(54) 发明名称
具有压力传感器的口腔护理器具及其形成方法

(57) 摘要
本申请涉及具有压力传感器的口腔护理器具及其形成方法。其中，一种牙刷具有压力传感器。在一个实施例中，本发明可包括：本体，其包括把手部分和具有槽的头部部分；清洁组件，其包括：头部板；多个牙齿清洁元件；多个牙齿清洁元件中的每一个包括从头部板的前表面延伸的清洁部分和从头部板的后表面延伸的基部部分；多个牙齿清洁元件的基部部分熔化在一起以形成与头部板的后表面相邻的熔化垫；清洁元件组件的头部板定位在槽中并且连接于头部部分；压力传感器，其与熔化垫的后表面相邻；和指示器，其可操作地联接于压力传感器，用于在压力传感器传感超过预定阈值的压力之后产生使用者感知信号。
1. 一种牙刷，其包括：
 本体，其包括把手部分和头部部分，槽形成到所述头部部分的前表面中；
 清洁元件组件，其包括：
 头部板；
 多个牙齿清洁元件，所述多个牙齿清洁元件中的每一个包括从所述头部板的前表面延伸的清洁部分和从所述头部板的后表面延伸的基部部分；
 所述多个牙齿清洁元件的基部部分熔化在一起以形成与所述头部板的后表面相邻的熔化垫；
 所述清洁元件组件的头部板定位在所述槽中并且连接于所述头部部分；
 压力传感器，其与所述熔化垫的后表面相邻，使得施加于所述多个牙齿清洁元件的清洁部分的压力传输到所述压力传感器；和
 指示器，其可操作地联接于所述压力传感器，用于在所述压力传感器传感超过预定阈值的压力之后产生使用者感知信号。

2. 根据权利要求1所述的牙刷，其特征在于，进一步包括位于所述槽内的印刷电路板，所述压力传感器包括可操作地联接于所述印刷电路板的压力传感开关，并且所述指示器可操作地联接于所述印刷电路板。

3. 根据权利要求2所述的牙刷，其特征在于，所述印刷电路板包括前表面和后表面，所述压力传感开关附接于所述印刷电路板的前表面，并且所述指示器附接于所述印刷电路板的后表面。

4. 根据权利要求2或3中的任一项所述的牙刷，其特征在于，进一步包括在所述印刷电路板与所述熔化垫之间的密封层，其密封所述印刷电路板的前表面和所述压力传感开关。

5. 根据权利要求1所述的牙刷，其特征在于进一步包括：
 位于所述槽内的印刷电路板，所述压力传感器包括可操作地联接于所述印刷电路板的压力传感开关；
 其中，所述压力传感开关被偏置到打开位置，由此所述压力传感开关成穹顶形；
 所述熔化垫包括从所述熔化垫的后表面延伸的隆起，以便施加于所述多个牙齿清洁元件的清洁部分的超过预定阈值的压力促使所述隆起接触所述压力传感开关且使所述压力传感开关变平而闭合所述压力传感开关且致动所述指示器；并且
 在施加于所述多个牙齿清洁元件的清洁部分的压力减小到低于所述预定阈值时，所述压力传感开关偏置回到所述穹顶形，由此使所述熔化垫偏置回到与所述头部板的后表面接触。

6. 根据权利要求2或3中的任一项所述的牙刷，其特征在于，所述指示器为光源。

7. 根据权利要求6所述的牙刷，其特征在于，进一步包括覆盖所述光源且联接于所述头部部分的透光弹性体材料。

8. 根据权利要求7所述的牙刷，其特征在于，所述透光弹性体材料包括覆盖所述光源的第一部分和覆盖所述把手部分的颈部部分的第二部分，并且由所述光源产生的光通过所述透光弹性体材料从所述第一部分分布到所述第二部分。

9. 根据权利要求7所述的牙刷，其特征在于，所述透光弹性体材料进一步包括从所述牙刷的头部的后表面延伸用于清洗软组织的多个隆起，所述多个清洁元件的清洁部分从所述
述牙刷的头部的前表面延伸。

10. 根据权利要求 7 所述的牙刷，其特征在于，所述透光弹性体材料密封所述印刷电路板的后表面。

11. 根据权利要求 7 所述的牙刷，其特征在于，所述槽成所述头部部分中的通孔，所述透光弹性体材料密封所述通孔的后开口，并且所述头部板围封所述通孔的前开口。

12. 根据权利要求 6 所述的牙刷，其特征在于，所述光源位于形成在所述头部部分的突出部分中的凹陷部分内，所述突出部分延伸到所述槽中。

13. 根据权利要求 2 至 3 中的任一项所述的牙刷，其特征在于，进一步包括：

电源，其位于形成在所述本体中的空腔内，并且所述印刷电路板可操作地联接于所述电源；和

运动引发元件，其用于给予所述头部运动，所述运动引发元件可操作地联接于所述电源。

14. 一种形成牙刷的方法，其包括：

a. 形成包括把手部分和头部部分的本体，槽形成在所述头部部分的前表面中；

b. 使光源可操作地联接于印刷电路板的后表面且使压力传感开关可操作地联接于所述印刷电路板的前表面，由此形成印刷电路板组件；

c. 使所述印刷电路板组件定位在所述槽内；

d. 使预先形成的清洁元件组件连接于所述头部部分以围封所述槽的前开口，使得所述压力传感开关响应于施加于所述预先形成的清洁元件组件的多个牙刷清洁元件的压力以促动所述光源。

15. 根据权利要求 14 所述的方法，其特征在于，步骤 d) 包括在连接于所述头部部分之前根据下列步骤形成所述预先形成的清洁元件组件：

将所述多个牙刷清洁元件插入穿过头部板中的孔，以使所述多个牙刷清洁元件中的每一个包括从所述头部板的前表面延伸的清洁部分和从所述头部板的后表面延伸的基部部分；和

使所述多个牙刷清洁元件的基部部分熔化以形成与所述头部板的后表面相邻的熔化层。
具有压力传感器的口腔护理器具及其形成方法

技术领域
[0001] 本申请涉及具有压力传感器的口腔护理器具及形成该口腔护理器具的方法。

背景技术
[0002] 每天刷牙长期被认为是防止牙齿在人的口腔和齿龈上的积聚的最有效方法。虽然刷牙在清洁牙齿表面方面是大体有效的，但如果在刷洗期间施加的压力不足，则它的效果极大地减小。此外，利用过大的力的牙齿的剧烈刷洗可导致对使用者的牙齿和/或齿龈组织的损坏。因此，在口腔护理时段期间，使用者可想要被警告他们太猛烈地刷洗他们的牙齿。
[0003] 已知具有各种类型的压力传感器的牙刷。然而，具有压力传感器的已知牙刷由于若干原因为而为不足的。例如，具有的压力传感器的一些已知牙刷要求较大的手以容纳警告使用者过大的刷洗压力所需的电路。具有压力传感器的其它牙刷要求附加的体积结构并入在刷刷的头部中以便触动压力传感器。具有压力传感器装置的这些已知牙刷可对制造而言是昂贵的并且使用起来不舒服。
[0004] 因此，存在对具有简化压力传感器机构的牙刷的需要，该牙刷可容易地警告使用者；使用者以过大的压力刷他或她的牙齿。

