US 20180173313A1

a2y Patent Application Publication o) Pub. No.: US 2018/0173313 A1

a9y United States

UNDERKOFFLER et al.

43) Pub. Date: Jun. 21, 2018

(54) DETECTING, REPRESENTING, AND
INTERPRETING THREE-SPACE INPUT:
GESTURAL CONTINUUM SUBSUMING
FREESPACE, PROXIMAL, AND
SURFACE-CONTACT MODES

(71) Applicant: Oblong Industries, Inc., Los Angeles,
CA (US)

(72) Inventors: John S. UNDERKOFFLER, Los
Angeles, CA (US); Kwindla Hultman
KRAMER, Los Angeles, CA (US)

(21) Appl. No.: 15/280,473

(22) Filed: Sep. 29, 2016

Related U.S. Application Data

(63) Continuation of application No. 12/773,605, filed on
May 4, 2010, now Pat. No. 8,681,098, Continuation
of'application No. 14/224,947 filed on Mar. 25, 2014,
now Pat. No. 9,495,013, Continuation-in-part of
application No. 12/572,689, filed on Oct. 2, 2009,
now Pat. No. 8,866,740, Continuation-in-part of ap-
plication No. 12/109,263, filed on Apr. 24, 2008, now
Pat. No. 8,407,725, Continuation-in-part of applica-
tion No. 12/553,845, filed on Sep. 3, 2009, now Pat.
No. 8,531,396.

~
Freespace
Gestural Input
6A

Proximal
Input

Publication Classification

(51) Int. CL
GOGF 3/01 (2006.01)
GOG6K 9/00 (2006.01)
GOG6K 9/62 (2006.01)
GOGF 3/03 (2006.01)
GOG6K 9/32 (2006.01)
(52) US.CL
CPC GOGF 3/017 (2013.01); GOGK 9/00993

(2013.01); GO6K 2009/3225 (2013.01); GO6F
3/0325 (2013.01); GO6K 9/00375 (2013.01);
GO6K 9/6227 (2013.01)

(57) ABSTRACT

Systems and methods for detecting, representing, and inter-
preting three-space input are described. Embodiments of the
system, in the context of an SOE, process low-level data
from a plurality of sources of spatial tracking data and
analyze these semantically uncorrelated spatiotemporal data
and generate high-level gestural events according to
dynamically configurable implicit and explicit gesture
descriptions. The events produced are suitable for consump-
tion by interactive systems, and the embodiments provide
one or more mechanisms for controlling and effecting event
distribution to these consumers. The embodiments further
provide to the consumers of its events a facility for trans-
forming gestural events among arbitrary spatial and seman-
tic frames of reference.

6B Tracking

Configurable
Gesture
Descriptions

Gestural
Events Event

Distribution

Hover Input
6C

Surface Contact
Input
6D

Spatial Operating Environment

US 2018/0173313 Al

Jun. 21,2018 Sheet 1 of 31

Patent Application Publication

= o
ymsmuoxnaug Sunerad() reneds m
d |
wonquISIq oton | e
JUIAY SJHIAY m ereq
[eInIsan AIqrnEgu0) | GupjoeI],
() X | [eneds
v : t
U J I
01"

a9
ynduy
108JU07) 30BJING

29
nduy JaA0H

€09
ynduy
[ewIxo1d

V9
mduj [eImsen
soedsaarg

Patent Application Publication Jun. 21, 2018 Sheet 2 of 31 US 2018/0173313 A1

/10

Collate low-level input from disparate sources.

Conform low-level events from spatiotemporal data stream.

-1

Y

Parse spatiotemporal data stream into gestural events.

Generate neutral representations of gestural events,

12

A

Distribute neutral representations of gestural events.

Provide facilities for transforming gestural events.

N3
FIG.2

US 2018/0173313 Al

Jun. 21, 2018 Sheet 3 of 31

Patent Application Publication

..... SO W
m mswnonAuy Sunerad() [enedg
W ogueyo1syuy
- USSN |, ‘psmer] |,
m Lerdsiq ‘vonjeiuasaIday O/ TeIsad
| ?e(
w 91 51 y1
0"

el

dunyoer],
eneds

9
Wnnuyuo)
JLURTIAS
/reneds

US 2018/0173313 Al

Jun. 21,2018 Sheet 4 of 31

Patent Application Publication

£
§]U9A20J01

pOId

I
e Sumyoel], jeneds
r 8 N

[ounny .

IOTLIOJSUeI], -
Ionqusiq =0 e
(A4 1T 07
21
O/I TBIMS3T)

US 2018/0173313 Al

Jun. 21,2018 Sheet 5 of 31

Patent Application Publication

Lt
BR(
4D

¢DI4

[ouuny eje

97—-| Sudse] uoreuLIofUEIO

¢7—-| uonedandsy onuewog

YT Surmeag [epedg

¢7—~ Imowudy [erodway,

I
e Sunpoely, [eneds

o~ r N

US 2018/0173313 Al

Jun. 21, 2018 Sheet 6 of 31

Patent Application Publication

9Ol R

o [(Iozrugooay
[.m ||||| 3 ._“ 7
1 __,_ j
amgug 87 /\z wm/\q\ mm\f“_
31890 J oy J
J 19218099y m
P
3 0 19z1u3009Y q 19z1u300y
§JU9A90)01]
eINYSO
(B g 10zmug0o9y 1) 19ZIud009y
[19z1u8009Y y 10z1ug009y

Lt
. Bed
D

US 2018/0173313 Al

Jun. 21,2018 Sheet 7 of 31

Patent Application Publication

L O

¢
«—— $)U9A20J01

If
r N
Joypny %
™~ I £~ P~

§JU9A0}01] y JOULIO)SUBI],

fonpny sattoysoday Jo1nqLysI(q

-’
Toypny ~

US 2018/0173313 Al

Jun. 21, 2018 Sheet 8 of 31

Patent Application Publication

€¢
T

To}pny

8°DI4

Joypny

Jojpny

€
« SJUDAQ0)0I]

76—~ Wr1ioppny
€ — SJUOAY 0301
P€ ~ JOUTIOISURI],
JonquIsiq
-’

Patent Application Publication

o o

e o o it o T i e T i i A e e i

Jun. 21,2018 Sheet 9 of 31 US 2018/0173313 A1l
GripeRefinery :
___ j
Dynamic GTot Lists GTot 1
Active | | Waiting GTot 2
State State i
GTots GTots . '
ProcessTots GTot X
Gestator
Protoevents
Repositories Processing Auditors
Pipelines

Patent Application Publication Jun. 21, 2018 Sheet 10 of 31 US 2018/0173313 Al

/100
/106 /107
ngiggr/ __+ Computer To Display .
Output Processor
105\ |
Preprocessor T
‘ Viewing Area
150
% 101 102
104D l%l 104A
104C Q @ 104B
Display
\-103

FIG.10

Patent Application Publication Jun. 21, 2018 Sheet 11 of 31 US 2018/0173313 Al

Patent Application Publication Jun. 21, 2018 Sheet 12 of 31 US 2018/0173313 Al

1. Depict pose with left hand as viewed from back

p = pinkie finger
r = ring finger

m = middle finger
i = index finger

t = thumb
A = curled non-thumb
> = curled thumb
| = straight finger or thumb pointed straight up
\ or / = straight finger or thumb pointed at angle
= thumb pointing straight sideways
x = finger or thumb pointing into plane
p r m i t
Pose name Hand Pose
flat) | | | | |
ﬁst A A A A >
mimegun | » * A | -
Jorpeace| ~ N\ /[>
one-finger point | ~ A A | >
two-fingerpoint | » ~ | | >
xyz{» A x | -
ok | | | * >
pinkie point| | 4~ A A >
bracket| x X X X X
4N N >
£ 2 AR W Y
5Ly N]

