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(57) ABSTRACT 

A computer-implemented system (90) is provided that sup 
ports a high degree of separation between processing ele 
ments. The computer-implemented system (90) comprises a 
plurality of cells (92) residing on the computer-implemented 
system, where each cell (92) includes a domain of execution 
(94) and at least one processing element (96); a separation 
specification (99) that governs communication between the 
processing elements (96); and a kernel (98) of an operating 
system that facilitates execution of the processing elements 
(96) and administers the communication between the pro 
cessing elements (96) in accordance with the separation 
specification (99), such that one processing element (96) can 
influence the operation of another processing element (96) 
only as set forth by the separation specification (99). In par 
ticular, the separation specification provides memory alloca 
tion, remote procedure calls and exception handling mecha 
1SS. 
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SEPARATION KERNEL WITH MEMORY 
ALLOCATION, REMOTE PROCEDURE CALL 

AND EXCEPTION HANDLING 
MECHANISMS 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. applica 
tion Ser. No. 10/866,564 filed Jun. 10, 2004 which is a con 
tinuation of U.S. application Ser. No. 09/443,597 filed Nov. 
19, 1999 now issued as U.S. Pat. No. 6,772,416 on Aug. 3, 
2004. 

BACKGROUND OF THE INVENTION 

0002 1. Technical Field 
0003. The present invention relates generally to using the 
separation principle to design a kernel of an operating system, 
and more particularly, the present invention relates to a kernel 
that applies the separation principle to memory allocation, 
remote procedure call and exception handling mechanisms. 
0004 2. Discussion 
0005 Separation is an extremely important property in the 
construction and analysis of secure systems. If two logical 
entities A and B (for example, two pieces of software) are 
separate, then separation means that there is no way for A to 
influence the operation of B, and vice versa. If the operation 
of A is important to the Security of a system, the separation of 
A and B means that the operation of B can be ignored when 
evaluating how A Supports the security of the system. If A and 
B are not separate, so that B could influence the operation of 
A, then both A and B must be considered in evaluating how A 
Supports the security of the system. The necessity of evaluat 
ing A and B increases the difficulty and cost of the security 
evaluation, and usually yields a lower assurance of security. 
Thus lack of separation yields the combination of higher cost 
and lower assurance. 
0006 Complete separation (no influence between A and 
B) yields a conceptually clean system. Incomplete separation 
can still be very good if there are a Small (e.g. one, two, or 
three) number of known influence paths between A and B, and 
these paths have low bandwidth and/or are difficult to use. 
Incomplete separation is unacceptable in a high assurance 
system when it results from the inherent complexity of the 
system, and the resulting inability to analyze the possible 
influences between A and B. Therefore, it is desirable to 
construct a high assurance system applying strong separation 
principles. 
0007 Separation is a principal that has been investigated 
for the construction of secure systems for sometime. The idea 
behind separation can be described with the assistance of 
FIG.1. A system is sometimes implemented as a set of sepa 
rate physical devices, with the devices interconnected by 
physical wires. In FIG. 1, if it is important to the security of 
the system that box does not directly intercommunicate with 
box, then one need only look at the arrangement of the 
physical boxes and wires to determine the truth of this prop 
erty. 
0008. It is often the case that the same system will be 
implemented in one physical box, but with logical entities 
(e.g. Software processes) performing the same functions as 
the physical boxes of FIG.1. This new implementation may 
result from increasing miniaturization of components, or the 
increasing memory and processing power available within on 
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processor platform. This new implementation of the same 
system is depicted in FIG. 2. The tasks are performing the 
same functions and are interconnected in the same way as the 
boxes of FIG.1. If it was important before that box does not 
directly intercommunicate with box, then it is still important 
that task does not directly intercommunicate with task. 
Analyzing the system of FIG. 2 may not be as easy as it was 
in FIG.1. The reason for the increasing difficulty of analysis 
is shown in FIG. 3. 
0009. The problem is that all of the tasks communicate 
with the operating system, thus the operating system becomes 
a means whereby information can be transmitted between 
tasks, and tasks can influence each other even when not per 
mitted by the communication policy of the operating system. 
FIG. 3 shows tasks influencing task by means of operating 
system mechanisms. A standard example of this is memory 
allocation. If all of the tasks allocate memory from a shared 
pool of resources, then task could allocate all of the memory. 
When task runs and attempts to allocate memory, it will 
receive a failing return from the operating system. This failing 
return could encode a “1” transmitted from tasks to task. If 
tasks then releases some memory, when task runs, it will try 
to allocate some memory again, this time receiving a Success 
ful return from the operating system. This successful/failure 
return from the operating system was never intended to be 
used as a communication channel, nevertheless a good hacker 
can make use of it in this way. In other words, the problem is 
that the other software (e.g., other tasks and the operating 
system) can now influence the operation of the task under 
analysis, and thus the task under analysis cannot be analyzed 
in isolation. 
0010. Therefore, it is desirable to provide a high-grade 
separation between processing elements in a system. This 
high-grade separation permits the system designer to estab 
lish high assurance secure systems by allowing each process 
ing element to be analyzed in isolation. To achieve high-grade 
separation, the present invention applies the separation prin 
ciple to the design a kernel of an operating system. More 
specifically, the kernel incorporates memory allocation, 
remote procedure call and exception handling mechanisms in 
Such a way that Supports the separation concept. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0011. The present invention will hereinafter be described 
in conjunction with the appended drawing figure(s), wherein 
like numerals denote like elements, and: 
0012 FIG. 1 is a diagram depicting a box and wire model 
for a typical system architecture; 
0013 FIG. 2 is a diagram depicting a task model that may 
reside on a physical device in a typical system architecture; 
0014 FIG. 3 is a diagram depicting the task model that is 
Supported by an operating system in a typical multi-tasking 
architecture; 
0015 FIG. 4 is a diagram illustrating the different types of 
memory segments Supported by the framework of the present 
invention; 
0016 FIG. 5 is a diagram illustrating the cell abstraction 
concept of the present invention; 
0017 FIG. 6 is a diagram illustrating the interaction 
between cells in accordance with the present invention; 
0018 FIG. 7 is a diagram depicting a single cell and two 
cell operations in accordance with the separation principle of 
the present invention; 
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0019 FIG. 8 is a diagram depicting a multiple cell abstrac 
tion system; 
0020 FIGS. 9-11 illustrate the fundamental relationships 
and equations that define the separation specification of the 
present invention; 
0021 FIGS. 12 and 13 illustrate the first and second sepa 
ration axioms, respectively, in accordance with the separation 
specification of the present invention; 
0022 FIG. 14 depicts a separation kernel that supports a 
high degree of separation between processing elements in a 
computer-implemented system in accordance with the 
present invention; 
0023 FIGS. 15-17 illustrate various operations of a strand 
in a cell in accordance with the present invention; 
0024 FIG. 18 illustrates a method for allocating memory 
in accordance with the present invention; and 
0025 FIG. 19 illustrates a method for performing remote 
procedure calls in accordance with the present invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

