(22) Date de dépôt/Filing Date: 1993/07/02
(41) Mise à la disp. pub./Open to Public Insp.: 1994/01/08
(45) Date de délivrance/Issue Date: 2003/03/11
(30) Priorité/Priority: 1992/07/07 (P 42 22 254.0) DE
(51) Cl.Int.5/Int.Cl. 5 C07J 41/00, C07J 43/00, C07J 19/00
(72) Inventeurs/Inventors:
LOBBERDING, ANTONIUS, DE;
MIKHAIL, GAMAL K., DE;
SPRINGER, WOLFGANG, DE
(73) Propriétaire/Owner:
BAYER AKTIENGESELLSCHAFT, DE
(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : MARQUAGE PHOTOCHIMIQUE DES ACIDES NUCLEIQUES A L'AIDE DE REACTIFS A BASE DE DIGOXIGENINE ET UTILISATION DE CES REACTIFS DANS DES SYSTEMES FAISANT APPEL A DES SONDES GENETIQUES
(54) Title: PHOTOCHEMICAL LABELLING OF NUCLEIC ACIDS WITH DIGOXIGENIN REAGENTS AND THEIR USE IN GENE PROBE TEST SYSTEMS

(57) Abrégé/Abstract:
The present invention concerns photochemical labelling reagents comprising a digoxigenin derivative and a furocoumarin derivative bound via a spacer. The labelling reagent can be used in gene diagnostic.
Photochemical labelling of nucleic acids with digoxigenin
reagents and their use in gene probe test systems

Abstract

The present invention concerns photochemical labelling reagents comprising a digoxigenin derivative and a furocoumarin derivative bound via a spacer. The labelling reagent can be used in gene diagnostic.

Gene probe diagnostics makes possible the detection of infectious diseases and genetic defects. Prerequisites for the broad application of gene probe diagnostics are adequate sensitivity of detection, simplicity in performance and the avoidance of radioactivity.

One variant of gene probe diagnostics proceeds by way of the direct photochemical labelling of the DNA/RNA to be detected; subsequently hybridisation occurs to gene probes with complementary nucleic acid sequences (N. Dattagupta, P.M.M. Rae, E.D. Huguenel, E. Carlson, A. Lyga, J.S. Shapiro, J.P. Albarella, Analytical Biochemistry 177, 85 (1989); J.P. Albarella, R.L. Minegar, W.L. Patterson, N. Dattagupta, E. Carlson, Nucleic Acids Research 17, 4293 (1989)).

Furocoumarins which are linked to biotin by way of suitable spacer molecules have been shown to be very suitable for the photobiotinylation of nucleic acids. After hybridisation to a gene probe with a complementary
nucleic acid sequence, and a separation step, detection takes place, for example by addition of a complex of antibiotin antibody or avidin or streptavidin with alkaline phosphatase. For the detection, a colour reaction, which is elicited by alkaline phosphatase, is carried out in an additional step (J.J. Leary, D.J. Brigati, D.C. Ward, Proc. Natl. Acad. Sci. USA 80, 4045-4049 (1983)).

One disadvantage of the detection system using biotin is the wide distribution of biotin in biological systems. This disadvantage is avoided by using, for example, digoxigenin instead of biotin. In this case, the detection reaction takes place using digoxigenin antibody.

Surprisingly, no denaturation of the nucleic acids has been observed in photoreactions with digoxigenin reagents which are linked to furocoumarins by means of a suitable spacer.
In the present invention, the synthesis is described of digoxigenin derivatives which are linked to furocoumarins by means of suitable spacers, and their use for labelling nucleic acids is investigated.

According to the invention, a labelling reagent of the general formula:

\[\text{Dig} - S - \text{Fu} \]

is synthesised, where

- \(\text{Dig} = \) digoxigenin derivative as a hapten,
- \(S = \) a spacer molecule, and
- \(\text{Fu} = \) a furocoumarin derivative as a photochemically linkable structure.

The digoxigenin derivative (\(\text{Dig} \)) is a chemically modified derivative of the steroid in which the C-3 hydroxyl group is modified with a chemically linkable substituent. This can be a carboxyl, thio, amino or hydroxyl grouping, or an activated form thereof.

