
(19) United States
US 2010.01921.54A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0192154 A1
WHITE et al. (43) Pub. Date: Jul. 29, 2010

(54) SEPARATION KERNEL WITH MEMORY
ALLOCATION, REMOTE PROCEDURE CALL
AND EXCEPTION HANDLING
MECHANISMS

Peter Duncan WHITE, Fountain
Hills, AZ (US); Conan Brian
DAILEY, Scottsdale, AZ (US);
Hua CHEN, Tempe, AZ (US);
Pamela Tam CARMONY, Tempe,
AZ (US); Jennifer Lynn
AMSTUTZ, Fountain Hills, AZ
(US); Keith Michael HINES,
Phoenix, AZ (US); Francis
Gregory Sydnor, JR., Scottsdale,
AZ (US)

(75) Inventors:

Correspondence Address:
INGRASSIA FISHER & LORENZ, P.C. (GD)
7010 E. COCHSE ROAD
SCOTTSDALE, AZ 85253 (US)

GENERAL DYNAMICS C4
SYSTEMS, INC., Scottsdale, AZ

(73) Assignee:

(US)

(21) Appl. No.: 12/702,828

(22) Filed: Feb. 9, 2010

Related U.S. Application Data

(63) Continuation of application No. 10/866,564, filed on
Jun. 10, 2004, now Pat. No. 7,689,997, which is a
continuation of application No. 09/443,597, filed on
Nov. 19, 1999, now Pat. No. 6,772,416.

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 718/103
(57) ABSTRACT

A computer-implemented system (90) is provided that sup
ports a high degree of separation between processing ele
ments. The computer-implemented system (90) comprises a
plurality of cells (92) residing on the computer-implemented
system, where each cell (92) includes a domain of execution
(94) and at least one processing element (96); a separation
specification (99) that governs communication between the
processing elements (96); and a kernel (98) of an operating
system that facilitates execution of the processing elements
(96) and administers the communication between the pro
cessing elements (96) in accordance with the separation
specification (99), such that one processing element (96) can
influence the operation of another processing element (96)
only as set forth by the separation specification (99). In par
ticular, the separation specification provides memory alloca
tion, remote procedure calls and exception handling mecha
1SS.

Patent Application Publication Jul. 29, 2010 Sheet 1 of 7 US 2010/0192154 A1

R OPERATING SYSTEM

F G 2.

user
PERMANENT TRANSIENT

SHARED SINGLE REGISTERS ASSIGNED SCRATCH MESSAGE

FG. 4

Patent Application Publication Jul. 29, 2010 Sheet 2 of 7 US 2010/0192154 A1

FBERNEXT

FIBERINT

Patent Application Publication Jul. 29, 2010 Sheet 3 of 7 US 2010/0192154 A1

50
FIBERNEXT

FIBERINT ()) FIBERNEXT
FIBERINT SYSTEMMCA (c) D FIBERNEXT

FIBERINT ())

54.

FIG. 8

MCASTATE

FBERNEXT

32

FG. 9

MCA MCA
1 NEXT 2 MCA XCELLID - E - MCA XCELLID

FIBERE FIBER FIBER FIBER

FIBERNEXT
SCAB SCAB2 SA FIBERNEXT SCA

FG, 1C) FG 11

Patent Application Publication Jul. 29, 2010 Sheet 4 of 7 US 2010/0192154 A1

MCA

COMMUNICATE

3.
CANNOT

COMMUNICATE

F.G. 13

Patent Application Publication Jul. 29, 2010 Sheet 5 of 7 US 2010/0192154 A1

KERNEL SEPARATION SPECIFICATION

93. 99

FG, 14

MESSAGE CMESSAGED

HANDLER

F.G. 15 HANDLE

Patent Application Publication Jul. 29, 2010 Sheet 6 of 7 US 2010/0192154 A1

MESSAGE CMESSAGED

HANDLER

FIG. 17
HANDLE

Patent Application Publication Jul. 29, 2010 Sheet 7 of 7 US 2010/0192154 A1

PROVIDING TASK MEMORY REQUIREMENTS

INITIALIZING A MEMORY SPACE

ALLOCATING THE MEMORY SPACE

EXECUTING THETASK

PREVENTING ADDITIONAL
ALLOCATION OF MEMORY

RELEASING THE MEMORY SPACE

FG. 18.

