NUCLEIC ACID ENCODING GAI GENE OF ARABIDOPSIS THALIANA

Inventors: Nicholas P. Harberd, Norwich (GB); Jinrong Peng, Norwich (GB); Pierre Carol, Grenoble Cedex (FR); Donald E. Richards, Norwich (GB)

Correspondence Address:
NIXON & VANDERHYE, PC
1100 N GLEBE ROAD
8TH FLOOR
ARLINGTON, VA 22201-4714 (US)

Assignee: PIONEER HI-BRED INTERNATIONAL, INC., Johnston, IA

Appl. No.: 10/873,457
Filed: Jun. 23, 2004

Related U.S. Application Data
Continuation of application No. 09/911,514, filed on Jul. 25, 2001, now Pat. No. 6,794,560, which is a division of application No. 09/117,853, filed on Aug. 12, 1998, now Pat. No. 6,307,126, filed as 371 of international application No. PCT/GB97/00390, filed on Feb. 12, 1997.

Foreign Application Priority Data
Feb. 12, 1996 (GB).. 9602796.6

Publication Classification
Int. Cl.7 C12N 15/82; A01H 1/00;
.............................. A01H 5/00
U.S. Cl. 800/290; 536/23.6; 435/320.1;
.............................. 800/298

ABSTRACT
The GAI gene of Arabidopsis thaliana has been cloned, along with mutant and homologue gene sequences. Expression of such genes in plants affects characteristics of the plants including growth. GAI expression inhibits growth of plants, which inhibition is antagonised by gibberellin (GA). Expression of gai mutants confers a dwarf phenotype which is GA-insensitive. Manipulation of expression of GAI and gai genes in plants results in tall or dwarfed plants. Dwarf plants are useful in particular for reduction in crop losses resulting from lodging.
Fig. 2a

Fig. 2b

- GAI
- gai
- gai-16

- 18 kb
- 15.5 kb

23SS Gaiusiasia
Fig. 4
Figure 6(b)

1 MKRDEEHHQQ DKTTLMNEE DQGRMDVAAQ KLEQLEVAMS NVQEPDSLQL
51 ATETVHYKPA ELTYILDML TDLNPPSSHA EYDKLAPGID AILNQFADS
101 ASASSNGGGG DTYTTTKEKX CSHSTVETTT ATAESTRHV LVDSQENGVR
151 LVHALLACAE AVKQKNLTVL EALVKQIGFL AVSQIGAMEK VATYFAALX
201 RRYRLSPSQQ FPHDSLSOT L*
Figure 6(c)

1 TAGAAGTGCT AGAGGAGTCG AAAAGAAAAT CTTAAAGCAT CTTAAACCAGT
51 CCCCGAGCCT AAAAGATCTCT CACCTTTCCCA AATAAAGCCT AAAAGTAGATC
101 CGACATGGAA GGGAAAAACCT TTTAAGATCCA TCTCTGAAA AAAAAACAAAC
151 ATGAAGAGAG ATCATTCACTCA TCTCCATCAAA GATAAAGAGA GATAGATGAT
201 GAGTGAGAGA GACGAGCTTTA AGCCATAGTA GCGTAAGGCA AAACCTTCG
251 AGCTGAGGTT TATAGATGCTT AATGTTTCAAG AAGACGATCTT TCTCAACTC
301 GCTACTGAGA CTGTTCTACTA TAATCCGGCG GAGCTTTACA CGCTCTTCTA
351 TTCATTACTC ACCCACCTTA ATCTCTCGTC GTGCTAACCC CAGTACGATC
401 TCAAAGCTAT TCCCGGTGAG GCGATTTCCA ATCTGTCCCG TATGGAUTCG
451 GTTCCTCTTG GTAACCAAGG CCGCGGAGGA CATACTGTATA CTCAAACCAA
501 GCGGTGAAAG TGCTCAAACGG GCTCTGTGGA AACCACACAA CCGAGCGGTG
551 AGTTCAGATCG ATGCGAGTCG TTCGTTGACT CGAGGGGAA AAGGTTGCGG
601 CTCTGTTACG CGCTTTTGAGC TGGCTCTGAAG GCTTTGCAAG AGAGAAATCT
651 GACGTGTTCCG GAAAGCTTGG TGAAGCAAAAT CCAATTCTTA GCTGTTTCTC
701 AATTCGGAGC TATGAGAAAA GCTGCTACTTT ACTCTCGGGA AGCTCTCGCCG
751 CGGCGATTTC ACCGCTTCTTC TCGCTCGAGC AGCTCAATCG ACCAAGTTCTCT
801 CTGCGATATT CTGCTCAGAG ACTTCTCAGA GACTTGTCCT TATCTCAAGT
851 TCCTCTCATT CAGCGCAGAT TAACGCATCC TCGAAAGCTT TCAAGGGGAG
901 AAAAAAGCTT GACGGTATGC CAGGAGGTCA CATTCTATGA CTTCAAGGCT CAAGGGCC
951 GCCCTTATGC AGGGCTTCTGC TCGCTGACTG GCTTTGCTCC CTGTTTTCGG
1001 GTTAACGGGA ATGTTGTCACG GGACGCACGGG AATTTTCTGA TATCTTCAGF
1051 AAGCTTCTGTT TAAGCTTCTGCT CATTAGCTTGA ACGGCCATCCA CGTGTGATTT
1101 GAGTACAGAG GATTTTGTCGC TAAACCTTTA GATACTTGTG AGCTTTGGAT
1151 GCCCTGGACTT AGAACTGAGTT CGTGTGGGTT AAGTTGTTATC TGAAGGTGTCC
1201 TCAGCTGTTCA CCAGCTTCTTG GGAGACCTG GTCGCCATCGA TAAAGTTTCTT
1251 GCTGGTGTCTA ATCAGATTAA ACCGCGAGTT TTACACGTGG TCGAGCGAGG
1301 ATGAAACCAG AATAGCTTCGA TTTGCTTACA GCGCTTGTGG GAGCTTGGAC
1351 ATTATTACTC GACGTTGGTTTT GACTCTGTGCG AAGGCTTAGGC GACTGGTCAA
1401 GAGAAGTTCA TGTGAGGGTT TTAATCTGGGT AAACAGAATCT GCAAGCTTTG
1451 GCCGTTGTAT GGAAGGACC CGTTGAGGCG TCAATCAAACG TGAGTCCAGT
1501 GGAGGAGGCG GTTCGGGTTCT GTCTGGGTTGG CGGCTCGACA TATGGAUTC
1551 AATACCTTTTG AGCAAGCGAG TATGCTTTTG GCTCTGTTCGA CGCGCGGTGCA
1601 GCGTTTATCGG GTGCCAGGAGA GTGACGCGCTG TCTCATGTGG GC
Figure 6(d)

1 MKRDHHHRQ DKTAAAAEE DDGNGMDVAQ KLEQLEHMS NVQEDDLSQL
51. ATETVHNLPA ELITWLDML TDLPFPSSNA EYDLKAIIPGD ALLMQAFADS
101. ASSSWQGGG DTITMKRRK CSGVVETTT ATAESTHV LVDSQENGVR
151. LVHALLACAE AVQKENLIVA EALVQKIQFL AVSQIGAMRK VATYFAEALA
201. RRIYRLPSQ SPlDHSLSDT LQMHPYETCP YLKFAGFTAN QAILAEFQGK
251. KRVHVIDSL*
Figure 6(e)

1 TACAAGTGGCT AGTGGAGTGA AAAAAACAGT CCTAAGCGAG TCTAACCAGAT
51 CCCCCGAGCCT AAAAGATCTTT CACCTTCCCA AAAAAAGCCT CATTCAGATC
101 CACGACATTAA GGAAACACCT TTATAGCTCC TGTCTGAAAA AAAACACCTAC
151 AGTCAAGAGG ATCATATTAC TCAATGGAAA GATAGAAGAA CTATGATGAT
201 GAATGAGAGA CAGAGGATGTA AGGGATGGGA TGTGCTTCA AAACAGCATC
251 AGCTTTGAGAT TATGATGCTT AATGTTCAGA AAAGAGATCT TACTCAACTC
301 GCTACGTGAA CTGTTCACTTA TAAATCTGCC GAGAGTTACAG CTGGGTTTGA
351 TTCTATGCTCT ACCGACCTTTA AATCTTGAGTC GCTCTACGAC GAGTAGATAC
401 TTAAAGCGAT TCCGCTGGAC GCGATCTTCA ATCGCTTGGC TARTGATTG
451 GCCTCTCTGT CTGGAACAGG CCGGAGAGGA GATACGTATA CTCAAGACAA
501 GCGGTGGAAA TGGCTACAAAC GCGTTGAGGA AACCACACAA CGGACGGCTG
551 AGTCAAATCAG GCAATGGTGTC CTGGTTCGAC CGCAGGAGGA CGGTGCGG
601 CTGGCTTGAC CGGTTTTTCC TGGGGTGGAA GCTGTTCAGA AGGAGAATCT
651 GACTGTTGCC CAAATCTCTGG TGAAGCAAAT CGGATTTCAT GCCTTTTCTC
701 AATTCGCGGC GATGGATTGA GTCCCTACTT ACTCCGCCGA AGCGTTGGCG
751 CGCGCGATTT ACCTCTCTTC TCCGCTGGAC AGTCCATTCG ACCACTCTCT
801 CTCGAGAATCT CTTGAGATCG ACTATCTGGA GACTGTTGCT TATACACAGT
851 TCGCTCAGCT ACGGCAAGAT CAAAGGCTTC TCGAACATTG TCAAGGAGG
901 AAAAGAGTTC ATGGCATAGA TTTCTCTTAG AGTCGAAGTC TTGGCGCTTT
951 AGTACGCTTCTA CTGCGGCTGG ACCCTGTGCTG TGGGTTAAC
1001 CGGAAATTGGT CCAACCGGAC CGGATATTCT CAGTTACCTT CATGAAGTTG
1051 GGTGTAAGCT GGGCTCATTAA GTGGGCGGGA TCCAGCTTTA GTTGGAGATA
1101 AGAGAGATGCG TGGCTACCAAC TTTAGCTCTG CTTGATCCTG GATGCTGGA
1151 GTTGAAGACA AGTGGAGATG AATCTGTTGC GGGTTAACCT GTTTTGAGGC
1201 TTCAACAAGCT CTTGGAGACGA CCTGGTGCGGA TCGAATAAGGT TCTTGAGTGT
1251 GTGAAATCAG A TAAACCGGA GATTTTTCAC TGGGTTGAGC AGGAATCGAA
1301 CCATAATAGT CGAGTTTTCT TAGATCGGGT TACTGAGTCG TCGCATTATT
1351 ACTGCAAGCTT GGGAGAGGTC TGGGAAAGTG TACCAGAGCG TCAACACAGA
1401 GCTATGCTGG AGGTTTACTT GGTTAAACAG ATCTGCAAGG TGGGCTTGG
1451 TGGATGGCCTT GCAGGAGGGG AGCCGCCATG AAGCTGAGAG CGTCAGGCGA
1501 ACCGTGTCGG GCTCTGTTGGA TTTGGGCGCT CACATTTGAG TCGGATTACC
1551 TPTAAGCAAG CGAGATGCTT TTTGGTCCTG TTTACGGCG GTCAGGATTA
1601 TCGGCTGGAG GACAGTCGCG CCGTCTCATG GTGGG
Figure 6(f)