Suitable furocoumarins and spacers are described in EP 187 332.

The spacer is a polyalkylamine, polyethylene glycol or a combination thereof.

Polyalkylamines have the following general formula:

\[
\begin{align*}
\text{R} & \quad \text{R} \\
\text{N} & \quad \bigg[\text{(CH}_2\text{)}_x \text{N} \bigg]_y \\
\end{align*}
\]

where:
R represents H, C₁-C₇-alkyl, aryl (such as, for example, phenyl, naphthyl or anthracyl), hydroxyl or C₁-C₇-alkoxy;

x represents a number between 2 and 7;

y represents a number between 3 and 10.

R can occur differently in the possible variants mentioned above, i.e. R need not be identical for each repetition of the -(CH₂)ₓ-N-R unit in the spacer. The same is also the case for x, i.e. x must not be the same number for each repetition of the -(CH₂)ₓ- unit in the spacer.

Preferably the Rs, independently of each other, = H, C₁-C₄-alkyl (e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl); x = 2, 3, 4 or 5; and y = 3, 4, 5 or 6.

Particularly preferred are N⁴,N⁹-dimethylspermine derivatives of the formula:

\[
\text{CH₃} \quad \text{CH₃} \\
\text{H} \quad \text{H} \\
\text{H} \quad \text{H} \\
\text{N-(CH₂)₃-N-(CH₂)₄-N-(CH₂)₃-N-(CH₂)₃-N-} \\
\text{CH₃} \quad \text{CH₃}
\]

Polyethylene glycols have the following general formula:

\[-O\left\{-(CH₂)ₓ-O\right\}^{y}\]
where

\[x \text{ is } a \text{ number between } 2 \text{ and } 7 \text{ and} \]
\[y \text{ is } a \text{ number between } 3 \text{ and } 10. \]

Preferred are polyethylene glycols with \(x = 2, 3, 4 \) or \(5; \) \(y = 3, 4, 5 \) or \(6. \) Particularly preferred are polyethylene glycols with \(x = 2 \) and \(y = 4, 5 \) or \(6. \)

Spacer molecules with combined amine/glycol structures have the following general formula:

\[-Z^1 \left[(CH_2)_xZ^2 \right]_{y-1}(CH_2)_xZ^3. \]

where

\[Z^1, Z^2 \text{ and } Z^3, \text{ independently of each other, represent } 0 \text{ or } NR, \]

\(R \) represents \(H, \) \(C_1-C_7-\text{alkyl}, \) aryl (such as, for example, phenyl, naphthyl or anthryl), hydroxyl or \(C_1-C_7-\text{alkoxy}; \)

\[x \text{ represents a number between } 2 \text{ and } 7; \]

\(y \text{ represents a number between } 3 \text{ and } 10. \)
Preferred are spacer structures with $z^2 = 0$ and $z^1, z^3 =$ NR, where $R = H, C_1-C_4$-alkyl (e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl); $x = 2, 3, 4$ or 5; and $y = 3, 4, 5$ or 6. Particularly preferred are structures with $z^2 = 0$, $z^1, z^3 =$ NR, where $R = H$, methyl, ethyl; $x = 2$; and $y = 4$.

Suitable photochemically linkable structures are, in particular, furocoumarins, such as, for example, angelicin (isopsoralen) or psoralens and derivatives thereof which react photochemically with nucleic acids.

Angelicin derivatives have the following general formula:

![Angelican derivative structure](image)

where

R_1, R_2 and R_3, independently of each other, represent H or C_1-C_7-alkyl, and

R_4 represents H, C_1-C_7-alkyl or a low alkyl with hydroxyl, C_1-C_7-alkoxy, amino, halo or N-phthalimido substituents.

Particularly preferred are angelicin derivatives which contain the following R_1-R_4 groupings;
<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td>CH$_2$OCH$_3$</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td>CH$_2$NH$_2$</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>CH$_2$Cl</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>CH$_2$N[O][O]</td>
</tr>
</tbody>
</table>

Other compounds with different Rs may also be synthesised by processes known from the literature.

