

**(12) STANDARD PATENT  
(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 2004212003 B2**

**(54) Title**  
**Improved heat shock protein-based vaccines and immunotherapies**

**(51) International Patent Classification(s)**

|                              |                             |
|------------------------------|-----------------------------|
| <b>A61K 39/00</b> (2006.01)  | <b>C07K 2/00</b> (2006.01)  |
| <b>A61K 38/08</b> (2006.01)  | <b>C07K 4/00</b> (2006.01)  |
| <b>A61K 38/17</b> (2006.01)  | <b>C07K 7/06</b> (2006.01)  |
| <b>A61K 39/385</b> (2006.01) | <b>C07K 14/47</b> (2006.01) |
| <b>A61K 47/48</b> (2006.01)  | <b>C07K 14/82</b> (2006.01) |
| <b>A61P 35/00</b> (2006.01)  | <b>C07K 19/00</b> (2006.01) |

**(21) Application No:** **2004212003** **(22) Date of Filing:** **2004.02.13**

**(87) WIPO No:** **WO04/071457**

**(30) Priority Data**

|                    |                  |                     |
|--------------------|------------------|---------------------|
| <b>(31) Number</b> | <b>(32) Date</b> | <b>(33) Country</b> |
| 10/776,521         | 2004.02.12       | US                  |
| 60/447,142         | 2003.02.13       | US                  |
| 60/462,469         | 2003.04.11       | US                  |
| 60/503,417         | 2003.09.16       | US                  |
| 60/463,746         | 2003.04.18       | US                  |

**(43) Publication Date:** **2004.08.26**

**(44) Accepted Journal Date:** **2009.09.10**

**(71) Applicant(s)**  
**Antigenics, Inc.**

**(72) Inventor(s)**  
**Slusarewicz, Paul;Mehta, Sunil**

**(74) Agent / Attorney**  
**Phillips Ormonde Fitzpatrick, 367 Collins Street, Melbourne, VIC, 3000**

**(56) Related Art**  
**US 6,258,782 A**  
**WO 1997/006821 A1**  
**MOROI et al. 2000 PNAS. v. 97, p. 3485-3490**

(19) World Intellectual Property Organization International Bureau



(43) International Publication Date  
26 August 2004 (26.08.2004)

PCT

(10) International Publication Number  
**WO 2004/071457 A2**

|                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>7</sup> :       | <b>A61K</b>                    | (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW. |
| (21) International Application Number:                        | PCT/US2004/004340              | (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).                                                                                        |
| (22) International Filing Date: 13 February 2004 (13.02.2004) |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (25) Filing Language:                                         | English                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (26) Publication Language:                                    | English                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (30) Priority Data:                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 60/447,142                                                    | 13 February 2003 (13.02.2003)  | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60/462,469                                                    | 11 April 2003 (11.04.2003)     | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60/463,746                                                    | 18 April 2003 (18.04.2003)     | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60/503,417                                                    | 16 September 2003 (16.09.2003) | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/776,521                                                    | 12 February 2004 (12.02.2004)  | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

(71) Applicant (for all designated States except US): **MOJAVE THERAPEUTICS, INC.** [US/US]; P.O. Box 244, Hawthorne, NY 10532-0244 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **FLETCHNER, Jessica. PRINCE-COHANE, Kenya. MEHTA, Sunil. SLUSAREWICZ, Paul. ANDJELIC, Sofija. BARBER, Brian.**

(74) Agent: **MULGREW, John, P.**; Swidler Berlin Shereff Friedman, LLP, 3000 K Street, N.W., Suite 300, Washington, DC 20007 (US).

**Published:**

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

**WO 2004/071457 A2**

(54) Title: IMPROVED HEAT SHOCK PROTEIN-BASED VACCINES AND IMMUNOTHERAPIES

(57) Abstract: Hybrid antigens comprising an antigenic domain and improved heat shock protein binding domains are described which are useful for the induction of an immune response to the antigenic domain and thus can be used to treat infectious diseases and cancers that express an antigen of the antigenic domain.

## IMPROVED HEAT SHOCK PROTEIN-BASED VACCINES AND IMMUNOTHERAPIES

### CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C. § 119(e) to provisional applications 60/447,142, filed February 13, 2003; 60/462,469, filed April 11, 2003; 60/463,746, filed April 18, 2003; and 60/503,417, filed September 16, 2003, all four of which are incorporated herein by reference in their entireties.

### INTRODUCTION

[0002] The present invention relates to methods and compositions for inducing an immune response in a subject, wherein the subject is administered an effective amount of at least one or more defined hybrid antigens optionally in combination with one or more heat shock proteins. These methods and compositions may be used in the treatment of infectious diseases and cancers.

### BACKGROUND OF THE INVENTION

[0003] Heat shock proteins were originally observed to be expressed in increased amounts in mammalian cells which were exposed to sudden elevations of temperature, while the expression of most cellular proteins is significantly reduced. It has since been determined that such proteins are produced in response to various types of stress, including glucose deprivation. As used herein, the term "heat shock protein" will be used to encompass both proteins that are expressly labeled as such as well as other stress proteins, including homologues of such proteins that are expressed constitutively (i.e., in the absence of stressful conditions). Examples of heat shock proteins include BiP (also referred to as grp78), hsp70, hsc70, gp96 (grp94), hsp60, hsp40 and hsp90.

[0004] Heat shock proteins have the ability to bind other proteins in their non-native states, and in particular to bind nascent peptides emerging from ribosomes or extruded into the endoplasmic reticulum. Hendrick and Hartl, *Ann. Rev. Biochem.* 62:349-384 (1993); Hartl, *Nature* 381:571-580 (1996). Further, heat shock proteins have been shown to play an important role in the proper folding and assembly of proteins in the cytosol, endoplasmic

reticulum and mitochondria; in view of this function, they are referred to as "molecular chaperones." Frydman et al., *Nature* 370:111-117 (1994); Hendrick and Hartl, *Ann. Rev. Biochem.* 62:349-384 (1993); Hartl, *Nature* 381:571-580 (1996).

[0005] For example, the protein BiP, a member of a class of heat shock proteins referred

5 to as the hsp70 family, has been found to bind to newly synthesized, unfolded  $\mu$  immunoglobulin heavy chain prior to its assembly with light chain in the endoplasmic reticulum. Hendershot et al., *J. Cell Biol.* 104:761-767 (1987). Another heat shock protein, gp96, is a member of the hsp90 family of stress proteins which localizes in the endoplasmic reticulum. Li and Srivastava, *EMBO J.* 12:3143-3151 (1993); Mazzarella and Green, *J. 10 Biol. Chem.* 262:8875-8883 (1987). It has been proposed that gp96 may assist in the assembly of multi-subunit proteins in the endoplasmic reticulum. Wiech et al., *Nature* 358:169-170 (1992).

[0006] It has been observed that heat shock proteins prepared from tumors in experimental animals were able to induce immune responses in a tumor-specific manner;

15 that is to say, heat shock protein purified from a particular tumor could induce an immune response in an experimental animal which would inhibit the growth of the same tumor, but not other tumors. Srivastava and Maki, *Curr. Topics Microbiol.* 167:109-123 (1991).

20 Genes encoding heat shock proteins have not been found to exhibit tumor-specific DNA polymorphism. Srivastava and Udon, *Curr. Opin. Immunol.* 6:728-732 (1994). High resolution gel electrophoresis has indicated that gp96 may be heterogeneous at the molecular level. Feldweg and Srivastava, *Int. J. Cancer* 63: 310-314 (1995). Evidence suggests that the source of heterogeneity may be populations of small peptides adherent to the heat shock protein, which may number in the hundreds. *Id.* It has been proposed that a wide diversity of peptides adherent to tumor-synthesized heat shock proteins may render 25 such proteins capable of eliciting an immune response in subjects having diverse HLA phenotypes, in contrast to more traditional immunogens which may be somewhat HLA-restricted in their efficacy. *Id.*

[0007] Recently, Nieland et al. (*Proc. Natl. Acad. Sci. U.S.A.* 93:6135-6139 (1996))

30 identified an antigenic peptide containing a cytotoxic T lymphocyte (CTL) vesicular stomatitis virus (VSV) epitope bound to gp96 produced by VSV-infected cells. Nieland's methods precluded the identification of any additional peptides or other compounds which

may also have bound to gp96, and were therefore unable to further characterize higher molecular weight material which was bound to gp96 and detected by high pressure liquid chromatography.

[0008] It has been reported that a synthetic peptide comprising multiple iterations of NANP (Asn Ala Asn Pro) (SEQ ID NO:1) malarial antigen, chemically cross-linked to glutaraldehyde-fixed mycobacterial hsp65 or hsp70, was capable of inducing antibody formation (i.e., a humoral response) in mice in the absence of any added adjuvant; a similar effect was observed using heat shock protein from the bacterium *Escherichia coli*. Del Guidice, *Experientia* 50:1061-1066 (1994); Barrios et al., *Clin. Exp. Immunol.* 98:224-228 (1994); Barrios et al., *Eur. J. Immunol.* 22:1365-1372 (1992). Cross-linking of synthetic peptide to heat shock protein and possibly glutaraldehyde fixation was required for antibody induction. Barrios et al., *Clin. Exp. Immunol.* 98:229-233.

[0009] PCT/US96/13363 describes hybrid antigens comprising an antigenic domain and a heat shock protein binding domain that, in a complex with a heat shock protein, induces immunological responses to antigens and are thus useful for treatment of cancer and infectious diseases. PCT/US98/22335 describes additional heat shock protein binding domains for similar uses. It has now been discovered that improvements in the heat shock protein binding domains leads to an increase in biological activity, and thus an increase in inducing an immune response against the antigenic portion of the hybrid antigen, as well as prevention and treatment of diseases associated with the antigenic domains. It is towards these improved heat shock protein binding domains that the present application is directed.

### SUMMARY OF THE INVENTION

[0010] The present invention relates to methods and compositions for inducing an immune response in a subject, wherein at least one defined hybrid antigen optionally in a complex with a heat shock protein is administered to the subject. The hybrid antigen comprises an antigenic domain and a heat shock protein binding domain. Induction of an immune response to an antigen associated with a disease such as an infectious disease or tumor is useful for treatment of the disease. The antigenic or immunogenic domain of the hybrid antigen may be an entire protein or peptide antigen, or may be only a portion of the

selected antigen, for example a selected epitope of the antigen. In specific, non-limiting embodiments of the invention, the heat shock protein binding domain comprises a peptide having the sequence:

5 Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417),  
Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), or  
Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419).

10 [0011] In alternate embodiments, the heat shock protein binding domain comprises a peptide having a sequence among SEQ ID Nos:132-185 and 193-356.

15 [0012] The present invention provides for methods of administering such hybrid antigens alone, as well as heat shock protein/hybrid antigen compositions, the latter comprising (i) combining one or more heat shock protein with one or more hybrid antigens *in vitro*, under conditions wherein binding of hybrid antigen to heat shock protein occurs to form a hybrid antigen/heat shock protein complex; and (ii) administering the hybrid antigen, bound to heat shock protein, in an effective amount to a subject in need of such treatment.

20 [0013] Alternatively, hybrid antigens optionally in combination with heat shock protein may be introduced into a subject by administered to the subject a nucleic acid encoding the hybrid antigen, optionally with nucleic acid encoding the heat shock protein

25 [0013a] The present invention further provides a hybrid antigen comprising at least one antigenic domain of an infectious agent or tumor antigen and a binding domain that non-covalently binds to a heat shock protein, wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Thr Trp (SEQ ID NO:186), or Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419).

30 [0013b] The present invention also provides a hybrid antigen consisting essentially of at least one antigenic domain of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Thr Trp (SEQ ID NO:186), or Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419).

[0014] Thus, in a first aspect, the invention is directed to a hybrid antigen consisting essentially of an antigenic domain of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID Nos:132-185 and 193-356.

[0015] In a second aspect, the invention is directed to a hybrid antigen consisting essentially of a plurality of antigenic domains of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and peptide linkers separating the antigenic domains and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or

any of SEQ ID NOs:132-185 and 193-356. In a particular embodiment, at least one of the antigenic domains in the aforementioned hybrid antigen is a T helper epitope.

[0016] In a third aspect, the invention is directed to a hybrid antigen comprising an antigenic domain of an infectious agent or tumor antigen and a binding domain that non-covalently binds to a heat shock protein, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In a particular embodiment, the aforementioned hybrid antigen has a peptide linker separating the antigenic domain and the binding domain.

[0017] In a fourth aspect, the invention is directed to a hybrid antigen comprising a plurality of antigenic domains of an infectious agent or tumor antigen and a binding domain that non-covalently binds to a heat shock protein, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In a particular embodiment, peptide linkers separate the antigenic domains and the binding domain. In yet another embodiment, at least one of the antigenic domains is a T helper epitope.

[0018] In a fifth aspect, the invention is directed to a composition for inducing an immune response to an infectious agent or tumor antigen comprising at least one hybrid antigen, the hybrid antigen comprising an antigenic domain of the infectious agent or tumor antigen and a binding domain that non-covalently binds to a heat shock protein, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, a peptide linker separates the antigenic domain and the binding domain. In another embodiment, the composition comprises a plurality of hybrid antigens, and one of the hybrid antigens can comprise a T helper epitope.

[0019] In a sixth aspect, the invention is directed to a composition for inducing an immune response to an infectious agent or tumor antigen comprising at least one hybrid antigen, the hybrid antigen comprising a plurality of antigenic domains at least one of which

is from the infectious agent or tumor antigen, and a binding domain that non-covalently binds to a heat shock protein, wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, peptide linkers separate the antigenic domains from the binding domain. In another embodiment, at least one of the antigenic domains comprises a T helper epitope.

[0020] In a seventh aspect, the invention is directed to a composition for inducing an immune response to an infectious agent or tumor antigen comprising at least one hybrid antigen, the hybrid antigen consisting essentially of an antigenic domain of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the aforementioned composition comprises a plurality of hybrid antigens. In another aspect, at least one of the plurality of hybrid antigens comprises a T helper epitope.

[0021] In an eighth aspect, the invention is directed to a composition for inducing an immune response to an infectious agent or tumor antigen comprising at least one hybrid antigen, the hybrid antigen consisting essentially of a plurality of antigenic domains at least one of which is from an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, at least one of the antigenic domains comprises a T helper epitope.

[0022] In a ninth aspect, the invention is directed to a method for inducing an immune response to an infectious agent or tumor antigen comprising administering to a subject a complex of:

(a) a hybrid antigen comprising at least one antigenic domain of the infectious agent or tumor antigen, and a binding domain comprising a peptide that non-covalently binds to a heat shock protein; and

(b) a heat shock protein;

5 wherein the hybrid antigen and the heat shock protein are non-covalently bound, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In an embodiment, at 10 least one of the hybrid antigens is a T helper epitope. In another embodiment, the hybrid antigen comprises a plurality of antigenic domains, and at least one of the antigenic domains can be a T helper epitope. In yet another embodiment wherein the complex comprises a plurality of hybrid antigens, at least one of the hybrid antigens comprises a plurality of antigenic domains. In an embodiment of this aspect of the invention, a peptide 15 linker separates the antigenic domain and the binding domain. In another embodiment of this aspect of the invention, the heat shock protein is a hsp70.

[0023] In a tenth aspect, the invention is directed to a method for inducing an immune response to an infectious agent or tumor antigen comprising administering to a subject a complex of a heat shock protein and a hybrid antigen, the hybrid antigen consisting 20 essentially of at least one antigenic domain of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the complex comprises a 25 plurality of hybrid antigens. In another embodiment, at least one of the hybrid antigens is a T helper epitope. In a further embodiment, the hybrid antigen comprises a plurality of antigenic domains. In yet a further embodiment, at least one of the antigenic domains is a T helper epitope. In still yet another embodiment, the complex comprises a plurality of hybrid 30 antigens, at least one of the hybrid antigens comprising a plurality of antigenic domains. In a preferred embodiment of this aspect, the heat shock protein is a hsp70.

[0024] In an eleventh aspect, the invention is directed to a method for inducing an immune response to an infectious agent or tumor antigen comprising administering to a subject at least one hybrid antigen comprising at least one antigenic domain of the infectious agent or tumor antigen, and a binding domain comprising a peptide that non-covalently binds to a heat shock protein, wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In another embodiment, at least one of the hybrid antigens is a T helper epitope. In another embodiment, the hybrid antigen comprises a plurality of antigenic domains. In a further embodiment, at least one of the antigenic domains is a T helper epitope. In yet a further embodiment, the complex comprises a plurality of hybrid antigens, at least one of the hybrid antigens comprising a plurality of antigenic domains. In another embodiment of this aspect of the invention, a peptide linker separates the antigenic domain and the binding domain.

[0025] In a twelfth embodiment, the invention is directed to a method for inducing an immune response to an infectious agent or tumor antigen comprising administering to a subject at least one hybrid antigen, the hybrid antigen consisting essentially of at least one antigenic domain of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In a further embodiment, at least one of the hybrid antigens is a T helper epitope. In another embodiment, the hybrid antigen comprises a plurality of antigenic domains. In yet another embodiment, at least one of the antigenic domains is a T helper epitope. In yet still a further embodiment, the complex comprises a plurality of hybrid antigens, at least one of the hybrid antigens comprising a plurality of antigenic domains.

[0026] In a thirteenth aspect, the invention is directed to a method for treating an infectious disease or cancer comprising administering to a subject a complex of:

(a) a hybrid antigen comprising at least one antigenic domain of an infectious agent or tumor antigen associated with the infectious disease or cancer, and a binding domain comprising a peptide that non-covalently binds to a heat shock protein; and

5 (b) a heat shock protein;

wherein the hybrid antigen and the heat shock protein are non-covalently bound, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In another embodiment, at least one of the hybrid antigens is a T helper epitope. In yet another embodiment, the hybrid antigen comprises a plurality of antigenic domains. In still another embodiment, at least one of the antigenic domains is a T helper epitope. In yet still a further embodiment, the complex comprises a plurality of hybrid antigens, at least one of the hybrid antigens comprising a plurality of antigenic domains. In an embodiment of this aspect of the invention, a peptide linker separates the antigenic domain and the binding domain. In a preferred embodiment of this aspect of the invention, the heat shock protein is a hsp70.

[0027] In a fourteenth aspect, the invention is directed to a method for treating an infectious disease or cancer comprising administering to a subject a complex of a heat shock protein and a hybrid antigen, the hybrid antigen consisting essentially of at least one antigenic domain of an infectious agent or tumor antigen associated with the infectious disease or cancer, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In another aspect, at least one of the hybrid antigens is a T helper epitope. In yet another aspect, the hybrid antigen comprises a plurality of antigenic domains. In yet another aspect, at least one of the antigenic domains is a T helper epitope. In a further aspect, the complex comprises a plurality of hybrid

antigens, at least one of the hybrid antigens comprising a plurality of antigenic domains. In a preferred embodiment, the heat shock protein is a hsp70.

[0028] In a fifteen aspect, the invention is directed to a method for treating an infectious disease or cancer comprising administering to a subject at least one hybrid antigen

5 comprising at least one antigenic domain of an infectious agent or tumor antigen associated with the infectious disease or cancer, and a binding domain comprising a peptide that non-covalently binds to a heat shock protein, wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID 10 NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In another aspect, at least one of the hybrid antigens is a T helper epitope. In yet another aspect, the hybrid antigen comprises a plurality of antigenic domains. In still a further aspect, at least one of the antigenic domains is a T helper epitope. In still yet another aspect, the complex comprises a plurality of hybrid antigens, at least one of the 15 hybrid antigens comprising a plurality of antigenic domains. In one embodiment of this aspect of the invention, a peptide linker separates the antigenic domain and the binding domain.

[0029] In a sixteenth aspect, the invention is directed to a method for treating an infectious disease or cancer comprising administering to a subject at least one hybrid

20 antigen, the hybrid antigen consisting essentially of at least one antigenic domain of an infectious agent or tumor antigen associated with an infectious disease or cancer, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID 25 NOs:132-185 and 193-356. In one embodiment, the complex comprises a plurality of hybrid antigens. In another embodiment, at least one of the hybrid antigens is a T helper epitope. In yet another embodiment, the hybrid antigen comprises a plurality of antigenic domains. In still yet another embodiment, at least one of the antigenic domains is a T 30 helper epitope. In another embodiment, the complex comprises a plurality of hybrid antigens, at least one of the hybrid antigens comprising a plurality of antigenic domains.

[0030] In a seventeenth aspect, the invention is directed to a peptide comprising Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356.

5 [0031] In an eighteenth aspect, the invention is directed to an immunogenic polypeptide comprising a plurality of antigenic domains, and a binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356.

10 [0032] In a nineteenth aspect, the invention is directed to the peptides Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356.

15 [0033] In a twentieth aspect, the invention is directed to a polynucleotide encoding any of the aforementioned hybrid antigens.

[0034] In a twenty-first aspect, the invention is directed to a method of inducing an immune response to an infectious disease or cancer comprising administering to a subject a polynucleotide encoding a hybrid antigen comprising an antigenic domain of an infectious agent or tumor antigen and a heat shock protein binding domain.

20 [0035] In a twenty-second aspect, the invention is directed a method of inducing an immune response to an infectious disease or cancer comprising administering to a subject a polynucleotide encoding a hybrid antigen as entioned above, and a polynucleotide encoding a heat shock protein. In a preferred embodiment, the encoded heat shock protein is a hsp70.

25 [0036] In a twenty-third aspect, the invention is directed to polynucleotides encoding Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419), or any of SEQ ID NOs:132-185 and 193-356. In a further embodiment, the invention is directed to polynucleotides encoding hybrid antigens as described above. In another embodiment, the invention is directed to inducing an immune response to an infectious agent or cancer

comprising administering to a subject a polynucleotide encoding a hybrid antigen as mentioned above, optionally together with a polynucleotide encoding a heat shock protein, preferably hsp70. In a further embodiment, the invention is directed to treating an infectious disease or cancer comprising administering to a subject a polynucleotide 5 encoding a hybrid antigen as mentioned above, optionally together with a polynucleotide encoding a heat shock protein, preferably hsp70.

[0037] In any or all of the aforementioned aspects of the invention, the infectious disease antigen may be derived from an infectious agent such as a bacterium, virus, protozoan, mycoplasma, fungus, yeast, parasite, or prion, by way of non-limiting example.

10 A cancer or tumor antigen associated with cancer may be derived from a sarcoma, a lymphoma, a leukemia, or a carcinoma, a melanoma, carcinoma of the breast, carcinoma of the prostate, ovarian carcinoma, carcinoma of the cervix, colon carcinoma, carcinoma of the lung, glioblastoma, or astrocytoma, by way of non-limiting examples. The antigenic domain of an infectious agent or cancer comprises an antigen derived from or associated 15 with the infectious disease or tumor antigen, such that induction of an immune response to the antigen of the infectious agent or cancer antigen, respectively, is useful for treating the corresponding infectious disease or cancer.

[0038] This application claims priority under 35 U.S.C. § 119(e) to provisional applications 60/447,142, filed February 13, 2003; 60/462,469, filed April 11, 2003;

20 60/463,746, filed April 18, 2003; and 60/503,417, filed September 16, 2003, all four of which are incorporated herein by reference in their entireties.

#### BRIEF DESCRIPTION OF THE DRAWINGS

[0039] Figure 1 shows the induction of an in-vivo immune response with several hybrid 25 antigens of the invention in a complex with hsp70.

[0040] Figure 2 shows the induction of an in-vitro immune response using various hybrid antigens of the invention in a complex with hsp70.

[0041] Figure 3 shows Hill plots for determining the affinity of various peptides for hsp70.

[0042] Figures 4a and 4b show the results of an in-vitro macrophage T-cell activation assay using various hybrid antigens of the invention alone or in a complex with hsp70.

5 [0043] Figure 5 shows in-vivo responses to complexes of hybrid antigens of the invention alone or in a complex with hsp70.

[0044] Figure 6 shows the blocking of in-vivo responses to one hybrid antigen-hsp70 complex with the addition of a heat shock protein binding domain peptide alone.

10 [0045] Figure 7 shows that smaller doses of a higher affinity heat shock protein binding domain-epitope in a complex with hsp70 can elicit immune responses in vivo.

#### DETAILED DESCRIPTION OF THE INVENTION

[0046] For purposes of clarity of description, and not by way of limitation, the detailed description is divided into the following subsections:

15 (i) hybrid antigens,  
(ii) heat shock proteins; and  
(iii) methods of administration.