1. MKRDEHHSHQ DKKTMNNSER DDGNGMDVAQ KLEQLEVMHS NVQEDDLSQV

51. ATETVHYNPA ELYTWLDSML TDLNPPSSNA EYDLKAIPOG AILQPQAIDS

101. ASSSNQGGGG DTYTTNKRKL CSNGVVEITT TAASESTRHV LVDSQENGVR

151. LVHALLCAE AVQKEMITVA EALVKQIGFL AVSQIGAMRK VATYFAEALA

201. RTTYRLSPSQ SPTDHSRLDT LQMEFYETCP YLKFAHPTAN QALEAFQCGK

251. KRVHVIDFSM SQGLGRICRL LRFDLVVLLF SG*
Figure 6(g)

1 TAGAACTGCT AGTGGAGTGTA AAAAAAAGAT CCTAAGCAGT CCTAAGCGAT
51 CCCCCAGCT AAAGATTTTT CACATTCCCA AATATAAGCA AACTCTAGATC
101 CGACATTTGA GAAGAAAACCT TTTAGATTTA ACTCTGAAAAA AAAAAAACC
151 ATGAAAGAGG ATCACATCTCA TACATATCAGA GATAAGAAGA CTATGATGAT
201 GAATGAGAA GACGAGCAAGT ACGGAATGGA TGTTTGCTTGAA AACTTGGAGC
251 AGCTTGAAGT TAAGAAGTCT AAGTGTCAAG AAGCAGACTT TCTCAACTC
301 GCCAGACTGA TGTGTCATT AATCCGGCG GAGCATTCAA GTGGTCTTGA
351 TTCTATGCTC ACCGACCTTA ATCTCTGGTC CTCTACGGC GAGTACGATC
401 TTAAAGCTAT TCCCCGCTACG CCGATTCGTA ATCATGGCGA TACCGATTCG
451 GCTTCTTCGT CTAAACCAAGG CGGCGAGGGA GATAGTATA CAACAAACAA
501 GCGGTTGAAA TGCTCAAGCG GGGGTGCGGA AAAAAAACCC CCGAGCCGTCG
551 AGTCATCTGC GAGATTGCCC TGTTTGACTC GCGAGAAGAC GGTGTGGATC
601 TCGTTCACGC GCTTTTGGGT TGGCCTGGAAG CGTGGAGAAGA GAGAAATCTG
651 ACTGTGGGGG AAGCTCTGGT GACAGAATTC GGAATTCTTC GCTTCTGCAA
701 AACCGAGACT ATGAGAAGAG TCGCTACTTA CGTCGCGAGA GCTTCGGGCG
751 GGGGATTTTA GCGTCTCTCT CGTCTGCGGA GTGCAATCAG CAACCTCTCTC
801 TCGGATACTC TTCCAGATCAG CTTCTACGAG ATCTGCTCTT ATCTCAAGTPT
851 CGCTCAGCTT ACGGCAGAAT CAGCGAGTTCT GGAAGCTTTT CAAGGGAAGA
901 AAAGGACTCA TGGCTACTGA TTCTGTATGA GTCAGGTCTC TCAATGGCGG
951 GCGCTTATGC AGCCCTCTGC GTTGGACCTT GGTTGATCTC CTGGTCTCAG
1001 GTTAACCCGA ATGTTGATCA CGCGCAGCGA TAAATTGAGAT TATCTCTCATG
1051 AAGTGGGGTG TAAGCTCTGG CATTGAAGCT AGGGGATTCG AAGCCTGATT
1101 GAGTACAGAG GATTTGTGCG TAAGACTTTA GTGAGATTTA AGCTCTGCAG
1151 GCTTGAGCTT AGACCAAGTG AGATTTATTC TGGTGGTGGT TAATCTGGTTT
1201 TCGGACTTCA CAAGCTCTTG GAGCCACGTG GTCGAGTACA TAAAGTCTTT
1251 GGTGTGGGTA ATGATGATCAA ACCGGAGATT TTCTCTGGGG TGGAGACAGA
1301 ATCGAAGCAT AATAGCTCGA TTTTTCTTGA TGGTTTTACT GAGTCGGGTC
1351 ATATTACATC GAGCTGGGT GACTCTGTTG AGGTTATCC GAGTGTCGAA
1401 GACAAGGTCA TGCTGGAGGT TTACTTGGGT AAAAAAGATC GCAAGCTGCT
1451 GGGCTTTGTGAT GAGCTCTGGA GAGGTTGACG TAAGGAACGG TGGAGTCAGT
1501 GGAGGAACCG GTGCCTGGCT CTTGGGGTTG GGCTCGACAA TATGGGTTCG
1551 AATCGGTTTA ACGAGCAGAG TATGCTTTTG GCTCTGTTCA ACGGGGCGTA
1601 GGGTTATCGG GTGGGACGGA GTGACGCGCTG TCTCATGTTG GG
Figure 6(h)

1 MKRDHHHHQ DDKTMQNNEE DDDNGHIVQAQ KLEQLEVMSS NVQEDDLSSLQL
51 ATETVNYNPA ELTYWLDSML TDLPSSSNA YDLKAIPOD ALLMQFAIDS
101 ASSNQCGGGG DTYTINERLK CSNGVETTT ATABSTRRVS WLTRRRRTC
151 SFTRFRLALK LFRRRI*
NUCLEIC ACID ENCODING GAI GENE OF
ARABIDOPSIS THALIANA

[0001] This invention relates to the genetic control of growth and/or development of plants and the cloning and expression of genes involved therein. More particularly, the invention relates to the cloning and expression of the GAI gene of Arabidopsis thaliana, and homologues from other species, and use of the genes in plants.

[0002] An understanding of the genetic mechanisms which influence growth and development of plants, including flowering, provides a means for altering the characteristics of a target plant. Species for which manipulation of growth and/or development characteristics may be advantageous includes all crops, with important examples being the cereals, rice and maize, probably the most agronomically important in warmer climatic zones, and wheat, barley, oats and rye in more temperate climates. Important crops for seed products are oil seed rape and canola, sugar beet, maize, sunflower, soybean and sorghum. Many crops which are harvested for their roots are, of course, grown annually from seed and the production of seed of any kind is very dependent upon the ability of the plant to flower, to be pollinated and to set seed. In horticulture, control of the timing of growth and development, including flowering, is important. Horticultural plants whose flowering may be controlled include lettuce, endive and vegetable brassicas including cabbage, broccoli and cauliflower, and carnations and geraniums. Dwarf plants on the one hand and over-size, taller plants on the other may be advantageous and/or desirable in various horticultural and agricultural contexts.

[0003] Arabidopsis thaliana is a favourite of plant geneticists as a model organism. Because it has a small, well-characterized genome, is relatively easily transformed and regenerated and has a rapid growing cycle, Arabidopsis is an ideal model plant in which to study growth and development and its control.

[0004] Many plant growth and developmental processes are regulated by specific members of a family of tetra cyclic diterpenoid growth factors known as gibberellins (GA). The gai mutation of Arabidopsis confers a dwarf phenotype and a dramatic reduction in GA-responsiveness. Here we report the molecular cloning of gai via Ds transposon mutagenesis.

[0005] The phenotype conferred by the Ds insertion allele confirms that gai is a gain-of-function mutation, and that the wild-type allele (GAI) is dispensable. GAI encodes a novel polypeptide (GAI) of 532 amino acid residues, of which 17 amino acid domain is missing in the gai mutant polypeptide. This result is consistent with GAI acting as a plant growth repressor whose activity is antagonized by GA. Though we are not to be bound by any particular theory, gai may repress growth constitutively because it lacks the domain that interacts with the GA signal. Thus according to this model GAI regulates plant growth by de-repression.

[0006] gai is a dominant, gain-of-function mutation, which confers a dark-green, dwarf phenotype, and interferes with GA reception or subsequent signal-transduction. Dominant mutations conferring similar phenotypes are known in other plant species, including maize and wheat. The latter are especially important because they are the basis of the high-yielding, semi-dwarf wheat varieties of

[0007] According to a first aspect of the present invention there is provided a nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide with GAI function. The term “GAI function” indicates ability to influence the phenotype of a plant like the GAI gene of Arabidopsis thaliana. “GAI function” may be observed phenotypically in a plant as inhibition, suppression, repression or reduction of plant growth which inhibition, suppression, repression or reduction is antagonised by GA. GAI expression tends to confer a dwarf phenotype on a plant which is antagonised by GA. Overexpression in a plant from a nucleotide sequence encoding a polypeptide with GA function may be used to confer a dwarf phenotype on a plant which is correctable by treatment with GA.

[0008] Also according to an aspect of the present invention there is provided a nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide with ability to confer a gai mutant phenotype upon expression. gai mutant plants are dwarfed compared with wild-type, the dwarfing being GA-insensitive.

[0009] By gibberellin or GA is meant a diterpenoid molecule with the basic carbon-ring structure shown in FIG. 1 and possessing biological activity, i.e. we refer to biologically active gibberellins.

[0010] Biological activity may be defined by one or more of stimulation of cell. elongation, leaf senescence or elicitation of the cereal aleurone α-amyrase response. There are many standard assays available in the art, a positive result in any one or more of which signals a test gibberellin as biologically active.

[0011] Assays available in the art include the lettuce hypocotyl assay, cucumber hypocotyl assay, and oat first leaf assay, all of which determine biological activity on the basis of ability of an applied gibberellin to cause elongation of the respective tissue. Preferred assays are those in which the test composition is applied to a gibberellin-deficient plant. Such preferred assays include treatment of dwarf GA-deficient Arabidopsis to determine growth, the dwarf pea assay, in which internode elongation is determined, the Tan-ginbozu dwarf rice assay, in which elongation of leaf sheath is determined, and the d5-maize assay, also in which elongation of leaf sheath is determined. The elongation bioassays measure the effects of general cell elongation in the respective organs and are not restricted to particular cell types.

[0012] Further available assays include the dock (Rumex) leaf senescence assay and the cereal aleurone α-amylase assay. Aleurone cells which surround the endosperm in grain secrete α-amylase on germination, which digests starch to produce sugars then used by the growing plant. The enzyme production is controlled by GA. Isolated aleurone cells
given biologically active GA secreted α-amylase whose activity can then be assayed, for example by measurement of degradation of starch.

[0013] Structural features important for high biological activity (exhibited by GA1, GA2, GA3, and GA4) are a carboxyl group by C-6 of B-ring; C-19; C-10 lactone; and β-hydroxylation at C-3. β-hydroxylation at C-2 causes inactivity (exhibited by GA5, GA20, GA34, and GA51). gai mutants do not respond to GA treatment, e.g. treatment with GA1, GA2 or GA4.

[0014] Treatment with GA is preferably by spraying with aqueous solution, for example spraying with 10-8 M GA5 or GA6 in aqueous solution, perhaps weekly or more frequently, and may be by placing droplets on plants rather than spraying. GA may be applied dissolved in an organic solvent such as ethanol or acetone, because it is more soluble in these than in water, but this is not preferred because these solvents have a tendency to damage plants. If an organic solvent is to be used, suitable formulations include 24 ml of 0.6, 4.0, or 300 mM GA5 or GA6 dissolved in 8% ethanol. Plants, e.g. Arabidopsis, may be grown on a medium containing GA1, such as tissue culture medium (GM) solidified with agar and containing supplementary GA.