Suitable psoralens have the following general formula:

![General formula](image)

where

5 R_1, R_3 and R_6, independently of each other, represent H or C$_{1-7}$-alkyl,

R_4 represents H, C$_{1-7}$-alkyl or C$_{1-7}$-alkyl with hydroxyl, C$_{1-7}$-alkoxy, amino, halo or N-phthalimido substituents,
R₂ and R₃, independently of each other, represent H, hydroxyl, carboxyl, carbo-C₁-C₇-alkoxy or C₁-C₇-alkoxy.

Angelicin derivatives are advantageous in comparison with psoralens because of the monoadduct formation.

The sequence of the linkage of the digoxigenin, the spacer and the furocoumarin is arbitrary. It is thus possible, inter alia, first to link the digoxigenin Dig to the spacer S and subsequently to react the product with the furocoumarin Fu. Conversely, Fu-S may first be constructed and then reacted with Dig.

The linking of the moieties is effected in a manner known per se.

Example 1

Preparation of amino(hexaethylene glycol)angelicin (amino-PEG-angelicin 3)

\[
\begin{align*}
\text{O} & \quad \text{H} & \quad \text{N} & \quad \text{N} & \quad \text{O} \\
\text{O} & \quad \text{H} & \quad \text{N} & \quad \text{N} & \quad \text{(C₂H₄O)₃} & \quad \text{NH₂}
\end{align*}
\]

4.87 g (20 mmol) of 4-aminomethyl-4,5' -dimethylangelicin are dissolved in 25 ml of DMF and reacted with 3.24 g (20 mmol) of carbonyldiimidazole at room temperature.
Complete reaction (according to TLC) was observed after 6 hours of stirring under nitrogen. The solution is slowly added dropwise to a solution of 16.85 g (60 mmol) of 1,17-diamino-3,6,9,12,15-pentaoxaheptadecane in 40 ml of DMF at 80°C and the mixture stirred at 70°C for a further 12 hours. After cooling, the solution is concentrated in vacuo and chromatographed on silica gel (eluent: chloroform/methanol/ammonia 90:10:1, $R_f = 0.28$). 7.1 g (65% of theory) are obtained of a slightly yellow oil.

Example 2

Preparation of N^1-(angelicinamido)-N^4, N^8-dimethylspermine (2)

![Chemical Structure](image)

4.87 g (20 mmol) of 4-aminomethyl-4,5'-dimethylangelicin are activated with carbonyldiimidazole in an analogous manner to Example 1. The resulting solution is added dropwise to a solution of 13.8 g (60 mmol) of N^4, N^8-dimethylspermine in 40 ml of DMF in analogy with Example 1. After cooling, the solution is concentrated in vacuo and the residue is chromatographed on silica gel (eluent: chloroform/methanol/ammonia 30:5:11, $R_f = 0.11$). 7.1 g (71% of theory) are obtained of a yellow oil.
Example 3

Preparation of digoxigenin-PEG-angelicin (Dig-PA, 3)

13.7 mg (0.03 mmol) of amino-PEG-angelicin 1 are dissolved in 2 ml of chloroform (for spectroscopy).

A solution of 18.9 mg (0.03 mmol) of N-hydroxysuccinimide digoxigenin-3-O-methylcarbonyl-ε-aminocaproate (Dig-NHS) in 2 ml of chloroform is added dropwise. After stirring for 24 hours at room temperature, the reaction is complete (according to TLC). The solution is concentrated in vacuo and the residue is chromatographed on silica gel (eluent: chloroform/methanol/ammonia 90:10:1, Rf = 0.45). 21 mg (77 % of theory) are obtained of a slightly yellow solid with a melting point of 63 to 65°C.

Example 4

Preparation of digoxigenin-spermine-angelicin (Dig-SpA, 4)
15 mg (0.03 mmol) of the compound 2 described in Example 2 are reacted with 19.8 mg (0.03 mmol) of N-hydroxy-
succinimide digoxigenin-3-O-methylcarbonyl-ɛ-
aminocaproate (Dig-NHS) in analogy with Example 3.