0026. The present invention generally relates to designing 
a kernel of an operating system in accordance with the sepa 
ration principle. A framework for designing the separation 
kernel is set forth below. It is to be understood that this 
framework, the Subsequent description of the separation prin 
ciple and its application to the design of the kernel are merely 
exemplary and are intended to provide an understanding of 
the nature and character of the invention as it is claimed. 
0027. In accordance with the present invention, the prin 
ciple abstraction for the framework is the cell. A cell is 
defined as a domain of execution and a collection of strands, 
where each Strand is a stream of programmable machine 
instructions executable by the kernel of the operating system. 
For purposes of the following description, a domain of execu 
tion is also referred to as the context of the cell and a strand is 
also referred to as a task. 
0028. The context of a cell is comprised of one or more 
memory segments. Each segment is a range of physical 
memory addresses, which are defined by a starting address 
and a length. The framework of the present invention Supports 
different types of memory segments as shown in FIG. 4. 
0029 Permanent segments are allocated to a cell and 
therefore are accessible to any of the strands associated with 
the cell. Permanent segments may be used for storing data, 
code (i.e., a strand's machine instructions) or memory 
mapped hardware interfaces. Permanent segments cannot be 
sent in messages, but are retained when the currently execut 
ing strand of the cell Suspends. 
0030. In contrast, a transient segment is accessible to the 
Strand, which is running in the cell, and to the cell. In other 
words, each strand has predefined memory requirements for 
its transient segments. When the strand is launched, the tran 
sient segments are allocated for the Strand. Thus, the transient 
segments are accessible to the strand. As will be more fully 
explained below, the framework supports different types of 
transient segments, such as an input message segment, a 
Scratch segment, an assigned segment, and a register segment. 
0031. An overview of the framework, including the cell 
abstraction concept and its interrelationships, are further dis 
cussed in relation to FIG. 5. Each cell can execute only one 
Strand at a time. Strand 22 is currently running in Cell 20. It 
is processing an input message 24, which is made up of one or 
more transient segments. Strand 22 may use one or more 
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scratch segments 26 to process the input message 24. A 
scratch segment is a temporary memory space of Sufficient 
size to be used by the strand when processing the input mes 
sage. Strand may also access an assigned segment 28. An 
assigned segment is a specified transient segment used to gain 
access to available resources, such as device registers. Lastly, 
Strand may access one or more permanent segments. For 
instance, the encapsulated data segment 30 contains static 
data used by the strand. 
0032. Cell 32 is currently not executing a strand. How 
ever, it may begin execution of a strand some time after it is 
granted access to an input message received from Strand 22 
of Cell 20. In FIG. 5, Strand 34 is shown being launched in 
Cell. When a strand in the cell is launched, the cell receives 
access to the message segment(s) that make up the input 
message. Again, the Strand may require Scratch segments to 
process the input message. In addition, an interrupt strand 
may be run immediately upon receipt of an interrupt. Thus, 
the execution of a strand may be interleaved with the execu 
tion of interrupt strands. 
0033. A cell interfaces to its external world (e.g., to other 
cells or the underlying hardware) only through the Substrate. 
For purposes of this discussion, the substrate is defined as the 
operating system, the device drivers, and the underlying hard 
ware of the system. Exemplary cell interfaces are illustrated 
in FIG. 6. First, the kernel of the operating system launches 
Strand322 of CellA20. At this time, the strand is given access 
by the kernel to its input message segment(s) and scratch 
segment(s). Next, Strand 22 uses a Send interface 36 to send 
Some of its transient segments to Strand 34 of Cell, 32. As a 
result, Cell loses access to the segments transmitted by the 
Strand. 

