>K_D</th>
<th>S/N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>1 mM lactate, 25 % human serum</td>
<td>2.7 pM</td>
<td>74 pM</td>
<td>16.6 pM ± 30 %</td>
<td>≥ 20</td>
</tr>
<tr>
<td>6.8</td>
<td>16.5 mM lactate,</td>
<td>2.7 pM</td>
<td>74 pM</td>
<td>10.1 pM</td>
<td>≥ 20</td>
</tr>
<tr>
<td>25 % human serum</td>
<td>± 30 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LLOQ: lower limit of quantification; ULOQ: upper limit of quantification; Change in concentration of (a-EGFR-FLAG antibody) 1.0 Log corresponds to change in OD ~ 2.5.

Example 7

ELISA simulating a tumor microenvironment and normal physiological conditions

In this example, a parallel, high throughput pH sensitive indirect ELISA was developed and used to test binding conditions that simulate binding conditions in the extracellular matrix within a tumor microenvironment, such as low pH (pH <7.4, e.g. 6.0), elevated lactic acid concentrations (12-20 mM) and the presence of human serum. Simultaneously, conditions that simulate normal physiology (e.g. pH 7.4, 1 mM lactic acid, 25 % human serum) also were tested. In this way, antibodies, such as variant antibodies produced using the methods described elsewhere and below in Example 8 that preferentially bind a target protein in conditions that represent a tumor microenvironment, rather than normal physiological conditions, can be identified.

Krebs-Ringer bicarbonate buffer was selected for the screen as it most closely reflects a physiologic buffer. Lactic acid was included in the assay buffer at specified concentrations, and the pH of the buffers were adjusted to either 7.4 or 6.0 using 1 N HCl. Furthermore, since human serum was used in the screen, standard and readily available anti-human IgG Fc antibodies cannot be used due to the amount of IgG found in human serum (see Example 3 above). Therefore, a FLAG-tagged anti-EGFR parental antibody was used as a standard in the assay.

Briefly, the extracellular domain of the EGF receptor (EGFR sECD) was immobilized on 96 well plates. This antigen coating step is carried out using a pH 7.4 buffer. The bound antigen was then incubated with pre-determined dilutions of cell culture supernatant containing the FLAG-tagged anti-EGFR antibody variants. The tagged antibody variants were detected following binding of an HRP-conjugated anti-FLAG antibody. The initial blocking, binding of the FLAG-antibody variants, washing and the detection by the conjugated anti-FLAG secondary antibody were carried out under parallel conditions with pH 7.4 or pH 6.0 buffers as described below.

Assay:
A 96-well Hi-bind plate (Costar #2592) is coated overnight at 4 °C or for 2
hours at room temperature (RT) with 100 μL EGFR sECD-H6 antigen (prepared as
described in Example 1 or sEGFR-H6 (Sino Biologies, Cat #10001-H08H)) at 12 nM
(1.32 μg/mL) in Buffer A (Krebs-Ringer Buffer (KRB, Sigma Aldrich, # K4002), pH
7.4, no human serum). The plate was then washed 3x with 250 μE/well of Buffer A
and subsequently blocked for 1 hour at RT with 250 μE of either pH 7.4 Buffer B (1
mM lactic acid/ 25 % human serum) or pH 6.0 Buffer C (16.6 mM lactic acid / 25 %
human serum), while covered. Serial dilutions (3x, starting concentration 100 ng/mL,
followed by 1:3 dilutions) of anti-EGFR-FLAG antibody standards were prepared in
either pH 7.4 Buffer B (KRB, pH 7.4, 1 mM lactic acid / 25 % human serum) or pH
6.0 Buffer C (KRB, pH 6.0, 16.6 mM lactic acid / 25 % human serum) and 100 μL
was added per well. After dilution, concentrations of anti-EGFR-FLAG antibody
were 666.67 pM (100 ng/mL), 222.22 pM (33.33 ng/mL), 74.07 pM (11.11 ng/mL),
24.69 pM (3.70 ng/mL), 8.23 pM (1.23 ng/mL), 2.74 pM (0.41 ng/mL), 0.91 pM
(0.137 ng/mL) and 0. Test sample dilutions were prepared, as described above for the
antibody standards, and 100 μL was added per well. The anti-EGFR-FLAG antibody
standards and test samples were covered and incubated at RT for 1 hr. The plate was
then washed 3x with 250 μL/well of either pH 7.4 Buffer B or pH 6.0 Buffer C. 100
μL/well goat anti-FLAG-HRP detection antibody (Abeam, #ab 1238) at 500 ng/mL in
either pH 7.4 Buffer B or pH 6.0 Buffer C was added to each well and the plate was
covered and incubated for 1 hr at RT. The plate was then washed 3x with 250
μL/well of either pH 7.4 Buffer B or pH 6.0 Buffer C. Finally, 100 μL Sureblue
TMB Microwell Peroxidase Substrate 1-component (KPL, #52-00-03) solution was
added to each well and the plate was allowed to develop for 15-20 minutes at RT
(away from light). The reaction was stopped by adding 100 μL TMB stop solution
(KPL, #50-85-06) to each well and the plate was read within 30 min at OD450 nM
using a Microplate Spectrophotometer (Molecular Devices, Spectra Max M2).

