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57 ABSTRACT 
An apparatus and method are disclosed for converting 
an input data character stream into a variable length 
encoded data stream in a data compression system. The 
data compression system includes a history array. The 
history array has a plurality of entries and each entry of 
the history array is for storing a portion of the input 
data stream. The method for converting the input data 
character stream includes the following steps. Perform 
ing a search in a history array for the longest data string 
which matches the input data string. If the matching 
data string is found within the history buffer, the next 
step includes encoding the longest matching data string 
found by appending to the encoded data stream a tag 
indicating the longest matching data string was found 
and a string substitution code. If the matching data 
string is not found within the history array, the next step 
includes encoding the first character of the input data 
string by appending to the encoded data stream a raw 
data tag indicating that no matching data string was 
found and the first character of the input data string. 
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1. 

DATA COMPRESSION APPARATUS AND 
METHOD 

BACKGROUND OF THE INVENTION 
1. Field of the Invention 
The present invention relates generally to data stor 

age and communication systems, and more particularly 
to data compression systems and methods which in 
prove the capacity of data storage and communication. 

2. Description of the Prior Art 
Due to the insignificant differences between data 

compression in data storage and data communication 
systems, only data storage systems are referred to; par 
ticularly the data files stored in such systems. However, 
all data storage systems can easily be extended to cover 
data communications systems and other applications as 
well. A file is assumed to be a sequential stream of bytes 
or characters, where a byte consists of some fixed num 
ber of bits (typically 8), and the compression system 
transforms this input byte stream into a "compressed" 
output stream of bytes from which the original file 
contents can be reconstructed by a decompression unit. 

It is well-established that computer data files typi 
cally contain a significant amount of redundancy. Many 
techniques have been applied over the years to "com 
press" these files so that they will occupy less space on 
the disk or tape storage medium or so that they can be 
transmitted in less time over a communications channel 
such as a 1200 baud modem line. For example, there are 
several widely used commercial programs available for 
personal computers (e.g., ARC Software by Systems 
Enhancement Associates, Inc., Wayne, N.J., 1985) 
which perform the compression and decompression 
functions on files. It is not uncommon for such pro 
grams to reduce the size of a given file by a 2:1 ratio (or 
better), although the amount of reduction varies widely 
depending on the contents of the file. 
There are many approaches in the prior art for con 

pressing data. Some of these approaches make implicit 
assumptions about certain types of files or data within 
the files. For example, a bit image of a page produced 
using a scanner typically has most of its pixels blank, 
and this tendency can be exploited by a compression 
algorithm to greatly reduce the size of such files. Sini 
larly, word processing files contain many ASCII char 
acters which are easily compressed using knowledge of 
which characters (or words) occur most frequently in 
the language of interest (e.g., English). Other compres 
sion methods are independent of the file type and at 
tempt to "adapt" themselves to the data. In general, 
type-specific compression techniques may provide 
higher compression performance than general-purpose 
algorithms on the file for which the techniques are 
optimized, however they tend to have much lower 
compression performance if the file model is not cor 
rect. For instance, a compression method optimized for 
English text night work poorly on files containing 
French text. 

Typically, a storage system does not "know' what 
type of data is stored within it. Thus, data-specific com 
pression techniques are avoided, or they are only used 
as one of a set of possible techniques. For example, 
ARC uses many methods and picks the one that per 
forms best for each file; note however that this ap 
proach requires significant computational overhead 
compared to using a single compression method. 
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Another important aspect of any compression 

method is the speed at which a file can be processed. If 
the speed of compression (or decompression) is so low 
as to significantly degrade system performance, then the 
compression method is unacceptable even though it 
may achieve higher compression ratios than competing 
methods. For example, with streaming tape systems, if 
the file cannot be compressed fast enough to provide 
data at the required rate for the tape drive, the tape will 
fall out of streaming and the performance and/or capac 
ity gains due to compression will be nullified. 
One of the most common compression techniques is 

known as run-length encoding. This approach takes 
advantage of the fact that files often have repeated 
strings of the same byte (character), such as zero or the 
space character. Such strings are encoded using an 
"escape" character, followed by the repeat count, fol 
lowed by the character to be repeated. All other char 
acters which do not occur in runs are encoded by plac 
ing them as "plain text" into the output stream. The 
escape character is chosen to be a seldom used byte, and 
its occurrence in the input stream is encoded as a run of 
length one with the escape character itself as the char 
acter. Run-length encoding performs well on certain 
types of files, but can have poor compression ratios if 
the file does not have repeated characters (or if the 
escape character occurs frequently in the file). Thus, the 
selection of the escape character in general requires an 
extra pass on the data to find the least used byte, lower 
ing the throughput of such a system. 
A more sophisticated approach is known as Huffman 

encoding (see, Huffman, David A., "A Method for the 
Construction of Minimum-Redundancy Codes", Pro 
ceedings of the IRE, pp. 1098-1110, September 1952). 
In this method, it is assumed that certain bytes occur 
more frequently in the file than others. For example, in 
English text the letter "t" or "T" is much more frequent 
than the letter "Q". Each byte is assigned a bit string, 
the length of which is inversely related to the relative 
frequency of that byte in the file. These bit strings are 
chosen to be uniquely decodeable if processed one bit at 
a time. Huffman derived an algorithm for optimally 
assigning the bit strings based on relative frequency 
statistics for the file. 
The Huffman algorithm guarantees that asymptoti 

cally the compression achieved will approach the "en 
tropy" of the file, which is precisely defined as, 

H = SUM - (p(i) log2(p(i))); 
where 

p(i) as probability of character i within the file 
s (f occurrences of i)/(total # characters in file). 

The units of H are in bits, and it measures how many 
bits (on the average) are required to represent a charac 
ter in the file. For example, if the entropy were 4.0 bits 
using an 8-bit byte, a Huffman compression system 
could achieve 2:1 compression on the file. The higher 
the entropy, the more "random" (and thus less com 
pressible) is the data. 
Huffman encoding works very well on many types of 

files. However, assignment of bit strings to bytes pres 
ents many practical difficulties. For example, if a pre 
assigned encoding scheme is used (e.g., based on fre 
quency of occurrence of letters in English), Huffman 
encoding may greatly expand a file if the pre-assigned 
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scheme assumes considerably different frequency statis 
tics than are actually present in the file. Additionally, 
computing the encoding scheme based on the file con 
tents not only requires two passes over the data as well 
as applying the Huffman algorithm to the frequency 
statistics (thus lowering system throughput), but it also 
requires that the encoding table be stored along with the 
data, which has a negative impact on the compression 
ratio. Furthermore, the relative frequency of bytes can 
easily change dynamically within the file, so that at any 
point the particular encoding assignment may perform 
poorly. 
There have been many variations on the Huffman 

approach (e.g., Jones, Douglas W., "Application of 

4. 
lends itself to a simple implementation. Since the table is 
constructed using only previously encoded bytes, both 
the compression and the decompression system can 
maintain the same table without any extra overhead 

5 required to transmit table information. Hashing algo 
rithms are used to find matching strings efficiently. At 
the start of the file, the table is initialized to one string 
for each character in the alphabet, thus ensuring that all 
bytes will be found in at least one string, even if that 

10 string only has length one. 
The Ziv-Lempel algorithm is particularly attractive 

because it adapts itself to the data and requires no pre 
assigned tables predicated on the file contents. Further 
more, since a string can be extremely long, the best case 

Splay Trees to Data Compression", Communications of 15 compression ratio is very high, and in practice ZL out 
the ACM, pp. 996-1007, Vol. 31, No. 8, August 1988) 
and they usually involve dynamic code assignment 
based on the recent history of input bytes processed. 
Such schemes circumvent the problems discussed 
above. Other approaches include looking at two byte 
words (bi-grams) at the same time and performing Huff 
man encoding on the words. 
A recent variation of Huffman encoding is present in 