##### Hybrid Antigens

[0047] A hybrid antigen, according to the invention comprises an immunogenic (antigenic) domain as well as a heat shock protein-binding domain. An optional linker, preferably a peptide linker, may be provided between these domains. Thus, the hybrid antigen serves at least two functions, namely (i) it contains an epitope capable of inducing the desired immune response; and (ii) it is capable of physically binding to a heat shock protein. As will be noted below, such binding may occur in vivo such that administration of the hybrid antigen alone will induce the desired immune response and provide the desired therapeutic effect.

[0048] The term "antigen" as used herein, refers to a compound which may be composed of amino acids, carbohydrates, nucleic acids or lipids individually or in any combination.

[0049] The term "hybrid antigen," as used herein, refers to a compound which binds to one or more heat shock proteins and which is representative of the immunogen toward which an immune response is desirably directed. For example, where the immunogen is an influenza virus, the hybrid antigen may comprise a peptide fragment of the matrix protein of the influenza virus. As used herein, the term "immunogen" is applied to the neoplastic cell, infected cell, pathogen, or component thereof, towards which an immune response is to be elicited, whereas the hybrid antigen comprises a portion of that immunogen which can provoke the desired response and which binds to one or more heat shock proteins. In particular, the antigenic domain of the hybrid antigen is selected to elicit an immune response to a particular disease or pathogen, including peptides obtained from MHC molecules, mutated DNA gene products, and direct DNA products such as those obtained from tumor cells.

[0050] While the invention may be applied to any type of immunogen, immunogens of particular interest are those associated with, derived from, or predicted to be associated with a neoplastic disease, including but not limited to a sarcoma, a lymphoma, a leukemia, or a carcinoma, and in particular, with melanoma, carcinoma of the breast, carcinoma of the prostate, ovarian carcinoma, carcinoma of the cervix, colon carcinoma, carcinoma of the lung, glioblastoma, astrocytoma, etc. Selections of melanoma antigens useful in hybrid antigens of the present invention may be found, by way of non-limiting example, in PCT/US01/12449 (WO0178655), incorporated herein by reference in its entirety. Further, mutations of tumor suppressor gene products such as p53, or oncogene products such as ras may also provide hybrid antigens to be used according to the invention.

[0051] In further embodiments, the immunogen may be associated with an infectious disease, and, as such, may be a bacterium, virus, protozoan, mycoplasma, fungus, yeast, parasite, or prion. For example, but not by way of limitation, the immunogen may be a human papilloma virus (see below), a herpes virus such as herpes simplex or herpes zoster, a retrovirus such as human immunodeficiency virus 1 or 2, a hepatitis virus, an influenza virus, a rhinovirus, respiratory syncytial virus, cytomegalovirus, adenovirus, *Mycoplasma*

*pneumoniae*, a bacterium of the genus *Salmonella*, *Staphylococcus*, *Streptococcus*, *Enterococcus*, *Clostridium*, *Escherichia*, *Klebsiella*, *Vibrio*, *Mycobacterium*, amoeba, a malarial parasite, *Trypanosoma cruzi*, etc.

[0052] Immunogens may be obtained by isolation directly from a neoplasm, an infected

5 cell, a specimen from an infected subject, a cell culture, or an organism culture, or may be synthesized by chemical or recombinant techniques. Suitable antigenic peptides, particularly for use in a hybrid antigen, for use against viruses, bacteria and the like can be designed by searching through their sequences for MHC class I restricted peptide epitopes containing HLA binding sequences such as but not limited to HLA-A2 peptide binding

10 sequences:

Xaa(Leu/Met)XaaXaaXaa(Val/Ile/Leu/Thr)XaaXaa(Val/Leu) (SEQ ID NO:2), for example, from viruses:

Ser Gly Pro Ser Asn Thr Pro Pro Glu Ile (SEQ ID NO:10);

Ser Gly Val Glu Asn Pro Gly Gly Tyr Cys Leu (SEQ ID NO:11);

15 Lys Ala Val Tyr Asn Phe Ala Thr Cys Gly (SEQ ID NO:12);

Arg Pro Gln Ala Ser Gly Val Tyr Met (SEQ ID NO:13);

Phe Gln Pro Gln Asn Gly Gln Phe Ile (SEQ ID NO:14);

Ile Glu Gly Gly Trp Thr Gly Met Ile (SEQ ID NO:15);

Thr Tyr Val Ser Val Ser Thr Ser Thr Leu (SEQ ID NO:16);

20 Phe Glu Ala Asn Gly Asn Leu Ile (SEQ ID NO:17);

Ile Tyr Ser Thr Val Ala Ser Ser Leu (SEQ ID NO:18);

Thr Tyr Gln Arg Thr Arg Ala Leu Val (SEQ ID NO:19);

Cys Thr Glu Leu Lys Leu Ser Asp Tyr (SEQ ID NO:20);

Ser Asp Tyr Glu Gly Arg Leu Ile (SEQ ID NO:21);

25 Glu Glu Gly Ala Ile Val Gly Glu Ile (SEQ ID NO:22);

Val Ser Asp Gly Gly Pro Asn Leu Tyr (SEQ ID NO:23);

Ala Ser Asn Glu Asn Met Glu Thr Met (SEQ ID NO:24);

Ala Ser Asn Glu Asn Met Asp Ala Met (SEQ ID NO:25);

Lys Leu Gly Glu Phe Tyr Asn Gln Met Met (SEQ ID NO:26);

30 Leu Tyr Gln Asn Val Gly Thr Tyr Val (SEQ ID NO:27);

Thr Tyr Val Ser Val Gly Thr Ser Thr Leu (SEQ ID NO:28);

Phe Glu Ser Thr Gly Asn Leu Ile (SEQ ID NO:29);

Val Tyr Gln Ile Leu Ala Ile Tyr Ala (SEQ ID NO:30);  
Ile Tyr Ala Thr Val Ala Gly Ser Leu (SEQ ID NO:31);  
Gly Ile Leu Gly Phe Val Phe Thr Leu (SEQ ID NO:32);  
Ile Leu Gly Phe Val Phe Thr Leu Thr Val (SEQ ID NO:33);  
5 Ile Leu Arg Gly Ser Val Ala His Lys (SEQ ID NO:34);  
Glu Asp Leu Arg Val Leu Ser Phe Ile (SEQ ID NO:35);  
Glu Leu Arg Ser Arg Tyr Trp Ala Ile (SEQ ID NO:36);  
Ser Arg Tyr Trp Ala Ile Arg Thr Arg (SEQ ID NO:37);  
Lys Thr Gly Gly Pro Ile Tyr Lys Arg (SEQ ID NO:38);  
10 Phe Ala Pro Gly Asn Tyr Pro Ala Leu (SEQ ID NO:39);  
Arg Arg Tyr Pro Asp Ala Val Tyr Leu (SEQ ID NO:40);  
Asp Pro Val Ile Asp Arg Leu Tyr Leu (SEQ ID NO:41);  
Ser Pro Gly Arg Ser Phe Ser Tyr Phe (SEQ ID NO:42);  
Tyr Pro Ala Leu Gly Leu His Glu Phe (SEQ ID NO:43);  
15 Thr Tyr Lys Asp Thr Val Gln Leu (SEQ ID NO:44);  
Phe Tyr Asp Gly Phe Ser Lys Val Pro Leu (SEQ ID NO:45);  
Phe Ile Ala Gly Asn Ser Ala Tyr Glu Tyr Val (SEQ ID NO:46);  
Tyr Pro His Phe Met Pro Thr Asn Leu (SEQ ID NO:47);  
Ala Pro Thr Ala Gly Ala Phe Phe Phe (SEQ ID NO:48);  
20 Ser Thr Leu Pro Glu Thr Thr Val Val Arg Arg (SEQ ID NO:49);  
Phe Leu Pro Ser Asp Phe Phe Pro Ser Val (SEQ ID NO:50);  
Trp Leu Ser Leu Leu Val Pro Phe Val (SEQ ID NO:51);  
Gly Leu Ser Pro Thr Val Trp Leu Ser Val (SEQ ID NO:52);  
Asp Leu Met Gly Tyr Ile Pro Leu Val (SEQ ID NO:53);  
25 Leu Met Gly Tyr Ile Pro Leu Val Gly Ala (SEQ ID NO:54);  
Ala Ser Arg Cys Trp Val Ala Met (SEQ ID NO:55);  
Lys Leu Val Ala Leu Gly Ile Asn Ala Val (SEQ ID NO:56);  
Phe Leu Arg Gly Arg Ala Tyr Gly Leu (SEQ ID NO:57);  
Arg Arg Ile Tyr Asp Leu Ile Glu Leu (SEQ ID NO:58);  
30 Ile Val Thr Asp Phe Ser Val Ile Lys (SEQ ID NO:59)  
Arg Arg Arg Trp Arg Arg Leu Thr Val (SEQ ID NO:60);  
Glu Glu Asn Leu Leu Asp Phe Val Arg Phe (SEQ ID NO:61);  
Cys Leu Gly Gly Leu Leu Thr Met Val (SEQ ID NO:62);

Ser Ser Ile Glu Phe Ala Arg Leu (SEQ ID NO:63);  
Leu Tyr Arg Thr Phe Ala Gly Asn Pro Arg Ala (SEQ ID NO:64);  
Asp Tyr Ala Thr Leu Gly Val Gly Val (SEQ ID NO:65);  
Leu Leu Leu Gly Thr Leu Asn Ile Val (SEQ ID NO:66);  
5 Leu Leu Met Gly Thr Leu Gly Ile Val (SEQ ID NO:67);  
Thr Leu Gln Asp Ile Val Leu His Leu (SEQ ID NO:68);  
Gly Leu His Cys Tyr Glu Gln Leu Val (SEQ ID NO:69);  
Pro Leu Lys Gln His Phe Gln Ile Val (SEQ ID NO:70);  
Arg Leu Val Thr Leu Lys Asp Ile Val (SEQ ID NO:71);  
10 Arg Ala His Tyr Asn Ile Val Thr Phe (SEQ ID NO:72);  
Leu Leu Phe Gly Tyr Pro Val Tyr Val (SEQ ID NO:73);  
Ser Ala Ile Asn Asn Tyr Ala Gln Lys Leu (SEQ ID NO:74);  
His Gln Ala Ile Ser Pro Arg Thr Leu (SEQ ID NO:75);  
Gln Met Val His Gln Ala Ile Ser Pro Arg Thr Leu (SEQ ID NO:76);  
15 Cys Lys Gly Val Asn Lys Glu Tyr Leu (SEQ ID NO:77);  
Gln Gly Ile Asn Asn Leu Asp Asn Leu (SEQ ID NO:78);  
Asn Asn Leu Asp Asn Leu Arg Asp Tyr (SEQ ID NO:79);  
Ser Glu Phe Leu Leu Glu Lys Arg Ile (SEQ ID NO:80);  
Ser Tyr Ile Gly Ser Ile Asn Asn Ile (SEQ ID NO:81);  
20 Ile Leu Gly Asn Lys Ile Val Arg Met Tyr (SEQ ID NO:82);  
Arg Leu Arg Pro Gly Gly Lys Lys (SEQ ID NO:83);  
Glu Ile Lys Asp Thr Lys Glu Ala Leu (SEQ ID NO:84);  
Gly Glu Ile Tyr Lys Arg Trp Ile Ile (SEQ ID NO:85);  
Glu Ile Tyr Lys Arg Trp Ile Ile Leu (SEQ ID NO:86);  
25 Arg Tyr Leu Lys Asp Gln Gln Leu Leu (SEQ ID NO:87);  
Arg Gly Pro Gly Arg Ala Phe Val Thr Ile (SEQ ID NO:88);  
Ile Val Gly Leu Asn Lys Ile Val Arg (SEQ ID NO:89);  
Thr Val Tyr Tyr Gly Val Pro Val Trp Lys (SEQ ID NO:90);  
Arg Leu Arg Asp Leu Leu Ile Val Thr Arg (SEQ ID NO:91);  
30 Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys (SEQ ID NO:92);  
Ser Phe Asn Cys Gly Gly Glu Phe Phe (SEQ ID NO:93);  
Gly Arg Ala Phe Val Thr Ile Gly Lys (SEQ ID NO:94);  
Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu (SEQ ID NO:95);

Gln Val Pro Leu Arg Pro Met Thr Tyr Lys (SEQ ID NO:96);  
Thr Glu Met Glu Lys Glu Gly Lys Ile (SEQ ID NO:97);  
Ile Leu Lys Glu Pro Val His Gly Val (SEQ ID NO:98);  
Val Glu Ala Glu Ile Ala His Gln Ile (SEQ ID NO:99);

5 Arg Gly Tyr Val Tyr Gln Gly Leu (SEQ ID NO:100);  
Tyr Ser Gly Tyr Ile Phe Arg Asp Leu (SEQ ID NO:101);  
Val Gly Pro Val Phe Pro Pro Gly Met (SEQ ID NO:102);  
Ile Ile Tyr Arg Phe Leu Leu Ile (SEQ ID NO:103);  
from bacteria:

10 Lys Tyr Gly Val Ser Val Gln Asp Ile (SEQ ID NO:104);  
Ile Gln Val Gly Asn Thr Arg Thr Ile (SEQ ID NO:105);  
Thr Pro His Pro Ala Arg Ile Gly Leu (SEQ ID NO:106);  
from parasites:

Ser Tyr Ile Pro Ser Ala Glu Lys Ile (SEQ ID NO:107);

15 Lys Pro Lys Asp Glu Leu Asp Tyr (SEQ ID NO:108);  
Lys Ser Lys Asp Glu Leu Asp Tyr (SEQ ID NO:109);  
Lys Pro Asn Asp Lys Ser Leu Tyr (SEQ ID NO:110);  
Lys Tyr Leu Lys Lys Ile Lys Asn Ser Leu (SEQ ID NO:111);  
Tyr Glu Asn Asp Ile Glu Lys Lys Ile (SEQ ID NO:112);

20 Asn Tyr Asp Asn Ala Gly Thr Asn Leu (SEQ ID NO:113);  
Asp Glu Leu Asp Tyr Glu Asn Asp Ile (SEQ ID NO:114);  
Ser Tyr Val Pro Ser Ala Glu Gln Ile (SEQ ID NO:115);  
from cancers:

Phe Glu Gln Asn Thr Ala Gln Pro (SEQ ID NO:116);

25 Phe Glu Gln Asn Thr Ala Gln Ala (SEQ ID NO:117);  
Glu Ala Asp Pro Thr Gly His Ser Tyr (SEQ ID NO:118);  
Glu Val Asp Pro Ile Gly His Leu Tyr (SEQ ID NO:119);  
Ala Ala Gly Ile Gly Ile Leu Thr Val (SEQ ID NO:120);  
Tyr Leu Glu Pro Gly Pro Val Thr Ala (SEQ ID NO:121);

30 Ile Leu Asp Gly Thr Ala Thr Leu Arg Leu (SEQ ID NO:122);  
Met Leu Leu Ala Leu Leu Tyr Cys Leu (SEQ ID NO:123);  
Tyr Met Asn Gly Thr Met Ser Gln Val (SEQ ID NO:124);  
Leu Pro Tyr Leu Gly Trp Leu Val Phe (SEQ ID NO:125);

Phe Gly Pro Tyr Lys Leu Asn Arg Leu (SEQ ID NO:126);  
Lys Ser Pro Trp Phe Thr Thr Leu (SEQ ID NO:127);  
Gly Pro Pro His Ser Asn Asn Phe Gly Tyr (SEQ ID NO:128); and  
Ile Ser Thr Gln Asn His Arg Ala Leu (SEQ ID NO:129)

5 (Rammensee et al., *Immunogenetics* 41:178-223 (1995)),  
Xaa(Leu/Met)XaaXaaXaaXaaXaaVal (SEQ ID NO:3)  
(Tarpay et al., *Immunology* 81:222-227 (1994)),  
Xaa(Val/Gln)XaaXaaXaaXaaXaaLeu (SEQ ID NO:4),  
for example, from virus:

10 Tyr Gly Ile Leu Gly Lys Val Phe Thr Leu (SEQ ID NO:130);  
Ser Leu Tyr Asn Thr Val Ala Thr Leu (SEQ ID NO:131);  
(Barouch et al., *J. Exp. Med.* 182:1847-1856 (1995)).

[0053] The foregoing epitopes are merely exemplary of selections available associated with various infectious diseases and cancer, and are provided without any intent whatsoever 15 to be limiting.

[0054] It may also be desirable to consider the type of immune response which is desired. For example, under certain circumstances, a humoral immune response may be appropriate. In other cases, and indeed where an immune response directed toward neoplastic cells or infected cells is sought to be elicited, a cellular immune response is 20 particularly desirable. Accordingly, particular epitopes associated with the activation of B cells, T helper cells, or cytotoxic T cells may be identified and selected for incorporation into the hybrid antigen.

[0055] It may also be desirable to utilize hybrid antigen associated with an autoimmune disease or allergy. Such a hybrid antigen may be administered, together with one or more 25 heat shock proteins, in an amount sufficient to be tolerogenic or to inhibit a pre-existing immune response to the hybrid antigen in a subject. The amount of heat shock protein required to inhibit the immune response is expected to be substantially greater than the amount required for stimulation.

[0056] Although the size of hybrid antigen may vary depending upon the heat shock 30 protein used, in non-limiting embodiments of the invention, the hybrid antigen may be the

size of a peptide having between 10 and 500 amino acid residues, and preferably be the size of a peptide having between 14 and 100, most preferably 18 and 50 amino acid residues. As such, it may be desirable to produce a fragment of an immunogen to serve as a hybrid antigen, or, alternatively, to synthesize a hybrid antigen by chemical or recombinant DNA methods.

[0057] Based on the foregoing considerations, a hybrid antigen may be prepared, and then tested for its ability to bind to heat shock protein. In some instances, binding of hybrid antigen to a particular heat shock protein may be facilitated by the presence of at least one other protein, which may be a heat shock protein.

[0058] For example, binding of hybrid antigen to a heat shock protein may be evaluated by labeling the hybrid antigen with a detectable label, such as a radioactive, fluorescent, enzymatic or pigmented label, combining the hybrid antigen with heat shock protein under conditions which would be expected to permit binding to occur, and then isolating the heat shock protein while removing any unbound hybrid antigen, and determining whether any labeled hybrid antigen had adhered to the heat shock protein. As a specific example, and not by way of limitation, the ability of a hybrid antigen to bind to BiP heat shock protein may be evaluated by combining 2  $\mu$ g BiP with up to about 1150 pmole of radioactively labeled hybrid antigen in buffer containing 50 mM Tris HCl (pH 7.5), 200 mM NaCl, and 1 mM Na<sub>2</sub>EDTA, in a final volume of 50  $\mu$ l, for 30 minutes at 37 degrees Centigrade. Unbound hybrid antigen may then be removed from bound BiP-hybrid antigen by centrifugation at 100g by desalting through a 1 ml Sephadex-G column for 2 minutes. Penefsky, *J. Biol. Chem.* 252:2891 (1977). To prevent binding to the resin, columns may first be treated with 100  $\mu$ l of bovine serum albumin in the same buffer and centrifuged as above. Bound hybrid antigen may then be quantitated by liquid scintillation counting. See Flynn et al., *Science* 245:385-390 (1989).

[0059] Because ATP hydrolysis drives the release of peptides from many known heat shock proteins, the amount of ATPase activity may often be used to quantitate the amount of hybrid antigen binding to heat shock protein. An example of how such an assay may be performed is set forth in Flynn et al., *Science* 245:385-390 (1989).

[0060] The heat shock protein-binding domain is selected so that the hybrid antigen will bind *in vitro* or *in vivo* to a heat shock protein such as BiP, hsp70, gp96, or hsp90, or a member of the foregoing heat shock protein families, alone or in combination with accessory heat shock proteins such as hsp40, or hsp60. Peptides which fulfill this criterion

5 may be identified initially by panning libraries of antigens known to bind well to one or more heat shock proteins as described in Blond-Elguindi et al., *Cell* 75:717-728 (1993). Using this technique, Blond-Elguindi have concluded that the heat shock protein BiP recognizes polypeptides that contain a heptameric region having the sequence

Hy(Trp/X)HyXHyXHy (SEQ ID NO:7)

10 where Hy represents a hydrophobic amino acid residue, particularly tryptophan, leucine or phenylalanine (SEQ ID NO:8), and X is any amino acid.

[0061] Other heat shock protein binding motifs have also been identified. For example, Auger et al., *Nature Medicine* 2:306-310 (1996) have identified two pentapeptide binding motifs

15 Gln Lys Arg Ala Ala (SEQ ID NO:5) and  
Arg Arg Arg Ala Ala (SEQ ID NO:6)

in HLA-DR types associated with rheumatoid arthritis which bind to heat shock proteins.

Heat shock binding motifs have also been identified as consisting of seven to fifteen residue long peptides which are enriched in hydrophobic amino acids.

20 (Gragerov et al., *J. Molec. Biol.* 235:848-854 (1994)).

[0062] It has been found that incorporation of a tryptophan residue (Trp, or single amino acid code W) at the C-terminus of the heat shock protein binding domains such as but not limited to those identified as described above, enhances binding to heat shock proteins. Increased binding to heat shock proteins has been found to increase the ability of 25 hybrid antigens to induce an immune response to the antigenic domain of the hybrid antigen, whether administered in a complex with a heat shock protein or when administered alone. Increased immune response is correlated with increased efficacy of treating disease.

[0063] Moreover, the addition of a tryptophan residue to the heat shock protein binding domain renders unto such peptides the ability to be detected or be better detected using 30 ultraviolet light absorbance, and the detectability permits facile evaluation of the binding of the peptides to heat shock proteins, by methods such as but not limited to those described

herein. Other examples of methods for determining affinity are described in PCT/US96/13363 (WO9706821), which is incorporated herein by reference in its entirety.

[0064] Non-limiting examples of such heat shock protein binding domains with a terminal Trp residue useful for the various aspects of the present invention include:

5 [0065] Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417);  
Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418);  
Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419);  
Gly Lys Trp Val Tyr Ile Gly Trp (SEQ ID NO:132);  
Ala Lys Arg Glu Thr Lys Gly Trp (SEQ ID NO:133);  
10 Lys Trp Val His Leu Phe Gly Trp (SEQ ID NO:134);  
Arg Leu Val Leu Val Leu Gly Trp (SEQ ID NO:135);  
Trp Lys Trp Gly Ile Tyr Gly Trp (SEQ ID NO:136);  
Ser Ser His Ala Ser Ala Gly Trp (SEQ ID NO:137);  
Trp Gly Pro Trp Ser Phe Gly Trp (SEQ ID NO:138);  
15 Ala Ile Pro Gly Lys Val Gly Trp (SEQ ID NO:139);  
Arg Val His Asp Pro Ala Gly Trp (SEQ ID NO:140);  
Arg Ser Val Ser Ser Phe Gly Trp (SEQ ID NO:141);  
Leu Gly Thr Arg Lys Gly Gly Trp (SEQ ID NO:142);  
Lys Asp Pro Leu Phe Asn Gly Trp (SEQ ID NO:143);  
20 Leu Ser Gln His Thr Asn Gly Trp (SEQ ID NO:144);  
Asn Arg Leu Leu Leu Thr Gly Trp (SEQ ID NO:145);  
Tyr Pro Leu Trp Val Ile Gly Trp (SEQ ID NO:146);  
Leu Leu Ile Ile Asp Arg Gly Trp (SEQ ID NO:147);  
Arg Val Ile Ser Leu Gln Gly Trp (SEQ ID NO:148);  
25 Glu Val Ser Arg Glu Asp Gly Trp (SEQ ID NO:149);  
Ser Ile Leu Arg Ser Thr Gly Trp (SEQ ID NO:150);  
Pro Gly Leu Val Trp Leu Gly Trp (SEQ ID NO:151);  
Val Lys Lys Leu Tyr Ile Gly Trp (SEQ ID NO:152);  
Asn Asn Arg Leu Leu Asp Gly Trp (SEQ ID NO:153);  
30 Ser Lys Gly Arg Trp Gly Gly Trp (SEQ ID NO:154);  
Ile Arg Pro Ser Gly Ile Gly Trp (SEQ ID NO:155);

Ala Ser Leu Cys Pro Thr Gly Trp (SEQ ID NO:156);  
Asp Val Pro Gly Leu Arg Gly Trp (SEQ ID NO:157);  
Arg His Arg Glu Val Gln Gly Trp (SEQ ID NO:158);  
Leu Ala Arg Lys Arg Ser Gly Trp (SEQ ID NO:159);  
5 Ser Val Leu Asp His Val Gly Trp (SEQ ID NO:160);  
Asn Leu Leu Arg Arg Ala Gly Trp (SEQ ID NO:161);  
Ser Gly Ile Ser Ala Trp Gly Trp (SEQ ID NO:162);  
Phe Tyr Phe Trp Val Arg Gly Trp (SEQ ID NO:163);  
Lys Leu Phe Leu Pro Leu Gly Trp (SEQ ID NO:164);  
10 Thr Pro Thr Leu Ser Asp Gly Trp (SEQ ID NO:165);  
Thr His Ser Leu Ile Leu Gly Trp (SEQ ID NO:166);  
Leu Leu Leu Leu Ser Arg Gly Trp (SEQ ID NO:167);  
Leu Leu Arg Val Arg Ser Gly Trp (SEQ ID NO:168);  
Glu Arg Arg ser Arg Gly Gly Trp (SEQ ID NO:169);  
15 Arg Met Leu Gln Leu Ala Gly Trp (SEQ ID NO:170);  
Arg Gly Trp Ala Asn Ser Gly Trp (SEQ ID NO:171);  
Arg Pro Phe Tyr Ser Tyr Gly Trp (SEQ ID NO:172);  
Ser Ser Ser Trp Asn Ala Gly Trp (SEQ ID NO:173);  
Leu Gly His Leu Glu Glu Gly Trp (SEQ ID NO:174);  
20 Ser Ala Val Thr Asn Thr Gly Trp (SEQ ID NO:175);  
Leu Arg Arg Ala Ser Leu Trp (SEQ ID NO:176);  
Leu Arg Arg Trp Ser Leu Trp (SEQ ID NO:177);  
Lys Trp Val His Leu Phe Trp (SEQ ID NO:178);  
Asn Arg Leu Leu Leu Thr Trp (SEQ ID NO:179);  
25 Ala Arg Leu Leu Leu Thr Trp (SEQ ID NO:180);  
Asn Ala Leu Leu Leu Thr Trp (SEQ ID NO:181);  
Asn Arg Leu Ala Leu Thr Trp (SEQ ID NO:182);  
Asn Leu Leu Arg Leu Thr Trp (SEQ ID NO:183);  
Asn Arg Leu Trp Leu Thr Trp (SEQ ID NO:184); and  
30 Asn Arg Leu Leu Leu Ala Trp (SEQ ID NO:185).

