«» UK Patent Application .,GB »2 162 406 A

(43) Application published 29 Jan 1986

(21) Application No 8515318
(22) Date of filing 17 Jun 1985

(30) Priority data

(31) 8415474 (32) 18 Jun 1984 (33) GB

(71) Applicants
Logica (UK) Limited (United Kingdom),
Cobham Park, Downside Road, Cobham, Surrey
KT11 3LX.
The Secretary of State for Defence (United Kingdom),
Whitehall, London

(72) Inventors
Peter Kenneth Bailey
Peter Jonathan Brumfitt
Andrew Crofton Sleigh
Neil Francis Trevett
Nicholas Maxwell Trier

(51) INT CL*
HO4L 11/16 GO6F 1/04 12/10 15/20 GO6K 9/00

(52) Domestic classification
H4P PC PEC
G4A FT MP NX
G4R 11A 11D 11E 1X 8G RP

(66) Documents cited
GB 1518565

(58) Field of search
H4P

(74) Agent and/or Address for Service
Mewburn Ellis & Co,
2/3 Cursitor Street, London EC4A 1BQ.

(54) Computer system

(67) A computer system has a control unit 101, an input/output unit 102, and plurality of execution
units 103, connected to a network bus 100. The network bus 100 has data lines corresponding to the
number of units connected to it, and each execution unit has a data line associated with it in which it
signals its status. These status signals may be used to control the sequence of operation of the
execution units. Details of the structure of the execution units are disclosed, as is the use of the
computer system in-an image recognition device. Each execution unit includes a bank switched
memory (306, Fig. 4) which permits bidirectional transmission between a transmission control
processor (301) and an execution processor (302). A program memory for the 16 bit execution
processor uses 24 bit words. The excess bits are used to address 2 megabytes of RAM via
intermediate translation (Fig. 4). The processor clock rate is automatically adjusted in accordance with

operations to be performed.

Fig.1

1o | 102
UNIT
101
CONTROL
UNIT
100

EXECUTION
UNIT

103

EXECUTION
UNIT

>

103

EXECUTION

unT 103

L~

The drawings originally filed were informal and the print here reproduced is taken from a later filed formal copy.

VY 90v 29l 29D

9.

2162406
Fig.1
/0102 EXECUTION 103
UNIT WNIT
101
CONTROL
T [EXECUTION

UNIT

103

EXECUTION
100 unT 103

2162406

219,

|
| | SS¥d N3NOL i dHSNYIL VIVO o
_ _ _ 12) ALIdVd
| | |] x\ vf |
I
| _ | 802 80z 80z |
“ | (7)300W
| | | { _
| ! | S0
_ | _n () dav
_ _ d T
| _ nz | 70z |
, | X IVIva
__‘ _] L T T
! _ £Le _ oz 90z 90 907 202 |
| o | | g1S3v
_ b ! |
[[“ 60¢ m
! ! ! TS
| ! _ _
[_ _ 1 _ ﬁ
| | " | 8ISTL)]OT
_ ! ! !
| “ W | €z |

L0z q /

2162406

3/9.
Fig.3.
100
)
/303
30 304
Na | 3w T o3
306 —= {
308a | 308b |—3g

305 02

400

STATIC

TRANSLATION

4/9.

CONTROL

DYNAMIC
TRANSLATION

407

2162406

)

40

401
;
)
I
| 20
l L
W7 W6 |
2 (/ |
—F | 20
ADD -—77L-4
l
|
416
|
|
|
OFFSET }
|

2162406

5/9.

()

(n

PE0S

JIE09 Q€0

(r (o

3208

DEOS

2162406

6/9

- N S
[ln | |
dang | | ! |
f | 9 AL vy | _ L09 |
| 7 L | 9 | 0
_ A Nw 0_‘ “ L _ _
| |
- W e fdnyoot | __ , ‘ __ d W __
zl Zl 8 8
_ (_ (|] _
N A , _
17 _

| N |
_ | 909 _ _
| __ | |
“ _ T04LNO2 | Y. . WS _

] “ _ 409 /]
IIIIJIII_II —TT N Hv1 - 509 _
S — _

_

109 |
L — _ — T

2162406

707
1
704 701 702 703
\ -
7051 706
709
708
L=
710{
Fig.8.
801 802 803
)
804t 805 | 806~
\-809
!]
/ 7
61t 812 813

814

909__|

8

Fig.

/9

9

305

2162406

MEMORY

401 402

AGM

ALU
908 MAC
Bl
907 DS
N
906__| CACHE

MEM

905

IF

et

904

SOURCE

\

PRE-

601,602

FETCH

\

\\ \\901

903902

SEQUE-

NCER

809

814
/

2162406

9/9.
i
Fig.10.
PATCH
P
1001 © | EXTRACTOR
FIRST SECOND THIRD
EXECUTION 1003 — EXECUTION 1004— EXECUTION
UNIT UNIT UNIT
1002
FOURTH FIFTH
EXECUTION EXECUTION
A uNIT UNIT
1005
1006
SIXTH
1007 —| EXECUTION)
UNIT 1008
1009

IMAGE
OUTPUT

GB 2 162 406A 1

10

15

20

25

30

356

40

45

50

56

60

65

SPECIFICATION
Computer system

The present invention relates to a computer
system, and to various features of that sys-
tem.

In many image recognition devices in which
image recognition is carried out by computer,
the main problem is that the amount of pro-
cessing required to make sense of the image
being processed is very high. If the amount of
time for the device to recognise the image is
not to be too great, the device must operate
very rapidly and be capable of being adapted
to various recognition strategies, and it is not
possible to obtain the necessary speed simply
by suitable programming.

The present invention originated in a desire
to obtain a computer system which would
permit very rapid processing of image infor-
mation. It was found that significant improve-
ments in processing time could be made by
suitable design of both the overall architecture
of the system, the structure of various compo-
nents of the system, and the interaction of
those components with the programming lan-
guage to be run on the system. The present
invention therefore has a number of aspects
directed to the various features that have been
found to be desirable. The computer system is
organised as a plurality of units (hereinafter
execution units) each of determined by the
program stored in that unit, the units being
connected together via a network bus. The
majority of the aspect of the present invention
concern the structure and processing oper-
ations of the execution units, but we will first
deal with the aspect of the present invention
concerning the system as a whole.

The first aspect relates to the way the
execution units signal on the network bus.
The network bus has a plurality of data lines,
via which data may be transferred between
the execution units, but in addition each exe-
cution unit has assigned to it a specific one of
the data lines. The assigned data line then
becomes a signalling line for the correspond-
ing execution unit. The signalling line may
then signal that the execution unit is ready to
receive data, ready to transmit data, has val-
idly received data, or has validly received the
right to transmit.

Thus an execution unit which is ready to
transmit data may detect that the execution
units to which that data is to be sent are
ready to receive that data, by checking the
signals on the data lines which are signal lines
of those execution units. The transmitting exe-
cution unit may then apply a signal to those
signalling lines to signal to the appropriate
other execution units that it is about to
transmit data to them, then the data is trans-
ferred via the data lines. At the end of recep-
tion of the data the execution units receiving

70

75

80

85

90

95

100

1056

110

115

120

125

130

that data may signal on their signal lines that
they have validly received the data, and this
will be detected by the execution unit which
has transmitted the data.

The present invention is thus applicable to a
"‘token passing’’ ring in which a notional
""token”’ is passed between the various execu-
tion units, the execution unit with the token
being the one that is to transmit data, and
that the end of transmission of e.g. a packet
of data from that execution unit the token is
passed to another execution unit. The passing
of the token may be monitored by a master
unit which monitors the signals on the various
data lines, and also may initiate the token
passing.

A computer system according to the first
aspect of the present invention may be used
in an image recognition device. Each execu-
tion unit may be programmed to carry out a
particular part of the analysis of an image,
with the processing being carried out in both
a parallel and a pipeline way. Thus a number
of the execution units operate in parallel to
perform a first set of analysis operations on
data representing a part of the image to be
processed, and then pass their results to one
or more other execution units, which again
work in parallel to process the data further.
This may be repeated for an appropriate num-
ber of stages until the desired result is
achieved. Although the image recognition op-
erations carried out by the various executions
units for data analysis are in themselves
known, the use of the arrangement of the first
aspect permits very rapid interchange between
the various execution units, and so improves
the speed of image processing. The last stage
of the image recognition device (i.e. the last
execution unit in the sequence) may generate
a signal which causes another part of the
image to be fed to the first stage, so that the
image recognition device operates sequentially
on various selected parts of the image with
each part being fully processed before the
next part is analysed. This is very important
because it permits the next part to be ana-
lysed to be chosen in dependence upon the
results of the first analysis, which is desirable
in many image recognition strategies.

