United States Patent [
Whiting et al.

O O OO A

US005146221 A
(111 Patent Number:

(45s) Date of Patent:

5,146,221
Sep. 8, 1992

{S4] DATA COMPRESSION APPARATUS AND
METHOD

[75] Inventors: Deuglas L. Whiting, South Pasadena;
Glen A. George; Glen E. Ivey, both of

Pasadena, all of Calif.
[73] Assignee: Stac, Inc., Carlsbad, Calif.
[21] Appl. No.: 619,291
{22] Filed: Nov. 27, 1990

Related U.S. Application Data
[62] Division of Ser. No. 297,152, Jan. 13, 1989.

{s1] Imt. CLS ..o HO3M 7/42; GOSF 12/00
[52] US.CL e, 341/67; 341/106;
364/DIG. |

[58] Field of Search 341/67, 106, 51, 95,
341/87, 364/200MS File, 900 MS File

[56] References Cited
U.S. PATENT DOCUMENTS

3,914,747 10/1975 Barnes et al. .
3,976,844 8/1976 Betz .
4,021,782 5/1977 Hoerning .
4,054,951 10/1977 Jackson et al. .
4,412,306 10/1983 Moll .

4,464,650 8/1984 Eastmanetal. ... 341/67 X
4,491,934 1/1985 Heinz .

4,558,302 12/1985 Welch ..iivnnnininnccenns 341795 X
4,612,532 9/1986 Baconetal. .

4,701,745 10/1987 Waterworth .

4,814,746 371989 Miller et al. .

4,835,733 5/1989 Powellccrnricnicnniiennns
4,876,541 10/1989 Storer

4,906,995 3/1990 Swanson
5,010,513 471991 Uedaccorvrncenniicnnsiaens

OTHER PUBLICATIONS

M. Cohn, “Performance of Lempel-Ziv Compressors
with Deferred Innovation,” Brandeis University, Tech-
nical Report TR-88-132, Apr. 1988.

S. Even and M. Rodeh, “Economical Encoding of
Commas Between Strings,” Communications of the
ACM, vol. 21, No. 4, Apr., 1978, pp. 315-317.

J. K. Gallant, “String Compression Algorithms,” Ph.D.

234
L

——8ma /! FIFO

Dissertation, Department of Electrical Engineering and
Computer Science, Princeton University, 1982.

A. Hartman and M. Rodeh, “Optimal Parsing of
Strings,” Combinatorial Algorithms on Words, pp.
155-167 (1985).

G. Held, Data Compression: Techniques and Applications,
Hardware and Software Considerations, (second edition
1987).

D. A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proceedings of the
ILR.E., Sep., 1952, pp. 1098-1101.

D. W. Jones, “Application of Splay Trees To Data
Compression,” Communications of the ACM, vol. 31,
No. 8, Aug., 1988, pp. 996-1007.

Knuth, Sorting and Searching: The Art of Computer Pro-
gramming, pp. 506-549 (vol. 3, 1973).

(List continued on next page.)

Primary Examiner—Sharon D. Logan
Attorney, Agent, or Firm—Irell & Manella

[57) ABSTRACT

An apparatus and method are disclosed for converting
an input data character stream into a variable length
encoded data stream in a data compression system. The
data compression system includes a history array. The
history array has a plurality of entries and each entry of
the history array is for storing a portion of the input
data stream. The method for converting the input data
character stream includes the following steps. Perform-
ing a search in a history array for the longest data string
which matches the input data string. If the matching
data string is found within the history buffer, the next
step includes encoding the longest matching data string
found by appending to the encoded data stream a tag
indicating the longest matching data string was found
and a string substitution code. If the matching data
string is not found within the history array, the next step
includes encoding the first character of the input data
string by appending to the encoded data stream a raw
data tag indicating that no matching data string was
found and the first character of the input data string.

2 Claims, 8 Drawing Sheets

(ISIDE COMPRESSION CHIP)

- - ——— - -

(Camporam o Dare | 200
it Sl Ve

(OUTSIDE COMPRESSION CHiP)

5,146,221
Page 2

OTHER PUBLICATIONS

G. G. Langdon, Jr., “A Note on the Ziv-Lempe! Model
for Compressing Individual Sequences,” IEEE Transac-
tions on Information Theory, vol. IT-29, No. 2, Mar.
1983, pp. 284-287.

A. Lempel, G. Seroussi and J. Ziv, “On the Power of
Straight-Line Computations in Finite Fields,” IEEE
Transactions on Information Theory, vol. IT-28, No. 6,
Nov., 1982, pp. 875-880.

A. Lempel and J. Ziv. *On the Complexity of Finite
Sequences,” JEEE Transactions on Information Theory,
vol. IT-22, No. 1, Jan. 1976, pp.75-81.

A. Lempel and J. Ziv, “Compression of Two-Dimen-
sional Data,” IEEE Transactions on Information Theory,
vol. IT-32, No. 1, Jan., 1986, pp. 2-8.
*A. Lempel and J. Ziv, “Compression of Two-Dimen-
i sional Images,” Combinatorial Algorithms on Words, pp.
141-154 (1985).

V. S. Miller and M. N. Wegman, “Variations on a
Theme by Lempel and Ziv,” Combinatorial Algorithms
on Words, pp. 131-140 (1985).

M. Rodeh, V. R. Pratt, and S. Even, “Linear Algo-
rithms for Data Compression via String Matching,”
Journal of the Association for Computing Machinery, vol.
28, No. 1, Jan., 1981, pp. 16-24.

J. A. Storer, Data Compression: Methods and Theory
(1988).

J. A. Storer, “Data Compression: Method and Com-
plexity Issues,” Ph.D. Dissertation, Department of
Electrical Engineering and Computer Science, Prince-
ton University, 1979.

J. A. Storer, “Parallel Algorithms For On-Line Dy-
namic Data Compression,” IEEE International Confer-
ence On Communications 1988, pp. 385-389.

J. A. Storer, *Textual Substitution Techniques for Data
Compression,” Combinatorial Algorithms on Words, pp.
111-129 (1985).

J. A. Storer and T. G. Szymanski, “Data Compression
via Textual Substitution,” Journal of the Association for

Computing Machinery, vol. 29, No. 4, Oct., 1982, pp.
928-951.

J. A. Storer and T. G. Szymanski, “The Macro Model
for Data Compression,” (extended abstract), Tenth An-
nual ACM Symposium on Theory of Computing. pp.
30-39 (1978).

T. A. Welch, “A Technique for High-Performance
Data Compression,” IEEE Computer, Jun., 1984, pp.
8-19.

J. Ziv, “Coding Theorems for Individual Sequences,”
IEEE Transactions on Information Theory, vol. IT-24,
No. 4, Jul,, 1978, pp. 405-412.

J. Ziv, *“On Universal Quantization,” IEEE Transac-
tions on Information Theory, vol. IT-31, No. 3, May,
1985, pp. 344-347.

J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Transactions on
Information Theory, vol. IT-23, No. 3, May, 1977, pp.
337-343.

J. Ziv and A. Lempel, “Compression of Individual
Sequences Via Variable-Rate Coding,” IEEE Transac-
tions on Information Theory, vol. IT-24, No. 5, Sep.,
1978, pp. 530-536.

J. G. Cieary and 1. H. Witten, “Data Compression
Using Adaptive Coding and Partial String Matching,”

IEEE Transactions on Communications, vol. 33, No. 4,

Apr., 1984, pp. 396-403.

M. E. Gonzalez Smith and J. A. Storer, “Parallel Algo-
rithms for Data Compression,” Journal of the Association
Jor Computing Machinery, vol. 32, No. 2, Apr., 1985, pp.
344-373.

M. Wells, “File Compression Using Variable Length
Encodings,” The Computer Journal, vol. 15, No. 4,
Nov., 1972, pp. 308-313.

Mark Bianchi, Jeffrey J. Kato and David J. Van Maren,
“Data Compression in a Half-Inch Reel-to-Reel Tape
Drive” Hewlett-Packard Journal Jun. 1969.
Preliminary Product Specification, InfoChips Systems,
Inc. IC-105 Compression Decompression Processor
Hewlett-Packard Product Specification, “Magic Data
Compression IC”.

U.S. Patent Sep. 8, 1992 Sheet 1 of 8 5,146,221
£ 1a.
~5
Con /ro//lef mMPY /Z
Uncompressed |Compression Compressed
Hog? —= Da ;a. nit ﬁfa o DGV/I“
: 2 /4
O ’
/G
7
/-
Controller MPY é z
e I
Yncompressed Decornpression omp resse
N/au-/ — Data / Unid 4;‘ D;wcc
/4
10 20 AN 2
/6
£ 7. 15.
i |
{ (INSIDE COMPRESSION CHIP) ;
!]
s 242 [
| ——&mar’ FIFO Z Small FIFO e
' BAM FIFO
ontro/

External AN
(Compression Data
SProctures

£75.8

(OUTSIDE COMPRESSION CHIP)

U.S. Patent

Sep. 8, 1992

£ 2.