发明内容
[0005] 诸如牙刷的口腔护理器具包括压力传感器和指示器。指示器在超过预定阈值的压力施加于压力传感器之后被促动。
[0006] 在一个实施例中，本发明可为一种牙刷，其包括：本体，其包括把手部分和头部部分，槽 (basin) 形成到头部部分的前表面中；清洁组件，其包括：头部板，多个牙齿清洁元件，多个牙齿清洁元件中的每一个包括从头部板的前表面延伸的清洁部分和从头部板的后表面延伸的基部部分；多个牙齿清洁元件的基部部分熔化在一起以形成与头部板的后表面相邻的熔化芯 (melt matte)；清洁元件组件的头部板定位在槽中并且连接于头部部分；压力传感器，其与熔化芯的后表面相邻，使得施加于多个牙齿清洁元件的清洁部分的压力传输到压力传感器；和指示器，其可操作地联接于压力传感器，用于在压力传感器传感超过预定阈值的压力之后产生使用者感知信号。
[0007] 在另一个实施例中，本发明可为一种牙刷，其包括：把手；头部；多个牙齿清洁元件，其安装于头部的前表面并且从头部的前表面延伸；印刷电路板，其位于头部内；印刷电路板具有前表面和后表面；压力传感开关，其附接于印刷电路板的前表面，其中，施加于多个牙齿清洁元件的张力传输到压力传感开关；和光源，其附接于印刷电路板的后表面，其中，光源在压力传感开关响应于经受超过预定阈值的压力而关闭之后发光。
[0008] 在又一个实施例中，本发明可为一种形成牙刷的方法，其包括：a) 形成包括把手部分和头部部分的本体，槽形成在头部部分的前表面中；b) 使光源可操作地联接于印刷电路板的后表面且使压力传感开关可操作地联接于印刷电路板的前表面，由此形成印刷电路
板组件：c) 使印刷电路板组件定位在槽内；d) 使预先形成的清洁元件组件连接于头部部分以围封槽的前开口，使得压力传感开关响应于施加于预先形成的清洁元件组件的多个牙齿清洁元件的压力以促动光源。

【0009】在再一个实施例中，本发明可为一种牙刷，其包括：把手；头部；多个牙齿清洁元件，其安装于头部的前表面并且从头部的前表面延伸；印刷电路板，其位于头部内；印刷电路板具有前表面和后表面；压力传感器，其可操作地联接于印刷电路板的前表面，其中，施加于多个牙齿清洁元件的压力传输到压力传感器；和光源，其附接于印刷电路板的后表面，其中，光源在压力传感器经受到超过预定阈值的压力之后发光。

【0010】本发明的可应用性的又一些领域从在下文于提供的详细描述将变得显而易见。应当理解，详细描述和具体实例（虽然指示本发明的优选实施例）仅意图出于说明的目的而不意图限制本发明的范围。

附图说明

【0011】本发明从详细描述和附图将变得被更全面地理解，其中；

【0012】图1是根据本发明的实施例的口腔护具的纵向截面图；

【0013】图2是图1的口腔护具的头部的分解图；

【0014】图3是图1的区域III的特写视图；

【0015】图4A是图3的区域IVA的特写视图，其中，没有压力施加于牙齿清洁元件的清洁部分，并且压力传感开关处于打开位置；

【0016】图4B是图4A的特写视图，其中，压力施加于牙齿清洁元件的清洁部分，并且压力传感开关处于关闭位置；和

【0017】图5是图1的口腔护具的头部的后视图。

具体实施方式

【0018】优选实施例的下列描述本质上仅是示例性的，并且决不意图限制本发明、它的应用或使用。

【0019】根据本发明的原理的说明性实施例的描述意图被连同附图阅读，该附图将被认为是整个书面描述的部分。在本文中公开的本发明的实施例的描述中，对方向或方位的任何参考仅意图为了描述的方便起见，并且不意图以任何方式限制本发明的范围。诸如“下”、“上”、“水平的”、“竖直的”、“上面”、“下面”、“向上”、“向下”、“顶部”和“底部”以及它们的派生词（例如，“水平地”、“向下地”、“向上地”等）的相关用语应当被解释为参考接着描述或在讨论中的附图中示出的方位。这些相关用语仅为了描述的方便起见，并且不要求设备在特别方位上被构造或操作，除非如此明确地指出。诸如“附接”、“附于”、“连接”、“联接”、“互连”等类似的用语指的是关系（其中，结构通过插入结构直接或间接地彼此固定或附接）以及可移动或固定的附接或关系二者，除非另外确切地描述。此外，本发明的特征和益处通过参考示范性实施例而示出。因此，本发明确切地不应受限于示出特征的一些可能非限制性组合的这种示例性实施例，该特征可单独存在或者与特征另外地组合；本发明的范围由所附的权利要求限定。

【0020】同时参考图1至图3，示出根据本发明的实施例的口腔护具100。虽然口腔护
理器具 100 可为牙刷，但是在其它实施例中，口腔护理器具可采取如下形式：软组织清洗器具、邻间尖钻（inter-proximal pick）、线牙器具、牙缝刮刀、机动牙刷或设计用于口腔护理的另一种有柄器具。还将理解，可利用其它实施例，并且在不背离本发明的范围的情况下可进行结构和功能的修改。

[0021] 口腔护理器具 100 包括把手 110 和头部 120。把手 110 向使用者提供机构，他/她可通过该机构容易地紧握和操纵口腔护理器具 100。头部 120 连接于把手 110 的远端 111，并且包括被一般地示出的从其延伸的多个牙齿清洁元件 130。口腔护理器具 100 沿着纵向轴线 A-A（在图 1 中示出）从近端 101（也为把手 110 的近端）延伸到远端 102。在概念上，纵向轴线 A-A 为与把手 110 和头部 120 的三维中心线大体上延伸的参考线。因为在某些实施例中，把手 110 为非线性结构，所以用于口腔护理器具 100 的纵向轴线 A-A 在这种实施例中也可为非线性的。然而，在某些其它实施例中，口腔护理器具 100 具有线性配置，并且因此具有大致线性的纵向轴线 A-A。

