wo 2017/100578 A1 [N I 0000 OO 0O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/100578 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

15 June 2017 (15.06.2017) WIPOIPCT
International Patent Classification:
GO6F 17/00 (2006.01)
International Application Number:
PCT/US2016/065836

International Filing Date:
9 December 2016 (09.12.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/265,633 10 December 2015 (10.12.2015) US

Applicant: AFFIRMED NETWORKS, INC. [US/US];
35 Nagog Park, 1st Floor, Acton, MA 01720 (US).

Inventors: PARKER, Ronald, M.; 328 Joseph Dr.,
Boxborough, MA 01719 (US). JONNALAGADDA,
Prasad; 43 Minot Avenue, Acton, MA 01720 (US).

Agents: HOBGOOD, John V. et al.; Wilmer Cutler Pick-
eting Hale and Dorr LLP, 60 State Street, Boston, MA
02109 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: DATA DRIVEN AUTOMATED PROVISIONING OF TELECOMMUNICATION APPLICATIONS

102

Service
Provisioners,
Operators

106

vBuilder
{Recipe Builder)

Subject Matter Experts
108

FIG. 1

Operations NetwoTk

055/BSS
Applications

vTransactor
(Recipe Executor)

(57) Abstract: Systems and methods for building service templates that allow for an agentless, data-driven and stateful automation
of a provisioning of services to mobile network customers. Data associated with a request to create a target schema object class for a
device and protocol are received. Based on the device and protocol information, a set of data fields associated with CRUD semantics
is retrieved from either a database or from user provided data. A decorated target object class is created based on the requested target
schema object class. A subrecipe is created including the decorated target object class, and one or more other decorated target object
classes. A recipe is processed for transmission to an execution engine to form a service instance, the service instance being customiz -
able by an operator for a specific network device such that the service instance data fields that are not pre-filled can be customized
by the operator.

WO 2017/100578 PCT/US2016/065836

DATA DRIVEN AUTOMATED PROVISIONING OF TELECOMMUNICATION
APPLICATIONS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Provisional Application No.
62/265,633, filed December 10, 2015, entitled “Data Driven Automated Provisioning of

Telecommunication Applications,” which is incorporated herein by reference.
TECHNICAL FIELD

[0002] The present disclosure relates to data automation. More specifically, the present
disclosure relates to systems and methods of providing data driven automated provisioning of

telecommunication applications.
BACKGROUND

[0003] Telecommunication (Telco) network functions and applications (also referred to
herein as applications or telco applications) tend to have very rich and complex configuration
models. Telco applications also tend to be long-lived and frequently reconfigured. For
example, in a network that supports consumer mobility customers, a number of network
nodes and back-end business systems require configuration each time an additional consumer

joins the network.

[0004] Traditionally, the ultimate integration point for these frequent configuration
options in a telco environment is the Operation Support System/Business Support System
(OSS/BSS) system. However, integration of new devices and/or services into the network
tend to be very time consuming and very expensive, requiring custom code development in
the OSS/BSS system — itself a very large, complex, and customized system. Additionally,
the end result, even after expenditure of sufficient time and money, is that the procedure is
not highly automated, instead leading a user through a sequential set of GUI screens, often

one per type of device that requires configuration to support the overall service.
SUMMARY

[0005] Systems and methods are disclosed herein for building service templates that

allow for an agentless, data-driven and stateful automation of a provisioning of services to

WO 2017/100578 PCT/US2016/065836

mobile network customers. In some embodiments, a computing device receives data
associated with a request to create a connected device type category, the connected device
type category associated with a device and associated protocol in a mobile network. In some
embodiments, a computing device receives data associated with a request to create a target
schema object class associated with the connected device type category, the request including
a first object parameter associated with the target schema object class, the first object
parameter including at least one of a device type of the device and the protocol, the target
schema object class representing a class of configurable resources based on the device type
and the protocol. In some embodiments, the computing device retrieves based on the first
object parameter, a set of data fields associated with specifying create, read, update and
delete (CRUD) semantics representing capabilities of the device from a database associated
with the computing device, when configuration parameters associated with the protocol
comprise an importable form, the importable form being associated with data that is
importable from a server into the database, and user provided data when the configuration
parameters associated with the protocol comprise a non-importable form, the non-importable
form being associated with data that is not importable from a server into the database. In
some embodiments, the computing device creates the requested target schema object class,
the requested target schema object class including the retrieved set of data fields. In some
embodiments, the computing device creates a decorated target object class based on the
requested target schema object class, the decorated target object class including specified
values for at least a portion of the data fields in the retrieved set of data fields. In some
embodiments, the computing device receives data associated with a request to create at least
one subrecipe, each of the at least one subrecipes comprising at least one of the decorated
target object class, and one or more other decorated target object classes, and data indicating
an association between the decorated target object class and the one or more other decorated
target object classes. In some embodiments, the computing device processes a recipe for
transmission to an execution engine to form a service instance, the recipe including the at
least one subrecipe, the service instance comprising service instance data fields that are
prefilled or hidden based on the specified values, the service instance being customizable by
an operator for a specific network device such that the service instance data fields that are not

pre-filled can be customized by the operator.

[0006] In some embodiments, a computing device determines a set of subrecipes in the at

least one subrecipe having a common decorated target object class, wherein the common

-2-

WO 2017/100578 PCT/US2016/065836

decorated target object class is present in each of the set of subrecipes. In some
embodiments, a computing device receives a coalesced parameter for one common decorated
target object class in one subrecipe in the set of subrecipes, wherein the coalesced parameter
includes a set of values for data fields of the one common decorated target object class. In
some embodiments, the computing device applies the coalesced parameter to each of the
other common decorated target object classes associated with each of the other at least one

subrecipes.

[0007] In some embodiments, the computing device creates a decorated target object
class by receiving the specified values. In some embodiments, the specified values are
derived from the first object parameter. In some embodiments, service instance further
includes a target instance, the target instance including at least one of a virtual network
function, physical network function or an application. In some embodiments, the
configurable resources include at least one of quality of service, rating group, billing plan and
packet filter. In some embodiments, the protocol includes at least one of representation state
transfer (REST) protocol, structured query language (SQL) protocol, simple object access
protocol (SOAP), secure files transfer protocol/secure shell protocol (SFTP/SSH), simple
network management protocol (SNMP), and network and configuration protocol

(NETCONF).
BRIEF DESCRIPTION OF FIGURES

[0008] Various objectives, features, and advantages of the disclosed subject matter can be
more fully appreciated with reference to the following detailed description of the disclosed
subject matter when considered in connection with the following drawings, in which like

reference numerals identify like elements.

[0009] FIG. 1 is a system diagram showing a service automated platform deployment,

according to some embodiments of the present disclosure.

[0010] FIG. 2 is a system diagram showing automated onboarding of a new mobile

virtual network operator (MVNO), according to some embodiments of the present disclosure.

[0011] FIG. 3 is a system diagram of a recipe builder and a recipe transactor, according to

some embodiments of the present disclosure.

WO 2017/100578 PCT/US2016/065836

[0012] FIG. 4 is an object relationship diagram of service instances management,

according to some embodiments of the present disclosure.

[0013] FIG. 5 is a screenshot showing a recipe builder user interface including a service
recipe section and a subrecipe section, according to some embodiments of the present

disclosure.

[0014] FIGS. 6A-6B are screenshots showing a recipe builder user interface including
native target object representations, according to some embodiments of the present

disclosure.

[0015] FIG. 6C is a diagram of a recipe builder user interface used to design a target
schema object for a connector type, according to some embodiments of the present

disclosure.

[0016] FIG. 6D is a diagram of a recipe builder user interface used to design a decorated

target object class, according to some embodiments of the present disclosure.

[0017] FIG. 7 is a screenshot showing a recipe transactor user interface, according to

some embodiments of the present disclosure.

[0018] FIG. 8 is a diagram showing parameter coalescing in recipe builder, according to

some embodiments of the present disclosure.

[0019] FIG. 9 is a flowchart showing the creation of a recipe being used to automate
portions of creating a service instance, according to some embodiments of the present

disclosure.
DETAILED DESCRIPTION

[0020] In some embodiments, techniques are disclosed for automating
telecommunication application configuration. The techniques disclosed herein allow for
reusable recipes, subrecipes, and target schema object classes that can be customized for

various telecommunication applications and devices.

[0021] For example, network function virtualization (NFV) is not just about turning up
new virtual network functions (VNFs)/virtual machines (VMs). Many VNFs are long-lived

and multi-tenant. Many VNFs have complex ongoing configuration needs.

-4-

WO 2017/100578 PCT/US2016/065836

[0022] For example, service function chaining (SFC) can increase integration challenges.
VNFs in an SFC tend to be long-lived and multi-tenant. Coordination of policy is not
completely solved by SFC (e.g., VNF may not know which policies are associated to a

service function path (SFP) ID).

[0023] True end-to-end carrier services can require broad coordinated configuration, for
example across a control plane (e.g., MME, RADIUS, PCRF, OCS, OFCS, PE routers) and

various internal applications.

[0024] Service modeling can take too long (e.g., time it takes to define the service and
how to realize it in the network) and are not automated enough (e.g., Metamodel Oriented

Programming (MOPs) expressed as Word document with corresponding checklist).