F1G.12

Patent Application Publication Jun. 21, 2018 Sheet 13 of 31 US 2018/0173313 Al

2. Add hand orientation to complete pose

must specify two variables:
1. palm direction (if hand were flat)
2, finger direction (if hand were flat)

medial
lateral
anterior
posterior
cranial
caudal

< > %M 4+

orientation variables come after colon, e.g.:

ANX|-:1-X
AMN[>*y

F1G.13

x-y-z start position

upside-down v

3. Two-hand combos

Hand | Hand 2 Pose
ANAAS g N AAAAS 3 AL full stop

AAA| . x= [AAA] - x ™ | snapshot
|11 1:vx ||]|]|:-x | rudderand throttle start position

FIG.14

Patent Application Publication

Jun.

21,2018 Sheet 14 of 31

US 2018/0173313 Al

&g
| 1]

A/\”

4. Orientation blends
Achieve variable blending by enclosing pairs

|1 (vm) (x%)
>:(-(-v))x

flat at 45 degrees pitch toward screen

two-finger point rolled medially to 22.5
degrees (halfway between palm medial
and palm rolled to 45 degrees)

Detect tags

FIG.15

and markers

=701 No

, 0
Tags/markers | Recognized 107
detected? pose?
102 Yes Yes
y Y
703 ID hand, fingers, Send notation
1 andpose and position |~_-708
) to computer
704 ID orientation !
! Determine
705 ID 3D space appropriate |—~—709
" location action
y v
Translate to Update display —~—710
7061 gesture notation

FIG.16

US 2018/0173313 Al

Jun. 21, 2018 Sheet 15 of 31

Patent Application Publication

VLI'O

suofor wou pug oy shemaps v X:-[[[| aedsyion | €1
BAOW - - 130105 pIe0) wied gsnd apys pue yoeq gsnd
spueg pojeed -osodoyms -0 [[]] spueg orreed -asodaygs v- []| [ey apow | [
spueq o) @ I, pw-sodoyms - A | | | | ||spoeqomguya, g, opem-osodoyms - | []| [ofwgpapom|]
sodoyms - XXXXX amn ey yom | O]
papsopquuggdoy X-:f [y | 10000 yapes adug-om | 6
wmod x-:-[[y | selqojesmod mdug-omy| §
s yopoqmomo v-i-|yvy qmf L
2 0Ju1 $330(q0 az1mesio
Aepompueg daoss — x-:| | | | | Ao pueqdoons X4+ 0| | | | | sypag AP | 9
ams jspe uaq aerbsayem , X:-|yyy azs ysulpe na) asenbs ayem =X 1= |y v v [voidar sepn3ueal ajeomemap | G
speq 7 quaomnbsayem X :i-[y vy spueq 7 i arenbs ayem -Xi-|yvy jogsdens | ¢
awmsuenmol X-o-| X [1om mooz Ajegeds anom | €
199138 0} qungy domp X-1lvvy polgoyaps| 7
miommmod X-:-|y vy (tosmoasom | T
pue ay0m) 192(q0 e jutod
UOLOIN 3504 UOnoON 350 uondussaq | ‘A1
T pueq [pueq 153D

US 2018/0173313 Al

Jun. 21, 2018 Sheet 16 of 31

Patent Application Publication

dL1DId

Ajemyerpuey doows —— x-:| | | | | fempompueydooss x+:| | || | aedsyon | €7
pae[nsdeans atojsal
nmedo spre omyJosd oo S XA -y |lomedoy spreqomjosdnndig g xAI-|yyy smeans ejep dnoid | 77
Aepompuey X-i<yyy| plgodn| 17
(102w 120q0 ye yurod-ymd
SOOI TO] OO, O[S X-i-|yyy womsod s oY PRy | X A:-|y | voBarzendom aeommp| (7
- ot 1no $92e1 puey Jao “Togafoy sdy safury 7 wpu yreys
oIy PATOROTIMI ~ vX:-lvvy omy doof| 61
sodoyns |, X: amydos| 87
100G 0y o[eedpuey X A Yoeqprasoyomy [jor | L]
Smdaoy a1y moq[a je puey mey
[oIEpm X-:-]yyy uondopaps| 9]
sodoyms i |||] sodayms uoearjdde-qns mog wmpar | G
sodayms X:| |||] sodoyms X uojeaidde-qus Jajua { |

US 2018/0173313 Al

Jun. 21, 2018 Sheet 17 of 31

Patent Application Publication

£ 100d

NIHLOdd

NIHLOYUd

NIH1.0¥d

NIHLOdd

NIA.LOYd

1004

NIALOYd

NIHLOY¥d NIHLOYUd

81 DI

1 100d
NIALOYd
MVTS MVTIS
AVTS MVTS MVTIS
NIHLOYdd
MVTS MVTS AVTS

US 2018/0173313 Al

Jun. 21, 2018 Sheet 18 of 31

Patent Application Publication

07Ol

SdDSd
XMVIS HIDNHAT LASAA0
61 DI
NIZLOdd
XMVIS XMVIS YIQVAH
SLSHONI SdnIosa HIONAT

Patent Application Publication Jun. 21, 2018 Sheet 19 of 31 US 2018/0173313 Al

5
[0]
o
8
<
B
LB
]
m p— g N
5 N il N
[Ty
o
:
=
= A
% -
5 |8
Z

US 2018/0173313 Al

Jun. 21, 2018 Sheet 20 of 31

Patent Application Publication

VeO DI

od -

NIHLO¥d
xgﬁm_ szﬁ_ JHS440 Naﬁm_ szms_ LAS440 LASLIO 1AS440 HIONAT
LSHONI SdEDSA | | NIHLOYd

ISHONI

NHRHR

_— — — '100d

Patent Application Publication

Jun. 21, 2018 Sheet 21 of 31

first quadword of every slaw

length-follows:
eight-byte length:

wee cons:

wee cons quadlen:
wee string:

wee string quadlen:
wee list:

wee list quadlen:

full string:
full cons:

full list:

76543210
1 XxxXxXXX
1 Ixxxxxx

01xxxxxx

11q4qqqqq
001xxxxx

rmrqqqqq
0001xxxx

rrrrqqqq

1*100000
1*¥100000

1*100000

76543210
XXXXXXXX
XXXXXXXX

XXXXXXXX

49949449
XXXXXXXX

49999494
XXXXXXXX

49999499

00000000
00000000

00000000

76543210
XXXXXXXX
XXXXXXXX

XXXXXXXX

44999444
XXXXXXXX

44999444
XXXXXXXX

44999944

00000000
00000000

00000000

US 2018/0173313 Al

76543210
XXXXXXXX
XXXXXXXX

XXXXXXXX

49949994
XXXXXXXX

44999949
XXXXXXXX

44949449

00000001
00000010

00000011

(the penulti-MSB above is zero or one as the length is contained in the next one
or two quadwords, i.¢. if it's a four or eight byte length, per the 'eight-byte length'
bit description second from top)

numeric:

numeric float:
numeric complex:
numeric unsigned:
numeric wide:
numeric stumpy:
numeric reserved:

00001xxx

xxxxx1xx
XXxxxx1x
xxxxxxx1
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
Ixxxxxxx
X1 xxxxxx
xx 1 xxxxx

F1G.23Bl1

XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

Patent Application Publication Jun. 21, 2018 Sheet 22 of 31 US 2018/0173313 Al

(wide and stumpy conspire to express whether the number in question is 8, 16, 32,
or 64 bits long; neither-wide-nor-stumpy, i.e. both zero, is sort of canonical and thus
means 32 bits; stumpy alone is 8; stumpy and wide is 16; and just wide is 64)

numeric 2-vector: XXXXXXXX XXX01XXX XXXXXXXX XXXXXXXX
numeric 3-vector:; XXXXXXXX XXX10XXX XXXXXXXX XXXXXXXX
numeric 4-vector: XXXXXXXX XXX1IXXX XXXXXXXX XXXXXXXX

for any numeric entity, array or not, a size-in-bytes-minus-one is stored in
the last eight bits -- if a singleton, this describes the size of the data part;
if an array, it's the size of a single element -- so:

num'c unit bsize mask: 00001xxx XXXXXXXX XXXXXXXX Nmmmmmmm

and for atrays, there're these:

num'c breadth follows: xXXXXxXXX XXXXX1XX XXXXXXXX XXXXXXXX
num'c §-byte breadth: xxxxxxxx XxXxxx11X XXXXXXXX XXXXXXXX
num'c wee breadth mask; xxxxxxxx xxxxx0mm mmmmmmmm XXXXXXXX

F1G.23B2

Patent Application Publication Jun. 21, 2018 Sheet 23 of 31 US 2018/0173313 Al

QUERY PROTEIN LENGTH 652

\

QUERY NUMBER OF DESCRIPS ENTRIES |~ 654

Y

QUERY NUMBER OF INGESTS 656
A

RETRIEVE DESCRIP ENTRY ——638

RETRIEVE INGEST ——660

F1G.23C

Patent Application Publication Jun. 21, 2018 Sheet 24 of 31 US 2018/0173313 Al

CREATE NEW PROTEIN — 672
4
APPEND DESCRIP ENTRIES 674
y
APPEND INGEST ——676
\
QUERY PRESENCE OF MATCHING 678
DESCRIP
QUERY PRESENCE OF MATCHING | 630
INGEST KEY
RETRIEVE INGEST VALUE —— 682
PATTERN MATCHING ACROSS DESCRIPS |~ 684
EMBED METADATA 686

FIG.23D

US 2018/0173313 Al

Jun. 21, 2018 Sheet 25 of 31

Patent Application Publication

YOOI

£ T00d ¢100d

vA
NIH1O0dd

£X
NIHLOYUd

X
NIH10dd

vX A
NIALO¥d | |NIHLOY¥d

1Z
NIHLOYd

tZ
NIHLO¥d

EA
NIHLOYd

1A
NIHLO¥d

(4
NIHLOYd

IX
NIHLOdd

174
NIHLOYd

Z A X
HOIAHA HOIAHA HOIAHA

US 2018/0173313 Al

Jun. 21, 2018 Sheet 26 of 31

Patent Application Publication

T00d

YAV K

/4
NIHLOYd

5[4
NIH10dd

dl
NIHLO¥d

Xq-ve4 Sddv

4 HDIAHA

X0-V) SddV
1 A0IAAd
1
NIALOYUd
\ [/ VI
NiELo¥d | | NigLOud
AN A
/ XV-VV SddV
vV 20IATA

US 2018/0173313 Al

Jun. 21, 2018 Sheet 27 of 31

Patent Application Publication

T00d

97 DI

T
NIHLOYUd

Il
NIA10¥d

a7

gl

NIHLOUd NIHLOEd

A HOIAHA

N

Xg-ve SddV

4 4OIAHA

XJ-V) SddV e

J HOIA4d

A

Vi
NIHLO¥d

AN

[/
HOIAHA

/ \

XV-VV SddV

V 40IAHA

X
HOIAA

g

US 2018/0173313 Al

Jun. 21, 2018 Sheet 28 of 31

Patent Application Publication

. V) HOIAAA FRERT(
LCOIA LNdNT 104N 30 BOIARA
/ h LOdNI
1004 J HDIAHA
A
NIALOYd
o A
i NIZLO¥d NIELOU
NIZLO¥d
dz dal /A
NIALOMd NIA10Yd NIALOYd Vi
\ NIFLO¥Yd
ad 4JIA
L \ \ V 3DIALA
™~ L inau
vq 2JIAHA| ——| g ADIAAA v 40IAAd
INdNI

US 2018/0173313 Al

Jun. 21, 2018 Sheet 29 of 31

Patent Application Publication

8¢ DI

T00d

d SOIHAVID

H HOIA4d

a SOIHdVED

@ HOIAHA

HE
NIHLOYUd

avy

NIHLOYd

Ve
NIHLO¥d

a1
NIHLOYUd

V¢
NIHLO¥d

ai
NIHLOYd

ac

NIHLOYd

ai
NIHLOYd

03
NIHLOUd

4
NIHLOdd

Il
NIAL0OYd

qc

NIHLOYd

dl
NIHLOYd

Vi
NIHLO¥Ud

Vi
NIH10¥d

J SOIHAVED
J HOIAHd

4 SOIHdVED

d HOIAHA

V SOIHdVED

YV IIAHA

US 2018/0173313 Al

Jun. 21, 2018 Sheet 30 of 31

Patent Application Publication

: NOLLVOITddV
6¢DIH NOLLOESNI
3 DOIAEA
o D \
@
NIZLOYd 4t vt
NIZLO¥d NIALO¥d Ve
NIZLO¥d
al
a¢ V1
NIALOUd
NIALOUd NIALOY¥d
/o
AT e
|
€4 WVEO0Ud V- i%oﬁ

US 2018/0173313 Al

Jun. 21, 2018 Sheet 31 of 31

Patent Application Publication

0¢ DI NOILVOITddY
008 NOLLDAdSNI
& 3 AOIAAA
NIHLO¥d
-,m.wmm ISTT LOAr40 .Hw%mmm
15An0TY LSENOTY LSENOTL Vi
NIF10¥d
0-8-d L0d i 0-V-d LI0dTd
g7 NIALO9d NIHLOYd VI NIALOUd
Ve
1SIT LDArd0 1ST1 1DAr40 NIELO¥d
a1 NIZLOYd NGIO
e
ERTR T T———— voma

8- V300U

|

_ 0fd
JDAIE0

S1DHr80

V-d WVID0Ud

v 0vd |
sIodrdo | |.Lodrdo

US 2018/0173313 Al

DETECTING, REPRESENTING, AND
INTERPRETING THREE-SPACE INPUT:
GESTURAL CONTINUUM SUBSUMING

FREESPACE, PROXIMAL, AND
SURFACE-CONTACT MODES

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. (U.S.)
Patent Application Ser. No. 61/175,374, filed May 4, 2009.
[0002] This application is a continuation in part applica-
tion of U.S. patent application Ser. No. 12/572,689, filed
Oct. 2, 2009.