[0066] Other heat shock protein binding domains useful in the practice of the present invention include Phe Tyr Gln Leu Ala Leu Thr Trp (SEQ ID NO:186), Phe Tyr Gln Leu

Ala Leu Thr Trp (SEQ ID NO:187), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:188), Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:189), Lys Phe Glu Arg Gln Trp (SEQ ID NO:190), Asn Ile Val Arg Lys Lys Lys Trp (SEQ ID NO:191), and Arg Gly Tyr Val Tyr Gln Gly Leu Trp (SEQ ID NO:192).

5 [0067] Moreover, other heat shock protein binding domains include those described in WO9922761, and may have a terminal Trp residue added to achieve the purposes of the present invention. Xaa represents any amino acid.

Tyr Thr Leu Val Gln Pro Leu Trp (SEQ ID NO:193);  
Thr Pro Asp Ile Thr Pro Lys Trp (SEQ ID NO:194);

10 Thr Tyr Pro Asp Leu Arg Tyr Trp (SEQ ID NO:195);  
Asp Arg Thr His Ala Thr Ser Trp (SEQ ID NO:196);  
Met Ser Thr Thr Phe Tyr Ser Trp (SEQ ID NO:197);  
Tyr Gln His Ala Val Gln Thr Trp (SEQ ID NO:198);  
Phe Pro Phe Ser Ala Ser Thr Trp (SEQ ID NO:199);

15 Ser Ser Phe Pro Pro Leu Asp Trp (SEQ ID NO:200);  
Met Ala Pro Ser Pro Pro His Trp (SEQ ID NO:201);

Ser Ser Phe Pro Asp Leu Leu Trp (SEQ ID NO:202);  
His Ser Tyr Asn Arg Leu Pro Trp (SEQ ID NO:203);  
His Leu Thr His Ser Gln Arg Trp (SEQ ID NO:204);

20 Gln Ala Ala Gln Ser Arg Ser Trp (SEQ ID NO:205);  
Phe Ala Thr His His Ile Gly Trp (SEQ ID NO:206);

Ser Met Pro Glu Pro Leu Ile Trp (SEQ ID NO:207);  
Ile Pro Arg Tyr His Leu Ile Trp (SEQ ID NO:208);

Ser Ala Pro His Met Thr Ser Trp (SEQ ID NO:209);

25 Lys Ala Pro Val Trp Ala Ser Trp (SEQ ID NO:210);  
Leu Pro His Trp Leu Leu Ile Trp (SEQ ID NO:211);  
Ala Ser Ala Gly Tyr Gln Ile Trp (SEQ ID NO:212);  
Val Thr Pro Lys Thr Gly Ser Trp (SEQ ID NO:213);  
Glu His Pro Met Pro Val Leu Trp (SEQ ID NO:214);

30 Val Ser Ser Phe Val Thr Ser Trp (SEQ ID NO:215);  
Ser Thr His Phe Thr Trp Pro Trp (SEQ ID NO:216);

Gly Gln Trp Trp Ser Pro Asp Trp (SEQ ID NO:217);  
Gly Pro Pro His Gln Asp Ser Trp (SEQ ID NO:218);  
Asn Thr Leu Pro Ser Thr Ile Trp (SEQ ID NO:219);  
His Gln Pro Ser Arg Trp Val Trp (SEQ ID NO:220);  
5 Tyr Gly Asn Pro Leu Gln Pro Trp (SEQ ID NO:221);  
Phe His Trp Trp Trp Gln Pro Trp (SEQ ID NO:222);  
Ile Thr Leu Lys Tyr Pro Leu Trp (SEQ ID NO:223);  
Phe His Trp Pro Trp Leu Phe Trp (SEQ ID NO:224);  
Thr Ala Gln Asp Ser Thr Gly Trp (SEQ ID NO:225);  
10 Phe His Trp Trp Trp Gln Pro Trp (SEQ ID NO:226);  
Phe His Trp Trp Asp Trp Trp Trp (SEQ ID NO:227);  
Glu Pro Phe Phe Arg Met Gln Trp (SEQ ID NO:228);  
Thr Trp Trp Leu Asn Tyr Arg Trp (SEQ ID NO:229);  
Phe His Trp Trp Trp Gln Pro Trp (SEQ ID NO:230);  
15 Gln Pro Ser His Leu Arg Trp Trp (SEQ ID NO:231);  
Ser Pro Ala Ser Pro Val Tyr Trp (SEQ ID NO:232);  
Phe His Trp Trp Trp Gln Pro Trp (SEQ ID NO:233);  
His Pro Ser Asn Gln Ala Ser Trp (SEQ ID NO:234);  
Asn Ser Ala Pro Arg Pro Val Trp (SEQ ID NO:235);  
20 Gln Leu Trp Ser Ile Tyr Pro Trp (SEQ ID NO:236);  
Ser Trp Pro Phe Phe Asp Leu Trp (SEQ ID NO:237);  
Asp Thr Thr Leu Pro Leu His Trp (SEQ ID NO:238);  
Trp His Trp Gln Met Leu Trp Trp (SEQ ID NO:239);  
Asp Ser Phe Arg Thr Pro Val Trp (SEQ ID NO:240);  
25 Thr Ser Pro Leu Ser Leu Leu Trp (SEQ ID NO:241);  
Ala Tyr Asn Tyr Val Ser Asp Trp (SEQ ID NO:242);  
Arg Pro Leu His Asp Pro Met Trp (SEQ ID NO:243);  
Trp Pro Ser Thr Thr Leu Phe Trp (SEQ ID NO:244);  
Ala Thr Leu Glu Pro Val Arg Trp (SEQ ID NO:245);  
30 Ser Met Thr Val Leu Arg Pro Trp (SEQ ID NO:246);  
Gln Ile Gly Ala Pro Ser Trp Trp (SEQ ID NO:247);  
Ala Pro Asp Leu Tyr Val Pro Trp (SEQ ID NO:248);  
Arg Met Pro Pro Leu Leu Pro Trp (SEQ ID NO:249);

Ala Lys Ala Thr Pro Glu His Trp (SEQ ID NO:250);  
Thr Pro Pro Leu Arg Ile Asn Trp (SEQ ID NO:251);  
Leu Pro Ile His Ala Pro His Trp (SEQ ID NO:252);  
Asp Leu Asn Ala Tyr Thr His Trp (SEQ ID NO:253);  
5 Val Thr Leu Pro Asn Phe His Trp (SEQ ID NO:254);  
Asn Ser Arg Leu Pro Thr Leu Trp (SEQ ID NO:255);  
Tyr Pro His Pro Ser Arg Ser Trp (SEQ ID NO:256);  
Gly Thr Ala His Phe Met Tyr Trp (SEQ ID NO:257);  
Tyr Ser Leu Leu Pro Thr Arg Trp (SEQ ID NO:258);  
10 Leu Pro Arg Arg Thr Leu Leu Trp (SEQ ID NO:259);  
Thr Ser Thr Leu Leu Trp Lys Trp (SEQ ID NO:260);  
Thr Ser Asp Met Lys Pro His Trp (SEQ ID NO:261);  
Thr Ser Ser Tyr Leu Ala Leu Trp (SEQ ID NO:262);  
Asn Leu Tyr Gly Pro His Asp Trp (SEQ ID NO:263);  
15 Leu Glu Thr Tyr Thr Ala Ser Trp (SEQ ID NO:264);  
Ala Tyr Lys Ser Leu Thr Gln Trp (SEQ ID NO:265);  
Ser Thr Ser Val Tyr Ser Ser Trp (SEQ ID NO:266);  
Glu Gly Pro Leu Arg Ser Pro Trp (SEQ ID NO:267);  
Thr Thr Tyr His Ala Leu Gly Trp (SEQ ID NO:268);  
20 Val Ser Ile Gly His Pro Ser Trp (SEQ ID NO:269);  
Thr His Ser His Arg Pro Ser Trp (SEQ ID NO:270);  
Ile Thr Asn Pro Leu Thr Thr Trp (SEQ ID NO:271);  
Ser Ile Gln Ala His His Ser Trp (SEQ ID NO:272);  
Leu Asn Trp Pro Arg Val Leu Trp (SEQ ID NO:273);  
25 Tyr Tyr Tyr Ala Pro Pro Trp (SEQ ID NO:274);  
Ser Leu Trp Thr Arg Leu Pro Trp (SEQ ID NO:275);  
Asn Val Tyr His Ser Ser Leu Trp (SEQ ID NO:276);  
Asn Ser Pro His Pro Pro Thr Trp (SEQ ID NO:277);  
Val Pro Ala Lys Pro Arg His Trp (SEQ ID NO:278);  
30 His Asn Leu His Pro Asn Arg Trp (SEQ ID NO:279);  
Tyr Thr Thr His Arg Trp Leu Trp (SEQ ID NO:280);  
Ala Val Thr Ala Ala Ile Val Trp (SEQ ID NO:281);  
Thr Leu Met His Asp Arg Val Trp (SEQ ID NO:282);

Thr Pro Leu Lys Val Pro Tyr Trp (SEQ ID NO:283);  
Phe Thr Asn Gln Gln Tyr His Trp (SEQ ID NO:284);  
Ser His Val Pro Ser Met Ala Trp (SEQ ID NO:285);  
His Thr Thr Val Tyr Gly Ala Trp (SEQ ID NO:286);  
5 Thr Glu Thr Pro Tyr Pro Thr Trp (SEQ ID NO:287);  
Leu Thr Thr Pro Phe Ser Ser Trp (SEQ ID NO:288);  
Gly Val Pro Leu Thr Met Asp Trp (SEQ ID NO:289);  
Lys Leu Pro Thr Val Leu Arg Trp (SEQ ID NO:290);  
Cys Arg Phe His Gly Asn Arg Trp (SEQ ID NO:291);  
10 Tyr Thr Arg Asp Phe Glu Ala Trp (SEQ ID NO:292);  
Ser Ser Ala Ala Gly Pro Arg Trp (SEQ ID NO:293);  
Ser Leu Ile Gln Tyr Ser Arg Trp (SEQ ID NO:294);  
Asp Ala Leu Met Trp Pro XAA Trp (SEQ ID NO:295);  
Ser Ser XAA Ser Leu Tyr Ile Trp (SEQ ID NO:296);  
15 Phe Asn Thr Ser Thr Arg Thr Trp (SEQ ID NO:297);  
Thr Val Gln His Val Ala Phe Trp (SEQ ID NO:298);  
Asp Tyr Ser Phe Pro Pro Leu Trp (SEQ ID NO:299);  
Val Gly Ser Met Glu Ser Leu Trp (SEQ ID NO:300);  
Phe XAA Pro Met Ile XAA Ser Trp (SEQ ID NO:301);  
20 Ala Pro Pro Arg Val Thr Met Trp (SEQ ID NO:302);  
Ile Ala Thr Lys Thr Pro Lys Trp (SEQ ID NO:303);  
Lys Pro Pro Leu Phe Gln Ile Trp (SEQ ID NO:304);  
Tyr His Thr Ala His Asn Met Trp (SEQ ID NO:305);  
Ser Tyr Ile Gln Ala Thr His Trp (SEQ ID NO:306);  
25 Ser Ser Phe Ala Thr Phe Leu Trp (SEQ ID NO:307);  
Thr Thr Pro Pro Asn Phe Ala Trp (SEQ ID NO:308);  
Ile Ser Leu Asp Pro Arg Met Trp (SEQ ID NO:309);  
Ser Leu Pro Leu Phe Gly Ala Trp (SEQ ID NO:310);  
Asn Leu Leu Lys Thr Thr Leu Trp (SEQ ID NO:311);  
30 Asp Gln Asn Leu Pro Arg Arg Trp (SEQ ID NO:312);  
Ser His Phe Glu Gln Leu Leu Trp (SEQ ID NO:313);  
Thr Pro Gln Leu His His Gly Trp (SEQ ID NO:314);  
Ala Pro Leu Asp Arg Ile Thr Trp (SEQ ID NO:315);

Phe Ala Pro Leu Ile Ala His Trp (SEQ ID NO:316);  
Ser Trp Ile Gln Thr Phe Met Trp (SEQ ID NO:317);  
Asn Thr Trp Pro His Met Tyr Trp (SEQ ID NO:318);  
Glu Pro Leu Pro Thr Thr Leu Trp (SEQ ID NO:319);  
5 His Gly Pro His Leu Phe Asn Trp (SEQ ID NO:320);  
Tyr Leu Asn Ser Thr Leu Ala Trp (SEQ ID NO:321);  
His Leu His Ser Pro Ser Gly Trp (SEQ ID NO:322);  
Thr Leu Pro His Arg Leu Asn Trp (SEQ ID NO:323);  
Ser Ser Pro Arg Glu Val His Trp (SEQ ID NO:324);  
10 Asn Gln Val Asp Thr Ala Arg Trp (SEQ ID NO:325);  
Tyr Pro Thr Pro Leu Leu Thr Trp (SEQ ID NO:326);  
His Pro Ala Ala Phe Pro Trp Trp (SEQ ID NO:327);  
Leu Leu Pro His Ser Ser Ala Trp (SEQ ID NO:328);  
Leu Glu Thr Tyr Thr Ala Ser Trp (SEQ ID NO:329);  
15 Lys Tyr Val Pro Leu Pro Pro Trp (SEQ ID NO:330);  
Ala Pro Leu Ala Leu His Ala Trp (SEQ ID NO:331);  
Tyr Glu Ser Leu Leu Thr Lys Trp (SEQ ID NO:332);  
Ser His Ala Ala Ser Gly Thr Trp (SEQ ID NO:333);  
Gly Leu Ala Thr Val Lys Ser Trp (SEQ ID NO:334);  
20 Gly Ala Thr Ser Phe Gly Leu Trp (SEQ ID NO:335)  
Lys Pro Pro Gly Pro Val Ser Trp (SEQ ID NO:336);  
Thr Leu Tyr Val Ser Gly Asn Trp (SEQ ID NO:337);  
His Ala Pro Phe Lys Ser Gln Trp (SEQ ID NO:338);  
Val Ala Phe Thr Arg Leu Pro Trp (SEQ ID NO:339);  
25 Leu Pro Thr Arg Thr Pro Ala Trp (SEQ ID NO:340);  
Ala Ser Phe Asp Leu Leu Ile Trp (SEQ ID NO:341);  
Arg Met Asn Thr Glu Pro Pro Trp (SEQ ID NO:342);  
Lys Met Thr Pro Leu Thr Thr Trp (SEQ ID NO:343);  
Ala Asn Ala Thr Pro Leu Leu Trp (SEQ ID NO:344);  
30 Thr Ile Trp Pro Pro Val Trp (SEQ ID NO:345);  
Gln Thr Lys Val Met Thr Thr Trp (SEQ ID NO:346);  
Asn His Ala Val Phe Ala Ser Trp (SEQ ID NO:347);  
Leu His Ala Ala Xaa Thr Ser Trp (SEQ ID NO:348);

Thr Trp Gln Pro Tyr Phe His Trp (SEQ ID NO:349);  
Ala Pro Leu Ala Leu His Ala Trp (SEQ ID NO:350);  
Thr Ala His Asp Leu Thr Val Trp (SEQ ID NO:351);  
Asn Met Thr Asn Met Leu Thr Trp (SEQ ID NO:352);  
5 Gly Ser Gly Leu Ser Gln Asp Trp (SEQ ID NO:353);  
Thr Pro Ile Lys Thr Ile Tyr Trp (SEQ ID NO:354);  
Ser His Leu Tyr Arg Ser Ser Trp (SEQ ID NO:355); and  
His Gly Gln Ala Trp Gln Phe Trp (SEQ ID NO:356).

[0068] The aforementioned heat shock protein binding domains are merely exemplary of various peptides, among peptide and non-peptide heat shock protein binding molecules, that may be used in the practice of the present invention.

[0069] The hybrid antigen of the invention incorporates one immunogenic domain and one heat shock protein-binding domain, optionally separated by a peptide linker. The hybrid antigen of the invention may be synthesized using chemical peptide synthesis methods or it can be synthesized by expression of a nucleic acid construct containing linked sequences encoding the antigenic and heat shock protein binding domains. One suitable technique utilizes initial separate PCR amplification reactions to produce separate DNA segments encoding the two domains, each with a linker segment attached to one end, followed by fusion of the two amplified products in a further PCR step. This technique is referred to as linker tailing. Suitable restriction sites may also be engineered into regions of interest, after which restriction digestion and ligation is used to produce the desired hybrid antigen-encoding sequence.

[0070] As noted herein, the nucleic acid encoding a hybrid antigen of the invention is also suitable for therapeutic use by administration to the subject, where expression in vivo yields the hybrid antigen with the ability of inducing an immune response.

[0071] In addition to the studies on various heat shock protein binding domains and hybrid antigens containing them which are described above and in the Examples below, further comparative studies on heat shock protein binding domains, set forth using single-letter amino acid codes, HWDFAWPW (SEQ ID NO:358) and NLLRLTGW (SEQ ID NO:359) were performed in vitro and in vivo, using the model epitope SIINFEKL (SEQ ID

NO:357) from ovalbumin. As mentioned above, antigenic peptides complexed to heat shock proteins (HSPs) are able to enter the endogenous antigen processing pathway and prime CD8+ cytotoxic T lymphocytes (CTLs). It was determined as mentioned above that the co-linear synthesis of a hybrid antigen containing a class I MHC binding epitope and an HSP70-binding sequence (HWDFAWPW) (SEQ ID NO:358) as well as other heat shock protein-binding sequences could render immunogenic otherwise poorly binding epitopes. This has been confirmed and extended by demonstrating that a higher-affinity HSP70-binding sequence (NLLRLTGW) (SEQ ID NO:359) can further enhance the immunogenicity of the bound class I epitope. A competition binding assay revealed a dissociation constant that was 15-fold lower for the H2-K<sup>b</sup> ovalbumin SIINFEKL (SEQ ID NO:357) epitope in hybrid antigen SIINFEKLGSIGNLLRLTGW (SEQ ID NO:367) compared to hybrid antigen SIINFEKLGSGHWDFAWPW (SEQ ID NO:368), indicating a higher affinity of NLLRLTGW (SEQ ID NO:359) for HSP70. After confirming the ability of the HSP70-bound SIINFEKLGSIGNLLRLTGW (SEQ ID NO:367) peptide to be processed and presented by murine macrophages in vitro, in-vivo immunogenicity was assessed. The in-vivo comparative evaluation of HSP70:SIINFEKLGSIGNLLRLTGW (SEQ ID NO:367) vs. HSP70:SIINFEKLGSGHWDFAWPW (SEQ ID NO:368) complexes was performed by immunizing normal C57BL/6 mice, and the SIINFEKLGSIGNLLRLTGW (SEQ ID NO:367) complexes were found to induce better CD8+ T cell responses. In a related experiment, NLLRLTGW (SEQ ID NO:359) alone was found to prevent induction of an immune response by the otherwise-immunogenic HSP70:SIINFEKLGSGHWDFAWPW (SEQ ID NO:368) mixture, an indication that NLLRLTGW (SEQ ID NO:359) blocks complex formation by interacting with the same binding site on HSP70. It was hypothesized, for which Applicants have no duty to disclose nor are bound thereto, that the lower dissociation constant for epitopes containing NLLRLTGW (SEQ ID NO:359) would cause complexes made with HSP70 to be more efficient as immunizing agents. Indeed, it was found that animals immunized one time with a low dose of HSP70:SIINFEKLGSIGNLLRLTGW (SEQ ID NO:367) complexes induced peptide specific CD8+ T cells to secrete substantial levels of IFN-gamma in an ex vivo ELISPOT assay. Taken together, these data establish a positive correlation between the HSP70 binding affinity of the heat shock protein-binding domain-epitope hybrid antigen and immune responses, demonstrating that smaller amounts of defined epitopes can be used with a higher affinity heat shock protein binding domain such as but not limited to

NLLRLTGW (SEQ ID NO:359) to successfully immunize in vivo. Other heat shock protein binding domains terminated in a Trp residue were also found to have improved binding properties.

### Heat Shock Proteins

5 [0072] The term "heat shock protein," as used herein, refers to any protein which exhibits increased expression in a cell when the cell is subjected to a stress. In preferred non-limiting embodiments, the heat shock protein is originally derived from a eukaryotic cell; in more preferred embodiments, the heat shock protein is originally derived from a mammalian cell. For example, but not by way of limitation, heat shock proteins which may 10 be used according to the invention include BiP (also referred to as grp78), hsp70, hsc70, gp96 (grp94), hsp60, hsp40, and hsp90, and members of the families thereof. Especially preferred heat shock proteins are BiP, gp96, and hsp70, as exemplified below. Most preferred is a member of the hsp70 family. Naturally occurring or recombinantly derived mutants of heat shock proteins may also be used according to the invention. For example, 15 but not by way of limitation, the present invention provides for the use of heat shock proteins mutated so as to facilitate their secretion from the cell (for example having mutation or deletion of an element which facilitates endoplasmic reticulum recapture, such as KDEL (SEQ ID NO:9) or its homologues; such mutants are described in PCT Application No. PCT/US96/13233 (WO 97/06685), which is incorporated herein by 20 reference).

25 [0073] For embodiments of the invention wherein heat shock protein and hybrid antigen are directly administered to the subject in the form of a protein/peptide complex, the heat shock protein may be prepared, using standard techniques, from natural sources, for example as described in Flynn et al., *Science* 245:385-390 (1989), or using recombinant techniques such as expression of a heat shock encoding vector in a suitable host cell such as a bacterial, yeast or mammalian cell. If pre-loading of the heat shock protein with peptides from the host organism is a concern, the heat shock protein can be incubated with ATP and then repurified. Non-limiting examples of methods for preparing recombinant heat shock proteins are set forth below.