U.S. Pat. No. 4,730,348 to MacCrisken (and other pa 
tents referenced therein). In MacCrisken, Huffman 
codes are assigned to bytes in the context of the previ 
ous byte. In other words, a plurality of encoding tables 
are used, each table being selected according to the 
previous byte. This approach is based on the observa 
tion that, for example, in English the letter "u" does not 
occur very frequently, but following a "q' it appears 
almost always. Thus, the code assigned to "u" would 
be different depending on whether or not the previous 
letter was "q" (or "Q"). For a similar scheme using 
multiple tables and dynamic code assignment see, Jones, 
Douglas W., "Application of Splay Trees to Data Com 
pression". 
The above described Huffman-type approaches tend 

to be computationally intensive and do not exception 
ally achieve high compression ratios. One explanation 
for this observation is that a pure Huffman code based 
on 8-bit bytes can achieve at best an 8:1 compression 
ratio, and only in the optimal situation when the file 
consists of the same byte repeated over and over (i.e. 
entropy =0). In the same scenario a simple run-length 
encoding scheme could achieve better than a 50:1 con 
pression ratio. The average performance will be some 
combination of best and worst case numbers, and limit 
ing the best case must also limit the average. An ideal 
Huffman code should be able to use "fractional' bits to 50 
optimize code assignment, but the practical limitation of 
integral numbers of bits in each code limits the Huffman 
performance to well below its theoretical limit. A to 
tally different approach to compression was developed 
by Ziv and Lempel (see, Ziv, J. and Lempel, A., "Com 
pression of Individual Sequence via Variable Rate cod 
ing", IEEE Transactions on Information Theory, Wol. 
IT-24, pp. 530-536, September 1978) and then refined 
by Welch (see, Welch, Terry A., "A Technique for 
High-Performance Data Compression", IEEE Com 
puter, pp. 8-19, June 1984). Instead of assigning variable 
length codes to fixed size bytes, the Liv-Lempel algo 
rithm ("ZL') assigns fixed-length codes to variable size 
strings. As input bytes from the file are processed, a 

performs Huffman schemes on most file types. It is also 
quite simple to implement, and this simplicity manifests 
itself in high throughput rates. There are also some 
drawbacks, however, to the ZL compression method. 

20 The ZL string search is a "greedy” algorithm. For 
example, consider the string: 

ABCDEFBCDEF; 

25 where A,B,C,D,E,F are any distinct bytes. Note that 
the ZL string search would add the following strings to 
its string table: AB, BC, CD, DE, EF, BCD, DEF, the 
only strings of length two or greater that can be output 
using this algorithm, up to the point shown, are BC and 

30 DE. In actuality the string BCDEF has already oc 
curred in the input. Thus, while ideally the second 
BCDEF string would be referenced back to the original 
BCDEF, in practice this does not occur. 
A more significant disadvantage to the ZL approach 

35 is that the string table for holding the compressed data 
will tend to fill up on long files. The table size could be 
increased, however, this approach would require more 
bits to represent a string and thus it would be less effi 
cient. One approach to handling this deficiency would 

40 be to discard all or part of the table when it fills. Be 
cause of the structure of the algorithm, the most re 
cently found strings have to be discarded first, since 
they refer back to previous strings. However, it is the 
most recent strings that have been dynamically adapt 

45 ing to the local data, so discarding them is also ineffi 
cient. Basically, the ZL string table has infinite length 
memory, so changes in the type of data within the file 
can cause great encoding inefficiencies if the string table 
is full. 

It is also possible to design a compression system that 
utilizes more than one method simultaneously, dynami 
cally switching back and forth depending on which 
method is most efficient within the file. From an imple 
mentation standpoint, such a scheme may be very costly 

55 (i.e., slow and/or expensive), however the resulting 
compression rate could be very high. 
One such method of dynamically switching back and 

forth is disclosed in MacCrisken. As mentioned above, 
a bi-gram Huffman method is utilized as the primary 

60 compression technique. Typically the compression and 
decompression system start with a pre-defined (i.e. 
static) set of code tables. There may be a set of such 
tables, perhaps one each for English, French, and Pas 
cal source code. The compression unit (sender) first 

table of strings is built up, and each byte or string of 65 transmits or stores a brief description of which table is 
bytes is compressed by outputting only the index of the 
string in the table. Typically this index is in the range 
11-14 bits, and 12 bits is a common number because it 

to be used. The decompression unit (receiver) interprets 
this code and selects the appropriate table. During com 
pression, if it is determined that the current table not 
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performing well, the sender transmits a special (“es 
cape") Huffman code that tells the receiver to either 
select another specific pre-defined table or to compute a 
new table based on the previous data it has decom 
pressed. Both sender and receiver compute the table 
using the same algorithm, so there is no need to send the 
entire table, although it takes some time to perform the 
computation. Once the new table is computed, com 
pression proceeds as before. It should be noted that 
although there is considerable computational overhead, 
there is no reason why this technique could not be fur 
ther adapted to a dynamic Huffman scheme. 

In addition to the Huffman encoding, MacCrisken 
used a secondary string-based compression method. 
Both sender and receiver maintain a history buffer of 
the most recently transmitted input bytes. For each new 
input byte (A), the bi-gram Huffman code is generated, 
but an attempt is also made to find the string repre 
sented by the next three input bytes (ABC) in the his 
tory using a hashing scheme. The hash is performed on 
three byte strings and a doubly-linked hash list is main 
tained to allow discarding of old entries in the hash list. 
If a string is found, a special Huffman escape code can 
be generated to indicate that a string follows, and the 
length and offset of the string in the history buffer is 
sent. The offset is encoded in 10 bits, while the length is 
encoded into 4 bits, representing lengths from 3-18 
bytes. Before such a string is sent however, the com 
pression unit generates the Huffman codes for all the 
bytes in the string and compares the size of the Huffman 
codes with the size of the string bits. Typically the 
Huffman string escape code is four bits, so it takes 19 
bits to represent a string. The smaller of the two quanti 
ties is sent. 

Note that the MacCrisken string method avoids the 
problems of the Ziv-Lempel method in that the string 
"table" never fills up, since the old entries are discarded 
by removing them from the hash list. Thus, only the 
most recent (within 1K bytes) strings occupy the table. 
Also it is not "greedy" since in principle all matching 
strings can be found. In practice, a limit on the length of 
the string search is imposed. Additionally, the MacCris 
kin method is computationally inefficient because it is 
effectively performing two compression algorithms at 
once, and thus the computational overhead is quite 
high. 

SUMMARY OF THE INVENTION 
The present invention is a compression/decompres 

sion system which increases the capacity of digital stor 
age or transmission media, such as magnetic disk or tape 
storage devices. The compression method is fully adapt 
ive, requiring no pre-initialized encoding tables, and is 
optimized for byte-oriented character streams, such as 
computer files. It overcomes many of the difficulties 
found in the prior art and generally achieves higher 
compression ratios than the previous techniques as dis 
cussed above. 

During compression, a history buffer of previously 
processed bytes is maintained in the compression appa 
ratus. Compression is achieved by locating repeated 
strings of bytes in the history buffer. If no matching 
string containing the byte currently being examined is 
found, the byte is appended to the output data stream 
after a special tag bit to indicate that the byte is "raw" 
(i.e., not a string). If such a string is found, its length and 
relative position within the history buffer are encoded 
and appended to the output (compressed) data stream. 
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6 
String length and positions are encoded in such a fash 
ion that even two-byte repeated strings result in a con 
pression ratio better than 1:1. In other words, only in 
the case of a single "raw" byte does data "expansion" 
OCC. 