Each plate included an anti-EGFR-FLAG antibody standard, a positive control
(parental antibody) and negative control transfections. The ELISA was performed in
triplicate.

Selection criteria for identifying antibodies, such as variant antibodies, that
preferentially bind a target protein in conditions that simulate a tumor

123
microenvironment rather than normal physiological conditions was determined as ratio of antibody variant binding at pH 6.0/7.4 and specific fold increase over parent control antibody. Those antibodies, such as variant antibodies, that have strong binding activity at pH 6.0 and diminished binding at neutral pH 7.4 as compared to the parental control antibody, such as a tagged- Erbitux® anti-EGFR antibody control antibody, are antibodies of interest.

Example 8

Generation of anti-EGFR antibody Mutants

In this example, a comprehensive positional evolution (CPE) library of single point mutants of the Erbitux® anti-EGFR antibody was constructed and generated. The positions for CPE library construction were focused in the variable region CDRs of the light and heavy chains of the Erbitux® anti-EGFR antibody, with the inclusion of additional amino acids that may play a role in antigen recognition. A library of single point variants was created that contains at least 15 amino acid variants at each of one hundred amino acid positions within the variable regions of either the heavy chain or light chain of Erbitux® (SEQ ID NOS:2 and 1, respectively) (see Figure 1). The amino acid histidine was included among the 15 variants at each position. Glycerol stocks of members of the library were prepared and stored at -80 °C.

Each member of the library was sequenced, expressed in CHO cells as IgG antibodies, arrayed in an addressable array in 96-well plates, and tested by ELISA for binding to soluble extracellular domain of EGFR antigen under conditions that simulate a tumor microenvironment and under conditions that simulate normal physiological conditions, as described in Example 7 to identify antibodies that have binding activity at the lower pH of 6.0, and diminished binding activity at pH 7.4 as compared to the parental tagged- Erbitux® anti-EGFR control antibody.

Additionally, a SEAP or quantitative assay will be used. In this assay, the activity of secreted alkaline phosphatase (SEAP) in the cell culture supernatant will be measured. SEAP activity/antibody protein concentration will be used to compensate for transfection/expression efficiency variations and to normalized antibody variant binding activities to the wild type. Positive clones identified from the CPE screen will be considered for further evolution through construction of a CPS library to
screen for muteins with increased binding to the EGFR sECD under low pH (6.0) conditions.

Example 9

Conditional Activity of anti-EGFR antibody Mutants

Members of the CPE library of single point mutants of the Erbitux® anti-EGFR antibody described in Example 8 was assessed by ELISA to measure binding to EGFR sECD-H6 antigen at pH 6.0 and pH 7.4 to identify conditionally active mutants as described in Example 7. The results are set forth in Table 13. Out of 1501 Erbitux® mutants tested, 248 mutants were conditionally active (209 mutants with normalized specific activity >0.4 at pH 7.4 and <0.4 at pH 6.0; and 39 mutants with normalized specific activity >0.4 at pH 6.0 and <0.4 at pH 7.4). Out of the remaining mutants, 283 had low expression levels (<20 ng/ml), 149 did not have binding activity at pH 6.0 or pH 7.4, and 737 mutants had a normalized specific activity >0.4 at pH 6.0 and pH 7.4.

Table 13

<table>
<thead>
<tr>
<th>Categories</th>
<th>Criteria</th>
<th># of Clones</th>
<th>% Total Clones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Light Chain</td>
</tr>
<tr>
<td>Low Expression</td>
<td>Expression level <20 ng/ml</td>
<td>283</td>
<td>78</td>
</tr>
<tr>
<td>Non-active clones</td>
<td>No binding activity at pH 6.0 or pH 7.4</td>
<td>149</td>
<td>43</td>
</tr>
<tr>
<td>Active at pH 6.0 and 7.4</td>
<td>Normalized specific activity >0.4 at pH 6.0 and pH 7.4</td>
<td>737</td>
<td>315</td>
</tr>
<tr>
<td>Active at pH 7.4 only</td>
<td>Normalized specific activity >0.4 at pH 7.4 and <0.4 at pH 6.0</td>
<td>209</td>
<td>134</td>
</tr>
<tr>
<td>Active at pH 6.0 only</td>
<td>Normalized specific activity >0.4 at pH 6.0 and <0.4 at pH 7.4</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>84</td>
<td>12</td>
</tr>
</tbody>
</table>

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.
CLAIMS:

1. A method for identifying/selecting a therapeutic protein that treats tumors and that is more active in low pH than at neutral pH, wherein:
 the method comprises:

 a) testing the activity of the protein under conditions that comprise low pH;
 b) testing the activity of the protein under conditions that comprise neutral pH;
 c) comparing the activity in a) to the activity in b); and
 d) selecting/identifying a protein that has greater activity in a) compared to b), thereby identifying a protein that is more active at low pH than at high pH.

2. The method of claim 1, wherein low pH is less than 7.4.

3. The method of claim 1 or claim 2, wherein low pH is between or about between 5.8 to 6.8.

4. The method of any of claims 1-3, wherein neutral pH is or is about between 7.2 to 7.6.

5. The method of any of claims 1-4, wherein neutral pH is about or is 7.4.

6. The method of any of claims 1-5, wherein the conditions in a) comprise one or more conditions selected from among increased lactic concentration, increased pyruvate concentration and hypoxia.