The other aspects of the present invention
relate to features of the execution units.

In a second aspect of the present invention
an execution unit has two processors and a
memory accessable by both processors. The
memory is divided into two areas and at any
time, one area is accessable by one processor
and the other area is accessable by the other
processor. At some suitable time access is
switched so that one processor gains access
to the area formerly accessed by the other
processor and vica versa. The effect of this
may be considered as an exchange of data
between the two memory areas so that data
can be transferred from one processor to the

2 GB2162406A 2
other, but at no time is there competition the most-significant-bit of the data signal is
between the two processors for memory ac- spaced by less than or equal to a predeter-
cess. mined number of bits from the least signifi-

Thus, suppose that data to be processed by cant bit, that predetermined number of bits,

5 the first processor is stored in a first part of 70 starting at the least significant bit, is fed to a
one memory area, and data to be processed conversion memory, which converts that sig-
by the second processor is stored in a second nal to an address signal of a greater number
part of the other memory area. The first of bits. If the most significant bit of the data
processor processes the data in the first part signal is spaced from the least significant bit

10 of the one memory area with the processed 75 by more than the predetermined number of
data being stored in a second part of that bits, the conversion memory is inhibited, and
memory area, and similarly the second proces- the entire data signal is converted to an
sor processes the data in the second part of address signal by shifting it by 0, 1, or more
the other memory area, and stores the pro- bits, with the bits of the address signal not

15 cessed data in a first part of the other memory 80 corresponding to a bit of the data signal being
area. Then data can be transferred between set to zero.
the processors simply by switching the access Thus, suppose the data signal has 16 bits.
to the memory area, so that data processed by If the four most significant bits are all zero,
the first processor and stored in a second part the twelve least significant bits are fed directly

20 of the one memory area may be accessed for 85 to a conversion memory to be converted to 20
processing by the second processor, and simi- bit address. It is convenient if the address
larly data processed by the second processor signals thus generated are used to provide the
and stored in the second part of the other addresses of static data objects in the memory
memory area may be accessed for processing (static data objects being data objects which

25 by the first processor. 90 do not change position during the running of

This second aspect is particularly useful in a program). If any of the four most significant
conjunction with the computer system of the bits of the data signal is non-zero, those 4 bits
first aspect. One processor controls the trans- are fed to a control unit which inhibits the
fer of data to and from the network bus, conversion memory, and which enables a

30 whilst the other processor processes the infor- 95 transmission unit, which transmission unit
mation received. Incoming data to an execu- shifts the entire 16 bit data signal by O, 1, 2,
tion unit is stored in the second part of one or 3 bits to form a 20 bit signal.
memory area and is transferred to the first In this way a 16 bit signal can be converted
part of the other memory area of the second into a very large number (2 MByte) of mem-

35 for subsequent processing. The processed in- 100 ory addresses. 4K addresses are generated by
formation is then stored in the second part of direct conversion of the bottom 12 significant
the other memory area for subsequent transfer bits of the data signal, whilst the other ad-
to the first part of the memory of the first dresses are generated by shifting of the entire
processor from where it is then distributed to data signal.

40 other execution units. This arrangement al- 105 The fourth aspect of the present invention
lows the two processors to operate simultane- relates to hardware structure. When a com-
ously in a series of “‘frames’’. Within each puter system is to be implemented on more
frame, the first processor receives information than one board, control signals must be trans-
from, and passes information to, other execu- ferred from the microprogram memory to the

45 tion units, while simultaneously the second 110 various elements of the processor. In the prior
processor processes data received during the art, the system has a single microprogram
previous frame. The frame ends with the memory on the board, and control signals are
transfer of fresh data from the first to the generated from that memory and transmitted
second processor, and the transfer of pro- via an interconnecting ‘“‘backplane’’ to the

50 cessed data from the second processor to the 115 other boards. This system has the problem
first, simply by giving access to the opposite that the total number of signals transmitted
memory areas. The control circuitry and pro- via the backplane is limited, as is the micro-
gramming for recognising correct transmission program memory of the system. Therefore, if
and reception of data via the network bus it is to be possible to increase the capacity of

55 may all be contained within the first proces- 120 the system, by increasing the number of
sor, so that the second processor is entirely boards, spare capacity must be built into the
free to process the information received, and system. This is wasteful, and the seventh
this may occur in parallel with transmission of aspect of the present invention seeks to solve
data from the previous frame and reception of this.

‘60 data for the next frame. 125 The fourth aspect therefore provides a com-

The third aspect of the present invention puter system fabricated on a number of
relates to address generation. The aim here is boards, in which each board has a micropro-
to convert a data signal (which is a number gram memory. The microprogram memory
not corresponding to an address) to an ad- may store the entire microprogram or simply

65 dress signal of an increased number of bits. If 130 the relevant part of the microprogram for that

GB2162406A 3

10

15

20

25

30

35

40

45

50

55

60

65

board. One board generates microprogram ad-
dresses (e.g. from a sequencer) which are
transmitted in parallel to the microprogram
memories of each board, for extraction of the
appropriate microcode. The various compo-
nents on the board then respond to that
extracted microcode. The advantage of this
system is that it is unnecessary to built in any
spare capacity, because additional boards may
be added simply by connecting the micropro-
gram of that board to the microprogram ad-
dress generator. This means that the system is
extremely flexible, and the size of the micro-
program memory does not have to be exces-
sively large.

The fifth aspect of the present invention
relates to the cycle time of each processor. It
is normal for the operations of a processor to
be controlled by a fixed frequency clock send-
ing out a regular stream of pulses which
cause the other components of the processor
to operate in a regular way. The time taken
for each operation of each component may
depend on that operation, but with a fixed
frequency clock the total processing time is
determined entirely by the clock rate. It is also
known to provide clocks of variable frequency,
so that the length of each clock cycle can be
set to the length of the longest operation to
be performed that cycle and time can be
saved when all the operations carried out by
the various components are short. However
such variable frequency clocks depend on a
manual determination of the lengths of the
various operations, and in a complex program
this is virtually impossible. Therefore the fifth
aspect concerns a way of achieving variation
in the clock length automatically in depen-
dence upon the length of the operations that
must be performed during that cycle.

It is achieved by using an assembler to
calculate the longest operation in a mi-
croword. An assembler “‘assembles’’ a mi-
croword in response to an input command
from a plurality of ‘‘fields’’, each of which
may represent an instruction for a part of the
processor. In known devices one of the fields
is a ""clock’” field which controls the length of
the clock cycle, and in the prior art this clock
field must be pre-calculated for each mi-
croword. In the fifth aspect of the present
invention there are no pre-programmed clock
fields, but all the other fields each have infor-
mation relating to the duration of that field,
and the assembler calculates a clock field
from the other fields. The clock field then is
added to the microword which is assembled
by the assembler and controls the clock cycle
in dependence on the longest operation of
each microword. Thus the clock fields are
calculated automatically, unlike in the prior
art, and this permits automatic regulation of
the clock rate.

The sixth aspect of the present invention
relates to the relative length of data signals

70

75

80

85

90

95

100

105

110

1156

120

125

130

and the length of words in the program mem-
ory. In known systems these are the same, so
that if an instruction needs both an address
and a parameter field, these have to be
formed by two separate words from the pro-
gram memory. This is wasteful of memory
space and is inefficient and so the sixth aspect
of the present invention provides a program
memory with each word being longer than the
word length of the processor to utilize that
program, and with the words in the memory
being divided into a tag, with a length corre-
sponding to the number of additional bits of
memory word relative to the processor word,
and a parameter field of the same length as
the processor word. This use of a program
memory with word length exceeding proces-
sor word length by a plurality of bits which
form a tag for that word has two advantages.