After working up and column chromatography on silica gel
(eluent: chloroform/methanol/ammonia 30:5:1, Rf = 0.25),
24 mg (77% of theory) are obtained of a weakly yellowish
solid with a melting point of 106 to 109°C.

Example 5

Photoreaction of hairpin oligonucleotides with DigPA

50 µg of the hairpin oligonucleotide are taken up in
100 µl of Tris-HCl buffer. The solution is left in a
water bath at 50°C for 15 minutes. In order to be cooled
slowly to room temperature, the sample is taken out of
the water bath. Subsequently, a further 400 µl of water
are added.

For the photoreaction, a 20-fold molar excess of DigPA is
added to 15 µg of the hybridised hairpin oligonucleotide.
Subsequently, the solution is illuminated under a UV lamp
at 366 nm or 312 nm in an Eppendorf tube in an ice bath.
The photoreaction is followed with HPLC. Within 15
minutes the photoreaction was complete.
Example 6

Photolabelling with DigPA

For the photolabelling with DigPA, 50 µl of 1 M sodium tetraborate buffer pH 8.3 and 50 µl of DigPA (2 µg/µl) were added to 2 to 5 µg of DNA in 20 µl of TE buffer and the solution was made up to 500 µl with double distilled H₂O. The mixture was then irradiated with a UV trans-illuminator for 10 minutes at 312 nm with the samples being stored on ice during this process.

The photolabelled DNA was subsequently precipitated at room temperature with 1/10 volume of 3 M sodium acetate pH 5.8 and 1 volume of isopropanol and left to stand for 5 minutes. Subsequently, the DNA was centrifuged down at 10,000 rpm in an Eppendorf centrifuge, the supernatant was decanted off and the DNA precipitate was washed with 70 % ethanol. After the samples had been dried, the photolabelled DNA was taken up in TE. The photolabelling of the DNA with digoxigenin was subsequently examined by agarose gel electrophoresis and dot blot assays with digoxigenin antibody conjugates.

In the gel electrophoresis, the photolabelled DNA migrates more slowly than the unlabelled DNA, which is evident in a slight shift towards the origin in the case of the photolabelled DNA band. In this method, denatured DNA is not observed in the wells of the gel.
The labelling with digoxigenin was also examined immunologically using a kit from Boehringer, Mannheim. For this purpose, the photolabelled DNA was applied to nitrocellulose membranes in various dilutions and fixed in vacuo at 80°C. Subsequently, the membrane was washed for 1 minute in buffer 1 (100 mM Tris/HCl, 150 mM NaCl pH 7.5). Then the filter was incubated for 30 minutes with 100 ml of buffer 2 (0.5 % blocking reagent in buffer 1). Next it was washed in buffer 1 once again. Antibody conjugate (anti-digoxigenin antibody coupled to alkaline phosphatase) was diluted 1:5,000 to 150 mU/ml in buffer 1 and the filter was incubated for 30 minutes with 20 ml of the diluted antibody solution. Non-bound antibody was then removed by 2 x 15-minute washes with 100 ml of buffer 1. Subsequently, the membrane was equilibrated at room temperature for 2 minutes with 20 ml of buffer 3 (100 mM Tris/HCl, 100 mM NaCl, 50 mM MgCl₂, pH 9.5). The filter was incubated in the dark in a plastic bag with 10 ml of dye solution (45 μl of nitro blue tetrazolium solution and 35 μl of bromochloroindolyl phosphate in 10 ml of buffer 3). After development of the colour spots, the membrane was washed for 5 minutes with 50 ml of buffer 4 (10 mM Tris/HCl, 1 mM EDTA pH 8) in order to stop the colour reaction.

Example 7

Photolabelling with photodigoxigenin

In photodigoxigenin, the azidophenyl group, which is
coupled to digoxigenin by means of a hydrophilic spacer, reacts non-specifically with a multiplicity of compounds such as, for example, proteins and nucleic acids on mercury vapour illumination (350 to 700 nm).