[0015] Nucleic acid according to the present invention may have the sequence of a wild-type GA1 gene of Arabidopsis thaliana, or be a mutant, derivative, variant or allele of the sequence provided. Preferred mutants, derivatives, variants and alleles are those which encode a protein which retains a functional characteristic of the protein encoded by the wild-type gene, especially the ability for plant growth, inhibition, which inhibition is antagonised by GA, or ability to confer on a plant one or more other characteristics responsive to GA treatment of the plant. Other preferred mutants, derivatives, variants and alleles encode a protein which confers a gai mutant phenotype, that is to say reduced plant growth which reduction is insensitive to GA, i.e. not overcome by GA treatment. Changes to a sequence, to produce a mutant, variant or derivative, may be by one or more of addition, insertion, deletion or substitution of one or more nucleotides in the nucleic acid, leading to the addition, insertion, deletion or substitution of one or more amino acids in the encoded polypeptide. Of course, changes to the nucleic acid which make no difference to the encoded amino acid sequence are included.

[0016] A preferred nucleotide sequence for a GA1 gene is one which encodes amino acid sequence shown in FIG. 4, especially a coding sequence shown in FIG. 3. A preferred gai mutant lacks part or all of the 17 amino acid sequence underlined in FIG. 4.

[0017] The present invention also provides a nucleic acid construct or vector which comprises nucleic acid with any one of the provided sequences, preferably a construct or vector from which polypeptide encoded by the nucleic acid sequence can be expressed. The construct or vector is preferably suitable for transformation into a plant cell. The invention further encompasses a host cell transformed with such a construct or vector, especially a plant cell. Thus, a host cell, such as a plant cell, comprising nucleic acid according to the present invention is provided. Within the cell, the nucleic acid may be incorporated within the chromosome. There may be more than one heterologous nucleotide sequence per haploid genome. This, for example, enables increased expression of the gene product compared with endogenous levels, as discussed below.

[0018] A construct or vector comprising nucleic acid according to the present invention need not include a promoter or other regulatory sequence, particularly if the vector is to be used to introduce the nucleic acid into cells for recombination into the genome. However, in one aspect the present invention provides a nucleic acid construct comprising a GA1 or gai coding sequence (which includes homologues from other than Arabidopsis thaliana) joined to a regulatory sequence for control of expression, the regulatory sequence being other than that naturally fused to the coding sequence and preferably of or derived from another gene.

[0019] Nucleic acid molecules and vectors according to the present invention may be as an isolate, provided isolated from their natural environment, in substantially pure or homogeneous form, or free or substantially free of nucleic acid or genes of the species of interest or origin other than the sequence encoding a polypeptide able to influence growth and/or development, which may include flowering, e.g. in Arabidopsis thaliana nucleic acid other than the GA1 coding sequence. The term "nucleic acid isolate" encompasses wholly or partially synthetic nucleic acid.

[0020] Nucleic acid may of course be double- or single-stranded, cDNA or genomic DNA, RNA, wholly or partially synthetic, as appropriate. Of course, whether nucleic acid according to the invention includes RNA, reference to the sequence shown should be construed as reference to the RNA equivalent, with U substituted for T.

[0021] The present invention also encompasses the expression product of any of the nucleic acid sequences disclosed and methods of making the expression product by expression from encoding nucleic acid therefor under suitable conditions in suitable host cells. Those skilled in the art are well able to construct vectors and design protocols for expression and recovery of products of recombinant gene expression. Suitable vectors can be chosen or constructed, containing appropriate regulatory sequences, including promoter sequences, terminator fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. For further details see, for example, Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al, 1989, Cold Spring Harbor Laboratory Press. Transformation procedures depend on the host used, but are well known. Many known techniques and protocols for manipulation of nucleic acid, for example in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells and gene expression, and analysis of proteins, are described in detail in Protocols in Molecular Biology, Second Edition, Ausubel et al. eds., John Wiley & Sons, 1992. Specific procedures and vectors previously used with wide success upon plants are described by Bevan, Nucl. Acids Res. (1984) 12, 8711-8721, and Guernereau and Mullineaux, (1993) Plant transformation and expression vectors. In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148. The disclosures of Sambrook et al. and Ausubel et al. and all other documents mentioned herein are incorporated herein by reference.

[0022] Since the GA1 amino acid sequence of Arabidopsis shown in FIG. 4 includes 5 consecutive histidines close to its N-terminus, substantial purification of GA1 or gai may be
achieved using Ni—NTA resin available from QIAGEN Inc. (USA) and DIAGEN GmbH (Germany). See Janknecht et al and EP-A-0253303 and EP-A-0282042. Ni—NTA resin has high affinity for proteins with consecutive histidines close to the N— or C-terminus of the protein and so may be used to purify GAI or gai proteins from plants, plant parts or extracts or from recombinant organisms such as yeast or bacteria, e.g., *E. coli*, expressing the protein.

[0023] Purified GAI protein, e.g. produced recombinantly by expression from encoding nucleic acid thereto, may be used to raise antibodies employing techniques which are standard in the art. Antibodies and polypeptides comprising antigen-binding fragments of antibodies may be used in identifying homologues from other species as discussed further below.

[0024] Methods of producing antibodies include immunising a mammal (e.g., human, mouse, rat, rabbit, horse, goat, sheep or monkey) with the protein or a fragment thereof. Antibodies may be obtained from immunised animals using any of a variety of techniques known in the art, and might be screened, preferably using binding of antibody to antigen of interest. For instance, Western blotting techniques or immunoprecipitation may be used (Armstrong et al., 1992, *Nature* 357: 80-82). Antibodies may be polyclonal or monoclonal.

[0025] As an alternative or supplement to immunising a mammal, antibodies with appropriate binding specificity may be obtained from a recombinantly produced library of expressed immunoglobulin variable domains, e.g. using lambda bacteriophage or filamentous bacteriophage which display functional immunoglobulin binding domains on their surfaces; for instance see WO92/01047.

[0026] Antibodies raised to a GAI or gai, polypeptide can be used in the identification and/or isolation of homologous polypeptides, and then the encoding genes. Thus, the present invention provides a method of identifying or isolating a polypeptide with GAI function or ability to confer a gai mutant phenotype, comprising screening candidate polypeptides with a polypeptide comprising the antigen-binding domain of an antibody (for example whole antibody or a fragment thereof) which is able to bind an *Arabidopsis* GAI or gai polypeptide, or preferably has binding specificity for such a polypeptide, such as having the amino acid sequence shown in FIG. 4.

[0027] Candidate polypeptides for screening may for instance be the products of an expression library created using nucleic acid derived from an plant of interest, or may be the product of a purification process from a natural source.

[0028] A polypeptide found to bind the antibody may be isolated and then may be subject to amino acid sequencing. Any suitable technique may be used to sequence the polypeptide either wholly or partially (for instance a fragment of the polypeptide may be sequenced). Amino acid sequence information may be used in obtaining nucleic acid encoding the polypeptide, for instance by designing one or more oligonucleotides (e.g. a degenerate pool of oligonucleotides) for use as probes or primers in hybridisation to candidate nucleic acid, as discussed further below.

[0029] A further aspect of the present invention provides a method of identifying and cloning GAI homologues from plant species other than *Arabidopsis thaliana* which method employs a nucleotide sequence derived from that shown in FIG. 3. Sequences derived from these may themselves be used in identifying and in cloning other sequences. The nucleotide sequence information provided herein, or any part thereof, may be used in a data-base search to find homologous sequences, expression products of which can be tested for GAI function. Alternatively, nucleic acid libraries may be screened using techniques well known to those skilled in the art and homologous sequences thereby identified then tested.

[0030] For instance, the present invention also provides a method of identifying and/or isolating a GAI or gai homologue gene, comprising probing candidate (or “target”) nucleic acid with nucleic acid which encodes a polypeptide with GAI function or a fragment or mutant, derivative or allele thereof. The candidate nucleic acid (which may be, for instance, cDNA or genomic DNA) may be derived from any cell or organism which may contain or is suspected of containing nucleic acid encoding such a homologue.

[0031] In a preferred embodiment of this aspect of the present invention, the nucleic acid used for probing of candidate nucleic acid encodes an amino acid sequence shown in FIG. 4, a sequence complementary to a coding sequence, or a fragment of any of these, most preferably comprising a nucleotide sequence shown in FIG. 3.

[0032] Alternatively, as discussed, a probe may be designed using amino acid sequence information obtained by sequencing a polypeptide identified as being able to be bound by an antigen-binding domain of an antibody which is able to bind a GAI or gai polypeptide such as one with the amino acid sequence shown in FIG. 4.

[0033] Preferred conditions for probing are those which are stringent enough for there to be a simple pattern with a small number of hybridizations identified as positive which can be investigated further. It is well known in the art to increase stringency of hybridisation gradually until only a few positive clones remain.

[0034] As an alternative to probing, though still employing nucleic acid hybridisation, oligonucleotides designed to amplify DNA sequences from GAI genes may be used in PCR or other methods involving amplification of nucleic acid, using routine procedures. See for instance “PCR protocols; A Guide to Methods and Applications”, Eds. Innis et al, 1990, Academic Press, New York.

[0035] Preferred amino acid sequences suitable for use in the design of probes or PCR primers are sequences conserved (completely, substantially or partly) between GAI genes.

[0036] On the basis of amino acid sequence information, oligonucleotide probes or primers may be designed, taking into account the degeneracy of the genetic code, and, where appropriate, codon usage of the organism from the candidate nucleic acid is derived.

[0037] The present invention also extends to nucleic acid encoding a GAI homologue obtained using a nucleotide sequence derived from that shown in FIG. 3.

[0038] Also included within the scope of the present invention are nucleic acid molecules which encode amino acid sequences which are homologues of the polypeptide
encoded by GAI of Arabidopsis thaliana. A homologue may be from a species other than Arabidopsis thaliana.

[0039] Homology may be at the nucleotide sequence and/or amino acid sequence level. Preferably, the nucleic acid and/or amino acid sequence shares homology with the sequence encoded by the nucleotide sequence of FIG. 3, preferably at least about 50%, or 60%, or 70%, or 80% homology, most preferably at least 90% or 95% homology. Nucleic acid encoding such a polypeptide may preferably share with the Arabidopsis thaliana GAI gene the ability to confer a particular phenotype on expression in a plant, preferably a phenotype which is GA responsive (i.e. there is a change in a characteristic of the plant on treatment with GA), such as the ability to inhibit plant growth where the inhibition is antagonised by GA. As noted, GAI expression in a plant may affect one or more other characteristics of the plant. A preferred characteristic that may be shared with the Arabidopsis thaliana GAI gene is the ability to complement a GAI null mutant phenotype in a plant such as Arabidopsis thaliana, such phenotype being resistance to the dwarfing effect of paclobutrazol.

[0040] Some preferred embodiments of polypeptides according to the present invention (encoded by nucleic acid embodiments according to the present invention) include the 17 amino acid sequence which is underlined in FIG. 4 or a contiguous sequence of amino acids residues with at least about 10 residues with similarity or identity with the respective corresponding residue (in terms of position) in 17 amino acids which are underlined in FIG. 4, more preferably, 11, 12, 13, 14, 15, 16 or 17 such residues.

[0041] As is well-understood, homology at the amino acid level is generally in terms of amino acid similarity or identity. Similarity allows for “conservative variation”, i.e. substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as arginine for lysine, glutamic for aspartic acid, or glutamine for asparagine. Similarity may be as defined and determined by the TBLASTN program, of Altschul et al. (1990) J. Mol. Biol. 215: 403-10, which is in standard use in the art. Homology may be over the full-length of the GAI sequence of FIG. 4, or may more preferably be over a contiguous sequence of 17 amino acids, compared with the 17 amino acids underlined in FIG. 4, or a longer sequence, e.g. about 20, 25, 30, 40, 50 or more amino acids, compared with the amino acid sequence of FIG. 4 and preferably including the underlined 17 amino acids.