[0003] This application is a continuation in part applica-
tion of U.S. patent application Ser. No. 12/109,263, filed
Apr. 24, 2008.

[0004] This application is a continuation in part applica-
tion of U.S. patent application Ser. No. 12/553,845, filed
Sep. 3, 2009.

TECHNICAL FIELD

[0005] Embodiments are described relating to gesture-
based control systems including the representation, manipu-
lation, and exchange of data within and between computing
processes.

BACKGROUND

[0006] Conventional programming environments do not
fully support cross-network execution and/or flexible shar-
ing of data between large numbers of computing processes.
For example, conventional user-facing computing platforms
provide facilities for transmitting event data between pro-
cesses. But these conventional mechanisms all suffer from
shortcomings that make it difficult to build multi-process
and multi-machine applications. For example, conventional
event frameworks are strongly typed, which makes them
inflexible, and forms a mismatch with the facilities of
increasingly popular dynamic applications. The conven-
tional frameworks are also configured only to support point-
to-point data transfers, which makes coordinating the activ-
ity of more than a few distinct processes difficult or
impossible. The conventional frameworks are also strongly
dependent on particular local, in-memory data structures,
which renders them unsuited for on-disk storage or trans-
mission across a network.

INCORPORATION BY REFERENCE

[0007] Each patent, patent application, and/or publication
mentioned in this specification is herein incorporated by
reference in its entirety to the same extent as if each
individual patent, patent application, and/or publication was
specifically and individually indicated to be incorporated by
reference.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG.1 is a block diagram of a system for detecting,
representing, and interpreting three-space input, under an
embodiment.

[0009] FIG. 2 is a processing-centric block diagram of the
system for detecting, representing, and interpreting three-
space input, under an embodiment.

Jun. 21, 2018

[0010] FIG. 3 is an alternative block diagram of a system
for detecting, representing, and interpreting three-space
input, under an embodiment.

[0011] FIG. 4 is a block diagram of the gestural 1/O, under
an embodiment.

[0012] FIG. 5is a data funnel of the gestural /O, under an
embodiment.
[0013] FIG. 6 is a gesture engine of the gestural 1/0, under

an embodiment.

[0014] FIG. 7 is a block diagram of the anonymous,
asynchronous repository distribution mechanism of a dis-
tributor, under an embodiment.

[0015] FIG. 8 is a block diagram of the directed recipient
distribution mechanism of a distributor, under an embodi-
ment.

[0016] FIG. 9 is a block diagram of the spatial-continuum
input system, under an embodiment.

[0017] FIG. 10 is a block diagram of a gestural control
system, under an embodiment.

[0018] FIG. 11 is a diagram of marking tags, under an
embodiment.
[0019] FIG. 12 is a diagram of poses in a gesture vocabu-

lary, under an embodiment.

[0020] FIG. 13 is a diagram of orientation in a gesture
vocabulary, under an embodiment.

[0021] FIG. 14 is a diagram of two hand combinations in
a gesture vocabulary, under an embodiment.

[0022] FIG. 15 is a diagram of orientation blends in a
gesture vocabulary, under an embodiment.

[0023] FIG. 16 is a flow diagram of system operation,
under an embodiment.

[0024] FIGS. 17A and 17B are examples of commands,
under an embodiment.

[0025] FIG. 18 is a block diagram of a processing envi-
ronment including data representations using slawx, pro-
teins, and pools, under an embodiment.

[0026] FIG. 19 is a block diagram of a protein, under an
embodiment.
[0027] FIG. 20 is a block diagram of a descrip, under an
embodiment.
[0028] FIG. 21 is a block diagram of an ingest, under an
embodiment.
[0029] FIG. 22 is a block diagram of a slaw, under an
embodiment.
[0030] FIG. 23Ais a block diagram of a protein in a pool,

under an embodiment.

[0031] FIGS. 23B1 and 23B2 show a slaw header format,
under an embodiment.

[0032] FIG. 23C is a flow diagram for using proteins,
under an embodiment.

[0033] FIG. 23D is a flow diagram for constructing or
generating proteins, under an embodiment.

[0034] FIG. 24 is a block diagram of a processing envi-
ronment including data exchange using slawx, proteins, and
pools, under an embodiment.

[0035] FIG. 25 is a block diagram of a processing envi-
ronment including multiple devices and numerous programs
running on one or more of the devices in which the Plasma
constructs (i.e., pools, proteins, and slaw) are used to allow
the numerous running programs to share and collectively
respond to the events generated by the devices, under an
embodiment.

[0036] FIG. 26 is a block diagram of a processing envi-
ronment including multiple devices and numerous programs

US 2018/0173313 Al

running on one or more of the devices in which the Plasma
constructs (i.e., pools, proteins, and slaw) are used to allow
the numerous running programs to share and collectively
respond to the events generated by the devices, under an
alternative embodiment.

[0037] FIG. 27 is a block diagram of a processing envi-
ronment including multiple input devices coupled among
numerous programs running on one or more of the devices
in which the Plasma constructs (i.e., pools, proteins, and
slaw) are used to allow the numerous running programs to
share and collectively respond to the events generated by the
input devices, under another alternative embodiment.
[0038] FIG. 28 is a block diagram of a processing envi-
ronment including multiple devices coupled among numer-
ous programs running on one or more of the devices in
which the Plasma constructs (i.e., pools, proteins, and slaw)
are used to allow the numerous running programs to share
and collectively respond to the graphics events generated by
the devices, under yet another alternative embodiment.
[0039] FIG. 29 is a block diagram of a processing envi-
ronment including multiple devices coupled among numer-
ous programs running on one or more of the devices in
which the Plasma constructs (i.e., pools, proteins, and slaw)
are used to allow stateful inspection, visualization, and
debugging of the running programs, under still another
alternative embodiment.

[0040] FIG. 30 is a block diagram of a processing envi-
ronment including multiple devices coupled among numer-
ous programs running on one or more of the devices in
which the Plasma constructs (i.e., pools, proteins, and slaw)
are used to allow influence or control the characteristics of
state information produced and placed in that process pool,
under an additional alternative embodiment.

DETAILED DESCRIPTION

[0041] Systems and methods are described for processing
low-level data from a plurality of sources of spatial tracking
data. Embodiments of the systems and methods are provided
in the context of a Spatial Operating Environment (SOE),
described in detail below. The SOE, which includes a
gestural control system, or gesture-based control system, can
alternatively be referred to as a Spatial User Interface (SUI)
or a Spatial Interface (SI).

[0042] FIG. 1 is a block diagram of a system 10 for
detecting, representing, and interpreting three-space input,
under an embodiment. Embodiments of the system 10, in the
context of the SOE 5, process low-level data 1 from a
plurality of sources of spatial tracking data and analyze these
semantically uncorrelated spatiotemporal data and generate
high-level gestural events 3 according to a set of dynami-
cally configurable implicit and explicit gesture descriptions
2. The events 3 produced are suitable for consumption by
interactive systems (not shown), and the embodiments pro-
vide one or more mechanisms 4 for controlling and effecting
event distribution to these consumers. The embodiments
further provide to the consumers of its events 3 a facility for
transforming gestural events among arbitrary spatial and
semantic frames of reference.