Firstly, it permits a simple way of convert-
ing the program memory word to an address
and parameter field by deriving an address for
the parameter field either from the tag or from
the parameter field itself. Thus all but one of
the possible tags may be converted to a
corresponding address with a larger number
of bits via a conversion memory. The remain-
ing one tag, however, desirably inhibits the
conversion memory, and instead an appropri-
ate number of bits are extracted from the
parameter field signal to form an address.
Thus, imagine the program memory stores
words of 24 bits, corresponding to a para-
meter field of 16 bits and a tag of 8 bits. All
but one (i.e. 255) tags may be converted into
a 12 bit address via a ‘‘lock-up’* RAM form-
ing the conversion memory. When the one
remaining tag occurs, the look-up RAM is
inhibited, e.g. by a control unit detecting this
one tag and inhibiting the RAM accordingly
and the 12 significant bits of the 16 bit
parameter field are used to form the address.
In this way a 12 bit address and a 16 bit
parameter field may be extracted from one 24
bit word.

The second advantage of dividing words in
the program memory into a tag and a para-
meter field is that it makes possible the extrac-
tion of instruction to be executed from a tree-
structure code, i.e. code which is divided into
a number of branches, with each branch ter-
minating either in an instruction to be exe-
cuted (known as a “‘primitive’’) or in a junc-
tion to other branches (known as a ‘‘secon-
dary’’) from which depends one or more sub-
programs which may themselves contain sev-
eral branches. In prior art processors the prim-
itives are extracted from the tree by software
known as an “‘inner interpreter’’. The division
of a program instruction into a tag and a
parameter field has make it possible to
achieve the function of the inner interpreter in
a hardware form, which operates much more
rapidly than a software system. The extraction
of primitives in the present invention is

4 GB2162406A 4
achieved by a prefetch unit which is indepen- according to the seventh aspect of the present
dently an aspect (the seventh aspect) of the invention for distributing microcodes to vari-
present invention. ous boards;

in essence the prefetch unit consists of the Figure 9 shows a block diagram of the
5 program memory, a control unit {(which may 70 execution processor of the execution unit of
be the same control unit which detects the tag Figure 3; and
which inhibits the look-up RAM as discussed Figure 10 shows a block diagram of an
above) and a stack, in which certain addresses image recognition device according to the
of program instructions are stored. Normally second aspect of the present invention;

10 the program computes the instruction in a 75
sequence determined by the sequence of their BUS STRUCTURE.
addresses. This will usually be controlled by a Referring first to Figure 1, a computer sys-
program counter. However, when an instruc- tem has a logical ring structure comprising a
tion represents a secondary in the program, network bus 100 to which is connected a

15 this is detected by the control unit and a 80 master unit 101, an input/output (I/0 unit)
suitable address, e.g. the address of the sec- 102 and a plurality of execution units 103.
ondary itself, or the address of next instruc- Three execution units are shown in Figure 1,
tion in the sequence, is stored in the stack. but additional execution units may be pro-
The program jumps to the first subprogram vided up to a maximum of N-2 where N is the

20 from the secondary and processing continues 85 number of data lines in the network bus 100.
at that subprogram. If the first node in that Normally the network bus will have 16 data
subprogram is another secondary then again lines, so that a maximum of 14 execution
the address of the secondary or the address units 103 may be provided.
plus 1, is stored on the stack. When all the A master unit 101, which may be a stan-

25 sub-programs depending from a secondary 90 dard minicomputer e.g. plexus 35, is the unit
{whether only primitives, or including secon- which provides user input such as the pro-
daries with further sub-programs) has been grams to be performed by the various execu-
executed, this may be detected by a suitable tion units 103 to the computer system. [t also
tag on the last (primitive) instruction and the provides a start signal for initiating the pro-

30 topmost address in the stack extracted and 95 cessing by the other units, and may provide a
fed (adding one if this has not already been monitor to check that the execution units 103
done) to the program memory. in this way the are processing data in the correct sequence,
program may be made to return to an earlier but otherwise plays no part in the processing
position in the program, and the detection of of data by the rest of the computer system.

35 all the primitives and secondaries is entirely 100 The input/output unit is the point of entry of
achieved by the tag signal fed to the control data to the system for processing by the
unit. it makes use of the fact that each execution units 103, and the point of exit of
instruction contains a tag and a parameter processed data.
field, because if they were separate instruc- The execution units 103 will be described

40 tions, as in the prior art, it would be impossi- 105 in more detail later.
ble to determine which address to store in the One aspect of the present invention con-
stack without investigating several instruc- cerns the bus structure of the computer sys-
tions, which would be slow. tem of Fig. 1. The network bus 100 com-

An embodiment of the present invention prises 30 lines, each connected in parallel to

45 will now be described in detail, by way of 110 the master unit 101, the input/output unit
example, with reference to the accompanying 102, and the execution units 103. Sixteen of
drawings in which: the lines of the network bus 100 are data

Figure 1 is a block diagram of a computer lines, which in a conventional system would
system according to the first aspect of the be used to transmit data from one unit to

50 present invention; 115 another. In the present invention the data

Figure 2 is a timing diagram of various lines are used for transmitting data, but also
signals on the network bus of Figure 1; are used for indicating the status of each unit

Figure 3 shows the structure of an execu- to which the network bus is connected. Each
tion unit of the system of Figure 1; unit is assigned a corresponding data line

55 Figure 4 shows a block diagram of the 120 which is to carry status signals from that unit.
address generator module of an execution In the absence of other information on the
processor of the execution unit of Figure 3; data lines, each unit applies a signal to its

Figure 5 shows a schematic drawing of a assigned data line to indicate whether or not it
treestructure program; is ready to receive data. Suppose that one

60 Figure 6 shows a block diagram of the 125 unit is to transmit data to some of the other
preset unit of the execution processor; units. The transmitting unit checks the data

Figure 7 shows a known system for distri- lines of the other units to confirm that they
buting microcodes to a plurality of boards; are ready to receive data. Since each unit has
microcodes to a plurality of boards; a corresponding data line, the transmitting

65 Figure 8 shows a block diagram of a system 130 unit can perform this check simultaneously

GB2162406A 5

10

15

20

25

30

35

40

45

50

55

60

65

(i.e. in parallel) for all the units to which it is
to transmit. The unit transmitting the data
then applies signals to the data lines of the
units to receive the data, which signals enable
the receiving units in parallel, and then the
data is transmitted in parallel to all the ena-
bled units. After the receiving units have
received the data, each receiving unit signals
on its assigned data line that it has received
the data correctly, and this permits the
transmitting unit to check that the data it has
transmitted has been received by all the units
to which that data was to be transmitted, this
check again being in parallel for all the receiv-
ing units. Thus status checks, enabling sig-
nals, validation checks, and data transfer are
all achieved in parallel, so that the checks
take up as little time as possible, increasing
the time available for data transfer, and hence
increasing the efficiency of the bus.

This bus structure facilitates the use of the
system as a token-passing ring. Token-passing
rings are known and comprise a logical ring of
interconnected processing units with a (no-
tional) token which is passed between them.
The processing unit with the token is enabled
to transmit data to other processing units, and
when it has finished transmitting, it passes
the token to the next processing unit in the
logical ring. That unit then transmits any data
it has to transmit, and the token is again
passed on. This continues until the token has
been passed around the ring, completing a
cycle for the system. Using the bus structure
discussed above, the computer system of the
present invention is particularly suitable for a
token-passing system, because when the
token is passed from one unit to another, the
receiving unit can signal on its assigned data
line that it has received the token, so that the
control unit 101 can monitor that the token is
being passed correctly between the units and
that the token is not "‘dropped’* (when a
token is passed from one unit but is not
received correctly by another unit). In this way
the amount of time during which the signals
on the bus represent token passing signals
(during which time the bus is not available for
data transmission) may be reduced relative to
prior art arrangements.