7. The method of any of claims 1-6, wherein:

 the conditions in a) comprise increased lactic concentration selected from among 10 mM to 20 mM lactic acid or 15 mM to 18 mM lactic acid; or at least about or 16 mM, 16.5 mM or 17 mM lactic acid; and/or

 the conditions in b) comprise a lactate concentration selected from among 0.5 to 5 mM or 0.2 mM to 4 mM lactic acid; or at or about 0.5, 1, 2, 3, 4, or 5 mM lactic acid.

8. A method for identifying/selecting a therapeutic protein that is more active in a tumor microenvironment than in a non-tumor microenvironment, wherein:
 the method comprises:

 a) testing the activity of the protein under a condition that exists in a tumor microenvironment but not a non-tumor environment in which activity is desired;
 b) testing the activity of the protein under a condition that exists in a non-tumor microenvironment;
c) comparing the activity in a) to the activity in b); and

d) selecting/identifying a protein that has greater activity in a) compared to b), thereby identifying a protein that is more active in a tumor microenvironment than in a non-tumor microenvironment.

9. The method of claim 8, wherein the non-tumor microenvironment is a systemic microenvironment.

10. The method of claim 8 or claim 9, wherein the non-tumor microenvironment is a healthy tissue.

11. The method of any of claims 8-10, wherein the healthy tissue is the gastrointestinal (GI) tract, the skin, the vasculature, the blood or the extracellular matrix.

12. The method of any of claims 8-11, wherein each of a) and b) is performed under identical conditions, except for a condition or conditions that exists in a tumor microenvironment but not in a non-tumor microenvironment.

13. The method of any of claims 8-12, wherein the conditions that exists in a tumor microenvironment comprises one or more properties selected from among increased vascularization, hypoxia, lowered pH, increased lactate concentration, increased pyruvate concentration, increased interstitial fluid pressure; and altered metabolites or metabolism indicative of a tumor.

14. The method of any of claims 8-13, wherein the conditions that exists in a tumor microenvironment comprises lower than neutral pH or lower pH than the non-tumor microenvironment.

15. The method of any of claims 8-14, wherein the condition that exists in a tumor microenvironment comprises a pH below 7.4.

16. The method of any of claims 8-15, wherein the pH of the tumor is about or is 5.8-6.8, inclusive, and the condition that exists in a tumor microenvironment comprises a pH between or about between 5.8 to 6.8.

17. The method of any of claims 8-16, wherein the conditions that exist in a tumor microenvironment comprises elevated lactate concentration and/or increased pyruvate compared to the conditions that exist in a non-tumor microenvironment.
18. The method of any of claims 8-17, wherein the conditions of a) comprise lower than neutral pH and elevated lactic acid concentration compared to the conditions in b).

19. The method of claim 18, where the pH is between 5.8 and 6.8, inclusive, or 5.8 and 6.5, inclusive.

20. The method of any of claims 8-19, wherein the conditions in a) comprise increased lactate concentration selected from among 0.5 mM to 5 mM lactic acid or 15 mM to 18 mM lactic acid; or at least about 1 mM, 1.65 mM or 17 mM lactic acid; and/or the conditions in b) comprise a lactate concentration selected from among 0.5 to 5 mM or 0.2 mM to 4 mM lactic acid; or at or about 0.5, 1, 2, 3, 4, or 5 mM lactic acid

21. The method of any of claims 8-20, wherein the protein is a therapeutic protein that treats a tumor.

22. The method of any of claims 1-21 that is performed in vitro.

23. The method of any of claims 1-22, wherein the therapeutic protein is an antibody, an enzyme, a hormone, a cytokine or active portion thereof, and reference to an antibody herein refers to an antibody or antigen-binding fragment thereof.

24. The method of any of claims 1-23, wherein the therapeutic protein is a ligand for a target receptor.

25. The method of any of claims 1-24, wherein the therapeutic protein that treats a tumor is an anti-tumor antibody.

26. The method of claim 25, wherein the anti-tumor antibody is selected from among Cetuximab (Erbitux®), Trastuzumab (Herceptin®), Rituximab (Rituxan®, MabThera®), Bevacizumab (Avastin®), Alemtuzumab (Campath®), Panitumumab (Vectibix®), Ranibizumab (Lucentis®), Ibritumomab, Ibritumomab tiuxetan (Zevalin®), Tositumomab, Iodine 1131 Tositumomab (BEXXAR®), Catumaxomab (Removab®), Gemtuzumab, Gemtuzumab ozogamicine (Mylotarg®), Abatacept (CTLA4-Ig, Orencia®), Belatacept (L104EA29YIg; LEA29Y; LEA), Ipilimumab (MDX-010, MDX-101), Tremelimumab (ticilimumab, CP-675,206), PRS-010, PRS-050, Aflibercept (VEGF Trap, AVE005), Volociximab (M200), F200,
MORAb-009, SS1P (CAT-5001), Cixutumumab (IMC-A12), Matuzumab (EMD72000), Nimotuzumab (h-R3), Zalutumumab (HuMax-EGFR), Necitumumab IMC-11F8, mAb806/ch806, Sym004 and mAb-425.