[0025] Data driven approaches to automation have been utilized for quite some time in
the form of scripts. At some level, the use of scripts to drive automation is data driven in
that the script, itself, represents the data. Additionally, scripts are “fire and forget,”

resulting in no stateful representation of the effects achieved as a result of running the script.

[0026] While the scripting approach has been utilized in traditional information
technology (IT) settings, for some time, it has not largely crossed over to the provisioning of
telco applications. Unlike the typical telco application, the typical IT application is often
configured at time of deployment with little or no need to incrementally reconfigure it. In
contrast, telco applications require service configuration validation to ensure that the intended

artifacts in the network are still provisioned as expected.

[0027] Attempts have been made to ease the integration of telco application configuration
into automation frameworks, but each requires code writing by the developer of the
automation platform, in the end, to accomplish the integration of the new devices, services, or
procedures. In contrast, the approach described herein is entirely data driven and agentless
where the end user of the solution provides all data necessary to model the required

automation procedures.

[0028] Telco applications are also usually agentless. An agent-based approach allows
clients (e.g., applications) to pull the required configuration from a server (e.g., an agent
running on a server or virtual machine (VM) asking the server which software packages it

should install). In contrast, without an agent, a central “manager” must push all required

-5-

WO 2017/100578 PCT/US2016/065836

configuration at the various clients. Telco applications tend to be agentless because of the
variety of vendors and types of applications (e.g., routers, DNS servers, PCRFs, PGWs, etc.).
This is in contrast to a homogeneous environment with agent-based targets (e.g., installing an

agent on Linux to for software installation and upgrade).

[0029] A data driven approach, as described herein, can refer to a user of the system that
provides the information required to manage the configuration of any new network function
or application. The system, as described in some embodiments, does not provide a list of
supported network functions or applications. Instead, a user of the system can directly
enable the configuration of said applications in a dynamic fashion. As described above, an
agentless approach can be used in applications, such as telecommunications, where deploying
a ubiquitous (e.g., deployed everywhere) agent to pull any and all types of configuration into

any and all relevant network functions and applications is impracticable.

[0030] Also, to unburden the end-user from the problems described above, in some
embodiments, a data automation language can be used to describe any and all automation
procedures. In some embodiments, the systems and methods described herein use Extensible
Markup Language (XML) to create a language that allows the expression of a generalized
sequence of actions occurring over a supported transport such as Secure Shell/Command Line
Interfaces (SSH/CLI) to some set of target entities. In some embodiments, this language is
expressive enough to also capture if/else logic to handle any range of executable versions

within the set of target entities.

[0031] Such an approach can be object oriented, allowing the life-cycle management of
abstract service instances, which can include collections of supported native object instances
on the targets that have been selected. Such service instances can be created, deleted,
modified, checked for synchronization with the underlying targets, forced into

synchronization on the underlying targets, checked for status, and harvested for statistics.

[0032] The approach described herein can support any required transport protocols
towards the desired target devices, including Network Configuration Protocol (NETCONF),
Simple Network Management Protocol (SNMP), SSH/CLI, SSH File Transfer Protocol
(SFTP), Representational State Transfer (REST), and Simple Object Access Protocol
(SOAP)/XML.

WO 2017/100578 PCT/US2016/065836

[0033] In some embodiments, services are defined using a recipe builder (also referred to
herein as vBuilder). As described in more detail below, recipe builder allows subject matter
experts (SMEs) to build recipes for network operators. In some embodiments, the system
described herein provides a GUI-based end user device with no coding needed and no in-built
product-specific adapters. In some embodiments, a reusable model definition by SME is
used. As described in more detail below, one example of a reusable model definition is a
subrecipe used in multiple recipes. In some embodiments, the system described herein
allows for flexible argument handling and propagation and can be modified to support any
target device or application over any transport connector (e.g., NETCONF, REST, SOAP,
SNMP, Java Structured Query Language (JSQL), CLI/SSH). In some embodiments the

system described herein supports multi-versioned targets.

[0034] In some embodiments, the system described herein provides service instantiation
with a recipe transactor (also referred to herein as recipe vIransactor). Recipe transactor can
import completed recipes from recipe builder. In some embodiments, services are triggered
via GUI or programmatically (e.g., using REST). The services can include
Create/Modify/Delete, Status, Statistics, and User-defined Actions. In some embodiments,
the system described herein can track instantiated service instances, such as configuration
synchronization /check, status with aggregation across targets, and statistics rollup across

targets.

[0035] FIG. 1 is a system diagram showing a service automated platform deployment,
according to some embodiments of the present disclosure. FIG. 1 shows operations network
102, corporate IT network 104, interface for operators 106, interface for subject matter
experts (SMEs) 108, recipe builder (also referred to herein as recipe builder) 110, recipe
executor (also referred to herein as recipe transactor) 112, Operation Support
System/Business Support System (OSS/BSS) applications 114, element management system
(EMS) 116, network element (NE) 118, NE 120, virtual I/O module (VIM) 122, NFV
Orchestrator / virtual network function manager (NFVO/VNFM) 124, and application 126.

[0036] Recipe builder 110 can be deployed as a tool in a corporate network 104. In some
embodiments, the target users are subject matter experts (SMEs) 108. SMEs 108 can
communicate with recipe builder 110 through a web service architecture, such as REST.
Recipe builder 110 specifies how to build models that are suited for repetitive invocations of

arecipe. As described in more detail below, recipe builder 110, in some embodiments,

-7-

WO 2017/100578 PCT/US2016/065836

allows SMEs 108 to specify how an operator can onboard a new customer by enabling the
operator 106 to create, retrieve, update, and delete service instances. SMEs 108 are building
in an object oriented program native target objects (also referred to herein as “target schema
object classes” or “target schema objects”)/decorated target objects (also referred to herein as
“decorated target object classes”) that make up a recipe (e.g., QoS policy, billing plan).
Services can be defined by the recipe such that there is complete service modeling (e.g.,
Create/Modify/Delete, Status, Statistics, User-defined Actions). Coding and product-specific
adapters are not needed in the system described herein at least in part because the recipe can
be constructed by a SME 108 importing configuration object model schemas (e.g., router
Vendor X’s Yet Another Next Generation (YANG) modules) as well as a user’s data entry
via direct interaction with a recipe builder’s GUI in order to define a “pseudo-schema” for
applications that do not provide a machine readable schema. An example of this is an
application or network function that is managed solely with a command line interface (CLI).
The application provider may often publish a CLI user’s guide in a PDF file (e.g., it is
possible to publish a machine readable format such as a Backus-Noir-Form (BNF), but that
provides only syntax and not semantics.). Inthe CLI document example, there is effectively

no “official” schema for the application.

[0037] Recipe transactor 112, which resides in an operations network 102, allows an
operator 106 to provision services based on a recipe received from recipe builder 110.
Operators 106 can communicate with recipe transactor through a web service architecture,
such as REST. Recipe transactor 112 utilizes the models in order to support life cycle
management of service instances (e.g., create, retrieve, update, delete). Recipe transactor 112
can also talk to all other components (e.g., OSS/BSS applications 114, element management
system (EMS) 116, network element (NE) 120, virtual I/O module (VIM) 122, NFV
Orchestrator (NFVO)/virtual network function manager (VNFM) 124, and application 126)
over a set of supported connectors or protocols. A model can be created from at least one of a
priori knowledge of protocols or device related to service instantiation, and from protocol and
device type detected by the recipe. An operator 106 can instantiate a service through recipe
transactor 112 by providing to the recipe information particular to a specific target instance,
as described in more detail below. Recipe transactor 112 can specify parameters to OSS/BSS
applications 114, element management system (EMS) 116, network element (NE) 120,
virtual I/O module (VIM) 122, NFV Orchestrator (NFVO)/virtual network function manager

(VNFM) 124, and application 126 to instantiate a service. Recipe transactor 112 can also

-8-

WO 2017/100578 PCT/US2016/065836

specify parameters to an OSS/BSS application 114 with further instructions to configure
element management system (EMS) 116, network element (NE) 120, virtual infrastructure
manager (VIM) 122, NFV Orchestrator (NFVO)/virtual network function manager (VNFM)
124, and application 126 to instantiate a service. Recipe transactor 116 can communicate
with other operations network elements through a protocol/connector supported the system

described herein (e.g., at least one of REST, SOAP, and NETCONF).

[0038] OSS/BSS applications 114 can be used to manage and support end-to-end
telecommunications services. OSS includes management functions such as service
provisioning. BSS include components that manage business operations for a
telecommunications services provider. EMS 116 manages network elements 120 in a
telecommunications network. NFVO/VNFM 124 manages and orchestrates NFV resources.
VNFM manages VNF lifecycles. Application 126 refers to a telecommunications

application.