The string length encoding is variable length, and the 
string position may also be encoded as a variable length 
field. Thus, the present invention maps variable length 
input strings to variable length output codes. 
A hash table is used to perform efficient string 

searches, and a hash "refresh' method is utilized to 
minimize the computation overhead required for main 
taining the hash data structures. These techniques allow 
for high-speed compression of the input data, at input 
rates up to several megabytes/second using currently 
available integrated circuit technology. 
The following is a more detailed description of the 

preferred embodiment of the present invention which 
includes a method and apparatus for converting an 
input data character string into a variable length en 
coded data string in a data compression system. The 
data compression system comprises a history array 
means. The history array means has a plurality of 
entries and each entry of the history array means is for 
storing a portion of an input data stream. The method of 
the preferred embodiment comprises the following 
steps. 
The first step includes performing a search in the 

history array means for the longest data string which 
matches the input data stream. If such a matching data 
string is found within the history array means, the sec 
ond step includes encoding the matching data string 
found in the history array means by appending to the 
variable length encoded data stream a tag indicating 
that the matching data string was found by appending 
and a string substitution code. The string substitution 
code includes a variable length indicator of the length 
of the matching data string and a pointer to the location 
within the history array means of the matching data 
string. 

If a matching input data string is not found within the 
history array means, the second step includes the step of 
encoding the first character of the input data stream by 
appending to the variable length encoded data stream a 
"raw" data tag which indicates that no matching data 
string was found in the history array means and the first 
character of the input data stream is also appended to 
the variable length encoded data stream. In this way, 
the input data stream is converted into a variable length 
encoded data stream. 
The step of performing the search in the history array 

means for the longest matching data string may further 
include the step of limiting the search to a predeter 
mined number of inquiries into the history array means 
for the longest matching data string. Additionally, the 
step for performing the search for the longest matching 
data string can also include the step of performing a 
hashing function. 

In order to perform the hashing function, a data com 
pression system includes certain hash data structures 
including a history array pointer, a hash table means and 
an offset array means. The history array pointer points 
to the latest entry in the history array means. The hash 
table means has a plurality of entries and each entry in 
the hash table means stores a pointer which points into 
the history array means. The offset array means has a 
plurality of entries, and each entry provides a link to 
one of the entries in the history array means. The step 
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for performing the hash function typically includes the 
following steps. 

First, obtaining the result of the hashing function 
which provides a pointer to one of the entries in the 
hash table means. Then, obtaining the pointer stored in 
the hash table entry pointed to by the result of the hash 
function. Next, calculating the difference between the 
history array pointer and the pointer read from the hash 
table means and storing the difference into the offset 
array entry pointed to by the history array pointer. 
Lastly, storing the history array pointer into the hash 
table entry pointed to by the hash function. 
The preferred embodiment of the invention also in 

cludes a refresh function. The refresh function periodi 
cally examines the pointers stored in the entries of the 
hash table to determine whether the pointer of each 
entry differs from the history pointer by a predeter 
mined amount. If the difference in the pointer and the 
history array pointer is greater than a predetermined 
amount, then the entry in the hash table is replaced by 
an invalid value which reinitializes the entry. 

Additionally, the preferred embodiment provides an 
initialization routine which effectively replaces all 
entries of the hash table with invalid values which effec 
tively initializes the table. 
The preferred embodiment of the invention also in 

cludes a method for decoding the variable length en 
coded data stream which is output from the compres 
sion unit. The method for decomposition includes the 
following steps. 

First, the variable length encoded data stream is 
parsed into separate portions and each separate portion 
starts with one of the tags. Next, the tag of each separate 
portion is evaluated to determine whether the tag is the 
raw data tag or the tag indicating an encoded matching 
data string. When the tag indicates that there is an en 
coded matching data string, the next step includes inter 
preting the length indicator and the pointer of the sub 
stitution code for generating the matching data string. 
In this way, a portion of the original input data stream 
is reconstructed. Alternatively, when the tag is a raw 
data tag, then the first character of the encoded input 
data stream is obtained and in this way a portion of the 
original input data stream is reconstructed. 
BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1a is a block diagram of a compression unit 

accepting uncompressed data and outputting com 
pressed data according to the present invention. 

FIG. 1b is a block diagram of a decompression unit 
accepting compressed data and outputing decom 
pressed data according to the present invention. 

FIG. 2 depicts the compression format used by the 
preferred embodiment of the present invention. 

FIG. 3 depicts a simplified example of compression 
encodings according to the compression format de 
picted in FIG. 2. 

FIG. 4 shows the data structures implemented by the 
preferred embodiment of invention for performing 
searches on the input data stream. 
FIG. 5a is a flow block diagram of the COMPRES 

SION OPERATION Routine performed by the com 
pression unit (FIG. la) for encoding the input data 
steam. 
FIG. 5b is a flow block diagram of the INITIAL 

IZATION Routine referenced during the COMPRES 
SION OPERATION Routine (FIG. 5a) for initializing 
the hash table of the data structure shown in FIG. 4. 
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8 
FIG. 5c is a flow block diagram of the REFRESH 

HASH Routine referenced during the COMPRES 
SION OPERATION Routine (FIG. 5a) for partially 
reinitializing the hash table the data structures shown in 
FIG. 4. 
FIG. 6 is a flow block diagram of the DECOM 

PRESSION OPERATION Routine. 
FIG. 7 is a schematic block diagram of a hardwired 

representation of the COMPRESSION OPERATION 
Routine (FIG. 5a). 
FIG. 8 is a block diagram of the external RAM 

FIFO. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring to FIGS. 1a and 1b a compression unit 4 
and a block diagrams of a decompression unit 6 accord 
ing to the present invention are depicted. Both units 4 
and 6 can be hardware modules or software subroutines, 
but, in the preferred embodiment, the compression 4 
and decompression 6 units are incorporated into a single 
integrated circuit (FIG. 7). The integrated circuit is 
used as part of a data storage or data transmission sys 
tem, which is controlled by a microprocessor #5. Re 
ferring to FIG. 1a, an input data stream 8 is received by 
the compression unit 4 from a data source called the 
host 10, and the encoded compressed data stream 12 is 
transmitted to a data sink called the device 14, 

Similarly, in FIG. 1b, the decompression unit 6 re 
ceives a compressed data stream 18 from the device 14 
(which in this case is a data source), reconstructs the 
original uncompressed data stream 20, and outputs it to 
the host 10 (which in this case is a data sink). In the 
preferred embodiment, decompression and compression 
are not performed simultaneously, however in an alter 
nate embodiment they could be performed at the same 
time. 

All data structures (e.g. history array 102, hash table 
100, and offset array 104 (FIG. 4)) are maintained in a 
separate external RAM chip 16. RAM 16 could be con 
tained within the chip, but in current technology a chip 
containing both RAM 16 and the compression/decom 
pression units (4 and 6) would be very expensive. RAM 
16 must contain at least 16K bytes of data in the pre 
ferred embodiment, and it may be configured as 16K by 
8 bits or 8K by 16 bits. The preferred embodiment can 
also use up to 32K bytes of RAM 16, allowing for a 
larger hash table (FIG. 4) which can improve perfor 
mance A more detailed explanation of the preferred 
data structures implemented by the preferred embodi 
ment is discussed below during the discussion of the 
compression unit that builds and maintains them. 
Those skilled in the art shall recognize that the values 

of all numeric parameters (e.g., MEMSIZE, 16-bit 
HP TR, etc.) discussed below can be modified without 
affecting the basic concept behind the compression 
decompression technique of the present invention. 