In addition to the sixteen data lines, the
network bus has 14 control lines divided into
four address lines, four mode lines, four clock
lines and two parity lines. The signals on
these lines co-operate with the signals on the
data lines to control the various steps of data
transmission and token passing. The functions
of the control lines are as follows:
address lines—during data transfer, the
transmitting unit applies a signal to the data
line corresponding to its address so that re-
ceiving units know which unit is transmitting;
—during token passing, the transmitting unit
gives the address of the unit to receive the
token;

70

75

80

85

90

95

100

105

110

1156

120

125

130

mode lines—signals are applied to these lines
by the transmitting unit only during data
transfer, to give a signal indicating a charac-
teristic of the data being transferred:;

clock lines

a) bus busy—indicates data being transferred;
b) TK/strobe—provides clock pulses for data
transfer;

c) control/strobe—during data transfer, a sig-
nal on this line from the transmitting unit
enables the receiving units;

—during token passing, a signal on this line
indicates the token is to be passed;

d) ack/strobe—during data transfer, a signal
on this line from the transmitting unit indi-
cates that all the data has been transferred
and that the receiving units are to acknow-
ledge data receipt;

—during token passing, a signal is applied to
this line by the master unit if token transfer
has failed;

parity lines—during data transfer, provide a
check from transmitting to receiving unit for
assisting validation.

Referring now to Fig. 2, the pattern of
signals on the network bus 100 can be seen.
Assume that one execution unit has the token
and all other units are signalling on their
assigned data lines that they are ready to
receive (checked by the unit with the token).
Assuming that it has data to transmit, the
execution unit with the token applies a signal
201 to the bus busy (BB) line indicating that
it is about to transmit data, applies a signal
202 to the data lines of the units to receive
the data, which, together with an enabling
signal 203 on the control/strobe (CTLSTB)
line enables the receiving units, applies a
signal 204 to the address (ADR) line corre-
sponding to the address of the unit with the
token so that the receiving units know which
unit is transmitting, and applies a signal 205
to the mode lines indicating a characteristic of
the data to be sent. If the unit has no data to
transmit, it immediately starts the token pass-
ing sequence.

When data is to be transmitted, the data
206 is transmitted across the data lines ac-
companied by clock pulses 207 on the
TX/strobe (TXSTB) line and parity pulses 208
on the parity lines. At the end of the data
transfer the unit with the token applies a
signal 209 to the ack/strobe (ACKSTB) line
requesting acknowledgement of valid data re-
ceipt by the receiving units, which is achieved
as described above by the receiving units
each applying a signal 210 to their assigned
data line. This completes data transfer and the
bus busy (BB), address (ADR) and mode lines
are cleared.

Then the unit with the token passes that
token to another by applying a signal to the
address lines indicating the address of the
unit which is sent to receive the token, and
applying a signal 212 to the control/strobe

6 GB2162406A 6
(CTLSTB) line to clock the passage of the efficient data transmission and signalling dis-
token. The unit receiving the token then ap- cussed above in connection with Fig. 1.
plies a signal 213 to its assigned data line The control processor 301 also controls the
indicating that it has validly received the transmission of data to and from the execu-

5 token, and token passing has been completed. 70 tion processor 302.
If token passing is not performed correctly, The control processor 301 and the execu-
and the token is dropped, the master unit tion processor 302 each have their own
101 may apply a signal 214 to the ack/- “‘working’”’ memmories 304, 305 respec-
strobe (ACKSTB) line to reset the token pass- tively, but in addition there is a “‘bank

10 ing system. Once the token has been trans- 75 switch’’ memory 306 connected between
ferred, the unit now with the token waits until them. The memory space of the bank switch
all units have indicated by a signal 215 on memory 306 is divided into two areas 307,
their assigned data lines that they are ready to 308, each of which is (notionally) subdivided
receive data, then data transfer from the unit into two parts 307a, 307b, 308a, 308b

15 now with the token may commence. 80 during each processing operation. The use of

As described above a network bus 100 with a bank switch memory 306 with such subdivi-
16 data lines permits 14 execution units 103 sion permits simultaneous transmission of
since each unit must have a corresponding data from the control processor 301 to the
data line. If more were needed it would be execution processor 302 and vice versa. Of

20 feasible to link network bus rings to create an 85 course, there need be no physical division of
extra level of processing within the system, the bank switch memory 306, and the divi-
i.e. one of the execution units would be sion may be a purely logical one of division of
replaced by an interface to another network memory addresses in a single memory compo-
ring, which itself could have up to 14 execu- nent. Normally, the addresses of the two

25 tion units. The system is very efficient be- 90 areas 307, 308 will not change, but the
cause the data lines are used for several addresses of each part of the area may be
purposes, decreasing the number of lines changed by the appropriate processor unit
which would otherwise be required in the 301, 302 depending on the operations to be
network bus 100. Furthermore, during data performed.

30 transfer, the signals on the bus are controlled 95 The program to be used on the computer
by the unit with the token, i.e. the unit with system may be divided into a series of
the token acts as a bus controlier whilst it has “frames’’ corresponding to the processing of
the token, and control of the bus is passed to a batch of information by the execution pro-
another unit when the token is passed. cessor 302 of each execution unit 103. As-

35 100 sume that data to be processed by the execu-
EXECUTION UNIT STRUCTURE. tion processor 302 is stored in the right half

The structure of an execution unit 103 will 308b of the memory area 308 and that data
now be discussed in more detail with refer- to be transmitted by the control processor
ence to Figure 3. As can be seen from that 302 to other parts of the computer system is

40 figure, the execution unit 103 consists of two 105 stored in the left half 307a of the memory
processors, a control processor 310 (which area 307. The “‘frame’’ begins with the exe-
may be a standard Motorola 68000 micro- cution processor 302 commencing to process
computer) and a execution processor 302. the data in the right half 308b of memory
The control processor 301 is connected by a area 308 and this continues until the data is

45 transmission bus 303 to the network bus 100 110 fully processed and can be stored in the left
discussed with reference to Fig. 1. The func- half 308a of the memory area 308. Simulta-
tion of the control processor 301 is to control neously with this processing by the execution
the transfer of data between the network bus processor 302, the control processor 301
100 and the execution processor 302. It is transmits data from the left half 307a of

50 the control processor 301 which: 115 memory area 307 to other units, and receives

(i) signals to the appropriate data line of the data from appropriate other units which is
network bus 100 that the execution unit 103 stored in the right half 307b of memory area
is ready to receive information; 307. At the end of the processing by both

(i) signals to other units that it is about to processors 301, 302, the memory areas 307,

55 transmit and that they are to receive data; 120 308 are “‘switched’’ (again a logical operation

(i} transmits the data; rather than actual movement of data) so that

(iv) checks that data has been received the control processor 301 has access to the
correctly, and applies a suitable signal to the memory area 308 and the execution proces-
appropriate data line of the network bus 100; sor has access to the memory area 307.

60 (v) receives and passes the token of the 125 As described above the system may operate
logical ring. as a token-passing ring and during a token

Thus it is the control processor 301 of each cycle the token is passed once around the
execution unit 103 which interacts with the ring. Consider now the operations of one
network bus 100 and with the rest of the particular execution unit 103 during a token

65 computer system to achieve the advantages of 130 cycle. At the start of the token cycle the unit

GB2162406A 7

10

15

20

25

30

35

40

45

50

55

60

65

signals on its assigned data line that it is
ready to receive data. When the token arrives
at a unit (e.g. another execution unit 103)
which is to transmit data to the execution unit
103 under consideration, that other unit sig-
nals on the appropriate data lines that it is
about to transmit data thereby enabling the
execution unit under consideration. A data
packet (which may be all or only a part of the
data that unit has to transmit) is then
transmitted via the network bus 100, is re-
ceived by the execution unit 103 under con-
sideration via the bus 303 and is stored in the
right half 307b of the memory area 307.
Storing of data packets in the right half 307b
of the memory area 307 continues as the
token is passed around the ring. Thus during
a token cycle the right half 307b of the
memory area 307 receives packets of data
which are to be processed by the execution
processor 302 during the next ‘‘frame’’.

At some time during the token cycle the
execution unit 103 under consideration will
receive the token. It signals that it is to
transmit data, thereby enabling the units to
receive that data and then transmits a data
packet from the left half 307a of the memory
area 307 onto the network bus 100 and
hence to other appropriate units. At the end
of the transmission of the data packet it
checks that the data packet has been received
correctly by monitoring the signals on the
data lines assigned to the receiving units and
then it signals via the appropriate data line of
network bus 100 that it has finished
transmitting the data packet and the token is
then passed on. Thus during the token cycle
the control unit transmits a packet of data
processed by the execution processor 302
during the previous ‘‘frame’’. The token is
passed round and round the ring, and each
execution unit with data to transmit will
transmit a packet of that data each time the
unit has the token. If the execution unit has
no data to transmit, it simply passes on the
token. After a sufficient number of token
cycles, a control processor of an execution
unit will have passed all the data processed
by the execution processor during the previ-
ous “‘frame’’ of that execution unit and data is
switched between the control processor and
execution processor as will now be described.