[0042] At the nucleic acid level, homology may be over the full-length or more preferably by comparison with the 51 nucleotide coding sequence within the sequence of FIG. 3 and encoding the 17 amino acid sequence underlined in FIG. 4, or a longer sequence, e.g. about 60, 70, 80, 90, 100, 120, 150 or more nucleotides and preferably including the 51 nucleotide of FIG. 3 which encodes the underlined 17 amino acid sequence of FIG. 4.

[0043] Homologues to gai mutants are also provided by the present invention. These may be mutants where the wild-type includes the 17 amino acids underlined in FIG. 4, or a contiguous sequence of 17 amino acids with at least about 10 (more preferably, 11, 12, 13, 14, 15, 16 or 17) which have similarity or identity with the corresponding residue in the 17 amino acid sequence underlined in FIG. 4, but the mutant does not. Nucleic acid encoding such mutant polypeptides may on expression in a plant confer a phenotype which is insensitive or unresponsive to treatment of the plant with GA, that is a mutant phenotype which is not overcome or there is no reversion to wild-type phenotype on treatment of the plant with GA (though there may be some response in the plant on provision or depletion of GA).

[0044] A further aspect of the present invention provides a nucleic acid isolate having a nucleotide sequence encoding a polypeptide which includes an amino acid sequence which is a mutant, allele, derivative or variant sequence of the GAI amino acid sequence of the species Arabidopsis thaliana shown in FIG. 4, or is a homologue of another species or a mutant, allele, derivative or variant thereof, wherein said mutant, allele, derivative, variant or homologue differs from the amino acid sequence shown in FIG. 4 by way of insertion, deletion, addition and/or substitution of one or more amino acids, as obtainable by producing transgenic plants by transforming plants which have a

[0045] GAI null mutant phenotype, which phenotype is resistance to the dwarfing effect of paclobutrazol, with test nucleic acid, causing or allowing expression from test nucleic acid within the transgenic plants, screening the transgenic plants for those exhibiting complementation of the GAI null mutant phenotype to identify test nucleic acid able to complement the GAI null mutant, deleting from nucleic acid so identified as being able to complement the GAI null mutant a nucleotide sequence encoding the 17 amino acid sequence underlined in FIG. 4 or a contiguous 17 amino acid sequence in which at least 10 residues have similarity or identity with the respective amino acid in the corresponding position in the 17 amino acid sequence underlined in FIG. 4, or preferably 11, 12, 13, 14, 15, 16 or 17.

[0046] GAI and gai gene homologues may be identified from economically important monocotyledonous crop plants such as wheat, rice and maize. Although genes encoding the same protein in monocotyledonous and dicotyledonous plants show relatively little homology at the nucleotide level, amino acid sequences are conserved.

[0047] In public sequence databases we recently identified several EST sequences that were obtained in random sequencing programmes and share homology with GAI. Table 2 gives details, showing that homologous, sequences have been found in various species, including Zea Mays (maize), O. Sativa (rice), and Brassica napus (rape) By sequencing, study of expression patterns and examining the effect of altering their expression, GAI gene homologues, carrying out a similar function in other plants, are obtainable. Of course, novel uses and mutants, derivatives and alleles of these sequences are included within the scope of the various aspects of the present invention in the same terms as discussed above for the Arabidopsis thaliana gene.

[0048] A cell containing nucleic acid of the present invention represents a further aspect of the invention, particularly a plant cell, or a bacterial cell.

[0049] The cell may comprise the nucleic acid encoding the enzyme by virtue of introduction into the cell or an ancestor thereof of the nucleic acid, e.g. by transformation using any suitable technique available to those skilled in the art.
Also according to the invention there is provided a plant cell having incorporated into its genome nucleic acid as disclosed. The present invention also provides a plant comprising such a plant cell.

Also according to the invention there is provided a plant cell having incorporated into its genome a sequence of nucleotides as provided by the present invention, under operative control of a regulatory sequence for control of expression. A further aspect of the present invention provides a method of making such a plant cell involving introduction of a vector comprising the sequence of nucleotides into a plant cell and causing or allowing recombination between the vector and the plant cell genome to introduce the sequence of nucleotides into the genome.

A plant according to-the present invention may be one which does not breed true in one or more properties. Plant varieties may be excluded, particularly registrable plant varieties according to Plant Breeders’ Rights. It is noted that a plant need not be considered a “plant variety” simply because it contains stably within its genome a transgene, introduced into a cell of the plant or an ancestor thereof.

In addition to a plant, the present invention provides any clone of such a plant, seed, selfed or hybrid progeny and descendants, and any part of any of these, such as cuttings, seed. The invention provides any plant propagule, that is any part which may be used in reproduction or propagation, sexual or asexual, including cuttings, seed and so on. Also encompassed by the invention is a plant which is a sexually or asexually propagated off-spring of the plant, or the same plant, or any part of the plant.

The invention further provides a method of influencing the characteristics of a plant comprising expression of a heterologous GAI or gai gene sequence (or mutant, allele, derivative or homologue thereof, as discussed) within cells of the plant. The term “heterologous” indicates that the gene/sequence of nucleotides in question have been introduced into said cells of the plant, or an ancestor thereof, using genetic engineering, that is to say by human intervention, which may comprise transformation. The gene may be on an extra-genomic vector or incorporated, preferably stably, into the genome. The heterologous gene may replace an endogenous equivalent gene, i.e. one which normally performs the same or a similar function in control of growth and/or development, or the inserted sequence may be additional to an endogenous gene. An advantage of introduction of a heterologous gene is the ability to place expression of the gene under control of a promoter of choice, in order to be able to influence gene expression, and therefore growth and/or development of the plant according to preference. Furthermore, mutants and derivatives of the wild-type gene may be used in place of the endogenous gene. The inserted gene may be foreign or exogenous to the host cell, e.g. of another plant species.

The principal characteristic which may be altered using the present invention is growth.

According to the model of the GAI gene as a growth repressor, under-expression of the gene may be used to promote growth, at least in plants which have only one endogenous gene conferring GAI function (not for example Arabidopsis which has endogenous homologues which would compensate). This may involve use of anti-sense or sense regulation. Taller plants may be made by knocking out GAI or the relevant homologous gene in the plant of interest. Plants may be made which are resistant to compounds which inhibit GA biosynthesis, such as paclobutrazol, for instance to allow use of a GA biosynthesis inhibitor to keep weeds dwarf but let crop plants grow tall.

Over-expression of a GAI gene may lead to a dwarf plant which is correctable by treatment with GA, as predicted by the GAI repression model.

Since gai mutant genes are dominant on phenotype, they may be used to make GA-insensitive dwarf plants. This may be applied for example to any transformable crop-plant, tree or fruit-tree species. It may provide higher yield/reduced lodging like Rht wheat. In rice this may provide GA-insensitive rice resistant to the Bakane disease, which is a problem in Japan and elsewhere. Dwarf ornamentals may be of value for the horticulture and cut-flower markets. Sequence manipulation may provide for varying degrees of severity of dwarfing, GA-insensitive phenotype, allowing tailoring of the degree of severity to the needs of each crop-plant or the wishes of the manipulator. Over-expression of gai-mutant sequences is potentially the most useful.

A second characteristic that may be altered is plant development, for instance flowering. In some plants, and in certain environmental conditions, a GA signal is required for floral induction. For example, GA-deficient mutant Arabidopsis plants grown under short day conditions will not flower unless treated with GA: these plants do flower normally when grown under long day conditions. Arabidopsis gai mutant plants show delayed flowering under short day conditions: severe mutants may not flower at all. Thus, for instance by GAI or gai gene expression or over-expression, plants may be produced which remain vegetative until given GA treatment to induce flowering. This may be useful in horticultural contexts or for spinach, lettuce and other crops where suppression of bolting is desirable.

The nucleic acid according to the invention may be placed under the control of an externally inducible gene promoter to place the GAI or gai coding sequence under the control of the user.

The term “inducible” as applied to a promoter is well understood by those skilled in the art. In essence, expression under the control of an inducible promoter is “switched on” or increased in response to an applied stimulus. The nature of the stimulus varies between promoters. Some inducible promoters cause little or undetectable levels of expression (or no expression) in the absence of the appropriate stimulus. Other inducible promoters cause detectable constitutive expression in the absence of the stimulus. Whatever the level of expression is in the absence of the stimulus, expression from any inducible promoter is increased in the presence of the correct stimulus. The preferable situation is where the level of expression increases upon application of the relevant stimulus by an amount effective to alter a phenotypic characteristic. Thus an inducible (or “switchable”) promoter may be used which causes a basic level of expression in the absence of the stimulus which level is too low to bring about a desired phenotype (and may in fact be zero). Upon application of the stimulus, expression is increased (or switched on) to a level which brings about the desired phenotype.
Suitable promoters include the Cauliflower Mosaic Virus 35S (CaMV 35S) gene promoter that is expressed at a high level in virtually all plant tissues (Benfey et al, 1990a and 1990b); the maize glutathione-S-transferase isofrom II (GST-II-27) gene promoter which is activated in response to application of exogenous safener (WO93/01294, ICI Ltd); the cauliflower meristem 5 promoter that is expressed in the vegetative apical meristem as well as several well localised positions in the plant body, eg inner phloem, flower primordia, branching points in root and shoot (Medford, 1992; Medford et al, 1991) and the Arabidopsis thaliana LEAFY promoter that is expressed very early in flower development (Weigel et al, 1992).

The GST-II-27 gene promoter has been shown to be induced by certain chemical compounds which can be applied to growing plants. The promoter is functional in both monocotyledons and dicotyledons. It can therefore be used to control gene expression in a variety of genetically modified plants, including field crops such as canola, sunflower, tobacco, sugar beet, cotton; cereals such as wheat, barley, rice, maize, sorghum; fruit such as tomatoes, mangoes, peaches, apples, pears, strawberries, bananas, and melons; and vegetables such as carrot, lettuce, cabbage and onion. The GST-II-27 promoter is also suitable for use in a variety of tissues, including roots, leaves, stems and reproductive tissues.

Accordingly, the present invention provides a further aspect in which a gene construct comprising an inducible promoter operatively linked to a nucleotide sequence provided by the present invention, such as the GAI gene of Arabidopsis thaliana, a homologue from another plant species or any mutant, derivative or allele thereof. This enables control of expression of the gene. The invention also provides plants transformed with said gene construct and methods comprising introduction of such a construct into a plant cell and/or introduction of expression of a construct within a plant cell, by application of a suitable stimulus, an effective exogenous inducer. The promoter may be the GST-II-27 gene promoter or any other inducible plant promoter.

When introducing a chosen gene construct into a cell, certain considerations must be taken into account, well known to those skilled in the art. The nucleic acid to be inserted should be assembled within a construct which contains effective regulatory elements which will drive transcription. There must be available a method of transporting the construct into the cell. Once the construct is within the cell membrane, integration into the endogenous chromosomal material either will or will not occur. Finally, as far as plants are concerned the target cell type must be such that cells can be regenerated into whole plants.

Selectable genetic markers may be used consisting of chimaeric genes that confer selectable phenotypes such as resistance to antibiotics such as kanamycin, hygromycin, phosphonotricin, chlorosulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones and glyphosate.

An aspect of the present invention is the use of nucleic acid according to the invention in the production of a transgenic plant.

A further aspect provides a method including introducing the nucleic acid into a plant cell and causing or allowing incorporation of the nucleic acid into the genome of the cell.