[0039] As described above, recipe builder 110 is data driven. To automate the
onboarding process, SME 108 can use combinations of one or more target schema objects
(also referred to herein as “target schema object classes”) and one or more decorated target
objects (also referred to herein as “decorated target object classes”) to limit the configuration
parameters for each component that should be specified by an operator 106. As described in
more detail below, a SME 108 can include combinations of target schema object classes in a
single subrecipe as well as specify relationships between the target schema object classes.
Recipe transactor 112 supports protocols that configures products, thereby lending itself to
configuring the products themselves. A recipe can specify at least some of the parameters
that are needed for each protocol. In some embodiments, a SME can simplify a model by
hard-coding certain attributes that are otherwise flexible from the target’s perspective and/or
specify constraints that are more restrictive than the target’s own constraints. In some
embodiments, actual values that ultimately satisfy all constraints are processed by the

transactor during execution of an operation (e.g., create, update, etc.).

[0040] For example, to onboard a customer, a SME 108 can compose a recipe that
defines how to onboard the new customer. The recipe, composed by the SME 108, allows
the operator to create, retrieve, update, and delete (also referred to herein as CRUD
semantics) lifecycles for instantiation. One example of service instantiation is when a

wireless carrier onboards a huge customer directly (e.g., AT&T® onboarding FedEx®) or

-9-

WO 2017/100578 PCT/US2016/065836

when a wireless carrier onboards a subsidiary customer (e.g., AT&T® onboarding a mobile
virtual network operator (MVNO)) such as Cricket Wireless). In some embodiments,
onboarding a customer requires configuration of multiple touch points, as described in more

detail below with FIG. 2.

[0041] FIG. 2 is a system diagram showing automated onboarding of a new MVNO,
according to some embodiments of the present disclosure. FIG. 2 shows recipe transactor
112, network function virtualization infrastructure (NFVI) 202, OSS 114, NFVO/VNFM 124,
Gi LAN Services 208, Packet Data Network Gateway (PGW) 210, Mobility Management
Entity (MME) 212, Domain Name Server (DNS) 214, Offline Charging System (OFCS) 216,
Online Charging System (OCS) 218, Home Subscriber Server/Home Location Register
(HSS/HLR) 220, Policy and Charging Rules Function (PCRF) 222, Authentication,
Authorization, and Accounting (AAA) server 224, Provider Edge (PE) Router 226,
northbound application programming interface (API) renderer 228, recipe transactor Engine
112, authorization manager 232, representation state transfer (REST) protocol 234, structured
query language (SQL) protocol 236, simple object access protocol (SOAP) 238, secure files
transfer protocol/secure shell protocol (SFTP/SSH) 240, simple network management

protocol (SNMP) 242, network and configuration protocol (NETCONF) 244,

[0042] NFVI 202 is a collection of compute, storage, and networking resources available
for VNFs to utilize. In some embodiments, the system described herein can be used to
manage virtual network functions, physical network functions or a combination of both
virtual and physical network functions. As shown in Figure 2, instantiating a service requires
configuration of a diversity of network elements. For example, configuring PE router 226
can include configuring at least one of, or multiple instances of each of a border gateway
protocol (BGP) virtual routing function (VRF) and multiprotocol label switching (MPLS)
BGP/MPLS VREF; configuring AAA Server 224, PCRF 222, and HSS/HLR 220 can include
configuring at least one of access point name (APN) policy mapping and international mobile
subscriber identity (IMSI) policy mapping; configuring OCS 218 and OFCS 216 can include
configuring APN to MVNO mapping; configuring DNS 214 can include configuring APN
and PGW C-name records; configuring MME 212 can include configuring APN Operator
Policy and PGW selection policy; and configuring Gi LAN Services 208 can include
configuring PGW, APN, user equipment (UE) pools, BGP/MPLS VRF, workflow control,
and data profile. Gi is the interface from GGSN/PGW to the Internet. In some

-10 -

WO 2017/100578 PCT/US2016/065836

embodiments, various value added services are inserted between the GGSN/PGW and the
Internet. Those entities are referred to as GiILAN or Gi LAN. For example, a GiILAN service
208 can include configuration of policy and behavior for HyperText Transfer Protocl (HTTP)
Proxy, Transmission Control Protocol (TCP) Proxy, HTTP Content Filtering, Network
Address Translation (NAT), or firewall. As described above, operator 106 through a
northbound API renderer 228, can execute recipes through recipe transactor 112 to configure
network elements in order to create, retrieve, update, or delete a service instance through a
supported protocol (e.g., REST 234, SQL 236, SOAP 238, SFTP/SSH 240, SNMP 242,
NETCONF 244). In contrast, prior art techniques required either 1) manual programming for
each new service instantiation; or 2) an inflexible system supporting only a few subset of
services designed at high cost by an IT department or a scripting approach that retains
inadequate state to validate previous configurations on an ongoing basis. As described in
more detail below, the process of onboarding new customers is automated using the systems
and methods described herein by information that a SME enters: 1) a first layer including a
recipe, 2) a second layer including subrecipes, 3) a third layer including a) target schema
object classes natively seen by the target (also referred to herein as a “target schema object”),
and b) a target schema object class annotated by an SME (also referred to herein as a

“decorated target object”). Verbs (e.g., CRUD) are a behavioral aspect of all layers.

[0043] In some embodiments, at the third layer, there is a 2-stage modeling approach —
first import or define the target’s native representation of a resource (e.g., object) and second
to decorate or annotate that native representation to specify more restrictive constraints,
perform data hiding via hard-coding of certain attributes, or simplification via coalescing
(e.g., combining) multiple attributes. The aspect of the model that pertains to each of the
CRUD verbs can be referred to as facets of the model—the recipe, subrecipe, target schema
object class / decorated target object class—all have a create facet, update facet, etc., to
represent the verb-specific aspects of the model. In some embodiments, one aspect of a
resource or object model that is not verb-specific are the key attributes that uniquely identify

an instance of the resource. Those attributes are fully specified to execute the verbs.

[0044] A target schema object, as described in some embodiments of the present
disclosure, is a representation of the precision and flexibility afforded to the object by the
native application — e.g., read the CLI guide to see that a static route object, for example, has

a certain way of uniquely identifying instances of it, has certain mandatory attributes, certain

-11-

WO 2017/100578 PCT/US2016/065836

optional attributes and that attributes have types and possibly constraints. Once the target
schema object is established (e.g., imported by a SME), further refinement is allowed in the
form of additional constraints, data hiding, and other operations such as coalescing attributes
such that multiple attributes will always be provided identical values. For example, one can
create a decorated target object class based on the static route target schema object class by
restricting it to only use IP v4 addresses. In a different decorated target object class based on

the same target schema object class, a restriction might be to only allow IP v6 addresses.

[0045] Authorization manager 232 enables some secondary functionality in some
embodiments of the system described herein. A service instance that is created can be
designated such that only a subset of operators may further act upon it (update, delete, etc.).
For example, a Cricket MVNO and a Jasper MVNO can be created by a transactor, based on
the MVNO model or recipe that is designed by SMEs. There can be one team of operators
that may modify only the Cricket MVNO and a distinct team that may modify only the Jasper
MVNO.

[0046] FIG. 3 is a system diagram of recipe builder and recipe transactor, according to
some embodiments of the present disclosure. FIG. 3 shows service database 310, recipe
database 312, end to end (E2E) test recipes 316, service recipes 318, emulated test targets
320, Web Service Definition Language (WSDL) 322, XML Schema Definition (XSD) 324,
Yet Another Next Generation configuration object modeling language (YANG) 326,
Management Information Base (MIBS) 328, Physical/Virtual Network Function (P/VNF) 330
332 340 342, NFVO/NF/Application 334, P/VNF/Application 336, and remote database 344.

[0047] Service database 310 includes a record of service instantiated by recipe transactor
112. As described in more detail below, the record of service can include service instances,
target types and target instances. Recipe database 312 includes a record of recipes,
subrecipes, target schema objects, and decorated target object classes created by SME 108

through recipe builder 110.

[0048] Emulated test targets 320 allow SMEs to execute recipes in a simulated
environment for testing, debugging and modification. Emulated test targets 320 refer to an
emulation that can be defined by a SME of a target like a PCRF in terms of request/response
pairs. This allows first level testing of subrecipes that are intended for PCRF, even before

deployment on transactor.

-12 -

WO 2017/100578 PCT/US2016/065836

[0049] Recipe builder 110 can create two types of recipes: E2E test recipes 316 and
service recipes 318. E2E test recipes 316 can verify the behavior of a service instance that
was created via a recipe. E2E test recipes 316 not only test that the configuration is correct
and current, it can also test true end to end behavior which can be affected by operational
conditions such as physical link status on various router-to-router links, etc. For example,
instead of the usual CRUD lifecycle management of service instances, the systems and
methods described herein can be used to model the invocation of and collect and interpret the
results of an active test that may be used for service verification. For example, a test UE,
owned by a carrier, can be deployed to connect to an MVNO and then obtain a file from a
carrier-owned server. It can be triggered to conduct the test and queried as to the results of
this test. No actual service instance is created in this example, and is instead a stateless
action. As described in more detail herein, service recipes 318 can be designed by SMEs for

use by operators 106 to instantiate services.

[0050] Recipes can be designed to communicate with applications that are managed via
SOAP/XML and publish a corresponding Web Service Definition Language (WSDL) 322,
Yet Another Next Generation (YANG) 326, and/or Management Information Base (MIBS)
328. WSDL 322 is an XML format that defines services as collections of network endpoints
capable of exchanging messages. YANG 326 is a language for NETCONF that is modular
and represents data structures in an XML tree format. MIBS 328 allows a network

management system to monitor database objects.