[0074] A nucleic acid encoding a heat shock protein may be operatively linked to elements necessary or desirable for expression and then used to express the desired heat shock protein as either a means to produce heat shock protein for use in a protein vaccine or, alternatively, in a nucleic acid vaccine. Elements necessary or desirable for expression include, but are not limited to, promoter/enhancer elements, transcriptional start and stop sequences, polyadenylation signals, translational start and stop sequences, ribosome binding sites, signal sequences and the like. For example, but not by way of limitation, genes for various heat shock proteins have been cloned and sequenced, including, but not limited to, gp96 (human: Genebank Accession No. X15187; Maki et al., *Proc. Natl. Acad. Sci. U.S.A.* 87:5658-5562 (1990); mouse: Genebank Accession No. M16370; Srivastava et al., *Proc. Natl. Acad. Sci. U.S.A.* 84:3807-3811 (1987)), BiP (mouse: Genebank Accession No. U16277; Haas et al., *Proc. Natl. Acad. Sci. U.S.A.* 85:2250-2254 (1988); human: Genebank Accession No. M19645; Ting et al., *DNA* 7:275-286 (1988)), hsp70 (mouse: Genebank Accession No. M35021; Hunt et al., *Gene* 87:199-204 (1990); human: Genebank Accession No. M24743; Hunt et al., *Proc. Natl. Acad. Sci. U.S.A.* 82:6455-6489 (1995)), and hsp40 (human: Genebank Accession No. D49547; Ohtsuka K., *Biochem. Biophys. Res. Commun.* 197:235-240 (1993)).

[0075] METHODS OF ADMINISTRATION

[0076] The hybrid antigens of the invention or complexes of hybrid antigens and heat shock proteins may be administered to a subject using either a peptide-based, protein-based or nucleic acid vaccine, so as to produce, in the subject, an amount of complex which is effective in inducing a therapeutic immune response in the subject.

[0077] The subject may be a human or nonhuman subject.

[0078] The term "therapeutic immune response," as used herein, refers to an increase in humoral and/or cellular immunity, as measured by standard techniques, which is directed toward the hybrid antigen. Preferably, but not by way of limitation, the induced level of humoral immunity directed toward hybrid antigen is at least four-fold, and preferably at least 16-fold greater than the levels of the humoral immunity directed toward the antigen prior to the administration of the compositions of this invention to the subject. The immune response may also be measured qualitatively, by means of a suitable *in vitro* or *in vivo*

assay, wherein an arrest in progression or a remission of neoplastic or infectious disease in the subject is considered to indicate the induction of a therapeutic immune response.

[0079] Specific amounts of heat shock protein/hybrid antigen administered may depend on numerous factors including the immunogenicity of the particular vaccine composition, 5 the immunocompetence of the subject, the size of the subject and the route of administration. Determining a suitable amount of any given composition for administration is a matter of routine screening.

[0080] Furthermore, significant immunological efficacy was identified in studies in which the hybrid antigen was administered alone, i.e., without heat shock protein. While 10 Applicants have no duty to disclose the theory by which the invention operates, and are not bound thereto, the results of these studies suggest that the hybrid antigens, upon injection into the subject, bind to endogenous heat shock proteins, and thus do not require the concomitant administration of heat shock protein for effectiveness. The present invention extends to such utilities of the hybrid antigens of the invention, and moreover, to

15 concomitant therapies or treatments that increase endogenous heat shock protein levels systemically or at the intended site of administration of the hybrid antigens of the invention. Such concomitant therapies or treatments include but are not limited to local application of heat or local or systemic pharmaceutical agents that increase the expression of heat shock protein in the local tissue. Such agents and methods are known in the art.

20 [0081] Hybrid antigens that are administered in the absence of co-administration of a heat shock protein (i.e., administered not in a complex with a heat shock protein) that comprise at least one antigenic domain and at least one heat shock protein binding domain preferably comprise one of the heat shock protein binding domains described herein, and more preferably are hybrid antigens comprising the heat shock protein binding domains Asn 25 Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Tyr Trp (SEQ ID NO:418), or Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419). Other selections include those mentioned hereinabove.

30 [0082] In specific non-limiting embodiments of the invention, it may be desirable to include more than one species of heat shock protein, and/or more than one hybrid antigen,

in order to optimize the immune response. Such an approach may be particularly advantageous in the treatment of cancer or in the treatment of infections characterized by the rapid development of mutations that result in evasion of the immune response.

Moreover, a hybrid antigen of the invention may include more than one immunogenic

5 domain or more than one epitope.

[0083] Compositions comprising hybrid antigen/heat shock protein or hybrid antigen alone as set forth above are referred to herein as "vaccines." The term vaccine is used to indicate that the compositions of the invention may be used to induce a therapeutic immune response. A vaccine of the invention may comprise a hybrid antigen with a single antigenic

10 domain or epitope, or a hybrid antigen with a plurality of antigenic domains or epitopes.

Further, a vaccine may comprise an admixture of hybrid antigens with single or pluralities of antigenic domains or epitopes, or any combination of the foregoing. As noted above, the hybrid antigens or admixtures thereof may be complexed with one or more heat shock proteins before administration, or may be administered without heat shock protein.

15 [0084] A vaccine composition comprising one or more hybrid antigens optionally complexed to one or more heat shock proteins in accordance with the invention may be administered cutaneously, subcutaneously, intradermally, intravenously, intramuscularly, parenterally, intrapulmonarily, intravaginally, intrarectally, nasally or topically. The vaccine composition may be delivered by injection, particle bombardment, orally or by aerosol.

20 [0085] Incubation of heat shock proteins in solution with the hybrid antigen is sufficient to achieve loading of the antigen onto the heat shock protein in most cases. It may be desirable in some cases, however, to add agents which can assist in the loading of the antigen.

25 [0086] Incubation with heating of the heat shock protein with the hybrid antigen will in general lead to loading of the antigen onto the heat shock protein. In some cases, however, it may be desirable to add additional agents to assist in the loading. For example, hsp40 can facilitate loading of peptides onto hsp70. Minami et al., *J. Biol. Chem.* 271:19617-19624 (1996). Denaturants such as guanidinium HCl or urea can be employed to partially and reversibly destabilize the heat shock protein to make the peptide binding pocket more

30 accessible to the antigen.

[0087] Vaccine compositions in accordance with the invention may further include various additional materials, such as a pharmaceutically acceptable carrier. Suitable carriers include any of the standard pharmaceutically accepted carriers, such as phosphate buffered saline solution, water, emulsions such as an oil/water emulsion or a triglyceride emulsion,

5 various types of wetting agents, tablets, coated tablets and capsules. An example of an acceptable triglyceride emulsion useful in intravenous and intraperitoneal administration of the compounds is the triglyceride emulsion commercially known as Intralipid®. Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such 10 carriers may also include flavor and color additives or other ingredients.

[0088] In particular, a vaccine of the invention comprising a heat shock protein preferably also include adenosine diphosphate (ADP), to promote the association between the heat shock protein and the heat shock protein binding domain prior to the complex reaching its destination. Other compounds with similar capabilities may be used, alone or in 15 combination with ADP.

[0089] The vaccine composition of the invention may also include suitable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions may be in the form of liquid or lyophilized or otherwise dried formulations and may include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength, 20 additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), solubilizing agents (e.g. glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), bulking substances or tonicity 25 modifiers (e.g., lactose, mannitol), covalent attachment of polymers such as polyethylene glycol to the protein, complexing with metal ions, or incorporation of the material into or onto particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, hydrogels, etc. or onto liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroplasts. Such compositions will influence the physical state, solubility, stability, rate of *in vivo* release, and rate of *in vivo* 30 clearance. The choice of compositions will depend on the physical and chemical properties of the vaccine. For example, a product derived from a membrane-bound form of a protein

may require a formulation containing detergent. Controlled or sustained release compositions include formulation in lipophilic depots (e.g. fatty acids, waxes, oils). Also comprehended by the invention are particulate compositions coated with polymers (e.g. poloxamers or poloxamines) and coupled to antibodies directed against tissue-specific

5 receptors, ligands or antigens or coupled to ligands of tissue-specific receptors. Other embodiments of the compositions of the invention incorporate particulate forms protective coatings, protease inhibitors or permeation enhancers for various routes of administration, including intramuscular, parenteral, pulmonary, nasal and oral.

[0090] As an alternative to direct administration of the hybrid antigen optionally complexed with heat shock protein, one or more polynucleotide constructs may be administered which encode the hybrid antigen, optionally with heat shock protein, in expressible form. The expressible polynucleotide constructs are introduced into cells in the subject using *ex vivo* or *in vivo* methods. Suitable methods include injection directly into tissue and tumors, transfecting using liposomes (Fraley et al., *Nature* 370:111-117 (1980)), 10 receptor-mediated endocytosis (Zatloukal et al., *Ann. NY Acad. Sci.* 660:136-153 (1992)), particle bombardment-mediated gene transfer (Eisenbraun et al., *DNA & Cell Biol.* 12:792- 15 797 (1993)) and transfection using peptide presenting bacteriophage (Barry et al., *Nature Medicine* 2:299-305 (1996). The polynucleotide vaccine may also be introduced into suitable cells *in vitro* which are then introduced into the subject.

20 [0091] To construct an expressible polynucleotide, a region encoding the heat shock protein and/or hybrid antigen is prepared as discussed above and inserted into a mammalian expression vector operatively linked to a suitable promoter such as the SV40 promoter, the cytomegalovirus (CMV) promoter or the Rous sarcoma virus (RSV) promoter. The resulting construct may then be used as a vaccine for genetic immunization. The nucleic acid polymer(s) could also be cloned into a viral vector. Suitable vectors include but are not limited to retroviral vectors, adenovirus vectors, vaccinia virus vectors, pox virus vectors and adenovirus-associated vectors. Specific vectors which are suitable for use in the present invention are pCDNA3 (InVitrogen), plasmid AH5 (which contains the SV40 origin and the adenovirus major late promoter), pRC/CMV (InVitrogen), pCMU II (Paabo et al., *EMBO J.* 5:1921-1927 (1986)), pZip-Neo SV (Cepko et al., *Cell* 37:1053-1062 (1984)) and pSR $\alpha$  25 (DNAX, Palo Alto, CA). 30

[0092] In the following examples, amino acids may be presented using their single-letter codes, as follows:

- [0093] A alanine
- [0094] C cysteine
- 5 [0095] D aspartic acid
- [0096] E glutamic acid
- [0097] F phenylalanine
- [0098] G glycine
- [0099] H histidine
- 10 [00100] I isoleucine
- [00101] K lysine
- [00102] L leucine
- [00103] M methionine
- [00104] N asparagine
- 15 [00105] P proline
- [00106] Q glutamine
- [00107] R arginine
- [00108] S serine
- [00109] T threonine
- 20 [00110] V valine
- [00111] W tryptophan
- [00112] Y tyrosine

#### EXAMPLE 1

[0100] A variety of hybrid antigens were prepared by solid-phase peptide synthesis, 25 each comprising a heat shock protein binding domain and a cancer antigen epitope or the model epitope from ovalbumin, SIINFEKL (SEQ ID NO:357) . The heat shock protein binding domains used in these experiments were among the following: HWDFAWPW (SEQ ID NO:358), NLLRLTGW (SEQ ID NO:359), FYQLALTW (SEQ ID NO:360) and RKLFFNLRW (SEQ ID NO:361).

30 [0101] The cancer and model epitopes were among the following:

| Source Protein                          | Source Tumor        | Amino Acids | Trivial Name (Sequence)                    |
|-----------------------------------------|---------------------|-------------|--------------------------------------------|
| Prostate Specific Membrane Antigen      | Prostate cancer     | 771-779     | PSMA P2 (ALFDIESKV) (SEQ ID NO:362)        |
| Gp100                                   | Melanoma            | 209-217     | IMD (T210M) (IMDQVPFSV) (SEQ ID NO:363)    |
| Tyrosinase                              | Melanoma            | 368-376     | YMD (370D) (YMDGTMSQV) (SEQ ID NO:364)     |
| Human Papillomavirus (HPV) Strain 16 E7 | Cervical cancer     | 86-93       | HPV16 E7 86-93 (TLGIVCPI) (SEQ ID NO:365)  |
| HPV Strain 16 E7                        | Cervical cancer     | 11-20       | HPV16 E711-20 (YMLDLQPETT) (SEQ ID NO:366) |
| Ovalbumin                               | Model Tumor Antigen | 257-264     | Ova (SIINFEKL) (SEQ ID NO:357)             |

[0102] Using standard solid phase peptide synthesis using F-moc chemistry, hybrid antigens comprising a heat shock protein binding domain, a cancer epitope, and a gly-ser-gly linker therebetween, were synthesized, in various orientations. Thus, the following 5 hybrid antigens were made:

| Antigenic epitope             | Heat shock protein-binding domain | Hybrid antigen sequence                  |
|-------------------------------|-----------------------------------|------------------------------------------|
| ALFDIESKV<br>(SEQ ID NO:362)  | HWDFAWPW (SEQ ID NO:358)          | ALFDIESKVgsgHWDFAWPW<br>(SEQ ID NO:369)  |
| IMDQVPFSV<br>(SEQ ID NO:363)  | HWDFAWPW<br>(SEQ ID NO:358)       | IMDQVPFSVgsgHWDFAWPW<br>(SEQ ID NO:371)  |
| IMDQVPFSV<br>(SEQ ID NO:363)  | NLLRLTGW<br>(SEQ ID NO:359)       | IMDQVPFSVgsgNLLRLTGW<br>(SEQ ID NO:372)  |
| YMDGTMSQV<br>(SEQ ID NO:364)  | HWDFAWPW<br>(SEQ ID NO:358)       | YMDGTMSQVgsgHWDFAWPW<br>(SEQ ID NO:373)  |
| YMDGTMSQV<br>(SEQ ID NO:364)  | HWDFAWPW<br>(SEQ ID NO:358)       | HWDFAWPWgsgYMDGTMSQV<br>(SEQ ID NO:374)  |
| YMDGTMSQV<br>(SEQ ID NO:364)  | NLLRLTGW<br>(SEQ ID NO:359)       | YMDGTMSQVgsgNLLRLTGW<br>(SEQ ID NO:375)  |
| TLGIVCPI<br>(SEQ ID NO:365)   | HWDFAWPW<br>(SEQ ID NO:358)       | TLGIVCPIgsgHWDFAWPW<br>(SEQ ID NO:376)   |
| TLGIVCPI<br>(SEQ ID NO:365)   | NLLRLTGW<br>(SEQ ID NO:359)       | TLGIVCPIgsgNLLRLTGW<br>(SEQ ID NO:377)   |
| YMLDLQPETT<br>(SEQ ID NO:366) | HWDFAWPW<br>(SEQ ID NO:358)       | YMLDLQPETTgsgHWDFAWPW<br>(SEQ ID NO:378) |
| SIINFEKL (SEQ ID NO:357)      | HWDFAWPW<br>(SEQ ID NO:358)       | SIINFEKLgsgHWDFAWPW<br>(SEQ ID NO:368)   |
| SIINFEKL (SEQ ID NO:357)      | HWDFAWPW<br>(SEQ ID NO:358)       | HWDFAWPWgsgSIINFEKL<br>(SEQ ID NO:379)   |
| SIINFEKL (SEQ ID NO:357)      | NLLRLTGW<br>(SEQ ID NO:359)       | SIINFEKLgsgNLLRLTGW<br>(SEQ ID NO:380)   |
| SIINFEKL (SEQ ID NO:357)      | FYQLALTW<br>(SEQ ID NO:360)       | SIINFEKLgsgFYQLALTW<br>(SEQ ID NO:381)   |
| SIINFEKL (SEQ ID NO:357)      | RKLFFNLRW<br>(SEQ ID NO:361)      | SIINFEKLgsgRKLFFNLRW<br>(SEQ ID NO:382)  |

## EXAMPLE 2

[0103] Binding affinities between recombinant human or murine heat shock protein 70 (hsp70) and the various heat shock protein binding domains and antigenic peptides

5 mentioned above, as well as between the hybrid antigens comprising an antigenic peptide and a heat shock protein binding domain described above, were determined by a binding inhibition assays (Hill plots) relative to the binding affinity of a reference, labeled hybrid antigen (tritiated ALFDIESKVGS<sup>35</sup>GHDFAWPW) (SEQ ID NO:369) to hsp70 as

determined by Scatchard analysis. Binding studies were performed in 39% PBS; 20 mM THAM, pH 8; 37 mM NaCl, 5 mM MgCl<sub>2</sub>; and 1 mM ADP.

[0104] The affinities of hybrid antigens comprising the foregoing tumor antigenic peptides at the N-terminus (unless otherwise indicated), the indicated heat shock protein

5 binding domain at the C-terminus, separated by a GSG linker, are set forth in the following table, values are expressed as Kd.

| Peptide (epitope)                     | Heat shock protein-binding domain: |                                |                                |                                |                                 |
|---------------------------------------|------------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|
|                                       | None                               | HWDFAWPW<br>(SEQ ID<br>NO:358) | NLLRLTGW<br>(SEQ ID<br>NO:359) | FYQLALTW<br>(SEQ ID<br>NO:360) | RKLFFNLRW<br>(SEQ ID<br>NO:361) |
| None                                  |                                    | 120 μM                         | 1.85 μM                        | 5.9 μM                         | 15 μM                           |
| OVA                                   | 279 μM                             | 40 μM                          | 1.2 μM                         | 1.43 μM                        | 7.0 μM                          |
| OVA<br>(C-terminus)                   | 279 μM                             | 4.3 μM                         |                                |                                |                                 |
| PSMA P1                               |                                    | 53 Mm                          |                                |                                |                                 |
| PSMA P2                               | 145 μM                             | 22 μM                          | 1.3 μM                         |                                |                                 |
| Gp100<br>("IMD")                      | 2565 μM                            | 155 μM                         | 3.1 μM                         |                                |                                 |
| Tyrosinase<br>("YMD")                 | 204 μM                             | 24 μM                          | 2.65 μM                        |                                |                                 |
| Tyrosinase<br>("YMD")<br>(C-terminus) | 204 μM                             | 29 μM                          |                                |                                |                                 |
| HPV16 E7<br>(86-93)                   | 187 μM                             | 9.1 μM                         | 5.2 μM                         |                                |                                 |
| HPV16 E7<br>(11-20)                   | 91 μM                              | 27 μM                          |                                |                                |                                 |

### EXAMPLE 3

[0105] Non-covalent complexes of recombinant human heat shock protein 70 and

10 hybrid antigens of the invention were evaluated for biological activity *in vivo*. To evaluate the induction of an antigen-specific immune response, mice were immunized on day 0 with one of the following: (1) 100 μg human hsp70; (2) a noncovalent complex of 100 μg hsp70 and 15 μg SIINFEKL (SEQ ID NO:357) (OVA peptide); (3) a noncovalent complex of 100 μg hsp70 and 15 μg SIINFEKLGSGHWDFAWPW (SEQ ID NO:368) (N-terminal OVA

peptide, C-terminal heat shock protein binding domain HWDFAWPW (SEQ ID NO:358), GSG linker in between); and (4) a noncovalent complex of 15 µg hsp70 and 15 µg SIINFEKLGSNLLRLTGW (SEQ ID NO:367) (N-terminal OVA peptide, C-terminal heat shock protein binding domain NLLRLTGW (SEQ ID NO:359), GSG linker in between).

5 [0106] On day 7, splenocytes were obtained from the immunized animals and were restimulated with peptide (SIINFEKL) (SEQ ID NO:357) *in vitro* for 5 days, after which the percent of  $\gamma$ -interferon-secreting CD8+ cells was determined. The results are shown in Figure 1.

10 [0107] Hsp70 alone showed a low level of response, which was not increased by the addition of OVA peptide alone (complex of hsp70 and SIINFEKL (SEQ ID NO:357)). However, the complex of hsp70 and the hybrid antigen SIINFEKLGSNLLRLTGW (SEQ ID NO:368) elicited an increased response. The complex comprising hsp70 and a hybrid antigen comprising OVA peptide and a higher affinity heat shock protein binding domain, NLLRLTGW (SEQ ID NO:359), gave about the same level of immune response, 15 but this was achieved using a 6.7-fold lower amount of hsp70 (15 µg).

#### EXAMPLE 4

20 [0108] Non-covalent complexes of recombinant human heat shock protein 70 and hybrid antigens of the invention were evaluated for biological activity in in-vitro models. An in-vitro model system was established in which murine peritoneal exudates cells were exposed to a test compound of OVA peptide in the presence of B3Z cells, i.e., T-cell 25 hybridomas that secrete IL-2 when presented with OVA peptide in the context of MHC Class I. Murine peritoneal macrophages were induced by an intraperitoneal injection of thioglycollate. Five days later, mice were sacrificed and peritoneal exudates cells were recovered by peritoneal lavage. Non-adherent cells were removed and then B3Z cells and test compounds were added. The following were tested: 1- Hybrid Antigen "A" (10 pmol) (SIINFEKL—GSG—HWDFAWPW) (SEQ ID NO:368); 2- Noncovalent complex of Hsp70 (75 pmol) and Hybrid Antigen A (10 pmol); 3- Hybrid Antigen "B" (10 pmol) (SIINFEKL—GSG—NLLRLTGW) (SEQ ID NO:367); and 4- Noncovalent complex of Hsp70 (75 pmol) and Hybrid Antigen B (10 pmol).

[0109] Cell-free supernatants were harvested after 18h and tested in capture ELISAs for levels of IL-2. Both hybrid antigens in complexes with hsp70 presented antigen to the OVA-specific T-cell hybridomas, the results of which are set forth in Figure 2.

#### EXAMPLE 5

5 [0110] A Phase I/IIa clinical study in stage III and IV melanoma patients was conducted. Twenty-seven stage III/IV melanoma patients were divided into three groups and administered five doses of one of three formulations (low, medium and high dose) during a nineteen-week period. Nine patients received low doses, nine patients received medium doses, and nine patients received high doses. The components of the formulations 10 include two hybrid antigens mentioned above, each having a tumor antigenic domain (epitope) and an hsp70 binding domain, complexed with recombinant human hsp70, as follows:

##### Hybrid Antigen "I"

15 YMDGTMSQV—GSG—HWDFAWPW (SEQ ID NO:376) (Amino acids 368-378 of the melanoma tumor-associated antigen tyrosinase (YMDGTMSQV) (SEQ ID NO:364), GSG linker, Hsp70 binding domain HWDFAWPW) (SEQ ID NO:358)

##### Hybrid Antigen "II"

20 IMDQVPFSV—GSG—HWDFAWPW (SEQ ID NO:371) (Amino acids 209-217 of the melanoma tumor-associated antigen gp100 (IMDQVPFSV) (SEQ ID NO:363), GSG linker, Hsp70 binding domain HWDFAWPW) (SEQ ID NO:358)

[0111] In the low, medium, and high dose groups, either 1, 10 or 100 micrograms, respectively, of both of the foregoing hybrid antigens were formulated with 200 micrograms 25 of recombinant human hsp70, and administered to patients at weeks 0, 1, 2, 6, and 18. Bloods were drawn for immunological assays pre-immunization and at 8, 19 and 30 weeks. Fifteen patients' samples were evaluable for T-cell immunity, five patients in each dose group. A positive response was defined as a two-fold or greater increase in peptide-specific CD8+ T cells, measured by tetramer staining.

[0112] Overall, in 74% (20 of 27) of the patients, disease had not progressed at a median follow-up of 20 months. Of those 15 patients with evaluable blood samples, sixty percent (9 of 15) showed an increase in peptide-specific CD8+ T cells, and more positive T-cell responders were observed in the high-dose group. Only one (1/9) of these patients 5 showed progression of disease. In contrast, disease progressed in three of the 6 patients who did not show a positive T-cell response.

#### EXAMPLE 6

[0113] Figure 3 shows various concentrations of SIINFEKL (SEQ ID NO:357) (Ova), SIINFEKLGSGLWDFAWPW (SEQ ID NO:368) or SIINFEKLGSGLRLTGW (SEQ ID NO:367) hybrid antigens titrated into binding reactions containing constant amounts of both HSP70 and a labeled reporter peptide of known affinity for HSP70. The abilities of these peptides to compete out the binding of the reporter were analyzed using a Hill plot and the IC50 of each determined as the point where the plot intersected the y-axis. The Kd of each peptide was then calculated from its experimentally determined IC50. There was a 15-fold 10 increase in affinity of SIINFEKLGSGLRLTGW (SEQ ID NO:367) over SIINFEKLGSGLWDFAWPW (SEQ ID NO:368). 15

#### EXAMPLE 7

[0114] Peptides, alone or in a complex with HSP70, were added to adherent peritoneal exudate cells from thioglycollate induced mice. These cells were then cocultured with the 20 B3Z T cell hybridoma, which produces IL-2 upon recognition of SIINFEKL (SEQ ID NO:357) in the context of H-2K<sup>b</sup>. After an 18h incubation in serum free medium, supernatants were harvested and tested by ELISA. Data are shown in Figure 4a and 4b as the mean +/- S.D. Fig. 4a shows supernatant IL-2 quantities; Fig. 4b shows fold-induction of IL-2 over hybrid antigen alone.