0034. After further execution of the strand, Strands of 
Cell addresses an exception condition through the use of a 
Throw interface 38. The interface terminates execution of the 
strand and initiates execution of a Handler function. When 
execution of Strands of Cell terminates, the kernel removes 
access to all of the transient segments remaining in Cell. If 
Strands of Cell had not terminated via the exception condi 
tion, it would have reached the end of its strand. In this case, 
the TerminateStrand interface 39 terminates the execution of 
the strand and removes access to any transient segments still 
accessible to the cell. One skilled in the art will readily rec 
ognize that the separation kernel of the present invention will 
be designed and implemented within the above-described 
framework. Data structures that define and describe the 
strands and cells in the above-described framework are fur 
ther discussed in the Appendix. 
0035 An introduction to the separation principle is pro 
vided in relation to FIGS. 7-11. FIG. 7 shows a cell 40 and two 
of its operations, Fiberinit 42 and FiberNext 44. Again, the 
cell represents an execution domain. Moreover, the cells are 
the components of the system to be separated. 
0036. In FIG. 8, several cells have been combined into a 
system 50 that is referred to as the Multiple Cell Abstraction, 
where each individual cell is referred to as a Single Cell 
Abstraction (SCA). Each cell has its own Fiberinit and 
FiberNext operations, whereas the system as a whole has an 
Init 52 and Next 54 operation. Since the cells serve as the 
Fibers of the system, the names for the cell level operations 
are Fiberinit and FiberNext. The names Init and Next are 
reserved for the system level operations. 
0037. There are several choices for defining the relation 
ship between these cell operations. For instance, the Next 
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operation (advancing the system state) could correspond to a 
FiberNext operation (advancing a cell state) on every cell at 
once, thereby implying multiprocessing of the cells. On the 
other hand, the Next operation could correspond to a FiberN 
ext operation on only one cell or on Some Subset of the cells. 
There are similar design choices for the Init and Fiberinit 
operations. The separation specification of the present inven 
tion defines the Next operation to advance a cell state only one 
cell at a time and the Init operation to initialize the cell state of 
all the cells at once. Therefore, the system state advances one 
cell at a time, but the initialization of the system is not com 
plete until all of the cells are ready to run. 
0038 FIG.9 depicts this design choice for the separation 
specification of the present invention. In this figure, the Next 
operation 62 is being performed on the system, where the 
Next operation is the Next operation performed on Cell. 
The state of the system before the Next operation is shown as 
MCA State 64. MCA State 64 includes Cell in state SCA 
66, Cell in state SCA 68 and Cell, in state SCA 70. The 
state of the system after the Next operation is shown as MCA 
State272, where Cell is in state SCA 74, Cell is in state 
SCA, 76 and Cell, is in state SCA. 78. The Next opera 
tion at the system level corresponds to selecting a cell and 
advancing the state of that one cell. 
0039 FIG. 9 further illustrates that performing Next on 
MCA achieves the same result as taking Fiber 80 of MCA 
to yield SCA, 82, and then performing FiberNext 84 on 
SCA. In this case, Cell is selected by the Fiber operation. 
Performing the FiberNext operation upon CellB advances the 
state of Cell. In equation form, this is: 

