

AUSTRALIA
Patents Act 1990

NOTICE OF ENTITLEMENT

We AB ELECTROLUX

of Luxbacken 1, S-10545 STOCKHOLM, SWEDEN

being the Applicant and Nominated Person, in respect of Application No. 47354/93, entitled "Improvements In And Relating To Valves" state the following:

Peter William Worrall and Adrian Michael Woodward are the actual inventors of the invention.

The inventors made the invention for and on behalf of the nominated person in the course of their duties as employees of the nominated person.

Convention priority is claimed from the following basic application(s):

Basic Applicant	Application Number	Application Date	Country	Country Code
AB Electrolux	9219474.5	15 September 1992	United Kingdom	GB

The basic application was the first application made in a Convention country in respect of the invention the subject of this request.

DATED this 23rd day of November 1995

AB ELECTROLUX
By their Patent Attorney

GRIFFITH HACK & CO

666762

P/00/001
Section 29

AUSTRALIA
Patents Act 1990

PATENT REQUEST : STANDARD PATENT

The person identified below as the Applicant requests the grant of a patent to the person identified below as the Nominated Person, for an invention described in the accompanying standard complete specification.

Applicant: AB ELECTROLUX

Address: Luxbacken 1, S-10545 STOCKHOLM, SWEDEN

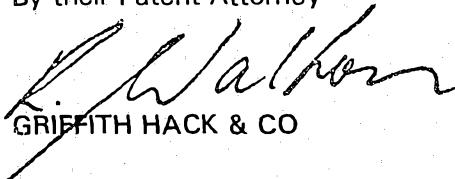
Nominated Person: AB ELECTROLUX

Address: Luxbacken 1, S-10545 STOCKHOLM, SWEDEN

Invention Title: IMPROVEMENTS IN AND RELATING TO VALVES

Names of Actual
Inventors: Peter William Worrall and Adrian Michael Woodward

Address for Service: GRIFFITH HACK & CO
168 WALKER STREET
NORTH SYDNEY NSW 2060


Attorney Code: GH

BASIC CONVENTION APPLICATION DETAILS

Application No	Country	Country Code	Date of Application
9219474.5	United Kingdom	GB	15 September 1992

DATED this 14th day of September 1993

AB ELECTROLUX
By their Patent Attorney

GRIFFITH HACK & CO

S 040481 140993

AU9347354

(12) PATENT ABRIDGMENT (11) Document No. AU-B-47354/93
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 666762

(54) Title
MULTIPLE COMPONENT SEALING ELEMENT FOR A VALVE

(51)⁵ International Patent Classification(s)
F16K 001/42 H01L 041/09

(21) Application No. : 47354/93 (22) Application Date : 14.09.93

(30) Priority Data

(31) Number (32) Date (33) Country
9219474 15.09.92 GB UNITED KINGDOM

(43) Publication Date : 24.03.94

(44) Publication Date of Accepted Application : 22.02.96

(71) Applicant(s)
AB ELECTROLUX

(72) Inventor(s)
PETER WILLIAM WORRALL; ADRIAN MICHAEL WOODWARD

(74) Attorney or Agent
GRIFFITH HACK & CO., GPO Box 4164, SYDNEY NSW 2001

(56) Prior Art Documents
**AU 550933 23175/84 F16K 1/226, 1/42
US 4105187**

(57) Claim

1. A valve comprising:
a valve seat member;
a movable valve member movable towards and away from
the valve seat member to close and open the valve; and
a multiple component sealing element made from a
resilient material and attached to one of the valve seat
and movable valve members, the sealing element possessing
an initial deformable characteristic and a deformed
retention characteristic, the deformable characteristic
being such that initial closure of the valve causes the
sealing element to substantially conform to the shape of
the other member and the deformed retention
characteristic being such as to cause the sealing element
to retain the so-conformed shape.

9. A method of forming a valve seat for creating a seal
against a movable valve member having an irregular
surface, the method comprising the steps of:

(11) AU-B-47354/93

-2-

(10) 666762

- (a) assembling the valve seat from two compliant elements disposed in juxtaposition, each element initially possessing a different resiliently deformable characteristic, one having a least and the other a most resiliently deformable characteristic, and together constituting a seal which conforms to the peripheral shape of the valve member;
- (b) placing the assembly in a housing with the element possessing the least resiliently deformable characteristic most remote from the movable valve member;
- (c) applying pressure to the sealing assembly via the movable valve member so that the least resiliently deformable element absorbs the surface irregularity of the valve member without substantially changing the deformability characteristic of the other element; and
- (d) maintaining the element possessing the least resiliently deformable characteristic in that attitude where the surface irregularity of the movable valve member is absorbed.