Nucleic acids were labelled with photodigoxigenin according to the Boehringer method. 10 µg of photodigoxigenin solution (10 mg/ml in dimethylformamide) were added to 10 µg of DNA and the solution was made up to 40 µl with double distilled H₂O. The open tube was placed in ice-water at a distance of 10 cm underneath a Philips HPLR 400 W lamp and irradiated for 15 minutes. 60 µl of Tris/HCl, 100 mmol/l, pH 9, EDTA, 1 mmol/l, were added and then 15 µl of NaCl, 5 mol/l. The solution was then extracted twice with 100 µl of 2-butanol and the DNA was precipitated with 10 µl of LiCl, 4 mol/l, and 100 µl of pre-chilled ethanol. After 40 minutes at -70°C, the mixture was centrifuged at 12,000 g and the pellet washed with cold 70 % ethanol, dried in vacuo and then dissolved in 40 µl of Tris/HCl, 10 mmol/l, EDTA, 1 mmol/l pH 8.

The photolabelling was checked both by gel electrophoresis and immunologically using a digoxigenin antibody conjugate.

In the agarose gel electrophoresis, it was observed that a large part of the photodigoxigeninised DNA was present in denatured form in the gel wells. By contrast, in the DigPA method described in Example 6, only one band of the
photolabelled DNA is visible and no denatured DNA can be observed in the gel wells.

Immunological examination of the photodigoxigeninisation was carried out as described in Example 6.

In dot blot tests with fixed photodigoxigeninised DNA it was additionally observed that the labelling efficiency was clearly inferior to that of the very mild DigPA process described in Example 6.
23189-7518

CLAIMS:

1. Labelling reagent of the general formula:

 \[\text{Dig} - S - \text{Fu} \]

 where

 \(\text{Dig} \) is = a digoxigenin derivative

 \(S \) is = a spacer molecule, and

 \(\text{Fu} \) is = a furocoumarin derivative.

2. Labelling reagent according to claim 1, where the digoxigenin derivative (Dig) is a chemically modified derivative of the steroid in which the C-3 hydroxyl group is modified with a chemically linkable substituent.

3. Labelling reagent according to claim 2, wherein the chemically linkable substituent is a carboxyl, thio, amino or hydroxyl grouping.

4. Labelling reagent according to any one of claims 1 to 3, wherein the spacer is a polyalkylamine, polyethylene glycol or a combination thereof.

5. Labelling reagent according to claim 4, wherein the spacer is a polyalkylamine of the general formula:

 \[R \left[\begin{array}{c} N \mid (\text{CH}_2)_x \mid N \end{array} \right]_y R \]

 wherein:

 \(R \) is \(H, \text{C}_1-\text{C}_7\)-alkyl, aryl, hydroxyl or \(\text{C}_1-\text{C}_7\)-alkoxy;
$23189-7518$

X is a number between 2 and 7;
y is a number between 3 and 10; and

R and x need not be identical for each repetition
of the $-(CH_2)_x-N-R$ unit in the spacer.

5 6. Labelling reagent according to claim 5, wherein
the aryl in R is phenyl, naphthyl or anthracyl.

7. Labelling reagent according to claim 5, wherein: R
is, independently in each instance, H or C_1-C_4-alkyl; x is 2,
3, 4 or 5; and y is 3, 4, 5 or 6.

10 8. Labelling reagent according to any one of claims 1
to 3, wherein the spacer is a N^1,N^9-dimethylspermine
derivative of the formula:

\[
\begin{array}{cccccc}
H & & CH_3 & & CH_3 & & H \\
\hline
N-(CH_2)_3-N-(CH_2)_4-N-(CH_2)_3-N
\end{array}
\]

15 9. Labelling reagent according to claim 4, wherein
the spacer is a polyethylene glycol of general formula:

\[
\begin{array}{c}
\hline
\hline
O-(CH_2)_x-O
\end{array}
\]

wherein:

20 x is a number between 2 and 7; and

y is a number between 3 and 10.