SENDING AN INPUT MESSAGE

INITIALIZING THE TARGET TASK

PROVIDING ACCESS TO MEMORY SPACE

RELEASING THE MEMORY SPACE

PROVIDING ARETURN TO SOURCETASK

FIG. 19

US 2010/0192154 A1

SEPARATION KERNEL WITH MEMORY
ALLOCATION, REMOTE PROCEDURE CALL

AND EXCEPTION HANDLING
MECHANISMS

CROSS-REFERENCES TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/866,564 filed Jun. 10, 2004 which is a con
tinuation of U.S. application Ser. No. 09/443,597 filed Nov.
19, 1999 now issued as U.S. Pat. No. 6,772,416 on Aug. 3,
2004.

BACKGROUND OF THE INVENTION

0002 1. Technical Field
0003. The present invention relates generally to using the
separation principle to design a kernel of an operating system,
and more particularly, the present invention relates to a kernel
that applies the separation principle to memory allocation,
remote procedure call and exception handling mechanisms.
0004 2. Discussion
0005 Separation is an extremely important property in the
construction and analysis of secure systems. If two logical
entities A and B (for example, two pieces of software) are
separate, then separation means that there is no way for A to
influence the operation of B, and vice versa. If the operation
of A is important to the Security of a system, the separation of
A and B means that the operation of B can be ignored when
evaluating how A Supports the security of the system. If A and
B are not separate, so that B could influence the operation of
A, then both A and B must be considered in evaluating how A
Supports the security of the system. The necessity of evaluat
ing A and B increases the difficulty and cost of the security
evaluation, and usually yields a lower assurance of security.
Thus lack of separation yields the combination of higher cost
and lower assurance.
0006 Complete separation (no influence between A and
B) yields a conceptually clean system. Incomplete separation
can still be very good if there are a Small (e.g. one, two, or
three) number of known influence paths between A and B, and
these paths have low bandwidth and/or are difficult to use.
Incomplete separation is unacceptable in a high assurance
system when it results from the inherent complexity of the
system, and the resulting inability to analyze the possible
influences between A and B. Therefore, it is desirable to
construct a high assurance system applying strong separation
principles.
0007 Separation is a principal that has been investigated
for the construction of secure systems for sometime. The idea
behind separation can be described with the assistance of
FIG.1. A system is sometimes implemented as a set of sepa
rate physical devices, with the devices interconnected by
physical wires. In FIG. 1, if it is important to the security of
the system that box does not directly intercommunicate with
box, then one need only look at the arrangement of the
physical boxes and wires to determine the truth of this prop
erty.
0008. It is often the case that the same system will be
implemented in one physical box, but with logical entities
(e.g. Software processes) performing the same functions as
the physical boxes of FIG.1. This new implementation may
result from increasing miniaturization of components, or the
increasing memory and processing power available within on

Jul. 29, 2010

processor platform. This new implementation of the same
system is depicted in FIG. 2. The tasks are performing the
same functions and are interconnected in the same way as the
boxes of FIG.1. If it was important before that box does not
directly intercommunicate with box, then it is still important
that task does not directly intercommunicate with task.
Analyzing the system of FIG. 2 may not be as easy as it was
in FIG.1. The reason for the increasing difficulty of analysis
is shown in FIG. 3.
0009. The problem is that all of the tasks communicate
with the operating system, thus the operating system becomes
a means whereby information can be transmitted between
tasks, and tasks can influence each other even when not per
mitted by the communication policy of the operating system.
FIG. 3 shows tasks influencing task by means of operating
system mechanisms. A standard example of this is memory
allocation. If all of the tasks allocate memory from a shared
pool of resources, then task could allocate all of the memory.
When task runs and attempts to allocate memory, it will
receive a failing return from the operating system. This failing
return could encode a “1” transmitted from tasks to task. If
tasks then releases some memory, when task runs, it will try
to allocate some memory again, this time receiving a Success
ful return from the operating system. This successful/failure
return from the operating system was never intended to be
used as a communication channel, nevertheless a good hacker
can make use of it in this way. In other words, the problem is
that the other software (e.g., other tasks and the operating
system) can now influence the operation of the task under
analysis, and thus the task under analysis cannot be analyzed
in isolation.
0010. Therefore, it is desirable to provide a high-grade
separation between processing elements in a system. This
high-grade separation permits the system designer to estab
lish high assurance secure systems by allowing each process
ing element to be analyzed in isolation. To achieve high-grade
separation, the present invention applies the separation prin
ciple to the design a kernel of an operating system. More
specifically, the kernel incorporates memory allocation,
remote procedure call and exception handling mechanisms in
Such a way that Supports the separation concept.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. The present invention will hereinafter be described
in conjunction with the appended drawing figure(s), wherein
like numerals denote like elements, and:
0012 FIG. 1 is a diagram depicting a box and wire model
for a typical system architecture;
0013 FIG. 2 is a diagram depicting a task model that may
reside on a physical device in a typical system architecture;
0014 FIG. 3 is a diagram depicting the task model that is
Supported by an operating system in a typical multi-tasking
architecture;
0015 FIG. 4 is a diagram illustrating the different types of
memory segments Supported by the framework of the present
invention;
0016 FIG. 5 is a diagram illustrating the cell abstraction
concept of the present invention;
0017 FIG. 6 is a diagram illustrating the interaction
between cells in accordance with the present invention;
0018 FIG. 7 is a diagram depicting a single cell and two
cell operations in accordance with the separation principle of
the present invention;