[0022] 口腔护理器具 100 包括本体 150，其为附有构件的联接或容纳于其的口腔护理器具 100 的主要结构构件。本体 150 大体包括头部部分 151 和把手部分 152。本体 150 的头部部分 151 用作用于口腔护理器具 100 的头部 120 的结构基部，而本体 150 的把手部分 152 用作用于口腔护理器具 100 的把手 110 的结构基部。在一个实施例中，本体 150 由诸如例如硬塑料的刚性材料构造。合适的硬塑料包括但不限于聚乙烯、聚丙烯（PP）、聚酰胺、聚酯、纤维素塑料、SAN、丙烯酸纤维、ABS 或在牙刷制造中使用的众所周知的热塑性塑料中的任何其它热塑性塑料。

[0023] 头部部分 151 在其远端 111（也为把手 110 的远端 111）处联接于把手部分 152。在一个实施例中，本体 150 的头部部分 151 和把手部分 152 使用喷射模制过程形成整体结构（integral structure）。然而，在其它实施例中，本体 150 的把手部分 152 和头部部分 151 可形成分立构件，其通过现有技术中已知的任何合适技术在制造过程的随后阶段联接在一起。任何合适技术包括但不受限于热焊接、螺纹焊接、紧密配合组件、联接套管、粘附或紧固件。头部部分 151 和把手部分 152 是否构造为单独整体构件或多个组件（包括连接技术）在所有实施例中不限制本发明，除非在权利要求中明确地叙述。此外，代替喷射模制和/或除了喷射模制之外，诸如铣削和/或机加工的其它制造技术可用于产生本体 150（包括把手部分 151 和/或头部部分 152）。

[0024] 口腔护理器具 100 的头部部分 151 包括前表面 121 和相对的后表面 122。多个牙齿清洁元件 130 从头部部分 151 的前表面 121 向外延伸。在某些实施例中，多个牙齿清洁元件 130 可安装于头部 120 的前表面 121 并且从头部 120 的前表面 121 延伸。口腔护理器具 100 的本体 150 包括形成在头部部分 151 的前表面 121 中的槽 154。在示范性实施例中，槽 154 形成本体 150 的头部部分 151 中的通孔 155。然而，在某些其它实施例中，槽 154 可不完全地延伸穿过头部部分 151，并且相反地可具有底板，其将槽 154 分成前槽和后槽，或者形成头部部分 151 的后表面 122。在这种实施例中，底板可由本体 150 的头部部分 151 的板部分形成。

[0025] 在示范性实施例（其中，槽 154 形成通孔 155）中，通孔 155 具有在头部部分 151 的前表面 121 上的前开口 123 和在头部部分 151 的后表面 122 上的后开口 124。由于通孔 155，故头部部分 151 为环形结构。如将在下面讨论的那样，在示范性实施例中，当多个清洁
元件 130 使用锚固自由植毛（anchor free tufting, AFT）技术安装于头部部分 151 时，槽
154 设置成接收清洁组件 170 的部分。

[0026] 在示例性实施例中，头部部分 151 包括延伸到槽 154 中的突出部分 159。在示例
性实施例中，突出部分 159 为限定槽 154 的头部部分 151 的内表面 157 的环形延伸部。然
而，本发明将不被如此限制，并且突出部分 159 可由相对线性延伸部形成，该相对线性延伸
部从头部部分 151 的内表面 157 朝向槽 154 内向延伸。可选地，突出部分 159 可由多个间
隔开的延伸部形成，该多个间隔开的延伸部从头部部分 151 的内表面 157 朝向槽 154 内向延
伸。突出部分 159 提供了表面，包含在头部部分 151 内的口腔护理器具 100 的构件可依
靠在该表面上。将在下面更详细地讨论突出部分 159 的结构配置和包含在头部部分 151 内
的口腔护理器具 100 的构件。

[0027] 多个牙齿清洁元件 130 设置在口腔护理器具 100 的头部 120 上，并且从头部 120
的前表面 121 延伸。两个 120 的前表面 121 和后表面 122 可呈现各种形状和轮廓，该各种
形状和轮廓中一个也没有限制本发明。例如，前表面 121 和后表面 122 可为平面的、仿形的
（contoured）或它们的组合。前表面 121 和后表面 122 被外周或侧向表面限定。

[0028] 多个牙齿清洁元件 130 从头部 120 的前表面 121 向外延伸，用于与牙齿清洁接触。
“牙齿清洁元件”的共同实例包括但不限于细丝刚毛、纤维刚毛、尼龙刚毛、螺旋刚毛、橡
胶刚毛、弹性体凸出部、柔性聚合物凸出部，共同挤压细丝、旗帜尾刚毛（flag bristle）、卷
曲刚毛（crimped bristle）、抗细菌刚毛和它们的组合和/或包含这种材料或组合的结构。
在一个实施例中，多个牙齿清洁元件 130 包括刚毛簇 131。在另一个实施例中，多个牙齿清
洁元件 130 包括刚毛簇 131 和弹性体元件 132 二者。

[0029] 在本发明的某些实施例中，多个牙齿清洁元件 130 可以有现有技术中已知的任
何方式连接于本体 150 的头部部分 151。例如，内模植毛（in-mold tufting, IMI）或装毛
(stapling) 技术可用于将多个牙齿清洁元件 130 安装于本体 150 的头部部分 151。可选地，
牙齿清洁元件 130 可通过延伸穿过簇块中的合适开口而安装于簇块或区段，以使牙齿清洁
元件 130 的基部安装在簇块内或下面。

[0030] 在示例性实施例中，多个牙齿清洁元件 130 使用 AFT 安装方法通过使牙齿清洁元
件 130 形成在清洁组件 170 上面联接于本体 150 的头部部分 151。清洁组件 170 大体包括
头部板 171 和连接于其的多个牙齿清洁元件 130。在 AFT 中，头部板 171（其在某些实施例
中可为膜）形成为具有形成在其中的期望模式的簇孔 172。簇孔 172 为壳，其从头部板 171
的前表面 173 形成穿过头部板 171 到头部板 171 的后表面 174。簇孔 172 可以以任何期望
的模式或构造形式穿过头部板 171。如将在下面讨论的那样，牙齿清洁元件 130 通过将牙齿
清洁元件 130 插入到簇孔 172 中而联接于头部板 171。