Referring to FIG. 2, the encoding scheme of the 
preferred embodiment of the invention is shown. In the 
preferred embodiment, the method for encoding utilizes 
a tag bit to indicate whether an output data string is 
"raw" or uncompressed which is indicated by a "0" bit, 
OBBBBBBBB = encoded "raw", 8-bit byte (19, FIG.2) 
or compressed indicated by a "1" bit, 1(offset)- 
(length)=string at offset back into history buffer (21, 
FIG. 2). In the preferred embodiment, the offset encod 
ing or the number of bytes back into the history buffer 
is one of two forms (23, FIG. 2). A short form having 7 
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bits can create an offset of 1 to 127 bytes and a long 
form having 11 bits can create an offset of 1 to 2,047 
bytes. The long and short offset forms are differentiated 
by a single bit; "1" designating short form and "O" des 
ignating long form. The particular length encoding 
scheme used by the present invention is shown in Table 
25 (FIG. 2). From the top of the Table 25, a 2 byte 
length is encoded by 2 bits having the values "00" (22, 
FIG. 2). Likewise, encoded lengths of 3 and 4 bytes are 
represented respectively by 2 bits having the values 
"01" (24, FIG. 2) and "10" (26, FIG. 2). Byte lengths of 
5 to 7 are represented by 4 bits, “11 00' to "11 10" 
(28-32, FIG. 2). Byte lengths of 8 to 22 are represented 
by 8 bits, "11 11 0000" to "11 11 1110” (34-62, FIG. 2). 
After 22 byte lengths, the next byte lengths between 23 
and 37 are represented by 12 bits, (64-70, FIG. 2) and so 
on. The advantage of the length encoding scheme 
shown in Table 25 is for enabling an efficient procedure 
for encoding the length of a bit string during the com 
pression method discussed below. Although different 
encoding methods have been utilized for encoding 
length and offset, the compression ratios obtained by 
the above approaches are very similar to the preferred 
embodiment. 
FIG.3 shows a simple results table utilizing the com 

pression scheme shown in FIG. 2. The table is separated 
into three columns, the first column 75 represents an 
input byte stream, the second column 77 is the encoded 
output stream, and the last column 79 provides com 
ments. Each row of the encoded output bit stream is 
referenced 76-86. The basic operation for compressing 
the input byte stream 75 (ABAAAAAACABA) pro 
ceeds as follows. Compression is achieved by locating 
matching strings of bytes in the input byte stream 75. In 
the preferred embodiment, a hashing structure shown in 
FIG. 4 is utilized for performing an efficient hash 
search. A more detailed discussion of the structure 
shown in FIG. 4 and hash search will be presented 
shortly. In the preferred embodiment, compression 
occurs for byte streams which are two bytes or longer. 
When the first input byte is received by the compression 
unit 4 a search is performed to determine whether there 
were any other 2-byte strings in history which match 
the first input byte. The first input byte is character "A" 
(76, FIG. 3) which has no prior history and, thus, this 
first byte is appended to the encoded output stream after 
a tag bit of "0" to indicate that the 8-bit byte is "raw" 
(or not compressed) as shown at 76, 77 (FIG. 3). 
The next input byte in the input byte stream is a "B" 

character. So far, the only other byte in the byte stream 
is non-matching (the history has 'A') and, thus, the 
byte for character "B" and a "raw" byte indicator are 
output as shown at 78, 77 (FIG. 3). The next input byte 
in the input strean 75 is character "A". Because in the 
preferred embodiment only strings having two or more 
bytes are compressed, the byte for character A is left 
uncompressed and it is output as a raw data byte as 
shown at 80 (FIG. 3). However, when the next input 
byte (character "A") is encountered, a 2-byte string is 
found. Compression unit 4 lends a match of length 2 and 
node compares the next bytes of the input byte stream. 
Because the next input byte matches the prior bytes 
(e.g. character "A"), the match length is incremented 
and the string match is "extended". This process contin 
ues for the next 4 input bytes having character "A". As 
shown at row 82, FIG. 3, the encoded version of the bit 
string (AAAAAA) is "11 0000001 1100". The first bit of 
the encoded string is a 1 indicating the compressed 
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10 
encoding mode. The next bit in the bit string indicates 
that the short form of the offset is utilized (23, FIG. 2). 
The offset is 0000001 indicating an offset of 1 byte and 
the length as shown in Table 25 (FIG. 2) for "1100" is 
5 bytes. The rest of the bytes in the input byte stream 75 
are encoded using the same strategy as discussed above. 

In the above example, if a byte did not match, then 
compression unit 4 would have continued to search 
back through the history of the input byte stream for a 
string that matched up to and included the current input 
byte. If such a new string was found, the match length 
would be incremented and the position of the new 
matching string would be determined and saved; this 
string match has thus been "extended". If such a new 
string is not found, or if too many prior input byte 
entries have to be searched, the current matching string 
is assumed to be the maximal string and in its encoded 
form or raw byte form it is output. In the encoded form, 
its length and relative position within the history storing 
the input byte stream are appended to the output (com 
pressed) data stream. The offset is computed as the 
number of bytes from the start of the string to the 
matched byte in the buffer, which ranges in the pre 
ferred embodiment from 1 to the memory size ("MEM 
SIZE') - 1. As stated above, length and offsets are 
encoded as shown in FIG. 2. Note that, in contrast to 
the approaches discussed in the background section of 
this application, the compression method of the pre 
ferred embodiment results in variable length strings 
mapped to variable length output codes. 
Those skilled in the art will recognize that there are 

many implementations for performing string search 
operations on the input byte stream. In particular, there 
are many hashing techniques and search methods that 
could be used to find matching strings. For a complete 
background on various hashing techniques, refer to 
Knuth, Sorting and Searching, The Art of Computer 
Programming (Vol. 3) pp. 506-549 (1973), which is 
herein incorporated by reference. Below is a more de 
tailed description of the particular hashing structure 
utilized by the preferred embodiment. The data struc 
ture and approach to be discussed have been selected 
because they minimize the number of RAM-cycles re 
quired for the compression function, thus maximizing 
the system throughput. 

Referring now to FIG. 4, the preferred embodiment 
of the hash structure is now discussed. A history array 
102 containing the last 2048 characters of previously 
processed input data (which has already been com 
pressed or which is uncompressed as raw data) is stored 
in RAM 16 (FIG. 1a). When new input data is received 
by the compression unit 4 (FIG. 1a), the present inven 
tion checks to see if a "string" of at least 2 bytes in the 
new input data matches the string in the history array 
102. If so, this string of input data is encoded or, if it is 
not, it is represented as raw data as described above. 
A hash table 100 is utilized to quickly find specified 

strings in the history array 102. The hash table 100 is 
made up of a series of bin entries which contain history 
array pointers in to the history array. Another data 
structure called the offset array 104 is a hash link table. 
The first item in each linked list in the offset array 104 
points to the previous entry in the history array which 
corresponds to a particular hash value, and the last item 
(which may be an invalid pointer) in the linked list 
points to the oldest entry associated with this hash 
value. The compression unit 4 maintains a 16-bit history 
pointer HPTR 108 which is incremented after each 
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input byte is processed. HPTR is initialized to 0 and 
wraps back to 0 after 64K bytes have been processed by 
the compression unit. The offset array 104 is actually a 
secondary hash which consists of a singly linked list. If 
a particular offset is greater than MEMSIZE 
MAXSTR (where MAXSTR is the maximum string 
being searched) or if the sum of all the links from the 
most recent entry of the list is greater than MEMSIZE. 
MAXSTR, then there are no further valid entries in the 
particular hash bin (value). In this way, the entries older 
than MEMSIZE-MAXSTR effectively "fall off the 
end of the history array 102. This aspect of the present 
invention allows use of a singly linked list in the offset 
array 104, which can be maintained with less than half 
the memory accesses compared to a doubly linked list. 
Use of the singly linked list, however, necessitates a 
hash refresh operation which is discussed below. 