27. The method of claim 25 or claim 26, wherein the anti-tumor antibody is Cetuximab (Erbitux®).

28. The method of any of claims 1-27, wherein:
a pluralty of proteins are tested in each of a) and b);
each protein is tested in each of a) and b); and
any protein that has greater activity in a) compared to b) is selected.

29. The method of claim 28, wherein the plurality of proteins comprise or are modified variants of a therapeutic protein, and a collection of variants are tested in each of a) and b).

30. The method of any of claims 1-29, wherein the therapeutic protein comprises a multimerization domain.

31. The method of claim 30, wherein the multimerization domain comprises an Fc domain or modified Fc domain.

32. The method of any of claims 1-31, wherein the therapeutic protein is an antibody, an enzyme, a hormone or a cytokine.

33. The method of claim 32, wherein the therapeutic protein is an antibody.

34. The method of any of claims 1-33, wherein the therapeutic protein is an anti-tumor antibody.

35. The method of claim 34, wherein the anti-tumor antibody is selected from among Cetuximab (Erbitux®), Trastuzumab (Herceptin®), Rituximab (Rituxan®, MabThera®), Bevacizumab (Avastin®), Alemtuzumab (Campath®), Panitumumab (Vectibix®), Ranibizumab (Lucentis®), Ibritumomab, Ibritumomab tiuxetan (Zevalin®), Tositumomab, Iodine 1131 Tositumomab (BEXXAR®), Catumaxomab (Removab®), Gemtuzumab, Gemtuzumab ozogamicine (Mylotarg®), Abatacept (CTLA4-Ig, Orencia®), Belatacept (L104EA29YIg; LEA29Y; LEA), Ipilimumab (MDX-010, MDX-101), Tremelimumab (ticilimumab, CP-675,206), PRS-010, PRS-050, Aflibercept (VEGF Trap, AVE005), Volociximab (M200), F200, MORAb-009, SS1P (CAT-5001), Cixutumumab (IMC-A12), Matuzumab
(EMD72000), Nimotuzumab (h-R3), Zalutumumab (HuMax-EGFR), Necitumumab IMC-11F8, mAb806/ch806, Sym004 and mAb-425.

36. The method of any of claims 29-35, wherein the modified variants contain amino acid replacements, insertions and/or deletions of an amino acid residue or residues compared to an unmodified form of the therapeutic protein.

37. The method of any of claim 1-36, wherein the protein that is tested is a variant antibody that comprises one or more amino acid replacements in a complementarity determining region (CDR) compared to an unmodified form of the antibody.

38. The method of any of claims 29-37, wherein each variant protein contains a single amino acid replacement compared to an unmodified form of the therapeutic protein.

39. The method of any of claims 29-37, wherein each variant protein contains two, three, four, five, six, seven, eight, nine or more amino acid replacements compared to an unmodified form of the therapeutic antibody.

40. The method of any of claims 29-39, wherein:

- in the collection the amino acid at each changed position is replaced by up to 1-19 other amino acids than the original amino acid at the position; and
- every amino acid along the length of the therapeutic protein, or a selected portion thereof, is replaced.

41. The method of any of claims 29-40, wherein the replacement amino acid is selected from among Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val, with the proviso that the replacement amino acid differs from the amino acid at the corresponding position in the therapeutic protein.

42. The method of any of claims 29-41, wherein histidine is a replacement amino acid or the histidines in the protein are replaced by a non-basic or uncharged amino acid.

43. The method of any of claims 29-42, wherein the modifications comprise amino acid replacement with an amino acid selected from among Arg, Asp, Glu, His and Lys.
44. The method of any of claims 29-43, wherein the modifications comprise amino acid replacement with His.
45. The method of any of claims 29-44, wherein the protein is an antibody and the selected portion that is modified is a CDR.

5 46. The method of any of claims 29-45, wherein each variant protein in the collection is tested individually.
47. The method of any of claims 29-46, wherein each variant protein is tested in an array.
48. The method of any of claims 29-46, wherein each variant protein tested is addressable.
49. The method of any of claims 1-48, wherein the activity tested is binding to a target protein of the therapeutic protein.
50. The method of claim 49, wherein binding is assessed by an immunoassay.

15 51. The method of claim 49 or claim 50, wherein the immunoassay comprises an ELISA.
52. The method of claim 50 or claim 51, wherein the immunoassay is heterogeneous, comprising:
 immobilizing the target protein on a solid support;
 contacting the therapeutic protein with the target protein, wherein the therapeutic protein is detectably labeled;
 removing unbound therapeutic protein; and
 detecting or measuring the binding of the labeled therapeutic protein to the target protein.
53. The method of claim 50 or claim 51, wherein the immunoassay is homogenous, comprising:
 contacting the therapeutic protein with a target protein, wherein the therapeutic protein is detectably labeled; and
 detecting or measuring the binding of the labeled therapeutic protein to the target protein.

30
54. The method of any of claims 1-53, wherein binding activity is assessed using a cell surface expression system comprising a cell or cells expressing therapeutic protein on the surface.