[0031] 在一个实施例中，头部板 171 可由用于本体 150 的以上描述的材料中的任何一种
形成。在另一个实施例中，头部板 171 使用喷射模制过程由用于本体 150 的以上描述的
硬热塑性塑料中的一种形成。一旦形成头部板 171，则刚毛簇 131 中的一个（或另一种期
望的牙齿清洁元件，诸如弹性体元件）插入到簇孔 172 中的每一个中。当被如此插入时，刚
毛簇 131 和弹性体清洁元件 132 中的每一个（即，多个牙齿清洁元件 130 中的每一个）的
清洁部分 133 从头部板 171 的前表面 173 凸出，而刚毛簇 131 和弹性体清洁元件 132 中的
每一个（即，多个牙齿清洁元件 130 中的每一个）的基部部分 134 从头部板 171 的后表面
174 凸出。牙齿清洁元件 130 的清洁部分 133 为在刷洗期间接触使用者牙齿的部分，然而牙
齿清洁元件 130 的基部部分 134 保持在头部板 171 之下，并且在刷洗期间不接触使用者的
牙齿。牙齿清洁元件 130 的中心部分 135 定位在箍孔 172 内，且并不从头部板 171 的前表
面 173 或后表面 174 中的任何一个凸出。如将在下面更详细地描述的那样，牙齿清洁元
件 130 能够在箍孔 172 内移动，所以定位在箍孔 172 内的牙齿清洁元件 130 的确切部分
（即，中心部分 135）可变化。

[0032] 在将牙齿清洁元件 130 如上所述地插入到头部板 171 的箍孔 172 中之后，加热元
件（如热板）与牙齿清洁元件 130 的基部部分 134 接触。加热元件熔化牙齿清洁元件 130
的基部部分 134，由此将基部部分 134 熔合在一起以形成熔化垫 175（也被称为现有技术中
的刹毛熔化物）。可选地，牙齿清洁元件 130 的基部部分 134 可通过用于将热施加于其的任
何已知手段（诸如，对流加热气体流和/或辐射）熔化。

[0033] 当熔化垫 175 变硬时，多个牙齿清洁元件 130 固定于头部板 171，以使牙齿清洁元
件 130 不可通过头部板 171 的前表面 173 拔出，由此形成清洁组件 170。具体地，熔化垫 175
防止多个牙齿清洁元件 130 拔过箍孔 172。然而，熔化垫 175 不附于或者另外连接于头部
板 171 的后表面 174，并且牙齿清洁元件 130 的中心部分 135 和清洁部分 134 不在箍孔 172
处附于或者另外连接于头部板 171。相反地，因为熔化垫 175 形成横跨头部板 171 的底部
表面 174 的大尺寸的单独材料块，所以熔化垫 175 防止多个牙齿清洁元件 130 拔过箍孔
172。因此，形成熔化垫 175 的单独材料块具有比每个单个箍孔 172 大的截断面积，并且因此
熔化垫 175 不可拔过箍孔 172。因此，并且因为熔化垫 175 形成牙齿清洁元件 130 的部分，
所以牙齿清洁元件 130 同样地不可拔过箍孔 172。当然，在其它实施例中，熔化垫 175 可形
成彼此间隔的若干隔离熔化垫，然而，熔化垫中的每一个大于每个单个箍孔 172 以防止将
牙齿清洁元件 130 拔过箍孔 172。虽然过程在上面描述成使用刚毛簇 131 和弹性体清洁元
件 132，但是任何类型的牙齿清洁元件 130 可用于形成以上描述的清洁组件 170，而且不是刚
毛簇 131 和弹性体清洁元件 132 和弹性体清洁元件 132 组合。

[0034] 如上所述，熔化垫 175 不附于或者另外连接于头部板 171 的后表面 174。因此，熔
化垫 175（且还因此整体地形成有熔化垫 175 的牙齿清洁元件 130）可在横向于纵向轴线
A-A 的方向上相对于头部板 171 移动。具体地，熔化垫 175 可响应于施加于牙齿清洁元件
130 的力在远离并背向头部板 171 的后表面 174 的反方向上移动。在口腔护理器具 100
的使用期间，在朝向头部板 171 的前表面 173 的方向上施加于牙齿清洁元件 130 的清洁部
分 133 的压力将使熔化垫 175 在远离头部板 171 的后表面 174 的方向上移动。当压力不再
施加于牙齿清洁元件 130 的清洁部分 133 时，熔化垫 175 往回偏置成与头部板 171 的后表
面 174 接触。因此，如将在下面更详细地描述的那样，熔化垫 175 可在刷洗期间与压力传
感器接触以向使用者提供他或她以太大的力刷洗的指示，并且当使用者不以太大的力刷洗
时，压力传感器可使熔化垫 175 往回偏置抵靠头部板 171 的后表面 174。

[0035] 在示范性实施例中，熔化垫 175 形成为包括从熔化垫 175 的后表面 177 延伸的隆
起 176。当然，在某些其它实施例中，隆起 176 可全部省略。隆起 176 可通过利用具有对应
于熔化垫 175 的期望形状的形状的加热元件或通过任何其它手段（诸如在热施加于熔化垫
175 之后使成形元件压紧抵离熔化垫 175）而形成。在示范性实施例中，隆起 176 为从熔化
垫 175 的后表面 177 延伸的柱形凸出部。然而，本发明在所有实施例中将不被如此限制，并
且隆起 176 的形状可呈现任何其它形式。当这种隆起 176 包括在熔化垫 175 中时，将参考图 4A 和图 4B 在下面更详细地描述隆起 176 的定位和功能性。

[0036] 一旦形成清洁组件 170，则清洁组件 170 与本体 150 的头部部分 151 中的槽 154 对齐。接着，清洁组件 170 套入槽 154 中（如图 3 所示）并且固定于本体 150 的头部部分 151，以便围封槽 154 的前开口 123（或当槽 154 形成通孔时的通孔 155 的前开口 123）。在一个具体实施例中，头部板 171 和熔化垫 175 套入槽 154 中，以使头部板 171 接触本体 150 的上突出部 155。一旦如此定位，则清洁组件 170 的头部板 171 使用诸如热焊接、声波焊接或粘附的技术固定于头部部分 151。当然，可利用诸如卡扣配合、紧密配合等的其它连接技术。

[0037] 清洁组件 170、压力传感器 161、密封层 160 和印刷电路板 (PCB) 70 位于本体 150 的头部部分 151 中的槽 154 内。具体地说，PCB70 定位在槽 154 内，以使邻接抵靠突出部分 159。因此，在示范性实施例中，突出部分 159 使 PCB70 适当地保持在槽 154 内。本发明在所有实施例中将不被如此限制，并且在某些其他实施例中，突出部分 159 可省略，并且 PCB70 可经由槽 154 的底板或者经由头部的后部的弹性体材料保持在槽 154 中。