25

#### EXAMPLE 8

[0115] C57BL/6 mice were immunized s.c. at the base of the tail with 2 mg hybrid antigen complexed with HSP or the appropriate controls. 7d later, mice were euthanized, CD8+ T cells were enriched from the spleens and put into an *ex vivo* ELISPOT to measure

IFN- $\gamma$  production. Data are shown in Figure 5 as the mean +/- SE for  $\geq$  four experiments containing at least 3 mice per observation per experiment.

#### EXAMPLE 9

[0116] Mice were immunized s.c. at the base of the tail with the complexes listed above  
5 – NLLRLTGW (SEQ ID NO:359) alone was added at a five-fold molar excess of the  
SIINFEKLGSGHWDFAWPW (SEQ ID NO:358) dose. 7d later, spleens were harvested  
and stimulated in vitro with SIINFEKL (SEQ ID NO:357) peptide. After 5d, peptide-  
specific effector responses were measured in a  $^{51}\text{Cr}$  release assay, results shown in Figure 6.  
Values within bars represent the amount of epitope delivered. 100:1 E:T ratio shown.

#### EXAMPLE 10

[0117] Mice were immunized s.c. at the base of the tail with the indicated doses of  
hybrid antigen with or without HSP70 or HSP70 alone. 7d later, spleens were harvested and  
enriched for CD8+ T cells, which were put into an *ex vivo* IFN- $\gamma$  ELISPOT assay. Data are  
shown in Figure 7 as mean +/- standard error of  $\geq$  four experiments with at least three mice  
15 per group.

[0118] The foregoing Examples show that a higher-affinity HSP70 binding sequence (in  
these non-limiting examples, NLLRLTGW) (SEQ ID NO:359) can decrease the  
dissociation constant of a hybrid antigen containing this sequence and a known class I MHC  
antigenic epitope SIINFEKL (SEQ ID NO:357). The higher affinity of the heat shock  
20 protein-binding domain-epitope hybrid antigen does not adversely affect the ability of the  
immunogenic epitope to be processed and presented by MHC class I molecules. There is a  
positive correlation between the HSP70 binding affinity of the heat shock protein-binding  
domain-epitope hybrid antigen and CD8+ T cell immune responses elicited. Thus, smaller  
amounts of defined epitopes can be used with a higher-affinity heat shock protein-binding  
25 domain such as but not limited to NLLRLTGW (SEQ ID NO:359) to successfully  
immunize *in vivo*.

## EXAMPLE 11

[0119] Additional hybrid antigens comprising a human melanoma cancer epitope at the N-terminus, a Gly- Ser-Gly linker and the heat shock protein-binding domain Asn Leu Leu Arg Leu Thr Gly Trp were prepared by solid-phase peptide synthesis, and their affinities for hsp70 determined as above, compared with the melanoma epitope alone. The following 5 table sets forth the various melanoma epitopes (names of proteins abbreviated, followed by the amino acids in the epitope, followed by any change to the native sequence in parentheses) and their affinities for hsp70 expressed in  $\mu$ M, either alone or in a hybrid antigen as mentioned above.

| Cancer Epitope:<br>amino acids | Epitope alone                 |                                  | Hybrid antigen comprising epitope        |                                  |
|--------------------------------|-------------------------------|----------------------------------|------------------------------------------|----------------------------------|
|                                | Epitope<br>sequence           | Affinity for<br>hsp70 ( $\mu$ M) | Hybrid antigen sequence                  | Affinity for<br>hsp70 ( $\mu$ M) |
| Gp100:209-217<br>(210M)        | IMDQVPPFSV<br>(SEQ ID NO:363) | 2566                             | IMDQVPFSVGSGNLLRLTGW<br>(SEQ ID NO:372)  | 0.9                              |
| Tyrosinase: 368-<br>376 (370D) | YMDGTMSQV<br>(SEQ ID NO:364)  | 209                              | YMDGTMSQVGSGNLLRLTGW<br>(SEQ ID NO:375)  | 1.8                              |
| MelA/MART1:<br>26-35 (27L)     | ELAGIGILTV<br>(SEQ ID NO:389) | 45                               | ELAGIGILTVGSGNLLRLTGW<br>(SEQ ID NO:395) | 0.6                              |
| NY-ESO-1: 157-<br>165 (165V)   | SLLMWITQV<br>(SEQ ID NO:390)  | 114                              | SLLMWITQVGSGNLLRLTGW<br>(SEQ ID NO:396)  | 2.2                              |
| Trp-2: 180-188                 | SVYDFFFVWL<br>(SEQ ID NO:391) | 81                               | SVYDFFFVWLGSgnLLRLTGW<br>(SEQ ID NO:397) | 2.9                              |
| MAGE-10: 254-<br>262           | GLYDGMEHL<br>(SEQ ID NO:392)  | 48                               | GLYDGMEHLGSGNLLRLTGW<br>(SEQ ID NO:398)  | 1.1                              |
| GP100: 280-288<br>(288V)       | YLEPGPVTW<br>(SEQ ID NO:393)  | 71                               | YLEPGPVTVGSGNLLRLTGW<br>(SEQ ID NO:399)  | 2.0                              |
| SSX-2: 41-49                   | KASEKIFYV<br>(SEQ ID NO:394)  | 57                               | KASEKIFYVGSGNLLRLTGW<br>(SEQ ID NO:400)  | 1.4                              |

10

## EXAMPLE 12

[0120] In a similar fashion to melanoma antigens in the previous example, hybrid antigens were synthesized using various HLA A2 HIV epitopes. Affinities for hsp70 of the epitopes alone and in a hybrid antigen are shown in the following table.

15

| HIV Epitope:<br>amino acids | Epitope alone                      |                            | Hybrid antigen comprising epitope         |                            |
|-----------------------------|------------------------------------|----------------------------|-------------------------------------------|----------------------------|
|                             | Epitope<br>sequence                | Affinity for<br>hsp70 (μM) | Hybrid antigen sequence                   | Affinity for<br>hsp70 (μM) |
| Nef: 190-198                | ALKHRAYEL<br>(SEQ ID<br>NO:401)    | 97                         | ALKHRAYELGSGNLLRLTGW<br>(SEQ ID NO:409)   | 1.1                        |
| Pol: 464-472                | ILKEPVHGV<br>(SEQ ID<br>NO:402)    | 83                         | ILKEPVHGVGSGNLLRLTGW<br>(SEQ ID NO:410)   | 1.2                        |
| Gag/p17: 77-85<br>(79F)     | SLFNTVATL<br>(SEQ ID<br>NO:403)    | 35                         | SLFNTVATLGSgnLLRLTGW<br>(SEQ ID NO:411)   | 1.9                        |
| Pol: 263-273                | VLDVGDAYF<br>SV (SEQ ID<br>NO:404) | 110                        | VLDVGDAYFSVGSgnLLRLTGW<br>(SEQ ID NO:412) | 2.0                        |
| Pol: 334-342                | VIYQYMDDL<br>(SEQ ID<br>NO:405)    | 91                         | VIYQYMDDLGSgnLLRLTGW<br>(SEQ ID NO:413)   | 1.7                        |
| Gag: 77-85                  | SLYNTVATL<br>(SEQ ID<br>NO:406)    | 85                         | SLYNTVATLGSgnLLRLTGW<br>(SEQ ID NO:414)   | 1.8                        |
| Vpr: 59-67                  | AIIRILQQL<br>(SEQ ID<br>NO:407)    | 93                         | AIIRILQQLGSgnLLRLTGW<br>(SEQ ID NO:415)   | 0.6                        |
| Nef: 190-198                | AFHHVAREL<br>(SEQ ID<br>NO:408)    | 84                         | AFHHVARELGSgnLLRLTGW<br>(SEQ ID NO:416)   | 2.1                        |

## EXAMPLE 13

[0121] For immunological studies in mice, a murine MHC H2-K(b) epitope from ovalbumin, SIINFEKL (SEQ ID NO:357) (amino acids 257-264), and a H2-K(b) peptide from the nucleoprotein of vesicular stomatitis virus (VSV), RGYVYQGL (SEQ ID NO:370) (amino acids 52-59) were used for the preparation of hybrid antigens. The following table sets forth the sequences and the affinities for hsp70 of the epitopes alone and in hybrid antigens.

| Mouse Epitope                         | Epitope alone               |                         | Hybrid antigen comprising epitope      |                         |
|---------------------------------------|-----------------------------|-------------------------|----------------------------------------|-------------------------|
|                                       | Epitope sequence            | Affinity for hsp70 (μM) | Hybrid antigen sequence                | Affinity for hsp70 (μM) |
| Ovalbumin: amino acids 257-264        | SIINFEKL<br>(SEQ ID NO:357) | 235                     | NLLRLTGWGSGSIINFEKL<br>(SEQ ID NO:383) | 1.6                     |
| VSV nucleo-protein: amino acids 52-59 | RGYVYQGL<br>(SEQ ID NO:370) | 82                      | NLLRLTGWGSGRGYVYQGL<br>(SEQ ID NO:386) | 1.4                     |

## EXAMPLE 14

[0122] Mice were immunized s.c. at the base of the tail with hsp70 alone, hsp70 complexed with SIINFEKL (SEQ ID NO:357), and hybrid SIINFEKL (SEQ ID NO:357) peptide with or without HSP70. The doses were adjusted such that each immunization contained the same amount of SIINFEKL (SEQ ID NO:357), except for hsp70 alone. Seven days later, spleens were harvested and enriched for CD8+ T cells, which were put into an *ex vivo* IFN- $\gamma$  ELISPOT assay. Responses after pulsing with SIINFEKL (SEQ ID NO:357) ("SIINFEKL") were recorded in the following table, which includes the doses, and the number of spots (mean  $\pm$  standard error) per  $4 \times 10^5$  CD8 T cells, of  $\geq$  four experiments with at least three mice per group. Controls included medium alone ("medium control"), unpulsed T cells ("unpulsed control"), T cells pulsed with a non-immunized peptide derived from VSV, RGYVYQGL (SEQ ID NO:370) ("VSV control"), and exposure to concanavalin A as a positive control ("Con A positive control").

[0123] In the same experiment, a  $^{51}\text{Cr}$ -release assay as described above was done using SIINFEKL -pulsed target cells. At an effector to target cell ratio of 200:1, the percent killing results obtained are shown in the far right column of the following table.

(200-10)

| Immunogen                                      | Number of Spots per 400,000 cells |                    |                    |                    |                        | CTL assay:<br>% killing at<br>200:1 E/T |
|------------------------------------------------|-----------------------------------|--------------------|--------------------|--------------------|------------------------|-----------------------------------------|
|                                                | SIINFEKL                          | Medium control     | Unpulsed control   | VSV control        | Con A positive control |                                         |
| 4.4 μg Hsp70                                   | 0.00<br>$\pm$ 0.00                | 1.50<br>$\pm$ 2.12 | 0.67<br>$\pm$ 0.58 | 0.33<br>$\pm$ 0.58 | 834<br>$\pm$ 28.3      | 0%                                      |
| 4.4 μg Hsp70 + 0.9 μg SIINFEKL (SEQ ID NO:357) | 33.7<br>$\pm$ 7.09                | 0.00<br>$\pm$ 0.00 | 0.33<br>$\pm$ 0.58 | 0.00<br>$\pm$ 0.00 | 1000<br>$\pm$ 33.7     | 19%                                     |
| 4.4 μg Hsp70 + 2.0 μg                          | 80.0                              | 0.00               | 1.50               | 1.50               | 1170                   | 38%                                     |

|                                       |        |       |       |       |       |  |
|---------------------------------------|--------|-------|-------|-------|-------|--|
| NLLRLTGWSGSIINFEKL<br>(SEQ ID NO:383) | ± 17.0 | ±0.00 | ±0.71 | ±0.71 | ±56.5 |  |
|---------------------------------------|--------|-------|-------|-------|-------|--|

## EXAMPLE 15

[0124] An experiment similar to that described above was carried out, which also included hybrid antigen without hsp70.

5 (200-11)

| Immunogen                                                | Number of Spots per $4 \times 10^5$ CD8 T cells |                |                  |                |                        |
|----------------------------------------------------------|-------------------------------------------------|----------------|------------------|----------------|------------------------|
|                                                          | SIINFEKL                                        | Medium control | Unpulsed control | VSV control    | Con A Positive control |
| 4.4 µg Hsp70                                             | 0.33<br>± 0.58                                  | 1.00<br>± 1.73 | 1.67<br>± 1.15   | 4.00<br>± 1.00 | 965<br>± 62.6          |
| 4.4 µg Hsp70 + 0.9 µg SIINFEKL (SEQ ID NO:357)           | 1.67<br>± 0.58                                  | 1.00<br>± 1.00 | 2.00<br>± 0.00   | 2.67<br>± 2.08 | 591<br>± 48.1          |
| 4.4 µg Hsp70 + 2.0 µg NLLRLTGWSGSIINFEKL (SEQ ID NO:383) | 12.0<br>± 5.2                                   | 2.67<br>± 0.58 | 1.67<br>± 1.15   | 2.00<br>± 2.65 | 748<br>± 58.6          |

## EXAMPLE 16

[0125] A further experiment was carried out similar to that described above.

10 (200-12)

| Immunogen                                                   | Number of spots per 300,000 CD8 T cells |                |                  |                |                        | CTL assay:<br>% killing at<br>200:1 E/T |
|-------------------------------------------------------------|-----------------------------------------|----------------|------------------|----------------|------------------------|-----------------------------------------|
|                                                             | SIINFEKL                                | Medium control | Unpulsed control | VSV control    | Con A positive control |                                         |
| 4.4 µg Hsp70                                                | 0.67<br>± 0.58                          | 0.00<br>± 0.00 | 0.50<br>± 0.71   | 1.00<br>± 1.41 | 552<br>± 24.0          | 8.45<br>± 41.3                          |
| 4.4 µg Hsp70 + 0.9 µg SIINFEKL (SEQ ID NO:357)              | 3.33<br>± 2.52                          | 0.00<br>± 0.00 | 0.33<br>± 0.58   | 0.33<br>± 0.58 | 450<br>± 69.0          | 43.0<br>± 21.2                          |
| 4.4 µg Hsp70 + 2.00 µg NLLRLTGWSGS-SIINFEKL (SEQ ID NO:383) | 134<br>± 4.16                           | 1.33<br>± 1.53 | 0.67<br>± 1.15   | 1.00<br>± 1.00 | 865<br>± 93.0          | 31.9<br>± 5.41                          |

[0126] The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

[0127] Various publications are cited herein, the contents of which are hereby incorporated by reference in their entireties.

5 [0128] Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

10 [0129] A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission or a suggestion that that document or matter was, known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.

**The claims defining the invention are as follows:**

1. A hybrid antigen comprising at least one antigenic domain of an infectious agent or tumor antigen and a binding domain that non-covalently binds to a heat shock protein, wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Thr Trp (SEQ ID NO:186), or Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419).
2. The hybrid antigen of Claim 1 wherein a peptide linker separates the antigenic domain and the binding domain.
3. A hybrid antigen consisting essentially of at least one antigenic domain of an infectious agent or tumor antigen, a binding domain that non-covalently binds to a heat shock protein, and a peptide linker separating the antigenic domain and the binding domain, and wherein the binding domain comprises Asn Leu Leu Arg Leu Thr Gly Trp (SEQ ID NO:417), Phe Tyr Gln Leu Ala Leu Thr Trp (SEQ ID NO:186), or Arg Lys Leu Phe Phe Asn Leu Arg Trp (SEQ ID NO:419).
4. The hybrid antigen of any one of Claims 1-3, wherein at least one of the antigenic domains is a T helper epitope or a cytotoxic T cell epitope.
5. The hybrid antigen of any one of Claims 1-4, wherein said hybrid antigen is in the range of 10-500 amino acids.
6. The hybrid antigen of any one of Claims 1-5, wherein said antigenic domain is of a tumor antigen associated with a cancer.
7. The hybrid antigen of Claim 6, wherein the cancer is selected from the group consisting of sarcoma, lymphoma, leukemia, melanoma, carcinoma of the breast, carcinoma of the prostate, ovarian carcinoma, carcinoma of the cervix, uterine carcinoma, colon carcinoma, carcinoma of the lung, glioblastoma, and astrocytoma.

8. The hybrid antigen of any one of Claims 1-5, wherein said antigenic domain is of an infectious agent.
9. The hybrid antigen of Claim 8, wherein the infectious agent is selected from the group consisting of a bacterium, a virus, a protozoan, a mycoplasma, a fungus, a yeast, a parasite, and a prion.
10. The hybrid antigen of Claim 9, wherein the infectious agent is a bacterium selected from the group consisting of *Salmonella*, *Staphylococcus*, *Streptococcus*, *Enterococcus*, *Clostridium*, *Escherichia*, *Klebsiella*, *Vibrio*, *Mycobacterium*, and *Mycoplasma pneumoniae*.
11. The hybrid antigen of Claim 9, wherein the infectious agent is a virus selected from the group consisting of a human papilloma virus, herpes virus, retrovirus, hepatitis virus, influenza virus, rhinovirus, respiratory syncytial virus, cytomegalovirus, adenovirus, herpes simplex virus, herpes zoster virus, human immunodeficiency virus 1, and human immunodeficiency virus 2.
12. The hybrid antigen of Claim 9, wherein the infectious agent is a protozoan selected from the group consisting of an amoeba, a malarial parasite, and *Trypanosoma cruzi*.
13. A composition comprising at least one hybrid antigen of any one of Claims 1-12 and a pharmaceutically acceptable carrier.
14. A composition comprising (a) a non-covalent complex of at least one hybrid antigen of any one of Claims 1-12 and at least one heat shock protein, and (b) a pharmaceutically acceptable carrier.
15. The composition of Claim 14, wherein the at least one heat shock protein is gp96 or hsp90.
16. The composition of Claim 14, wherein the at least one heat shock protein is a hsp70 family member.

17. The composition of Claim 16, wherein the hsp70 family member is BiP, hsp 70 or hsc70.
18. The composition of any one of Claims 13-17 further comprising one or more adjuvants.
19. A composition comprising a plurality of the hybrid antigens of any one of Claims 1-12.
20. The composition of Claim 19 further comprising a plurality of heat shock proteins non-covalently complexed to the hybrid antigens.
21. A method for inducing an immune response in a subject to an infectious agent comprising administering to the subject at least one hybrid antigen of any one of Claims 1-5 and 8-12, wherein said at least one hybrid antigen comprises at least one antigenic domain of said infectious agent.
22. A method for inducing an immune response in a subject to an infectious agent comprising administering to the subject a complex of:
  - (a) at least one hybrid antigen of any one of Claims 1-5 and 8-12, wherein said at least one hybrid antigen comprises at least one antigenic domain of said infectious agent; and
  - (b) at least one heat shock protein;wherein the hybrid antigen and the at least one heat shock protein are non-covalently bound.
23. A method for treating an infectious disease comprising administering to a subject having an infectious disease at least one hybrid antigen of any one of Claims 1-5 and 8-12, which said at least one hybrid antigen comprises at least one antigenic domain of said infectious agent, and wherein said infectious agent causes said infectious disease.

24. A method for treating an infectious disease comprising administering to a subject having an infectious disease a complex of:

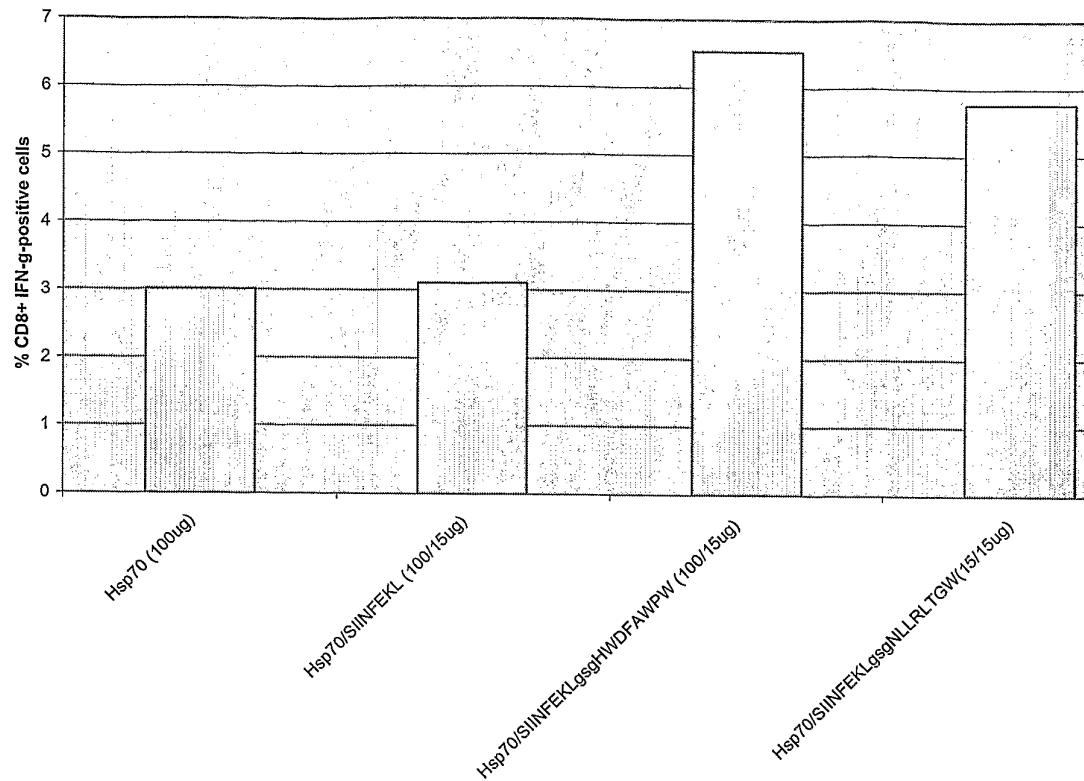
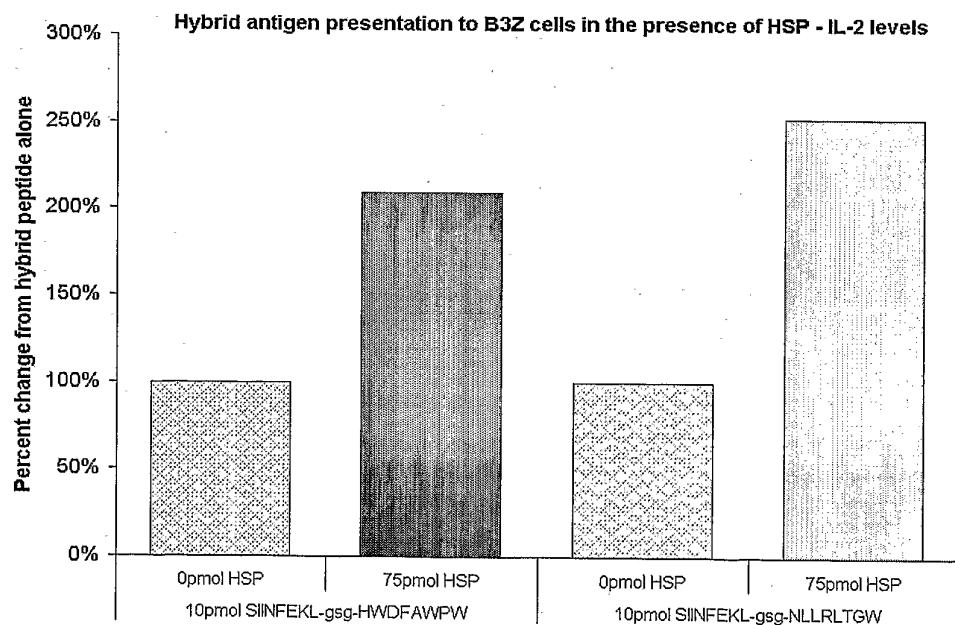
(a) at least one hybrid antigen of any one of Claims 1-5 and 8-12, wherein said at least one hybrid antigen comprises at least one antigenic domain of an infectious agent, and wherein said infectious agent causes said infectious disease; and

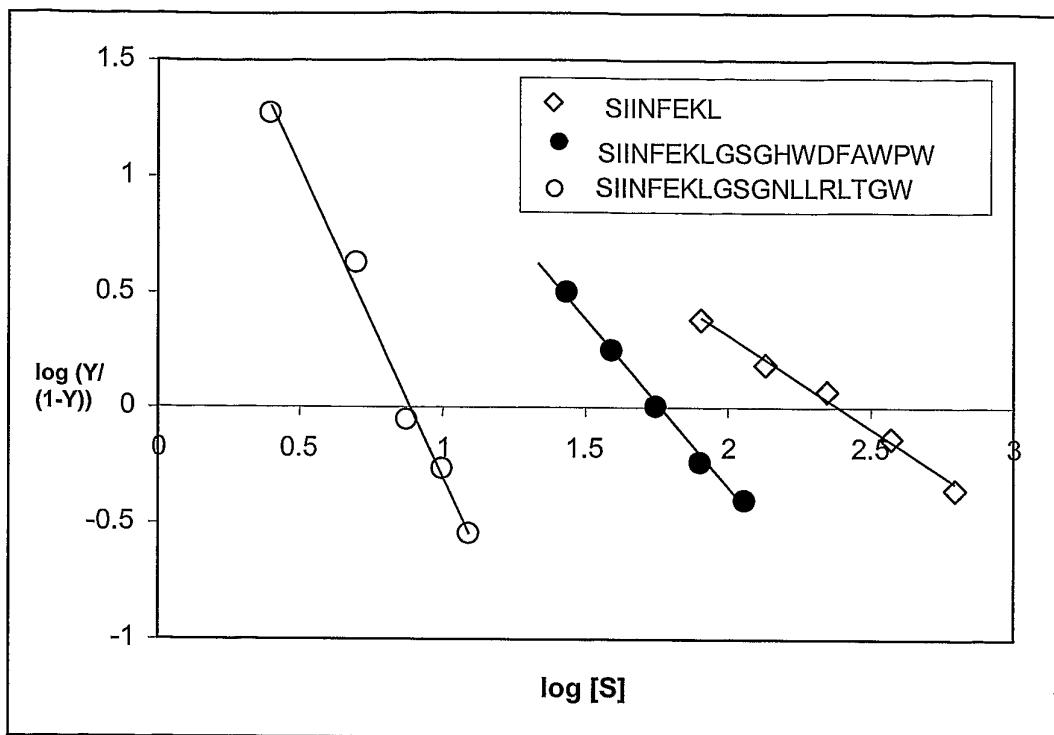
(b) at least one heat shock protein;

wherein the hybrid antigen and the at least one heat shock protein are non-covalently bound.