US 2010/0192154 A1

0019 FIG. 8 is a diagram depicting a multiple cell abstrac
tion system;
0020 FIGS. 9-11 illustrate the fundamental relationships
and equations that define the separation specification of the
present invention;
0021 FIGS. 12 and 13 illustrate the first and second sepa
ration axioms, respectively, in accordance with the separation
specification of the present invention;
0022 FIG. 14 depicts a separation kernel that supports a
high degree of separation between processing elements in a
computer-implemented system in accordance with the
present invention;
0023 FIGS. 15-17 illustrate various operations of a strand
in a cell in accordance with the present invention;
0024 FIG. 18 illustrates a method for allocating memory
in accordance with the present invention; and
0025 FIG. 19 illustrates a method for performing remote
procedure calls in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0026. The present invention generally relates to designing
a kernel of an operating system in accordance with the sepa
ration principle. A framework for designing the separation
kernel is set forth below. It is to be understood that this
framework, the Subsequent description of the separation prin
ciple and its application to the design of the kernel are merely
exemplary and are intended to provide an understanding of
the nature and character of the invention as it is claimed.
0027. In accordance with the present invention, the prin
ciple abstraction for the framework is the cell. A cell is
defined as a domain of execution and a collection of strands,
where each Strand is a stream of programmable machine
instructions executable by the kernel of the operating system.
For purposes of the following description, a domain of execu
tion is also referred to as the context of the cell and a strand is
also referred to as a task.
0028. The context of a cell is comprised of one or more
memory segments. Each segment is a range of physical
memory addresses, which are defined by a starting address
and a length. The framework of the present invention Supports
different types of memory segments as shown in FIG. 4.
0029 Permanent segments are allocated to a cell and
therefore are accessible to any of the strands associated with
the cell. Permanent segments may be used for storing data,
code (i.e., a strand's machine instructions) or memory
mapped hardware interfaces. Permanent segments cannot be
sent in messages, but are retained when the currently execut
ing strand of the cell Suspends.
0030. In contrast, a transient segment is accessible to the
Strand, which is running in the cell, and to the cell. In other
words, each strand has predefined memory requirements for
its transient segments. When the strand is launched, the tran
sient segments are allocated for the Strand. Thus, the transient
segments are accessible to the strand. As will be more fully
explained below, the framework supports different types of
transient segments, such as an input message segment, a
Scratch segment, an assigned segment, and a register segment.
0031. An overview of the framework, including the cell
abstraction concept and its interrelationships, are further dis
cussed in relation to FIG. 5. Each cell can execute only one
Strand at a time. Strand 22 is currently running in Cell 20. It
is processing an input message 24, which is made up of one or
more transient segments. Strand 22 may use one or more

Jul. 29, 2010

scratch segments 26 to process the input message 24. A
scratch segment is a temporary memory space of Sufficient
size to be used by the strand when processing the input mes
sage. Strand may also access an assigned segment 28. An
assigned segment is a specified transient segment used to gain
access to available resources, such as device registers. Lastly,
Strand may access one or more permanent segments. For
instance, the encapsulated data segment 30 contains static
data used by the strand.
0032. Cell 32 is currently not executing a strand. How
ever, it may begin execution of a strand some time after it is
granted access to an input message received from Strand 22
of Cell 20. In FIG. 5, Strand 34 is shown being launched in
Cell. When a strand in the cell is launched, the cell receives
access to the message segment(s) that make up the input
message. Again, the Strand may require Scratch segments to
process the input message. In addition, an interrupt strand
may be run immediately upon receipt of an interrupt. Thus,
the execution of a strand may be interleaved with the execu
tion of interrupt strands.
0033. A cell interfaces to its external world (e.g., to other
cells or the underlying hardware) only through the Substrate.
For purposes of this discussion, the substrate is defined as the
operating system, the device drivers, and the underlying hard
ware of the system. Exemplary cell interfaces are illustrated
in FIG. 6. First, the kernel of the operating system launches
Strand322 of CellA20. At this time, the strand is given access
by the kernel to its input message segment(s) and scratch
segment(s). Next, Strand 22 uses a Send interface 36 to send
Some of its transient segments to Strand 34 of Cell, 32. As a
result, Cell loses access to the segments transmitted by the
Strand.