[0051] As described above, recipe transactor 112 can receive a recipe that can utilize any
number of protocols (e.g., representation state transfer (REST) protocol 234, structured query
language (SQL) protocol 236, simple object access protocol (SOAP) 238, secure files transfer
protocol/secure shell protocol (SFTP/SSH) 240, simple network management protocol
(SNMP) 242, network and configuration protocol (NETCONF) 244). Each protocol can be
associated with and used to specify a configuration of a P/VNF 330 332 340 342,
NFVO/NF/Application 334, P/VNF/Application 336, and remote database 344. For example,
NETCONF can be used with YANG enabled routers (e.g., Juniper routers, Cisco routers). As
described in more detail below, YANG files are published by an application provider (e.g., an
“enterprise” YANG model) and/or standardized (e.g., released by Internet Engineering Task
Force (IETF) in a Request For Comments (RFC)), and that can be dragged into a recipe
builder 110 workspace to specify a workflow (e.g., QoS flow). Other protocols include

-13-

WO 2017/100578 PCT/US2016/065836

REST, SOAP, and command line interface (CLI). NETCONF protocol is generally paired
with YANG schema, SNMP protocol is generally paired with MIB schema, SOAP/XML
protocol is generally paired with WSDL schema, and REST and CLI protocols generally have

no formal schema.

[0052] FIG. 4 is an object relationship diagram of service instances management,
according to some embodiments of the present disclosure. FIG. 4 shows a recipe 402,
subrecipe 404, and target schema object class 406 associated with a recipe builder 110; and a
service instance 410, target type 412, and target instance 414 associated with a recipe

transactor 112.

[0053] As shown in FIG. 4, the elements above the line show some embodiments of the
systems and methods described herein from a recipe builder’s 110 perspective (e.g., a service
model); the elements below the line show some embodiments of the systems and methods
described herein from the recipe transactor’s 112 perspective (e.g., the results of executing
the model to create service instances). In particular, the artifacts that have been configured
into the network in terms of which target instances are involved (e.g., which PE router
instances and what native objects or resources, including all their associated values), have
been created on those target instances (i.e., VRFs, MP-BGP peering sessions, etc.). From
recipe builder’s 110 perspective, recipes 402, subrecipes 404, and target schema object
classes 406 are created and linked to be deployed on recipe transactor 112. The first time a
create command is issued (e.g., with an MVNO) associated with the recipe 402, a service
instance 410 is created. The multiple service instances 410 represent each service instance
that was created based on the service model as represented by recipe 1 402. The same recipe
402 can be used to provision different service instances for different customers. A service
instance can be created by executing a recipe (e.g., a create command). In some
embodiments, recipe transactor 110 has a MySQL database to keep track of the hierarchies of
the service instances, and the target objects 414 (also referred to as the footprints of the

service instance).

[0054] A recipe 402 can include multiple subrecipes 404. In some embodiments, each
subrecipe 404 is associated with one or more target types 412. In some embodiments, target
type 412 comprises a device type (e.g., router). A subrecipe 404 can include multiple target
schema object classes 406 as constrained by a same target type and same connector type.

Target schema object class 406 includes an object (e.g., VNF, PNF, application) that has to

-14 -

WO 2017/100578 PCT/US2016/065836

be configured in order to create a service instantiation. For example, target schema object

classes 406 include CRUD semantics (e.g., create, retrieve, update, and delete).

[0055] As described above and referring to FIG. 1, a recipe can be created by a SME 108
to minimize the amount of manual configuration performed by an operator 106 to instantiate
a service. In some embodiments, a recipe can be hard coded by a SME 108 eliminating the
need for significant configuration by the operator 106. In some embodiments a recipe can
have open fields to take inputs from the operator 106. For example, a recipe may leave open
fields specifying for each VRF, a unique route discriminator integer value. The recipe can
expose this value as a required argument for the operator 106 to provide. In some
embodiments, a recipe can contain an open field comprising a logic input (e.g., if/else) such

that the field is filled based on device configuration.

[0056] One implementation of a service instance 410 includes one or more target types
412 as specified by a subrecipe 404 associated with the recipe 402 from which the service
instance 410 is defined. In some embodiments, a target type 412 includes one or more target
instances 414. Target instance 414 is an instance of a virtual network function (VNF),
physical network function (PNF) or application that actually exists (e.g., a Juniper router a
Cisco router) and that a target instance 414 can talk to. Each target instance 414 is associated
with a database of service instances and associated footprints and artifacts, as described
above. In some embodiments, at run time, recipe transactor 112 can ask operator 106 to
specify a number of instances. In some embodiments, all the parameters for each of the many
service instances can be specified in a format (e.g., spreadsheet) that the transactor can

consume.

[0057] FIG. 5 is a screenshot showing a recipe builder user interface including a service
recipe section and a subrecipe section, according to some embodiments of the present
disclosure. FIG. 5 shows a recipe builder user interface 500, billing plan 502, rating group
508, service rule 510, packet filter 512, recipe section 522, subrecipe section 524, and

subrecipe listing section 526.

[0058] Recipe builder user interface 500 includes a recipe section 522, subrecipe section
524 and subrecipe listing section 526. Recipe section 522 includes a field for receiving or

setting a recipe name. Recipe section 522 also includes subrecipes associated with the recipe.

-15-

WO 2017/100578 PCT/US2016/065836

As described above, each of the subrecipes can include at least one of target schema objects

and decorated target object classes.

[0059] Subrecipe section 524 includes a field for receiving or setting a subrecipe name
530, a device type field 532, API protocol field 534, tags 536, description field 538, and
recipes using the subrecipe field 540. For example, as shown in FIG. 5, a subrecipe name 530
can be mobile content cloud (MCC), the device type can be a mobile content cloud device
532, and the API protocol can be YANG protocol 534. Tags 536 includes key words
associated with the MCC sub recipe. Recipes using this subrecipe field 540 includes policy
and charging control (PCC) Rule, which is the recipe specified in the recipe name field. In
some embodiments, a subrecipe can be associated with more than one recipe. In some
embodiments, the recipes using this subrecipe field 540 can include multiple recipe names.
Subrecipe 524 also includes a window 550 including a specification of relationships between
objects (e.g., parent/child or hierarchical relationships between objects). A SME 108 can
pick the objects and how the objects are interconnected. For example, rating group 508 can
be a child of billing plan 502. Billing plan 502 can have one or more associations with rating
groups 508. Rating group 508 can be associated with service rule 510, which can be further
associated with packet filter 512. In some embodiments, hovering over an arrow connecting
one object to another can show the relationship between the two objects. In some
embodiments, a recipe specifies which target schema object classes are coalesced or joined
together. For example, target schema object classes can be coalesced based on the existence
of a parent child relationship. Decorated target object classes and coalescing target schema

object classes can result in further data hiding.

[0060] Subrecipe listing section 526 lists subrecipes created by or available to a SME 108
using recipe builder 110. Subrecipes can be grouped by mobile network element type or
structure (e.g., PCRF, PGW, Mobile DNS). As described above, some embodiments of the
system described have no a priori knowledge of target types, but the systems can have a
priori knowledge of connector types. As described above, the SME 108 creates target types
in the recipe builder. When YANG, WSDL, or other schemas are available to the SME, the
SME imports said schemas and associates them to the target types. A schema type implies a

connector type (e.g., WSDL implies SOAP/XML).

[0061] FIGS. 6A-6B are screenshots showing native target schema object class

representations (e.g., as extracted from a published configuration object schema such as

-16 -

WO 2017/100578 PCT/US2016/065836

YANG or as created dynamically by the user of the system), according to some embodiments
of the present disclosure. Together, FIGS. 6A-6B show a target object section 602, an activity
tab 620, fields within the activity tab 622, and a target objects listing section 630.

[0062] Target object section 602 is contained within recipe builder user interface 500.
Target object section 602 includes several parameters, including a field for a target schema
object class name 604, target schema object class API protocol 606, target schema object
class device type 608, target schema object class description 610, and/or target schema object
class tag 612. In FIG. 6A, target schema object class name is quality of service (QoS) flow.
QoS flow is an MCC device using API protocol YANG. In FIG. 6B, target schema object
class name is Packet Filter. Packet Filter is an MCC object type using API protocol YANG.

In some embodiments, at least one of the fields is configurable.

[0063] Target object section 602 also includes facet tabs 620. Facet tabs 620 can include
a create/modify tab, delete tab, config sync tab, monitor tab, statistics tab, and action tab.
Create/modify tab allows a SME 108 to create or modify a target schema object class. Delete
tab allows SME 108 to delete an instance. Monitor tab allows a SME 108 to determine the
status of instances. Config Sync tab relates to persistent data of an instance. Statistics tab
shows the statistics-related attributes of the target’s native object (e.g., packets, bytes, etc.).
On the statistics tab, the SME can indicate which, if any, of the available fields are of interest
(e.g., which can be collected for any service instances that are built based on recipes that
utilize this target schema object class). Action tab refers to a non-CRUD facet or a facet that

has no effect on the persistent data store (e.g., reboot, fetching a file during a virus scan).