666762

P/00/011
Regulation 3.2

AUSTRALIA

Patents Act 1990

ORIGINAL

COMPLETE SPECIFICATION

STANDARD PATENT

Invention Title: **IMPROVEMENTS IN AND RELATING TO VALVES**

The following statement is a full description of this invention, including the best method of performing it known to us:

GH&CO REF: P22945-A:TJS:RK

IMPROVEMENTS IN AND RELATING TO VALVESBACKGROUND AND SUMMARY OF THE INVENTION

This invention relates to valves and, more particularly, to the sealing of valves during closure.

Valves are used in many fields for controlling the flow of liquid and gaseous media and throughout this specification and claims, such media will be referred to simply as a fluid or fluids as the context requires.

Numerous forms of valve have been proposed having a valve seat member and a valve closure member movable towards and away from the seat member to close and open the valve to control fluid flow through the valve. In order to produce and maintain a satisfactory seal during closure, confronting surfaces of the seat and closure member must be fashioned in strict conformity. Such strict conformity requires, in many instances, accurate machining of the confronting surfaces of the members.

It is known to control the operation of valves by mechanical, electrical, electronic and pneumatic means.

Piezo electric control valves have also been proposed as substitutes for solenoid controlled valves and are preferable in installations where size and weight are important design considerations. Piezo electric control valves may take the form of discs, usually circular, and beams which may be supported at each end or simply, cantilevered.

Where piezo electric control valves are in the form of circular discs, peripheral flatness not infrequently introduces sealing problems. This is principally due to the fact that it is difficult to produce, on a production basis, relatively thin metal discs possessing a sufficiently high degree of flatness to mate with a corresponding flat surface machined or otherwise formed on a valve seat. Typically, such 30 thin metal discs

constitute substrates for supporting piezo electric ceramic materials on one or each face of the disc. Examples of such piezo electric valves are described in U.S. patents 4,545,567 and 3,360,664, the disclosures of which are incorporated by reference herein.

In prior U.K. patent application no 9122739.7 there is described and claimed a piezo valve for controlling fluid flow, the valve comprising a valve housing, a cavity within the housing, inlet and outlet ducts leading fluid into and out from the cavity, a movable piezo electric valve disc element, disposed in the cavity, and means for supporting the valve disc element at a position inwardly of the disc periphery so that upon actuation of the element by a voltage applied thereto, the periphery of the disc is displaceable and at least a portion of a peripheral region of the disc serves to control fluid flow between the inlet and outlet ducts.

The peripheral flatness of a piezo electric disc forming part of a valve described in U.K. no. 9122739.7 is typically of the order of $\pm 250 \mu\text{m}$ whereas the opening per se for fluid flow is of the order of $\leq 300 \mu\text{m}$. It will therefore, be appreciated that if closure is achieved using a pliant sealing member to accommodate the tolerance mentioned, the effective valve opening could be reduced to $300 - 250 = 50 \mu\text{m}$. Such an opening is generally insufficient to achieve a satisfactory flow fluid when the valve is open. In addition, the peripheral flatness problem also manifests itself when using a pliant seal in so far that the seal produces an unexpectedly adverse fluid flow against voltage characteristics.

~~It is an advantage of at least a preferred embodiment of the present invention to provide a production system which will provide a relatively low cost valve seal for accommodating normal production tolerances without wasting operational movement of the valve.~~

~~According to one aspect of the present invention, a~~

It would be advantageous of at least a preferred embodiment of the present invention to provide a production system which will provide a relatively low cost valve seal for accommodating normal production tolerances without wasting operational movement of the valve.

According to a first aspect of the present invention, there is provided a valve comprising:

10 a valve seat member;
a movable valve member movable towards and away from the valve seat member to close and open the valve; and
15 a multiple component sealing element made from a resilient material and attached to one of the valve seat and movable valve members, the sealing element possessing an initial deformable characteristic and a deformed retention characteristic, the deformable characteristic being such that initial closure of the valve causes the sealing element to substantially conform to the shape of the other member and the deformed retention 20 characteristic being such as to cause the sealing element to retain the so-conformed shape.

The movable valve member is preferably in the form of a piezo electric disc comprising a substrate having a layer of piezo ceramic applied to at least one face thereof.