Fiber(Next(m))=FiberNext(Fibert(m)) 

FIG. 10 is a commuting diagram, which is a diagrammatic 
form of the above equation. The internal cells of MCA have 
been hidden from the external world and can be observed only 
through the Fiber operation. This equation can be further 
shortened to: 

Fiber-Next=FiberNextFiber 

In this short form, the variable m has been dropped. In addi 
tion, the equation is between two functions, rather than the 
value of the functions at an arbitrary input. The symbol 
denotes function composition. 
0040. The final form of this relationship is shown in FIG. 
11. In this figure, the functions Next, and Fiber, have been 
uncurried into Next and Fiber. This means that the function 
Next is related to Next by the equation Next(m)=Next(m, 
B) for Cell. In general, NextX is related to Next by the 
equation NextX(m)=Next(m, x) for any cell X. Since Next 
was changed to Next, and Fiber, was changed to Fiber, the 
CellID parameter is no longer contained in the subscript of the 
operator, so this must be made explicit in the domain of the 
Next and Fiber functions. This is why MCA is combined with 
CellID in the product MCAxCellID. The equations corre 
sponding to FIG. 11 are given as follows: 

Fiber(Next(n,c))=FiberNext(Fiber(n,c)) 

Fiber-Next=FiberNextFiber 

0041. In simple terms, what these fundamental equations 
are saying is that when the system state is advanced by one 
step, the change in the system state corresponds to a change in 
the state of one of its cells, as identified by the Fiber function. 
If you look at the system state before advancing it one step and 
again after advancing it one step, then there will be a unique 
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cell c, which accounts for this advance in the state of the 
system. This cell caccounts for the advance in the state of the 
system by advancing its own single cell State by one step. 
0042. The operators Init and Next are specified to be the 
constructors of the MCA. This means that all possible MCA 
states are the result of system initialization and the advance 
ment of the system state one step at a time by the Next 
operation. This specifies that the system cannot land in any 
“unspecified’ states that might not satisfy the security con 
straints of the system. There is a similar constraint upon the 
SCA that states that any SCA must be the result of a Fiber 
operation on an MCA. Since the MCA is constrained to be in 
valid states, as constructed by Init and Next, this constrains 
the SCAS to be in valid states resulting from taking a Fiber of 
a valid MCA. 

0043. In sum, the system under consideration is the Mul 
tiple Cell Abstraction (MCA). The elements of the system to 
be separated are the cells as represented by the Single Cell 
Abstraction (SCA). The relationship between the system and 
its cells is given in several forms by the above-described 
fundamental equations. These fundamental equations in turn 
serve as the basis for the separation specification of the 
present invention. 
0044) The separation specification is further defined by 
two separation axioms. FIG. 12 depicts a First Separation 
Axiom, which sets forth the communication policy between 
cells. Since the communication policy references the concept 
of a cell, it is logical that the statement of the communication 
policy should reference the definitions of the Next and Fiber 
functions. Indeed, one of the purpose for separating the sys 
tem into cells is to restrict communication within the system. 
Accordingly, FIG. 12 describes an equation stating that cell 
SCA can influence cell SCA, only if cell SCA, is permitted 
to communicate with cell SCA, by the communication policy 
enforced by the kernel. The communication policy is alterna 
tively recited by the following equations: 

-Communications(x,y)=>Fiber.(MCA)=Fiber.(Next, 
(MCA)) 

Fiber.(MCA), Fiber.(Next (MCA))=>Communicates 
(x,y) 