Referring now to FIGS. 5a, 5b and 5c, a detailed flow 
diagram of the compression operation of the present 
invention is now discussed. A hard-wired version show 
ing the particular data path of the flow diagram (FIGS. 
Sa, 5b and 5c) is shown in FIG. 7. 
More particularly, referring to FIG. 5a, the COM 

PRESSION OPERATION Routile starts at block 108. 
Then, at block 110, the INITIALIZE Routine (FIG. 
5b) is called to initialize the hash structure shown in 
FIG. 4. This operation is typically performed during 
system initialization and it does not have to be repeated, 
even if one "compression" has been completed and a 
new one is begun. 

Referring to FIG. 5b at block 112, the hash pointer 
108 (HPTR) is set equal to 0. At block 114 (FIG. 5b), a 
match length variable ("MATCHLEN") for keeping 
track of the current length of the presently encoded bit 
string is set to 0. Then, at block 116, a refresh count 
variable ("RFSHCNT") (to be discussed further) is set 
equal to 12. At block 118, a refresh pointer variable 
("RFSHPTR") (to be discussed further) is set to 0. 
Then, during block 120, the hash table 100 is filled with 
the value HPTR-MEMSIZE. This step effectively 
empties the hash table 100 of all prior valid values. 
Because hash table 100 is very large, requiring such an 
initialization process (FIG. 5b) each time a new input 
data stream is presented with involved unacceptable 
latency in nost systems. Therefore, a HASH RE 
FRESH Routine (FIG. Sc) is utilized to distribute the 
cost of initialization over the entire period of the com 
pression, thus minimizing the latency between compres 
sion operations. 

Referring back to FIG. 5a, after the INITIALIZE 
Routine (FIG. 5b) has been completed, the compression 
unit 4 (FIG. la) can begin to accept bytes from the 
incoming data stream. At block 124, the variable 
REFSHCNT is checked to determine if it is equal to 0. 
If REFSHCNT has been decremented to be 0, then 
processing continues at block 126. During block 126, 
the REFRESH HASH Routine (FIG.Sc) is performed. 
The purpose for the HASH REFRESH Routine 

(FIG. Sc) is for accounting for the eventual situation 
when the HPTR wraps back to an old valve in a partic 
ular bin of the hash table 100. When this occurs, that 
hash bin 106 within the hash table 100, which is actually 
very old, suddenly appears to be very new. The HASH 
REFRESH Routine (FIG.Sc) is responsible for period 
ically examining each entry (HASHTABLE (j)) in the 
hash table 100 to determine if entry is too old; e.g., if 
HPTR-HASHTABLEG)>OLDHASH, where 
OLDHASH is an appropriately chosen value such as 
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16K. If the entry is too old, then HASHTABLEC) is 
replaced with HPTR-MEMSIZE. This value is old 
enough to be treated as an invalid or "NIL' pointer, but 
it allows up to 64K - MEMSIZE more bytes to be pro 
cessed without HPTR wrap problems. The rate in 
which the hash table 100 is refreshed is computed as 
follows. The goal is to ensure that all hash table bins are 
examined at least once every 64K-OLDHASH bytes. 
This goal is achieved by performing a single hash re 
fresh every (64K-OLDHASH)/HASHSIZE input 
bytes, where HASHSIZE is the number of bins within 
the hash table 100. In the preferred embodiment, this 
value is 48K/4K = 12, so, for every 12th input byte, a 
single hash entry in the hash table 100 is refreshed. 
Note that a refresh operation always involves one 

memory cycle, but if the bin entry needs to be updated, 
it will require a second (write) cycle. Increasing OLD 
HASH also increases the refresh rate, but the probabil 
ity of a second memory circle decreases since it is more 
likely that the bin entry will have been updated by a 
string hashing into it. The value of OLDHASH = 16K 
has been empirically found to provide a reasonable 
refresh overhead in the preferred embodiment. The 
refresh overhead per byte of input data is thus some 
what between 1/12 and 2/12 memory cycles, more than 
an order of magnitude less than the overhead for main 
taining a doubly linked list. 

In order to terminate a compression operation or start 
up a new one with a new input byte stream, the com 
pression unit simply increments HPTR by MEMSIZE, 
and the bins of the hash table are automatically invali 
dated. Additionally, the refresh unit also needs to per 
form MEMSIZE/12 refresh cycles to make up for the 
refresh cycles missed during the MEMSIZE bytes that 
were never actually processed. However, this operation 
involves only 171 refresh operations instead of 4,096, 
and thus can be performed very quickly. In other com 
pression methods, all tables and buffers typically need 
to be cleared before starting a new compression opera 
tion, which may require considerable latency. 

Referring to FIG. 5c processing continues at block 
130, where a determination is made as to whether 
HPTR-HASH.TABLEd 16K. As stated earlier, this 
operation determines whether the current entry is too 
old. If the entry is too old, then processing continues at 
block 132 during which HASHTAB (RFSHPTR) is set 
equal to HPTR-MEMSIZE, which effectively creates 
an invalid value at this entry location. Returning to 
block 130, if it is determined that the entry is not too 
old, the processing continues at block 134. Regardless 
of whether the entry is too old or not too old, process 
ing continues at block 134, during which the 
RFSHPTR is incremented by 1. Then, at block 136, 
RFSHCNT is set equal to 12 and processing returns to 
the COMPRESSION OPERATION Routine at block 
128 (FIG. Sa). 

Regardless of whether RFSHCNT is determined to 
be equal to 0 (requiring a call to the REFRESH HASH 
Routine FIG. 5c) or not equal to 0 at block 124, process 
ing continues at block 128 During block 128, the com 
pression unit 4 (FIG. 1a) fills the first two bytes of the 
history array 102 with input data in order to initialize 
the operation. The two bytes are held in registers IN 
REGO and INREG1. Each time a new byte is pro 
cessed, the hash ("H") of the first byte and the next 
input byte are computed. In the preferred embodiment, 
the hash is computed by shifting INREG0 left 4 bits and 
XORing it with INREG1. As discussed above, any of 
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the hashing functions as discussed by Knuth (reference 
above) would be acceptable. As each new incoming 
byte is processed, the contents of INREG1 is moved to 
INREGO and INREG1 is loaded with the new byte 
value. 
For each byte processed at block 128, the hash value 

H ("H") is computed and the old entry within the hash 
value bin corresponding to the new hash value is read 
and saved in a variable called NEXT. Also, at block 
128, the old entry in the hash table bin corresponding to 
the current hash value is replaced by the current value 
for HPTR. At block 140, a determination is made as to 
whether HPTR-NEXT =MEMSIZE-MAXSTR 
is made. The variable MAXSTR is the value of the 
maximum string size being searched which ensures that 
the matching string of bytes found in the history array 
102 is not overwritten by the currently processed bytes. 
Assuming that the determination results in a value 
greater than or equal to MEMSIZE-MAXSTR, then 
processing continues at block 142, during which the 
variable NEXT is set equal to HPTR-MEMSIZE. 
Stated differently, the hash bin is emptied because there 
were no matching strings within the last MEMSIZE 
bytes of history. 