[0038] 在示范性实施例中，压力传感器 161 包括压力传感开关 162，其可操作地联接于 PCB70 和附接于 PCB 的电气接触元件。在其它实施例中，压力传感器 161 可为变换器型压力传感器，其诸如可变电容电路的电容传感器。在另一实施例中，压力传感器 161 可采用下列压力传感器中的一种或更多种的形式：(1) 机械应变仪，其使用由重力或形成形变的应变仪的应变效应来检测由于施加的压力而产生的应变；(2) 电容型压力传感器，其使用隔膜和压力空腔来产生由施加的在由其产生的应变的可变电容器；(3) 电容式压力传感器，其借助于电感、电容、电容器或霍尔效应或者通过脉冲电流原始测量隔膜的位移；(4) 光学压力传感器，其利用线上漂移的物理变化的使用以检测由于施加的压力而产生的应变；(5) 电势测定压力传感器，其使用沿着电阻机构的电流的运动以检测由施加的压力引起的应变；(6) 电谐振压力传感器，其使用电容传感器中的谐振频率的变化来测量由施加的压力引起的应力在气体内密度的变化；(7) 热压力传感器，其使用由于密度变化而产生的气体的导热率的变化来测量压力（诸如，皮拉尼压力计）；和 (8) 电离压力传感器，其测量由于密度变化而改变的带电体气粒子（离子）的流以测量压力。

[0039] 往回转向示范性实施例，压力传感器 161（或压力传感开关 162）可操作地联接于 PCB70，并且定位在槽 154 内。以与熔化垫 175 的表面接触 174 相接。然而，在示范性实施例中，由于密封层 160 定位在压力传感开关 162 与熔化垫 175 之间，故压力传感开关 162 不与熔化垫 175 接触。具体地说，密封层 160 定位在 PCB70 与熔化垫 175 之间（和在压力传感器 161 与熔化垫 175 之间）以保护 PCB70 和压力传感器 161 免受损坏。由于压力传感器 161 的压力传感开关 162 的定位，故施加于多个牙齿清洁元件 130 的清洁部分 133 的压力由熔化垫 175 传输到压力传感器 161 的压力传感开关 162。这将参考图 4A 和图 4B 在下面更详细地讨论。口腔护理器具 100 进一步包括指示器 180，其可操作地联接于压力传感器 161，用于在压力传感器 161 传感超过预定阈值的压力之后产生使用者感知信号。如将在下面更详细地讨论的那样，指示器 180 可操作地联接于 PCB70，以使在使用者以超过预定阈值的力刷他或她的牙齿时，功率供应到指示器 180。

[0040] 在示范性实施例中，指示器 180 为光源。然而，本发明在所有实施例中不受限于为
光源的指示器 180，并且指示器 180 可为能够为使用者表示状态的任何装置。因此，在某些其它实施例中，指示器 180 可为声源或扬声器、振动元件等。因此，虽然以下描述的部分参考“光源 180”，但是应当理解任何其它类型的指示器可代替光源使用。因此，本发明将不明确地受让于为光源的指示器，除非在权利要求中明确地叙述光源。

[0041] 在示范性实施例（其中，指示器 180 为光源）中，光源为发光二极管（LED）。然而，在其它实施例中，光源可为现有技术中已知的灯泡或另一种发光装置。光源（即，指示器 180）在示范性实施例中可操作地联接于 PCB70。更具体地，在示范性实施例中，光源附接于 PCB 的后表面 71。PCB70 充当用于光源的基础衬底，并且包括要求的电路和构件，该要求的电路和构件被要求在功率经由电线 33A-B 从电源 32 供应到 PCB70 时使光源发光。在示范性实施例中，PCB70 为一体结构（unitary structure），其由刚性材料形成，电气构件可附接于该刚性材料以便向这些构件提供功率。

[0042] 如上所述，PCB70 定位在槽 154 内以便依靠在突出部分 159 上并且邻接抵靠突出部分 159。在示范性实施例中，凹陷部 158 形成到突出部分 159 中以便容纳光源（即，指示器 180）。因此，当 PCB70 定位在槽 154 内并且光源附接于 PCB70 的后表面 71 时，光源套入在形成到头部部分 151 的突出部分 159 中的凹陷部 158 内。虽然在示范性实施例中，光源定位在口腔护理器具 100 的头部部分 151 内，但是本发明在所有实施例中将不被如此限制，并且在某些其它实施例中，光源可另外定位在口腔护理器具上，诸如在把手部分 152 中或在端盖 165（图 1）中，如将在下面更详细地讨论的那样。

[0043] 头部 120 沿着纵向轴线从头部 120 的近端（与把手 110 相邻）延伸到头部 120 的远端。此外，在示范性实施例中，光源 180 定位成使得大致垂直于头部 120 的纵向轴线（在某些实施例中，可为纵向轴线 A-A）的第一横向轴线或平面与光源 180 和多个牙齿清洁元件 130 中的至少一个二者相交。因此，在示范性实施例中，光源 180 定位在牙齿清洁元件 130 之下和在如下位置处使得横向轴线或平面与光源 180 和多个牙齿清洁元件 130 中的至少一个相交。此外，压力传感开关 162 定位成使得大致垂直于头部 120 的纵向轴线的第二横向轴线或平面与压力传感开关 162 和多个牙齿清洁元件 130 中的至少一个二者相交。在示范性实施例中，横向轴线或平面定位成大致平行于第一横向轴线平面。此外，在示范性实施例中，第一和第二横向轴线或平面沿着纵向轴线 A-A 轴向地彼此偏移。然而，本发明将不被如此限制，并且在某些其它实施例中，同一横向平面可与光源 180 和压力传感开关 162 二者相交（因此，光源 180 和压力传感开关 162 可轴向地对齐）。

[0044] 如上所述，压力传感器 161 包括可操作地联接于 PCB70 的压力传感开关 162 和附接于 PCB70 的电气接触元件。在示范性实施例中，压力传感开关 162 为金属弯弓开关。然而，本发明在所有实施例中将不被如此限制，并且压力传感开关 162 可为任何其它类型的开关。如将从以下描述理解的那样，在示范性实施例中，压力传感开关 162 为力促动弯弓开关，其检测直接作用在牙齿清洁元件 130 上的力，以便在使用者以超过预定阈值的力刷洗时检测。

[0045] 在某些实施例中，压力传感开关 162 可被认为是附接于或安装在 PCB70 的前表面 72 上。因此，在某些实施例中，压力传感开关 162 附接于 PCB70 的前表面 72，并且指示器 180（即，光源）附接于 PCB70 的后表面 71。这使所有电气元件能够容易地配合在头部部分 151 中的槽 154 内。然而，在其它实施例中，压力传感开关 162 仅可操作地联接于 PCB70 而
不是直接附接于 PCB70。在这种实施例中，压力传感开关 162 与 PCB70 接触和不与 PCB70 接触以打开和关闭开关。因此，压力传感开关 162 可在开关位于打开位置时与 PCB70 分离和隔离，且压力传感开关 162 可在开关位于关闭位置时与 PCB70（或具体地，PCB70 上的电气接触元件）接触。在示性性实施例中，压力传感开关 162 为处在其偏置形式的弯折形构件，并且施加于齿形滑动元件 130 的压力使压力传感开关 162 变平以便接触电气接触元件。在示性性实施例中，压力传感开关 162 由金属形成，以便压力传感开关 162 可用于关闭在两个电气接触元件之间的电路。施加于压力传感开关 162 的压力使压力传感开关 162 如图 4B 所示和在下面更详细地讨论地向下移动。