0034. After further execution of the strand, Strands of
Cell addresses an exception condition through the use of a
Throw interface 38. The interface terminates execution of the
strand and initiates execution of a Handler function. When
execution of Strands of Cell terminates, the kernel removes
access to all of the transient segments remaining in Cell. If
Strands of Cell had not terminated via the exception condi
tion, it would have reached the end of its strand. In this case,
the TerminateStrand interface 39 terminates the execution of
the strand and removes access to any transient segments still
accessible to the cell. One skilled in the art will readily rec
ognize that the separation kernel of the present invention will
be designed and implemented within the above-described
framework. Data structures that define and describe the
strands and cells in the above-described framework are fur
ther discussed in the Appendix.
0035 An introduction to the separation principle is pro
vided in relation to FIGS. 7-11. FIG. 7 shows a cell 40 and two
of its operations, Fiberinit 42 and FiberNext 44. Again, the
cell represents an execution domain. Moreover, the cells are
the components of the system to be separated.
0036. In FIG. 8, several cells have been combined into a
system 50 that is referred to as the Multiple Cell Abstraction,
where each individual cell is referred to as a Single Cell
Abstraction (SCA). Each cell has its own Fiberinit and
FiberNext operations, whereas the system as a whole has an
Init 52 and Next 54 operation. Since the cells serve as the
Fibers of the system, the names for the cell level operations
are Fiberinit and FiberNext. The names Init and Next are
reserved for the system level operations.
0037. There are several choices for defining the relation
ship between these cell operations. For instance, the Next

US 2010/0192154 A1

operation (advancing the system state) could correspond to a
FiberNext operation (advancing a cell state) on every cell at
once, thereby implying multiprocessing of the cells. On the
other hand, the Next operation could correspond to a FiberN
ext operation on only one cell or on Some Subset of the cells.
There are similar design choices for the Init and Fiberinit
operations. The separation specification of the present inven
tion defines the Next operation to advance a cell state only one
cell at a time and the Init operation to initialize the cell state of
all the cells at once. Therefore, the system state advances one
cell at a time, but the initialization of the system is not com
plete until all of the cells are ready to run.
0038 FIG.9 depicts this design choice for the separation
specification of the present invention. In this figure, the Next
operation 62 is being performed on the system, where the
Next operation is the Next operation performed on Cell.
The state of the system before the Next operation is shown as
MCA State 64. MCA State 64 includes Cell in state SCA
66, Cell in state SCA 68 and Cell, in state SCA 70. The
state of the system after the Next operation is shown as MCA
State272, where Cell is in state SCA 74, Cell is in state
SCA, 76 and Cell, is in state SCA. 78. The Next opera
tion at the system level corresponds to selecting a cell and
advancing the state of that one cell.
0039 FIG. 9 further illustrates that performing Next on
MCA achieves the same result as taking Fiber 80 of MCA
to yield SCA, 82, and then performing FiberNext 84 on
SCA. In this case, Cell is selected by the Fiber operation.
Performing the FiberNext operation upon CellB advances the
state of Cell. In equation form, this is:

Fiber(Next(m))=FiberNext(Fibert(m))

FIG. 10 is a commuting diagram, which is a diagrammatic
form of the above equation. The internal cells of MCA have
been hidden from the external world and can be observed only
through the Fiber operation. This equation can be further
shortened to:

Fiber-Next=FiberNextFiber

In this short form, the variable m has been dropped. In addi
tion, the equation is between two functions, rather than the
value of the functions at an arbitrary input. The symbol
denotes function composition.
0040. The final form of this relationship is shown in FIG.
11. In this figure, the functions Next, and Fiber, have been
uncurried into Next and Fiber. This means that the function
Next is related to Next by the equation Next(m)=Next(m,
B) for Cell. In general, NextX is related to Next by the
equation NextX(m)=Next(m, x) for any cell X. Since Next
was changed to Next, and Fiber, was changed to Fiber, the
CellID parameter is no longer contained in the subscript of the
operator, so this must be made explicit in the domain of the
Next and Fiber functions. This is why MCA is combined with
CellID in the product MCAxCellID. The equations corre
sponding to FIG. 11 are given as follows:

Fiber(Next(n,c))=FiberNext(Fiber(n,c))

Fiber-Next=FiberNextFiber

0041. In simple terms, what these fundamental equations
are saying is that when the system state is advanced by one
step, the change in the system state corresponds to a change in
the state of one of its cells, as identified by the Fiber function.
If you look at the system state before advancing it one step and
again after advancing it one step, then there will be a unique

Jul. 29, 2010

cell c, which accounts for this advance in the state of the
system. This cell caccounts for the advance in the state of the
system by advancing its own single cell State by one step.
0042. The operators Init and Next are specified to be the
constructors of the MCA. This means that all possible MCA
states are the result of system initialization and the advance
ment of the system state one step at a time by the Next
operation. This specifies that the system cannot land in any
“unspecified’ states that might not satisfy the security con
straints of the system. There is a similar constraint upon the
SCA that states that any SCA must be the result of a Fiber
operation on an MCA. Since the MCA is constrained to be in
valid states, as constructed by Init and Next, this constrains
the SCAS to be in valid states resulting from taking a Fiber of
a valid MCA.