According to a second aspect of the present invention there is provided a method of forming a valve seat for creating a seal against a movable valve member having an irregular surface, the method comprising the 30 steps of:

(a) assembling the valve seat from two compliant elements disposed in juxtaposition, each element initially possessing a different resiliently deformable characteristic, one having a least and the other a most resiliently deformable characteristic, and together constituting a seal which conforms to the peripheral shape of the

35

valve member;

- (b) placing the assembly in a housing with the element possessing the least resiliently deformable characteristic most remote from the movable valve member;
- (c) applying pressure to the sealing assembly via the movable valve member so that the least resiliently deformable element absorbs the surface irregularity of the valve member without substantially changing the deformability characteristic of the other element; and
- (d) maintaining the element possessing the least resiliently deformable characteristic in that attitude where the surface irregularity of the movable valve member is absorbed.

The second spring member may be made from any suitable synthetic or natural rubber-like material.

According to a third aspect of the present invention there is provided a valve comprising:

- 20 a valve seat member;
- a movable valve member movable towards and away from the valve seat member to close and open the valve;
- 25 a sealing element made from a resilient material and attached to one of the valve seat and movable valve members, the sealing element possessing an initial deformable characteristic such that initial closure of the valve causes the sealing element to substantially conform to the shape of the other member and retain the so-conformed shape; and
- 30 said sealing element comprising first and second spring members, the first spring member having lesser resiliently deformable characteristics than the second spring member, said second spring member being more remote from said valve seat member, and closer to said movable valve member, than said first spring member.

According to a fourth aspect of the present invention there is provided a valve comprising:

- a valve seat member;

5 a movable valve member movable towards and away from the valve seat member to close and open the valve and comprising a piezo electric disc comprising a substrate having a layer of piezo electric ceramic applied to at least one face thereof; and

10 a sealing element made from a resilient material and attached to one of the valve seat and movable valve members, the sealing element possessing an initial deformable characteristic such that initial closure of the valve causes the sealing element to substantially conform to the shape of the other member and retain the so-conformed shape.

15 Thus, a material may be chosen to achieve the dichotomous properties in a single component which posses two mechanical states: the first being soft and compliant and the second being semi rigid with the required changes described above being easy to effect yet irreversible.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

25 FIGURE 1 is a schematic of an imaginary mechanical spring system with which the invention may be functionally compared;

FIGURES 2 and 3 are detailed side views, partly in cross-section and partly in elevation, of a valve including a centrally supported piezo electric valve disc, and

30 FIGURES 4 and 5 are views like that of FIGURE 3 showing exemplary alternative sealing arrangements.

DETAILED DESCRIPTION OF THE DRAWINGS

35 A valve seat in accordance with the present invention may from a mechanical point of view be compared to a spring system comprising two dissimilar springs 10,

11 connected in series as shown in FIGURE 1.

FIGURES 2 and 3 show a piezo electric valve disc 12 centrally supported and as described in UK application no. 9122739.7. FIGURES 4 and 5 show alternative sealing arrangements for the valve.

Referring to FIGURE 1 spring 10 serves to absorb production flatness tolerance of piezo disc 12 (FIGURE 2) without radically changing the compression (and,

therefore, the sealing force) in the second spring 11. The first spring 10 is therefore, compared to the second spring 11 both long and weak. The second spring 11 is the normal sealing element and its stiffness is chosen according to well understood design parameters.

According to the invention, as seen in FIGURES 2 and 3, the first spring 14 is a helical compression spring (e.g. about 8 mm in length). While the second spring 15 is a compliant (elastomeric) element of an suitable synthetic or natural rubber like material having a circular cross-section (e.g. about 2 mm in diameter). During assembly, both springs 14 and 15 are free to move and accommodate the tolerances in all dependent components such as disc 12 mounted on central 'support 12', and housing 13. The second spring 15 has a constant compression (since there is a spatially constant force applied) and, therefore, matches exactly the profile irregularity of the disc 12. However, after initial assembly the first spring 14 is locked to prevent further movement by, for example, an adhesive (rigid glue) 17 and, therefore, only the second spring 15 participates in the subsequent sealing operations (see FIGURE 3). The maximum compression 18 is typically about 20 microns.

The valve seat comprises the housing 13, while a seating (sealing element comprises springs 14, 15 and adhesive 17, and the valve disc 12 comprises a movable valve member, having piezo electric activators 19 associated therewith, to effect movement thereof. The piezo electric activator 19 preferably comprise a layer of piezo electric ceramic applied to a least one face of disc 12 (both faces in FIGURES 2 4). The spring 15 is preferably annular, extending around the periphery of the disc 12, while a plurality of different coil springs 14 may be provided as the first a spring.