[0046] PCB70 上的电气接触元件彼此间隔并且在压力传感开关 162 的偏置形式，电流不在电气接触元件之间流动。因此，当压力传感开关 162 处在它的偏置形式时，向指示器 180 提供功率的电路位于打开位置，使得电流不能流到指示器 180 中以向指示器 180 提供功率。在压力传感开关 162 被迫与电气接触元件接触之后，为指示器 180 提供功率的电路关闭，并且指示器 180 不再被提供功率。

[0047] 压力传感开关 162 偏置到打开位置，使得压力传感开关 162 不与电气接触元件中的至少一个接触。当超过预定阈值（即，超过偏置）的压力施加于齿形滑动元件 130 时，熔化凝 175 将接触压力传感开关 162，并且使压力传感开关 162 放置到关闭位置，由此，压力传感开关 162 与电气接触元件二者接触。当压力传感开关 162 被迫进入关闭位置时，指示器 180 将通过使光源发光，通过指示器 180 发出声音，便振动元件振动等致动。

[0048] 密封层 160 定位在槽 154 内以便依靠在 PCB70 和压力传感器 161 的顶上。因此，密封层 160 定位在 PCB70/ 压力传感器 161 与熔化凝 175 之间。因此，密封层 160 密封 PCB70 的前表面 72 和压力传感器 161 在口腔护理器具 100 的使用期间保护 PCB70 和压力传感器 161 免受水或其它损坏。密封层 160 可由任何期望材料（诸如，热塑性塑料、热固性塑料、橡胶或其它材料，其用于密封表面从而足以产生防止水进入到 PCB70 和其它电气构件上的密封件）形成。在一个实施例中，密封层 160 由诸如用于透光弹性体材料 40 的以下描述的热塑性弹性体的热塑性弹性体形式。密封层 160 密封 PCB70 的前表面 35，以使可引入到头部部分 151 中的湿气被阻止接触 PCB70。在某些实施例中，密封层 160 还可与本体 150 的头部部分 151 一起形成密封件。然而，在某些实施例中，如果需要，密封层 160 可省略。

[0049] 本体 150 的把手部分 152 进一步包括电源 32 位于其中的空腔 50。电源 32 可操作地联接于 PCB70 以向指示器 180 提供功率。在示性性实施例中，电源 32 经由线 33A、33B 可操作地联接于 PCB70。线 33A、33B 伸延穿过内纵向通路 51，其延伸穿过把手部分 152。更具体地，通路 51 从空腔 50 伸延，并且在头部部分 151 中的槽 154 或通孔 155 处终止。在示性性实施例中，电源 32 为可替换电池。当然，在其它实施例中，电源可为可再充电电池，光电池或任何其它装置，其能够产生合适的量的电以向指示器 180 提供功率。在一个实施例中，电源 32 为电动动力电池，其通过在使用期间的口腔护理器具 100 的机械动作充电。

[0050] 呈线 / 开按钮的形式的致动器 60 以可操作联接的方式设置在电源 32 与指示器 180 之间，以使使用者可控制是否向指示器 180 提供功率以便于指示器 180 的适当操作。致动器 60 可为滑动按钮、下压按钮、电容接触传感器或现有技术中已知的任何其它类型的致动器。在示性性实施例中，本体 150 的把手部分 152 还包括端盖 165，其可以可拆卸地联接于把手部分 152 的主体部分 167，以便根据需要移除和 / 或替换电源 32。电气接触部 166
设置在端盖 165 上，以使在端盖 165 联接于主体部分 167 之后，电路是完整的，并且指示器
180 可通过致动器 60 的操纵（通过关闭压力传感器 161 的压力传感开关联 162）而提供功
率成打开和关闭。在某些实施例中，指示器 180 或光源可为布置在端盖 165 内的 LED 或另
一种类型的光，以使端盖 165 在使用者以超过预定阈值的压力推他或她的牙齿时发光。可
选地，指示器 180 可为位于端盖 165 内（与位于头部 120 中相对）的声音装置、扬声器、振
动元件等。

[0051] 在诸如示范性实施例的某些实施例中，口腔护理器具 100 进一步包括用于给予口
腔护理器具 100 的头部 120 并在运动的运动引发元件 80。在示范性实施例中，运动引发元
件 80 包括发动机 81 和偏心轮 82，其由发动机 81 驱动以产生传输到口腔护理器具 100 的头部 120
的振动。当然，可使用其它运动引发元件，其包括发动机和使头部 120 上的一个或多个簇
块移动的驱动联接元件。运动引发元件 80 容纳在位于把手部分 152 的细颈部部分内的腔
室 52 中。

[0052] 运动引发元件 80 可操作地联接于线 33A, 33B，并且由电源 32 提供功率。运动引发
元件 80 可串联地或与指示器 180 平行地用电线连接。此外，在某些实施例中，电路设计成
使得：(1) 指示器 180 可以通过致动器 60 的选择性定位独立于运动引发元件 80 接通并且反
之亦然；并且 / 或者 (2) 指示器 180 和运动引发元件 80 可同时接通。如将从图 4A 和图 4B
的讨论更好地理解的那样，在某些实施例中，指示器 180 仅在包括压力传感开关 162 的压力
传感器 161 位于关闭位置时接通，使得电流可流过压力传感开关 162 而不管致动器 60 的定
位。

[0053] 如上所述，清洁组件 170、密封层 160、压力传感器 161 和 PCB70 以堆叠组件位于通
孔 155（或槽 154）内。此外，透光性弹性体材料 40 联接于头部部分 151，以便围封通孔 155
的后开口 124 和密封 PCB70 的后表面 71。在一个实施例中，透光性弹性体材料 40 是透明白的。
在另一个实施例中，透光性弹性体材料 40 是半透明的。用于形成透光性弹性体材料 40
的合适材料可以用于使用在口腔卫生设备中的任何生物相容弹性材料，诸如热塑性弹性体。
为了提供最佳舒适度以及清洁性益处，透光性弹性体材料 40 优选地具有在 A8 到 A25 肖氏硬
度的范围内的硬度特性。作为实例，一个优选性弹性体材料为由 GLS 有限公司制造的聚苯乙烯
－聚乙烯／聚丁烯－聚苯乙烯嵌段共聚物 (SEBS)。然而，可使用来自其它制造商的 SEBS 材料
或在提到的硬度范围内和外的其它材料。

[0054] 在某些实施例中，光折射粒子可包括在透光性弹性体材料 40 中以在使用期间提供
穿过和来自透光性弹性体材料 40 的光的增强散射。在一个实施例（其中，TPE 用于产
生透光性弹性体材料 40）中，透光性弹性体材料 40 可以按适当的形状将透光性弹性体材料
40 二次模制于本体 150 而联接于本体 150。