The control unit 301 has suitable means for
recognising when it has received all the input
data and successfully transmitted all its output
data. When the execution processor 302 fin-
ishes processing the data of that frame (from
the right half 308b of memory area 308) it
signals to the control unit 301 that it has
finished, and requests more data. However,
the control processor 301 will only respond to
this request when it has received all input
data and transmitted all output data. When
this happens the memory areas are switched
so that the control processor 301 has access

70

75

80

85

90

95

100

105

110

115

120

125

130

to the memory area 308 and the excecution
processor 302 has access to the memory area
307. Although this is, in fact, merely a
change of addresses, it may be considered as
a transfer of the data in the right half 308b
by the memory area 308 (to form the input
data for the execution processor 302 for the
next frame) and of the data in the left half
308a of the memory area 308 to the left half
307a of memory area 307 (to form the output
data to be transmitted by control processor
301). The execution unit 103 has then com-
pleted one frame and the control unit can
signal that it is ready to receive data (i.e. is
ready for the next frame to begin). The frame
then begins when all the execution units 103
are ready to receive data. The division of the
bank switch memory 306 into the memory
areas 307, 308 means that neither processor
301, 302 contends with the other for access
to the memory 306.

If the execution processor 302 is to handle
particularly complex processes, it may be
necessary for there to be more interaction
between the control processor 301 and the
execution processor 302 than described
above. For example, the signal from the exe-
cution processor 302 to the control processor
301 to switch access to the memory areas
307 and 308 need not be at the end of a
processing cycle by the execution processor
302, but the execution processor 302 may
continue processing data after the data access
has been switched.

EXECUTION PROCESSOR COMPONENTS
The execution processor 302 consists of a
plurality of components all connected in paral-

lel to a plurality of data lines. Many of the
components are conventional, but some relate
to various aspects of the invention and will
now be described in detail. The architecture of
the execution processor as a whole will be
described later.

ADDRESS GENERATOR MODULE

An address generator module converts a
data signal appearing as a data line of the
processor to an address. However, if the
memory has more memory addresses than
possible signals on the data line, it is neces-
sary to have a conversion system which effec-
tively multiplies the number of data signals,
and the problem is to convert data signals,
which are random sequences of n bits to an
ordered sequence of memory addresses of n
+ x bits (i.e. the memory is object addressa-
ble). So far as is known, there is no prior art
system to do this. There are systems that can
convert an address of n bits to an address of
n + x bits, i.e. convert one ordered sequence
to another, but none that can translate from
the random sequence of data signals. One
way of achieving this will now be described
with reference to Fig. 4. Assume that a 16 bit

GB2162406A 8

10

15

20

25

30

35

40

45

50

55

60

65

address signal on the data lines 400 is to be
converted to a 20 bit memory address which
is transmitted from the address generator mo-
dule 401 via an address bus 402 to the
memory 305 (see Fig. 3). If this conversion
were not done, the total address space of the
memory 305 and the area of the bank switch
memory 306 to which the execution proces-
sor has access would be limited to 64K, but
by increasing the number of bits in the ad-
dress signals, a memory address base of 2
megabytes can be achieved. The address gen-
erator module consists of two translation units
404, 405 connected in parallel, via an adder
4086, to the address bus 402. Two translation
units 404, 405 are required because there are
two different types of addresses with which
the address generator module 402 must deal.
One type of addresses are the addresses of
static data objects i.e. those data with predet-
ermined positions in the main memory 305,
and the addresses of which are therefore
known before a program is executed. Since
the addresses of these data objects are known
it is relatively easy to generate a 20 bit
address for each data object. One of the
translation units 404 acts as a static transla-
tion unit, and consists of a random access
memory (RAM) which stores the addresses of
the static data objects as 20 bit addresses and
acts as a “look-up’’ table to convert each 16
bit address to a corresponding 20 bit address.
Suppose that there are a maximum of 4K
static data objects. A 12 bit signal fed from
the data bus 400 can then be used to gener-
ate a complete set of unique addresses for
each of the static data objects, and the RAM
of the static translation unit 404 converts the
12 bit signals into 20 bit addresses for
transmission to the address bus 402.

The other type of data objects stored in the
memory 305 and all the data objects stored in
the bank switch memory are dynamic data
objects, i.e. data objects which are not predet-
ermined and which may change during the
program. practical programs require a large
number of dynamic data objects, so that it is
not practicable to use a RAM to store the
addresses of all the dynamic data objects.
Therefore the dynamic memory addresses
must be generated directly from the data on
the data bus 400. This is achieved by feeding
a number of bits of the data signal to a
control unit 407 which inhibits the static
translation unit 404 and enables the other
translation unit (the dynamic translation unit)
405. The dynamic translation unit 405 shifts
the signal on the data line by up to 4 bits, to
form a 20 bit address with the bits of the
address not coresponding to a bit of the data
signal being set to zero. The shifted signal,
now being a 20 bit signal is fed to the
address bus 402, via adder 406.

There is a difficulty with this however. As
the most significant bit (MSB) of the signal on

70

75

80

85

90

956

100

105

110

1156

120

125

130

the data line 400 is shifted towards the MSB
of the memory address, the memory that can
be addressed increases, but the memory has
to be allocated in larger blocks. In order that
the available dynamic address space is used
efficiently, it is desirable that the program
controlling the dynamic memory allocation
knows by how many bits the dynamic ad-
dresses are being shifted.

It is convenient if the addresses of the static
data objects correspond to the bottom 4K of
the 16 bit address line 402. The top 60K can
then be used for the addresses of dynamic
data objects. Assume a signal appears on the
data bus 400 which is to be converted to an
address on the address bus 402. The top 4
bits of the 16 bit signal are fed to the control
unit 406. If these top 4 bits are all zero, i.e.
the signal is in the bottom 4K, the control
unit 406 enables the static translation unit
404 which receives the bottom 12 bits of the
signal from the data bus 400. The RAM of
the static translation unit 404 converts this
12 bit signal to a 20 bit address which is fed
via line 407, and the adder 403 to the
address bus 402. If, on the other hand, any
one of the 4 top bits of the signal on data bus
400 is non-zero, the control unit 407 inhibits
the static translation unit 404 and enables the
dynamic translation unit 405 to receive the
16 bit signal on the data line 400. The
dynamic translation unit 405 then shifts the
16 bits upwards to create a 20 bit signal
which is again fed via line 407 and adder
406 to the address bus 310.

As shown in Figure 4, the adder 403 may
combine the signal from the static or dynamic
translation units 401, 402, with a signal from
an offset unit 408. The purpose of the offset
unit 408 is to permit the generation of the
addresses of vectors, i.e. quantities for which
more than one parameter, and thus more than
one address is necessary to define the quan-
tity. When the addresses of a vector are to be
generated, first one address is generated as
described above then a signal is applied to a
data bus 409 which is fed via line 410 to the
offset unit 408 which calculates the difference
between the initial address and subsequent
address, and applies that difference to the
adder 406, which sums it with the initial
address thereby deriving the subsequent ad-
dress in a simple way.

PROGRAM MEMORY AND PREFETCH UNIT
One way of structuring a computer program
is known as tree-structuring. Such a structure
is shown in Figure 5 and consists of an entry
point 501 which is connected to other points
or nodes, which may themselves be branching
points, or ‘‘secondaries’”’ 502 with depending
sub-programs or ‘‘subtrees’’ or may represent
a single subroutine of the program. Such a
sub-routine is known as an executable primi-
tive. When such a program is run, each node

GB 2162 406A .