Any appropriate method of plant transformation may be used to generate plant cells comprising nucleic acid in accordance with the present invention. Following transformation, plants may be regenerated from transformed plant cells and tissue.

Successfully transformed cells and/or plants, i.e. with the construct incorporated into their genome, may be selected following introduction of the nucleic acid into plant cells, optionally followed by regeneration into a plant, e.g. using one or more marker genes such as antibiotic resistance (see above).

Microprojectile bombardment, electroporation and direct DNA uptake are preferred where Agrobacterium is inefficient or ineffective. Alternatively, a combination of different techniques may be employed to enhance the efficiency of the transformation process, e.g. bombardment with Agrobacterium coated microparticles (EP-A-486234) or microprojectile bombardment to induce wound following by co-cultivation with Agrobacterium (EP-A-486233).

Following transformation, a plant may be regenerated, e.g. from single cells, callus tissue or leaf discs, as is standard in the art. Almost any plant can be entirely regenerated from cells, tissues and organs of the plant. Available techniques are reviewed in Vasil et al., Cell Culture and Somatic Cell Genetics of Plants, Vol I, II and III, Laboratory Procedures and Their Applications, Academic Press, 1984, and Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989.

The particular choice of a transformation technology will be determined by its efficiency to transform certain plant species as well as the experience and preference of the person practising the invention with a particular methodology of choice. It will be apparent to the skilled person that the particular choice of a transformation system to introduce nucleic acid into plant cells is not essential to or a limitation of the invention, nor is the choice of technique for plant regeneration.

In the present invention, over-expression may be achieved by introduction of the nucleotide sequence in a sense orientation. Thus, the present invention provides a method of influencing a characteristic of a plant, the method comprising causing or allowing expression of nucleic acid according to the invention from that nucleic acid within cells of the plant.

Under-expression of the gene product polypeptide may be achieved using anti-sense technology or "sense regulation". The use of anti-sense genes or partial gene sequences to down-regulate gene expression is now well-established. DNA is placed under the control of a promoter such that transcription of the "anti-sense" strand of the DNA yields RNA which is complementary to normal mRNA transcribed from the "sense" strand of the target gene. For double-stranded DNA this is achieved by placing a coding sequence or a fragment thereof in a "reverse orientation" under the control of a promoter. The complementary anti-sense RNA sequence is thought then to bind with mRNA to form a duplex, inhibiting the translation of the endogenous mRNA from the target gene into protein. Whether or not this is the actual mode of action is still uncertain. However, it is established fact that the technique works. See, for example, Rothstein et al., 1987; Smith et al.,(1988) Nature 334, 724-726; Zhang et al., (1992) The Plant Cell 4, 1575-1588, English et al., (1996) The Plant Cell 8, 179-188. Antisense technology is also reviewed in reviewed in Bourque, (1995), Plant Science 105, 125-149, and Flavell, (1994) PNAS USA 91, 3490-3496.

The complete sequence corresponding to the coding sequence in reverse orientation need not be used. For example fragments of sufficient length may be used. It is a routine matter for the person skilled in the art to screen fragments of various sizes and from various parts of the coding sequence to optimise the level of anti-sense inhibition. It may be advantageous to include the initiating methionine ATG codon, and perhaps one or more nucleotides upstream of the initiating codon. A further possibility is to target a regulatory sequence of a gene, e.g. a sequence that is characteristic of one or more genes in one or more pathogens against which resistance is desired. A suitable fragment may have at least about 14-23 nucleotides, e.g. about 15, 16 or 17, or more, at least about 25, at least about 30, at least about 40, at least about 50, or more. Such fragments in the sense orientation may be used in co-suppression (see below).

Total complementarity of sequence is not essential, though may be preferred. One or more nucleotides may differ in the anti-sense construct from the target gene. It may be preferred for there to be sufficient homology for the respective anti-sense and sense RNA molecules to hybridise, particularly under the conditions existing in a plant cell.

Thus, the present invention also provides a method of influencing a characteristic of a plant, the method comprising causing or allowing anti-sense transcription from nucleic acid according to the invention within cells of the plant.

When additional copies of the target gene are inserted in sense, that is the same, orientation as the target gene, a range of phenotypes is produced which includes individuals where over-expression occurs and some where under-expression of protein from the target gene occurs. When the inserted gene is only part of the endogenous gene, the number of under-expressing individuals in the transgenic population increases. The mechanism by which sense regulation occurs, particularly down-regulation, is not well-understood. However, this technique is also well-reported in scientific and patent literature and is used routinely for gene control. See, for example, See, for example, van der Krol et al., (1990) The Plant Cell 2, 291-299; Napoli et al., (1990) The Plant Cell 2, 279-289; Zhang et al., (1992) The Plant Cell 4, 1575-1588, and U.S. Pat. No. 5,231,020.

Thus, the present invention also provides a method of influencing a characteristic of a plant, the method comprising causing or allowing expression from nucleic acid according to the invention within cells of the plant. This may be used to influence growth.

Aspects and embodiments of the present invention will now be illustrated, by way of example, with reference to the accompanying figures. Further aspects and embodiments will be apparent to those skilled in the art. All documents mentioned in this text are incorporated herein by reference.

The following Figures are included herein:

FIG. 1: The basic carbon-ring structure of gibberellins.

FIG. 2: The gai-t6 line contains a transposed Ds which interrupts a transcribed gene.

Plants shown are (left to right) homoygous for GAI, gai and gai-t6. GAI and gai-t6 plants are indistinguishable.

FIG. 2b: DNA gel-blot hybridization using a Ds probe. DNA in the GAI lane lacks Ds. The gai lane contains
DNA from plants homozygous for gai and for T-DNA A264\(^2\), which contains Ds (18.0 kb EcoRI fragment). The gai-t6 lane contains DNA from plants homozygous for A264 and for a transposed Ds (15.5 kb fragment).

[0091] **FIG. 2c:** DNA gel-blot hybridization using a radio-labelled GAI cDNA probe. The cDNA hybridizes with a 5.1 kb BclI fragment in DNA from GAI and gai, replaced in gai-t6 by fragments of 6.4 and 2.8 kb. Since BclI cuts once within Ds, the Ds insertion is flanked on either side by the gene (GAI) encoding the cDNA. The fainter hybridization at 1.7 kb is one of several seen on longer exposure and identifies a sequence related to GAI.

[0092] **FIG. 3:** A nucleotide sequence of a GAI gene encoding a polypeptide with GAI function.

[0093] **FIG. 4:** Primary structure of GAI and gai proteins. The amino acid sequence predicted from the genomic DNA sequence of GAI is shown. The 17 amino acid segment deleted in gai is shown in bold face and double-underlined.

[0094] **FIG. 5:** De-repression model for plant growth regulation by GA.

[0095] **FIG. 6:** Nucleotide and encoded amino acid sequences of gai-derivative alleles.

[0096] **FIG. 6a:** Nucleotide sequence of gai-d1.

[0097] **FIG. 6b:** Amino acid sequence of gai-d1.

[0098] **FIG. 6c:** Nucleotide sequence of gai-d2.

[0099] **FIG. 6d:** Amino acid sequence of gai-d2.

[0100] **FIG. 6e:** Nucleotide sequence of gai-d5.

[0101] **FIG. 6f:** Amino acid sequence of gai-d5.

[0102] **FIG. 6g:** Nucleotide sequence of gai-d7.

[0103] **FIG. 6h:** Amino acid sequence of gai-d7.

EXAMPLE 1

[0104] Cloning of and Characterization of GAI and gai Genes

[0105] gai maps to chromosome 1 of Arabidopsis, approximately 11 cM from a T-DNA insertion carrying a Ds transposon\(^1\). Genetic analyses suggested that loss-of-function alleles confer a tall phenotype indistinguishable from that conferred by the wild-type allele (GAI)\(^5\). We attempted to clone GAI via insertional mutagenesis, exploiting the tendency of Ds to transpose preferentially to linked sites\(^6\).

[0106] Plant lines homozygous for A264 and gai, containing a transgene (Anaell-sAc(GUS)-1) expressing Ac transposase were constructed. Plants homozygous for a putative Ds insertion allele, which we designated gai-t6, were isolated from this material as follows\(^7\). The material was bulked up, by self-pollination, over several generations. During this bulking, searches were made for plants which had stem branches more elongated than expected for a gai homozygote. Seeds obtained from self-pollination of such branches were planted out for closer examination. The progeny of one such branch segregated plants, at a frequency of approximately one quarter, displaying a tall phenotype indistinguishable from that conferred by GAI (FIG. 2a). These plants were homozygous for a new gai allele, which we designated gai-t6.

[0107] DNA gel-blot experiments revealed that gai-t6 contains a transposed Ds (FIG. 2b), inserted within a region (approximately 200 kb) of chromosome 1 known to contain GAI (data not shown). Genomic DNA preparation and gel-blot hybridizations were performed as described\(^8\). EcoRI digests were hybridized with the Ds probe (radio-labelled 3.4 kb Xhol-BamHI subfragment of Ac). gai-t6 has lost (Anaell-sAc(GUS)-1) via genetic segregation.

[0108] Further experiments showed that the transposed Ds interrupts the transcribed region of a gene (GAI), and that the Arabidopsis genome contains at least one additional gene sharing significant sequence homology with GAI (FIG. 2c). A radiolabelled IPCR fragment containing genomic DNA adjacent to the 3' end of the transposed Ds in gai-t6 was isolated as previously described\(^9\). It was necessary to use considerable caution in the use of this probe since it was potentially contaminated with sequence derived from the T-DNA 3' of the Ds in A264 (which is still present in the gai-t6 line): However, the fact that the probe hybridized with DNA from plants lacking any T-DNA insertion indicated that it was useful for the purposes of cloning the region of genomic DNA into which the transposed Ds in gai-t6 had inserted. This probe was shown to hybridize to genomic DNA cosmid clones previously identified as being likely to contain GAI by map-based cloning. One of these cosmids was used to identify, by hybridization, clones from a cDNA library made from mRNA isolated from aerial plant parts (Arabidopsis). These cDNAs were classified according to their hybridization to genomic DNA from GAI, gai and gai-t6. Some of these clones hybridized weakly fragments containing GAI (as defined by the alteration in fragment size caused by the Ds insertion in gai-t6), but more strongly to other, related sequences. These cDNAs are presumably derived from mRNAs transcribed from genes related in sequence to GAI, but not from GAI itself, and were put to one side for future investigations. One cDNA, pPC1, hybridized strongly to GAI, and less strongly to the fragments containing sequence related to GAI. The DNA sequence of part this cDNA was identical with approximately 150 bp of genomic DNA flanking the Ds insertion in gai-t6.

[0109] Reversion analysis showed that excision of Ds from 10 gai-t6 was associated with restoration of a dominant dwarf phenotype.

[0110] The DNA sequences of two overlapping GAS cDNAs revealed an open reading frame (ORF) encoding a protein (GAI) of 532 amino acid residues. DNA fragments containing this ORF were amplified from GAI and gai genomic DNA. Oligonucleotide primers derived from the DNA sequences of overlapping cDNAs pPC1 and pPC2 were used to amplify, via PCR, 1.7 kb fragments from GAI and gai genomic DNA. The sequences of the primers used were:

| Primer N6 | 5' TAG AAG TUG TAG TUG3' |
| Primer AT1 | 5' ACC ATG AGA CCA GCC G3' |

[0111] The sequence of primer AT1 differs by one base from the sequence of the genomic and c-DNA clones. The
The DNA sequences of fragments from duplicate amplifications were determined, thus avoiding errors introduced by PCR.