55. The method of claim 54, wherein:

the therapeutic protein is expressed on the surface of cells;

a target protein is contacted with a population of the cells; and

a cell or cells is identified that binds to the target protein, thereby identifying a therapeutic protein that exhibits binding activity.

56. The method of claim 55, wherein the target protein is detectably labeled or can be detected.

57. The method of claim 56, wherein the target protein is fluorescently labeled or is detected by a secondary reagent that is fluorescently labeled.

58. The method of any of claims 49-57, wherein detecting or measuring the binding is by fluorescence activated cell sorting (FACS).

59. The method of any of claims 1-58, wherein:

binding activity is first tested under condition b) using a cell surface expression system comprising cells expressing a therapeutic protein, whereby a cell or cells are selected that bind to the target protein and a cell or cells are selected that do not bind to the target protein;

the cells or cells that are selected that do not bind to the target protein are isolated and grown in a cell culture medium to generate a second population of cells expressing the therapeutic protein on the surface;

binding activity is tested under condition a), whereby cells from the second population of cells are contacted with the target protein; and

a cell or cells are identified that bind to the target protein, thereby identifying a therapeutic protein that exhibits binding activity under condition a) but not condition b).

60. The method of any of claims 1-58, wherein

binding activity is first tested under condition a) using a cell surface expression system comprising a population of cells expressing a therapeutic protein, whereby a cell or cells are selected that bind to the target protein and a cell or cells are selected that do not bind to the target protein;
the cells or cells that are selected that bind to the target protein are isolated and grown in a cell culture medium to generate a second population of cells;

binding activity is tested under condition b), whereby cells from the second population of cells are contacted with the target protein; and

a cell or cells is identified that does not bind to the target protein and a cell or cells is identified that binds to the target protein;

the cell or cells that do not bind to the target protein are selected, thereby identifying a therapeutic protein that exhibits binding activity.

61. The method of any of claims 1-60, wherein administration of the therapeutic protein to a subject is associated with one or more adverse side-effects.

62. The method of claims 61, wherein reducing the activity of the protein in b) compared to a) ameliorates or prevents the adverse side-effects.

63. The method any of claims 1-62, wherein the activities of the therapeutic protein in a) and b) are tested in the presence of human serum.

64. The method any of claims 1-63, wherein:

the activities of the therapeutic protein in a) and b) are tested in the presence of human serum in an amount that is present in a physiological environment; and

the serum concentration in a) is equal to the serum concentration in b).

65. The method any of claims 1-64, wherein a) and b) are performed in the presence of at least about between or between or, by volume, human serum selected from among 3%-30%, inclusive; 5%-30%, inclusive; 5%-25%, inclusive; 10%-30%, inclusive; 15%-30%, inclusive; and 15%-25%, inclusive.

66. The method of claim 65, wherein the concentration of human serum is at or about 25% (plus or minus 10%) or 15%-35% by volume.

67. The method of any of claims 1-66, wherein the target protein of the therapeutic protein is a receptor or a portion thereof that binds to a ligand.

68. The method of claim 67, wherein the target protein of the therapeutic protein is a receptor that is a tumor antigen.

69. The method of claim 68, wherein the target protein of the therapeutic protein is a member of the Her family of receptors.

70. The method of claim 69, wherein the target protein of the therapeutic protein is the EGFR receptor or the extracellular domain thereof.
71. The method of any of claims 1-70, wherein the activity in a) is greater than in b) by a predetermined amount or ratio.

72. The method of claims 71, wherein the activity is greater by a ratio of at least or 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50 or more.

73. The method of any of claims 1-72, wherein the activity in a) is greater than the activity in b) by at least 5%, 10%, 15%, 20%, 25%, 35%, 50%, 100%, 2-fold, 5-fold, 10-fold, 20-fold or more.

74. The method of any of claims 1-73, wherein administration of the anti-tumor antibody is associated with one or more adverse side effects.

75. The method of claim 74, wherein the antibody is an anti-EGFR antibody or an anti-CTLA4 antibody.

76. The method of any of claims 1-75 that is performed in a high throughput format.

77. The method of any of claims 1-76, wherein the method is automated.

78. The method of any of claims 1-77, wherein the selected protein is conditionally active such that it has greater activity in a tumor microenvironment compared to a non-tumor environment.

79. The method of any of claims 1-78 that is repeated a plurality of times, wherein in each repetition, further variants of a selected protein or proteins are generated and tested, whereby the therapeutic protein is evolved to exhibit increased activity in a tumor environment than in a non-tumor environment to thereby exhibit reduced toxicity or reduced adverse side-effects.

80. The method of any of claims 61-79, wherein the therapeutic protein is an anti-EGFR antibody and the reduced adverse side effects comprise reduced dermal toxicities associated with systemic exposure to the antibody.

81. The method of any of claims 1-80, wherein the selected protein is an anti-EGFR antibody variant that preferentially binds to EGFR under conditions of a) within the tumor microenvironment of reduced pH of 5.8-6.8 and lactate concentrations of about 12-20 mM compared to under conditions of b) of normal physiologic pH of 7.3-7.4 and normal lactate concentrations below 12 mM.

