


F. C. HUBER & J. E. MANZEL. ELECTRIC TIME SWITCH. APPLICATION FILED MAY 23, 1905.

F. C. HUBER & J. E. MANZEL. ELECTRIC TIME SWITCH. APPLICATION FILED MAY 23, 1905.

2 SHEETS-SHEET 2.

WITHESSES J.G. Lassen J. A. Stewart

INVENTORS:
Frederick C. Hizber
John E. Manzel

ATTORNEYS.

UNITED STATES PATENT OFFICE.

FREDERICK C. HUBER AND JOHN E. MANZEL, OF ROSEBANK, NEW YORK.

ELECTRIC TIME-SWITCH.

No. 822,003.

Specification of Letters Patent.

Patented May 29, 1906.

Application filed May 23, 1905. Serial No. 261,753.

To all whom it may concern:
Be it known that we, Frederick C. Huber and JOHN E. MANZEL, citizens of the United States, residing at Rosebank, in the county of Richmond and State of New York, have invented certain new and useful Improvements in Electric Time-Switches, of which the following is a specification, such as will enable those skilled in the art to which it appertains

10 to make and use the same.

This invention relates to electric lighting; and the object thereof is to provide a device whereby an electric lamp may be automatically energized at a predetermined time, a fur-.15 ther object being to provide a device of this class whereby an electric lamp may be energized for a given or predetermined length of time and at the expiration of which the said lamp may be automatically deënergized, a 20 still further object being to provide a device of this class whereby an electric lamp may be energized and deënergized in the usual manner; and with these and other objects in view the invention consists in an electric-lamp en-25 ergizer and deënergizer, as hereinafter described and claimed.

The invention is fully disclosed in the following specification, of which the accompanying drawings form a part, in which the sep-30 arate parts of our improvement are desig-nated by suitable reference characters in each

of the views, and in which-

Figure 1 is a plan view of our invention in operative connection with an electric lamp; 35 Fig. 2, a view of one side thereof; Fig. 3, a partial view of the other side thereof, said view being partially in section; and Fig. 4, a section on the line 4 4 of Fig. 3.

In the drawings forming part of this speci 40 fication we have shown a base or support a, at one end of which is mounted an electriclamp socket b, provided with binding-posts b^2 and b^3 and with a lamp c, and the base a is also provided with binding-posts a^2 and a^3 , 45 with which the wires of an electric-light cir-

cuit are adapted to be connected.

At the end of the base a opposite the lampsocket b is mounted a time mechanism d, which comprises the usual spring drum d^2 , 50 mounted in plates d^3 and provided with a winding device comprising a lever d^4 in operation with a ratchet-wheel d^5 , mounted on the barrel-arbor of the mainspring, said spring not being shown in the drawings, and the barrel-arbor d^a of the mainspring is provided with a pinion d^a on its top, which is in lamp-socket b is a switch a, provided with a

engagement with a gear-wheel d^s , rotatable on but independent of the staff d^{i} , in operative connection with which is a hand or pointer e, operating above the dial f of said 60 time mechanism, and the hand e is provided with an electrical contact e^2 on the lower side thereof, and, as shown at e^3 , said hand e is in-

sulated from the dial f.

The dial f is composed of two plates f^2 and 65 , which are insulated from each other, as shown at f^4 , and from the time mechanism, as shown at f^5 ; but this dial f is secured to the gear-wheel d^8 and rotates therewith, and, as shown in Figs. 1 and 3, the member f^3 of the 70 dial f is provided with an upwardly-directed member f6, which projects through the member f2 of said dial and is insulated therefrom, as clearly shown in said figures, and the dial f is also provided with a stop f^7 , which limits 75 the movement of the hand e and insures content of the hand f and insures content to the first of the hand f and f are the first of the hand f and f are the first of the hand f and f are the first of the hand f and f are the first of the hand f and f are the first of the hand f and f are the first of the hand f and f are the first of the hand f and f are the hand f are the hand f and f are the hand f are the hand f and f are the hand f are the hand f and f are the hand f and f are the hand f are the hand f and f are the hand f are the hand f are the hand f and f are the hand f and f are the hand f are the hand f and f are the hand f are the tact of the member e2 of the hand e with the projection f^8 of the member f^3 of the dial f; but, as will be seen at f^8 in Fig. 1, the hand e is insulated from the post or stop f^7 when it 80 bears against the same and the reason for which will be hereinafter described.