Referring to FIGURE 4, the helical (coil) spring 14 of FIGURE 3 has been replaced by a plurality of leaf

springs which support second spring 15 which is the form of a ring of circular cross-section. Upon assembly, and after an initially applied force via the valve member (disc 12), springs 20 are locked or otherwise secured to housing 13 by glue 21.

A further form of an equivalent spring arrangement is shown in FIGURE 5 in which the first metal spring elements 23 (about 4 mm in length 25 and 0.4 mm thick) are rigidly connected to housing 13 and second spring 15 after initial deformation.

While the invention has been described in connection with what is presently considered to be most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

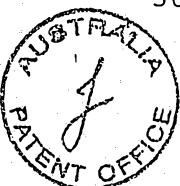
1. A valve comprising:
 - a valve seat member;
 - a movable valve member movable towards and away from 5 the valve seat member to close and open the valve; and
 - a multiple component sealing element made from a resilient material and attached to one of the valve seat and movable valve members, the sealing element possessing an initial deformable characteristic and a deformed 10 retention characteristic, the deformable characteristic being such that initial closure of the valve causes the sealing element to substantially conform to the shape of the other member and the deformed retention characteristic being such as to cause the sealing element 15 to retain the so-conformed shape.
2. A valve as claimed in claim 1, wherein the sealing element is permanently attached to the valve seat member.
3. A valve claimed in claim 1 or claim 2 wherein the movable valve member is a piezo electric disc comprising 20 substrate having a layer of piezo electric ceramic applied to at least one face thereof.
4. A valve as claimed in any one of the preceding claims wherein the sealing element comprises first and second spring members, the first spring member having 25 lesser resiliently deformable characteristics than the second spring member, said second spring member being more remote from said valve seat member, and closer to said movable valve member, than said first spring member.
5. A valve as claimed in claim 4 wherein said second 30 spring member comprises a ring of elastomeric material.
6. A valve as claimed in claim 4 or claim 5 wherein said first spring member comprises a plurality coil

springs or a plurality of leaf springs.

7. A valve as claimed in any one of claims 4 to 6 wherein said first spring member is connected to said second spring member and said valve seat by a rigid 5 adhesive.

8. A valve substantially as herein described with reference to the accompanying drawings.

9. A method of forming a valve seat for creating a seal against a movable valve member having an irregular 10 surface, the method comprising the steps of:


- (a) assembling the valve seat from two compliant elements disposed in juxtaposition, each element initially possessing a different resiliency deformable characteristic, one having a least 15 and the other a most resiliency deformable characteristic, and together constituting a seal which conforms to the peripheral shape of the valve member;
- (b) placing the assembly in a housing with the element possessing the least resiliency deformable characteristic most remote from the movable valve member;
- (c) applying pressure to the sealing assembly via the movable valve member so that the least resiliency deformable element absorbs the surface irregularity of the valve member without substantially changing the deformability characteristic of the other element; and
- (d) maintaining the element possessing the least resiliency deformable characteristic in that attitude where the surface irregularity of the movable valve member is absorbed.

10. A method as in claim 9 wherein step (d) is practiced by permanently adhesively securing the least resiliency

deformable element to the housing.

11. A valve comprising:
 - a valve seat member;
 - a movable valve member movable towards and away from 5 the valve seat member to close and open the valve;
 - a sealing element made from resilient material and attached to one of the valve seat and movable valve members, the sealing element possessing an initial deformable characteristic such that initial closure of 10 the valve causes the sealing element to substantially conform to the shape of the other member and retain the so-conformed shape; and
 - said sealing element comprising first and second spring members, the first spring member having lesser 15 resiliently deformable characteristics than the second spring member, said second spring member being more remote from said valve seat member, and closer to said movable valve member, than said first spring member.
12. A valve as claimed in claim 11, wherein the sealing 20 element is permanently attached to the valve seat member.
13. A valve as claimed in claim 11 to claim 12 wherein said second spring member comprises a ring of elastomeric material.
14. A valve as claimed in claim 13 wherein said first 25 spring member is connected to said second spring member and said valve seat by a rigid adhesive.
15. A valve as claimed in any one of claims 11 to 14 wherein said first spring member comprises a plurality coil springs or a plurality of leaf springs.
- 30 16. A valve comprising:
 - a valve seat member;
 - a movable valve member movable towards and away from

the valve seat member to close and open the valve and comprising a piezo electric disc comprising a substrate having a layer of piezo electric ceramic applied to at least one face thereof; and
5 a sealing element made from a resilient material and attached to one of the valve seat and movable valve members, the sealing element possessing an initial deformable characteristic such that initial closure of the valve causes the sealing element to substantially conform to the shape of the other member and retain the so-conformed shape.
10