Sheet 2 of 8

5,146,221

/9 Qbbbbbbbb = ynencoded ("raw’) B-bit byte bbbbbbbb

2/ _/-]<off.se/)</¢n37‘b> = J'fr'/'ng al offset back into history
of grven length

Offzel encodh
2 ofisat s *

o

{{
1coooooco

&1

ng (# bytes back info hisfory £ ¢ pasition):
(A T Y i 4l)

Ocooooocooce = 11-bif (long) offsel 1.2047 byles
25 - String /eng/h encoding Jable :
< /enjr‘b > = 00

ol

10

11 00
11 o1
11 10

11 11 cooo

11 11 ool
11 ooro
11 11 oo

11 11 oreo

1l 11 o101

11 11 0110

11 11 o117
11 1000

1007
1010
1011
1100
1701
1110
1211 0000
1111 ool
1111 0010

1111 1110
1711 1111 ooco
1111 1111 O0OOI

~22
~ 24
‘es ~ 26
eS ~ 28
eS ~ 30
fes ~ 32
€S ~ 34

e

[\
T

I EEEEEREMN
SOaANGRAGN
OO 000
THR
!

we

NN
[

&3
g
¢}
8«

yres ~42
213 byles~44
* 15 bytes 48
216 byles~SO
«]7 byles-52

<59 b s ~
’éﬁiﬁu-%?
*39 bytes~ 74

U.S. Patent Sep. 8, 1992 Sheet 3 of 8 5,146,221

£ 3
77

el 79
-~ r r
Inpuf byte stream Oulput bit stream Comment
|===>-A O aaaaaaaa . Raw e 4 ~ 70
| 8 O bbbbbbbb RPaw %‘ 8 ~78
L 1ia § Pvoccer 11 o by/:f’br;f 5
| |-<~ o0 ”
A (LS = Vel ot 71
I A encode’short offset [ength &2
| A
) Y-
i c O eccececce Paw byte ¢ ~84
--=ZX--7 1 10001001 01 String of /cnjﬂ 3
8 at offset ¥ 9 |
A 86

5,146,221

Sheet 4 of 8

Sep. 8, 1992

U.S. Patent

XN - dLdH
= (L) 2SO

ATV $L3SHH40

(LX3N) 5435440

[J o e o [) * O o
7
) (4x3v) _x\o\».i
|
eeoe |20l D LI 2o\ 1o
/ (SPr4pud 2 1Qwaly)
20/ AT AXOLSIH
M LdH
FOE? 200 EZEL
go/ .“_w
o/ 4 e o @ °
/
ﬂaﬁ.\k\tu d2/0YSOLY) N
J790.L HSUH LdI 434412 (297D = 701H

yjrm ©20/0/54

o1 F

5,146,221

Sheet 5 of 8

Sep. 8, 1992

.\h!\\.\h\\.\i& vo.‘\‘..\}\\
SourpnesgnS sof QL Plof PHMIVIP ISCE
DEOp » 242 /9% Y5TH
g = a5 sYng YN POz > I2/SAIN

2 SDY qudsss we P .
F2/80y 3N \h\.ﬂ\ n&ﬁ 4
SLISA SO AXQUSIH °f«! .\-Set..\ 0T

VAT ——
2 2: wpyopou
LXI/V 3: 4 YO

o~ L]

SIA
! _ ¢Aq @\“u\}o_

VA Se——
o5/ SIA

AP, ”
I,
LX) Asopsiy 4

P, 1

4
w27qofo+ LN poy 793N 5 (AL H) A+CFSiH
\ - lgluu Q.&\\ $f28, </
gL/
oo/ N*k\x&.‘al;u..k\w.uu\m%%\ _ (H) LY =: f*oU
_E PGy | 83/ Yrosanroozan Dy ey - : H
wyyIpoLy 5 Yo A

LA Lo 1954100 29 Trrappyopn-4ayopon = L

wraf$ 47H4rQ
1§

U.S. Patent

28/ (PYo4*37) |

Vo= waryorom| Yrevoryarom--wa1y5p0ur| | 1t woryopom =: 240921 o0
401 \ 91~ 2917 L

U.S. Patent Sep. 8, 1992 Sheet 6 of 8

£ 156.5b.
Qn/'/:'a. lire 110

HPIR =0 W /12
4fch£ren:'0 - //4
Pﬁb(n;:'lz -~ /16
P/.’:A.off 0O W/I8

)

120
c

Fill Hash fable with HPOTR-MEMSIZE

(/?e furn)—- /22

Wlagh Ta b(FRfshPrr): « HPTR-MEMSIZE

1

@A Pt RFshPIr + 1 /3¢
Rfshent =12 /36

(Retarn)%

5,146,221

5,146,221

Sheet 7 of 8

Sep. 8, 1992

U.S. Patent

ozz | T+dLdQ=: dLd|

w —

poz~T*au00-:a100|

202 ~| 2 = @QuaQ)Aof*

ﬂ

ooz™l 2 #eno

2, xQ mD4 420
&2 8 =:(2Ldq) Ao SiH gss” (% /
‘ SIA
21 $ #neno 2
~—on O=L
e\ (- 2udQrotsirt=:§ 26/
212 - 61~ (8 6oL 495
(7) 1#627 Keys poo)
Fu3 oz’ on
é 26/ o210
Y o-d
$02
202 (@) 1% bursys po0 R\A&
L

5,146,221

Sheet 8 of 8

Sep. 8, 1992

U.S. Patent

202 022) Q\h~ <B4 U0 w\h\h\) DY
#5247 e i 73 gse
luh&N 7% 449 #7%hn0 — ‘
oL, ~
v yAY o 48 q ng 43¢y
T P Wod 7 He—T— oz " .
oz H e AR
o %5’ 567 | gy /22
) P, || o 1 %WMN i
- L . - - \\K\
e P Wy 7 J7 4 | Y™ s
g62 %27 W11 | oor (062 oti L.W_wi s
Afspoces ._....t\\w.mm % PEE
v \ | [L N QN‘
27,3 o/If 252
woy 7
f (554 ch.m.\Nnt v
224 ~p26° B \ QM\N
[4 4 ~
20¢ § .ﬁ k\uﬂ'v;./ 208 ——
22y | , : e
e af “ . P
g 1 o Ill . ‘A\e
RPN — S .
—R NNM.. \Qta Ld, \,\ e l\'lh.lhﬂ.vllll.l.lll .\0\“.»“\\\.\“%0
7 T
oe” VE ey
/ o ol >
“ \/\ e Z ‘h;..ﬂl.“ et QNN
ca\n\aoc * L\UQ

5,146,221

1

DATA COMPRESSION APPARATUS AND'
METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to data stor-
age and communication systems, and more particularly
to data compression systems and methods which im-
prove the capacity of data storage and communication.

2. Description of the Prior Art

Due to the insignificant differences between data
compression in data storage and data communication
systems, only data storage systems are referred to; par-
ticularly the data files stored in such systems. However,
all data storage systems can easily be extended to cover
data communications systems and other applications as
well. A file is assumed to be a sequential stream of bytes
or characters, where a byte consists of some fixed num-
ber of bits (typically 8), and the compression system
transforms this input byte stream into a “‘compressed”
output stream of bytes from which the original file
contents can be reconstructed by a decompression unit.

It is well-established that computer data files typi-
cally contain a significant amount of redundancy. Many
techniques have been applied over the years to “com-
press” these files so that they will occupy less space on
the disk or tape storage medium or so that they can be
transmitted in less time over a communications channel
such as a 1200 baud modem line. For example, there are
several widely used commercial programs available for
personal computers (e.g., ARC Software by Systems
Enhancement Associates, Inc., Wayne, N.J., 1985)
which perform the compression and decompression
functions on files. It is not uncommon for such pro-
grams to reduce the size of a given file by a 2:1 ratio (or
better), although the amount of reduction varies widely
depending on the contents of the file.

There are many approaches in the prior art for com-
pressing data. Some of these approaches make implicit
assumptions about certain types of files or data within
the files. For example, a bit image of a page produced
using a scanner typically has most of its pixels blank,
and this tendency can be exploited by a compression
algorithm to greatly reduce the size of such files. Simi-
larly, word processing files contain many ASCII char-
acters which are easily compressed using knowledge of
which characters (or words) occur most frequently in
the language of interest (¢.g., English). Other compres-
sion methods are independent of the file type and at-
tempt to “adapt” themselves to the data. In general,
type-specific compression techniques may provide
higher compression performance than general-purpose
algorithms on the file for which the techniques are
optimized, however they tend to have much lower
compression performance if the file model is not cor-
rect. For instance, a compression method optimized for
English text might work poorly on files containing
French text.

Typically, a storage system does not “know” what
type of data is stored within it. Thus, data-specific com-
pression techniques are avoided, or they are only used
as one of a set of possible techniques. For example,
ARC uses many methods and picks the one that per-
forms best for each file; note however that this ap-
proach requires significant computational overhead
compared to using a single compression method.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Another important aspect of any compression
method is the speed at which a file can be processed. If
the speed of compression (or decompression) is so low
as to significantly degrade system performance, then the
compression method is unacceptable even though it
may achieve higher compression ratios than competing
methods. For example, with streaming tape systems, if
the file cannot be compressed fast enough to provide
data at the required rate for the tape drive, the tape will
fall out of streaming and the performance and/or capac-
ity gains due to compression will be nullified.

One of the most common compression techniques is
known as run-length encoding. This approach takes
advantage of the fact that files often have repeated
strings of the same byte (character), such as zero or the
space character. Such strings are encoded using an
““escape” character, followed by the repeat count, fol-
lowed by the charzcter to be repeated. All other char-
acters which do not occur in runs are encoded by plac-
ing them as “plain text” into the output stream. The
escape character is chosen to be a seldom used byte, and
its occurrence in the input stream is encoded as a run of
length one with the escape character itself as the char-
acter. Run-length encoding performs well on certain
types of files, but can have poor compression ratios if
the file does not have repeated characters (or if the
escape character occurs frequently in the file). Thus, the
selection of the escape character in general requires an
extra pass on the data to find the least used byte, lower-
ing the throughput of such a system.