0043. In sum, the system under consideration is the Mul
tiple Cell Abstraction (MCA). The elements of the system to
be separated are the cells as represented by the Single Cell
Abstraction (SCA). The relationship between the system and
its cells is given in several forms by the above-described
fundamental equations. These fundamental equations in turn
serve as the basis for the separation specification of the
present invention.
0044) The separation specification is further defined by
two separation axioms. FIG. 12 depicts a First Separation
Axiom, which sets forth the communication policy between
cells. Since the communication policy references the concept
of a cell, it is logical that the statement of the communication
policy should reference the definitions of the Next and Fiber
functions. Indeed, one of the purpose for separating the sys
tem into cells is to restrict communication within the system.
Accordingly, FIG. 12 describes an equation stating that cell
SCA can influence cell SCA, only if cell SCA, is permitted
to communicate with cell SCA, by the communication policy
enforced by the kernel. The communication policy is alterna
tively recited by the following equations:

-Communications(x,y)=>Fiber.(MCA)=Fiber.(Next,
(MCA))

Fiber.(MCA), Fiber.(Next (MCA))=>Communicates
(x,y)

In this case, the second equation (i.e., the contrapositive form
of the first equation) states that if the fiber of celly changes as
the result of advancing the state of cell X, it must be the case
the X is permitted to communicate withy. In its positive form,
the equation states that if cell X cannot communicate with cell
y, then whenever the state of cell x is advanced, there is no
change in the state of y. A particular consequence of this
communication policy is that cell X can send messages to y
only if cell X has permission to communicate with y.
0045. The Second Separation Axiom is depicted in FIG.
13. It should be noted that this diagram is not a commuting
diagram. This diagram depicts the following equations:

SCA =Fiber.(MCA) SCA Fiber.(MCA)

SCA–Fiber.(MCA) SCA2=Fiber.(MCA)

SCA'l-Fiber.(MCA") SCA'l-Fiber (MCA')

SCA'l-Fiber.(MCA"). SCA'-Fiber.(MCA)

(Fiber.(MCA)=Fiber.(MCA))=>((Fiber.(MCA)
=Fiber.(MCA))=>(Fiber.(Next,(MCA)=Fiber,
(Next (MCA))))

US 2010/0192154 A1

Fiber.(Next,(MCA))z Fiber.(Next,(MCA))=>(Fi
ber.(MCA)z (Fiber.(MCA))v(Fiber.(MCA), Fiber,
(MCA))

0046. In accordance with these equations, if an action by
cell X (e.g., advancing the state of the SCA for cell X) is going
to change the State of celly, then the change in the state of y
depends only on the states of X and y. Without this axiom, an
unknown cell could affect the state of y. For instance, if X
changes y, it could do so by copying everything from a third
cell Z into the SCA of y. The purpose of this axiom is to
prevent “undesirable' connections between cells such as Z
andy.
0047 Accordingly, the first equation states that ifx has the
same fiber in two different system states MCA and MCA,
andy has the same fiber in MCA and MCA, theny has the
same fiber after advancing the state x in both MCA and
MCA. The contrapositive form of this equation (i.e., the
second equation) may be more revealing. It says that if
advancing X causes a change in the state of y, then the change
must have resulted from either a change in the state of X or a
change in the State of y.
0048. To implement a separation kernel, the designer must
choose features that Support the intended applications and
implement those features in away that conforms to the above
described separation property. In accordance with the present
invention, a computer-implemented system 90 that Supports a
high degree of separation between processing elements is
shown in FIG. 14. The computer-implemented system 90
comprises a plurality of cells 92, where each cell includes a
domain of execution 94 and at least one processing element
96. A kernel 98 facilitates execution of the processing ele
ments and administers the communication between the pro
cessing elements in accordance with a separation specifica
tion 99. The separation specification 99 governs
communication between the processing elements, such that
one processing element can influence the operation of another
processing element only as set forth by the separation speci
fication.