25. A method for inducing an immune response in a subject to a tumor antigen comprising administering to the subject at least one hybrid antigen of any one of Claims 1-7, wherein said at least one hybrid antigen comprises at least one antigenic domain of said tumor antigen.

26. A method for inducing an immune response in a subject to a tumor antigen comprising administering to a subject a complex of:



(a) at least one hybrid antigen of any one of Claims 1-7, wherein said at least one hybrid antigen comprises at least one antigenic domain of said tumor antigen; and

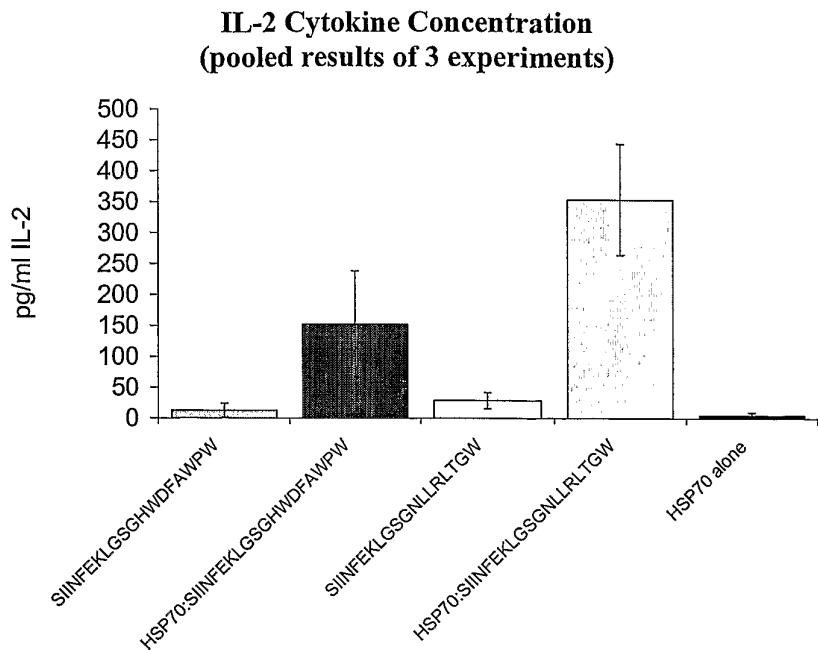

(b) at least one heat shock protein;

wherein the hybrid antigen and the at least one heat shock protein are non-covalently bound.

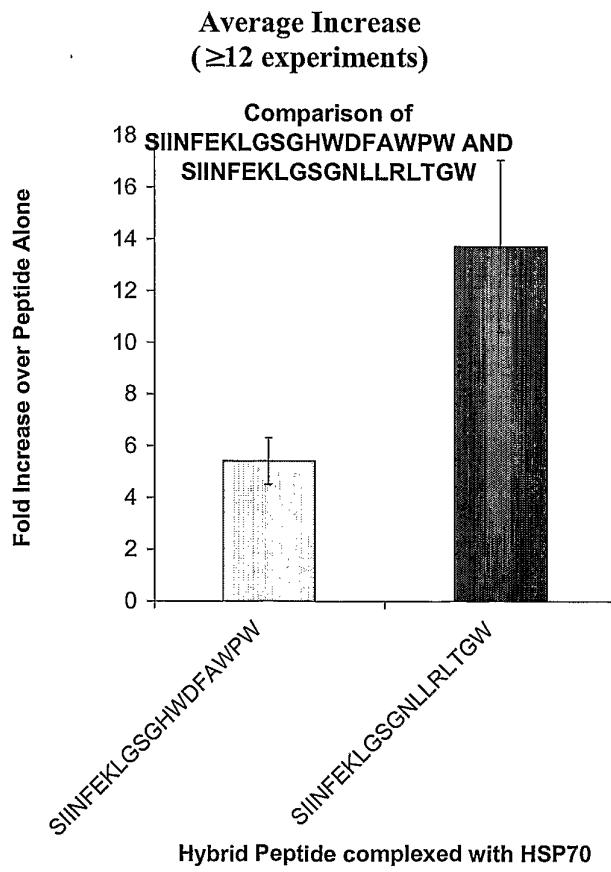
27. A method for treating cancer comprising administering to a subject having a cancer at least one hybrid antigen of any one of Claims 1-7, which said at least one hybrid antigen comprises at least one antigenic domain of a tumor antigen, and wherein said tumor antigen is associated with said cancer.

28. A method for treating cancer comprising administering to a subject having a cancer a complex of: x
  - (a) at least one hybrid antigen of any one of Claims 1-7, which said at least one hybrid antigen comprises at least one antigenic domain of a tumor antigen, and wherein said tumor antigen is associated with said cancer; and
  - (b) at least one heat shock protein;  
wherein the hybrid antigen and the at least one heat shock protein are non-covalently bound.
29. The method of any one of Claims 22, 24, 26, or 28, wherein the at least one heat shock protein is a hsp70 family member.
30. The method of any one of Claims 21-29, wherein the subject is a human.
31. The hybrid antigen of claim 1 or claim 3, substantially as hereinbefore described with reference to any one of the examples and/or figures.
32. The method according to any one of claims 21-30, substantially as hereinbefore described with reference to any one of the examples and/or figures.

**Figure 1****Figure 2**

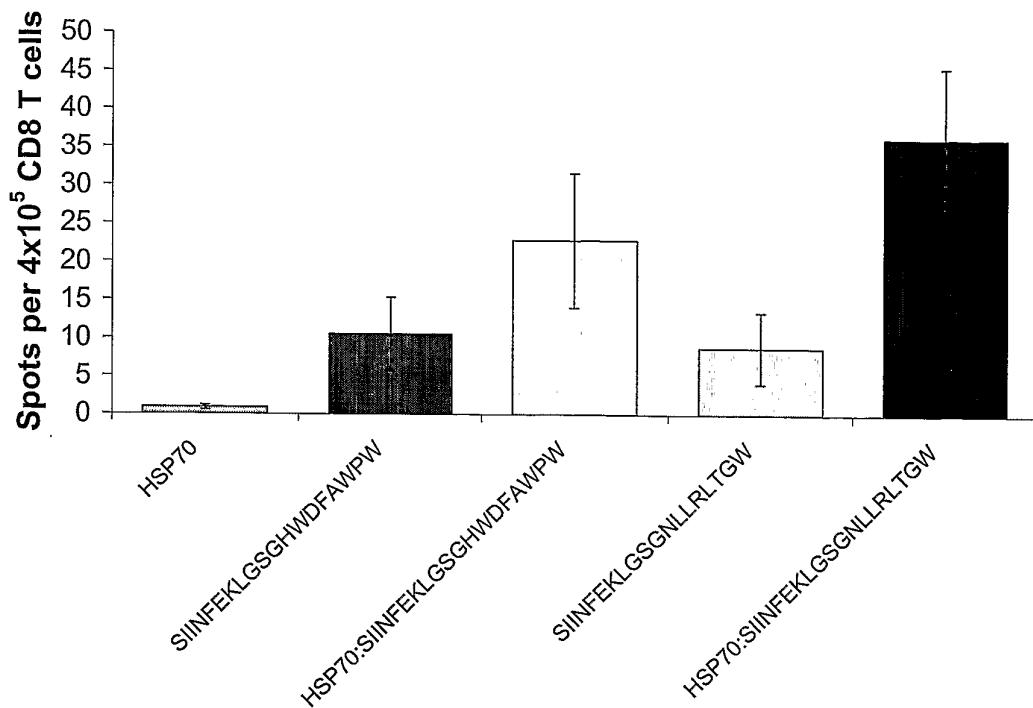



[S] = concentration of hybrid peptide


Y = fraction of labeled reporter peptide bound

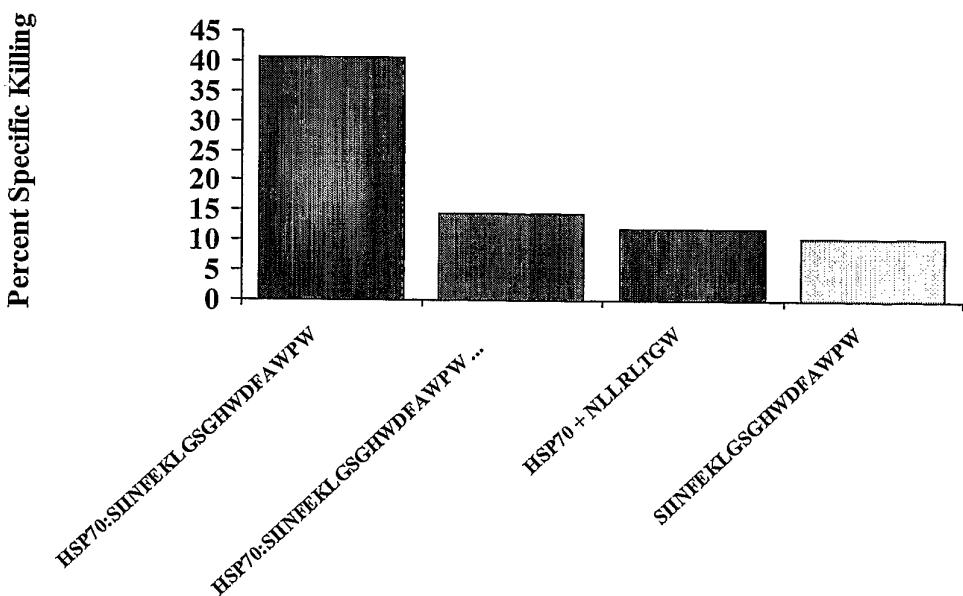
**Figure 3**

## *In Vitro Macrophage-T cell Activation Assay*



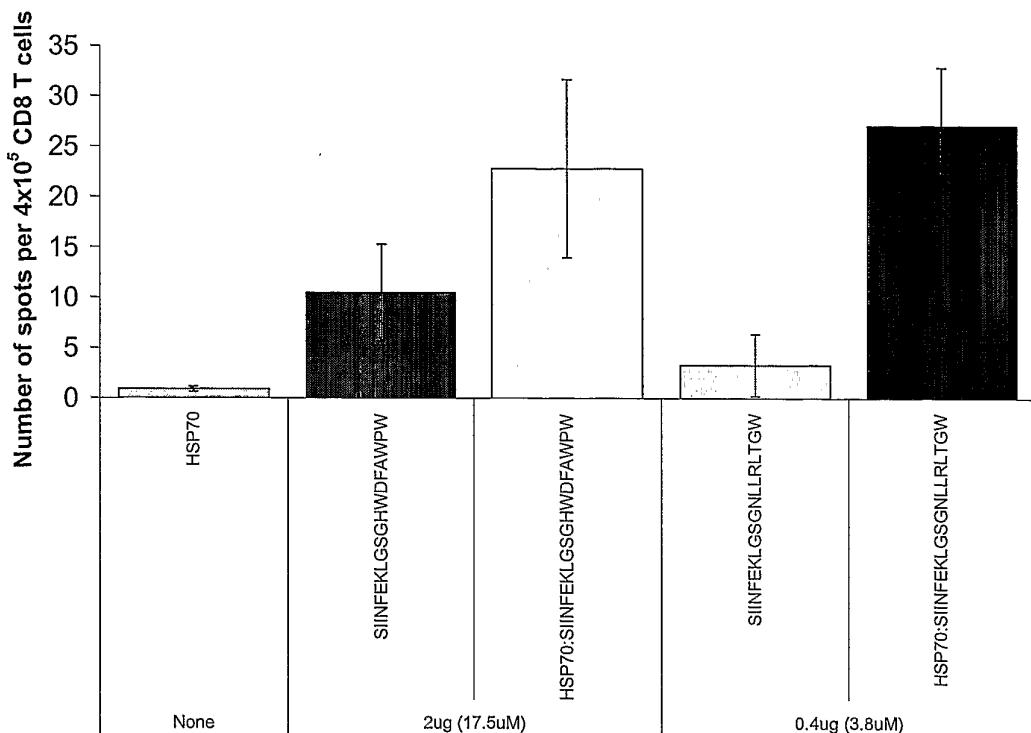

**Figure 4a**




**Figure 4b**

*In Vivo* Responses to HSP70:Hybrid Peptide complexes




**Figure 5**

Blocking of *In Vivo* Responses to HSP70:SINFKEKLGSGLSGHWDFAWDW complexes with the addition of higher affinity NLLRLTGW



**Figure 6**

**Smaller Doses of Higher Affinity Javelin-Epitope can Elicit Immune Responses *in vivo***



**Figure 7**

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

2nd Substi SEQUENCE LISTING

<110> Antigenics Inc.  
<120> IMPROVED HEAT SHOCK PROTEIN-BASED VACCINES AND  
IMMUNOTHERAPIES  
<130> 8449-405  
<140> 10/776,521  
<141> 2004-02-12  
<150> 60/503,417  
<151> 2003-09-16  
<150> 60/463,746  
<151> 2003-04-18  
<150> 60/462,469  
<151> 2003-04-11  
<150> 60/447,142  
<151> 2003-02-13  
<160> 419  
<170> FastSEQ for windows Version 4.0  
<210> 1  
<211> 4  
<212> PRT  
<213> Malaria  
<400> 1  
Asn Ala Asn Pro  
1  
  
<210> 2  
<211> 9  
<212> PRT  
<213> Unknown  
  
<220>  
<223> HLA-A2 peptide binding motif  
  
<220>  
<221> VARIANT  
<222> 2  
<223> Xaa = Leu or Met  
  
<220>  
<221> VARIANT  
<222> 6  
<223> Xaa = Val or Ile or Leu or Thr  
  
<220>  
<221> VARIANT  
<222> 9  
<223> Xaa = Val or Leu  
  
<220>  
<221> VARIANT  
<222> 1,3 , 4, 5, 7, 8  
<223> Xaa = any amino acid  
  
<400> 2

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

xaa  
1 5

<210> 3  
<211> 9  
<212> PRT  
<213> Unknown

<220>  
<223> HLA-A2 peptide binding motif

<220>  
<221> VARIANT  
<222> 2  
<223> Xaa = Leu or Met

<220>  
<221> VARIANT  
<222> 1, 3, 4, 5, 6, 7, 8  
<223> Xaa = any amino acid

<400> 3  
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Val  
1 5

<210> 4  
<211> 8  
<212> PRT  
<213> Unknown

<220>  
<223> HLA-A2 peptide binding motif

<220>  
<221> VARIANT  
<222> 2  
<223> Xaa = Val or Gln

<220>  
<221> VARIANT  
<222> 1, 3, 4, 5, 6, 7,  
<223> Xaa = any amino acid

<400> 4  
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu  
1 5

<210> 5  
<211> 5  
<212> PRT  
<213> Unknown

<220>  
<223> HLA-DR peptide binding motif

<400> 5  
Gln Lys Arg Ala Ala  
1 5

<210> 6  
<211> 5  
<212> PRT  
<213> Unknown

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> HLA-DR peptide binding motif

<400> 6  
Arg Arg Arg Ala Ala  
1 5

<210> 7  
<211> 7  
<212> PRT  
<213> Unknown

<220>  
<223> motif in heptameric region recognized by heat  
shock protein

<220>  
<221> VARIANT  
<222> 2  
<223> Xaa = Trp or any amino acid

<220>  
<221> VARIANT  
<222> 1, 3, 5, 7  
<223> Xaa = hydrophobic amino acid residues

<220>  
<221> VARIANT  
<222> 4, 6  
<223> Xaa = any amino acid

<400> 7  
Xaa Xaa Xaa Xaa Xaa Xaa Xaa  
1 5

<210> 8  
<211> 7  
<212> PRT  
<213> Unknown

<220>  
<223> motif in heptameric region recognized by heat  
shock protein

<220>  
<221> VARIANT  
<222> 2  
<223> Xaa = Trp or any amino acid

<220>  
<221> VARIANT  
<222> 1, 3, 5, 7,  
<223> Xaa = hydrophobic amino acid residue, particularly  
tryptophan, leucine or phenylalanine

<220>  
<221> VARIANT  
<222> 4, 6  
<223> Xaa = any amino acid

<400> 8  
Xaa Xaa Xaa Xaa Xaa Xaa Xaa  
1 5

<210> 9

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<211> 4  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> mutated heat shock protein peptide

<400> 9  
Lys Asp Glu Leu  
1

<210> 10  
<211> 10  
<212> PRT  
<213> Adeno Virus

<400> 10  
Ser Gly Pro Ser Asn Thr Pro Pro Glu Ile  
1 5 10

<210> 11  
<211> 11  
<212> PRT  
<213> Lymphocytic Choriomeningitis Virus (LCMV)

<400> 11  
Ser Gly Val Glu Asn Pro Gly Gly Tyr Cys Leu  
1 5 10

<210> 12  
<211> 10  
<212> PRT  
<213> Lymphocytic Choriomeningitis Virus (LCMV)

<400> 12  
Lys Ala Val Tyr Asn Phe Ala Thr Cys Gly  
1 5 10

<210> 13  
<211> 9  
<212> PRT  
<213> Lymphocytic Choriomeningitis Virus (LCMV)

<400> 13  
Arg Pro Gln Ala Ser Gly Val Tyr Met  
1 5

<210> 14  
<211> 9  
<212> PRT  
<213> Lymphocytic Choriomeningitis Virus (LCMV)

<400> 14  
Phe Gln Pro Gln Asn Gly Gln Phe Ile  
1 5

<210> 15  
<211> 9  
<212> PRT  
<213> Influenza Virus

<400> 15  
Ile Glu Gly Gly Trp Thr Gly Met Ile

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

1

5

<210> 16  
<211> 10  
<212> PRT  
<213> Influenza Virus

<400> 16  
Thr Tyr Val Ser Val Ser Thr Ser Thr Leu  
1 5 10

<210> 17  
<211> 8  
<212> PRT  
<213> Influenza Virus

<400> 17  
Phe Glu Ala Asn Gly Asn Leu Ile  
1 5

<210> 18  
<211> 9  
<212> PRT  
<213> Influenza Virus

<400> 18  
Ile Tyr Ser Thr Val Ala Ser Ser Leu  
1 5

<210> 19  
<211> 9  
<212> PRT  
<213> Influenza Virus

<400> 19  
Thr Tyr Gln Arg Thr Arg Ala Leu Val  
1 5

<210> 20  
<211> 9  
<212> PRT  
<213> Influenza Virus

<400> 20  
Cys Thr Glu Leu Lys Leu Ser Asp Tyr  
1 5

<210> 21  
<211> 8  
<212> PRT  
<213> Influenza Virus

<400> 21  
Ser Asp Tyr Glu Gly Arg Leu Ile  
1 5

<210> 22  
<211> 9  
<212> PRT  
<213> Influenza Virus

20042120033 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 22  
Glu Glu Gly Ala Ile Val Gly Glu Ile  
1 5

<210> 23  
<211> 9  
<212> PRT  
<213> Influenza virus

<400> 23  
Val Ser Asp Gly Gly Pro Asn Leu Tyr  
1 5

<210> 24  
<211> 9  
<212> PRT  
<213> Influenza virus

<400> 24  
Ala Ser Asn Glu Asn Met Glu Thr Met  
1 5

<210> 25  
<211> 9  
<212> PRT  
<213> Influenza virus

<400> 25  
Ala Ser Asn Glu Asn Met Asp Ala Met  
1 5

<210> 26  
<211> 10  
<212> PRT  
<213> Influenza virus

<400> 26  
Lys Leu Gly Glu Phe Tyr Asn Gln Met Met  
1 5 10

<210> 27  
<211> 9  
<212> PRT  
<213> Influenza virus

<400> 27  
Leu Tyr Gln Asn Val Gly Thr Tyr Val  
1 5

<210> 28  
<211> 10  
<212> PRT  
<213> Influenza virus

<400> 28  
Thr Tyr Val Ser Val Gly Thr Ser Thr Leu  
1 5 10

<210> 29  
<211> 8  
<212> PRT

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<213> Influenza Virus

<400> 29

Phe Glu Ser Thr Gly Asn Leu Ile  
1 5

<210> 30

<211> 9

<212> PRT

<213> Influenza Virus

<400> 30

Val Tyr Gln Ile Leu Ala Ile Tyr Ala  
1 5

<210> 31

<211> 9

<212> PRT

<213> Influenza Virus

<400> 31

Ile Tyr Ala Thr Val Ala Gly Ser Leu  
1 5

<210> 32

<211> 9

<212> PRT

<213> Influenza Virus

<400> 32

Gly Ile Leu Gly Phe Val Phe Thr Leu  
1 5

<210> 33

<211> 10

<212> PRT

<213> Influenza Virus

<400> 33

Ile Leu Gly Phe Val Phe Thr Leu Thr Val  
1 5 10

<210> 34

<211> 9

<212> PRT

<213> Influenza Virus

<400> 34

Ile Leu Arg Gly Ser Val Ala His Lys  
1 5

<210> 35

<211> 9

<212> PRT

<213> Influenza Virus

<400> 35

Glu Asp Leu Arg Val Leu Ser Phe Ile  
1 5

<210> 36

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<211> 9  
<212> PRT  
<213> Influenza Virus  
  
<400> 36  
Glu Leu Arg Ser Arg Tyr Trp Ala Ile  
1 5

<210> 37  
<211> 9  
<212> PRT  
<213> Influenza Virus  
<400> 37  
Ser Arg Tyr Trp Ala Ile Arg Thr Arg  
1 5