10

15

20

25

30

35

40

45

50

55

60

65

is scanned in turn and the subtrees (if it is a
secondary) from that node investigated, again
in turn, until all primitives have been ex-
tracted. First for example starting at the entry
point 501, the secondary 502a would be
scanned, and the first subtree from that sec-
ondary leads to another secondary 502b. In-
vestigating the branches from the nodes
502b, the first is primitive 503a which would
then be extracted for subsequent execution by
the computer system. The next subtree goes
to another secondary 502¢, and the subtres
from that secondary would be investigated.
This would lead to the extraction of primitives
503b and 503c. Since all the subtrees from
secondary 502c would then have been inves-
tigated, processing returns to secondary 502b
to extract the primitive 503d. Processing then
returns to secondary 502a for the extraction
of primitive 503e, and then processing re-
turns to the entry point 501 for processing of
another branch from that entry point 501.
The sequence of investigating the subtrees
from each secondary is normally controlled by
software known as an ‘‘inner-interpreter’’.
However, in many programs the ratio of sec-
ondaries 502 to primitives 503 is high so that
a considerable amount of processing time is
spent simply in transversing the “‘tree’’ of
secondaries looking for primitives 503 to ex-
tract.

Therefore it is desirable that there is a way
for extracting the primitives more rapidly than
could be done by programming alone. Nor-
mally in a tree-structure code, each word in
the program memory may represent either an
instruction (known as a parameter field) to be
acted upon by other components of the pro-
cessor or a tag which is associated with one
or more parameter fields and indicates the
nature of the parameter field e.g. primitive or
secondary. Since the parameter field and tag
are separate program words, it is necessary to
extract from the program memory first the tag
then the associated parameter field(s), so that
at least two processing steps are needed.

The present invention makes use of a pro-
gram memory which has a word length longer
than the word length of the parameter field.
The extra bits of the memory word are then
used to form the tag, so that the tag and
parameter field are combined in a single
memory word.

Referring now to Fig. 6, a memory 600
with a word length of e.g. 24 bits forms the
heart of both an instruction format unit 601
and a prefetch unit 602. The prefetch unit
602 acts as a hardware “‘inner interpreter’”
and will be described first. On a signal from a
program counter 603, the program memory
600 outputs an instruction word, which may
correspond either to a secondary of the pro-
gram, in which case the parameter field is an
instruction to obtain another instruction word,
or to a primitive in which case the parameter

70

75

80

85

90

956

100

105

110

1156

120

125

130

field is an instruction for other parts of the
processor.

If the program was not branched, it would
consist simply of a string of primitives ordered
in the sequence in which they are to be
performed. A program counter 603 would
send out a sequence of signals instructing the
program memory to output the primitives in
the correct order. However, in branched code
this cannot be done because at a secondary
the program must jump to an instruction in
one subtree from that secondary, but be
capable of returning to the secondary for
executing the other subtrees from that secon-
dary. Therefore when secondary occurs, the
program jumps to one subtree but remembers
the address of the next node (secondary or
primitive) to enable the program to return
when the one subtree has been completed.

This is achieved by adding one to the
address of a secondary in a adder 604 and
storing the result in a stack 605. The node is
detected by a control unit 606 which receives
the tag of the instruction output from the
program memory 600 and is capable of dis-
tinguishing tags representing primitives, tags
representing secondaries, and special tags
representing ‘‘return’’ primitives which are the
end of a secondary subtree (i.e. are the right-
most instruction at any particular level in any
secondary subtree of the tree of Fig. 5). The
return primitives may be simply an instruction
to return to the next level or may be both a
return instruction and an instruction to be
transmitted to other parts of the processor.
When a subtree has been executed, the end
of the subtree is detected by the control unit
606, and the top address in the stack 605 is
removed from the stack and output via a
multiplexer 607 to the program counter 603
and becomes the next address fed to the
program memory 600. It is important that
each instruction word consists of both a tag
and a parameter field because then the tag
and the parameter field are produced in a
single output from the memory. If the tag and
the parameter field were separate words, as in
the prior art, it would not be possible to know
which step of the program to return to with-
out investigating several words, which would
be slow and inefficient. :

Consider the tree of Fig. 5, in which the
letters A to Y represent the sequence of
instruction words stored in the program mem-
ory. The first instruction word to be output
from the program memory 600 is secondary
A. The control unit detects that it is a secon-
dary, causes the address plus one (i.e. B) to
be stored in the stack 605 and the program
counter 607 is caused via information from
the parameter field of the instruction word to
jump to instruction E. As this is also a secon-
dary, its address plus one (F) is stored above
address B in the stack 605 and programming
jumps to address M. This is a primitive, the

10

GB2162406A 10

ol

10

15

20

25

30

356

40

45

50

55

60

65

tag of which is detected by the control unit
606, and so the instruction word is fed to the
instruction format unit 601. processing then
continues with the instruction word at address
N, which is a secondary so its address plus
one (0) is stored at the top of a stack and the
program jumps to address U, which is a
primitive so is output to the instruction format
unit. Then the next instruction word at ad-
dress V is output and again this is a primitive
and so is output to the instruction format unit.
However, it is also the rightmost instruction at
that level in that subtree, and therefore has a
tag which instructs the control unit to extract
the topmost address (i.e. O) from the stack
605 and this then forms the next address fed
to the program memory. Again this is a primi-
tive and the rightmost in that subtree at that
level so it is output to the instruction format
unit 601 and the next address (F) extracted
from the stack 605. This continues until all
the instruction words have been output from
the memory.

As described above, one (1) is added to the
secondary address before it is stored in the
stack, so that processing can return to the
instruction word immediately after that secon-
dary. It would alternatively be possible to
store the address of the secondary itself on
the stack, and add one when the address is
output to the program memory.

The prefetch unit 602 thus steps through
the program and extracts the primitives of the
program and feeds them in the sequence in
which they are to be performed to the instruc-
tion format unit. The prefetch unit operates
asynchronously with the rest of the execution
processor 302 so that the primitives may be
“‘queued’’ for use at an appropriate time.

Consider now the instruction format unit
601. This receives the primitives from the
program memory and each primitive consists
of a tag (of e.g. 8 bits) and a parameter field
(of e.g. 16 bits). The 8 bit tag is sufficient to
define 2586 instructions which can use the
parameter fields in any way required. How-
ever, 256 instructions are not sufficient for
many programs, and therefore it is necessary
to derive other instructions. This is achieved
by feeding the 8 bit tag both to a look-up
memory 608, via a latch 609, and also to the
control unit 896 which is common as to both
the prefetch unit 602 and the instruction
format 6071. The look-up memory 608 acts in
a similar way to the RAM of the dynamic
translation unit 404 so that all but one of the
256 tags are converted to a 12 bit address by
the look-up memory 608 and are fed to a
multiplexer 610. At the same time the tag fed
to the control unit 606 causes the control unit
607 to enable the multiplexer 610 to pass the
12 bit address from the look-up memory 609
direct to an instruction buffer 611. However,
the one other tag causes the control unit 606
to prevent any address being fed from the

70

75

80

85

90

95

100

1056

110

115

120

125

130

look-up unit 609, but instead obtains the 12
bit address from the 12 least significant bits
of the 16 bit parameter fields being fed on
line 612 from the program memory 600 to
the instruction buffer 611 via the latch 609.
These 12 least significant bits then become
the address signal fed to the buffer 611.

In this way a 24 bit instruction word in the
program memory 600 may be used to specify
a 12 bit address and a 16 bit value, and to
permit maximum use to be made of the 12
bits of the address, so that 4096 addresses
may be obtained. .

Thus the output buffer 611 stores a 12 bit
address and a 16 bit parameter field for each
primitive extracted from the program, and the
primitives are queued in the buffer 611 in the
order in which they are to be performed.

HARDWARE STRUCTURE

Each of the various components of the
execution processor 202 corresponds to a
combination of hardware, mounted on a series
of circuit boards. It is convenient for simpli-
city, to think of each component being
mounted on a separate board, but in practice
this need not be the case, and it has been
found that the various components can be
fabricated on only three circuit boards.