0049. A preferred implementation of the kernel and its
separation specification has selected several features that are
required by the applications of the kernel and can be made to
fit the separation principle. First, memory allocation is a
selected feature because the intended applications are
required to process many kinds of data which often require
added memory resources to efficiently process the data. Since
the applications require time-shared access to hardware
resources, the hardware resources are allocated as memory
mapped segments to the cells in a way that preserves the
separation property. Second, remote procedure call procedure
is a selected feature because many intended applications
require a communications mechanism beyond a simple send
message. The remote procedure call is a communication
mechanism in which information is provided to a server, the
server processes the information and returns a result, and the
processing continues in the same context that existed before
the service was invoked. Third, exception handling is a
selected feature because the intended applications are
required to be robust with respect to exceptions. Since excep
tions can be handled locally with assurance that the direct
cause of the exception is local, exception handling is also
improved by the separation principle. Each of these selected
features (i.e., memory allocation, remote procedure calls and
exception handling) is further described below.

Jul. 29, 2010

0050. A memory allocation mechanism in the separation
kernel of the present invention is understood in relation to the
operation of a strand as shown in FIG. 15. At strand launch
time, a strand is allocated the memory it requires according to
its predefined memory requirements. The strand memory
requirements are constant for that strand, in that they are the
same each time the Strand is launched. The strand receives
two kinds of transient segments upon strand launch: message
segments and non-message segments. Message segments are
segments, which have been sent by some other Strand to the
Strand being launched. It is the existence of this message that
causes the strand launch. Non-message segments are the
other transient segments, which are described by the pre
defined memory requirements for the strand.
0051. As the strand executes, it undergoes interactions
with the kernel. If the strand elects to send some of its tran
sient segments as part of an input message to another strand,
then access to the transient segments is lost at this point. Thus,
the strand can lose access to transient segments as it executes,
but it cannot gain access to any more transient segments as it
executes. In order to achieve separation within the kernel, the
allocation of transient segments for a strand obeys the follow
ing properties: (1) before strand launch, the strand has access
only to the permanent segments of the cell; (2) transient
memory requirements for a strand area function of the Strand,
and thus are known at compile time; (3) the kernel does not
launch the strand until there is sufficient memory to satisfy all
of the memory requirements for the Strand; (4) transient seg
ments that are non-message segments are initialized before
allocation; (5) as the strand executes, it can lose memory
segments (e.g., by sending a message), but it cannot allocate
any more segments; and (6) Strand termination causes all
transient segments to be released by the kernel. From these
properties, it may be concluded that after Strand termination,
the strand has access only to the permanent segments of the
cell and each time a strand runs, the amount of memory
available is the same, as specified by the predefined memory
requirements for the strand. FIG. 18 illustrates a method for
allocating memory by a separation kernel in accordance with
the above-described principles.
0052. As a result, a strand sees exactly the same amount of
allocated memory each time it runs. Thus, there is no covert
channel Stemming from the amount of allocated memory.
This eliminates the typical memory allocation covert channel
that results from the ability of one process to cause resource
exhaustion.

0053. However, there may be still one covert channel if the
memory addresses of the allocated transient segments are
visible to the strand as it executes. In this case, it may be
possible to manipulate the addresses of the available memory
segments to communicate information to a strand to be
launched. This channel can be eliminated if the underlying
hardware Supports address translation. In this case, the strand
would see the allocated segments at the same logical address
each time it runs. Thus, the strand would have the same
amount of allocated transient memory, at the same address,
every time it runs.
0054 Referring to FIG. 16, the separation kernel of the
present invention also implements a remote procedure call
mechanism. During the execution of the strand, the Strand
may makes a remote procedure call 92 to Strands in the target
cell (i.e., Cell). As part of the remote procedure call. Some of
the transient segments of the source strand are sent to the
target strand. At this point, these transmitted segments

US 2010/0192154 A1

become inaccessible to the source Strand and accessible to the
target strand. These transmitted segments constitute the
parameters of the remote procedure call.
0055 When the target strand is launched, the target strand
only gets access to the input transient segments and the per
manent segments of the target cell. Since there are no addi
tional memory segments to allocate, it can be concluded that
there are sufficient resources to execute the remote procedure
call. In other words, the remote procedure call cannot fail on
account of insufficient resources. The kernel is designed to
ensure that internal kernel resources will be sufficient to pro
cess the remote procedure calls, so that no resource exhaus
tion covert channel is provided by the kernel itself Therefore,
it is not possible for the remote procedure call to fail on
account of insufficient resources within the kernel.