<210> 38  
<211> 9  
<212> PRT  
<213> Influenza Virus  
  
<400> 38  
Lys Thr Gly Gly Pro Ile Tyr Lys Arg  
1 5

<210> 39  
<211> 9  
<212> PRT  
<213> Sendai Virus  
  
<400> 39  
Phe Ala Pro Gly Asn Tyr Pro Ala Leu  
1 5

<210> 40  
<211> 9  
<212> PRT  
<213> Measles Virus  
  
<400> 40  
Arg Arg Tyr Pro Asp Ala Val Tyr Leu  
1 5

<210> 41  
<211> 9  
<212> PRT  
<213> Measles Virus  
  
<400> 41  
Asp Pro Val Ile Asp Arg Leu Tyr Leu  
1 5

<210> 42  
<211> 9  
<212> PRT  
<213> Measles Virus  
  
<400> 42  
Ser Pro Gly Arg Ser Phe Ser Tyr Phe  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 43  
<211> 9  
<212> PRT  
<213> Measles Virus

<400> 43  
Tyr Pro Ala Leu Gly Leu His Glu Phe  
1 5

<210> 44  
<211> 8  
<212> PRT  
<213> Polio Virus

<400> 44  
Thr Tyr Lys Asp Thr Val Gln Leu  
1 5

<210> 45  
<211> 10  
<212> PRT  
<213> Polio Virus

<400> 45  
Phe Tyr Asp Gly Phe Ser Lys Val Pro Leu  
1 5 10

<210> 46  
<211> 11  
<212> PRT  
<213> Human Cytomegalovirus (HCMV)

<400> 46  
Phe Ile Ala Gly Asn Ser Ala Tyr Glu Tyr Val  
1 5 10

<210> 47  
<211> 9  
<212> PRT  
<213> Mouse Cytomegalovirus (MCMV)

<400> 47  
Tyr Pro His Phe Met Pro Thr Asn Leu  
1 5

<210> 48  
<211> 9  
<212> PRT  
<213> Coronavirus

<400> 48  
Ala Pro Thr Ala Gly Ala Phe Phe Phe  
1 5

<210> 49  
<211> 11  
<212> PRT  
<213> Hepatitis B Virus

<400> 49  
Ser Thr Leu Pro Glu Thr Thr Val Val Arg Arg  
1 5 10

05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<210> 50  
<211> 10  
<212> PRT  
<213> Hepatitis B virus

<400> 50  
Phe Leu Pro Ser Asp Phe Phe Pro Ser Val  
1 5 10

<210> 51  
<211> 9  
<212> PRT  
<213> Hepatitis B virus

<400> 51  
Trp Leu Ser Leu Leu Val Pro Phe Val  
1 5

<210> 52  
<211> 10  
<212> PRT  
<213> Hepatitis B virus

<400> 52  
Gly Leu Ser Pro Thr Val Trp Leu Ser Val  
1 5 10

<210> 53  
<211> 9  
<212> PRT  
<213> Hepatitis C virus

<400> 53  
Asp Leu Met Gly Tyr Ile Pro Leu Val  
1 5

<210> 54  
<211> 10  
<212> PRT  
<213> Hepatitis C Virus

<400> 54  
Leu Met Gly Tyr Ile Pro Leu Val Gly Ala  
1 5 10

<210> 55  
<211> 8  
<212> PRT  
<213> Hepatitis C Virus

<400> 55  
Ala Ser Arg Cys Trp Val Ala Met  
1 5

<210> 56  
<211> 10  
<212> PRT  
<213> Hepatitis C Virus

<400> 56

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Lys Leu Val Ala Leu Gly Ile Asn Ala Val  
1 5 10

<210> 57  
<211> 9  
<212> PRT  
<213> Epstein Barr Virus

<400> 57  
Phe Leu Arg Gly Arg Ala Tyr Gly Leu  
1 5

<210> 58  
<211> 9  
<212> PRT  
<213> Epstein Barr Virus

<400> 58  
Arg Arg Ile Tyr Asp Leu Ile Glu Leu  
1 5

<210> 59  
<211> 9  
<212> PRT  
<213> Epstein Barr Virus

<400> 59  
Ile Val Thr Asp Phe Ser Val Ile Lys  
1 5

<210> 60  
<211> 9  
<212> PRT  
<213> Epstein Barr Virus

<400> 60  
Arg Arg Arg Trp Arg Arg Leu Thr Val  
1 5

<210> 61  
<211> 10  
<212> PRT  
<213> Epstein Barr Virus

<400> 61  
Glu Glu Asn Leu Leu Asp Phe Val Arg Phe  
1 5 10

<210> 62  
<211> 9  
<212> PRT  
<213> Epstein Barr Virus

<400> 62  
Cys Leu Gly Gly Leu Leu Thr Met Val  
1 5

<210> 63  
<211> 8  
<212> PRT  
<213> Herpes Simplex Virus

20042120033 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 63  
Ser Ser Ile Glu Phe Ala Arg Leu  
1 5

<210> 64  
<211> 11  
<212> PRT  
<213> Herpes Simplex Virus

<400> 64  
Leu Tyr Arg Thr Phe Ala Gly Asn Pro Arg Ala  
1 5 10

<210> 65  
<211> 9  
<212> PRT  
<213> Herpes Simplex Virus

<400> 65  
Asp Tyr Ala Thr Leu Gly Val Gly Val  
1 5

<210> 66  
<211> 9  
<212> PRT  
<213> Human Papilloma Virus

<400> 66  
Leu Leu Leu Gly Thr Leu Asn Ile Val  
1 5

<210> 67  
<211> 9  
<212> PRT  
<213> Human Papilloma Virus

<400> 67  
Leu Leu Met Gly Thr Leu Gly Ile Val  
1 5

<210> 68  
<211> 9  
<212> PRT  
<213> Human Papilloma Virus

<400> 68  
Thr Leu Gln Asp Ile Val Leu His Leu  
1 5

<210> 69  
<211> 9  
<212> PRT  
<213> Human Papilloma Virus

<400> 69  
Gly Leu His Cys Tyr Glu Gln Leu Val  
1 5

<210> 70  
<211> 9

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<212> PRT  
<213> Human Papilloma Virus

<400> 70  
Pro Leu Lys Gln His Phe Gln Ile Val  
1 5

<210> 71  
<211> 9  
<212> PRT  
<213> Human Papilloma Virus

<400> 71  
Arg Leu Val Thr Leu Lys Asp Ile Val  
1 5

<210> 72  
<211> 9  
<212> PRT  
<213> Human Papilloma Virus

<400> 72  
Arg Ala His Tyr Asn Ile Val Thr Phe  
1 5

<210> 73  
<211> 9  
<212> PRT  
<213> Human T-cell Leukemia Virus

<400> 73  
Leu Leu Phe Gly Tyr Pro Val Tyr Val  
1 5

<210> 74  
<211> 10  
<212> PRT  
<213> Simian Virus 40

<400> 74  
Ser Ala Ile Asn Asn Tyr Ala Gln Lys Leu  
1 5 10

<210> 75  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 75  
His Gln Ala Ile Ser Pro Arg Thr Leu  
1 5

<210> 76  
<211> 12  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 76  
Gln Met Val His Gln Ala Ile Ser Pro Arg Thr Leu  
1 5 10

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 77  
<211> 9  
<212> PRT  
<213> Simian Virus 40  
  
<400> 77  
Cys Lys Gly Val Asn Lys Glu Tyr Leu  
1 5

<210> 78  
<211> 9  
<212> PRT  
<213> Simian Virus 40  
  
<400> 78  
Gln Gly Ile Asn Asn Leu Asp Asn Leu  
1 5

<210> 79  
<211> 9  
<212> PRT  
<213> Simian Virus 40  
  
<400> 79  
Asn Asn Leu Asp Asn Leu Arg Asp Tyr  
1 5

<210> 80  
<211> 9  
<212> PRT  
<213> Simian Virus 40  
  
<400> 80  
Ser Glu Phe Leu Leu Glu Lys Arg Ile  
1 5

<210> 81  
<211> 9  
<212> PRT  
<213> Respiratory Syncytial Virus

<400> 81  
Ser Tyr Ile Gly Ser Ile Asn Asn Ile  
1 5

<210> 82  
<211> 10  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 82  
Ile Leu Gly Asn Lys Ile Val Arg Met Tyr  
1 5 10

<210> 83  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 83  
Arg Leu Arg Pro Gly Gly Lys Lys Lys  
1 5

05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 84  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 84  
Glu Ile Lys Asp Thr Lys Glu Ala Leu  
1 5

2004212003

<210> 85  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 85  
Gly Glu Ile Tyr Lys Arg Trp Ile Ile  
1 5

<210> 86  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 86  
Glu Ile Tyr Lys Arg Trp Ile Ile Leu  
1 5

<210> 87  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 87  
Arg Tyr Leu Lys Asp Gln Gln Leu Leu  
1 5

<210> 88  
<211> 10  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 88  
Arg Gly Pro Gly Arg Ala Phe Val Thr Ile  
1 5 10

<210> 89  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 89  
Ile Val Gly Leu Asn Lys Ile Val Arg  
1 5

<210> 90  
<211> 10  
<212> PRT  
<213> Human Immunodeficiency Virus  
  
<400> 90

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Thr Val Tyr Tyr Gly Val Pro Val Trp Lys  
1 5 10

<210> 91  
<211> 11  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 91  
Arg Leu Arg Asp Leu Leu Leu Ile Val Thr Arg  
1 5 10

<210> 92  
<211> 10  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 92  
Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys  
1 5 10

<210> 93  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 93  
Ser Phe Asn Cys Gly Gly Glu Phe Phe  
1 5

<210> 94  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 94  
Gly Arg Ala Phe Val Thr Ile Gly Lys  
1 5

<210> 95  
<211> 10  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 95  
Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu  
1 5 10

<210> 96  
<211> 10  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 96  
Gln Val Pro Leu Arg Pro Met Thr Tyr Lys  
1 5 10

<210> 97  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus

20042120033 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<400> 97  
Thr Glu Met Glu Lys Glu Gly Lys Ile  
1 5

<210> 98  
<211> 9  
<212> PRT  
<213> Human Immunodeficiency Virus

<400> 98  
Ile Leu Lys Glu Pro Val His Gly Val  
1 5

<210> 99  
<211> 9  
<212> PRT  
<213> Rabies virus

<400> 99  
Val Glu Ala Glu Ile Ala His Gln Ile  
1 5

<210> 100  
<211> 8  
<212> PRT  
<213> Vesicular stomatitis virus

<400> 100  
Arg Gly Tyr Val Tyr Gln Gly Leu  
1 5

<210> 101  
<211> 9  
<212> PRT  
<213> Rotavirus

<400> 101  
Tyr Ser Gly Tyr Ile Phe Arg Asp Leu  
1 5

<210> 102  
<211> 9  
<212> PRT  
<213> Rotavirus

<400> 102  
Val Gly Pro Val Phe Pro Pro Gly Met  
1 5

<210> 103  
<211> 8  
<212> PRT  
<213> Rotavirus

<400> 103  
Ile Ile Tyr Arg Phe Leu Leu Ile  
1 5

<210> 104  
<211> 9

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<212> PRT  
<213> Listeria innocua

<400> 104  
Lys Tyr Gly val Ser val Gln Asp Ile  
1 5

<210> 105  
<211> 9  
<212> PRT  
<213> Yersinia pseudotuberculosis

<400> 105  
Ile Gln Val Gly Asn Thr Arg Thr Ile  
1 5

<210> 106  
<211> 9  
<212> PRT  
<213> E.coli

<400> 106  
Thr Pro His Pro Ala Arg Ile Gly Leu  
1 5

<210> 107  
<211> 9  
<212> PRT  
<213> P. falciparum

<400> 107  
Ser Tyr Ile Pro Ser Ala Glu Lys Ile  
1 5

<210> 108  
<211> 8  
<212> PRT  
<213> P. falciparum

<400> 108  
Lys Pro Lys Asp Glu Leu Asp Tyr  
1 5

<210> 109  
<211> 8  
<212> PRT  
<213> P. falciparum

<400> 109  
Lys Ser Lys Asp Glu Leu Asp Tyr  
1 5

<210> 110  
<211> 8  
<212> PRT  
<213> P. falciparum

<400> 110  
Lys Pro Asn Asp Lys Ser Leu Tyr  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 111  
<211> 10  
<212> PRT  
<213> P. falciparum

<400> 111  
Lys Tyr Leu Lys Lys Ile Lys Asn Ser Leu  
1 5 10

<210> 112  
<211> 9  
<212> PRT  
<213> P. falciparum

<400> 112  
Tyr Glu Asn Asp Ile Glu Lys Lys Ile  
1 5

<210> 113  
<211> 9  
<212> PRT  
<213> P. falciparum

<400> 113  
Asn Tyr Asp Asn Ala Gly Thr Asn Leu  
1 5

<210> 114  
<211> 9  
<212> PRT  
<213> P. falciparum

<400> 114  
Asp Glu Leu Asp Tyr Glu Asn Asp Ile  
1 5

<210> 115  
<211> 9  
<212> PRT  
<213> P. yoelii

<400> 115  
Ser Tyr Val Pro Ser Ala Glu Gln Ile  
1 5

<210> 116  
<211> 8  
<212> PRT  
<213> Homo sapiens

<400> 116  
Phe Glu Gln Asn Thr Ala Gln Pro  
1 5

<210> 117  
<211> 8  
<212> PRT  
<213> Homo sapiens

<400> 117  
Phe Glu Gln Asn Thr Ala Gln Ala  
1 5

05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 118  
<211> 9  
<212> PRT  
<213> Homo sapiens  
  
<400> 118  
Glu Ala Asp Pro Thr Gly His Ser Tyr  
1 5

2004212003

<210> 119  
<211> 9  
<212> PRT  
<213> Homo sapiens  
  
<400> 119  
Glu Val Asp Pro Ile Gly His Leu Tyr  
1 5

<210> 120  
<211> 9  
<212> PRT  
<213> Homo sapiens  
  
<400> 120  
Ala Ala Gly Ile Gly Ile Leu Thr Val  
1 5

<210> 121  
<211> 9  
<212> PRT  
<213> Homo sapiens  
  
<400> 121  
Tyr Leu Glu Pro Gly Pro Val Thr Ala  
1 5

<210> 122  
<211> 10  
<212> PRT  
<213> Homo sapiens  
  
<400> 122  
Ile Leu Asp Gly Thr Ala Thr Leu Arg Leu  
1 5 10

<210> 123  
<211> 9  
<212> PRT  
<213> Homo sapiens  
  
<400> 123  
Met Leu Leu Ala Leu Leu Tyr Cys Leu  
1 5

<210> 124  
<211> 9  
<212> PRT  
<213> Homo sapiens

<400> 124

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Tyr Met Asn Gly Thr Met Ser Gln Val  
1 5

<210> 125

<211> 9

<212> PRT

<213> Homo sapiens

<400> 125

Leu Pro Tyr Leu Gly Trp Leu Val Phe  
1 5

<210> 126

<211> 9

<212> PRT

<213> Homo sapiens

<400> 126

Phe Gly Pro Tyr Lys Leu Asn Arg Leu  
1 5

<210> 127

<211> 8

<212> PRT

<213> Homo sapiens

<400> 127

Lys Ser Pro Trp Phe Thr Thr Leu  
1 5

<210> 128

<211> 10

<212> PRT

<213> Homo sapiens

<400> 128

Gly Pro Pro His Ser Asn Asn Phe Gly Tyr  
1 5 10

<210> 129

<211> 9

<212> PRT

<213> Homo sapiens

<400> 129

Ile Ser Thr Gln Asn His Arg Ala Leu  
1 5

<210> 130

<211> 10

<212> PRT

<213> Infleuenza Virus

<400> 130

Tyr Gly Ile Leu Gly Lys Val Phe Thr Leu  
1 5 10

<210> 131

<211> 9

<212> PRT

<213> Human Immunodeficiency Virus

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 131  
Ser Leu Tyr Asn Thr Val Ala Thr Leu  
1 5

<210> 132  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 132  
Gly Lys Trp Val Tyr Ile Gly Trp  
1 5

<210> 133  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 133  
Ala Lys Arg Glu Thr Lys Gly Trp  
1 5

<210> 134  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 134  
Lys Trp Val His Leu Phe Gly Trp  
1 5

<210> 135  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 135  
Arg Leu Val Leu Val Leu Gly Trp  
1 5

<210> 136  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 136  
Trp Lys Trp Gly Ile Tyr Gly Trp  
1 5

<210> 137

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 137

Ser Ser His Ala Ser Ala Gly Trp

1 5

<210> 138

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 138

Trp Gly Pro Trp Ser Phe Gly Trp

1 5

<210> 139

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 139

Ala Ile Pro Gly Lys Val Gly Trp

1 5

<210> 140

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 140

Arg Val His Asp Pro Ala Gly Trp

1 5

<210> 141

<211> 8

<212> PRT

<213> Artificial Sequence

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 141  
Arg Ser Val Ser Ser Phe Gly Trp  
1 5

<210> 142  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 142  
Leu Gly Thr Arg Lys Gly Gly Trp  
1 5

<210> 143  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 143  
Lys Asp Pro Leu Phe Asn Gly Trp  
1 5

<210> 144  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 144  
Leu Ser Gln His Thr Asn Gly Trp  
1 5

<210> 145  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 145  
Asn Arg Leu Leu Leu Thr Gly Trp  
1 5

<210> 146  
<211> 8

05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 146  
Tyr Pro Leu Trp Val Ile Gly Trp  
1 5

2004212003

<210> 147  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 147  
Leu Leu Ile Ile Asp Arg Gly Trp  
1 5

<210> 148  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 148  
Arg Val Ile Ser Leu Gln Gly Trp  
1 5

<210> 149  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 149  
Glu Val Ser Arg Glu Asp Gly Trp  
1 5

<210> 150  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 150  
Ser Ile Leu Arg Ser Thr Gly Trp  
1 5

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<210> 151  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 151  
Pro Gly Leu Val Trp Leu Gly Trp  
1 5

<210> 152  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 152  
Val Lys Lys Leu Tyr Ile Gly Trp  
1 5

<210> 153  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 153  
Asn Asn Arg Leu Leu Asp Gly Trp  
1 5

<210> 154  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 154  
Ser Lys Gly Arg Trp Gly Gly Trp  
1 5

<210> 155  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 155  
Ile Arg Pro Ser Gly Ile Gly Trp  
1 5

20042120033 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<210> 156  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 156  
Ala Ser Leu Cys Pro Thr Gly Trp  
1 5  
  
<210> 157  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 157  
Asp Val Pro Gly Leu Arg Gly Trp  
1 5  
  
<210> 158  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 158  
Arg His Arg Glu Val Gln Gly Trp  
1 5  
  
<210> 159  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 159  
Leu Ala Arg Lys Arg Ser Gly Trp  
1 5  
  
<210> 160  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 160

Sub SEQLIST (8449-405-007 substitute III).TXT

2004212003 05 Aug 2009

Ser Val Leu Asp His Val Gly Trp  
1 5

<210> 161  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 161  
Asn Leu Leu Arg Arg Ala Gly Trp  
1 5

<210> 162  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 162  
Ser Gly Ile Ser Ala Trp Gly Trp  
1 5

<210> 163  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 163  
Phe Tyr Phe Trp Val Arg Gly Trp  
1 5

<210> 164  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 164  
Lys Leu Phe Leu Pro Leu Gly Trp  
1 5

<210> 165  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 165  
Thr Pro Thr Leu Ser Asp Gly Trp  
1 5

<210> 166  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 166  
Thr His Ser Leu Ile Leu Gly Trp  
1 5

<210> 167  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 167  
Leu Leu Leu Leu Ser Arg Gly Trp  
1 5

<210> 168  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 168  
Leu Leu Arg Val Arg Ser Gly Trp  
1 5

<210> 169  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 169  
Glu Arg Arg Ser Arg Gly Gly Trp  
1 5

<210> 170  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 170  
Arg Met Leu Gln Leu Ala Gly Trp  
1 5  
  
<210> 171  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 171  
Arg Gly Trp Ala Asn Ser Gly Trp  
1 5  
  
<210> 172  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 172  
Arg Pro Phe Tyr Ser Tyr Gly Trp  
1 5  
  
<210> 173  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 173  
Ser Ser Ser Trp Asn Ala Gly Trp  
1 5  
  
<210> 174  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 174  
Leu Gly His Leu Glu Glu Gly Trp  
1 5  
  
<210> 175  
<211> 8  
<212> PRT  
<213> Artificial Sequence

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 175  
Ser Ala Val Thr Asn Thr Gly Trp  
1 5

<210> 176  
<211> 7  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 176  
Leu Arg Arg Ala Ser Leu Trp  
1 5

<210> 177  
<211> 7  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 177  
Leu Arg Arg Trp Ser Leu Trp  
1 5

<210> 178  
<211> 7  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 178  
Lys Trp Val His Leu Phe Trp  
1 5

<210> 179  
<211> 7  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 179  
Asn Arg Leu Leu Leu Thr Trp  
1 5

<210> 180  
<211> 7

05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 180  
Ala Arg Leu Leu Leu Thr Trp  
1 5

2004212003

<210> 181  
<211> 7  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 181  
Asn Ala Leu Leu Leu Thr Trp  
1 5

<210> 182  
<211> 7  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 182  
Asn Arg Leu Ala Leu Thr Trp  
1 5

<210> 183  
<211> 7  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 183  
Asn Leu Leu Arg Leu Thr Trp  
1 5

<210> 184  
<211> 7  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 184  
Asn Arg Leu Trp Leu Thr Trp  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 185  
<211> 7  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 185  
Asn Arg Leu Leu Leu Ala Trp  
1 5  
  
<210> 186  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 186  
Phe Tyr Gln Leu Ala Leu Thr Trp  
1 5  
  
<210> 187  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 187  
Phe Tyr Gln Leu Ala Leu Thr Trp  
1 5  
  
<210> 188  
<211> 9  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 188  
Arg Lys Leu Phe Phe Asn Leu Arg Trp  
1 5  
  
<210> 189  
<211> 9  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 189  
Arg Lys Leu Phe Phe Asn Leu Arg Trp  
1 5

20042120033 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 190  
<211> 6  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 190  
Lys Phe Glu Arg Gln Trp  
1 5  
  
<210> 191  
<211> 9  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 191  
Asn Ile Val Arg Lys Lys Lys Thr Arg  
1 5  
  
<210> 192  
<211> 9  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 192  
Arg Gly Tyr Val Tyr Gln Gly Leu Trp  
1 5  
  
<210> 193  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 193  
Tyr Thr Leu Val Gln Pro Leu Trp  
1 5  
  
<210> 194  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 194

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Thr Pro Asp Ile Thr Pro Lys Trp  
1 5

<210> 195

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 195

Thr Tyr Pro Asp Leu Arg Tyr Trp  
1 5

<210> 196

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 196

Asp Arg Thr His Ala Thr Ser Trp  
1 5

<210> 197

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 197

Met Ser Thr Thr Phe Tyr Ser Trp  
1 5

<210> 198

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 198

Tyr Gln His Ala Val Gln Thr Trp  
1 5

<210> 199

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 199  
Phe Pro Phe Ser Ala Ser Thr Trp  
1 5

<210> 200  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 200  
Ser Ser Phe Pro Pro Leu Asp Trp  
1 5

<210> 201  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 201  
Met Ala Pro Ser Pro Pro His Trp  
1 5

<210> 202  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 202  
Ser Ser Phe Pro Asp Leu Leu Trp  
1 5

<210> 203  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 203  
His Ser Tyr Asn Arg Leu Pro Trp  
1 5

<210> 204  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 204  
His Leu Thr His Ser Gln Arg Trp  
1 5  
  
<210> 205  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 205  
Gln Ala Ala Gln Ser Arg Ser Trp  
1 5  
  
<210> 206  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 206  
Phe Ala Thr His His Ile Gly Trp  
1 5  
  
<210> 207  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 207  
Ser Met Pro Glu Pro Leu Ile Trp  
1 5  
  
<210> 208  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 208  
Ile Pro Arg Tyr His Leu Ile Trp  
1 5  
  
<210> 209  
<211> 8  
<212> PRT  
<213> Artificial Sequence

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 209  
Ser Ala Pro His Met Thr Ser Trp  
1 5

<210> 210  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 210  
Lys Ala Pro Val Trp Ala Ser Trp  
1 5

<210> 211  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 211  
Leu Pro His Trp Leu Leu Ile Trp  
1 5

<210> 212  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 212  
Ala Ser Ala Gly Tyr Gln Ile Trp  
1 5

<210> 213  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 213  
Val Thr Pro Lys Thr Gly Ser Trp  
1 5