Connected to the upper plate d^3 of the time mechanism and on either side thereof are two spring-arms g and g^2 , the arm g being 85 closer to the staff d^9 than the arm g^2 , and, as clearly shown in Fig. 2, the spring-arm g bears against the under side of the member f^3 of the dial f, while the spring arm g^2 bears against the under side of the member f^2 of 90 against the under side of the hierarchy of the dial f, as shown in Fig. 3, and communicating with the spring-arms g and g^2 are electrical conductors g^3 and g^4 in electrical communication with contacts g^5 and g^6 , respectively. tively.

The details of the time mechanism are omitted from the drawings, as they form no part of this invention—such as, for instance, the balance-wheels, escapement, &c.; but it will be understood that these parts are all 100 employed and are merely omitted to prevent confusion in the drawings, and the operation of the hand e is the same as the operation of the hour-hand in any watch or clock mechanism, both as to speed of movement as well 105 as the direction thereof, and the dial f is provided on its upper side with the usual divisions, indicated by numerals and by means of which the time may be told.

Pivotally mounted centrally of the base a 110 and between the time mechanism d and the

handle h^2 at one end thereof and with a contact h^3 beneath the other end thereof, and arranged on a central line on the base a are two contacts h^i and h^5 , the contact h^5 being in 5 electrical communication with the time mechanism d by means of an electrical conductor h^{ϵ} , while the contact h^{ϵ} is in electrical communication with one side of a yokeshaped frame i, said side being indicated by to the reference character i^2 , and the other side i^3 thereof is in electrical communication with a binding-post b^3 of the lamp-socket b by means of an electrical conductor i^4 , and the binding-post b^2 of the lamp-socket b is in 15 electrical communication with the bindingpost a3 by means of an electrical conductor a^5 , the other binding-post a^2 of the base a being connected, by means of an electrical conductor i^6 , with the time mechanism d, as so shown at i^7 .

Secured to the base a adjacent to the contact g^5 is a contact k, which is in electrical communication with the side i^2 of the yoke-shaped frame i by means of an electrical contact k^2 , and adjacent to the contact g^6 is a contact k^3 , which is also in electrical communication with the side i^2 of the yoke i by means of an electrical conductor k^4 , and the contact k^3 of the switch k is adapted to rest on the corresponding pair of contacts g^6 and k or g^6 and k^3 , as is clearly shown in Fig. 1, and thereby placing said pairs of contacts in electrical communication with each other.

The yoke i, as previously stated, is composed of two parts i and i, which are independent of each other and are each provided with an upwardly-directed member k and k, respectively, around which is placed an insulating-collar k, and the upwardly-directed members k and k are preferably segmental in cross-section and adapted to receive a conductive plug k and be placed in an electrical communication with each other thereby, and said plug k is always in position when our inventor is in use.

In the practice of our invention, if it is desired to energize the lamp c at a given hour or at a predetermined interval of time, all that is necessary is to move the switch h to 50 the position shown in Fig. 1 in full lines and then rotate the dial f in the direction of the arrow x a corresponding distance from the hand e, this operation being accomplished; as previously stated, by means of the lever d2, 55 and in the operation of rotating the dial fthe mainspring of the watch mechanism is wound correspondingly, the object thereof being to permit the time mechanism to run down approximately at the same time as the 60 lamp c is to be energized, and when the parts are operated, as just described, the hand erotates in the usual manner over the dial f, and the contact e2 thereof rests on the conductive surface of the member f^2 of the dial f, 65 and the rotation of the hand e continues, as |