However, for the sake of simplicity assume
for the moment that each part of the execu-
tion processor is on a separate board. It is
then necessary to distribute the control signals
from the microprogram memory of the execu-
tion unit 302 to the various other boards. The
prior art method of doing this would be to
buffer the control signals, then transmit them
via a bus which interconnects the various
boards and is known as a “’backplane’’. Thus
referring to Figure 7 a series of boards 701,
702, 703 contain circuit components, gener-
ally indicated at 704, 705, 706 respectively,
connected to a data bus 707. One of the
boards 701 contains the microprogram mem-
ory 708 in which the microprogram to be run
on the boards is stored. A sequencer 709
controls the output of microprogram instruc-
tions from the microprogram memory 708.
Each instruction of the microprogram memory
consists of a string of bits divided into a
plurality of fields, with each field being to
control a component of the processor. thus
one field may be used as a control signals to
the circuitry 704 of the board 701 containing
the microprogram memory 708, whilst the
other fields are fed into the backplane 710.
One of the fields in the backplane is fed as
control signals to the circuitry 705 of the
board 702, a further field to the circuitry 706
of the board 703, leaving e.g. one more field
for one further board. it can be seen immedi-
ately that this limits the number of boards that
may be interconnected in this way since the
signals transmitted by the backplane 710 is
limited by the bit length of the instructions in

(R

GB2162406A 11

10

15

20

25

30

35

40

45

50

55

60

65

the microprogram memory 708. Therefore if
the system is to permit increase in the number
of boards, “‘spare” capacity must be included
in the word length (to add extra fields), and
the size of the microprogram memory 708
must be sufficiently large in order to permit
this. It is clearly undesirable to include
"'spare’’ capacity initially or to have the num-
ber of boards limited, and hence an aspect of
the present invention seeks to overcome this
problem.

Referring to Figure 8, three boards 801,
802, 803 each have circuitry 804, 805, 806
connected to a data bus 807. One of the
boards 801 has a sequencer 809 which gen-
erates address signals which are to be fed to
the microprogram memory. However, unlike
the prior art system, each board 801, 802,
803 has its own microprogram memory 811,
812, 813 which may each contain the full
microprogram memory required, or the micro-
program memory required for that board only.
The addresses from the sequencer 809 are
fed to the microprogram memory 811 of that
board 810 for controlling the circuitry 804,
but also to a microprogram address bus 814.
This microprogram address bus 814 is then
connected to each microprogram memory
812, 813 of the boards 802, 803 in parallel.
Thus, when an address is generated by the
sequencer 809 it is fed in parallel to the
microprogram memories 811, 812, 813 of
each board 801, 802, 803, thus extracting
the corresponding instructions from each mi-
croprogram memory 811, 812, 813 so that
the instructions may then be acted upon by
the circuitry 804, 805, 806 of one or more of
the boards 801, 802, 803.

It can be seen immediately that it is simple
to increase the number of boards, merely by
connecting the microprogram memory of that
board to the microprogram address bus 814.
It is therefore unnecessary to include spare
capacity in the existing memory to permit
increase in the number of boards, and the size
of the microprogram address bus does not
increase with the number of boards, because
it merely carries the address signals.

VARIABLE CLOCK

Each execution unit 103 has a clock which
controls the parallel operation of the various
components of the execution processor. It is
clear that in some of the operations the execu-
tion processor 202 will execute will be shorter
than others. However, with a fixed frequency
clock, the processing speed is entirely deter-
mined by the clock rate, and no time advan-
tage can be gained from operations which are
shorter than the clock rate. It is known, in
prior art processors, to employ a variable
frequency clock the cycle length of which can
be changed to suit the operations being per-
formed during any particular cycle. However,
the variable frequency clocks which are

70

75

80

85

90

95

100

105

110

115

120

125

130

known cannot react automatically to the peri-
ods of the various operations within the pro-
cessor and thus it is necessary for the pro-
grammer to calculate the duration of every
operation manually. For processors of any
complexity this is virtually impossible. There-
fore the present invention seeks to provide
automatic variation of the clock frequency
independent upon the operations being per-
formed.

To explain the way this is achieved, it is
necessary to consider the operation of an
assembler. An assembler converts an input
code into a microprogram word, with the
microprogram word being a string of fields,
each field being pre-programmed instruction
for some part of the processor. In the prior
art, the input of a code word generates a
plurality of fields, one of which is a field
representing the length of the longest oper-
ation within that microprogram word. Since
all the fields are pre-programmed, this means
that the length of longest operation must be
pre-calculated.

In the present invention, each field contains
information relating to the length of operation
of that field. When assembling a micropro-
gram the assembler compares the information
of the length of operation of each field, and
from that information generates a “‘clock’’
field representing the maximum operation
length and this forms part of the micropro-
gram word. That clock field is then fed to the
clock which regulates the clock time in depen-
dence on the clock field set. Thus the system
differs from the prior art in that no clock fields
representing the total time of the microword
are stored, each field stored contains informa-
tion relating to the length of the operation
represented, and the assembler calculates the
clock field from the information from other
fields. The calculation may simply involve
calculation of the longest time if the oper-
ations are all in parallel, but some operations
may be serial or may themselves represent
subprograms in which operations occur in
parallel, in series, or both. In such circum-
stances it is desirable that the assembler is
able to analyse information about the subpro-
grams so that the duration of the microword
may be calculated accurately.

In this way the operation which determines
the maximum duration of the operations
represented by the microword during any one
cycle of the processing of the execution pro-
cessor 302 can be determined, and the clock
control set automatically.

EXECUTION PROCESSOR STRUCTURE
Fig. 9 shows the general structure of the
execution processor 302. It consists of three

data buses 901, 902, 903 connected in
parallel to the various components of the
processor. Some of these components have
already been described and it is asssumed

12

GB2 162 406A 12

10

15

20

25

30

35

40

45

50

b5

60

65

that each component is fabricated in a sepa-
rate board so that each component has a
separate microprogram memory and the se-
quencer 809 is connected to the micropro-
gram memory of each component via the
microprogram address bus 814 (the two parts
of the microprogram address bus 814 shown
in Fig. 9 being interconnected). Thus each
component corresponds to a board 801, 802,
803 of the hardware of Fig. 8. However as
discussed in connection with Fig. 8 it is
usually possible to combine several compo-
nents on one board so that the structure of
Fig. 9 may be achieved in three boards. The
address generator module (AGM) 401 has
already been described in connection with
Fig. 4, with two of the buses 901, 902, 903
corresponding to the buses 400, 409 of that
figure. Since the AGM 401 is connected to all
three buses 901, 902, 903 may the bus 400
may correspond to any one of them, and the
corresponding bus may be changed during
the operation of the processor.

The component marked PREFETCH has al-
ready been described because this corre-
sponds to the instruction format unit 601 and
the prefetch unit 602. Thus the component
marked PREFETCH contains the program
memory and the main data memory 305 is
also shown. In addition the data buses 901
will be connected to the bank switch memory
306 but this is not shown.

The other components shown in Fig. 9 are
more conventional. The constant source 904
provides constants for the rest of the proces-
sor, which constants may be desired directly
from the microprogram or via the output of
the prefetch unit. The memory /F (MEM 1/F)
905 acts as a short-term memory and buffer
to allow byte swapping and byte storage dur-
ing transactions with the memory 305. The
cache 906 acts as a rapid access memory
which can be addressed in a number of ways,
the data stack (DS) 907 stores a stack of data
values, the top two of which can be accessed
simultaneously, or can be written into simulta-
neously using two of the data buses 901,
902, 903. Finally the components 408 and
409 marked MAC and ALU are the multipli-
er/accumulator and the arithmetic and logic
unit respectively. It is not necessary to discuss
these components in detail as their function
will be understood to those skilled in the art.

IMAGE RECOGNITION An example of the
application of a computer system as described
above to an image recognition device will now
be described with reference to Figure 10. The
image recognition device comprises a series of
stages, with data being passed in a pipeline
operation from one stage to the next. It is
assumed that the device has six execution
units 103 connected to the network bus 100
of Figure 1.

A video input of a scene containing the

70

75

80

85

90

95

100

105

110

115

120

126

130

image to be recognised is fed to a patch
extractor 1001, forming the first stage of the
image recognition device, which extracts a 64
X 64 pixel patch. The data in this patch is
fed via the 1/0 unit 102 to three execution
units 1002, 1003 and 1004 which each
receive the data of the 64 X 64 patch and
from the second stage. A first one of these
execution units 1002 analyses the patch,
looking for regions with a single axis of sym-
metry (e.g. edges and lines) whilst a second
execution unit 1003 looks for regions with no
symmetry or with complex symmetry. The
program which detects these symmetry fea-
tures is preprogrammed within the appropriate
execution units. The third execution unit
1004 carried out extraction analysis on the
patch, again the program for this being stored
within the third execution unit 1004. The
operations of edge/line extraction, no-symme-
try extraction, and texture extraction are all
known in image processing, but the structure
of the execution units of the computer system
of the present invention permit operations to
be made more rapidly than by known proces-
SOrs.