[0043] Central to the embodiments herein is the assertion
that the conceptual domain of gesture is a spatial and
semantic continuum 6. At one end of the continuum 6 is fully
unconstrained freespace gestural input 6A, in which one or
more hands cooperate to describe curvilinear trajectories
through three dimensional space and in which, simultane-

Jun. 21, 2018

ously, aggregate finger poses evolve over time. At the other
end is surface-contact input 6D, in which one or more
fingers are “constrained” to lie on a one- or two-dimensional
manifold (literature often refers to this form as “touch-based
input”). Between these extremes is an elaboration of touch
that may be termed “hover input” 6C; here, the fingers
remain close to a manifold but are not in contact with it; such
relaxation of the contact requirement allows for additional
degrees of freedom to be deployed. More generally, it is
useful to speak of “proximal input” 6B, in which gesture
occurs in a range of defined proximity to one or more
surfaces, or is restricted to a particular volume. It is evident
that each gestural “category” shades into the next—from
freespace 6A, to proximal 6B, to hover 6C, to touch
6D—and that, moreover, each such category properly, for-
mally, and geometrically subsumes the next. It will be
understood as well that this continuum 6 of “gestural input”
is by no means restricted to human hands: tagged or other-
wise trackable physical objects are also valid participants in
the input continuum 6.

[0044] The embodiments herein make explicit a distinc-
tion between two ways in which the points along the input
contintum 6 may be considered. From the vantage of
sensing, different input mechanisms appear to subscribe to
different regions of the continuum 6: a high-fidelity motion-
capture rig, for example, seems to provide six-degree-of-
freedom freespace input 6A, while an electric-field-sensing
apparatus seems to generate hover-style input 6C, and a
typical capacitive sensing unit seems to report touch input
6D. From the vantage of event consumption—and thus from
the vantage of semantics—the low-level origin of an event
ought to be of little interest; and in fact it is often of great
utility to be able to apprehend the same event as rendered
into different representations (e.g. as a freespace gesture, and
also as a hover gesture). However, prior work has tended to
conflate the two vantages. That is, other systems typically
regard a touchscreen surface as necessarily and solely gen-
erating two-dimensional touch events, for example.

[0045] It is one advance of the embodiments described
herein, contrariwise, to maintain the distinction between the
two vantages. FIG. 2 is a processing-centric block diagram
of'the system 10 for detecting, representing, and interpreting
three-space input, under an embodiment. A first stage 11 of
an embodiment collates low-level input from a disparate
collection of sources and conforms the low-level events
variously produced into a single stream of uniformly repre-
sented spatiotemporal data. A second stage 12 parses the
conformed low-level data into semantically significant ges-
tural events and represents these in a neutral but fully
articulated form. A third stage 13 distributes the resulting
neutral events to consumers, and provides facilities by
which consumers may transform any event into a locally
optimal semantic form. So, for example, an embodiment
uses per-finger high-fidelity six-degree-of-freedom input to
produce touch events with reference to a table surface; in
this case, the surface is itself uninstrumented, but is instead
represented mathematically, as a geometric structure—so
that, absent specialized touch-sensing hardware, touch may
still be deduced: computationally, via geometric intersec-
tion. In short, the formalisms of the embodiments enable the
fully general exercise of variegated spatial input.

[0046] A description follows of the embodiments, the
description comprising (1) a larger context for the embodi-
ments: a typical ecology of systems in which the embodi-

US 2018/0173313 Al

ment plays a crucial role; (2) a summary of the three
pipeline-like components comprising the embodiments; (3)
detailed descriptions of the three components, each with
occasional illustrative examples; (4) a full implementation
of the pipeline’s second component; and (5) four scenarios
illustrating different interactive systems enabled by the
embodiments.

[0047] In the following description, numerous specific
details are introduced to provide a thorough understanding
of, and enabling description for, embodiments described
herein. One skilled in the relevant art, however, will recog-
nize that these embodiments can be practiced without one or
more of the specific details, or with other components,
systems, etc. In other instances, well-known structures or
operations are not shown, or are not described in detail, to
avoid obscuring aspects of the disclosed embodiments.
[0048] The following terms are intended to have the
following general meaning as they are used herein. The term
“processes” as used herein means separable program execu-
tion contexts. Computer architectures and operating systems
differ in the technical details of process implementation. The
mechanism described here is configured to operate across a
broad range of process implementations and to facilitate
hybrid application designs or configurations that take advan-
tage of as many available computing resources as possible.
[0049] The term “device” as used herein means any pro-
cessor-based device running one or more programs or algo-
rithms, any processor-based device running under one or
more programs or algorithms and/or any device coupled or
connected to a processor-based device running one or more
programs or algorithms and/or running under one or more
programs or algorithms. The term “event” as used herein
means any event associated with a running or executing
program or algorithm, a processor-based device and/or a
device coupled or connected to a processor-based device
(e.g., an event can include, but is not limited to, an input, an
output, a control, a state, a state change, an action, data
(regardless of format of the data or stage in the processing
from with which the data is associated), etc.).

[0050] Embodiments of the systems and methods are
provided in the context of a Spatial Operating Environment
(SOE), as described above. An SOE is a complete applica-
tion development and execution platform and is analogous
in some ways to an operating system. An SOE however
privileges both real-world three-dimensional geometries and
efficient, high-bandwidth interactions between computer and
human operator, and thus implements a sophisticated inter-
face scheme. In turn, the SOE replaces many traditional OS
services and architectures—which are inadequate to the
requirements of such rich, nuanced interface—with new
low- and medium-level system infrastructures.

[0051] FIG. 3 is an alternative block diagram of a system
20 for detecting, representing, and interpreting three-space
input, under an embodiment. The system 20 is operating in
the context of the SOE 5. The major components of the SOE
5 are the gestural /O 14, network-based data representation,
transit, and interchange 15, and a spatially conformed dis-
play mesh 16. Each of the components of the SOE 5 is
described in detail below.

[0052] In describing the gestural 1/O 14 of an embodi-
ment, the combinatoric implications of the human hand—its
bulk position and orientation, along with the “pose” formed
by the aggregate of its fingers” flexions—and the fine motor
control enjoyed by most humans together make hand-based

Jun. 21, 2018

gesture the crucial external component in the SOE input
system. An SOE 5 thus tracks hands with high fidelity
throughout a threespace volume. Other subordinate objects
(e.g., physical and often graspable “tools™ for channeling or
manipulating digital content) may also be tracked. Gestural
interactions are most often undertaken with reference to
dynamic entities depicted on two- and three-dimensional
displays operating in the visual, aural, and haptic domains.
Active feedback “glyphs” make simultaneous use of the
SOE’s displays in order to (a) apprise operators of the
system’s instantaneous and ongoing interpretation of ges-
tural input; (b) enumerate possible gestural “next steps”,
based on system state and on local gestural history; and (c)
provide a sketchlike “preview” of the imminent manipula-
tory consequences of a gestural sequence.

[0053] Structurally, the input portion of the SOE’s gestural
/O 14 system takes the form of an approximately linear
pipeline. At the earliest stage, the pipeline acts to process,
correlate, and seam spatial tracking information from a
possible plurality of sources including any number, type,
and/or combination of data streams/sources SY (where Y is
any number 1, 2, . . .); and subsequently to collect individual
elements into aggregates of known configuration and desir-
ability (e.g. fingers considered at first separately are col-
lected into a full hand representation). The pipeline’s second
stage is a gesture engine that interprets the results of the first
stage and attempts to detect and disambiguate gestural
occurrences. In the third stage, “events” of medium-level
representation are passed to event consumers, which may
make use of SOE facilities for transforming those generic
events into forms geometrically relevant to local circum-
stance.