The GAI genomic sequence was almost identical with that of the overlapping cDNAs. There were three nucleotide substitutions that could be due to differences between ecotypes and which do not alter the predicted amino acid sequence of GAI. The sequences of these genomic fragments revealed that the ORF is not interrupted by introns (FIG. 3).

The Ds insertion in gai-t6 is located between the Glu10 and Asn185 codons (FIG. 4). The predicted secondary structure of GAI shows few salient features. GAI is a largely hydrophobic protein with a polyhistidine tract of unknown significance close to the amino-terminus, and a weakly hydrophobic domain surrounding a possible glycosylation site at Asn1493. Computer analysis indicates a relatively low likelihood that this hydrophobic region is a transmembrane domain.

Searches of the DNA and protein sequence databases revealed no domains of obvious functional significance within GAI. gai contains a deletion of 51 bp from within the GAI ORF. This in-frame deletion results in the absence, in gai, of a 17 amino acid residue segment situated close to the amino terminus of the predicted GAI protein (FIG. 4).

Laurenzi et al. reported after the priority date of the present invention a sequence for the SCR (SCARECROW) gene of Arabidopsis, mutation of which results in roots that are missing one cell layer. The disclosed SCR sequence has some homology with the Arabidopsis GAI gene of the present invention, but lacks the 17 amino acid motif discussed.

A previous publication described the isolation, following γ-irradiation mutagenesis, of gai derivative alleles. These alleles, when homozygous, confer a tall phenotype indistinguishable from that conferred by GAI. Sequencing of amplified fragments from several of the derivative alleles (gai-d1, gai-d2, gai-d5 and gai-d7) showed that each contains the 51 bp deletion characteristic of gai. Nucleotide and encoded amino acid sequences of these alleles are shown in FIG. 6. They also contain additional mutations that could confer a non-functional gene product (Table 1). The fact that loss of gai mutant phenotype is correlated with each of these mutations, together with the reversion data (see above), confirms that GAI has been cloned. Furthermore, these results are consistent with predictions that the gai-d alleles would be null alleles.

Cloning of gai via insertional mutagenesis was possible because it is a gain-of-function mutation. Such mutations can have dominant effects for a variety of reasons, including ectopic or increased expression of a normal gene product, or altered function of a mutant gene product. Here we show that the gai mutation is associated with an altered product. Deletion of a 17 amino acid residue domain from GAI results in a mutant protein (gai) which, in a genetically dominant fashion, causes dwarfism. This strongly suggests that GAI is a growth repressor, and that GA de-represses growth by antagonizing GAI action. The domain missing in the mutant gai protein may be responsible for interacting with the GA signal or with GA itself. gai would then constitutively repress growth because it cannot be antagonized by GA. A de-repression model for GA-mediated plant growth regulation is further elaborated in FIG. 5, but it should be noted that this proposal is not to be taken to limit the scope of the present invention. Knowledge of the actual mode of action of GAI and gai, i.e. how they work, is not a pre-requisite for operation of the present invention, which is founded on cloning of wild-type and mutant versions of the GAI gene.

Mutations at the SPINDLY (SPY) locus of Arabidopsis confer increased resistance to GA biosynthesis inhibitors and a reduced dependence on GA for growth regulation, phenotypes characteristic of the slender mutants previously described in other plant species. Recent experiments have shown that the dwarf phenotype conferred by gai can be partially suppressed by mutations at SPY and at other loci. We propose, again without limiting the scope of the present invention, that SPY, together with proteins encoded by these other loci, is involved in the downstream transduction of the growth repressing signal that originates with GAI (FIG. 5).

According to the model shown in FIG. 5, GA de-represses plant growth because it (or a GA signalling component) antagonizes the activity of GAI, a protein which represses growth. The growth repressing signal is transmitted via SPY, GAR2, GAS2 (J. and N. P.I., unpublished) and other proteins. Normal plants (GAI) grow tall because the level of endogenous GA is sufficiently high to substantially antagonize the activity of the GAI repressor. GA-deficient plants contain insufficient GA to antagonize GAI repression to the same degree, and are thus dwarfed. The dwarf mutant plants are dwarfed because the mutant gai protein is not antagonized by GA, and represses growth in a dominant fashion. spy, gar2 and gas2 mutations partially suppress gai phenotype, and confer resistance to GA biosynthesis inhibitors. Pairwise combinations of these three mutations confer more extreme gai suppression and resistance to GA biosynthesis inhibition than is conferred by any of spy, gar2 or gas2 alone. Thus, these genes are proposed to encode downstream components that are responsible for the transmission of the growth repressing signal from GAI. It is possible that the gai mutation is a functional homologue of the GA-insensitivity mutations in maize and wheat. Thus this model can be used to provide a general explanation for the regulation of plant growth by GA.

Independent studies of GA-insensitive dwarf mutants in maize and GA-independent slender mutants in pea and barley have previously implicated the involvement of a repressor function in GA signal-transduction. The indications from the worked described herein are that in all probability Arabidopsis GAI is such a repressor. An important implication of this is that GA then regulates plant growth not via activation but by de-repression.

Cloning of GAI Homologues from Wheat, Rice and Brassica spp.

DNA containing potential GAI homologues are isolated from wheat, rice and Brassica by reduced strin-
gency probing of cDNA or genomic DNA libraries containing DNA from these species. Hybridizing clones are then purified using standard techniques.

[0124] Alternatively, potential GAI homologues are identified by screening of EST databases for cDNA and other sequences showing statistically significant homology with the GAI sequence. Clones are then obtained by requesting them from the relevant distribution centres. Table 2 gives details of results of searching in public sequence databases containing EST sequences that were obtained in random sequencing programmes, showing that homologous sequences have been found in various species, including Zea Mays (maize), O. Sativa (rice), and Brassica napus (rape).

[0125] In the case of wheat and maize, it is important to know if these homologous sequences correspond to the previously characterized Rht and D8 genetic loci. This is determined as follows.

[0126] cDNA or genomic DNA from rice, wheat or maize is mapped onto the wheat genomic map, thus determining if the map position of the DNA corresponds to the map position of the Rht loci in wheat. Furthermore, in the case of maize, potential transposon-insertion alleles of D8 exist, and these are used to prove the cloning of D8 in the same manner as we have proven the cloning of gai from Arabidopsis. By sequencing these various cDNA and genomic DNA clones, studying their expression patterns and examining the effect of altering their expression, genes carrying out a similar function to GAI in regulating plant growth are obtained.

[0127] Mutants, derivatives, variants and alleles of these sequences are made and identified as appropriate.

EXAMPLE 3

[0128] Expression of GAI and gai Proteins in E. coli

[0129] DNA fragments containing the complete GAI or gai open reading frames were amplified using PCR from genomic DNA clones (no introns in genes) containing the GAI and gai genes. Amplifications were done using primers which converted the ATG translation start codon into a BamHI restriction endonuclease site. The fragments have a PstI restriction endonuclease site at the other end (beyond the stop codon). The products were cloned and their DNA sequences determined to ensure that no errors had been introduced during the course of the PCR. The correct fragments were cloned into BamHI/PstI digested PQE30 expression vector (Qiagenexpression kit from the Qiagen Company), resulting in constructs with the potential to express the GAI and gai proteins in E. coli. Expression in this vector is regulated by an IPTG-inducible promoter, and the resultant proteins carry an N-terminal polyhistidine tag which can be used to purify them from cellular extracts.

[0130] Induction with IPTG resulted in high-level expression of the GAI and gai proteins in E. coli.

EXAMPLE 4

[0131] Expression Constructs and Transformation of Plants

[0132] (a) Normal Expression Levels, using Endogenous Promoters

[0133] The GAI and gai genes were isolated as 5 kb EcoRI/EcoRV fragments (containing about 1.5 kb of non-coding sequence flanking the coding sequence) by subcloning from appropriate genomic clones. These fragments were cloned into the Bluescript vector, re-isolated as EcoRI/XbaI fragments, and ligated into binary vectors for mobilisation into Agrobacterium tumefaciens C58C1, with the T-DNA being introduced into Arabidopsis and tobacco plants as described by Valvekens et al.32 or by the more recent vacuum infiltration method33, and into Brassica napus using the high efficiency Agrobacterium transformation technique as described in Moloney et al.34.

[0134] (b) Overexpression using an Exogenous Promoter

[0135] Constructs have been made using DNA from vectors pJIT60, containing a double 35S promoter35 and pJIT62, a modified form of pJIT60 that contains a single 35S promoter. The promoters from these vectors were fused with around 100 bp 5' non-coding sequence, followed by an ATG and the entire GAI or gai open reading frames, followed by a translational stop codon, followed by around 20 bp 3' non-coding sequence, followed by a polyadenylation signal: all this carried on a SstI/XhoI fragment.

[0136] This fragment has been ligated into binary vectors for introduction into transgenic plants, either by the use of Agrobacterium tumefaciens or as naked DNA, as described earlier.

EXAMPLE 4

[0137] Modification of GAI and gai Sequences

[0138] A short segment of the GAI open reading frame surrounding the gai deletion is amplified from GAI and gai by using in PCR appropriate oligonucleotide primers, designed on the basis of sequence information provided herein. The amplified segment is then subjected to one or more of various forms of mutagenesis (see e.g. Sambrook et al.), resulting in a series of overlapping deletion mutants, or, if desired, substitutions of individual nucleotides in this region.

[0139] The mutated amplified segment is then substituted for the equivalent segment in GAI, via restriction endonuclease digestion and a subsequent ligation reaction. This new variant is then expressed in transgenic plants either at normal levels or via overexpression as described above.

[0140] Constructs are studied to assess their effects on plant growth regulation-in model (e.g. Arabidopsis and tobacco) and crop (e.g. wheat, rice and maize) species. Different constructs confer differing degrees of dwarfism and may individually be especially suited to the modification and improvement of particular crop species, or for crops growing in particular environments.

EXAMPLE 5

[0141] GAI Null Alleles Confer Increased Resistance to Paclorbutrazol:

[0142] Paclorbutrazol is a triazole derivative that specifically inhibits GA biosynthesis at the lauric oxide reation6,37, thus reducing endogenous GA levels and conferring a dwarf phenotype on plants exposed to it. The slender mutants of pea and barley are resistant to the dwarfing effects of paclorbutrazol38-42, as is the Arabidopsis constitutive GA-response mutant spy43-44. Thus, in these mutants stem elongation is at least partially uncoupled from the
GA-mediated control characteristic of normal plants. Interestingly, the gai-t6 mutant also displays paclobutrazol resistance. When grown on medium containing paclobutrazol, gai-t6 mutants display longer floral bolt stems than GAI control plants. This result suggests that loss of GAI function causes a reduction in the GA-dependency of stem elongation. Put another way, a GAI null mutant appears to require less endogenous GA to achieve a certain degree of growth than does a normal plant. GA-dependency is not completely abolished by gai-t6 possibly because the products of genes related in sequence to GAI (see above) can substantially, but not completely, compensate for loss of GAI function. These observations are significant, because they demonstrate that the wild-type gene product, GAI, is a GA signal-transduction component.

References

35. Guerineau and Mullineaux, in “Plant Molecular Biology Laboratory Fax”, ed RRD Croy, Chapter 4, pp121-147, Blackstone Scientific.