17. A valve as claimed in claim 16 wherein the sealing element is permanently attached to the valve seat member.

18. A valve as claimed in claim 16 or 17 wherein the
15 sealing element comprises first and second spring members, the first spring member having lesser resiliently deformable characteristics than the second spring member, said second spring member being more remote from said valve seat member, and closer to said
20 movable valve member than said first spring member.

19. A method of forming a valve seat substantially as herein described with reference to the accompanying drawings.

Dated this 23rd day of November 1995

25

AB ELECTROLUX
By their Patent Attorneys
GRIFFITH HACK & CO.

ABSTRACT OF THE DISCLOSURE

A valve comprises a valve seat member and a movable valve member (preferably a disc with at least one face coated with piezo electric material) movable towards and away from the seat to close and open the valve and a sealing element made from a resilient material and attached to one of the members. The sealing element possesses an initial deformable characteristic so that initial closure of the valve causes the seating element to substantially conform to the shape of the other member and retain the so-conformed shape. The sealing element comprises first and second springs of different resiliently formable characteristics, the second spring preferably being a ring of elastomeric material, and the first spring --after initial deformation of the sealing element -- being rigidly adhesively secured to the valve seat member.

1/2

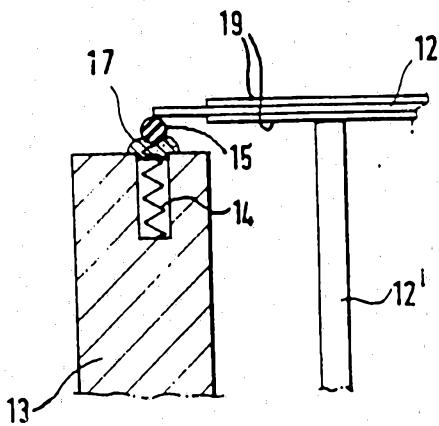


FIG. 2.

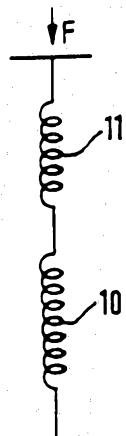


FIG. 1.

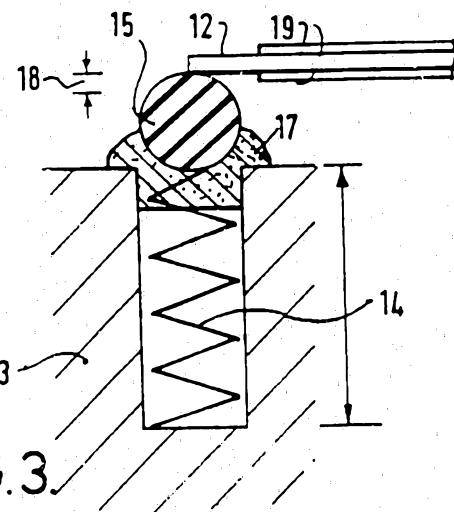


FIG. 3.

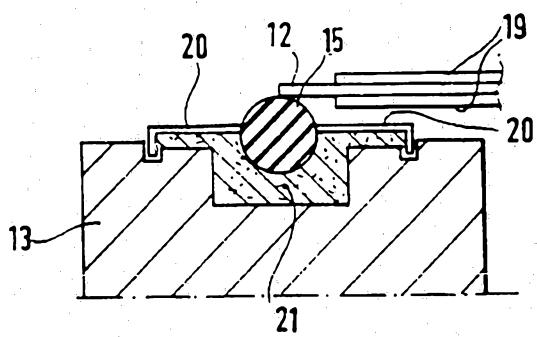


FIG. 4.

47354/93

2/2

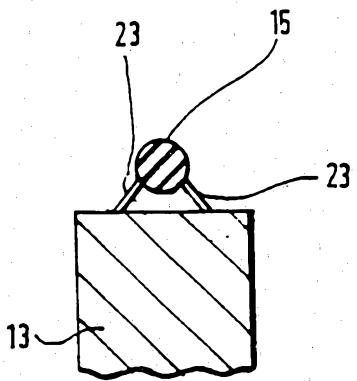


FIG. 5.