will be understood, until it bears against the insulation f^s of the post f^7 , at which time the contact e2 of the hand e rests on the projection f^{6} of the member f^{3} of the dial f, and the current from the main lighting-circuit then 70 passes from the binding-post a^3 , through the lamp c and contact i^4 , to the yoke i, thence through the conductor k^2 to the contact k, switch h to contact g5, and through the conductor g^3 to the spring-arm g, which, as previously stated, bears against the under side of the conductive plate f3 of the dial f, and the current then passes through the hand e and the staff thereof and through the time mechanism or frame thereof, and the con- 80 ductor i^{6} and binding-post a^{2} , and the lamp c is thereby energized and continues to burn as long as the parts are in the position shown in Fig. 1. If it is desired to have the light burn a certain length of time, all that is nec- 85 essary is to manipulate the lever d^4 to retate he dial f a corresponding distance from the hand e and at the same time turn the switch h to the position indicated in dotted lines at y in Fig. 1, at which times the contacts $g^{\mathfrak{g}}$ and $\mathfrak{g}\mathfrak{o}$ k^3 are placed in electrical communication by means of the contact h^3 of the switch h, and the current then passes from the contact a^3 and lamp c, through the conductor i^4 , yoke i, and conductor k^4 , to the contact k^3 , and 95 thence through the contact g^s and conductor g^i to the spring-arm g^i , which bears against the under side of the conductive plate f^2 of the dial f, and the current passes through the said plate f^2 and hand e and through the time 100 mechanism to the conductor is and bindingpost a^2 , and the lamp c is therefore energized and continues to burn until the contact e^2 of the hand e rests on the projection fo of the plate f3 of the dial f, which places the hand e 105 out of electrical communication with the plate f^2 of the dial f, and thereby breaks the circuit through the lamp c, and said lamp is deënergized. If it is desired to use the lamp in the usual manner without reference to time, all that is necessary is to move the switch h into the position indicated in dotted lines at y^2 in Fig. 1, at which time the current passes through the lamp c, conductor i^{i} , yo! e i, conductor h7, to contact h4, thence through 115 the switch h, contact h^5 , conductors h^0 and i^0 to the binding-post a^2 , and the circuit through the lamp c is completed and continues to burn as long as the switch h remains in this position, and if it is desired to prevent 120 the manipulation of said lamp by an unauthorized person all that is necessary is to remove the plug k^3 from between the parts i^2 and i^3 of the yoke i, and in practice we prefer to inclose our apparatus in a casing in order 125 to prevent injury thereto or meddling therewith, said easing, however, not being shown, and we reserve the right to make such other modifications in the construction herein. shown and described as may properly come 130

this reservation,

What we claim as new, and desire to secure

by Letters Patent, is-

1. An electric time-switch, comprising an electric lamp arranged in an electric circuit, a time mechanism intercepting said country, a switch in said circuit, a lever in operative connection with the winding mechanism of 10 said time mechanism, a rotatable dial on said time mechanism and in operative connection with said lever, said lever when operated being adapted to wind said time mechanism for a predetermined period and to rotate said 15 dial for approximately the same period, sub-

stantially as shown and described.

2. A time-switch, comprising an electriclighting circuit, a time mechanism intercepting said circuit, a switch in said circuit. a

within the scope of our invention, and, with | mainspring in said time mechanism, a rota- 20 table dial on said time mechanism, devices for winding said mainspring and operating also to rotate said dial correspondingly, and devices for closing said circuit through said time mechanism in one position of said 25 switch, and devices for opening said circuit through said time mechanism in another position of said switch, substantially as shown and described.

In testimony that we claim the foregoing 30 as our invention we have signed our names, in presence of the subscribing witnesses, this

22d day of May, 1905. FREDERICK C. HUBER. JOHN E. MANZEL.

Witnesses:

F. A. STEWART, C. J. KLEIN