Regardless of whether the determination results in 
the value greater than or equal to MEMSIZE-- 
MAXSTR, processing continues at block 144. During 
block 144, the value HPTR-NEXT is written into the 
corresponding offset array 104 entry at OFF 
SET(HPTR). Also, at block 144, the value of INREG1 
is placed into the history array 102 entry at HIS 
TORYOHPTR). The steps performed at blocks 124, 126, 
128, 140,142 and 144 discussed above complete the data 
structure maintenance required for the currently pro 
cessed byte, and at this point a string search of the con 
tents of history array 102 can begin. Note that the above 
housekeeping functions are performed for all input 
bytes processed, regardless of whether the compression 
unit is currently processing a string match. 
At block 146, a determination is made as to whether 

the match length variable MATCHLEN is equal to 0. 
Recall that at block 114 of the INITIALIZE Routine 
(FIG. 5b) the MATCHLEN variable was set equal to 0. 
MATCHLEN contains the current string match length 
which, at the beginning of the operation, is 0. Assuming 
that we are processing at the beginning of the compres 
sion operation and that MATCHLEN is equal to 0, then 
an internal hash counter HASHCNT is set to 0. 
HASHCNT is used to limit the iterations of any particu 
lar string search. Then, at block 150, a determination is 
made as to whether HP TR-NEXTs MEMSIZE-- 
MAXSTR. Assuming that the resulting value is less 
than MEMSIZE-MAXSTR, processing continues at 
block 152. During block 152, a determination is made as 
to whether the value for the variable INREG1 is equal 
to the value in the history array at HISTORY(NEXT). 
The purpose of this step is to search to the prior entry in 
the history array for a 2-byte string that matches the 2 
bytes in INREG0 and INREG1. Only the value within 
NREG1 is compared to the value at HISTORY(- 
NEXT) because the hash function is chosen to be a 1 to 
1 mapping with respect to INREG0, so that only one 
byte from each string in the hash list has to be compared 
with INREG1. This step increases the performance of 
the present embodiment because a 1-byte comparison 
instead of a 2-byte comparison only needs to be per 
formed. Returning to block 150, if the value determined 
is greater than or equal to MEMSIZE-MAXSTR, 
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then processing continues at block 158. During block 
158, the raw data tag and the raw data byte in INREGO 
is output and processing continues to block 125. At 
block 125 the next input byte is obtained and the process 
starts all over again. 

Returning to block 152, if the determination results in 
a match, then processing continues at block 160 during 
which the variable MATCHPTR is set equal to the 
value of the variable NEXT. Additionally, the variable 
MATCHLEN is set equal to 2 to signify a two byte 
match and processing continues at block 125 during 
which the next input byte is obtained. However, assum 
ing that the value at HISTORY(NEXT) is not matched, 
then processing continues at block 154 during which the 
value of HASHCNT is incremented and the variable 
NEXT is set equal to NEXT - OFFSET(NEXT). This 
step effectively points to the next entry linked by the 
offset array 104. Processing continues at block 156 dur 
ing which a determination is made as to whether 
HASHCNT reaches a predetermined maximum count 
value MAXHCNT (typically 8). If HASHCNT is 
greater than or equal to MAXHCNT, then processing 
continues at block 158 during which the output raw 
byte INREG0 is output and processing continues at 
block 125. However, if HASHCNT is not greater than 
or equal to MAXHCNT, then processing continues at 
block 150, 152, 154 and 156 until HASHCNT reaches 
MAXHCNT or until there are no more valid entries in 
the hash list (as determined at block 150) or until a 
matching string is found (at block 152). 

Eventually, processing continues at block 125, and at 
this time, the compression unit 4 (FIG. 1b) is ready to 
process a new input data byte. At block 125, HPTR is 
incremented and the variable RFSHCNT is decre 
mented. Processing continues at blocks 124, 126, 128, 
140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160 and 
125 until MATCHLEN is determined to be greater than 
0 at block 146. Referring to block 146, note that when 
MATCHLEN is not equal to 0, processing continues at 
block 162. During block 162, the variable 
MATCHPTR is incremented by 1. In this way, the new 
value INREG1 will be compared against the next byte 
in the stream of MATCHLEN plus 1 found at 
MATCHPTR in the history array 102. At block 164, 
the determination is made on whether the bytes match. 
If the bytes match, then MATCHLEN is incremented 
and the string is extended at block 180 and processing 
then continues at block 125. However, if the bytes do 
not match, then processing continues at block 166 dur 
ing which the variable NEXT is set equal to 
MATCHPTR-MATCHLEN + 1. Processing contin 
ues at block 168, during which the variableNEXT is set 
equal to NEXT-OFFSETONEXT). In addition, at 
block 168, the variable HASHCNT is incremented. 
Steps 166 and 168 effectively cause the compression 
unit 4 (FIG. 1a) to search to the successive string entry 
remaining in the hash bin for the original string being 
matched. At block 170, a determination is made on 
whether HPTR-NEXT =MEMSIZE-MAXSTR. 
If the value determined is greater than MEMSIZE-- 
MAXSTR, then there are no more valid entries and 
processing continues at block 182. At block 184, 
MATCHLEN is set to 0 and processing begins over 
with a new byte at block 125. However, if the value 
determined at block 170 is less than MEMSIZE-- 
MAXSTR, then processing continues at block 172 dur 
ing which a determination as to whether MAT 
CHLENS = MAXSTR is made. Assuming that MAT 
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CHLEN> = MAXSTR, then an invalid search has 
occurred and processing continues at block 182. How 
ever, assuming that MATCHLEN is not greater than or 
equal to MAXSTR, then processing continues at block 
174. At block 182 the compression unit 4 (FIG. 1a) 
outputs a string record consisting of a tag bit ("l") 
which indicates that a matching string has been found, 
followed by the appropriately encoded offset (OFF 
SET = HPTR#-#HPTR MATCHPTR) of the match 
string in history array 102, and the encoded length. 
At block 174, a determination is made as to whether 

the current string of length MATCHLEN-1 at loca 
tion HISTORY (NEXT) is equal to the contents of the 
internal match buffer. The internal match buffer con 
tains all MATCHLEN bytes of the currently matching 
string. This buffer allows faster searching for a new 
string if the initial attempt to match this string fails. An 
efficiency occurs because the bytes to be matched are 
immediately available within the chip instead of having 
to reach them from RAM each time a match is per 
formed. Stated differently, the matching buffer acts as a 
look aside buffer to efficiently enhance processing. The 
match buffer is of finite length (MAXSTR=8 bytes in 
the preferred embodiment). 

If the string of MATCHLEN+1 at HISTORY 
(NEXT) equals the contents of the match buffer, then 
processing continues at block 178 during which the 
variable MATCHPTR is set equal to NEX 
T+MATCHLEN. Processing continues at block 180 
during which MATCHLEN is incremented and pro 
cessing continues at block 125 during which the next 
new byte in the input data stream is processed. How 
ever, if the string at HISTORY (NEXT) is not equal to 
match buffer, then processing continues at block 176, 
during which a determination is made as to whether the 
variable HASHCNT is greater than or equal to 
MAXCNT. If HASHCNT is greater than or equal to 
MAXHCNT, then processing continues at blocks 182 
and 184 during which an encoded string having a tag bit 
of "1" followed by the appropriate encoded offset of the 
match in the history array and the encoded length are 
output and the variable MATCHLEN is set equal to 0. 
Processing continues at block 125 during which the 
next new input data byte is processed. Returning to 
block 176, however, if HASHCNT is not greater than 
or equal to MAXHCNT, then processing continues at 
blocks 168, 170, 172,174 and 176 until a match length of 
MATCHLEN-1 is found, or until HASHCNT 
reaches MAXHCNT or until there are no more valid 
hash entries (HPTR-NEXT =MEMSIZE-- 
MAXSTR). 

In the preferred embodiment, the above operations 
are pipelined to ensure that the RAM 16 (FIG. 1a) is 
busy on every clock cycle, since the RAM cycle count 
is the limiting factor on performance. 