TABLE 1

<table>
<thead>
<tr>
<th>Allele</th>
<th>Nature of Mutation*</th>
<th>Position in Coding Sequence</th>
<th>Consequence of Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>gai-d1</td>
<td>CAG to TAC</td>
<td>Gln^259</td>
<td>Stop codon, truncated polypeptide</td>
</tr>
<tr>
<td>gai-d2</td>
<td>GAT to GA, one base deletion</td>
<td>Asp^314</td>
<td>Frameshift, addition of two novel amino acids, truncated polypeptide</td>
</tr>
<tr>
<td>gai-d5</td>
<td>7 base deletion, also C to G</td>
<td>follows Leu^281</td>
<td>Frameshift, addition of 18 novel amino acids, truncated polypeptide</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>Allele</th>
<th>Nature of Mutation*</th>
<th>Position in Coding Sequence</th>
<th>Consequence of Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>gai-47</td>
<td>GTT to GT, one base deletion</td>
<td>V169del</td>
<td>Frameshift, addition of 27 novel amino acids, truncated polypeptide</td>
</tr>
</tbody>
</table>

*Underlining denotes nucleotide substitution in each allele.

[0189] The alleles were isolated following γ-irradiation mutagenesis of gai homozygotes5. 1.7 kb fragments were amplified from genomic DNA from each allele, and sequenced as described above. Each allele contains the 51 bp deletion characteristic of gai, confirming that they are all genuinely derived from gai and are not contaminants.

TABLE 2-continued

<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species</th>
<th>Blast Poisson probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM_EST1: AT5178</td>
<td>A. Thaliana</td>
<td>0.014</td>
</tr>
<tr>
<td>EM_EST1: AT8456</td>
<td>A. Thaliana</td>
<td>0.026</td>
</tr>
</tbody>
</table>

2. - HOMOLOGY TO AMINOACIDS 200-400.

<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species</th>
<th>Blast Poisson probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM_EST1: ATTS4618</td>
<td>A. Thaliana</td>
<td>1.5 · e-21</td>
</tr>
<tr>
<td>EM_EST1: ZM3101</td>
<td>Zea Mays (maize)</td>
<td>1.7 · e-14</td>
</tr>
<tr>
<td>EM_EST1: ATTS1110</td>
<td>A. Thaliana</td>
<td>3.9 · e-10</td>
</tr>
<tr>
<td>EM_EST1: ATTS3935</td>
<td>A. Thaliana</td>
<td>1.7 · e-9</td>
</tr>
<tr>
<td>EM_STS: ZM7862</td>
<td>Zea Mays (maize)</td>
<td>4.5 · e-7</td>
</tr>
<tr>
<td>EM_EST1: AT7938</td>
<td>A. Thaliana</td>
<td>0.0031</td>
</tr>
<tr>
<td>EM_EST1: OSS989A</td>
<td>O. Sativa (rice)</td>
<td>0.0085</td>
</tr>
</tbody>
</table>

3. - HOMOLOGY TO THE LAST 132 AMINOACIDS.

<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species</th>
<th>Blast Poisson probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM_EST1: AT2057</td>
<td>A. Thaliana</td>
<td>3.1 · e-52</td>
</tr>
<tr>
<td>EM_EST1: ATTS3589</td>
<td>A. Thaliana</td>
<td>3.2 · e-42</td>
</tr>
<tr>
<td>EM_EST1: OSS713A</td>
<td>O. Sativa (rice)</td>
<td>2.8 · e-10</td>
</tr>
<tr>
<td>EM_EST1: BNS691</td>
<td>B. Napus (rapeseed)</td>
<td>3.0 · e-5</td>
</tr>
<tr>
<td>EM_EST1: ATTS3924</td>
<td>A. Thaliana</td>
<td>0.0034</td>
</tr>
<tr>
<td>EM_EST1: ATTS4618</td>
<td>A. Thaliana</td>
<td>0.0089</td>
</tr>
<tr>
<td>EM_EST1: AT4839</td>
<td>A. Thaliana</td>
<td>0.0006</td>
</tr>
<tr>
<td>EM_EST1: ATTS1327</td>
<td>A. Thaliana</td>
<td>0.0073</td>
</tr>
<tr>
<td>EM_EST1: AT1866</td>
<td>A. Thaliana</td>
<td>0.0054</td>
</tr>
<tr>
<td>EM_EST1: AT79316</td>
<td>A. Thaliana</td>
<td>0.092</td>
</tr>
<tr>
<td>EM_EST1: AT7747</td>
<td>A. Thaliana</td>
<td>0.35</td>
</tr>
</tbody>
</table>

[0190]
<210> SEQ ID NO 2
<211> LENGTH: 532
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 2

Met Lys Arg Asp His His His His His Gln Asp Lys Lys Thr Met Met
1 5 10 15

Met Asn Glu Glu Asp Asp Gly Asn Gly Met Asp Glu Leu Leu Ala Val
20 25 30 35 40

Leu Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Asp Val Ala Gln Lys
45 50 55 60

Leu Glu Gln Leu Glu Val Met Ser Asn Val Gln Glu Asp Asp Leu
65 70 75 80

Ser Gln Leu Ala Thr Glu Thr Val His Tyr Asn Pro Ala Glu Leu Tyr
85 90 95

Thr Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro Pro Ser Ser Asn
100 105 110

Ala Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala Ile Leu Asn Gln
115 120 125
-continued

Thr Tyr Thr Thr Asn Lys Arg Leu Lys Cys Ser Asn Gly Val Val Glu 130 135 140
Thr Thr Thr Ala Thr Ala Glu Ser Thr Arg His Val Val Leu Asp 145 150 155 160
Ser Glu Glu Gly Val Arg Leu Val His Ala Leu Leu Ala Cys Ala 165 170 175
Glu Ala Val Gln Lys Glu Asn Leu Thr Val Ala Glu Ala Leu Val Lys 180 185 190
Gln Ile Gly Phe Leu Ala Val Ser Glu Ile Gly Ala Met Arg Lys Val 195 200 205
Ala Thr Tyr Phe Ala Glu Ala Leu Arg Arg Ile Tyr Arg Leu Ser 210 215 220
Pro Ser Glu Ser Pro Ile Asp His Ser Leu Ser Asp Thr Leu Glu Met 225 230 235 240
His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe Ala His Phe Thr Ala 245 250 255
Asn Glu Ala Ile Leu Glu Ala Phe Glu Gly Lys Lys Arg Val His Val 260 265 270
Ile Asp Phe Ser Met Ser Gln Gly Leu Glu Gin Trp Pro Ala Leu Met Gin 275 280 285
Ala Leu Ala Leu Arg Pro Gly Gly Pro Pro Val Phe Arg Leu Thr Gly 290 295 300
Ile Gly Pro Pro Ala Pro Asp Asn Phe Asp Tyr Leu His Gly Val Gly 305 310 315 320
Cys Lys Leu Ala His Leu Ala Glu Ala Ile His Val Glu Phe Glu Thr 325 330 335
Arg Gly Phe Val Ala Asn Thr Leu Ala Asp Leu Asp Ala Ser Met Leu 340 345 350
Glu Leu Arg Pro Ser Glu Ile Glu Ser Val Ala Val Aen Ser Val Phe 355 360 365
Glu Leu His Lys Leu Leu Gly Arg Pro Gly Ala Ile Asp Lys Val Leu 370 375 380
Gly Val Val Asn Gin Ile Lys Pro Glu Ile Phe Thr Val Val Glu Gin 385 390 395 400
Glu Ser Asn His Asn Ser Pro Ile Phe Leu Asp Arg Phe Thr Glu Ser 405 410 415
Leu His Tyr Tyr Ser Thr Leu Phe Asp Ser Leu Glu Gly Val Pro Ser 420 425 430
Gly Gin Asp Lys Val Met Ser Glu Val Tyr Leu Lys Gin Ile Cys 435 440 445
Asn Val Val Ala Cys Asp Gly Pro Asp Arg Val Gly Arg His Glu Thr 455 460
Leu Ser Gin Trp Arg Asn Arg Phe Gly Ser Ala Gly Phe Ala Ala Ala 470 475 480
His Ile Gly Ser Asn Ala Phe Lys Gin Ala Ser Met Leu Leu Ala Leu 485 490 495
Phe Asn Gly Glu Gly Tyr Arg Val Glu Glu Ser Asp Gly Cys Leu 500 505 510
Met Leu Gly Trp His Thr Arg Pro Leu Ile Ala Thr Ser Ala Trp Lys 515 520 525
Leu Ser Thr Asn
<210> SEQ ID NO: 4
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 4

Met Lys Asp His His His His Gin Asp Lys Thr Met Met
Met Asn Glu Glu Asp Asp Gly Asn Gly Met Asp Val Ala Glu Lys Leu
20 25 30
Glu Gln Leu Glu Val Met Ser Asn Val Glu Asp Asp Leu Ser
35 40 45
Gln Leu Ala Thr Glu Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Thr
50 55 60
Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro Ser Ser Asn Ala
65 70 75 80
Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala Ile Leu Asn Glu Phe
85 90
Ala Ile Asp Ser Ala Ser Ser Ser Asn Glu Gly Gly Gly Gly Asp Thr
100 105 110
Tyr Thr Thr Asn Lys Arg Leu Lys Ser Asn Gly Val Val Glu Thr
115 120 125
Thr Thr Ala Thr Ala Glu Ser Thr Arg His Val Val Leu Val Asp Ser
130 135 140
Gln Glu Asn Gly Val Arg Leu Val His Ala Leu Leu Ala Cys Ala Glu
145 150 155 160
Ala Val Gln Lys Glu Asn Leu Thr Val Ala Glu Leu Val Lys Gln
165 170 175
Ile Gly Phe Leu Ala Val Ser Gln Ile Gly Ala Met Arg Lys Val Ala
180 185 190
Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg Ile Tyr Arg Leu Ser Pro
195 200 205
Ser Glu Ser Pro Ile Asp His Ser Leu Ser Asp Thr Leu
210 215 220

<210> SEQ ID NO 5
<211> LENGTH: 1642
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 5
tagaagtggtg atgctagacgcc acataccgag cccgcaggt 60
aaagttctt caccttctca aataagccaa acctgtgatc gacatgagaa gaaaaacct 120
tctagatc ctgctgaaaa aaaaaaccac atgacagag atacctacta tctcaacaa 180
gtcagagata atacagatgat gatgaagaa gtaagcggta aacgcatgga tggctcgat 240
aagctagact gcctgctgtct ttagtttatt taaggaatt gacagcgatgct tcctcaact 300
gcagattc gacctgctatt gtctggcccc ggtctttttc gttttgttct gcctggcctt 360
aacgaccact aatctcgtgct gcctagcctg gatagcgtat ttaaggtgct cctgcggtt 420
gctggactca atcagcttagc tacagtcggt ctttgtcttg tctccacctg cggcgtgagga 480
gtatgtagt ctcacccacc aacgctgctgg tgctcctacag ggtctgcttg aacccacacc 540
gcaggcctttt gcagccactg gtcagccctgtc gcttttctgt gccccgagaa cagcgtgctgt 600
cggcgcgcttg gtctgctgag ggtctgctgt gcctgctgtc acctccgtctg acctggcagag 660
gttgtgcttg tggatgctttt gccttttcttg ccttttttcttg tttttttttt 720
gtctgctgag cccctctctg gcctgctgag gcctgctgag gcctgctgag 780
tagctagact gcctgctgag gcctgctgag gcctgctgag gcctgctgag 840
-continued
tactactaat tagctctctt cagccgccat caagcagctc tagaagcttt tcaggaag
900
	aaagagttc atgtcatgga ttctotatga taaagttctgg cacggccgag caagcactga
960
	ctggctctgc ggctgtcttc agtgctttcc tcagacccaa attgctcaca
1020
tcggccacgta taatcaggtg tagtggcttg tattggtagc catctatgctg
1080
	aggctgattca caggggagtt gatcagcag gattttgcttc taccacatgtgctcacgttg
1140
	atgtctgtt ggtgactcct caagcagcctg agatgtccagc tgggtggctgtgctctggg
1200
tcagctctca cagcagcttg gagaacagcc tgtcgactcg ttaaggctt gccgaagtgg
1260
	ctcagttacta accgagctct ttctcagttg gttgacgagct atgcagctgc ataagtcgaa
1320
tattactc atcggtgttgattattactctt gacgttgctt gacgtcggttg
1380
	aagcgtctac gaaagcctgaa cagccgccgta taatcaggtg tatttgagctt aaaagagttt
1440
gcagctagtt gcgtttgact gcagctagtt gcgtttgact gcgtttgact gcgtttgact
1500
ggaagccgcc ggctgttctg gcgttactgct gccctacca tatttggtctg aatggctttg
1560
tattgttctg gtcggtacct gcgggtcttc ggctgctac aagggctactg ccggtttttg
1620
gttgggagacg cagcagcctg gagaacagcc tgtcgactcg ttaaggctt gccgaagtgg
1682

gttgacttgg ttctcagttg gg
1642

<210> SEQ ID NO 6
<211> LENGTH: 259
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 6