82. The method of any of claims 1-81, wherein:
prior to steps a)-d), the method comprises:

e) contacting a first solid support and a second duplicate solid support

with EGFR or the EGFR extracellular domain (ECD) in a buffer comprising a pH at

or about pH 7.4;

f) washing the first and second supports with a buffer comprising a pH

at or about pH 7.4;

g) adding a buffer comprising 25% or about 25% human serum to the

first and second solid supports; wherein:

i) the conditions for the buffer added to the first solid support

comprise about 12-20 mM lactic acid, at or about pH 6.0; and

ii) the conditions for the buffer added to the second solid

support comprise 1 mM or about 1 mM lactic acid, at or about pH 7.4;

h) removing the buffer added in step c) from the solid support; and

after performing steps e)-h), performing steps a)-d), wherein:

step a) comprises:

adding a modified anti-EGFR antibody that is detectably labeled to the

first supports in a binding buffer comprising 12-20 mM lactic acid, 25% human

serum, pH 6.0;

washing the first support with buffer comprising 12-20 mM lactic acid,

at or about pH 6.0; and

adding a reagent to the first solid support to detect bound modified

anti-EGFR, and detecting binding of the modified protein to the EGFR or EGFR

ECD on the first solid support; and

step b) comprises:

adding a modified anti-EGFR antibody that is detectably labeled to the second

support in a binding buffer comprising 1 mM lactic acid, 25% human serum, pH 7.4;

washing the second supports with buffer comprising 1 mM or about 1 mM

lactic acid, at or about pH 7.4; and

adding a reagent to the second solid support to detect bound modified anti-

EGFR, and detecting binding of the modified protein to the EGFR or EGFR ECD on

the second solid supports.
83. The method of claim 82, wherein the anti-EGFR antibody contains a
FLAG-tag to facilitate detection with an anti-FLAG-TAG enzyme reagent.

84. The method of claim 82 or claim 83, wherein detecting binding
comprises spectrophotometric measurement.

85. A method for identifying/selecting a therapeutic protein that is more
active in a first set of conditions than in a second set of conditions, wherein:
the first set of conditions includes one or more conditions that exists in a
tumor microenvironment compared to a non-tumor microenvironment selected from
among low pH, increased lactate concentration, increased pyruvate concentration and
hypoxia; and
the second set of conditions includes the corresponding condition that exists in
the non-tumor microenvironment; and
the method comprises:
 a) testing a plurality of proteins for activity under the first and second
set of conditions; wherein:
 the plurality of proteins comprise or are modified variants of a
therapeutic protein; and
 a first collection of variants are tested in each of the first and
second set of conditions;
 b) selecting/identifying proteins that have:
 decreased activity under the first set of conditions compared to
the unmodified therapeutic protein; and
 decreased activity under the second set of conditions compared
to the unmodified therapeutic protein;
 c) analyzing proteins selected/identified in step b) to identify amino
acid positions that are modified, whereby the amino acid is identified as a
critical amino acid position;
 d) generating a second collection of variant proteins comprising
substitution of an amino acid residue adjacent to or near to a critical amino
acid position with a replacement amino acid, wherein each member of the
library comprises a single amino acid replacement compared to the therapeutic
protein;
e) testing the activity of members of the second collection of modified proteins under the first set of conditions and under the second set of conditions; and selecting/identifying members of the second collection that exhibit greater than or about equal to the activity compared to under the second set of conditions;

f) analyzing proteins selected/identified in e) to identify amino acid positions that were substituted, wherein the identified positions are designated key residue positions;

g) generating a third collection of variant proteins, wherein each member comprises substitution of one or more key residue positions with a replacement amino acid;

h) testing the activity of members of the combinatorial library under the first set of conditions and under the second set of conditions, and selecting/identifying members of the second library that have greater activity under the first set of conditions compared to the second set of conditions, thereby identifying a therapeutic protein that is more active in a first set of conditions than in a second set of conditions.

86. The method of claim 85, wherein step h) comprises:

1) testing the activity of members of the third collection under the first set of conditions and selecting/identifying proteins that have an activity greater than a predetermined activity; and

2) testing the activity of proteins selected/identified in step 1) under the second set of conditions and selecting/identifying proteins that have an activity less than a predetermined activity.

87. The method of claim 85, wherein step h) comprises:

1) testing the activity of members of the third collection library under the second set of conditions and selecting/identifying proteins that have an activity less than a predetermined activity; and