0056. In FIG. 16, the target strand terminates using the
normal strand termination mechanism. The target strand
returns a value 94 to the calling strand. In addition, the trans
mitted segments are made inaccessible to the target Strand and
made once again made accessible to the source Strand. This
means that before and after the remote procedure calls the
same set of segments are accessible to the Source Strand. If the
target Strand is terminated for any other reason, the remote
procedure call mechanism causes a return to the Source
Strand, and thus guarantees a return from the remote proce
dure call.

0057. During its execution, the target strand is prohibited
from sending the transmitted segments as part of a send
message. Thus, the segments remain available to be returned
to the source Strand. Furthermore, the target strand can make
a remote procedure call of its own. To do so, the target Strand
retransmits one or more of the transmitted segments to
another target strand. When this additional remote procedure
call is completed, the re-transmitted segments are returned to
the target Strand.
0058. It should also be noted that the remote procedure
call mechanism does not allow recursive calls, i.e. calls to
Strands in a cell that is already part of the remote procedure
call stack. In addition, the remote procedure call mechanism
also does not permit a call to a cell that already has an execut
ing strand, thereby preserving the property that only one
Strand of a cell can run at any one time. This is an important
property to prevent re-entrant code. Re-entrant code can
cause various runtime errors. FIG. 19 illustrates a method for
performing remote procedure calls in accordance with the
above-described principles.
0059 Lastly, the separation kernel of the present invention
implements an exception handling mechanism. During the
execution of a strand, the Strand may generate an exception.
As will be apparent to one skilled in the art, the exception may
be caused by a variety of conditions, including a divide by
Zero oran invalid address condition (i.e., an address that is not
within one of the segments accessible to the strand). The
Strand can raise an exception intentionally by calling the
Throw() interface as shown in FIG. 17.
0060. The kernel in turn processes the Throw() interface
by transferring control to the exception handler of the cell.
The kernel also passes the cause of the exception in a register
to the exception handler. The exception handler runs in the
same context as the Strand that incurred the exception. There
fore, the exception handler has access to the same permanent
and transient segments as the strand that incurred the excep
tion.

Jul. 29, 2010

0061 The exception handler has the option of attempting
to resume processing of the strand that incurred the exception
or terminating the execution of the strand. In FIG. 17, it is
assumed that the exception handler resumes processing of the
Strand that incurred the exception. Thus, the strand completes
execution and then terminates.
0062 Each strand has a maximum exception count. When
the Strand incurs a number of exceptions equal to the maxi
mum exception count, the strand is terminated by the kernel.
Thus, there is no way to get stuck in a loop of exceptions,
which in turn causes, more exceptions. On the contrary, the
Strand will be terminated when the maximum exception count
is reached.
0063 As a result of the above-described exception han
dling mechanisms, exceptions are confined to the cell that
contains the strand that incurred the exception. Accordingly,
the exception handling mechanism enhances the separation
property by providing exception handling that is separate
between cells.
0064. The foregoing discloses and describes merely
exemplary embodiments of the present invention. One skilled
in the art will readily recognize from Such discussion, and
from accompanying drawings and claims, that various
changes, modifications, and variations can be made therein
without departing from the spirit and scope of the present
invention.

Appendix

0065. The data structures that define and describe the
strands and cells in the previously described framework are
central to the cell abstraction concept, the separation specifi
cation, and the implementation of a separation kernel. There
fore, these data structures are defined to permit a better under
standing of how the separation kernel may be implemented in
accordance with the present invention.

Cell Descriptions
0.066 All of the information in the cell descriptor is static
information about the cell. There are four items in the cell
descriptor:

0067 PermanentSegmentList: The segments that are
permanently allocated to the cell. All the strands of the
cell get access to these segments when they run. These
segments would typically contain the code and cell state
information for the application represented by the cell.
Permanent segments can be restricted to a single cell or
can be shared between more than one cell. The perma
nent segment list described the access mode to the seg
ment (some combination of read, write, and execute)
desired by the cell.

0068 Handler: The address of the exception handler for
the cell.

0069. SendMap: The set of cells to which this cell can
send messages. This regulates the operation of the kernel
Send() and Wait() interfaces.

0070 ShareMap: The set of cells with which this cell
can share permanent segments.

Cell State

0071. The cell state is dynamic information about the cell.
It is maintained as a map from CellID to CellState, where
CellState is one of Idle, Running, or Waiting. This mapping is
called the CellStateMap.

US 2010/0192154 A1

Stand Descriptor

0072 All of the information in the strand descriptor is
static information about the strand. There are seven items in
the strand descriptor:

0073 Cell ID: The identifier of the cell that contains the
strand. This can be used to look up the cell descriptor of
the cell containing the strand.

0074 ProcessorMode: Either foreground or back
ground. If the mode is foreground, the cell is run with
interrupts enabled. If the mode is background, the cell is
run with interrupts disabled. A background cell can be
used to implementa device driver strand, which requires
access to hardware resources without fear of interrupt
from the hardware.