[0064] For example, as shown in FIG. 6A, a QoS flow target schema object class is being
modified. In some embodiments, objects that are already created are listed in the target
objects listing section 630. A SME can specify which fields 622 in the activity tab are hard
coded and which fields 622 need to be specified through recipe transactor. In some
embodiments, fields that should be specified through recipe transactor are marked with an

indicator (e.g., marked with a red asterisk).

[0065] Target objects listing section 630 lists target schema object classes created by or
available to a SME 108 using recipe builder 110. Target schema object classes can be
arranged by target type (e.g., MCC), first, then connector type within the target type (e.g.,
NetConf/Yang, SSH/CLI, SFTP/CLI).

-17 -

WO 2017/100578 PCT/US2016/065836

[0066] FIG. 6C is a representation of a recipe builder user interface used to design a
target schema object, according to some embodiments of the present disclosure. The target
schema object can be used for a connector type, such as CLI, that has no native schema
associated to it (e.g., contrasted to the availability of YANG schemas associated to the
NETCONF connector). In this interface, the SME can design an object representation by
declaring the existence of parameters (variables) and mapping them to the specific commands
(e.g., CLI textual strings) required for life-cycle management of the object (i.e., create,

retrieve, update, delete).

[0067] FIG. 6D is a representation of a recipe builder user interface used to design a
decorated target object class, according to some embodiments of the present disclosure. In
some embodiments, the decorated target object class is designed by first selecting a target
schema object. The approach allows for specialization of multiple decorated target object
classes based on the same “base” target schema object. The available decorations include
the ability to hard-code parameters to specific values, force optional parameters to be
mandatory, and constrain numerical ranges for parameters to be more restrictive than would

be allowed by the “base” target schema object.

[0068] FIG. 7 is a screenshot showing a recipe transactor page, according to some
embodiments of the present disclosure. FIG. 7 shows a recipe transactor page 700, a recipe
title 702, a description of the recipe 704, a service instance name 706, stateful tracking 708,

MCC 710, and a listing of recipes and instances 720.

[0069] From recipe transactor page 700, an operator can execute or run a recipe. The
recipe execution page includes a recipe title which describes the recipe (e.g., creating a policy
and charging control (PCC) rule). The description of the recipe 704 relates the recipe to a
service instance. A service instance name can also be specified in the service instance name
field 706. recipe transactor page 700 also includes stateful tracking 708. An operator can
specify an interval at which config sync is run, or at which statistics are collected. Recipe
transactor page 700 can also include, in some embodiments, MCC 710, which lists selected
devices, available devices, and other mobile content cloud parameters, such as APN name,
QoS flow name, maximum uplink and downlink rates, and packet filter name. As described
above, many of the fields on the transactor page 700 are specified as part of a recipe designed
by a SME 108. The listing of recipes and instances 720 shows recipes ready for execution or

executed by an operator and instances created by an operator.

-18 -

WO 2017/100578 PCT/US2016/065836

[0070] FIG. 8 is a diagram showing parameter coalescing in recipe builder, according to
some embodiments of the present disclosure. FIG. 8 shows parameter coalescing 802,
decorated target object class 804, parameter coalescing at decorating target object 806, sub-
recipe 808, parameter coalescing at sub-recipe 810, recipe 814, and parameter coalescing at
recipe 812. FIG. 8 also shows how the SME decorates the parameters in different target
schema object classes across the devices to bubble up few parameters at recipe level that are

needed to input the values.

[0071] Parameter coalescing 802 is a mechanism to group similar parameters and accept
one value from the origin or the service operator. For example, a service-rule can be
configured across PGW and PCRF devices, and service-rule-names can be maintained such
that they are the same in both device types. If the service name is manually entered twice for
each device type, any typo that occurs in the lengthy name can result in a configuration
mismatch between the two device types. With a parameter coalescing mechanism, similar
parameters across the devices can have the same values and the service operator would be
allowed to enter only one value for all devices. Additionally, parameter coalescing 802 helps
in reducing the number of parameters needed at a recipe level. As shown in FIG. 8, even
though the number of parameters are bubbled up from decorated target object classes 804,
and sub-recipes 808, only two parameters are decorated and exposed at the recipe level. It
means service operator in recipe transactor 116 is expected to provide values for only two

parameters, in this example, in order to create a service instance using this recipe.

[0072] Parameter coalescing 802 works at all levels, at decorated target object class 804
level, sub-recipe 808 level or recipe 814 level. At each level, a similar parameter can be
coalesced. At decorated target object class 804, DataMember1 and DataMember2 are
grouped together as a coalesced datamember1 (CDM) at TargetObj11 as shown in 806.
Similarly coalescing is done at TargetObj2, but no coalescing is done at TargetObj21. When
the parameters are bubbled up at sub-recipe 808, coalescing is done at sub-recipe level. As
shown in 810, coalescing is done with a CDM (coalesced data member) that came from
TargetObj11 and another CDM that came from TargetObj12. CDM is like any other
parameter or data member. It will take the attributes that are applicable to all parameters in
the set. For example, if one member of CDM is of type int32 and another member is of type

int64, CDM will take the type as int32 in order to be applicable to all parameters in the set.

-19-

WO 2017/100578 PCT/US2016/065836

When the parameters are bubbled up to recipe 814, similar parameters can be coalesced at

recipe level, as shown in 812.

[0073] FIG. 9 is a flowchart showing the creation of a recipe being used to automate
portions of creating a service instance, according to some embodiments of the present

disclosure.

[0074] Referring to step 902, the recipe builder receives data associated with a request to
create a target schema object class. In some embodiments, the target schema object is
associated with a connected device type category. The connected device type category can
indicate a managed device and associated protocol in that exists (or could exist) in a mobile
network. The connected device type category can be received and created prior to receiving a

request to create a target schema object class.

[0075] In some embodiments, the request to create a target schema object class also
includes a first object parameter associated with the target schema object class. In some
embodiments, the first object parameter includes at least one of the device type associated
with the managed device and the protocol. The target schema object class can represent a
class of configurable resources based on the device type and the protocol. In some
embodiments, the target schema object class is associated with at least one of quality of
service, rating group, billing plan and packet filter. In some embodiments, the protocol can
include at least one of representation state transfer (REST) protocol, structured query
language (SQL) protocol, simple object access protocol (SOAP), secure files transfer
protocol/secure shell protocol (SFTP/SSH), simple network management protocol (SNMP),
and network and configuration protocol (NETCONF). A device type can include a mobile

content cloud device, a PCRF, a router, or a PGW.

[0076] Referring to step 904, the recipe builder retrieves, based on the device type and
the protocol, a set of data fields associated with specifying create, read, update and delete
(CRUD) semantics representing capabilities of the device. In some embodiments, the set of
data fields is retrieved from a database associated with the recipe builder when configuration
parameters associated with the protocol comprise an importable form, the importable form
being associated with data that is importable from a server into the database, and user

provided data when the configuration parameters associated with the protocol comprise a

-20 -

WO 2017/100578 PCT/US2016/065836

non-importable form, the non-importable form being associated with data that is not

importable from a server into the database.

[0077] Referring to step 906, the recipe builder creates the requested target schema object
class based on the retrieved set of data fields. As described above, the target schema object
class made available to the SME can contain all possible fields that can be configured based

on the device type and the protocol.

[0078] Referring to step 908, the recipe builder creates a decorated target object class
based on the requested target schema object class. In some embodiments, the decorated
target object class including specified values for at least a portion of the data fields in the
retrieved set of data fields. In some embodiments, the decorated target object class includes a
subset of data fields that are pre-filled based on the protocol information. In some
embodiments, the data fields are filled entirely by a user of the recipe builder. In some
embodiments, the data fields are filled by a combination of protocol information and a user of

the recipe builder.

[0079] Referring to step 910, the recipe builder receives data associated with a request to
create at least one subrecipe. In some embodiments, each of the at least one subrecipes
include at least one of 1) the decorated target object class; and 2) one or more other decorated
target object classes, and data indicating an association between the decorated target object
class and the one or more other decorated target object classes. As described above, a
hierarchy can be established between the decorated target object class to indicate

relationships and flows between the decorated target object classes.

[0080] Referring to step 912, the recipe builder processes a recipe for transmission to an
execution engine to form a service instance, where the recipe includes the at least one
subrecipe. In some embodiments, the service instance comprising service instance data fields
that are prefilled or hidden based on the specified values, the service instance being
customizable by an operator for a specific network device such that the service instance data

fields that are not pre-filled can be customized by the operator.