Met Lys Arg Asp His His His His Gln Asp Lys Lys Thr Met Met

1 5 10 15
Met Asn Glu Asp Aep Gly Aep Gly Met Asp Val Ala Gln Lys Leu

20 25 30
Glu Gln Leu Val Met Ser Asn Val Gln Glu Asp Asp Leu Ser

35 40 45
Gln Leu Ala Thr Glu Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Thr

50 55 60
Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro Ser Ser Asn Ala

65 70 75 80
Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala Ile Leu Asn Gln Phe

85 90 95
Ala Ile Asp Ser Ala Ser Ser Ser Asn Gln Gly Gly Gly Gly Asp Thr

100 105 110
Tyr Thr Thr Asn Lys Arg Leu Lys Ser Ser Asn Gly Val Val Glu Thr

115 120 125
Thr Thr Ala Thr Ala Glu Ser Thr Arg His Val Val Leu Val Asp Ser

130 135 140
Gln Glu Asn Gly Val Arg Leu Val His Ala Leu Ala Cys Ala Glu

145 150 155 160
Ala Val Glu Lys Glu Asn Leu Thr Val Ala Glu Ala Leu Val Lys Glu

165 170 175
Ile Gly Phe Leu Ala Val Ser Gln Ile Gly Ala Met Arg Lys Val Ala

180 185 190
Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg Ile Tyr Arg Leu Ser Pro

195 200 205
Ser Glu Ser Pro Ile Asp His Ser Leu Ser Asp Thr Leu Gln Met His
---continued---

```
 210 215 220

Phe Tyr Glu Thr Cys Pro Tyr Leu Phe Ala His Phe Thr Ala Aen
 225 230 235 240

Gln Ala Ile Leu Glu Ala Phe Glu Gly Lys Arg Val His Val Ile
 245 250 255

Asp Ser Leu

<210> SEQ ID NO 7
<211> LENGTH: 1636
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 7

tagaagtgt tattgtgaga aaaaaaagaa cctaaacagc ctaacccagt cccgagagt 60
aagatcctt caacttcaoa aataaagcga aacctagtcog caaatgtgaa ggaaaaacc 120
tttaggcw aaaaaaacc aatggcag aagggcacttc gcatctggc 180

gataagaga ctaagctgat gataaagac gacgtggta acgggtcag tgggtgcag 240

aacctcagc aagttgagct ttagttgct ggttttgaag ggagggaga 300
gtacatca gatttacttc taattcagcag gccttttttt ttctatgtct 360

acggacatta atccttcgct gctcaacgca gatggacct ttaagatcat cccggtgag 420
ggcgttcctta aacagtgctcag gttttttcag ctaaaaccg cggggtgag 480
gatagcgct ctaaccaaca ggggtgatt ggcgcgcttt gcaaaaccg 540
ggcggagtgc aagttgagct ttagttgct cctccaggt cggggtgag 600
gttctacag cgggttttcc tgggttgtgaa gctttttttc gatttaacc 660

gacgttcgc cggggcttta cgggtgttcc gttttttcag ctaaaaccg 720
gtcgttaatctcgcag tattgctcaag cgggtgttcc tgggtgttcc 780

gactttcact tctcctcact tccaccaaga tctgattcag cggggtgag 840
tattccaagt cggacagtgc cggggtgag 900

acgggtgccttc cttctcctc cggggtgag 960
tggctgattc aacaggttct cttccagct cggggtgag 1020

cggttacttt cgggtttcttc ccggtttttc cttccagct cggggtgag 1080

tttgttagta ctgcttgtta tgggtgaag tggggtggtt tggggtgttcc 1140

cgggtttgctt cttccagct cggggtgag 1200
ttgggtgttcc cttctcctc cggggtgag 1260
tgggttttcc cttccagct cggggtgag 1320

tgctgttcct cggggtgag 1380
tggggtgttcc cttccagct cggggtgag 1440
tgctgttcct cggggtgag 1500
tggggtgttcc cttccagct cggggtgag 1560
tgctgttcct cggggtgag 1620

gtcgttcct cggggtgag 1636
```

<210> SEQ ID NO 8
---continued

<210> SEQ ID NO 9
<211> LENGTH: 1642
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 9

tagaagtgtg atgtgagttg asaaaaaasat cctaagcagt cctaaccagat ccogcaagct 60
asgatctct cactctccca ataaagcaca aacgctagct cgccattgag ggaaaaacct 120
ttagatcca tctctgaaaa aaaaaaccat ataaagagag atcactcatca tacatcataa 180
gataagaag cttacgtgat gatgaagagc gcgagagttg tgcgcatggt gcgtgctag 240
--continued

aaactgagc agttgaagtt tattggtcct actgttcaag aagactgtct ttcacactc 300
gctaactgaga cgtgacacta taacggcgc gcgaactaca agtttttca aagttttca 360
aaccagacta atctctctgc tttaaagacgc gagtaacagtc ttaaacatc tcccggtgac 420
ggattttta atccctcagc tatttctttcg gtttcttttc tcaaccaaaa ccggagggaga 480
gatagttata tcaaaacaaa ggggtggaaat tggtoaaaaag ggtcttgaga aacccacca 540
ccggtcgctg gttcgctgctg acctggttcg tggatggctc gactagggac ggtgtggtgc 600
tggtcagcg cgttcttggtgt tggcggtaag cttcggcaaa ggagaatctg acggtcgccg 660
aagttcttggt gaaacacactg gatctttaag cctttttcctc aatctttctg atgaaaaag 720
tcgtctctct ctgctgctg cttccgttcttg tgggtgctgc gctggtagcgc 780
gtcaactgc gcaactctctc tccagttatcg cttcggagct aagtttcttttctttggatatcggtgc 840
atctcaagggg ctggcgtcctc aacggagactc aagggagactc tggagtttctt caagggag 900
aagaggttta agtcttctag gttcacttga ttcctctctactgc gtaagggcag gcggatatggc 960
agcgttcctgc gttgttctgc gttctttctg gttcttctg gttacaacag gttgcgttct 1020
cggccgctg ccctcagcttg caaggtttct ttaagttttct gccagggct ggtgttcttg 1080
agggatatgaa cgtgatatc gatgtaagag gttttggtgg gatttttttta ccagttcttg 1140
atggattgtc cattttgtca gatgtttaag agagtcgtt cttggagttt aagtttttttt 1200
tgcatttttttctg ctctgtgattcctttg cttggagttt aagtttttttt 1260
atcagatttta acggagatttt ccctgtgtgt cttaagccg gccacgttcgg ccgatagttttt 1320
ttccttttctgc gttgattggtc tagtttctgct gctgtggtggt tggggtggtggt 1380
aaggtttaag gttgattggtc tagtttctgct gctgtggtggt tggggtggtggt 1440
gcccggtgt gttgattggtc tagtttctgct gctgtggtggt tggggtggtggt 1500
gggggggggg gttgattggtc tagtttctgct gctgtggtggt tggggtggtggt 1560
aaggtttaag gttgattggtc tagtttctgct gctgtggtggt tggggtggtggt 1620
gttgattggtc tagtttctgct gctgtggtggt tggggtggtggt 1682

c210> SEQ ID NO 10
<211> LENGTH: 166
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 10

Met Lys Arg Asp His His His His Gln Asp Lys Thr Met Met
1 5 10 15
Met Asn Glu Glu Asp Asp Gly Asn Gly Met Asp Val Ala Gln Lys Leu
20 25 30
Glu Gln Leu Glu Val Met Ser Asn Val Gln Glu Asp Asp Leu Ser
35 40 45
Gln Leu Ala Thr Glu Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Thr
50 55 60
Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro Pro Ser Ser Ser Asn Ala
65 70 75 80
Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala Ile Leu Asn Gln Phe
85 90 95
Ala Ile Asp Ser Ala Ser Ser Ser Ser Asn Gin Gly Gly Gly Gly Asp Thr
100 105 110
An isolated nucleic acid having a nucleotide sequence coding for a polypeptide of which the amino acid sequence has at least 75% amino acid sequence identity with the amino acid sequence shown in FIG. 4 (SEQ ID NO. 2) except that the polypeptide does not contain the 17 amino acid sequence underlined in FIG. 4

wherein expression of said isolated nucleic acid in a plant confers a phenotype on the plant which is gibberellin-unresponsive dwarfism.

The nucleic acid according to any claim 49 further comprising a regulatory sequence for expression.

The nucleic acid according to claim 50 wherein the regulatory sequence comprises an inducible promoter.

A nucleic acid vector suitable for transformation of a plant cell and comprising the nucleic acid according to claim 49.

A host cell containing the nucleic acid according to claim 49, wherein said cell is a microbial or plant cell and said nucleic acid is heterologous to said cell.

A host cell according to claim 53 which is a plant cell.

A plant cell according to claim 54 having said heterologous nucleic acid within its genome.

A plant cell according to claim 55 which is comprised in a plant, a plant part or a plant propagule.

A method of producing a cell according to claim 54 the method comprising incorporating said nucleic acid into the cell by means of transformation.

A method according to claim 57 wherein said nucleic acid is stably incorporated into the genome of said cell.

A method according to claim 57 further comprising regenerating a plant from one or more transformed cells.

A method according to claim 59 further comprising sexually or asexually propagating or growing off-spring or a descendant of the plant regenerated from said plant cell, wherein said off-spring or said descendent comprises said nucleic acid.

A plant comprising a plant cell according to claim 54.

A plant according to claim 61 which is an ornamental plant.

A plant according to claim 62 having a dwarf phenotype.

A plant according to claim 63 wherein said phenotype is gibberellin unresponsive.

A plant according to claim 65 which is a crop plant, tree or fruit tree.

A plant according to claim 66 having a dwarf phenotype.

A plant according to claim 67 wherein said phenotype is gibberellin unresponsive.

A method of producing a plant, the method comprising incorporating nucleic acid according to claim 49 into a plant cell and regenerating a plant from said plant cell.

A method of delaying the flowering time of a plant, the method comprising introducing the nucleic acid according to claim 49 into cells of the plant and expressing said nucleic acid, wherein expression of said nucleic acid delays flowering time.

A method of repressing the growth of a plant, the method comprising introducing the nucleic acid according to claim 49 into cells of the plant and expressing said nucleic acid, wherein expression of said nucleic acid represses plant growth.