In this case, the second equation (i.e., the contrapositive form 
of the first equation) states that if the fiber of celly changes as 
the result of advancing the state of cell X, it must be the case 
the X is permitted to communicate withy. In its positive form, 
the equation states that if cell X cannot communicate with cell 
y, then whenever the state of cell x is advanced, there is no 
change in the state of y. A particular consequence of this 
communication policy is that cell X can send messages to y 
only if cell X has permission to communicate with y. 
0045. The Second Separation Axiom is depicted in FIG. 
13. It should be noted that this diagram is not a commuting 
diagram. This diagram depicts the following equations: 

SCA =Fiber.(MCA) SCA Fiber.(MCA) 

SCA–Fiber.(MCA) SCA2=Fiber.(MCA) 

SCA'l-Fiber.(MCA") SCA'l-Fiber (MCA') 

SCA'l-Fiber.(MCA"). SCA'-Fiber.(MCA) 

(Fiber.(MCA)=Fiber.(MCA))=>((Fiber.(MCA) 
=Fiber.(MCA))=>(Fiber.(Next,(MCA)=Fiber, 
(Next (MCA)))) 
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Fiber.(Next,(MCA))z Fiber.(Next,(MCA))=>(Fi 
ber.(MCA)z (Fiber.(MCA))v(Fiber.(MCA), Fiber, 
(MCA)) 

0046. In accordance with these equations, if an action by 
cell X (e.g., advancing the state of the SCA for cell X) is going 
to change the State of celly, then the change in the state of y 
depends only on the states of X and y. Without this axiom, an 
unknown cell could affect the state of y. For instance, if X 
changes y, it could do so by copying everything from a third 
cell Z into the SCA of y. The purpose of this axiom is to 
prevent “undesirable' connections between cells such as Z 
andy. 
0047 Accordingly, the first equation states that ifx has the 
same fiber in two different system states MCA and MCA, 
andy has the same fiber in MCA and MCA, theny has the 
same fiber after advancing the state x in both MCA and 
MCA. The contrapositive form of this equation (i.e., the 
second equation) may be more revealing. It says that if 
advancing X causes a change in the state of y, then the change 
must have resulted from either a change in the state of X or a 
change in the State of y. 
0048. To implement a separation kernel, the designer must 
choose features that Support the intended applications and 
implement those features in away that conforms to the above 
described separation property. In accordance with the present 
invention, a computer-implemented system 90 that Supports a 
high degree of separation between processing elements is 
shown in FIG. 14. The computer-implemented system 90 
comprises a plurality of cells 92, where each cell includes a 
domain of execution 94 and at least one processing element 
96. A kernel 98 facilitates execution of the processing ele 
ments and administers the communication between the pro 
cessing elements in accordance with a separation specifica 
tion 99. The separation specification 99 governs 
communication between the processing elements, such that 
one processing element can influence the operation of another 
processing element only as set forth by the separation speci 
fication. 

0049. A preferred implementation of the kernel and its 
separation specification has selected several features that are 
required by the applications of the kernel and can be made to 
fit the separation principle. First, memory allocation is a 
selected feature because the intended applications are 
required to process many kinds of data which often require 
added memory resources to efficiently process the data. Since 
the applications require time-shared access to hardware 
resources, the hardware resources are allocated as memory 
mapped segments to the cells in a way that preserves the 
separation property. Second, remote procedure call procedure 
is a selected feature because many intended applications 
require a communications mechanism beyond a simple send 
message. The remote procedure call is a communication 
mechanism in which information is provided to a server, the 
server processes the information and returns a result, and the 
processing continues in the same context that existed before 
the service was invoked. Third, exception handling is a 
selected feature because the intended applications are 
required to be robust with respect to exceptions. Since excep 
tions can be handled locally with assurance that the direct 
cause of the exception is local, exception handling is also 
improved by the separation principle. Each of these selected 
features (i.e., memory allocation, remote procedure calls and 
exception handling) is further described below. 
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0050. A memory allocation mechanism in the separation 
kernel of the present invention is understood in relation to the 
operation of a strand as shown in FIG. 15. At strand launch 
time, a strand is allocated the memory it requires according to 
its predefined memory requirements. The strand memory 
requirements are constant for that strand, in that they are the 
same each time the Strand is launched. The strand receives 
two kinds of transient segments upon strand launch: message 
segments and non-message segments. Message segments are 
segments, which have been sent by some other Strand to the 
Strand being launched. It is the existence of this message that 
causes the strand launch. Non-message segments are the 
other transient segments, which are described by the pre 
defined memory requirements for the strand. 
0051. As the strand executes, it undergoes interactions 
with the kernel. If the strand elects to send some of its tran 
sient segments as part of an input message to another strand, 
then access to the transient segments is lost at this point. Thus, 
the strand can lose access to transient segments as it executes, 
but it cannot gain access to any more transient segments as it 
executes. In order to achieve separation within the kernel, the 
allocation of transient segments for a strand obeys the follow 
ing properties: (1) before strand launch, the strand has access 
only to the permanent segments of the cell; (2) transient 
memory requirements for a strand area function of the Strand, 
and thus are known at compile time; (3) the kernel does not 
launch the strand until there is sufficient memory to satisfy all 
of the memory requirements for the Strand; (4) transient seg 
ments that are non-message segments are initialized before 
allocation; (5) as the strand executes, it can lose memory 
segments (e.g., by sending a message), but it cannot allocate 
any more segments; and (6) Strand termination causes all 
transient segments to be released by the kernel. From these 
properties, it may be concluded that after Strand termination, 
the strand has access only to the permanent segments of the 
cell and each time a strand runs, the amount of memory 
available is the same, as specified by the predefined memory 
requirements for the strand. FIG. 18 illustrates a method for 
allocating memory by a separation kernel in accordance with 
the above-described principles. 
0052. As a result, a strand sees exactly the same amount of 
allocated memory each time it runs. Thus, there is no covert 
channel Stemming from the amount of allocated memory. 
This eliminates the typical memory allocation covert channel 
that results from the ability of one process to cause resource 
exhaustion. 