Since the operations performed by the first
and second execution units 1002, 1003 is
simpler than that of the texture extraction
operation of the third unit 1004, they are
likely to finish first. This gives time for them
to compare the results they have found with a
previous analysis to look for movement, be-
fore all three execution units 1002, 1003 and
1004 output their process data to the next
stage of the image recognition device. In that
next stage, the output of the first and second
execution units 1002, 1003 are fed to a
fourth execution unit 1005, which analyses
edges, lines and other features of the patch
and forms line segments, arcs, and nearness
relations. The output of the third processor
1004 is fed to a sixth processor 1006 which
carries out ‘‘region growing’’ using the texture
information from the unit 1004.

Once the execution units 1005 and 1006
have completed their analysis, their outputs
are fed to the fourth stage of the image
recognition device which comprises a sixth
execution unit 1007. This compares the re-
sults obtained with various shape models,
using the nearness information to dictate a
problem solving strategy. This enables a de-
scription of the object to be built in absolute
co-ordinates, so that the unit 1007 may then
determine which is the next part of the image
to be scanned. It then transmits a signal via
line 1008 to patch extractor 1001 to extract
another patch for further processing. At the
same time it outputs via a line 1009 the
results of its analysis, and the sequence of
outputs from the execution unit 1007 on the
line 1009 will build up an image of the
objection being viewed by the video system.

Thus the device has both parailel, and pi-

13

GB2162406A 1

3

10

15

20

25

30

35

40

45

50

55

60

65

peline features. The processing by the three
execution units 1002, 1003 and 1004 is
carried out in parallel, as is the processing by
the execution units 1005 and 1006. How-
ever, the movement of information between
each stage represents a pipeline operation,
with the transfer of information between the
various execution units being achieved in the
way described in connection with Figure 1.

CLAIMS

1. A computer system having a plurality of
execution units connected to a network bus,
the network bus having a plurality of data
lines with each execution unit connected to all
the data lines, wherein each execution unit is
associated with one of the data lines, and
each execution unit is adapted to transfer data
to one or more of the other execution units via
the data lines, and also to signal its status by
applying a signal to its associated data line.

2. A computer system according to claim 1
including a master unit connected to each of
the data lines for monitoring the status of
each execution unit by detecting the signals
on the data line associated with each execu-
tion unit.

3. A computer system according to claim 1
or claim 2, wherein each execution unit has
two processors and a memory connected to
each processor, the memory being divided
into two areas each of which is accessible to
each processor, wherein switching means con-
trols the access of each processor to each
memory area such that the access alternates
between:

a) a first state in which one processor has
access to one memory area and the other
processor has access to the other memory
area; and

b) a second state in which the said one
processor has access to the said other mem-
ory area and the said other processor has
access to the said one memory area.

4, A computer system according to claim 3,
wherein the said one processor is connected
to a network bus, during the first state the
said one processor is adapted to receive sig-
nals via the network bus and store them as
data in a first part of the said one memory
area, and to transmit data from a second part
of said one memory area via the network bus,
and the said other processor is adapted to
analyse data in a first part of said other
memory area, and to store data corresponding
to the analysed data in a second part of said
other memory, and during said second state
the said one processor is adapted to receive
signals via the network bus and to store them
as data in the first part of the said other
memory area, and to transmit data from the
second part of said other memory area, and
the said other processor is adapted to analyse
data in the first part of said one memory area,
and to store data corresponding to the ana-

70

75

80

85

90

95

100

105

110

115

120

125

130

lysed data in the second part of said one
memory area.

5. A computer system according to any one
of claims 1 to 4 having an input/output unit
connected to each of the data lines for receiv-
ing signals from outside the system and
transmitting them to at least one of the execu-
tion units, and for receiving signals from at
least one of the execution units and transmitt-
ing them to the outside of the system.

6. An image recognition device having a
computer system according to claim 5, and an
image detector connected to the input/output
unit, wherein each execution unit of the com-
puter system is adapted to carry out image
recognition operation.

7. A method of operating an image recogni-
tion device according to claim 6, wherein the
input/output unit first transmits an image
signal to a first execution unit for processing
according to the appropriate image recogni-
tion operation of that unit, the first execution
unit transmits the processed image signal si-
muitaneously to a plurality of second execu-
tion units for further processing according to
the appropriate image recognition operations
of these units, and the second execution units
transmit the further processed signal simulta-
neously to a plurality of third execution units
for processing according to the appropriate
image recognition operation of those third
units.

8. A method of operating an image recogni-
tion device according to claim 7, wherein the
output of the third execution units is fed to at
least one fourth execution unit for processing
according to the appropriate image recogni-
tion operation of the fourth execution unit(s),
the completion of processing of that input by
the fourth execution unit(s) causing another
image signal to be transmitted from the inpu-
t/output unit to the first execution unit.

9. An execution unit having two processors
and a memory connected to each processor,
the memory being divided into two areas each
of which is accessible to each processor,
wherein switching means controls the access
of each processor to each memory area such
that the access alternates between:

a) a first state in which one processor has
access to one memory area and the other
processor has access to the other memory
area; and

b) a second state in which the said one
processor has access to the said other mem-
ory area and the said other processor has
access to the said one memory area.

10. An execution unit according to claim 9,
wherein the said one processor is connected
to a network bus, during the first state the
said one processor is adapted to receive sig-
nals via the network bus and store them as
data in a first part of the said one memory
area, and to transmit data from a second part
of said one memory area via the network bus,

14

GB2 162 406A 14

10

16

20

25

30

35

40

45

50

55

60

65

and the said other processor is adapted to
analyse data in a first part of said other
memory area, and to store data corresponding
to the analysed data in a second part of said
other memory, and during said second state
the said one processor is adapted to receive
signals via the network bus and to store them
as data in the first part of the said other
memory area, and to transmit data from the
second part of said other memory area, and
the said other processor is adapted to analyse
data in the first part of said one memory area,
and to store data corresponding to the ana-
lysed data in the second part of said one
memory area.

11. A method of converting a data signal
having a first number of bits to an address
signal having a second number of bits, com-
prising:

determining the spacing between the least-
significant-bit and the most-significant-bit of
the data signal;

when that spacing is less than or equal to a
predetermined number of bits, converting the
data signal to a corresponding address signal
of a greater number of bits; and

when the spacing is greater than the predet-
ermined number of bits, shifting the bits of
the data signal away from the least significant
bit by n positions (where n is an integer) to
form part of the address signal and setting to
zero any of the bits of the address signal not
corresponding to a bit of the data signal.

12. A method according to claim 11
wherein the determination of the spacing is
achieved by detecting if any of the bits of the
data signal spaced from the leastsignificant-bit
by more than the predetermined number of
bits is non-zero.

13. A method according to claim 11 or
claim 12 wherein the conversion of a data
signal to a corresponding address signal is
carried out by storing address signals in a
memory with each memory location corre-
sponding to one of the data signals, such that
the memory generates one of the address
signals on receipt of the corresponding data
signal.

14. A computer system fabricated on a
plurality of boards, wherein each board has a
microprogram memory for controlling the elec-
tronic components on the corresponding
board, and one board has a microprogram
address generator connected in parallel to all
the microprogram memories for transmitting
microcode addresses to all of the micropro-
gram memories simultaneously.

15. A computer system according to claim
14, wherein the microprogram address gener-
ator is a sequencer.

16. A method for controlling the clock rate
of a computer system comprising:

supplying a plurality of fields to an assem-
bler for assembly into a microword, each of
the fields containing information relating to

70

the duration of that field; _
determining, in the assembler, the deviation
of the longest field and generating a clock
field corresponding to that duration; and
controlling the clock rate on the basis of the
clock field so calculated.

Printed in the United Kingdom for

Her Majesty’s Stationery Office, Dd 8818935, 1986, 4235.
Published at The Patent Office, 25 Southampton Buildings,
London, WC2A 1AY, from which copies may be obtained.