[0054] The network-based data representation, transit, and
interchange 15 of an embodiment includes a system called
“Plasma” that comprises subsystems “slawx”, “proteins”,
and “pools™, as described in detail below. Slawx (plural of
“slaw™) are self-describing data constructs that encompass
atomic forms—strings and an expansive collection of
numeric types, including elemental support for complex,
vector, Clifford (or “multivector”), and array entities—as
well as arbitrarily nestable aggregate forms—“cons” dyads,
heterogeneous lists, and unique-keyed association lists. Pro-
teins are prescribed-structure encapsulations of multiple
slawx: an arbitrary-length concatenation of slawx (usually
strings) called “descrips” provides a conveniently search-
able description of a protein; while an arbitrary-length
concatenation of key-value cons dyads, called “ingests”,
forms a protein’s data payload. In an embodiment, proteins
are themselves a particular species of slaw. Pools are per-
sistent, linear-sequential collections of proteins; arbitrarily
many processes may connect in parallel to a given pool.
Each connected process may deposit proteins into the pool,
retrieve proteins from the pool, or both. Low-level pool
mechanisms ensure that pool transactions on a local machine
and those undertaken remotely (over a network) are, from
the programmer’s and the executing code’s point of view,
indistinguishable. Retrieval of a protein deposited by a
distant process automatically conforms all encapsulated
slawx, so that hardware- and architecture-specific data for-
mat differences (endianness, e.g.) are invisibly resolved.
Pools are of conceptually infinite capacity & temporal
duration, so that a process may at any time “rewind”
backward through the pool’s history, accessing older and
older proteins. Implementations of Plasma are exceedingly

US 2018/0173313 Al

optimized; pool-mediated proteins thus form a highly desir-
able representation-mechanism for interface events, system
events, interprocess messaging, streaming of high-density
media, exchange of structured data, and so on. Further, the
provisions of the Plasma system enable and encourage
construction of complex “applications™ as ecologies of inde-
pendent, modular processes coordinated through protein
interchange.

[0055] The SOE 5 of an embodiment, as described above,
includes a spatially conformed display mesh 16. A central
premise of the SOE 5 is that externalized manifestations of
a computational process—the visual, aural, and haptic dis-
plays through which a process expresses its state and rep-
resents information—must conform themselves logically to
the real-world space in which they are physically embedded.
Thus the SOE 5 provides at every programmatic level a
system of basic constructs for the description and manipu-
lation of three-dimensional geometry.

[0056] Geometry is always described in a “real-world”
coordinate frame, such coordinates being deliberately appro-
priate to the description of the room or space in which the
SOE 5 is resident. So, for example, any two-dimensional
visual display (a monitor, say) controlled by the SOE 5
maintains not only a description of its pixel resolution but
also of its physical size, location, and orientation in the
room. This means that individual pixels on the display have
real-world locations and extents; and that, similarly, graphi-
cal constructs displayed on the device are possessed of
authentic physical (room-conformed) geometry. This geom-
etry-based representation scheme has immediate, substantial
import because the same geometry and coordinate system is
employed by the SOE’s input system. In consequence, the
SOE 5 can provide co-located input and output. When an
operator points from a distance at a graphical object dis-
played on a screen, the system is able logically to consider
that she and the graphics are present—with knowable geo-
metric relationship—in the same threespace continuum. The
intersection calculation that determines what is being
pointed at is thus mathematically trivial, and the graphical
object may then immediately react or subject itself to the
operator’s manipulations. The resulting spatial causality
leads in turn to the operator’s perceptual and cognitive
conviction that the graphics are in the room with her; and,
in every relevant sense, such a conviction is accurate. The
expectations and modalities induced by currently dominant
human/machine interfaces thereby undergo a valuable inver-
sion, and a paradigm of “direct spatial manipulation”
obtains.

[0057] The SOE 5 provides additional facilities for geo-
metrically relating disjoint spaces (as, for example, with a
telecollaboration system that “seams” two or more separate
interaction sites across privileged visual displays) and for
converting geometric constructs to allow interpretation in
different local reference frames. Finally, the SOE 5 provides
legible representations for “reduced geometries™, that is,
logical relationships among data that cannot meaningfully
be understood via connected-space (i.e. FEuclidean,
Minkowski, anti de Sitter, etc.) forms; here, the SOE offers
basic topologic representation.

[0058] The embodiments described herein form the major
part of the input side of the gestural /O system 14 of the
SOE 5. The embodiments can be viewed as analogous to a
pipeline that transforms very low-level (semantically: “sig-
nal level”) input into much more structured, symbolic, and

Jun. 21, 2018

context-specific input for consumption by, say, higher-level
SOE components. This is not however to say that the
embodiments operate in an unstructured, pure-literal, or
context-impoverished mode: much of the crucial efficacy of
the pipeline derives from its impediment-free access to
high-level geometric and computational context belonging
to other of the SOE’s component systems.

[0059] FIG. 4 is a block diagram of the gestural 1/O 14,
under an embodiment. In summary, the earliest stage 20 of
the gestural I/O 14—a conceptual “data funnel” 20—acts to
process, correlate, and seam spatial tracking information
from a possible plurality of sources. For example, an SOE 5
of which the pipeline of an embodiment is a part may make
simultaneous, coordinated use of (a) several motion-tracking
devices serving distinct volumes, (b) constrained-purview
machine vision tracking in the vicinity of individual work-
stations, and (c) electric-field-analysis proximity and touch
sensing associated with a large projection table. The funnel
20 renders low-level spatial events from any number, type,
and/or combination of data streams/sources SY (where Y is
any number 1, 2, .. .) in a conformed-coordinate represen-
tation (with reference to the global room space). Immedi-
ately thereafter the funnel 20 generates, where appropriate,
logical aggregates expressing both literal geometric and
semantic characteristics (a hand whose fingers are individu-
ally tagged gives rise at this stage to a description as a
high-precision overall position and orientation together with
a compact notation of dactylic pose).

[0060] These elemental events are passed to the input
system’s second stage, a “gesture engine” 21 whose work is
to detect and disambiguate particular spatiotemporal cir-
cumstances—“gestures”—that may be of interest to indi-
vidual processes, active computational objects, system-wide
notification constructs, and so on. Activities of the gesture
engine 21 are guided by a set of spatiotemporal rules—
descriptions of particular gestures or classes of gestures—
that may be statically or dynamically configured. The engine
produces detailed but neutrally descriptive data bundles
(“protoevents™) articulating the detected gestural circum-
stances.

[0061] Finally, the third stage 22 of the gestural I/O 14
distributes protoevents emitted by the gesture engine to such
event-consuming mechanisms as may be in programmatic
contact with it. Each event consumer has access to a facility
provided by the third stage that can re-render a protoevent
bundle “in local terms™: that is, can re-express the event in
spatial-semantic form relative to a particular local geometry.
For example, a hand thrust toward a screen with index and
ring fingers forming the V of a “victory symbol” may be
rendered as a singular postural configuration at a precise
threespace room location; or as an overall hand-proximity
condition with respect to the screen; or as a constellation of
near-touch events in which each finger is considered sepa-
rately.