0053. However, there may be still one covert channel if the 
memory addresses of the allocated transient segments are 
visible to the strand as it executes. In this case, it may be 
possible to manipulate the addresses of the available memory 
segments to communicate information to a strand to be 
launched. This channel can be eliminated if the underlying 
hardware Supports address translation. In this case, the strand 
would see the allocated segments at the same logical address 
each time it runs. Thus, the strand would have the same 
amount of allocated transient memory, at the same address, 
every time it runs. 
0054 Referring to FIG. 16, the separation kernel of the 
present invention also implements a remote procedure call 
mechanism. During the execution of the strand, the Strand 
may makes a remote procedure call 92 to Strands in the target 
cell (i.e., Cell). As part of the remote procedure call. Some of 
the transient segments of the source strand are sent to the 
target strand. At this point, these transmitted segments 
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become inaccessible to the source Strand and accessible to the 
target strand. These transmitted segments constitute the 
parameters of the remote procedure call. 
0055 When the target strand is launched, the target strand 
only gets access to the input transient segments and the per 
manent segments of the target cell. Since there are no addi 
tional memory segments to allocate, it can be concluded that 
there are sufficient resources to execute the remote procedure 
call. In other words, the remote procedure call cannot fail on 
account of insufficient resources. The kernel is designed to 
ensure that internal kernel resources will be sufficient to pro 
cess the remote procedure calls, so that no resource exhaus 
tion covert channel is provided by the kernel itself Therefore, 
it is not possible for the remote procedure call to fail on 
account of insufficient resources within the kernel. 

0056. In FIG. 16, the target strand terminates using the 
normal strand termination mechanism. The target strand 
returns a value 94 to the calling strand. In addition, the trans 
mitted segments are made inaccessible to the target Strand and 
made once again made accessible to the source Strand. This 
means that before and after the remote procedure calls the 
same set of segments are accessible to the Source Strand. If the 
target Strand is terminated for any other reason, the remote 
procedure call mechanism causes a return to the Source 
Strand, and thus guarantees a return from the remote proce 
dure call. 