Typically, in a storage system, the data must be 
blocked into sectors or blocks of a fixed size, and it is 
often desireable to truncate the compression at a given 
stage and then restart a new operation on the remaining 
input stream. In the preferred embodiment, a count of 
compressed bytes output is maintained. When this count 
reaches a predetermined (user selectable) value, or 
when the input data stream is exhausted, the compres 
sion unit is told to "flush" the compression, meaning to 
complete compression of the bytes in INREG0 and 
INREG1, terminate and output the string currently 
being extended (if any) or to output the remaining un 
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processed byte(s) as raw bytes, without taking any new 
bytes from the input FIFO. 
The compression unit then outputs a special "end of 

compressed data' market, which is a string with an 
offset of zero. This offset could be interpreted as an 
offset of MEMSIZE, but instead it is reserved to mean 
that this is the end of this compression operation. In 
fact, in the preferred embodiment, all offsets in the 
range MEMSIZE-MAXSTR (where MAXSTR is typi 
cally 8) to MEMSIZE# - # 1 (and zero) are reserved, 
so no strings will be found past this offset into history 
This feature allows for future extensions to the format, 
and it also avoids some difficult problems involving 
wrapping in the history buffer. After a flush, the com 
pression unit adds MEMSIZE to HPTR, performs the 
appropriate number (MEMSIZE/12) of hash refresh 
cycles, and then begins a new compression operation. 

Extensive software simulation of the compression 
method was performed during the development of the 
present invention. Various values of all the parameters, 
including MAXHCNT, HASHSIZE, match buffer size, 
and MEMSIZE, were tested to determine their impact 
on throughput and compression ratio. The particular 
format and set of parameters in the preferred embodi 
ment was selected as having an acceptance tradeoff on 
these performance issues. However, many similar sets 
of parameters and encodings result in substantially simi 
lar performance. 
The decompression unit 6 (FIG. 1b), by comparison 

with the compression unit 4 (FIG. 1a), is very simple. It 
receives an encoded stream of bytes and converts this 
stream into a bit stream, which is constructed according 
to the encoding scheme shown in FIG. 2. For each raw 
byte or encoded byte stream output, the byte is trans 
ferred into a decompression output FIFO, and it is also 
appended to a decompression history array which is 
maintained in RAM 16 (FIG. 1b). The decompression 
history array is identical to the history array as shown at 
102 in FIG. 4. The decompression unit 6 (FIG. 1b) also 
contains a current history pointer ("DPTR'), which is 
incremented for each byte output and wraps back to 
zero when it reaches MEMSIZE. When an encoded 
string is parsed, the offset from the string is subtracted 
from DPTR, and a string of bytes of the encoded length 
is output, starting at the offset location within the de 
compression history array. Thus, the decompression 
unit 6 (FIG. 1b) does not have to maintain any hash 
structures as shown in FIG. 4 (i.e. hash table 100 and 
offset aray 104 (FIG. 4)) and in fact requires only 
MEMSIZE bytes of RAM 16 (FIG. 1b). 

Typically there is enough RAM 16 (FIG.1b) to main 
tain separate compression and decompression data 
structures, enabling both compression and decompres 
sion operations simultaneously, but in the preferred 
embodiment this ability is not implemented. 

Referring to FIG. 6, a detailed block diagram of the 
DECOMPRESSION OPERATION Routine for per 
forming decompression is shown. The input to the DE 
COMPRESSION OPERATION Routine (FIG. 6) is as 
encoded byte stream output by any compression opera 
tion (i.e. COMPRESSION OPERATION (FIG. 5A, B, 
and C). At block 190, the operation begins and at block 
192 the pointer DPTR is set to 0. Processing continues 
at block 194 during which the tag bit is parsed from the 
input encoded data stream. Then, during block. 196, a 
determination is made as to whether the tag bit is equal 
to 1 or 0. Recall that a tag bit of "1" signifies that an 
encoded compressed bit string follows and that a tag bit 
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of "0" signifies that the output byte is uncompressed 
"raw" data. Assuming that the tag bit is equal to 0, 
processing continues at block 198. During block 198, 
the "raw" byte is parsed from the input encoded data 
stream. Then, during block 200, the raw data byte is 
output and at block 202, the raw data byte is stored in 
the decompression history array at HISTORY(DPTR). 
Processing continues at block 204 during which the 
DPTR is incremented to the next output byte. Process 
ing returns to blocks 194, 196, 198, 200, 202, and 204 for 
processing raw data bytes. 

Returning to block 196, if the output byte encoun 
tered has a tag bit of 1, then processing continues at 
block 206. At block 206, the parsing of the encoded bit 
string begins. More particularly, at block 206 the offset 
("P") value in the encoded string is parsed from the 
input encoded data stream. At block 208, a determina 
tion is made as to whether the offset value P is equal to 
0. An offset value of 0 indicate the end marker which 
signifies the end of the encoded output data stream as 
stated earlier. If the offset is equal to 0, processing con 
tinues at block 212 during which processing returns to 
the calling program. However, if the offset is greater 
than 0, then processing continues at block 210, 

During block 210, the length of the bit string is parsed 
from the input encoded data stream. At block 214, the 
contents of the decompression history array at HIS 
TORYCDPTR-P) is determined. Then during block 
216, the data stored at this location is output. At block 
218, the data is stored at HISTORY(DPTR). Then at 
block 220, DPTR is incremented and at block 222 the 
length of the bit string is decremented. During block 
224, a determination is made as to whether the length 
has been decremented to 0. If the length has not been 
decremented to 0, then processing continues at blocks 
214, 216, 218, 220, 222, and 224 until all of the bytes in 
the encoded byte stream have been output. 
Once the length has been decremented to 0, process 

ing continues at block 194 during which the next tag bit 
is parsed from the input encoded data stream. Thus, 
processing continues until an encoded byte string is 
encountered having an offset of 0 as determined at 
block 20, at which time processing returns to the call 
ing program at block 212. 

Referring to FIG. 7, a circuit diagram 228 which 
incorporates the preferred embodiment of the data com 
pression unit 4 (FIG. 1a) is shown. The elements of 
circuit 228 are implemented by digital logic. Circuit 228 
is controlled by compression controller and sequence 
unit 230. Compression control and sequence unit 230 is 
linked to each of the components of circuit 228 by a 
series of control lines not shown. An internal clock (not 
shown), which in the preferred embodiment operates at 
several negahertz/second, determines the activity level 
of the control and sequencing unit 228, which may 
affect the operation of one or more of the components 
during any clock cycle of operation. The actual opera 
tions and their sequence are depicted in FIGS. Sa, Sb 
and 5c which were discussed earlier. 
The preferred embodiment includes two FIFOs 232 

and 234 which are implemented as registers within the 
integrated circuit, to facilitate data movement and pack 
ing. One of the FIFOs (selectable by the user) can also 
"spill over" into a reserved portion of the RAM 240 
(FIG. 8). Typically this reserved portion is 8K or 16K 
bytes. Utilizing a portion of the compression RAM in 
this fashion allows for distinct performance advantages, 
particularly in systems utilizing the small systems con 
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18 
puter interface (SCSI), in which multiple computers 
and devices share a single bus for commands and data. 