A more sophisticated approach is known as Huffman
encoding (see, Huffman, David A., “A Method for the
Construction of Minimum-Redundancy Codes”, Pro-
ceedings of the IRE, pp. 1098-1110, September 1952).
In this method, it is assumed that certain bytes occur
more frequently in the file than others. For example, in
English text the letter “t” or “T” is much more frequent
than the letter *“Q". Each byte is assigned a bit string,
the length of which is inversely related to the relative
frequency of that byte in the file. These bit strings are
chosen to be uniquely decodeable if processed one bit at
a time. Huffman derived an algorithm for optimally
assigning the bit strings based on relative frequency
statistics for the file.

The Huffman algorithm guarantees that asymptoti-
cally the compression achieved will approach the “en-
tropy™ of the file, which is precisely defined as,

H = SUM — [p(i) log2{p()};

where

) = probability of character / within the file
= (# occurrences of i)/(total # characters in file).

The units of H are in bits, and it measures how many
bits (on the average) are required to represent a charac-
ter in the file. For example, if the entropy were 4.0 bits
using an 8-bit byte, a Huffman compression system
could achieve 2:1 compression on the file. The higher
the entropy, the more “random” (and thus less com-
pressible) is the data.

Huffman encoding works very well on many types of
files. However, assignment of bit strings to bytes pres-
ents many practical difficulties. For example, if a pre-
assigned encoding scheme is used (e.g., based on fre-
quency of occurrence of letters in English), Huffman
encoding may greatly expand a file if the pre-assigned

5,146,221

3

scheme assumes considerably different frequency statis-
tics than are actually present in the file. Additionally,
computing the encoding scheme based on the file con-
tents not only requires two passes over the data as well
as applying the Huffman algorithm to the frequency
statistics (thus lowering system throughput), but it also
requires that the encoding table be stored along with the
data, which has a negative impact on the compression
ratio. Furthermore, the relative frequency of bytes can
easily change dynamically within the file, so that at any
point the particular encoding assignment may perform
poorly.

There have been many variations on the Huffman
approach (e.g., Jones, Douglas W., “Application of

5

10

4

lends itself to a simple implementation. Since the table is
constructed using only previously encoded bytes, both
the compression and the decompression system can
maintain the same table without any extra overhead
required to transmit table information. Hashing algo-
rithms are used to find matching strings efficiently. At
the start of the file, the table is initialized to one string
for each character in the alphabet, thus ensuring that all
bytes will be found in at least one string, even if that
string only has length one.

The Ziv-Lempel algorithm is particularly attractive
because it adapts itself to the data and requires no pre-
assigned tables predicated on the file contents. Further-
more, since a string can be extremely long, the best case

Splay Trees to Data Compression”, Communications of 15 compression ratio is very high, and in practice ZL out

the ACM, pp. 996-1007, Vol. 31, No. 8, August 1988)
and they usually involve dynamic code assignment
based on the recent history of input bytes processed.
Such schemes circumvent the problems discussed
above. Other approaches include looking at two byte
words (bi-grams) at the same time and performing Huff-
man encoding on the words.

A recent variation of Huffman encoding is present in
U.S. Pat. No. 4,730,348 to MacCrisken (and other pa-
tents referenced therein). In MacCrisken, Huffman
codes are assigned to bytes in the context of the previ-
ous byte. In other words, a plurality of encoding tables
are used, each table being selected according to the
previous byte. This approach is based on the observa-
tion that, for example, in English the letter “u” does not
occur very frequently, but following a “q” it appears
almost always. Thus, the code assigned to “u™ would
be different depending on whether or not the previous
letter was “q” (or “Q”). For a similar scheme using
multiple tables and dynamic code assignment see, Jones,
Douglas W, “Application of Splay Trees to Data Com-
pression”.

The above described Huffman-type approaches tend
to be computationally intensive and do not exception-
ally achieve high compression ratios. One explanation
for this observation is that a pure Huffman code based
on 8-bit bytes can achieve at best an 8:1 compression
ratio, and only in the optimal situation when the file
consists of the same byte repeated over and over (i.e.
entropy =0). In the same scenario a simple run-length
encoding scheme could achieve better than a 50:1 com-
pression ratio. The average performance will be some
combination of best and worst case numbers, and limit-
ing the best case must also limit the average. An ideal
Huffman code should be able to use “fractional” bits to
optimize code assignment, but the practical limitation of
integral numbers of bits in each code limits the Huffman
performance to well below its theoretical limit. A to-
tally different approach to compression was developed
by Ziv and Lempel (see, Ziv, J. and Lempel, A., “Com-
pression of Individual Sequence via Variable Rate cod-
ing”, IEEE Transactions on Information Theory, Vol.
IT-24, pp. 530-536, September 1978) and then refined
by Welch (see, Welch, Terry A., “A Technique for
High-Performance Data Compression”, IEEE Com-
puter, pp. 8-19, June 1984). Instead of assigning variable
length codes to fixed size bytes, the Liv-Lempel algo-
rithm (“ZL") assigns fixed-length codes to variable size
strings. As input bytes from the file are processed, a

20

25

30

35

40

45

50

35

60

performs Huffman schemes on most file types. It is also
quite simple to implement, and this simplicity manifests
itself in high thronghput rates. There are also some
drawbacks, however, to the ZL compression method.
The ZL string search is a “greedy” algorithm. For
example, consider the string:

ABCDEFBCDEF;

where A,B,C,D.E,F are any distinct bytes. Note that
the ZL string search would add the following strings to
its string table: AB, BC, CD, DE, EF, BCD, DEF, the
only strings of length two or greater that can be output
using this algorithm, up to the point shown, are BC and
DE. In actuality the string BCDEF has already oc-
curred in the input. Thus, while ideally the second
BCDEF string would be referenced back to the original
BCDEEF, in practice this does not occur.

A more significant disadvantage to the ZL approach
is that the string table for holding the compressed data
will tend to fill up on long files. The table size could be
increased, however, this approach would require more
bits to represent a string and thus it would be less effi-
cient. One approach to handling this deficiency would
be to discard all or part of the table when it fills. Be-
cause of the structure of the algorithm, the most re-
cently found strings have to be discarded first, since
they refer back to previous strings. However, it is the
most recent strings that have been dynamically adapt-
ing to the local data, so discarding them is also ineffi-
cient. Basically, the ZL string table has infinite length
memory, so changes in the type of data within the file
can cause great encoding inefficiencies if the string table
is full.

It is also possible to design a compression system that
utilizes more than one method simultaneously, dynami-
cally switching back and forth depending on which
method is most efficient within the file. From an imple-
mentation standpoint, such a scheme may be very costly
(i.e., slow and/or expensive), however the resulting
compression rate could be very high.

One such method of dynamically switching back and

“forth is disclosed in MacCrisken. As mentioned above,

a bi-gram Huffman method is utilized as the primary
compression technique. Typically the compression and
decompression system start with a pre-defined (i.e.
static) set of code tables. There may be a set of such
tables, perhaps one each for English, French, and Pas-
cal source code. The compression unit (sender) first

table of strings is built up, and each byte or string of 65 transmits or stores a brief description of which table is

bytes is compressed by outputting only the index of the
string in the table. Typically this index is in the range
11-14 bits, and 12 bits is a common number because it

to be used. The decompression unit (receiver) interprets
this code and selects the appropriate table. During com-
pression, if it is determined that the current table not

5,146,221

5

performing well, the sender transmits a special (“es-
cape”) Huffman code that tells the receiver to either
select another specific pre-defined table or to compute a
new table based on the previous data it has decom-
pressed. Both sender and receiver compute the table
using the same algorithm, so there is no need to send the
entire table, although it takes some time to perform the
computation. Once the new table is computed, com-
pression proceeds as before. It should be noted that
although there is considerable computational overhead,
there is no reason why this technique could not be fur-
ther adapted to a dynamic Huffman scheme.

In addition to the Huffman encoding, MacCrisken
used a secondary string-based compression method.
Both sender and receiver maintain a history buffer of
the most recently transmitted input bytes. For each new
input byte (A), the bi-gram Huffman code is generated,
but an attempt is also made to find the string repre-
sented by the next three input bytes (ABC) in the his-
tory using a hashing scheme. The hash is performed on
three byte strings and a doubly-linked hash list is main-
tained to allow discarding of old entries in the hash list.
If a string is found, a special Huffman escape code can
be generated to indicate that a string follows, and the
Jength and offset of the string in the history buffer is
sent. The offset is encoded in 10 bits, while the length is
encoded into 4 bits, representing lengths from 3-18
bytes. Before such a string is sent however, the com-
pression unit generates the Huffman codes for all the
bytes in the string and compares the size of the Huffman
codes with the size of the string bits. Typically the
Huffman string escape code is four bits, so it takes 19
bits to represent a string. The smaller of the two quanti-
ties is sent.

Note that the MacCrisken string method avoids the
problems of the Ziv-Lempel method in that the string
“table” never fills up, since the old entries are discarded
by removing them from the hash list. Thus, only the
most recent (within 1K bytes) strings occupy the table.
Also it is not “‘greedy” since in principle all matching
strings can be found. In practice, a limit on the length of
the string search is imposed. Additionally, the MacCris-
kin method is computationally inefficient because it is
effectively performing two compression algorithms at
once, and thus the computational overhead is quite
high.