[0062] FIG. 5 is a data funnel 20 of the gestural /O 14,
under an embodiment. The data funnel 20, also referred to
herein as the input funnel 20, transforms low-level spatial
input data 1 (from a semantic point of view, “signal level”)
into a time-resolved stream of gesture-engine-ready (GER)
data 27 to be fed to the pipeline’s second stage, the gesture
engine 21. The transformation executed by the data funnel
20 comprises collecting, temporally aligning 23, and spa-
tially seaming 24 the low-level input data to form a single
synthetic (“conformed”) data stream. Subsequently, the fun-

US 2018/0173313 Al

nel acts to identify privileged subsets of the conformed data
and assemble 25 each subset into a reduced-entropy seman-
tic aggregate.

[0063] The funnel receives as input one or more spa-
tiotemporal data streams SY (where Y is any number 1, 2, .
..). The data streams SY may inherently represent different
degree-of-freedom counts: an optical motion-tracking sys-
tem can typically resolve appropriately tagged fingers, with
high fidelity, through all six degrees of freedom (three
translational and three rotational); a time-of-flight-based
camera supplies, based on the analysis method used, either
three-, five-, or six-degree-of-freedom data about a hand’s
digits; an electric field sensing rig may provide three DOF
information describing position of a hand’s overall mass,
with resolution differentially dependent on position; a touch
screen may emit two-dimensional tracking information sub-
ject to physical contact constraints; and so on. The data
streams SY may provide individual spatiotemporal events at
differing rates. The data streams SY may be intermittent, as
for example when tracked hands or other objects enter and
leave the volume treated by a sensing mechanism.

[0064] The data streams SY include, where available,
estimates of the accuracy or likely range of error of the
spatial and temporal quantities represented. For example, the
data stream from an electric field sensing rig may annotate
each event with an assessment of the spatial error which, for
such a device, not only differs along the local x and y
(“planar”) axes versus along the local z (“distance™) axis but
also varies in overall magnitude as a function of the true
spatial position. Such accuracy annotations may be a
“received” element of the data stream (if the device itself or
the device drivers are capable of providing it) or may be
deduced by the funnel’s early processing (in cases where it
maintains a model of the originating device’s operation).

[0065] A component of the funnel 20 temporally aligns 23
a plurality of data streams SY. The funnel 20 may be
configured to accomplish such alignment in several distinct
ways. Alignment schemes 23 include but are not limited to
the following: (1) interpolation provides “virtual” spa-
tiotemporal events from all other data streams at every
“real” temporal event instance from one or more data
streams; (2) interpolation provides, at each temporal event
instance in the stream whose data rate is the highest, virtual
events from each of the other streams, the other stream’s
“real” events being discarded; (3) as with the foregoing, but
with an explicitly designated stream used as the “ticking
metronome” to which all other streams are aligned; (4) the
foregoing, but with an externally imposed metronomic tick
coinciding with none of the streams, so that all streams are
interpolated. The result of the temporal alignment 23 is a
data stream for which, at each timestep, a possible multi-
plicity of representational events is emitted, the per-timestep
aggregate offering possibly alternate interpretations of the
same “‘objective” (real-world) event. Each resulting post-
alignment event includes, where possible, a representation
of'its unique identity (e.g. a particular finger or object, when
appropriately tagged or reliably deduced). Such identity
information is useful to subsequent processing, as when a
single spatial event must be synthesized from alternate
representations of the same real-world event. Where the
operation of temporal alignment 23 changes the estimated
error or accuracy range of component degrees of freedom,
events are tagged accordingly.

Jun. 21, 2018

[0066] The funnel 20 of an embodiment spatially seams 24
events from the plurality of data streams. The spatial seam-
ing 24 often but not always presupposes prior temporal
alignment of identity-tagged events. Spatial seaming 24
generally requires the promotion of each contributing event
to the highest possible level of description. Where such
description promotion changes the estimated error or accu-
racy range of component degrees of freedom, events are
tagged accordingly. Degrees of freedom for which such
promotion is impossible are explicitly tagged. In some cases,
this circumstance corresponds functionally or explicitly to
an infinite error range. Description promotion may simply
entail that participating events are re-rendered into a con-
formed spatial reference frame (as necessary where the data
streams initially represent spatial events in local frames).
This in turn requires that the funnel maintain or have access
to a conception of the relationship of each local frame with
respect to the universal (“room”) frame. Thus, for example,
a touch event from a contact-sensing surface, represented
initially in the local (X', y') frame of the surface, is trans-
formed using the known physical geometry of the surface
into the (x, y, z) frame of the room; the three rotational
degrees of freedom are in that case tagged as unknowable,
since they cannot be deduced from the device’s data stream.
Alternate, more complex methods of description promotion,
including those relying on inference and deduction tech-
niques, can also be used.

[0067] Subsequently, spatial seaming 24 produces, for
each aggregate of alternate descriptions of the same real-
world event, a single “synthetic” event (taken to be the
real-world event’s most accurate representation). Synthesis
methods include, but are not limited to, (1) selecting a single
description from among the plurality of input data streams
and discarding the rest—the synthetic event is “winner take
all”; (2) for each promoted-description degree of freedom,
selecting the corresponding component data from a single
description and discarding the rest—the synthetic event is
componentwise “winner take all”; (3) performing a
weighted average of each degree-of-freedom component
across all descriptions, the weights determined by configu-
rable and contextually sensitive functions; (4) permutations
of' (2) and (3). The criteria by which the method of synthesis
is chosen may be implicitly or externally fixed, or may be
statically or dynamically configured to respond to context.

[0068] Inan example a volume is “treated” by a collection
of identical sensors, each one of which has finite range, and
each of whose accuracy degrades as its sensing range’s edge
is approached, and which are spatially arranged so that their
sensing ranges overlap. Spatial seaming may select a single
description when the event in question is well inside a single
sensor’s high-precision range, but may then perform a
weighted average between adjacent sensors’ streams when
the event occurs near the range limit of the first sensor. The
weighting varies spatially, in response to the event’s esti-
mated proximity to respective sensing boundaries.

[0069] In a second example event streams represent a
high-fidelity optical motion tracker and a touch surface.
Spatial seaming generally favors the motion tracker, but as
tracking approaches the touch surface, an adjustment func-
tion is applied to the optical location data so that distance
from the touch surface decreases asymptotically. Only when
the touch surface senses definitive contact is the seamed
event’s location allowed to coincide geometrically and
semantically with the surface.

US 2018/0173313 Al

[0070] In a final example a display-backed surface is
outfitted with a high-precision electric-field-sensing appa-
ratus, and a pair of cameras with stereo depth processing is
trained on the surface. The field-sensing rig provides better
resolved location data for a finger near the display (than does
the vision system), but field sensing’s ability to detect
orientation is negligible, so spatial seaming merges the three
location components from one sensor with the three orien-
tation components of the other, resulting in a synthetic event
that exhibits good resolution in all six degrees of freedom.
[0071] It is an explicitly configurable or contextually
triggerable aspect of the funnel to allow spatial seaming 24
to precede temporal alignment 23; this may happen continu-
ously or intermittently. For example, the funnel 20 may be
configured so that input streams SY are ordinarily aligned
against the highest-data-rate stream but that, upon detection
of an extraordinary event (a finger crossing a proximal
threshold, say), a “syncopated” aggregate event is generated
by interpolating all other streams to the time of detection.