[0055] 在一个实施例中，透光性弹性体材料 40 为使用诸如喷射模制的技术整体地形成
的单独的一体块。在其它实施例中，透光性弹性材料 40 可由其它材料形成。例如，在一个实
施例中，透光性弹性体材料 40 可由包括透明或半透明硬塑料的透光热塑性塑料形成。合适的
透光硬塑料包括但不限于透明或半透明型的聚乙烯、聚丙烯 (PP)、聚碳酸酯、聚酯、纤维素
塑料、SAN、丙烯酸纤维、ABS 或在牙刷制造中使用的众所周知的热塑性塑料中的任何其它热
塑性塑料。在一个这种实施例中，透光弹性体材料 40 与本体 150 一起整体地形成，并且因此
将被认为是在可为喷射模制过程的本体 150 的形成过程期间“联接于本体 150”。在又一
些实施例中，透光弹性体材料 40 可包括光纤、晶体材料或能够分配光的任何其它材料或材料的组合。在本发明的实施例中，透光弹性体材料 40 可通过粘附、热联接、声速焊接、二次模具、卡扣配合组件、紧密配合组件、它们的组合或本领域技术人员将已知的其它连接技术而联接于本体 150。确切的联接技术将取决于透光弹性体材料 40 和本体 150 的构造的材料。

[0056] 如在上面讨论的那样，在示范性实施例中，指示器 180 定位在形成到突出部分 159 中的凹陷部 158 内。然而，在其它实施例中，指示器或光源 180 可嵌入到透光弹性体材料 40 中，使得凹陷部 158 可省略。因此，透光弹性体材料 40 本身可用于使 PCB70 和指示器 180 保持在槽 154 内的期望位置。无论如何，透光弹性体材料 40 联接于头部部分 151 以便覆盖光源 180。因此，并且由于透光弹性体材料 40 的材料，故来自光源 180 的光（当光通过关闭压力传感开关 162 而产生时）能够穿透透光弹性体材料 40 以便使用者能够看见。在其它实施例中，由光源 180 产生的光仅以使用者能够辨认的方式照亮透光弹性体材料 40。如将关于图 5 在下面更详细地讨论的那样，在示范性实施例中，来自光源 180 的光通过口腔护理器具 100 的颈部部分是可见的。因为由光源 180 产生的光沿着透光弹性体材料 40 分布，所以虽然光源 180 位于头部部分 120 内并且与颈部相邻，但是这是可能的。

[0057] 在示范性实施例中，透光弹性体材料 40 进一步包括从透光弹性体材料 40 的外表面 124 延伸的多个柱形凸起。每个柱形凸起 44 延伸超过口腔护理器具 100 的头部部分 151 的后表面 122。多个柱形凸起 44 设置成使得透光弹性体材料 40 还可用于清洗或组织。在示范性实施例中，多个柱形凸起 44 为小块。其中一个实施例中，多个柱形凸起 44 为锥形小块。如在本文中使用的，“小块”大体表示包括从基部表面竖立的柱形凸起（但不限于凸起的截面形状）。在一般意义上，小块在优选构造中具有大于小块的基部的宽度（在最长远上测量）的高度。然而，小块可包括凸起部，其中，宽度和高度是大致相同的，或者其中，高度略小于基部宽度。此外，在一些情况下（例如，其中，小块逐渐减小到末端或者包括缩小到较小凸起部的基部部分）下。基部宽度可显著大于高度。

[0058] 多个柱形凸起 44 设计成明显地减少人的口臭的主要源并且改进卫生。多个柱形凸起 44 能够移除来自口腔内的舌头和其它软组织表面的菌群和其它死细胞。特别地，舌头倾向于发展对躲避处微生物（harbor organism）而言已知的覆盖层和可有助于口臭的死细胞。该微生物群落可在大部分舌头的上表面上的乳头状突起与沿着口腔中的其它软组织表面的乳头状突起之间的凹处中找到。当接合或者另外地拔靠例如舌头表面时，多个柱形凸起 44 设置用于与软组织紧密接合，同时向下到达到舌头的相邻乳头状突起的凹处中。在其它实施例中，多个柱形凸起 44 可采取肋、片状物、脊、凸起边缘或它们的组合的形式。

[0059] 现在参考图 4A 和图 4B，将描述压力传感器 161 的操作。在图 4A 中，压力传感器 161 的压力传感开关 162 位于它的偏置位置，由此没有压力施加于牙齿清洁元件 130。在它的偏置位置，压力传感开关 162 在示范性实施例中具有弯顶形状。压力传感器 161 的压力传感开关 162 偏置到打开位置。在打开位置，压力传感开关 162 与 PCB70 间隔，并且更具体地，与 PCB70 上的至少一个电气接触元件间隔。此外，在打开位置，熔化垫 175 与头部板 171 的后表面 174 接触，使得没有压力从熔化垫 175 施加到压力传感开关 162 上。在某些实施例中，在偏置打开位置，压力传感开关 162 与电气接触元件二者间隔，并且在其它实施例中，压力传感开关 162 总是与电气接触元件中的一个接触，并且在将力施加于清洁元件 130
的清洁部分 133 之后仅与电气接触元件中的第二电气接触元件接触。当压力传感开关 162 位于打开位置时，电源 32 与指示器 180 之间的电路打开，并且没有功率提供到指示器 180。

[0060] 参考图 4B，压力传感开关 162 确定位为位于关闭位置。这通过施加于牙齿清洁元件 130 的清洁部分 133 的力 F 的施加而实现。具体地，在力 F 施加于牙齿清洁元件 130 的清洁部分 133 之后，力 F 传输到压力传感开关 162，以便强迫压力传感开关进入关闭位置。力 F 为超过预定阈值的力或压力。具体地，力 F 或压力为预定量的力或压力，其在于刷牙期间施加于使用者的牙齿时已知为有害的。在某些实施例中，力 F 在 3.5 牛顿到 4.5 牛顿之间，更优选在 3.8 牛顿到 4.2 牛顿之间，并且更进一步优选为大约 4 牛顿。

[0061] 因此，在力 F 超过预定阈值之后，熔化垫 175 在头部 120 的后表面 122 的方向上向下移动并且向下压紧压力传感开关 162，由此结束在压力传感开关 162 与 PCB70 之间的空间。在示例性实施例中，密封层 160 位于熔化垫 175 与压力传感开关 162 之间，使得熔化垫 175 接触密封层 160，从而使压力传感开关 162 如本文中所述地向下移动。施加于牙齿清洁元件 130 的清洁部分 133 的力 F 使压力传感开关 162 从它的偏置机构中收回。当力 F 超过预定阈值时，压力传感开关 162 移动至与 PCB70 上的电气接触元件二者接触，由此 Essays 电路。如在上述讨论的那样，在示例性实施例中，压力传感开关 162 由于金属形状，这在压力传感开关 162 位于关闭位置时使电流能够流过压力传感开关 162。然而，本发明将不被如此限制，并且压力传感开关 162 可由传导电的任何类型的材料形成。当力 F 施加于牙齿清洁元件 130 的清洁部分 133 时，熔化垫 175 在远离头部板 171 的后表面 174 的向下方向上移动。因此，施加于牙齿清洁元件 130 的清洁部分 133 的力 F 使间隙 G 形成在熔化垫 175 与头部板 171 的后表面 174 之间。