SUMMARY OF THE INVENTION

The present invention is a compression/decompres-
sion system which increases the capacity of digital stor-
age or transmission media, such as magnetic disk or tape
storage devices. The compression method is fully adapt-
ive, requiring no pre-initialized encoding tables, and is
optimized for byte-oriented character streams, such as
computer files. It overcomes many of the difficulties
found in the prior art and generally achieves higher
compression ratios than the previous techniques as dis-
cussed above.

During compression, a history buffer of previously
processed bytes is maintained in the compression appa-
ratus. Compression is achieved by locating repeated
strings of bytes in the history buffer. If no matching
string containing the byte currently being examined is
found, the byte is appended to the output data stream
after a special tag bit to indicate that the byte is “raw”
(i.e., not a string). If such a string is found, its length and
relative position within the history buffer are encoded
and appended to the output (compressed) data stream.

15

20

25

30

35

40

45

55

65

6

String length and positions are encoded in such a fash-
ion that even two-byte repeated strings result in a com-
pression ratio better than 1:1. In other words, only in
the case of a single “raw” byte does data “‘expansion”
occur.)

The string length encoding is variable length, and the
string position may also be encoded as a variable length
field. Thus, the present invention maps variable length
input strings to variable length output codes.

A hash table is used to perform efficient string
searches, and a hash “‘refresh” method is utilized to
minimize the computation overhead required for main-
taining the hash data structures. These techniques allow
for high-speed compression of the input data, at input
rates up to several megabytes/second using currently
available integrated circuit technology.

The following is a more detailed description of the
preferred embodiment of the present invention which
includes a method and apparatus for converting an
input data character string into a variable length en-
coded data string in a data compression system. The
data compression system comprises a history array
means. The history array means has a plurality of
entries and each entry of the history array means is for
storing a portion of an input data stream. The method of
the preferred embodiment comprises the following
steps.

The first step includes performing a search in the
history array means for the longest data string which
matches the input data stream. If such a matching data
string is found within the history array means, the sec-
ond step includes encoding the matching data string
found in the history array means by appending to the
variable length encoded data stream a tag indicating
that the matching data string was found by appending
and a string substitution code. The string substitution
code includes a variable length indicator of the length
of the matching data string and a pointer to the location
within the history array means of the matching data
string.

If a matching input data string is not found within the
history array means, the second step includes the step of
encoding the first character of the input data stream by
appending to the variable length encoded data stream a
“raw” data tag which indicates that no matching data
string was found in the history array means and the first
character of the input data stream is also appended to
the variable length encoded data stream. In this way,
the input data stream is converted into a variable length
encoded data stream.

The step of performing the search in the history array
means for the longest matching data string may further
include the step of limiting the search to a predeter-
mined number of inquiries into the history array means
for the longest matching data string. Additionally, the
step for performing the search for the longest matching
data string can also include the step of performing a
hashing function.

In order to perform the hashing function, a data com-
pression system includes certain hash data structures
including a history array pointer, a hash table means and
an offset array means. The history array pointer points
to the latest entry in the history array means. The hash
table means has a plurality of entries and each entry in
the hash table means stores a pointer which points into
the history array means. The offset array means has a
plurality of entries, and each entry provides a link to
one of the entries in the history array means. The step

5,146,221

.

for performing the hash function typically includes the
following steps.

First, obtaining the result of the hashing function
which provides a pointer to one of the entries in the
hash table means. Then, obtaining the pointer stored in
the hash table entry pointed to by the result of the hash
function. Next, calculating the difference between the
history array pointer and the pointer read from the hash
table means and storing the difference into the offset
array entry pointed to by the history array pointer.
Lastly, storing the history array pointer into the hash
table entry pointed to by the hash function.

The preferred embodiment of the invention also in-
cludes a refresh function. The refresh function periodi-
cally examines the pointers stored in the entries of the
hash table to determine whether the pointer of each
entry differs from the history pointer by a predeter-
mined amount. If the difference in the pointer and the
history array pointer is greater than a predetermined
amount, then the entry in the hash table is replaced by
an invalid value which reinitializes the entry.

Additionally, the preferred embodiment provides an
initialization routine which effectively replaces all
entries of the hash table with invalid values which effec-
tively initializes the table.

The preferred embodiment of the invention also in-
cludes a method for decoding the variable length en-
coded data stream which is output from the compres-
sion unit. The method for decomposition includes the
following steps.

First, the variable length encoded data stream is
parsed into separate portions and each separate portion
starts with one of the tags. Next, the tag of each separate
portion is evaluated to determine whether the tag is the
raw data tag or the tag indicating an encoded matching
data string. When the tag indicates that there is an en-
coded matching data string, the next step includes inter-
preting the length indicator and the pointer of the sub-
stitution code for generating the matching data string.
In this way, a portion of the original input data stream
is reconstructed. Alternatively, when the tag is a raw
data tag, then the first character of the encoded input
data stream is obtained and in this way a portion of the
original input data stream is reconstructed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a block diagram of a compression unit
accepting uncompressed data and outputting com-
pressed data according to the present invention.

FIG. 14 is a block diagram of a decompression unit
accepting compressed data and outputing decom-
pressed data according to the present invention.

FIG. 2 depicts the compression format used by the
preferred embodiment of the present invention.

FIG. 3 depicts a simplified example of compression
encodings according to the compression format de-
picted in FIG. 2.

FIG. 4 shows the data structures implemented by the
preferred embodiment of invention for performing
searches on the input data stream.

FIG. 8a is a flow block diagram of the COMPRES-
SION OPERATION Routine performed by the com-
pression unit (FIG. l12) for encoding the input data
stream.

FIG. 56 is a flow block diagram of the INITIAL-
IZATION Routine referenced during the COMPRES-
SION OPERATION Routine (FIG. 5a) for initializing
the hash table of the data structure shown in FIG. 4.

20

25

30

35

45

55

65

8

FIG. 5S¢ is a flow block diagram of the REFRESH
HASH Routine referenced during the COMPRES-
SION OPERATION Routine (FIG. Sa) for partially
reinitializing the hash table the data structures shown in
FIG. 4.

FIG. 6 is a flow block diagram of the DECOM-
PRESSION OPERATION Routine.

FIG. 7 is a schematic block diagram of a hardwired
representation of the COMPRESSION OPERATION
Routine (FIG. 5a).

FIG. 8 is a block diagram of the external RAM
FIFO.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIGS. 1a and 15 a compression unit 4
and a block diagrams of a decompression unit 6 accord-
ing to the present invention are depicted. Both units 4
and 6 can be hardware modules or software subroutines,
but, in the preferred embodiment, the compression 4
and decompression 6 units are incorporated into a single
integrated circuit (FIG. 7). The integrated circuit is
used as part of a data storage or data transmission sys-
tem, which is controlled by a microprocessor #5. Re-
ferring to FIG. 14, an input data stream 8 is received by
the compression unit 4 from a data source called the
host 10, and the encoded compressed data stream 12 is
transmitted to a data sink called the device 14.

Similarly, in FIG. 15, the decompression unit 6 re-
ceives a compressed data stream 18 from the device 14
{which in this case is a data source), reconstructs the
original uncompressed data stream 20, and outputs it to
the host 10 (which in this case is a data sink). In the
preferred embodiment, decompression and compression
are not performed simultaneously, however in an alter-
nate embodiment they could be performed at the same
time.

All data structures (e.g. history array 102, hash table
100, and offset array 104 (FIG. 4)) are maintained in a
separate external RAM chip 16. RAM 16 could be con-
tained within the chip, but in current technology a chip
containing both RAM 16 and the compression/decom-
pression units (4 and 6) would be very expensive. RAM
16 must contain at least 16K bytes of data in the pre-
ferred embodiment, and it may be configured as 16K by
8 bits or 8K by 16 bits. The preferred embodiment can
also use up to 32K bytes of RAM 16, allowing for a
larger hash table (FIG. 4) which can improve perfor-
mance A more detailed explanation of the preferred
data structures implemented by the preferred embodi-
ment is discussed below during the discussion of the
compression unit that builds and maintains them.

Those skilled in the art shall recognize that the values
of all numeric parameters (e.g., MEMSIZE, 16-bit
HPTR, etc.) discussed below can be modified without
affecting the basic concept behind the compression
decompression technique of the present invention.

Referring to FIG. 2, the encoding scheme of the
preferred embodiment of the invention is shown. In the
preferred embodiment, the method for encoding utilizes
a tag bit to indicate whether an output data string is
“raw” or uncompressed which is indicated by a “*0” bit,
0BBBBBBBB =encoded “raw”, 8-bit byte (19, F1G. 2)
or compressed indicated by a "1 bit, 1(offset)-
(length) =string at offset back into history buffer (21,
FIG. 2). In the preferred embodiment, the offset encod-
ing or the number of bytes back into the history buffer
is one of two forms (23, FIG. 2). A short form having 7

5,146,221

9

bits can create an offset of 1 to 127 bytes and a long
form having 11 bits can create an offset of 1 to 2,047
bytes. The long and short offset forms are differentiated
by a single bit; **1” designating short form and “0” des-
ignating long form. The particular length encoding
scheme used by the present invention is shown in Table
25 (FIG. 2). From the top of the Table 25, a 2 byte
length is encoded by 2 bits having the values “00” (22,
FIG. 2). Likewise, encoded lengths of 3 and 4 bytes are
represented respectively by 2 bits having the values
“01” (24, FIG. 2) and **10” (26, FIG. 2). Byte lengths of
5 to 7 are represented by 4 bits, 11 00” to “11 10"
(28-32, FIG. 2). Byte lengths of 8 to 22 are represented
by 8 bits, <11 11 0000 to *“11 11 1110” (34-62, FIG. 2).
After 22 byte lengths, the next byte lengths between 23
and 37 are represented by 12 bits, (64-70, FIG. 2) and so
on. The advantage of the length encoding scheme
shown in Table 25 is for enabling an efficient procedure
for encoding the length of a bit string during the com-
pression method discussed below. Although different
encoding methods have been utilized for encoding
length and offset, the compression ratios obtained by
the above approaches are very similar to the preferred
embodiment.