(0075 EntryPoint: The address of the Strand EntryPoint
function.

(0076 StackPointer. Where to begin the stack when the
StrandEntry Point is run. The stack pointer must point at
an address within a permanent segment of the cell of the
strand, or to an assigned segment required by the strand
in the SDAssignedSegmentList. The kernel table
builder, not the kernel itself, enforces this restriction.

(0077. Priority: The priority of the strand.
0078 Scratch.SizeMap: The scratch memory require
ments of the Strand. There are four sizes of Scratch seg
ments: Tiny, Small, Medium and Large. The scratch size
map defines how many of each of these Scratch segments
sizes are required by the Strand.

0079 SDAssignedSegmentList: The assigned seg
ments required by the strand.

0080 Assigned segments are used to share scarce
resources between Strands.

The strand descriptors are kept in the StrandDescriptorTable,
which is a total mapping from StrandID to StrandDescriptor.

Initial Strand

0081. There is a configuration parameter called Initial
Strand used by the kernel. This is static strand information.
When the kernel has completed initialization, it launches the
Strand indicated by the InitialStrand configuration parameter.

Resource Availability for a Strand

0082. A concept that comes up repeatedly in the descrip
tion of the kernel is resource availability, so it is discussed
separately here to aid understanding of the description of the
kernel.

0083 Execution of a strand may require allocation of
resources. The resources that may be allocated are scratch and
assigned segments. Resource availability for a strand means:

I0084. There are enough available scratch segments of
the sizes specified in the Scratch.SizeMap of the Strand
Descriptor.

I0085. The assigned segments required by the strand are
all available. This can mean one of the following:
0086
I0087. The assigned segments are part of the message

to launch the Strand.

The assigned segments are completely free.

Jul. 29, 2010

I0088. The assigned segments have been kept by the
Strand on the prior execution of the Strand.

Runnability of a Strand

I0089. A related concept to resource availability for a
strand is the runnability of a strand. A strand is runnable
when:

0090
able.

0091

The resources required by the strand are avail

The strand is not marked blocked.

Strand Startup

0092. When a strand begins, it has several standard argu
ments, which are passed to it by the kernel. The parameters
are passed utilizing the registers/stack. The strand must have
Sufficient stack space for the Stacked parameters along with
any space necessary for local data. The variables that are
initialized with their values and available for a strand to use
when it starts are as follows:

0093 SourceStrandID is the ID of the strand, which
sent the message.

0094 Command is a 32-bit message from the sending
cell.

0.095 Scratch.SegmentList is a structure consisting of
the number of Scratch segments along with each seg
ment's address and size.

0096) Message is a structure consisting of the number of
message segments along with each segment's address
and size.

0097. Depth represents the level of nested Remote Pro
cedure Calls (RPC) that this strand is being started
within. A length of Zero means that the Strand is being
started by a Message Send call. A length which is
greater than Zero, represents the number of nested RPCs.

Exception Handling

0.098 Exception processing allows a strand to transfer
control to the exception handler specified in the cell descrip
tor for the cell. This feature is similar to a jump and should be
used to handle cases where abnormal conditions arise.
0099. The exception code is the only parameter passed to
the exception handler by the currently running strand. The
exception code should contain the error code that resulted in
the exception. Preferably, the system reserves the first 32
exception codes (0->31) for current and future growth. Each
cell is free to use the other exception codes as needed.

What is claimed is:
1. A method for handling an exception condition incurred

by a strand of a plurality of strands, comprising the steps of
designating a maximum exception count for each of the

plurality of strands; and
tracking a number of exception conditions incurred by

each of the plurality of strands; and
terminating the strand of the plurality of strands when the

strand incurs the number of exception conditions that at
least equals the maximum exception count designated
for the strand.

2. The method of claim 1, further comprising the step of
prohibiting an addition of memory for the strand that incurred

US 2010/0192154 A1

the exception condition when handling the exception condi
tion of the strand.

3. The method of claim 1, further comprising the step of
completing execution of the Strand prior to terminating the
Strand.

4. The method of claim 1, further comprising the step of
resuming processing of the strand that incurred the exception
condition if the stand incurs the number of exceptions that is
less then the maximum exception count designated for the
Strand.

Jul. 29, 2010

5. The method of claim 1, wherein the exception condition
is a divide by Zero condition.

6. The method of claim 1, wherein the exception condition
is an invalid address condition.

7. The method of claim 1, wherein terminating the strand
occurs when the strand incurs the number of exception con
ditions that exceeds the maximum exception count desig
nated for the strand.