In SCSI, it is very desirable to get on and off the bus 
as quickly as possible, transmitting data very rapidly so 
as not to impede other bus traffic SCSI transfer rates of 
up to 5 Mbytes/second are achievable. However, the 
compression unit throughput is usually considerably 
less than this figure, so transferring compressed data to 
the SCSI bus "on the fly" could be unacceptable from a 
performance standpoint. 
To avoid this problem, the external RAM FIFO 240 

(FIG. 8) is selected to be on the output side 238 (FIG. 7) 
of the compression unit 4 (FIG. 1a). The external Ram 
FIFO 240 is controlled by a RAM FIFO control 242 
located within the compression unit 4 (FIG. 1a). The 
RAM FIFO 240 is used both for compression computa 
tions (history, hash, etc.) and for FIFOing. Once the 
RAM FIFO 240 has accumulated enough data to allow 
a SCSI block transfer, a counter inside the chip inter 
rupts the controlling microprocessor which initiates the 
SCSI transfer. This transfer then proceeds at the full 
SCSI bandwidth, even though the buffer (which may 
continue to fill) was filled at lower speed. 
This dual use of the RAM, which is commonly avail 

able in RAM sizes large enough to accommodate both 
compression data structures and FIFOs, greatly en 
hances the performance of the system. The RAM FIFO 
240 (FIG. 8) can also be placed on the other side of the 
data flow (typically in an embedded drive controller), 
or it can be used during decompression to achieve the 
same goal. In general, the RAM FIFO is chosen to be 
on the SCSI (or highest speed) side of the operation. 
A more detailed discussion of the data flow within 

the circuit 228 is now presented. Uncompressed bytes in 
an input byte stream are input into the compression unit 
4 over line 244 to the input FIFO 232. Bytes stored in 
the input FIFO are then transferred to two extension 
FIFO registers INREG1 233 and INREGO 235. More 
particularly, the data from FIFO 232 is linked to the 
INREG1 register 233 over line 246. The data stored in 
INREG1, 233 can then be transferred via lines 248 and 
250 to INREGO 235. Recall that the purpose of the 
INREG1 and INREGO registers were for producing 
the input to the hashing function (237). The contents of 
INREG1233 is output via line 248 to line 252 and input 
to the hash function 237. Likewise, the contents of IN 
REGO 235 is output over line 251 and then over line 253 
to the hash function 237. The output of the hash func 
tion 237 is sent via line 255 to the multiplexer 256. 

Returning to INREG1 233, if no matching string is 
found, then it will be sent over lines 248,254, and 258 to 
the output manager 260. The purpose of the output 
manager 260 is for encoding raw data bytes and strings 
into bit strings with the appropriate tags, etc. The out 
put of the output manager 260 is then sent via line 262 to 
a bit to byte converter 264. Then the data is input to the 
output FIFO 234 via line 268. The compressed bytes are 
output from the output FIFO 234 via line 270 to the 
output device (14, FIG. la). 
The contents of NREG1 233 are also sent via lines 

248,254 and 272 to internal match buffer 274. The pur 
pose of the internal match buffer 274 is for acting as a 
"lookaside" buffer to efficiently enhance the matching 
process. The contents of the match buffer 274 are then 
compared to the contents at the byte comparison regis 
ter 276. The contents of the match buffer are multi 
plexed over line 278 to the byte comparison register 
276. The contents of the byte comparison register 276 
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are obtained from the history array 102 (FIG. 4) stored 
out in RAM 238. The contents of the history array entry 
are input via line 280 to latch 282 and then over lines 
284 and 286 to the byte comparison register 276. The 
results of the byte comparisons performed at block 276 
are sent via line 288 to the control and sequence unit 
230. The control and sequence unit 230 evaluates the 
comparison results and sends out the appropriate con 
trol signals to the various components of the circuit 228 
via control lines (not shown). 

Returning to INREG0 235, its contents can also be 
sent via lines 251 and 290 to multiplexer 292. Multi 
plexer 292 then arbitrates and sends the contents of 
INREG0 via line 294 to latch 296. The contents of latch 
296 are then output via line 298 to the history array 102 
(FIG. 4) of the data structure in the RAM 238. 

Data input from the RAM 238 over line 280 may also 
be sent via latch 282 and lines 284,300 and 302 to regis 
ter 304. Data over this path would consist of an old hash 
pointer stored in a variable called NEXT. The contents 
of register 304 can then be output via lines 305,306 and 
307 to multiplexer 256. The output of register 304 is also 
tied to an offset register 310 via lines 305 and 308. The 
operation the function performed at 310 will be dis 
cussed shortly. The contents of register 304 may also be 
sent via lines 304, 305, 306 and 312 to register 314 con 
taining the variable contents for MATCHPTR. The 
output of register 314 (MATCHPTR) is sent via line 
316 to multiplexer 256. The purpose of register 318 is 
for incrementing the pointer HPTR. The output of 
register 318 is sent via lines 320 and 322 to the multi 
plexer 256. In the alternative, the output of register 318 
may also be sent via lines 320 and 324 to the offset 
register 310. The purpose of the offset function is for 
calculating the appropriate offset in the history array or 
HPTR-NEXT as input over lines 324 and 308 from 
the registers 318 and 304. 
A modify switch 328 may be applied over line 330 to 

the offset register 310 to force the offset function to 
only output the current HPTR input over line 324. 
When the modified switch 328 is set such that the offset 
function is determined, the output of offset function 310 
is sent either to multiplexer 292 or to the output bit 
manager 260. When the output is sent to the output bit 
manager 260 it is sent via lines 332 and 336. The offset 
is then encoded into the encoded string at the output bit 
manager 260. Alternatively, the output is sent to multi 
plexer 292 via lines 332 and 334 and then output over 
lines 294 to latch 296 and to the RAM 238 via line 298. 
However, if the modify switch 328 is set such that the 
output of the offset register 310 is the current HPTR, 
then the output is sent via lines 332 and 334 to multi 
plexer 292 which arbitrates the output over line 294. 
The length input to the output bit manager 260 for 

encoding purposes is maintained by register 338 shown 
at the bottom of the circuit diagram 228. The output of 
the register 338 is linked to the output manager 260 via 
line 340. At the top of the circuit diagram 228, a refresh 
counter 342 is shown which maintains the current cycle 
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count before the refresh operation is performed. The 
output of the refresh count is sent via line 344 to multi 
plexer 256. The purpose of multiplexer 256 is for arbi 
trating which address over lines 344, 316, 322, 307 and 
255 is output in order to select the appropriate data 
structures in the RAM 238. 
The invention has been described in an exemplary 

and preferred embodiment, but is not limited thereto. 
Those skilled in the art will recognize that a number of 
additional modifications and improvements can be 
made to the invention without departure from the es 
sential spirit and scope. The scope of the invention 
should only be limited by the appended set of claims. 
We claim: 
1. An apparatus for converting an input data stream 

into a variable length encoded data stream, said appara 
tus comprising: 

a single RAM configuration comprising: 
a history array having a plurality of entries, each of 

said plurality of entries for storing previously 
processed segments of said input data stream, 
and 

a FIFO data buffer for buffering data transfers to 
and/or from said apparatus; 

a single address bus for addressing said history array 
and said FIFO data buffer, said single address bus 
coupled to said single RAM configuration; and 

a data compression system, said data compression 
system coupled to said single address bus, said data 
compression system comprising: 
means for performing a search of said history array 

for a string of said previously processed seg 
ments of said input data stream which matches 
said input data stream, and 

encoding means for encoding said matching string 
found in said history array. 

2. An apparatus for converting an input data stream 
into a variable length encoded data stream, said appara 
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a single RAM configuration comprising: 
means for storing previously processed segments of 

said input data stream, and 
a FIFO data buffer for buffering data transfers to 
and/or from said apparatus; 

a single address bus for addressing said means for 
storing and said FIFO data buffer, said single ad 
dress bus coupled to said single RAM configura 
tion; and 

a data compression system, said data compression 
system coupled to said single address bus, said data 
compression system comprising: 
means for performing a search in said storing 
means for a string of said previously processed 
segments of said input data stream which 
matches said input data steam, and 

encoding means for encoding said matching string 
found in said storing means. 
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