FIG. 3 shows a simple results table utilizing the com-
pression scheme shown in F1G. 2. The table is separated
into three columns, the first column 75 represents an
input byte stream, the second column 77 is the encoded
output stream, and the last column 79 provides com-
ments. Each row of the encoded output bit stream is
referenced 76-86. The basic operation for compressing
the input byte stream 75 (ABAAAAAACABA) pro-
ceeds as follows. Compression is achieved by locating
matching strings of bytes in the input byte stream 75. In
the preferred embodiment, a hashing structure shown in
FIG. 4 is utilized for performing an efficient hash
search. A more detailed discussion of the structure
shown in FIG. 4 and hash search will be presented
shortly. In the preferred embodiment, compression
occurs for byte streams which are two bytes or longer.
When the first input byte is received by the compression
unit 4 a search is performed to determine whether there
were any other 2-byte strings in history which match
the first input byte. The first input byte is character “A”
(76, FIG. 3) which has no prior history and, thus, this
first byte is appended to the encoded output stream after
a tag bit of “0” to indicate that the 8-bit byte is “raw”
(or not compressed) as shown at 76, 77 (FIG. 3).

The next input byte in the input byte stream is a *B”
character. So far, the only other byte in the byte stream
is non-matching (the history has “A”) and, thus, the
byte for character “B” and a “raw” byte indicator are
output as shown at 78, 77 (FIG. 3). The next input byte
in the input stream 75 is character “A”. Because in the
preferred embodiment only strings having two or more
bytes are compressed, the byte for character A is left
uncompressed and it is output as a raw data byte as
shown at 80 (FIG. 3). However, when the next input
byte (character “A") is encountered, a 2-byte string is
found. Compression unit 4 lends a match of length 2 and
mode compares the next bytes of the input byte stream.
Because the next input byte matches the prior bytes
(e.g. character “A”), the match length is incremented
and the string match is “extended™. This process contin-
ues for the next 4 input bytes having character “A”. As
shown at row 82, FIG. 3, the encoded version of the bit
string (AAAAAA)is *11 0000001 1100”. The first bit of
the encoded string is a 1 indicating the compressed

i0

20

25

30

35

40

45

53

60

65

10

encoding mode. The next bit in the bit string indicates
that the short form of the offset is utilized (23, FIG. 2).
The offset is 0000001 indicating an offset of 1 byte and
the length as shown in Table 25 (FIG. 2) for “1100” is
5 bytes. The rest of the bytes in the input byte stream 75
are encoded using the same strategy as discussed above.

In the above example, if a byte did not match, then
compression unit 4 would have continued to search
back through the history of the input byte stream for a
string that matched up to and included the current input
byte. If such a new string was found, the match length
would be incremented and the position of the new
matching string would be determined and saved; this
string match has thus been “extended”. If such a new
string is not found, or if too many prior input byte

- entries have to be searched, the current matching string

is assumed to be the maximal string and in its encoded
form or raw byte form it is output. In the encoded form,
its length and relative position within the history storing
the input byte stream are appended to the output (com-
pressed) data stream. The offset is computed as the
number of bytes from the start of the string to the
matched byte in the buffer, which ranges in the pre-
ferred embodiment from 1 to the memory size (“MEM-
SIZE"”) - 1. As stated above, length and offsets are
encoded as shown in FIG. 2. Note that, in contrast to
the approaches discussed in the background section of
this application, the compression method of the pre-
ferred embodiment results in variable length strings
mapped to variable length output codes.

Those skilled in the art will recognize that there are
many implementations for performing string search
operations on the input byte stream. In particular, there
are many hashing techniques and search methods that
could be used to find matching strings. For a complete
background on various hashing techniques, refer to
Knuth, Sorting and Searching, The Art of Computer
Programming (Vol. 3) pp. 506-549 (1973), which is
herein incorporated by reference. Below is a more de-
tailed description of the particular hashing structure
utilized by the preferred embodiment. The data struc-
ture and approach to be discussed have been selected
because they minimize the number of RAM-cycles re-
quired for the compression function, thus maximizing
the system throughput.

Referring now to FIG. 4, the preferred embodiment
of the hash structure is now discussed. A history array
102 containing the last 2048 characters of previously
processed input data (which has already been com-
pressed or which is uncompressed as raw data) is stored
in RAM 16 (FIG. 1a). When new input data is received
by the compression unit 4 (F1G. 1a), the present inven-
tion checks to see if a “‘string™ of at least 2 bytes in the
new input data matches the string in the history array
102. If so, this string of input data is encoded or, if it is
not, it is represented as raw data as described above.

A hash table 100 is utilized to quickly find specified
strings in the history array 102. The hash table 108 is
made up of a series of bin entries which contain history
array pointers in to the history array. Another data
structure called the offset array 104 is a hash link table.
The first item in each linked list in the offset array 104
points to the previous entry in the history array which
corresponds to a particular hash value, and the last item
(which may be an invalid pointer) in the linked list
points to the oldest entry associated with this hash
value. The compression unit 4 maintains a 16-bit history
pointer HPTR 108 which is incremented after each

5,146,221

11

input byte is processed. HPTR is initialized to 0 and
wraps back to 0 after 64K bytes have been processed by
the compression unit. The offset array 104 is actually a
secondary hash which consists of a singly linked list. If
a particular offset is greater than MEMSIZE-
MAXSTR (where MAXSTR is the maximum string
being searched) or if the sum of all the links from the
most recent entry of the list is greater than MEMSIZE-
MAXSTR, then there are no further valid entries in the
particular hash bin (value). In this way, the entries older
than MEMSIZE-MAXSTR effectively “fall off” the
end of the history array 102. This aspect of the present
invention allows use of a singly linked list in the offset
array 104, which can be maintained with less than half
the memory accesses compared to a doubly linked list.
Use of the singly linked list, however, necessitates a
hash refresh operation which is discussed below.

Referring now to FIGS. 5a, 5b and 5¢, a detailed flow
diagram of the compression operation of the present
invention is now discussed. A hard-wired version show-
ing the particular data path of the flow diagram (FIGS.
8a, 5b and 5¢) is shown in FIG. 7.

More particularly, referring to FIG. 5a, the COM-
PRESSION OPERATION Routine starts at block 108.
Then, at block 110, the INITIALIZE Routine (FIG.
5b) is called to initialize the hash structure shown in
FIG. 4. This operation is typically performed during
system initialization and it does not have to be repeated,
even if one “compression” has been completed and a
new one is begun.

Referring to FIG. 5b at block 112, the hash pointer
108 (HPTR) is set equal to 0. At block 114 (FIG. 8b), a
match length variable (“MATCHLEN") for keeping
track of the current length of the presently encoded bit
string is set to 0. Then, at block 116, a refresh count
variable (“RFSHCNT”) (to be discussed further) is set
equal to 12. At block 118, a refresh pointer variable
("RFSHPTR”) (to be discussed further) is set to 0.
Then, during block 120, the hash table 100 is filled with
the value HPTR-MEMSIZE. This step effectively
empties the hash table 100 of all prior valid values.
Because hash table 100 is very large, requiring such an
initialization process (FIG. 5b) each time a new input
data stream is presented with involved unacceptable
latency in most systems. Therefore, a HASH RE-
FRESH Routine (FIG. 5¢) is utilized to distribute the
cost of initialization over the entire period of the com-
pression, thus minimizing the latency between compres-
sion operations.

Referring back to FIG. 5aq, after the INITIALIZE
Routine (FIG. 5b) has been completed, the compression
unit 4 (FIG. 1a) can begin to accept bytes from the
incoming data stream. At block 124, the variable
REFSHCNT is checked to determine if it is equal to 0.
If REFSHCNT has been decremented to be 0, then
processing continues at block 126. During block 126,
the REFRESH HASH Routine (FIG. 5¢) is performed.

The purpose for the HASH REFRESH Routine
(F1G. 5¢) is for accounting for the eventual situation
when the HPTR wraps back to an old valve in a partic-
ular bin of the hash table 100. When this occurs, that
hash bin 106 within the hash table 100, which is actually
very old, suddenly appears to be very new. The HASH
REFRESH Routine (FIG. 5¢) is responsible for period-
ically examining each entry (HASH TABLE (j)) in the
hash table 100 to determine if entry is too old; e.g,, if
HPTR —HASHTABLE(j)>OLDHASH, where
OLDHASH is an appropriately chosen value such as

—

0

20

25

30

40

45

55

65

12

16K. If the entry is too old, then HASHTABLE) is
replaced with HPTR —~MEMSIZE. This value is old
enough to be treated as an invalid or *NIL" pointer, but
it allows up to 64K — MEMSIZE more bytes to be pro-
cessed without HPTR wrap problems. The rate in
which the hash table 100 is refreshed is computed as
follows. The goal is to ensure that all hash table bins are
examined at least once every 64K —OLDHASH byites.
This goal is achieved by performing a single hash re-
fresh every (64K —-OLDHASH)/HASHSIZE input
bytes, where HASHSIZE is the number of bins within
the hash table 100. In the preferred embodiment, this
value is 48K/4K =12, so, for every 12th input byte, a
single hash entry in the hash table 100 is refreshed.