[0081] An example of the systems and methods described herein can involve a SME, who
can be an employee or consultant of a public network operator, creating a service template
used to onboard and manage L3 corporate VPN connectivity services. The SME, having

first acquired a working knowledge of the business objectives for the service and the detailed

-21-

WO 2017/100578 PCT/US2016/065836

operation of the network devices used by the network operator to provide the service, would

commence construction of the service template in the recipe builder. For this example,

assume that the L3 VPN requires detailed incremental configuration of both routers and

firewalls. Additionally, the network operator employs routers from 2 different vendors,

vendor R1 and vendor R2, and firewalls from 2 different vendors, vendor F1 and F2. Any

particular L3 VPN instance (i.e., provided for a particular corporate customer), may be

deployed on only instances of R1, only instances of R2, or a combination of some instances

of R1 and R2. And, likewise combinations of firewalls following the same pattern. The

service template constructed by the SME using the recipe builder can deal with all possible

combinations. In the example, the SME follows the following steps:

1. Define the connected device types in use by specifying the pairing of a device type

and a protocol. For example:

a. R1 connected via NETCONF

b. R2 connected via CLI

c. F1 connected via REST

d. F2 connected via SOAP

2. Create the Target Schema Object Classes:

a. For NETCONF and SOAP based connected devices, import the full machine
readable schema (YANG for R1 via NETCONF; WSDL for F2 via SOAP).
This step causes recipe builder to dynamically create all supported target
schema object classes (i.e., that correspond to each manageable resource
described in the machine readable schema).

b. For CLI and REST based connected devices, the SME manually creates each
required target schema object class that will be needed during the subsequent
steps.

c. Examples in step 2 include resources such as:

i. IP interface on R2, F1
ii. IP interface on R2, F1V
iii. RFonR2, Fl
iv. VRFonR2 F1
v. BGP neighbor on R2
vi. Access Control List on F1

vii. Trust Zone on F1

-22-

WO 2017/100578 PCT/US2016/065836

3. For each of the target schema object classes of interest from steps 2a and 2b, create
decorated target object classes, which, in some embodiments, are constrained and/or
annotated variations of the resources. Here, the SME is simplifying the full
complexity and capabilities of the resource in a way that will be consumable by the
operator that will eventually be tasked with the actual onboarding and management in
the operational network.

4. Group the decorated target object classes together into subrecipes based on connected
device type and logical associations between them. Examples include:

a. Routed Interface on R1 comprising IP Interface decorated target object for R1
and BGP neighbor decorated target object for R1

b. Routed interface on R2 comprising IP Interface decorated target object for R2
and BGP neighbor decorated target object for R2

c. Trusted interface on F1 comprising Trust Zone decorated target object for F1
and IP interface decorated target object for F1

d. Trusted interface on F2 comprising Trust Zone decorated target object for F2
and IP interface decorated target object for F2

5. Group the subrecipes together to form multi-vendor recipes. Examples:

a. Routed Interface comprising Routed Interface subrecipe for R1 and Routed
Interface subrecipe for R2

b. Trusted Interface comprising Trusted Interface subrecipe for F1 and Trusted
Interface subrecipe for F2

6. Optionally, coalesce parameters at all levels to avoid duplicate parameter entry by the
operator when values should be forced to be the same. For example, the name of a
created IP interface should be the same, regardless of whether the R1 or R2 type of
router is used for the service instance — coalescing would be used to aggregate the IP
interface name required by the IP interface subrecipe for R1 and the same as required
by the IP interface subrecipe for R2.

7. Export the completed service template from the recipe builder.

8. Import the completed service template on the recipe transactor.

9. Operator now gets to use the service template to create, retrieve, update, delete, and

verify instance of the L3 VPN service.

[0082] While certain embodiments of the present disclosure have described data

automation techniques with respect to telecommunication applications, the systems and

-23-

WO 2017/100578 PCT/US2016/065836

methods described herein are also applicable to other applications that use agent-less targets.
As described above, agent-less targets are usually targets that need to be constantly
configured. Unlike agent-based targets where update information can be pulled from a
server, the updates associated with an agent-less target require either more frequent and/or
more application specific updates that are not practicable to pull from a server. An example
of an agent-less application is factory automation. Robotic parts in a factory may require

incremental configuration (e.g., robotic parts in an assembly line).

[0083] The subject matter described herein can be implemented in digital electronic
circuitry, or in computer software, firmware, or hardware, including the structural means
disclosed in this specification and structural equivalents thereof, or in combinations of them.
The subject matter described herein can be implemented as one or more computer program
products, such as one or more computer programs tangibly embodied in an information
carrier (e.g., in a machine readable storage device), or embodied in a propagated signal, for
execution by, or to control the operation of, data processing apparatus (e.g., a programmable
processor, a computer, or multiple computers). A computer program (also known as a
program, software, software application, or code) can be written in any form of programming
language, including compiled or interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer program does not necessarily
correspond to a file. A program can be stored in a portion of a file that holds other programs
or data, in a single file dedicated to the program in question, or in multiple coordinated files
(e.g., files that store one or more modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or on multiple computers at one

site or distributed across multiple sites and interconnected by a communication network.

[0084] The processes and logic flows described in this specification, including the
method steps of the subject matter described herein, can be performed by one or more
programmable processors executing one or more computer programs to perform functions of
the subject matter described herein by operating on input data and generating output. The
processes and logic flows can also be performed by, and apparatus of the subject matter
described herein can be implemented as, special purpose logic circuitry, e.g., an FPGA (field

programmable gate array) or an ASIC (application specific integrated circuit).

-24 -

WO 2017/100578 PCT/US2016/065836

[0085] Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more processor
of any kind of digital computer. Generally, a processor will receive instructions and data from
a read only memory or a random access memory or both. The essential elements of a
computer are a processor for executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical disks. Information carriers
suitable for embodying computer program instructions and data include all forms of
nonvolatile memory, including by way of example semiconductor memory devices, (e.g.,
EPROM, EEPROM, and flash memory devices), magnetic disks, (e.g., internal hard disks or
removable disks); magneto optical disks; and optical disks (e.g., CD and DVD disks). The
processor and the memory can be supplemented by, or incorporated in, special purpose logic

circuitry.

[0086] To provide for interaction with a user, the subject matter described herein can be
implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor, for displaying information to the user and a keyboard and a
pointing device, (e.g., a mouse or a trackball), by which the user can provide input to the
computer. Other kinds of devices can be used to provide for interaction with a user as well.
For example, feedback provided to the user can be any form of sensory feedback, (e.g., visual
feedback, auditory feedback, or tactile feedback), and input from the user can be received in

any form, including acoustic, speech, or tactile input.

[0087] The subject matter described herein can be implemented in a computing system
that includes a back end component (e.g., a data server), a middleware component (e.g., an
application server), or a front end component (e.g., a client computer having a graphical user
interface or a web browser through which a user can interact with an implementation of the
subject matter described herein), or any combination of such back end, middleware, and front
end components. The components of the system can be interconnected by any form or
medium of digital data communication, e.g., a communication network. Examples of
communication networks include a local area network (“LAN”) and a wide area network

(“WAN”), e.g., the Internet.

-25-

WO 2017/100578 PCT/US2016/065836

[0088] It is to be understood that the disclosed subject matter is not limited in its
application to the details of construction and to the arrangements of the components set forth
in the following description or illustrated in the drawings. The disclosed subject matter is
capable of other embodiments and of being practiced and carried out in various ways. Also, it
is to be understood that the phraseology and terminology employed herein are for the purpose

of description and should not be regarded as limiting.

[0089] As such, those skilled in the art will appreciate that the conception, upon which
this disclosure is based, may readily be utilized as a basis for the designing of other
structures, methods, and systems for carrying out the several purposes of the disclosed
subject matter. It is important, therefore, that the claims be regarded as including such
equivalent constructions insofar as they do not depart from the spirit and scope of the

disclosed subject matter.

[0090] Although the disclosed subject matter has been described and illustrated in the
foregoing exemplary embodiments, it is understood that the present disclosure has been made
only by way of example, and that numerous changes in the details of implementation of the
disclosed subject matter may be made without departing from the spirit and scope of the

disclosed subject matter, which is limited only by the claims which follow.

-26-

WO 2017/100578 PCT/US2016/065836

CLAIMS

1. A computerized method of building service templates that allow for an agentless, data-
driven and stateful automation of a provisioning of services to mobile network customers, the

computerized method comprising:

receiving, at a computing device, data associated with a request to create a connected
device type category, the connected device type category associated with a device and associated

protocol in a mobile network;

receiving, at the computing device, data associated with a request to create a target
schema object class associated with the connected device type category, the request including a
first object parameter associated with the target schema object class, the first object parameter
including at least one of a device type of the device and the protocol, the target schema object

class representing a class of configurable resources based on the device type and the protocol;

retrieving, at the computing device, based on the first object parameter, a set of data
fields associated with specifying create, read, update and delete (CRUD) semantics representing

capabilities of the device from:

a database associated with the computing device, when configuration parameters
associated with the protocol comprise an importable form, the importable form being

associated with data that is importable from a server into the database, and
user provided data when the configuration parameters associated with the protocol
comprise a non-importable form, the non-importable form being associated with data that

is not importable from a server into the database;

creating, by the computing device, the requested target schema object class, the requested

target schema object class including the retrieved set of data fields;

-27-

WO 2017/100578 PCT/US2016/065836

creating, by the computing device, a decorated target object class based on the requested
target schema object class, the decorated target object class including specified values for at least

a portion of the data fields in the retrieved set of data fields;

receiving, at the computing device, data associated with a request to create at least one

subrecipe, each of the at least one subrecipes comprising at least one of:

the decorated target object class, and

one or more other decorated target object classes, and data indicating an
association between the decorated target object class and the one or more other decorated

target object classes; and

processing, at the computing device, a recipe for transmission to an execution engine to
form a service instance, the recipe including the at least one subrecipe, the service instance
comprising service instance data fields that are prefilled or hidden based on the specified values,
the service instance being customizable by an operator for a specific network device such that

the service instance data fields that are not pre-filled can be customized by the operator.