0057. During its execution, the target strand is prohibited 
from sending the transmitted segments as part of a send 
message. Thus, the segments remain available to be returned 
to the source Strand. Furthermore, the target strand can make 
a remote procedure call of its own. To do so, the target Strand 
retransmits one or more of the transmitted segments to 
another target strand. When this additional remote procedure 
call is completed, the re-transmitted segments are returned to 
the target Strand. 
0058. It should also be noted that the remote procedure 
call mechanism does not allow recursive calls, i.e. calls to 
Strands in a cell that is already part of the remote procedure 
call stack. In addition, the remote procedure call mechanism 
also does not permit a call to a cell that already has an execut 
ing strand, thereby preserving the property that only one 
Strand of a cell can run at any one time. This is an important 
property to prevent re-entrant code. Re-entrant code can 
cause various runtime errors. FIG. 19 illustrates a method for 
performing remote procedure calls in accordance with the 
above-described principles. 
0059 Lastly, the separation kernel of the present invention 
implements an exception handling mechanism. During the 
execution of a strand, the Strand may generate an exception. 
As will be apparent to one skilled in the art, the exception may 
be caused by a variety of conditions, including a divide by 
Zero oran invalid address condition (i.e., an address that is not 
within one of the segments accessible to the strand). The 
Strand can raise an exception intentionally by calling the 
Throw() interface as shown in FIG. 17. 
0060. The kernel in turn processes the Throw( ) interface 
by transferring control to the exception handler of the cell. 
The kernel also passes the cause of the exception in a register 
to the exception handler. The exception handler runs in the 
same context as the Strand that incurred the exception. There 
fore, the exception handler has access to the same permanent 
and transient segments as the strand that incurred the excep 
tion. 
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0061 The exception handler has the option of attempting 
to resume processing of the strand that incurred the exception 
or terminating the execution of the strand. In FIG. 17, it is 
assumed that the exception handler resumes processing of the 
Strand that incurred the exception. Thus, the strand completes 
execution and then terminates. 
0062 Each strand has a maximum exception count. When 
the Strand incurs a number of exceptions equal to the maxi 
mum exception count, the strand is terminated by the kernel. 
Thus, there is no way to get stuck in a loop of exceptions, 
which in turn causes, more exceptions. On the contrary, the 
Strand will be terminated when the maximum exception count 
is reached. 
0063 As a result of the above-described exception han 
dling mechanisms, exceptions are confined to the cell that 
contains the strand that incurred the exception. Accordingly, 
the exception handling mechanism enhances the separation 
property by providing exception handling that is separate 
between cells. 
0064. The foregoing discloses and describes merely 
exemplary embodiments of the present invention. One skilled 
in the art will readily recognize from Such discussion, and 
from accompanying drawings and claims, that various 
changes, modifications, and variations can be made therein 
without departing from the spirit and scope of the present 
invention. 

Appendix 

0065. The data structures that define and describe the 
strands and cells in the previously described framework are 
central to the cell abstraction concept, the separation specifi 
cation, and the implementation of a separation kernel. There 
fore, these data structures are defined to permit a better under 
standing of how the separation kernel may be implemented in 
accordance with the present invention. 

Cell Descriptions 
0.066 All of the information in the cell descriptor is static 
information about the cell. There are four items in the cell 
descriptor: 

0067 PermanentSegmentList: The segments that are 
permanently allocated to the cell. All the strands of the 
cell get access to these segments when they run. These 
segments would typically contain the code and cell state 
information for the application represented by the cell. 
Permanent segments can be restricted to a single cell or 
can be shared between more than one cell. The perma 
nent segment list described the access mode to the seg 
ment (some combination of read, write, and execute) 
desired by the cell. 

0068 Handler: The address of the exception handler for 
the cell. 

0069. SendMap: The set of cells to which this cell can 
send messages. This regulates the operation of the kernel 
Send() and Wait() interfaces. 

0070 ShareMap: The set of cells with which this cell 
can share permanent segments. 

Cell State 

0071. The cell state is dynamic information about the cell. 
It is maintained as a map from CellID to CellState, where 
CellState is one of Idle, Running, or Waiting. This mapping is 
called the CellStateMap. 
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Stand Descriptor 

0072 All of the information in the strand descriptor is 
static information about the strand. There are seven items in 
the strand descriptor: 

0073 Cell ID: The identifier of the cell that contains the 
strand. This can be used to look up the cell descriptor of 
the cell containing the strand. 

0074 ProcessorMode: Either foreground or back 
ground. If the mode is foreground, the cell is run with 
interrupts enabled. If the mode is background, the cell is 
run with interrupts disabled. A background cell can be 
used to implementa device driver strand, which requires 
access to hardware resources without fear of interrupt 
from the hardware. 

(0075 EntryPoint: The address of the Strand EntryPoint 
function. 

(0076 StackPointer. Where to begin the stack when the 
StrandEntry Point is run. The stack pointer must point at 
an address within a permanent segment of the cell of the 
strand, or to an assigned segment required by the strand 
in the SDAssignedSegmentList. The kernel table 
builder, not the kernel itself, enforces this restriction. 