Note that a refresh operation always involves one
memory cycle, but if the bin entry needs to be updated,
it 'will require a second (write) cycle. Increasing OLD-
HASH also increases the refresh rate, but the probabil-
ity of a second memory circle decreases since it is more
likely that the bin entry will have been updated by a
string hashing into it. The value of OLDHASH=16K
has been empirically found to provide a reasonable
refresh overhead in the preferred embodiment. The
refresh overhead per byte of input data is thus some-
what between 1/12 and 2/12 memory cycles, more than
an order of magnitude less than the overhead for main-
taining a doubly linked list.

In order to terminate a compression operation or start
up a new one with a new input byte stream, the com-
pression unit simply increments HPTR by MEMSIZE,
and the bins of the hash table are automatically invali-
dated. Additionally, the refresh unit also needs to per-
form MEMSIZE/ 12 refresh cycles to make up for the
refresh cycles missed during the MEMSIZE bytes that
were never actually processed. However, this operation
involves only 171 refresh operations instead of 4,096,
and thus can be performed very quickly. In other com-
pression methods, all tables and buffers typically need
to be cleared before starting a new compression opera-
tion, which may require considerable latency.

Referring to FIG. 5S¢ processing continues at block
130, where a determination is made as to whether
HPTR ~HASHTABLE > 16K. As stated earlier, this
operation determines whether the current entry is too
old. If the entry is too old, then processing continues at
block 132 during which HASHTAB (RFSHPTR) is set
equal to HPTR — MEMSIZE, which effectively creates
an invalid value at this entry location. Returning to
block 130, if it is determined that the entry is not too
old, the processing continues at block 134. Regardless
of whether the entry is too old or not too old, process-
ing continues at block 134, during which the
RFSHPTR is incremented by 1. Then, at block 136,
RFSHCNT is set equal to 12 and processing returns to
the COMPRESSION OPERATION Routine at block
128 (FIG. 5a).

Regardless of whether RFSHCNT is determined to
be equal to O (requiring a call to the REFRESH HASH
Routine FIG. 5¢) or not equal to 0 at block 124, process-
ing continues at block 128 During block 128, the com-
pression unit 4 (FIG. 1a) fills the first two bytes of the
history array 102 with input data in order to initialize
the operation. The two bytes are held in registers IN-
REG0 and INREG1. Each time a new byte is pro-
cessed. the hash (*H”) of the first byte and the next
input byte are computed. In the preferred embodiment,
the hash is computed by shifting INREGQO left 4 bits and
XORing it with INREG1. As discussed above, any of

5,146,221

13

the hashing functions as discussed by Knuth (reference
above) would be acceptable. As each new incoming
byte is processed, the contents of INREG1 is moved to
INREGO and INREGT1 is loaded with the new byte
value. ‘

For each byte processed at block 128, the hash value
H (“H”) is computed and the old entry within the hash
value bin corresponding to the new hash value is read
and saved in a variable called NEXT. Also, at block
128, the old entry in the hash table bin corresponding to
the current hash value is replaced by the current value
for HPTR. At block 140, a determination is made as to
whether HPTR —NEXT > =MEMSIZE -MAXSTR
is made. The variable MAXSTR is the value of the
maximum string size being searched which ensures that
the matching string of bytes found in the history array
102 is not overwritten by the currently processed bytes.
Assuming that the determination results in a value
greater than or equal to MEMSIZE —MAXSTR, then
processing continues at block 142, during which the
variable NEXT is set equal to HPTR—-MEMSIZE.
Stated differently, the hash bin is emptied because there
were no matching strings within the last MEMSIZE
bytes of history.

Regardless of whether the determination results in
the value greater than or equal to MEMSIZE —-
MAXSTR, processing continues at block 144. During
block 144, the value HPTR —NEXT is written into the
corresponding offset array 104 entry at OFF-
SET(HPTR). Also, at block 144, the value of INREG1
is placed into the history array 102 entry at HIS-
TORYMHPTR). The steps performed at blocks 124, 126,
128, 140, 142 and 144 discussed above complete the data
structure maintenance required for the currently pro-
cessed byte, and at this point a string search of the con-
tents of history array 102 can begin. Note that the above
housekeeping functions are performed for all input
bytes processed, regardless of whether the compression
unit is currently processing a string match.

At block 146, a determination is made as to whether
the match length variable MATCHLEN is equal to 0.
Recall that at block 114 of the INITIALIZE Routine
(FIG. 5b) the MATCHLEN variable was set equal to 0.
MATCHLEN contains the current string match length
which, at the beginning of the operation, is 0. Assuming
that we are processing at the beginning of the compres-
sion operation and that MATCHLEN is equal to 0, then
an internal hash counter HASHCNT is set to O.
HASHCNT is used to limit the iterations of any particu-
lar string search. Then, at block 150, a determination is
made as to whether HPTR —NEXT=MEMSIZE —-
MAXSTR. Assuming that the resulting value is less
than MEMSIZE —MAXSTR, processing continues at
block 152. During block 152, a determination is made as
to whether the value for the variable INREG1 is equal
1o the value in the history array at HISTORY(NEXT).
The purpose of this step is to search to the prior entry in
the history array for a 2-byte string that matches the 2
bytes in INREGO0 and INREG1. Only the value within
INREG]1 is compared to the value at HISTORY(-
NEXT) because the hash function is chosentobe a 1 to
1 mapping with respect to INREG®0, so that only one
byte from each string in the hash list has to be compared
with INREG1. This step increases the performance of
the present embodiment because a 1-byte comparison
instead of a 2-byte comparison only needs to be per-
formed. Returning to block 150, if the value determined
is greater than or equal to MEMSIZE — MAXSTR,

25

40

50

55

60

635

14
then processing continues at block 158. During block
158, the raw data tag and the raw data byte in INREGO0
is output and processing continues to block 125. At
block 125 the next input byte is obtained and the process
starts all over agaif.

Returning to block 152, if the determination results in
a match, then processing continues at block 160 during
which the variable MATCHPTR is set equal to the
value of the variable NEXT. Additionally, the variable
MATCHLEN is set equal to 2 to signify a two byte
match and processing continues at block 125 during
which the next input byte is obtained. However, assum-
ing that the value at HISTORY(NEXT) is not matched,
then processing continues at block 154 during which the
value of HASHCNT is incremented and the variable
NEXT is set equal to NEXT - OFFSET(NEXT). This
step effectively points to the next entry linked by the
offset array 104. Processing continues at block 156 dur-
ing which a determination is made as to whether
HASHCNT reaches a predetermined maximum count
value MAXHCNT (typically 8). If HASHCNT is
greater than or equal to MAXHCNT, then processing
continues at block 158 during which the output raw
byte INREG# is output and processing continues at
block 125. However, if HASHCNT is not greater than
or equal to MAXHCNT, then processing continues at
block 150, 152, 154 and 156 until HASHCNT reaches
MAXHCNT or until there are no more valid entries in
the hash list (as determined at block 150) or until a
matching string is found (at block 152).

Eventually, processing continues at block 125, and at
this time, the compression unit 4 (FIG. 1b) is ready to
process a new input data byte. At block 125, HPTR is
incremented and the variable RFSHCNT is decre-
mented. Processing continues at blocks 124, 126, 128,
140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160 and
125 until MATCHLEN is determined to be greater than
0 at block 146. Referring to block 146, note that when
MATCHLEN is not equal to 0, processing continues at
block 162. During block 162, the variable
MATCHPTR is incremented by 1. In this way, the new
value INREG1 will be compared against the next byte
in the stream of MATCHLEN plus 1 found at
MATCHPTR in the history array 102. At block 164,
the determination is made on whether the bytes match.
If the bytes match, then MATCHLEN is incremented
and the string is extended at block 180 and processing
then continues at block 125. However, if the bytes do
not match, then processing continues at block 166 dur-
ing which the variable NEXT is set equal to
MATCHPTR —MATCHLEN + 1. Processing contin-
ues at block 168, during which the variable NEXT is set
equal to NEXT—-OFFSET(NEXT). In addition, at
block 168, the variable HASHCNT is incremented.
Steps 166 and 168 effectively cause the compression
unit 4 (FIG. 1a) to search to the successive string entry
remaining in the hash bin for the original string being
matched. At block 170, a determination is made on
whether HPTR —NEXT> =MEMSIZE —~MAXSTR.
If the value determined is greater than MEMSIZE —-
MAXSTR, then there are no more valid entries and
processing continues at block 182. At block 184,
MATCHLEN is set to O and processing begins over
with a new byte at block 125. However, if the value
determined at block 170 is less than MEMSIZE —-
MAXSTR, then processing continues at block 172 dur-
ing which a determination as to whether MAT-
CHLEN > =MAXSTR is made. Assuming that MAT-

5,146,221

15

CHLEN > =MAXSTR, then an invalid search has
occurred and processing continues at block 182. How-
ever, assuming that MATCHLEN is not greater than or
equal to MAXSTR, then processing continues at block
174. At block 182 the compression unit 4 (FIG. 1a)
outputs a string record consisting of a tag bit (*17)
which indicates that a matching string has been found,
followed by the appropriately encoded offset (OFF-
SET=HPTR#-#HPTR MATCHPTR) of the match
string in history array 102, and the encoded length.