[0062] 在示例性实施例中，熔化垫 175 的隆起 176 在力 F 施加于牙齿清洁元件 130 的清洁部分 133 与压力传感开关 162 接触（由由密封层 160）。因此，在包括隆起 176 的实施例（诸如示例性实施例）中，隆起在口腔护理器具 100 的使用期间致动压力传感开关 162。在某些实施例中，隆起 176 可省略，并且熔化垫 175 的后表面 177 可用于致动压力传感开关 162。

[0063] 由于压力传感开关 162 接触 PCB70 上的电气接触元件二者，并且由于电源 32、指示器 180 和 PCB70 之间的可操作连接，故功率从电源 32 供应到指示器 180，以使指示器 180 被启动。指示器 180 的启动可导致指示器产生光（当指示器为光源时），发出声音（当指示器为扬声器时），或者振动（当指示器为振动元件时）。

[0064] 在口腔护理器具的使用期间，当使用者以超过预定阈值的力 F 刷洗时，指示器 180 将启动以向使用者提供他或她以大体的力刷洗的指示。因此，在指示器 180 之后，使用者将减小刷洗的刺激直到指示器 180 不起作用（诸如通过断开光源）。使用者可在始终不停止刷牙动作的情况下完成该动作。在使用者减小刷洗之后，压力传感开关 162 将被触发回它的偏置位置，由此使熔化垫 175 偏置移动到与头部板 171 的底部表面 174 接触，如图 4A 所示。

[0065] 在某些实施例中，压力传感开关 162 可省略，并且隆起 176 可包括在它的底部表面上的金属或其它传导材料。具体地，隆起 176 的底部表面可涂覆有传导材料。在这种实施例中，隆起 176 可用作开关，使得与 PCB70（和其上的电气接触元件）接触的隆起 176 将关闭开关并且使电流能够从电源 32 流到指示器 180。在这种实施例中，密封层 160 将具有用
于其开口的位置，其中的开口以延伸穿过密封层 160 用于与 PCB70 接触。密封层 160 可直接固定在熔化垫 175 以防止流体进入至 PCB70 上。在其它实施例中，熔化垫 175 的后表面 177 可涂覆有传导材料以形成开关。

[0066] 现在参考图 5，示出口腔护理器具 100 的头部 120 和把手 110 的颈部部分 115 的后视透视图。口腔护理器具 100 的头部 120 具有从其前表面延伸的牙齿清洁元件 130 和具有在其后表面上从其延伸的隆起 44 的透光弹性体材料 40。透光弹性体材料 40 包括覆盖包括指示器 180（即，光源）的头部 120 的表面的第一部分 46 和覆盖把手 110 的颈部部分 115 的第二部分 47。尽管指示器或光源 180 位于头部 120 上，但是由光源 180 产生的光通过透光弹性体材料 40 从第一部分 46 分布到第二部分 47。因此，来自光源 180 的光在口腔护理器具 100 的颈部部分 115 处传输穿过透光弹性体材料 40。这使光能够甚至在刷洗期间被使用者看见。具体地，在刷洗期间，口腔护理器具 100 的头部 120 位于使用者的口腔内，并且因此反射穿过头部 120 的光可被使用者看见。然而，口腔护理器具 100 的颈部部分 115 在刷洗期间未全部容纳在使用者的口腔内。因此，当光反射穿过颈部部分 115 时，使用者可看见光。因此，当光经由口腔护理器具 100 的颈部部分 115 发射时，使用者将被通知使用器以过大之力刷洗。

[0067] 为了确保光反射穿过颈部部分 115，透光弹性体材料 40 的第一部分 46 可由比透光弹性体材料 40 的第二部分 47 更高的密度形成。可选地，透光弹性体材料 40 的第一部分 46 可由比透光弹性体材料 40 的第二部分 47 更不透光的材料形成。更进一步，反射器可定位在光源 180 与透光弹性体材料 40 的第一部分 46 之间以朝向透光弹性体材料的第二部分 47 反射。这些配置中的任何一个将确保由光源 180 产生的光反射穿过口腔护理器具 100 的颈部部分 115。

[0068] 同时参考图 1 至图 5，在一个实施例中，本发明可涉及包含在上文在本文中描述的牙刷的方法。在这种实施例中，本发明包含形成包括把手部分 152 和头部部分 151 的本体 150，其中，槽 154 形成到头部部分 151 的前表面 121 中。接着，该方法包括将光源 180 可操作地联接于 PCB70 的后表面 71 和将压力传感开关 162 可操作地联接于 PCB70 的前表面 72，由此形成印刷电路板组件。接下来，该方法包括使 PCB70 定位在槽 154 内和使预先形成的清洁元件组件 170 连接于头部部分 151 以围封槽 154 的前开口 123，使得压力传感开关 162 响应于施加于预先形成的清洁元件组件 170 的多个牙齿清洁元件的压力以启动光源 180。

[0069] 在某些实施例中，预先形成的清洁元件组件 170 在使预先形成的清洁元件组件 170 连接于头部部分 151 之前形成。在这种实施例中，预先形成的清洁元件组件 170 通过将多个牙齿清洁元件 130 插入穿过头部板 171 中的螺孔 172 以使多个牙齿清洁元件 130 中的每一个包括从头部板 171 的前表面 173 延伸的清洁部分 133 和从头部板 171 的后表面 174 延伸的基部部分 134 而形成。最后，形成预先形成的清洁元件组件 170 包括使多个牙齿清洁元件 130 的基部部分 134 熔化以形成与头部板 171 的后表面 174 相邻的熔化垫 175。

[0070] 如在全文中使用的，范围可短语用于描述在范围内的每个值的简写。在范围内的任何值可选定为范围的终点。另外，本文中引用的所有参考物由此通过参考全部并入。在本公开的定义和引用的参考物的定义冲突的情况下，以本公开为主导。

[0071] 虽然关于包括执行本发明的目前优选模式的具体实例描述本发明，但是本领域技术人员将认识到存在以上描述的系统和技术的许多变化和置换。将理解的是，在不背离本
发明的范围的情况下，可利用其它实施例，并且可进行结构和功能的修改。因此，本发明的精神和范围应当广泛地理解为在所附权利要求中提出。
图 1