10. Labelling reagent according to claim 9, wherein x
is 2, 3, 4, or 5 and y is 3, 4, 5 or 6.

11. Labelling reagent according to claim 9, wherein x
is 2 and y is 4, 5 or 6.
12. Labelling reagent according to claim 4, wherein the spacer is a combination of a polyalkylamine and a polyethylene glycol, the combination having the general formula:

\[\text{Z}^1 \left[(\text{CH}_2)_x \text{Z}^2 \right] (\text{CH}_2)_x \text{Z}^3 \]

wherein:

\[\text{Z}^1, \text{Z}^2 \text{ and } \text{Z}^3, \text{ independently of each other, one O or NR;} \]

\[\text{R is H, C}_1\text{-C}_7\text{-alkyl, aryl, hydroxyl or C}_1\text{-C}_7\text{-alkoxy;} \]

\[x \text{ is a number between 2 and 7;} \text{ and} \]

\[y \text{ is a number between 3 and 10.} \]

13. Labelling reagent according to claim 12, wherein \(\text{Z}^1 \) is NR, \(\text{Z}^2 \) is O, \(\text{Z}^3 \) is NR, \(\text{R is H, C}_1\text{-C}_4\text{-alkyl, x is 2, 3, 4 or 5 and y is 3, 4, 5, or 6.} \)

14. Labelling reagent according to claim 12, wherein \(\text{Z}^1 \) is NR, \(\text{Z}^2 \) is O, \(\text{Z}^3 \) is NR, \(\text{R is H, methyl or ethyl, x is 2 and y is 4.} \)

15. Labelling reagent according to any one of claims 1 to 14, in which \(\text{Fu is an angelicin derivative of the following general formula:} \)

\[\text{[Diagram]} \]

\[\text{where} \]

-18-
23189-7518

R₁, R₂ and R₃, independently of each other, represent H or C₁-C₇-alkyl, and

R₄ represents H, C₁-C₇-alkyl or a lower alkyl with hydroxyl, C₁-C₇-alkoxy, amino, halo or N-phthalimido substituents.

16. Labelling reagent according to claim 15, wherein R₁, R₂, R₃ and R₄ are H.

17. Labelling reagent according to claim 15, wherein R₁ and R₃ are CH₃ and R₂ and R₄ are H.

18. Labelling reagent according to claim 15, wherein R₁, R₂ and R₃ are CH₃ and R₄ is CH₂OH.

19. Labelling reagent according to claim 15, wherein R₁ and R₃ are CH₃, R₂ is H and R₄ is CH₂OCH₃.

20. Labelling reagent according to claim 15, wherein R₁ and R₃ are CH₃, R₂ is H and R₄ is CH₂NH₂.

21. Labelling reagent according to claim 15, wherein R₁ and R₂ are H, R₃ is CH₃ and R₄ is CH₂Cl.

22. Labelling reagent according to claim 15, wherein R₁ and R₂ are H, R₃ is CH₃ and R₄ is
23. Labelling reagent according to any one of claims 1 to 14, in which \(\text{Fu} \) is a psoralen of the following general formula:

\[
\begin{array}{c}
\text{R}_4 & \text{R}_2 & \text{R}_1 & \text{R}_6 \\
\text{R}_3 & \text{O} & \text{O} & \text{O} \\
\text{R}_5 & & & \\
\end{array}
\]

where

\(\text{R}_1, \text{R}_3 \text{ and } \text{R}_6, \text{ independently of each other, represent } \text{H or C}_1-\text{C}_7\text{-alkyl,} \)

\(\text{R}_4 \text{ represents } \text{H, C}_1-\text{C}_7\text{-alkyl or C}_1-\text{C}_7\text{-alkyl with hydroxyl, C}_1-\text{C}_7\text{-alkoxy, amino, halo or N- } \text{N-phthalimido} \text{ substituents,} \)

\(\text{R}_2 \text{ and R}_5, \text{ independently of each other, represent } \text{H, hydroxyl, carboxyl, carbo-C}_1-\text{C}_7\text{-alkoxy or C}_1-\text{C}_7\text{-alkoxy.} \)

FETHERSTONHAUGH & CO.
OTTAWA, CANADA
PATENT AGENTS