2) testing the activity of proteins selected/identified in step 1) under the first set of conditions and selecting/identifying proteins that have an activity greater than a predetermined activity.
88. The method of any of claims 85-87, wherein step g) is repeated a plurality of times, wherein in each repetition, selected/identified proteins are tested.
89. The method of claim 88, wherein step g) is repeated 1, 2, 3, or 4 times.
90. The method of any of claims 85-89, wherein the therapeutic protein is an antibody, an enzyme, a hormone, a cytokine or active portion thereof, and reference to an antibody herein refers to an antibody or antigen-binding fragment thereof.
91. The method of any of claims 85-90, wherein the therapeutic protein is a ligand for a target receptor.
92. The method of any of claims 85-91, wherein the therapeutic protein is a protein that treats a tumor.
93. The method of claim 92, wherein the therapeutic protein that treats a tumor is an anti-tumor antibody.
94. The method of claim 93, wherein the anti-tumor antibody is selected from among Cetuximab (Erbitux®), Trastuzumab (Herceptin®), Rituximab (Rituxan®, MabThera®), Bevacizumab (Avastin®), Alemtuzumab (Campath®), Panitumumab (Vectibix®), Ranibizumab (Lucentis®), Ibritumomab, Ibritumomab tiuxetan (Zevalin®), Tositumomab, Iodine 1131 Tositumomab (BEXXAR®), Catumaxomab (Removab®), Gemtuzumab, Gemtuzumab ozogamicine (Mylotarg®), Abatacept (CTLA4-Ig, Orencea®), Belatacept (L104EA29Y Ig; LEA29Y; LEA), Ipilimumab (MDX-010, MDX-101), Tremelimumab (ticilimumab, CP-675,206), PRS-010, PRS-050, Aflibercept (VEGF Trap, AVE005), Volociximab (M200), F200, MORAb-009, SS1P (CAT-5001), Cixutumumab (IMC-A12), Matuzumab (EMD72000), Nimotuzumab (h-R3), Zalutumumab (HuMax-EGFR), Necitumumab IMC-11F8, mAb806/ch806, Sym004 and mAb-425.
95. The method of claim 93 or claim 94, wherein the anti-tumor antibody is Cetuximab (Erbitux®).
96. The method of any of claims 85-95, wherein the activity tested is binding to a target protein.
97. The method of claim 96, wherein binding activity is tested by an immunoassay.
98. The method of claim 97, wherein the immunoassay comprises an ELISA.
99. The method of any of claims 85-98, wherein binding activity is tested in a cell based assay.

100. The method of any of claims 85-99, wherein binding activity is tested in a cell surface expression system.

101. The method of any of claims 85-100, wherein:
members of the second library are expressed on the surface of cells;
a target protein is contacted with a population of the cells; and
a cell or cells is identified that binds to the target protein, thereby identifying a protein that exhibits binding activity.

102. The method of any of claims 99-101, wherein the cells are Chinese Hamster Ovary (CHO) cells.

103. The method of any of claims 99-102, wherein the cell based assay is Fluorescence Activated Cell Sorting (FACS).

104. The method of any of claims 96-103, wherein the target protein is detectably labeled or can be detected.

105. The method of any of claims 96-104, wherein the target protein is fluorescently labeled or is detected by a secondary reagent that is fluorescently labeled.

106. The method of any of claims 96-105, wherein detecting or measuring binding is by Fluorescence Activated Cell Sorting (FACS).

107. The method of any of claims 96-106, wherein the target protein is a member of the Her family of receptors.

108. The method of any of claims 96-107, wherein the target protein is the EGFR receptor or the extracellular domain thereof.

109. The method of any of claims 85-108, wherein:
the first set of conditions comprises low pH below 7.4; and
critical amino acids are selected from protein variants that comprise an amino acid replacement consisting of a charged residue.

110. The method of claim 109, wherein the charged residue is selected from among Arg, Asp, Glu, His and Lys.

111. The method of any of claims 85-110, wherein the amino acid replacement in the second and third collection is a replacement of the amino acid with His.
112. The method of any of claims 85-11, wherein the first set of conditions comprises a pH that is about or is 5.8-6.8, inclusive.

113. The method of any of claims 85-12, wherein the first set of conditions comprises a lower than neutral pH and elevated lactic acid concentration compared to the second set of conditions.

114. The method of any of claims 85-113, wherein:
 the first set of conditions comprises about 12-20 mM lactic acid, at or about pH 6.0; and
 the second set of conditions comprises 1 mM or about 1 mM lactic acid, at or about pH 7.4.
A. Erbitux Heavy Chain (SEQ ID NO:2)

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QVOLKQSGPG</td>
<td>LVQPSQSLSI</td>
<td>TC</td>
<td>TVSGFLTT</td>
<td>NYGVHWRQR</td>
<td>PGKGLELWLGV</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>TPTTSRLSIN</td>
<td>KDNSKSQVFF</td>
<td>KMNSLQSNDDT</td>
<td>AIYYCAARALT</td>
<td>YYDYEFAWYG</td>
<td>OGTLTVTSA</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>STKGPSSVFPL</td>
<td>APSSKSTSGG</td>
<td>TAALGCLVKD</td>
<td>YFPEPVTVSW</td>
<td>NSGALTSGVH</td>
<td>TFPAVLQSSG</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>LYSLSVTVTV</td>
<td>PSSSLGTVQT</td>
<td>ICNHNHKPSN</td>
<td>TKVDKRVPEP</td>
<td>SPKSCDKTHT</td>
<td>CPPCAPEPULL</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>GGPVSFLFPP</td>
<td>KPDKTDLMISR</td>
<td>TPEVTCVVVD</td>
<td>VSHEDPEVKT</td>
<td>NWYVGDVEVH</td>
<td>NAKTPREEQ</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>YNSTYRVVSV</td>
<td>LTVLHQDWNH</td>
<td>GKEYKCVSN</td>
<td>KALPAPIEK</td>
<td>ISKAKGQPRE</td>
<td>PQVTVLPPSR</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>380</td>
<td>390</td>
<td>400</td>
<td>410</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>DELTNKVQVSL</td>
<td>TCLVKGFYFS</td>
<td>DIAVEWESNG</td>
<td>QPENNYKTTP</td>
<td>PVLDSDSFF</td>
<td>LYSKLTVDKS</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>440</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RWQQQNVFSC</td>
<td>SVMHEALHNH</td>
<td>YTQKSLSLSP</td>
<td>GK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Erbitux Light Chain (SEQ ID NO:1)