2. The computerized method of claim 1, further comprising:

determining, by the computing device, a set of subrecipes in the at least one subrecipe
having a common decorated target object class, wherein the common decorated target object

class is present in each of the set of subrecipes;

receiving, by the computing device, a coalesced parameter for one common decorated
target object class in one subrecipe in the set of subrecipes, wherein the coalesced parameter

includes a set of values for data fields of the one common decorated target object class;

applying, by the computing device, the coalesced parameter to each of the other common

decorated target object classes associated with each of the other at least one subrecipes.

-28 -

WO 2017/100578 PCT/US2016/065836

3. The computerized method of claim 1, wherein creating, by the computing device, a
decorated target object class further comprises receiving, by the computing device, the specified

values.

4. The computerized method of claim 1, wherein the specified values are derived from the

first object parameter.

5. The computerized method of claim 1, wherein the service instance further includes a
target instance, the target instance including at least one of a virtual network function, physical

network function or an application.

6. The computerized method of claim 1, wherein the configurable resources include at least

one of quality of service, rating group, billing plan and packet filter.

7. The computerized method of claim 1, wherein the protocol comprises at least one of
representation state transfer (REST) protocol, structured query language (SQL) protocol, simple
object access protocol (SOAP), secure files transfer protocol/secure shell protocol (SFTP/SSH),
simple network management protocol (SNMP), and network and configuration protocol

(NETCONF).

8. A computing device for building service templates that allow for an agentless, data-
driven and stateful automation of a provisioning of services to mobile network customers, the

computing device comprising;
a memory; and

a processor in communication with the memory, and configured to run a module stored in

memory that is configured to cause the processor to:

-29.

WO 2017/100578 PCT/US2016/065836

receive data associated with a request to create a connected device type category,
the connected device type category associated with a device and associated protocol in a

mobile network;

receive data associated with a request to create a target schema object class
associated with the connected device type category, the request including a first object
parameter associated with the target schema object class, the first object parameter
including at least one of a device type of the device and the protocol, the target schema
object class representing a class of configurable resources based on the device type and

the protocol;

retrieve based on the first object parameter, a set of data fields associated with
specifying create, read, update and delete (CRUD) semantics representing capabilities of

the device from:

a database associated with the computing device, when configuration
parameters associated with the protocol comprise an importable form, the
importable form being associated with data that is importable from a server into

the database, and

user provided data when the configuration parameters associated with the
protocol comprise a non-importable form, the non-importable form being

associated with data that is not importable from a server into the database;

create the requested target schema object class, the requested target schema object

class including the retrieved set of data fields;
create a decorated target object class based on the requested target schema object

class, the decorated target object class including specified values for at least a portion of

the data fields in the retrieved set of data fields;

=30 -

WO 2017/100578 PCT/US2016/065836

receive data associated with a request to create at least one subrecipe, each of the

at least one subrecipes comprising at least one of:

the decorated target object class, and

one or more other decorated target object classes, and data indicating an
association between the decorated target object class and the one or more other

decorated target object classes; and

process a recipe for transmission to an execution engine to form a service
instance, the recipe including the at least one subrecipe, the service instance comprising
service instance data fields that are prefilled or hidden based on the specified values, the
service instance being customizable by an operator for a specific network device such
that the service instance data fields that are not pre-filled can be customized by the

operator.
9. The computing device of claim 8, wherein the processor is further caused to:

determine a set of subrecipes in the at least one subrecipe having a common decorated
target object class, wherein the common decorated target object class is present in each of the set
of subrecipes;

receive a coalesced parameter for one common decorated target object class in one
subrecipe in the set of subrecipes, wherein the coalesced parameter includes a set of values for

data fields of the one common decorated target object class;

apply the coalesced parameter to each of the other common decorated target object

classes associated with each of the other at least one subrecipes.

-31-

WO 2017/100578 PCT/US2016/065836

10. The computing device of claim 8, wherein to create a decorated target object class, the

processor is further caused to receive the specified values.

11. The computing device of claim 8, wherein the specified values are derived from the first

object parameter.

12. The computing device of claim 8, wherein the service instance further includes a target
instance, the target instance including at least one of a virtual network function, physical network

function or an application.

13. The computing device of claim 8, wherein the configurable resources include at least one

of quality of service, rating group, billing plan and packet filter.

14. The computing device of claim 8, wherein the protocol comprises at least one of
representation state transfer (REST) protocol, structured query language (SQL) protocol, simple
object access protocol (SOAP), secure files transfer protocol/secure shell protocol (SFTP/SSH),
simple network management protocol (SNMP), and network and configuration protocol

(NETCONF).

15. A non-transitory computer readable medium having executable instructions operable to

cause an apparatus to:

receive data associated with a request to create a connected device type category, the
connected device type category associated with a device and associated protocol in a mobile

network;

receive data associated with a request to create a target schema object class associated
with the connected device type category, the request including a first object parameter associated
with the target schema object class, the first object parameter including at least one of a device
type of the device and the protocol, the target schema object class representing a class of

configurable resources based on the device type and the protocol,

-32-

WO 2017/100578 PCT/US2016/065836

retrieve based on the first object parameter, a set of data fields associated with specifying

create, read, update and delete (CRUD) semantics representing capabilities of the device from:

a database associated with the computing device, when configuration parameters
associated with the protocol comprise an importable form, the importable form being

associated with data that is importable from a server into the database, and

user provided data when the configuration parameters associated with the protocol
comprise a non-importable form, the non-importable form being associated with data that

is not importable from a server into the database;

create the requested target schema object class, the requested target schema object class

including the retrieved set of data fields;

create a decorated target object class based on the requested target schema object class,
the decorated target object class including specified values for at least a portion of the data fields

in the retrieved set of data fields;

receive data associated with a request to create at least one subrecipe, each of the at least

one subrecipes comprising at least one of:

the decorated target object class, and

one or more other decorated target object classes, and data indicating an
association between the decorated target object class and the one or more other decorated

target object classes; and

process a recipe for transmission to an execution engine to form a service instance, the
recipe including the at least one subrecipe, the service instance comprising service instance data

fields that are prefilled or hidden based on the specified values, the service instance being

-33-

WO 2017/100578 PCT/US2016/065836

customizable by an operator for a specific network device such that the service instance data

fields that are not pre-filled can be customized by the operator.

16. The non-transitory computer readable medium of claim 15, wherein the apparatus is

further caused to:

determine a set of subrecipes in the at least one subrecipe having a common decorated
target object class, wherein the common decorated target object class is present in each of the set

of subrecipes;

receive a coalesced parameter for one common decorated target object class in one
subrecipe in the set of subrecipes, wherein the coalesced parameter includes a set of values for

data fields of the one common decorated target object class;

apply the coalesced parameter to each of the other common decorated target object

classes associated with each of the other at least one subrecipes.

17. The non-transitory computer readable medium of claim 15, wherein to create a decorated

target object class, the apparatus is further caused to receive the specified values.

18. The non-transitory computer readable medium of claim 15, wherein the specified values

are derived from the first object parameter.
19. The non-transitory computer readable medium of claim 15, wherein the service instance
further includes a target instance, the target instance including at least one of a virtual network

function, physical network function or an application.

20. The non-transitory computer readable medium of claim 15, wherein the configurable

resources include at least one of quality of service, rating group, billing plan and packet filter.

-34-

PCT/US2016/065836

WO 2017/100578

1/14

NIA
_ ocl
INANA
/ONIN uonesyddy

2

(10X 2dIY)
Joyesuel]n

chl

L Old

801

spadx3g sape yoolgng

(19piing ad1day)
Jap|ingna

ccl
144"
N ozl
i
iN
9Ll S3
suonediddy
144 $58/5S0

JoN suonesadp

c0l

siojesadQ
‘s1auoIsIAOId
=TTV ETS

0ol

901l

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

2/14

¢ 9ld

c0c IAAN
80¢ oLc rAYA
SOAS
SNa 1474
pzL | WANAJOAIN NV1!9 MSd AN
S240 9l¢
Jwbp
a10Ao8yn INA
S20 8l¢c
ree 9¢ec 8¢C ove e 444
153y J0s] dvos __._mm\atm_ dIAINS —:ESEZ d1H 0zz
/SSH
18N
uonezZIIOYINY au18u3 JojoBsuURI| A ZLl
442d c¢ce
cee 4
JaJapuay
8¢c |d¥ PUNOqy1JoN ——
cll o vZz
7Ll 191n0Y
SSO " ozz
o0l

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

€ 9Ol

44> Zre ove 9ee pee zee 0ee
aq uoneo|ddy uoneo|ddy
j0WaYy INA/d INA/ / ANA/d /AN / OAIN ANA/d ANA/d
o] %>
aseqejeq
CLINVETS NG N\ 7 v 4
10S d14S HSS dVvOS 153y dIAINS | ANODLIN
— 9ez ove ove 8eT peT Zve vZ
Jojoesuel] A