<210> 214  
<211> 8

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 214  
Glu His Pro Met Pro Val Leu Trp  
1 5

<210> 215  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 215  
Val Ser Ser Phe Val Thr Ser Trp  
1 5

<210> 216  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 216  
Ser Thr His Phe Thr Trp Pro Trp  
1 5

<210> 217  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 217  
Gly Gln Trp Trp Ser Pro Asp Trp  
1 5

<210> 218  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 218  
Gly Pro Pro His Gln Asp Ser Trp  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 219  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 219  
Asn Thr Leu Pro Ser Thr Ile Trp  
1 5

<210> 220  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 220  
His Gln Pro Ser Arg Trp Val Trp  
1 5

<210> 221  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 221  
Tyr Gly Asn Pro Leu Gln Pro Trp  
1 5

<210> 222  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 222  
Phe His Trp Trp Trp Gln Pro Trp  
1 5

<210> 223  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 223  
Ile Thr Leu Lys Tyr Pro Leu Trp  
1 5

20042120033 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 224  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 224  
Phe His Trp Pro Trp Leu Phe Trp  
1 5  
  
<210> 225  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 225  
Thr Ala Gln Asp Ser Thr Gly Trp  
1 5  
  
<210> 226  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 226  
Phe His Trp Trp Trp Gln Pro Trp  
1 5  
  
<210> 227  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 227  
Phe His Trp Trp Asp Trp Trp Trp  
1 5  
  
<210> 228  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 228

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Glu Pro Phe Phe Arg Met Gln Trp  
1 5

<210> 229  
<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 229

Thr Trp Trp Leu Asn Tyr Arg Trp  
1 5

<210> 230

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 230

Phe His Trp Trp Trp Gln Pro Trp  
1 5

<210> 231

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 231

Gln Pro Ser His Leu Arg Trp Trp  
1 5

<210> 232

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 232

Ser Pro Ala Ser Pro Val Tyr Trp  
1 5

<210> 233

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 233  
Phe His Trp Trp Trp Gln Pro Trp  
1 5

<210> 234  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 234  
His Pro Ser Asn Gln Ala Ser Trp  
1 5

<210> 235  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 235  
Asn Ser Ala Pro Arg Pro Val Trp  
1 5

<210> 236  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 236  
Gln Leu Trp Ser Ile Tyr Pro Trp  
1 5

<210> 237  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 237  
Ser Trp Pro Phe Phe Asp Leu Trp  
1 5

<210> 238  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute\_III).TXT  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 238  
Asp Thr Thr Leu Pro Leu His Trp  
1 5  
  
<210> 239  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 239  
Trp His Trp Gln Met Leu Trp Trp  
1 5  
  
<210> 240  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 240  
Asp Ser Phe Arg Thr Pro Val Trp  
1 5  
  
<210> 241  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 241  
Thr Ser Pro Leu Ser Leu Leu Trp  
1 5  
  
<210> 242  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 242  
Ala Tyr Asn Tyr Val Ser Asp Trp  
1 5  
  
<210> 243  
<211> 8  
<212> PRT  
<213> Artificial Sequence

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 243  
Arg Pro Leu His Asp Pro Met Trp  
1 5

<210> 244  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 244  
Trp Pro Ser Thr Thr Leu Phe Trp  
1 5

<210> 245  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 245  
Ala Thr Leu Glu Pro Val Arg Trp  
1 5

<210> 246  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 246  
Ser Met Thr Val Leu Arg Pro Trp  
1 5

<210> 247  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 247  
Gln Ile Gly Ala Pro Ser Trp Trp  
1 5

<210> 248  
<211> 8

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 248  
Ala Pro Asp Leu Tyr Val Pro Trp  
1 5

<210> 249  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 249  
Arg Met Pro Pro Leu Leu Pro Trp  
1 5

<210> 250  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 250  
Ala Lys Ala Thr Pro Glu His Trp  
1 5

<210> 251  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 251  
Thr Pro Pro Leu Arg Ile Asn Trp  
1 5

<210> 252  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 252  
Leu Pro Ile His Ala Pro His Trp  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 253  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 253  
Asp Leu Asn Ala Tyr Thr His Trp  
1 5  
  
<210> 254  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 254  
Val Thr Leu Pro Asn Phe His Trp  
1 5  
  
<210> 255  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 255  
Asn Ser Arg Leu Pro Thr Leu Trp  
1 5  
  
<210> 256  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 256  
Tyr Pro His Pro Ser Arg Ser Trp  
1 5  
  
<210> 257  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 257  
Gly Thr Ala His Phe Met Tyr Trp  
1 5

20042120033 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 258  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 258  
Tyr Ser Leu Leu Pro Thr Arg Trp  
1 5  
  
<210> 259  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 259  
Leu Pro Arg Arg Thr Leu Leu Trp  
1 5  
  
<210> 260  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 260  
Thr Ser Thr Leu Leu Trp Lys Trp  
1 5  
  
<210> 261  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 261  
Thr Ser Asp Met Lys Pro His Trp  
1 5  
  
<210> 262  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 262

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

Thr Ser Ser Tyr Leu Ala Leu Trp  
1 5

<210> 263  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 263  
Asn Leu Tyr Gly Pro His Asp Trp  
1 5

<210> 264  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 264  
Leu Glu Thr Tyr Thr Ala Ser Trp  
1 5

<210> 265  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 265  
Ala Tyr Lys Ser Leu Thr Gln Trp  
1 5

<210> 266  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 266  
Ser Thr Ser Val Tyr Ser Ser Trp  
1 5

<210> 267  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 267  
Glu Gly Pro Leu Arg Ser Pro Trp  
1 5

<210> 268  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 268  
Thr Thr Tyr His Ala Leu Gly Trp  
1 5

<210> 269  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 269  
Val Ser Ile Gly His Pro Ser Trp  
1 5

<210> 270  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 270  
Thr His Ser His Arg Pro Ser Trp  
1 5

<210> 271  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 271  
Ile Thr Asn Pro Leu Thr Thr Trp  
1 5

<210> 272  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 272  
Ser Ile Gln Ala His His Ser Trp  
1 5  
  
<210> 273  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 273  
Leu Asn Trp Pro Arg Val Leu Trp  
1 5  
  
<210> 274  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 274  
Tyr Tyr Tyr Ala Pro Pro Pro Trp  
1 5  
  
<210> 275  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 275  
Ser Leu Trp Thr Arg Leu Pro Trp  
1 5  
  
<210> 276  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
<400> 276  
Asn Val Tyr His Ser Ser Leu Trp  
1 5  
  
<210> 277  
<211> 8  
<212> PRT  
<213> Artificial sequence

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 277  
Asn Ser Pro His Pro Pro Thr Trp  
1 5

<210> 278  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 278  
Val Pro Ala Lys Pro Arg His Trp  
1 5

<210> 279  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 279  
His Asn Leu His Pro Asn Arg Trp  
1 5

<210> 280  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 280  
Tyr Thr Thr His Arg Trp Leu Trp  
1 5

<210> 281  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 281  
Ala Val Thr Ala Ala Ile Val Trp  
1 5

<210> 282  
<211> 8

05 Aug 2009

2004212003

sub SEQLIST (8449-405-007 substitute III).TXT

<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 282  
Thr Leu Met His Asp Arg Val Trp  
1 5

<210> 283  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 283  
Thr Pro Leu Lys Val Pro Tyr Trp  
1 5

<210> 284  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 284  
Phe Thr Asn Gln Gln Tyr His Trp  
1 5

<210> 285  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 285  
Ser His Val Pro Ser Met Ala Trp  
1 5

<210> 286  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 286  
His Thr Thr Val Tyr Gly Ala Trp  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 287  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 287  
Thr Glu Thr Pro Tyr Pro Thr Trp  
1 5

<210> 288  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 288  
Leu Thr Thr Pro Phe Ser Ser Trp  
1 5

<210> 289  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 289  
Gly Val Pro Leu Thr Met Asp Trp  
1 5

<210> 290  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 290  
Lys Leu Pro Thr Val Leu Arg Trp  
1 5

<210> 291  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 291  
Cys Arg Phe His Gly Asn Arg Trp  
1 5

20042120033 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 292  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 292  
Tyr Thr Arg Asp Phe Glu Ala Trp  
1 5  
  
<210> 293  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 293  
Ser Ser Ala Ala Gly Pro Arg Trp  
1 5  
  
<210> 294  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 294  
Ser Leu Ile Gln Tyr Ser Arg Trp  
1 5  
  
<210> 295  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<220>  
<221> VARIANT  
<222> 7  
<223> Xaa = any amino acid  
  
<400> 295  
Asp Ala Leu Met Trp Pro Xaa Trp  
1 5  
  
<210> 296  
<211> 8  
<212> PRT  
<213> Artificial sequence

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<220>  
<221> VARIANT  
<222> 3  
<223> Xaa = any amino acid

<400> 296  
Ser Ser Xaa Ser Leu Tyr Ile Trp  
1 5

<210> 297  
<211> 8  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 297  
Phe Asn Thr Ser Thr Arg Thr Trp  
1 5

<210> 298  
<211> 8  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 298  
Thr Val Gln His Val Ala Phe Trp  
1 5

<210> 299  
<211> 8  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 299  
Asp Tyr Ser Phe Pro Pro Leu Trp  
1 5

<210> 300  
<211> 8  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 300  
Val Gly Ser Met Glu Ser Leu Trp  
1 5

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 301  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<220>  
<221> VARIANT  
<222> 2, 6  
<223> Xaa = any amino acid

<400> 301  
Phe Xaa Pro Met Ile Xaa Ser Trp  
1 5

<210> 302  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 302  
Ala Pro Pro Arg Val Thr Met Trp  
1 5

<210> 303  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 303  
Ile Ala Thr Lys Thr Pro Lys Trp  
1 5

<210> 304  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 304  
Lys Pro Pro Leu Phe Gln Ile Trp  
1 5

<210> 305  
<211> 8  
<212> PRT  
<213> Artificial Sequence

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 305  
Tyr His Thr Ala His Asn Met Trp  
1 5

<210> 306  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 306  
Ser Tyr Ile Gln Ala Thr His Trp  
1 5

<210> 307  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 307  
Ser Ser Phe Ala Thr Phe Leu Trp  
1 5

<210> 308  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 308  
Thr Thr Pro Pro Asn Phe Ala Trp  
1 5

<210> 309  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 309  
Ile Ser Leu Asp Pro Arg Met Trp  
1 5

<210> 310  
<211> 8  
<212> PRT

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 310

Ser Leu Pro Leu Phe Gly Ala Trp

1 5

<210> 311

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 311

Asn Leu Leu Lys Thr Thr Leu Trp

1 5

<210> 312

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 312

Asp Gln Asn Leu Pro Arg Arg Trp

1 5

<210> 313

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 313

Ser His Phe Glu Gln Leu Leu Trp

1 5

<210> 314

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 314

Thr Pro Gln Leu His His Gly Trp

1 5

<210> 315

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 315  
Ala Pro Leu Asp Arg Ile Thr Trp  
1 5

<210> 316  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 316  
Phe Ala Pro Leu Ile Ala His Trp  
1 5

<210> 317  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 317  
Ser Trp Ile Gln Thr Phe Met Trp  
1 5

<210> 318  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 318  
Asn Thr Trp Pro His Met Tyr Trp  
1 5

<210> 319  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 319  
Glu Pro Leu Pro Thr Thr Leu Trp  
1 5

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<210> 320  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 320  
His Gly Pro His Leu Phe Asn Trp  
1 5  
  
<210> 321  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 321  
Tyr Leu Asn Ser Thr Leu Ala Trp  
1 5  
  
<210> 322  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 322  
His Leu His Ser Pro Ser Gly Trp  
1 5  
  
<210> 323  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 323  
Thr Leu Pro His Arg Leu Asn Trp  
1 5  
  
<210> 324  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 324  
Ser Ser Pro Arg Glu Val His Trp

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

1

5

<210> 325  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 325  
Asn Gln Val Asp Thr Ala Arg Trp  
1 5

<210> 326  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 326  
Tyr Pro Thr Pro Leu Leu Thr Trp  
1 5

<210> 327  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 327  
His Pro Ala Ala Phe Pro Trp Trp  
1 5

<210> 328  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 328  
Leu Leu Pro His Ser Ser Ala Trp  
1 5

<210> 329  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 329  
Leu Glu Thr Tyr Thr Ala Ser Trp  
1 5

<210> 330  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 330  
Lys Tyr Val Pro Leu Pro Pro Trp  
1 5

<210> 331  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 331  
Ala Pro Leu Ala Leu His Ala Trp  
1 5

<210> 332  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 332  
Tyr Glu Ser Leu Leu Thr Lys Trp  
1 5

<210> 333  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 333  
Ser His Ala Ala Ser Gly Thr Trp  
1 5

<210> 334  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT  
Trp residue

<400> 334  
Gly Leu Ala Thr Val Lys Ser Trp  
1 5

<210> 335  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 335  
Gly Ala Thr Ser Phe Gly Leu Trp  
1 5

<210> 336  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 336  
Lys Pro Pro Gly Pro Val Ser Trp  
1 5

<210> 337  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 337  
Thr Leu Tyr Val Ser Gly Asn Trp  
1 5

<210> 338  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 338  
His Ala Pro Phe Lys Ser Gln Trp  
1 5

<210> 339  
<211> 8  
<212> PRT  
<213> Artificial Sequence

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 339  
Val Ala Phe Thr Arg Leu Pro Trp  
1 5

<210> 340  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 340  
Leu Pro Thr Arg Thr Pro Ala Trp  
1 5

<210> 341  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 341  
Ala Ser Phe Asp Leu Leu Ile Trp  
1 5

<210> 342  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 342  
Arg Met Asn Thr Glu Pro Pro Trp  
1 5

<210> 343  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 343  
Lys Met Thr Pro Leu Thr Thr Trp  
1 5

<210> 344  
<211> 8  
<212> PRT

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 344  
Ala Asn Ala Thr Pro Leu Leu Trp  
1 5

<210> 345  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 345  
Thr Ile Trp Pro Pro Pro Val Trp  
1 5

<210> 346  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 346  
Gln Thr Lys Val Met Thr Thr Trp  
1 5

<210> 347  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<400> 347  
Asn His Ala Val Phe Ala Ser Trp  
1 5

<210> 348  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain with a terminal Trp residue

<220>

<221> VARIANT

<222> 5

<223> Xaa = any amino acid

<400> 348

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Leu His Ala Ala xaa Thr Ser Trp  
1 5

<210> 349

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 349

Thr Trp Gln Pro Tyr Phe His Trp  
1 5

<210> 350

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 350

Ala Pro Leu Ala Leu His Ala Trp  
1 5

<210> 351

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 351

Thr Ala His Asp Leu Thr Val Trp  
1 5

<210> 352

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 352

Asn Met Thr Asn Met Leu Thr Trp  
1 5

<210> 353

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 353  
Gly Ser Gly Leu Ser Gln Asp Trp  
1 5

<210> 354  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 354  
Thr Pro Ile Lys Thr Ile Tyr Trp  
1 5

<210> 355  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 355  
Ser His Leu Tyr Arg Ser Ser Trp  
1 5

<210> 356  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 356  
His Gly Gln Ala Trp Gln Phe Trp  
1 5

<210> 357  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 357  
Ser Ile Ile Asn Phe Glu Lys Leu  
1 5

<210> 358  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 358  
His Trp Asp Phe Ala Trp Pro Trp  
1 5

<210> 359  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 359  
Asn Leu Leu Arg Leu Thr Gly Trp  
1 5

<210> 360  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 360  
Phe Tyr Gln Leu Ala Leu Thr Trp  
1 5

<210> 361  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 361  
Arg Lys Leu Phe Phe Asn Leu Arg Trp  
1 5

<210> 362  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 362  
Ala Leu Phe Asp Ile Glu Ser Lys Val  
1 5

<210> 363  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 363  
Ile Met Asp Gln Val Pro Phe Ser Val

20042120033 05 Aug 2009

1 5 sub SEQLIST (8449-405-007 substitute III).TXT

<210> 364  
<211> 9  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain

<400> 364  
Tyr Met Asp Gly Thr Met Ser Gln Val  
1 5

<210> 365  
<211> 8  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain

<400> 365  
Thr Leu Gly Ile Val Cys Pro Ile  
1 5

<210> 366  
<211> 10  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain

<400> 366  
Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr  
1 5 10

<210> 367  
<211> 19  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen

<400> 367  
Ser Ile Ile Asn Phe Glu Lys Leu Gly Ser Gly Asn Leu Leu Arg Leu  
1 5 10 15  
Thr Gly Trp

<210> 368  
<211> 19  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen

<400> 368  
Ser Ile Ile Asn Phe Glu Lys Leu Gly Ser Gly His Trp Asp Phe Ala  
1 5 10 15

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Trp Pro Trp

<210> 369

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 369

Ala Leu Phe Asp Ile Glu Ser Lys Val Gly Ser Gly His Trp Asp Phe  
1 5 10 15

Ala Trp Pro Trp

20

<210> 370

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 370

Arg Gly Tyr Val Tyr Gln Gly Leu  
1 5

<210> 371

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain

<400> 371

Ile Met Asp Gln Val Pro Phe Ser Val Gly Ser Gly His Trp Asp Phe  
1 5 10 15

Ala Trp Pro Trp

20

<210> 372

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 372

Ile Met Asp Gln Val Pro Phe Ser Val Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15

Leu Thr Gly Trp

20

<210> 373

<211> 20

<212> PRT

<213> Artificial sequence

<220>

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<223> Hybrid antigen

<400> 373

Tyr Met Asp Gly Thr Met Ser Gln Val Gly Ser Gly His Trp Asp Phe  
1 5 10 15  
Ala Trp Pro Trp  
20

<210> 374

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 374

His Trp Asp Phe Ala Trp Pro Trp Gly Ser Gly Tyr Met Asp Gly Thr  
1 5 10 15  
Met Ser Gln Val  
20

<210> 375

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid antigen

<400> 375

Tyr Met Asp Gly Thr Met Ser Gln Val Gly Ser Gly Gly Ser Gly Asn  
1 5 10 15  
Leu Leu Arg Leu Thr Gly Trp  
20

<210> 376

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid antigen

<400> 376

Thr Leu Gly Ile Val Cys Pro Ile Gly Ser Gly His Trp Asp Phe Ala  
1 5 10 15  
Trp Pro Trp

<210> 377

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid antigen

<400> 377

Thr Leu Gly Ile Val Cys Pro Ile Gly Ser Gly Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 378  
<211> 21  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 378  
Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr Gly Ser Gly His Trp Asp  
1 5 10 15  
Phe Ala Trp Pro Trp  
20

<210> 379  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 379  
His Trp Asp Phe Ala Trp Pro Trp Gly Ser Gly Ser Ile Ile Asn Phe  
1 5 10 15  
Glu Lys Leu

<210> 380  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 380  
Ser Ile Ile Asn Phe Glu Lys Leu Gly Ser Gly Asn Leu Leu Arg Leu  
1 5 10 15  
Thr Gly Trp

<210> 381  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 381  
Ser Ile Ile Asn Phe Glu Lys Leu Gly Ser Gly Phe Tyr Gln Leu Ala  
1 5 10 15  
Leu Thr Trp

<210> 382  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Hybrid antigen

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 382  
Ser Ile Ile Asn Phe Glu Lys Leu Gly Ser Gly Arg Lys Leu Phe Phe  
1 5 10 15  
Asn Leu Arg Trp  
20

<210> 383  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 383  
Asn Leu Leu Arg Leu Thr Gly Trp Gly Ser Gly Ser Ile Ile Asn Phe  
1 5 10 15  
Glu Lys Leu

<210> 384

<400> 384  
000

<210> 385

<400> 385  
000

<210> 386  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Heat shock protein binding domain

<400> 386  
Asn Leu Leu Arg Leu Thr Gly Trp Gly Ser Gly Arg Gly Tyr Val Tyr  
1 5 10 15  
Gln Gly Leu

<210> 387

<400> 387  
000

<210> 388

<400> 388  
000

<210> 389  
<211> 10  
<212> PRT  
<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<223> Heat shock protein binding domain

<400> 389

Glu Leu Ala Gly Ile Gly Ile Leu Thr Val  
1 5 10

<210> 390

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain

<400> 390

Ser Leu Leu Met Trp Ile Thr Gln Val  
1 5

<210> 391

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain

<400> 391

Ser Val Tyr Asp Phe Phe Val Trp Leu  
1 5

<210> 392

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain

<400> 392

Gly Leu Tyr Asp Gly Met Glu His Leu  
1 5

<210> 393

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain

<400> 393

Tyr Leu Glu Pro Gly Pro Val Thr Val  
1 5

<210> 394

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Heat shock protein binding domain

<400> 394

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

Lys Ala Ser Glu Lys Ile Phe Tyr Val  
1 5

<210> 395  
<211> 21  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen

<400> 395  
Glu Leu Ala Gly Ile Gly Ile Leu Thr Val Gly Ser Gly Asn Leu Leu  
1 5 10 15  
Arg Leu Thr Gly Trp  
20

<210> 396  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen

<400> 396  
Ser Leu Leu Met Trp Ile Thr Gln Val Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 397  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen

<400> 397  
Ser Val Tyr Asp Phe Phe Val Trp Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 398  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen

<400> 398  
Gly Leu Tyr Asp Gly Met Glu His Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 399  
<211> 20  
<212> PRT  
<213> Artificial sequence

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<220>  
<223> Hybrid antigen  
<400> 399  
Tyr Leu Glu Pro Gly Pro Val Thr Val Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 400  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Hybrid antigen  
<400> 400  
Lys Ala Ser Glu Lys Ile Phe Tyr Val Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 401  
<211> 9  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain  
<400> 401  
Ala Leu Lys His Arg Ala Tyr Glu Leu  
1 5

<210> 402  
<211> 9  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain  
<400> 402  
Ile Leu Lys Glu Pro Val His Gly Val  
1 5

<210> 403  
<211> 9  
<212> PRT  
<213> Artificial sequence

<220>  
<223> Heat shock protein binding domain  
<400> 403  
Ser Leu Phe Asn Thr Val Ala Thr Leu  
1 5

<210> 404  
<211> 11  
<212> PRT

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain

<400> 404

Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val

1 5 10

<210> 405

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain

<400> 405

Val Ile Tyr Gln Tyr Met Asp Asp Leu

1 5

<210> 406

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain

<400> 406

Ser Leu Tyr Asn Thr Val Ala Thr Leu

1 5

<210> 407

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain

<400> 407

Ala Ile Ile Arg Ile Leu Gln Gln Leu

1 5

<210> 408

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Heat shock protein binding domain

<400> 408

Ala Phe His His Val Ala Arg Glu Leu

1 5

<210> 409

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2004212003 05 Aug 2009

sub SEQLIST (8449-405-007 substitute III).TXT

<223> Hybrid antigen

<400> 409

Ala Leu Lys His Arg Ala Tyr Glu Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 410

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 410

Ile Leu Lys Glu Pro Val His Gly Val Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 411

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 411

Ser Leu Phe Asn Thr Val Ala Thr Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

<210> 412

<211> 22

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 412

Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val Gly Ser Gly Asn Leu  
1 5 10 15  
Leu Arg Leu Thr Gly Trp  
20

<210> 413

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Hybrid antigen

<400> 413

Val Ile Tyr Gln Tyr Met Asp Asp Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<210> 414  
<211> 20  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 414  
Ser Leu Tyr Asn Thr Val Ala Thr Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20  
  
<210> 415  
<211> 20  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 415  
Ala Ile Ile Arg Ile Leu Gln Gln Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20  
  
<210> 416  
<211> 20  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Hybrid antigen  
  
<400> 416  
Ala Phe His His Val Ala Arg Glu Leu Gly Ser Gly Asn Leu Leu Arg  
1 5 10 15  
Leu Thr Gly Trp  
20  
  
<210> 417  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue  
  
<400> 417  
Asn Leu Leu Arg Leu Thr Gly Trp  
1 5  
  
<210> 418  
<211> 8  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

2004212003 05 Aug 2009

Sub SEQLIST (8449-405-007 substitute III).TXT

<400> 418  
Phe Tyr Gln Leu Ala Leu Tyr Trp  
1 5

<210> 419  
<211> 9  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> Heat shock protein binding domain with a terminal  
Trp residue

<400> 419  
Arg Lys Leu Phe Phe Asn Leu Arg Trp  
1 5