(0077. Priority: The priority of the strand. 
0078 Scratch.SizeMap: The scratch memory require 
ments of the Strand. There are four sizes of Scratch seg 
ments: Tiny, Small, Medium and Large. The scratch size 
map defines how many of each of these Scratch segments 
sizes are required by the Strand. 

0079 SDAssignedSegmentList: The assigned seg 
ments required by the strand. 

0080 Assigned segments are used to share scarce 
resources between Strands. 

The strand descriptors are kept in the StrandDescriptorTable, 
which is a total mapping from StrandID to StrandDescriptor. 

Initial Strand 

0081. There is a configuration parameter called Initial 
Strand used by the kernel. This is static strand information. 
When the kernel has completed initialization, it launches the 
Strand indicated by the InitialStrand configuration parameter. 

Resource Availability for a Strand 

0082. A concept that comes up repeatedly in the descrip 
tion of the kernel is resource availability, so it is discussed 
separately here to aid understanding of the description of the 
kernel. 

0083 Execution of a strand may require allocation of 
resources. The resources that may be allocated are scratch and 
assigned segments. Resource availability for a strand means: 

I0084. There are enough available scratch segments of 
the sizes specified in the Scratch.SizeMap of the Strand 
Descriptor. 

I0085. The assigned segments required by the strand are 
all available. This can mean one of the following: 
0086 
I0087. The assigned segments are part of the message 

to launch the Strand. 

The assigned segments are completely free. 
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I0088. The assigned segments have been kept by the 
Strand on the prior execution of the Strand. 

Runnability of a Strand 

I0089. A related concept to resource availability for a 
strand is the runnability of a strand. A strand is runnable 
when: 

0090 
able. 

0091 

The resources required by the strand are avail 

The strand is not marked blocked. 

Strand Startup 

0092. When a strand begins, it has several standard argu 
ments, which are passed to it by the kernel. The parameters 
are passed utilizing the registers/stack. The strand must have 
Sufficient stack space for the Stacked parameters along with 
any space necessary for local data. The variables that are 
initialized with their values and available for a strand to use 
when it starts are as follows: 

0093 SourceStrandID is the ID of the strand, which 
sent the message. 

0094 Command is a 32-bit message from the sending 
cell. 

0.095 Scratch.SegmentList is a structure consisting of 
the number of Scratch segments along with each seg 
ment's address and size. 

0096) Message is a structure consisting of the number of 
message segments along with each segment's address 
and size. 

0097. Depth represents the level of nested Remote Pro 
cedure Calls (RPC) that this strand is being started 
within. A length of Zero means that the Strand is being 
started by a Message Send call. A length which is 
greater than Zero, represents the number of nested RPCs. 

Exception Handling 

0.098 Exception processing allows a strand to transfer 
control to the exception handler specified in the cell descrip 
tor for the cell. This feature is similar to a jump and should be 
used to handle cases where abnormal conditions arise. 
0099. The exception code is the only parameter passed to 
the exception handler by the currently running strand. The 
exception code should contain the error code that resulted in 
the exception. Preferably, the system reserves the first 32 
exception codes (0->31) for current and future growth. Each 
cell is free to use the other exception codes as needed. 

What is claimed is: 
1. A method for handling an exception condition incurred 

by a strand of a plurality of strands, comprising the steps of 
designating a maximum exception count for each of the 

plurality of strands; and 
tracking a number of exception conditions incurred by 

each of the plurality of strands; and 
terminating the strand of the plurality of strands when the 

strand incurs the number of exception conditions that at 
least equals the maximum exception count designated 
for the strand. 

2. The method of claim 1, further comprising the step of 
prohibiting an addition of memory for the strand that incurred 
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the exception condition when handling the exception condi 
tion of the strand. 

3. The method of claim 1, further comprising the step of 
completing execution of the Strand prior to terminating the 
Strand. 

4. The method of claim 1, further comprising the step of 
resuming processing of the strand that incurred the exception 
condition if the stand incurs the number of exceptions that is 
less then the maximum exception count designated for the 
Strand. 

Jul. 29, 2010 

5. The method of claim 1, wherein the exception condition 
is a divide by Zero condition. 

6. The method of claim 1, wherein the exception condition 
is an invalid address condition. 

7. The method of claim 1, wherein terminating the strand 
occurs when the strand incurs the number of exception con 
ditions that exceeds the maximum exception count desig 
nated for the strand. 