3/14

chl

il

SS4/SSO

9l¢ ﬁ

Japjinga

cle
aseqeje(q
adiooy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

4/14

v Ol

oo 190 €Ll
S |Ela01800]

cadhiebie)
pladioaydng

INFWNOEY--~~ 4

Sounon

\ Zledoeyong

{ zadtpeie]

| adiosy

Ladipsafie] {1

s

L

o

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836
5/14

WO 2017/100578

QINNILNGD

y Old

{zgsu

oD

(oo

{ ﬁw%

10|) Qo

o)

{ I

Jeisupe CEDNG (ieisupebier)-

(nsupstie)

{ 1osuefie) Y-

codfiiebe] cadhislie] 7adA | 1afipp Ladh i)

7adA)jedie] adfjebie]

cadf|jelie] zadA|1ebe Lol 1o0ey

i

@ L Bouelsu
(\Y aomeg i

0

amegg1is ()

Ch
Jojoestei]A

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

6/14

QINNILINOD
¥ Ol

3di03 40 SFONVLSN

NOILNOEXE-180d

Wi004 7130

NYLSNI 301A3S

SAONVLEN]
134740 1304Vl

(‘cpsupebie])

SAONYLSN]
L3060 130uvL

(pisupedie])

mmmtmm_m |

(cusupebie])

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

7114

Lo
e

A i SNG eHaow 73
| o 3
asudisiT SNG £
¢ T 8lIg0l

te) J8uinsLod 00l [

SBU0RNINS D

& &

ainy m/ "
B0IIBY 01§ 208

BI081-90S Sl

fitisn) sadiosy

oo adf) eanne

BUIB

adpayang L)

sedioay-ang o

adiooy-ng

J0H

334108y

o

(4G

PHEER

WO 2017/100578

B3

Sy

JPNGA| PRI

€/ 000

=005

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836
8/14

WO 2017/100578

V9 9l

<
.; Yo 3
el
el %.)..%m@m
{2 1a1gag] wégm
(9607 - 1)
apg jai UBINSESH e
,.) {21 ! aRIg Upy
0o 3 P Biey Mol 5004 BlBY
NN 1T 1% ~u:
AT e
Ndv 3 | e | |
gl 719 .* 3he|
SRR o spefgo ol o ¢4
i
] F Y]
S8Ry < ga el 18]
$841
.* | oo
=] M) & = a_ \..@ w0 G m_hﬁ ! pess ‘Bii@ o #dsfuoensey; 2 JS8UL0BIINIBS/NG0H ﬁgmxom@A@
i Joioesue: A | pawyy @/rw J3plinga | patigy & N - O OﬁO 008

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

9/14

d9 Ol

€ opoDoos

OO00000

pug sseuppy
ol ssalppy dy

pu Yog)

s
SSBH0PY A, O iommeN

o

Heig $3a1ppy 92 4 81)
YIoMBN

BN

138l obugy

- 70

SUBSTITUTE SHEET (RULE 26)

Q9 9Old

PCT/US2016/065836

WO 2017/100578

10/14

JaqWIBIA BIRQ PPY

SIETETg] aiepdn ?1eal)d
puewWWO) puewWWO) puewWWO)
yodg Hodg
aweus Ja1|1)-dny 91912Q uod ¥yns 14N Aouds Ayuond uod ¥yns 14N Aouds Ayuond
aweus Ja11y-dny Ajipoy aweus J9y1-dny aieal)d
[euondo Alorepuew
‘GEG59°'T 104 ‘GEG59°'T 104
19331u| 19331u|
_mmo_aao M Alorepuew 4N
guins ‘Sulns
[euondo Alorepuew
‘0010 Auond ‘00T°0 Auoud
19331u| 19331u|
Ayl aweu Aay aweu Aoy sweu
‘SuLis ‘Buns ‘SuLis
GEGGOT Hod
BEY-EI]
N
8uins
Ayaoud
00T "0 42831
Ay aweu
‘Buins

19314 d11H —33[q0 ewayos 193.1e]

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

11/14

3139|2a

ao

epdn 21eal)
Aojepuew
.mmmmm._” 08=9p02
19591y -pJeH 3404
|[euondo M Alojepuew 192
‘Buins ‘duins -03-19S -] ¥N
Aojepuew
‘0010 00T=9p0d
198014 -pJeH :Ayuond
Ay aweu Ay aweu Ay 9l1E
‘SuLis ‘Buns ‘Guyg | TOVISSPUWEN

21noy Jnels

20e}I21U] d|

$3103[qO ewayds y284e|

& 129[g0 ewayds 198.1e] 1239[9S

Hod 13 Ajliold paxid 431|1 d11H —399[q0 ewayds 1981e | pa1eiodng

SUBSTITUTE SHEET (RULE 26)

L Ol

PCT/US2016/065836

12/14

sl

WO 2017/100578

B8 L
|
m | e aosas |
! 2000001 § |
|
RITIL
(s} f=f 0}
1014 8Boce; Joj 8Ny N0d SEBIN
uonduesss
0 w0,)
Y 504 SiB8d3 ™7 ;
. U
e)@ Yo gopesueapauy |
QO & B oo gy U o 83| EXNER dsfiojoesie
ol m ® JO0ESURILA | paLiY @/ﬁ lojoesunlph | pauyyy o8 \.\ = & oXeXs

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

13/14

ﬁﬁmn&mﬁmww&

YicBquisiNEIEct

foisquIBINEIRCY

Y isqusEecy

7931
Walsigrtziatizi]

(355D

g ‘bBi

 NEREIEr |

FATSEIET |
LIBaBeLE
{ABGUIBINEIRC)
¥ paoserpod

FAR S g Yic aricl]

LB LIBeRIE0]
peossRaly P L]

LABGLIBINEL m TS
LSRN BT cedAjiabiey o @omwwm ON L L0
pEDSH0s) (ZLHS) It et
LieQLus 2
Ziedioeyuns DBTBBBOTS

LIBCLBNBTRC
¥ DOSSORDD

e TS AR
JBOUBNEIZ0 | LOL Lo
LAsGuuaeIR

¥ PEDSBEoD

st

fraagiusiyeiecy

kisquuispieiecy
jgequisieiecy
{FRTRUB N EIE

PETSOHBDY

buiosseon iseueled

L mm.m J1ebie)
{Lids)
L Lediveyggng

£

L)
celingg

g

.

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/065836

WO 2017/100578

14/14

6 Ol

716 9di1paugns suo 1se3| 1e ay3 suipnjaul adidaa ay3 ‘@auelsul
9IIAJDS e W04 03 dUISUS UOIINIAXS Ue 03 uoissiwsuel) 10} 3d1dal e $$320.d

0T6
adi231qgns auo 1sed| je 21e3JJ 0] 1sanbal e Ylm paleldosse elep anladdy

806 Sse|d 12alqo ewayas
1931e} paisanbal sy} uo paseq sse|d 123[qo 193.1e) pajelodap e 33eal)

906 SPIol4 e1ep 4O 39S
PaA31J194 3Y] UO paseq ssed 103lqo ewayos 193.1e3 palsanbai syl ajeal)

06 921Aap 3y} Jo sanljiqeded Supuasaldal soluewas
(anyd) =1919p pue a1epdn ‘peas ‘93ea4d 3ulAjdads yum pajeloosse
Sp|ol4 elep 4o 195 e ‘|0d0304d ay3 pue adAl 921A8p 9y} UO paseq ‘OA31I1BY

706 |020304d e pue 9dAy 9o1ASp Suipnjdaul 3sanbau ays ‘ssepd
1099[qo ewayos 1981e] e 31340 0] 1s9nbau e yum pajleldosse ejep anIvI9Yy

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/65836

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 17/00 (2017.01)
CPC - GO6F 17/30592; GO5B 19/418; GO6F 17/30569

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Mini
IPC(8): GO6F 17/00 (2017.01)
CPC: GO6F 17/30592; G058 19/418; GO6F 17/30569

imum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 707/601; 707/912; 709/202; 713/1 (Keyword limited; terms below); IPC(8): GO6F 17/00 (2017.01) (Keyword limited; terms below);
CPC: GO6F 17/30592; GOSB 19/418; GO6F 17/30569; G06Q 10/06; GO5B 2219/31396 (Keyword limited; terms below)

PatBase; Google (Scholar, Patents, Web)

database field prefilled subtemplate subrecipe subset

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

Terms used: service template recipe automated provisioning mobile cellular device phone handset network protocol type class capability

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Abstract; para [0043], [0047], [0051]-[0052], [0064]-{0072], [0215], [0242]-[0247), [0567]

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2011/0029658 A1 (WERTH et al.), 03 February 2011 (03.02.2011), entire document, 1-20

especially Abstract; para [0016), {0060], [0077], [0079], [0115], [0117]
Y US 2006/0092861 A1 (CORDAY et al.}, 04 May 2006 (04.05.2006), entire document, especially | 1-20

l:l Further documents are listed in the continuation of Box C.

L]

. Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the apﬁlication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

27 January 2017 (27.01.2017)

Date of mailing of the international search report

02 MAR 2017

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report