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DILLTQSPVF</td>
<td>LSVSPGERVS</td>
<td>FSCRASQSG</td>
<td>TNIHNYQQT</td>
<td>NGSPRLLLKY</td>
<td>ASESISGIPS</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>RFSGSGSSTDLT</td>
<td>FTLSINSVES</td>
<td>EDIADYYCCQ</td>
<td>NNNWPYTFGA</td>
<td>GTKLDELKTV</td>
<td>AAAPSFVIFFP</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>SDEQLKSGTA</td>
<td>SVVCLLNNP</td>
<td>PREAKVQKQV</td>
<td>DNALQSGNSQ</td>
<td>ESVTEQSDK</td>
<td>STYSLSTLTL</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>200</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSKADYXKHK</td>
<td>VYACEVTHQG</td>
<td>LSSPVTKSFN</td>
<td>RGA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K16/30 G01N33/53 G01N33/574 G01N33/68

ADD.

According to International Patent Classification (IPC) and both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 03/105757 A2 (GENENCOR INT [US]; SCHELLENBERGER VOLKER [US]; TRESSLER ROBERT J [US];) 24 December 2003 (2003-12-24)</td>
<td>1-5, 8-10, 12-16, 21-24, 28-34, 36,49-57</td>
</tr>
<tr>
<td>Y</td>
<td>page 4, line 16 - line 23; claims 1-5; examples 4,5 page 18, paragraph 3 page 29, line 2 page 34, line 20 - line 22</td>
<td>6,7, 12, 17-20, 25-27, 34, 37-48, 58-114</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" later document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

10 February 2012

Date of mailing of the international search report

17/02/2012

Name and mailing address of the ISA/authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040; Fax: (+31-70) 340-3016

ws esner, Martin

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>paragraphs [0134], [0137], [0365], [0376], [0377]; claims 22-25; example IV</td>
<td>7,37-48, 59-73, 75-114</td>
</tr>
<tr>
<td>Y</td>
<td>page 28, paragraph 2; claims 1,2,37; example 1</td>
<td>7,37-48, 59-73, 75-114</td>
</tr>
<tr>
<td>X</td>
<td>JUNG SANG TAEK ET AL: "Aglycosyl ated IgG vari ants expressed in bacteri a that select iv ely bind Fc gamma RI potenti ate tumor cel l killing by monocyte-dendritic cel ls", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCES, WASHINGTON, DC; US, vol. 107, no. 2, 1 January 2010 (2010-01-01), pages 604-609, XP009143225</td>
<td>1-5, 8-10, 12-16, 21-24, 28-34, 36,49-57</td>
</tr>
<tr>
<td>Y</td>
<td>the whole document</td>
<td>6,7, 12, 17-20, 25-27, 34, 37-48, 58-114</td>
</tr>
<tr>
<td></td>
<td>paragraphs [0345] - paragraph [0356]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1 975 178 Al (STAR BIOTECHNOLOGISCHE FORSCHU [AT]) 1 October 2008 (2008-10-01) page 12, line 5 page 15, paragraph 0149 - page 16, paragraph 0152 claims 5-8, 14, 16</td>
<td>1-114</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R. DENG ET AL: "Pharmacokinetics of Humanized Monoclonal Anti-Tumor Necrosis Factor-Antibody and Its Neonatal Fc Receptor Variants in Mice and Cynomolgus Monkeys". DRUG METABOLISM AND DISPOSITION, vol. 38, no. 4, 1 April 2010 (2010-04-01), pages 600-605, XP55019071, ISSN: 0090-9556, DOI: 10.1124/dmd.109.031310, the whole document</td>
<td>1-114</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 03105757 A2</td>
<td>24-12-2003</td>
<td>AU 2003256266 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2488836 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1511861 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03105757 A2</td>
</tr>
<tr>
<td>US 2005260711 AI</td>
<td>24-11-2005</td>
<td>US 2005260711 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009035836 A1</td>
</tr>
<tr>
<td>WO 2006031370 A2</td>
<td>23-03-2006</td>
<td>AU 2005285347 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0515230 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2577133 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101052654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1778728 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008510466 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070057839 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080080675 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2367667 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006031370 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200701715 A</td>
</tr>
<tr>
<td>US 2008044854 AI</td>
<td>21-02-2008</td>
<td>AU 2007224019 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2644474 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1999259 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009528824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008044854 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007103307 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007516709 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011160440 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005058236 A2</td>
</tr>
<tr>
<td>EP 1975178 AI</td>
<td>01-10-2008</td>
<td>AR 066204 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1975178 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008119096 A1</td>
</tr>
</tbody>
</table>