At block 174, a determination is made as to whether
the current string of length MATCHLEN +1 at loca-
tion HISTORY (NEXT) is equal to the contents of the
internal match buffer. The internal match buffer con-
tains all MATCHLEN bytes of the currently matching
string. This buffer allows faster searching for a new
string if the initial attempt to match this string fails. An
efficiency occurs because the bytes to be matched are
immediately available within the chip instead of having
to reach them from RAM each time a match is per-
formed. Stated differently, the matching buffer acts as a
look aside buffer to efficiently enhance processing. The
match buffer is of finite iength (MAXSTR =8 bytes in
the preferred embodiment).

If the string of MATCHLEN+1 at HISTORY
(NEXT) equals the contents of the match buffer, then
processing continues at block 178 during which the
variable MATCHPTR is set equal to NEX-
T+MATCHLEN. Processing continues at block 180
during which MATCHLEN is incremented and pro-
cessing continues at block 125 during which the next
new byte in the input data stream is processed. How-
ever, if the string at HISTORY (NEXT) is not equal to
match buffer, then processing continues at block 176,
during which a determination is made as to whether the
variable HASHCNT is greater than or equal to
MAXCNT. If HASHCNT is greater than or equal to
MAXHCNT, then processing continues at blocks 182
and 184 during which an encoded string having a tag bit
of “1” followed by the appropriate encoded offset of the
match in the history array and the encoded length are
output and the variable MATCHLEN is set equal to 0.
Processing continues at block 12§ during which the
next new input data byte is processed. Returning to
block 176, however, if HASHCNT is not greater than
or equal to MAXHCNT, then processing continues at
blocks 168, 170, 172, 174 and 176 until a match length of
MATCHLEN+1 is found, or unti HASHCNT
reaches MAXHCNT or until there are no more valid
hash entries (HPTR-—-NEXT>=MEMSIZE —-
MAXSTR).

In the preferred embodiment, the above operations
are pipelined to ensure that the RAM 16 (FIG. 1a) is
busy on every clock cycle, since the RAM cycle count
is the limiting factor on performance.

Typically, in a storage system, the data must’ be
blocked into sectors or blocks of a fixed size, and it is
often desireable to truncate the compression at a given
stage and then restart a new operation on the remaining
input stream. In the preferred embodiment, a count of
compressed bytes output is maintained. When this count
reaches a predetermined (user selectable) value, or
when the input data stream is exhausted, the compres-
sion unit is told to “flush” the compression, meaning to
complete compression of the bytes in INREGO and
INREG], terminate and output the string currently
being extended (if any) or to output the remaining un-

-—

5

25

30

35

45

50

55

60

65

16
processed byte(s) as raw bytes, without taking any new
bytes from the input FIFO.

The compression unit then outputs a special “end of
compressed data” marker, which is a string with an
offset of zero. This offset could be interpreted as an
offset of MEMSIZE, but instead it is reserved to mean
that this is the end of this compression operation. In
fact, in the preferred embodiment, all offsets in the
range MEMSIZE-MAXSTR (where MAXSTR is typi-
cally 8) to MEMSIZE# — #1 (and zero) are reserved,
so no strings will be found past this offset into history
This feature allows for future extensions to the format,
and it also avoids some difficult problems involving
wrapping in the history buffer. After a flush, the com-
pression unit adds MEMSIZE to HPTR, performs the
appropriate number (MEMSIZE/12) of hash refresh
cycles, and then begins a new compression operation.

Extensive software simulation of the compression
method was performed during the development of the
present invention. Various values of all the parameters,
including MAXHCNT, HASHSIZE, match buffer size,
and MEMSIZE, were tested to determine their impact
on throughput and compression ratio. The particular
format and set of parameters in the preferred embodi-
ment was selected as having an acceptance tradeoff on
these performance issues. However, many similar sets
of parameters and encodings result in substantially simi-
lar performance.

The decompression unit 6 (F1G. 14), by comparison
with the compression unit 4 (FIG. 1a), is very simple. It
receives an encoded stream of bytes and converts this
stream into a bit stream, which is constructed according
to the encoding scheme shown in FIG. 2. For each raw
byte or encoded byte stream output, the byte is trans-
ferred into a decompression output FIFO, and it is also
appended to a decompression history array which is
maintained in RAM 16 (FI1G. 15). The decompression
history array is identical to the history array as shown at
102 in FIG. 4. The decompression unit 6 (FIG. 1b) also
contains a current history pointer (“DPTR”), which is
incremented for each byte output and wraps back to
zero when it reaches MEMSIZE. When an encoded
string is parsed, the offset from the string is subtracted
from DPTR, and a string of bytes of the encoded length
is output, starting at the offset location within the de-
compression history array. Thus, the decompression
unit 6 (FIG. 1b) does not have to maintain any hash
structures as shown in FIG. 4 (i.e. hash table 100 and
offset aray 104 (FIG. 4)) and in fact requires only
MEMSIZE bytes of RAM 16 (FIG. 15).

Typically there is enough RAM 16 (FIG. 15) to main-
tain separate compression and decompression data
structures, enabling both compression and decompres-
sion operations simultaneously, but in the preferred
embodiment this ability is not implemented.

Referring to FIG. 6, a detailed block diagram of the
_DECOMPRESSION OPERATION Routine for per-
forming decompression is shown. The input to the DE-
COMPRESSION OPERATION Routine (FIG. 6) is as
encoded byte stream output by any compression opera-
tion (i.e. COMPRESSION OPERATION (FIG. 5A, B,
and C)). At block 190, the operation begins and at block
192 the pointer DPTR is set to 0. Processing continues
at block 194 during which the tag bit is parsed from the
input encoded data stream. Then, during block .196, a
determination is made as to whether the tag bit is equal
to 1 or 0. Recall that a tag bit of “1” signifies that an
encoded compressed bit string follows and that a tag bit

5,146,221

17

of “0” signifies that the output byte is uncompressed
“raw” data. Assuming that the tag bit is equal to 0,
processing continues at block 198. During block 198,
the “raw” byte is parsed from the input encoded data
stream. Then, during block 200, the raw data byte is
output and at block 202, the raw data byte is stored in
the decompression history array at HISTORY(DPTR).
Processing continues at block 204 during which the
DPTR is incremented to the next output byte. Process-
ing returns to blocks 194, 196, 198, 200, 202, and 204 for
processing raw data bytes.

Returning to block 196, if the output byte encoun-
tered has a tag bit of 1, then processing continues at
block 206. At block 206, the parsing of the encoded bit
string begins. More particularly, at block 206 the offset
(“P”) value in the encoded string is parsed from the
input encoded data stream. At block 208, a determina-
tion is made as to whether the offset value P is equal to
0. An offset value of 0 indicate the end marker which
signifies the end of the encoded output data stream as
stated earlier. If the offset is equal to 0, processing con-
tinues at block 212 during which processing returns to
the calling program. However, if the offset is greater
than 0, then processing continues at block 210.

During block 210, the length of the bit string is parsed
from the input encoded data stream. At block 214, the
contents of the decompression history array at HIS-
TORY(DPTR —P) is determined. Then during block
216, the data stored at this location is output. At block
218, the data is stored at HISTORY(DPTR). Then at
block 220, DPTR is incremented and at block 222 the
length of the bit string is decremented. During block
224, a determination is made as to whether the length
has been decremented to 0. If the length has not been
decremented to O, then processing continues at blocks
214, 216, 218, 220, 222, and 224 until all of the bytes in
the encoded byte stream have been output.

Once the length has been decremented to 0, process-
ing continues at block 194 during which the next tag bit
is parsed from the input encoded data stream. Thus,
processing continues until an encoded byte string is
encountered having an offset of 0 as determined at
block 208, at which time processing returns to the call-
ing program at block 212.

Referring to FIG. 7, a circuit diagram 228 which
incorporates the preferred embodiment of the data com-
pression unit 4 (FIG. 1a) is shown. The elements of
circuit 228 are implemented by digital logic. Circuit 228
is controlled by compression controlier and sequence
unit 230. Compression control and sequence unit 230 is
linked to each of the components of circuit 228 by a
series of control lines not shown. An internal clock (not
shown), which in the preferred embodiment operates at
several megahertz/second, determines the activity level
of the control and sequencing unit 228, which may
affect the operation of one or more of the components
during any clock cycle of operation. The actual opera-
tions and their sequence are depicted in FIGS. 5q, 5
and 5¢ which were discussed earlier.

The preferred embodiment includes two FIFOs 232
and 234 which are implemented as registers within the
integrated circuit, to facilitate data movement and pack-
ing. One of the FIFOs (selectable by the user) can also
“spill over” into a reserved portion of the RAM 240
(FIG. 8). Typically this reserved portion is 8K or 16K
bytes. Utilizing a portion of the compression RAM in
this fashion allows for distinct performance advantages,
particularly in systems utilizing the small systems com-

20

25

30

35

45

50

55

60

65

18
puter interface (SCSI), in which multiple computers
and devices share a single bus for commands and data.

In SCSI, it is very desirable to get on and off the bus
as quickly as possible, transmitting data very rapidly so
as not to impede other bus traffic SCSI transfer rates of
up to 5 Mbytes/second are achievable. However, the
compression unit throughput is usually considerably
less than this figure, so transferring compressed data to
the SCSI bus *on the fly” could be unacceptable from a
performance standpoint.

To avoid this problem, the external RAM FIFO 240
(FIG. 8) is selected to be on the output side 238 (FIG. 7)
of the compression unit 4 (FIG. 1@). The external Ram
FIFO 240 is controlled by a RAM FIFO control 242
located within the compression unit 4 (FIG. 1a). The
RAM FIFO 240 is used both for compression computa-
tions (history, hash, etc.) and for FIFOing. Once the
RAM FIFO 240 has accumulated enough data to allow
a SCSI block transfer, a counter inside the chip inter-
rupts the controlling microprocessor which initiates the
SCSI transfer. This transfer then proceeds at the full
SCSI bandwidth, even though the buffer (which may
continue to fill) was filled at lower speed.

This dual use of the RAM, which is commonly avail-
able in RAM sizes large enough to accommodate both
compression data structures and FIFOs, greatly en-
hances the performance of the system. The RAM FIFO
240 (FIG. 8) can also be placed on the other side of the
data flow (typically in an embedded drive controller),
or it can be used during decompression to achieve the
same goal. In general, the RAM FIFO is chosen to be
on the SCSI (or highest speed) side of the operation.

A more detailed discussion of the data flow within
the circuit 228 is now presented. Uncompressed bytes in
an input byte stream are input into the compression unit
4 over line 244 to the input FIFO 232. Bytes stored in
the input FIFO are then transferred to two extension
FIFO registers INREG1 233 and INREG0 235. More
particularly, the data from FIFO 232 is linked to the
INREG1 register 233 over line 246. The data stored in
INREG1 233 can then be transferred via lines 248 and
250 to INREGO 235. Recall that the purpose of the
INREG1 and INREG®0 registers were for producing
the input to the hashing function (237). The contents of
INREGT1 233 is output via line 248 to line 252 and input
to the hash function 237. Likewise, the contents of IN-
REG®? 235 is output over line 251 and then over line 253
to the hash function 237. The output of the hash func-
tion 237 is sent via line 255 to the multiplexer 256.

Returning to INREG1 233, if no matching string is
found, then it will be sent over lines 248, 254, and 258 to
the output manager 260. The purpose of the output
manager 260 is for encoding raw data bytes and strings
into bit strings with the appropriate tags, etc. The out-
put of the output manager 260 is then sent via line 262 to
a bit to byte converter 264. Then the data is input to the
output FIFO 234 via line 268. The compressed bytes are
output from the output FIFO 234 via line 270 to the
output device (14, FIG. 1a).

The contents of INREG1 233 are also sent via lines
248, 254 and 272 to internal match buffer 274. The pur-
pose of the internal match buffer 274 is for acting as a
“lookaside™ buffer to efficiently enhance the matching
process. The contents of the match buffer 274 are then
compared to the contents at the byte comparison regis-
ter 276. The contents of the match buffer are multi-
plexed over line 278 to the byte comparison register
276. The contents of the byte comparison register 276

5,146,221

19
are obtained from the history array 102 (FIG. 4) stored
out in RAM 238. The contents of the history array entry
are input via line 280 to latch 282 and then over lines
284 and 286 to the byte comparison register 276. The
results of the byte comparisons performed at block 276
are sent via line 288 to the control and sequence unit
230. The control and sequence unit 230 evaluates the
comparison results and sends out the appropriate con-
trol signals to the various components of the circuit 228
via control lines (not shown).

Returning to INREGO 235, its contents can also be
sent via lines 251 and 290 to multiplexer 292. Multi-
plexer 292 then arbitrates and sends the contents of
INREGO via line 294 to latch 296. The contents of latch
296 are then output via line 298 to the history array 102
(FIG. 4) of the data structure in the RAM 238.

Data input from the RAM 238 over line 280 may also
be sent via latch 282 and lines 284, 300 and 302 to regis-
ter 304. Data over this path would consist of an old hash
pointer stored in a variable called NEXT. The contents
of register 304 can then be output via lines 305, 306 and
307 to multiplexer 256. The output of register 304 is also
tied to an offset register 310 via lines 305 and 308. The
operation the function performed at 310 will be dis-
cussed shortly. The contents of register 304 may also be
sent via lines 304, 305, 306 and 312 to register 314 con-
taining the variable contents for MATCHPTR. The
output of register 314 (MATCHPTR) is sent via line
316 to multiplexer 256. The purpose of register 318 is
for incrementing the pointer HPTR. The output of
register 318 is sent via lines 320 and 322 to the multi-
plexer 286. In the alternative, the output of register 318
may also be sent via lines 320 and 324 to the offset
register 310. The purpose of the offset function is for
calculating the appropriate offset in the history array or
HPTR —NEXT as input over lines 324 and 308 from
the registers 318 and 304.

A modify switch 328 may be applied over line 330 to
the offset register 310 to force the offset function to
only output the current HPTR input over line 324.
When the modified switch 328 is set such that the offset
function is determined, the output of offset function 310
is sent either to multiplexer 292 or to the output bit
manager 260. When the output is sent to the output bit
manager 260 it is sent via lines 332 and 336. The offset
is then encoded into the encoded string at the output bit
manager 260. Alternatively, the output is sent to multi-
plexer 292 via lines 332 and 334 and then output over
lines 294 to latch 296 and to the RAM 238 via line 298.
However, if the modify switch 328 is set such that the
output of the offset register 310 is the current HPTR,
then the output is sent via lines 332 and 334 to multi-
plexer 292 which arbitrates the output over line 294.

The length input to the output bit manager 260 for
encoding purposes is maintained by register 338 shown
at the bottom of the circuit diagram 228. The output of
the register 338 is linked to the output manager 260 via
line 340. At the top of the circuit diagram 228, a refresh
counter 342 is shown which maintains the current cycle

20

35

40

45

65

20

count before the refresh operation is performed. The
output of the refresh count is sent via line 344 to multi-
plexer 256. The purpose of multiplexer 256 is for arbi-
trating which address over lines 344, 316, 322, 307 and
255 is output in order to select the appropriate data
structures in the RAM 238,

The invention has been described in an exemplary
and preferred embodiment, but is not limited thereto.
Those skilled in the art will recognize that a number of
additional modifications and improvements can be
made to the invention without departure from the es-
sential spirit and scope. The scope of the invention
should only be limited by the appended set of claims.

We claim:

1. An apparatus for converting an input data stream
into a variable length encoded data stream, said appara-
tus comprising:

a single RAM ccnfiguration comprising:

a history array having a plurality of entries, each of
said plurality of entries for storing previously
processed segments of said input data stream,
and

a FIFO data buffer for buffering data transfers to
and/or from said apparatus;

a single address bus for addressing said history array
and said FIFO data buffer, said single address bus
coupled to said single RAM configuration; and

a data compression system, said data compression
system coupled to said single address bus, said data
compression system comprising:
means for performing a search of said history array

for a string of said previously processed seg-
ments of said input data stream which matches
said input data stream, and

encoding means for encoding said matching string
found in said history array.

2. An apparatus for converting an input data stream
into a variable length encoded data stream, said appara-
tus comprising:

a single RAM configuration comprising:

means for storing previously processed segments of
said input data stream, and

a FIFO data buffer for buffering data transfers to
and/or from said apparatus;

a single address bus for addressing said means for
storing and said FIFO data buffer, said single ad-
dress bus coupled to said single RAM configura-
tion; and

a data compression system, said data compression
system coupled to said single address bus, said data
compression system comprising:
means for performing a search in said storing

means for a string of said previously processed
segments of said input data stream which
matches said input data steam, and

encoding means for encoding said matching string

found in said storing means.
] L] * * *®

Column 3, line 53, after "limit." insert a paragraph.
Column 4, line 18, after "rates." insert a paragraph.

line 68, after "table" and before "not" insert --is--
Column 6, line 35, after "found" and before "by" insert --and--
Column 7, line 68, cancel "structure" and insert --structures--
Column 8, line 4, after "table" and before "the" insert --of--

line 24, after "microprocessor" and before "5" cancel ";{!"L
Column 12, 1line 43, after "HASHTABLE" and before ">" jnsert
-~ [REFSHPTR] ~-
Column 13, line 51, after "NEXT" and before "=1 insert -->--

(Column 15, line 9, cancel "HPTR#-#HPTR" and insert --HPTR- --

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.
DATED
INVENTOR(S) :

5,146,221
September 8, 1992
Douglas L. Whiting, Glen A. George and Glen E. Ivey

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Page 1 of 2

DATED

Column 16,

Column 20,

be filled

be filled

INVENTOR(S) :

-~MEMSIZE-

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. 5 146,221 Page 2 of 2

" September 8, 1992
Douglas L. Whiting, Glen A. George, AND Glen E. Ivey

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

line 10, cancel "MEMSIZE#-#1" and insert

1--—

line 28, after "configuration;" cancel "and"

line 37, after "array" cancel "." and insert --; and--
~—a RAM controller for allowing said FIFO data buffer to
or emptied while said history array is being searched.--
line 58, after "means"” cancel "." and insert --; and--
--a RAM controller for allowing said FIFO data buffer to
or emptied while said history array is being searched.--

Signed and Sealed this
Twenty-sixth Day of October, 1993

BRUCE LEHMAN

Cammissioner of Patents and Trademarks

Attesting Officer