[0072] The funnel 20 of an embodiment also performs
semantic aggregation 25, which includes collecting relevant
events resulting from preceding funnel operations into
semantic aggregates. The manner in which or patterns by
which such aggregate collection 25 happens may be stati-
cally or dynamically configured. The aggregates that the
funnel may be configured to produce at this stage are
typically, though not always, (1) explicitly specified, so that
their identification and assembly is a direct and causal matter
subject to no sophisticated inference; and (2) of universal
“downstream” utility. An extremely pervasive example
attends the identification of a human hand assembly: for an
input infrastructure in which individual fingers are tagged so
that both the six-DOF geometry as well as the identity of
each finger are reliably reported, the component elements of
the hand may be a priori prescribed. The act of forming the
higher-level semantic hand aggregate is then simply a matter
of selecting from the conformed input stream those tags
whose identities match the static identities known to com-
prise the hand.

[0073] Note that even in this example—in which the
possibility of assembling the aggregate is guaranteed, so
long as the component tags are reported in the input
stream—the output stream would be likely to include not
only the resulting high-level representation but also the
lower-level tag information from which the aggregate had
been assembled. Subsequent consumers of the event infor-
mation are thus afforded the possibility of accessing the
lower-level data when and as necessary (see immediately
below).

[0074] Additionally, the funnel 20 can perform metainfor-
mation tagging 26 during one or more operations described
above. When metainformation tagging 26 is used at or as
part of any operation described above, the resulting events
bear information pertaining to their construction, including
a complete or abridged list of original events from which
they were derived, decision paths that led to particular
synthesis methods, and so forth. Subsequent consumers may
then elect to traverse this metainformation in order to
reinterpret or further analyze these synthetic events.

[0075] FIG. 6 is a gesture engine 21 of the gestural I/O 14,
under an embodiment. The gesture engine 21 translates a
body of low-level, semantically raw data (“gesture-engine-
ready data” or GER data 27) representing spatial and geo-
metric occurrences into one or more representationally typed

Jun. 21, 2018

gestural protoevents 3. The GER data 27 of an embodiment
includes, but is not limited to, the following: (1) the three-
space position and, possibly, orientation of a single finger;
(2) the overall “bulk” threespace position and orientation of
an entire hand, together with a semantic digest of the hand’s
pose—i.e. its fingers’ aggregate flexions; (3) the threespace
position and orientation of an inert, nonbiological object; (4)
the threespace position and orientation of other anatomically
germane structures, such as an operator’s head to name one
example.

[0076] The gesture engine 21 consults a possible plurality
of distinct gesture-describing criteria and attempts to match
the various spatial GER data 27 against these criteria. As a
result of the matching exercise, zero, some, or all of the
criteria will have been met; for each match, zero or more of
the GER data 27 will have been implicated. The gesture
engine 21 may be configured to treat the GER data 27
“exclusively”, so that a datum implicated in one match may
not then participate in satisfying a second, or the gesture
engine 21 may instead allow a datum to participate in
multiple matches. In response to each positive match, the
gesture engine 21 prepares zero or more “protoevents” 3:
these provide a digest of the matched low-level data, inter-
preted in the semantic context of the matched gestural
criteria. The protoevents 3 are passed along to the third stage
of the pipeline, as described below.

[0077] The gesture engine 21 can comprise a logically
hermetic execution path, in which are resident either a fixed
and immutable set of gesture recognition criteria or a finite
set of selectable and configurable gesture recognition criteria
(this selection and configuration to be effected from outside
the engine’s logical boundary). But in an embodiment, each
recognition criterion exists as a logically independent unit
called a “recognizer”; recognizers may be selected from a
library (not shown) and may be authored independently
from the gesture engine 21. In this embodiment, an external
agency selects and configures one or more recognizers and
then brings each into data-structural association with the
gesture engine 21. This may be done once, prior to the
gesture engine’s engagement, or the external agency may
dynamically add 28, remove 29, and/or modify or reconfig-
ure (not shown) recognizers during the gesture engine’s
active execution. Note too that the embodiment allows for
the gesture engine 21—in response to certain conditions—
itself to add 28, remove 29, and/or modify or reconfigure
(not shown) recognizers in association with it. It is further
possible for a recognizer to remove 29 and/or reconfigure
itself, or to add 28, remove 29, or reconfigure other recog-
nizers in association with the same gesture engine 21.

[0078] The GER data body 27 may in rare circumstances
be temporally solitary so that the gesture engine’s action is
undertaken only once, but is most usually time-varying and
presented to the gesture engine 21 periodically. In this latter
case the input data 27 are most often possessed of persistent
identity, so that it is possible for recognizers to knowably
associate the geometric information represented by a datum
D_i at time T_n with that of datum D_j at time T_n+1: D_i
and D_j represent the same real-world object moving (and
possibly deforming) through space. Throughout the remain-
der of this description, it will be understood that “GER
datum” refers to the ongoing evolution of those time-
sequential data bearing the same identity information, i.e.
referring to the same real-world object. In an embodiment,

US 2018/0173313 Al

the recognizers maintain internal state in order to represent
aspects of the spatiotemporal trajectories of input data of
interest.

[0079] Inone case, a recognizer remains expectantly “dor-
mant” until the geometric and spatiotemporal circumstances
of one or more input data 27 match the recognizer’s specific
“activation” criteria, whereupon it becomes “active”. The
recognizer remains active so long as input data 27 satisfy a
second set of “maintenance” criteria (which may or may not
be identical to the activation criteria). The recognizer
becomes inactive when the input data 27 fails to satisfy the
second set of criteria.

[0080] Natural categories for recognizers, and thus for
recognizable gestures, emerge from consideration of (1) the
different forms that activation and maintenance criteria can
take, and (2) the circumstances under which protoevents are
emitted from the gesture engine.

[0081] When the gesture engine 21 is configured to treat
GER data 27 exclusively, the inclusion of a datum by one
recognizer in a successtul initial match disallows the use of
that datum by any other recognizer. In this way, a recognizer
can “capture” one or more GER data 27, and throughout the
interval in which the recognizer is active those captured data
remain continuously unavailable for consideration by other
recognizers.

[0082] Inanembodiment a gesture engine 21 may rank its
associated recognizers according to a “primacy metric”.
Such metrics may be static throughout the existence of the
gesture engine 21; may be volitionally modified or replaced
at discrete intervals by agencies external to the gesture
engine 21; or may be automatically and dynamically
evolved, discretely or continuously, as the gesture engine 21
executes. In all such cases, the gesture engine 21 gives
consideration to its plurality of recognizers in the order
suggested by the primacy metric’s ranking; and when the
gesture engine 21 is so configured and, additionally, dis-
posed to treat input data exclusively, it is therefore possible
for higher-ranking recognizers to “usurp” input data previ-
ously captured by other, lower-ranking recognizers. In this
event, the recognizer whose data have been usurped is
notified and given the opportunity to return to an inactive
state, emitting any protoevents as may be necessary to
describe the forced state change.

[0083] For illustrative purposes, the implementation of a
gesture engine and its recognizers is articulated in full detail
herein.

[0084] FIG. 7 and FIG. 8 show a distributor 22 of the
gestural /O 14, under different embodiments. The “distribu-
tor” 22 of an embodiment transmits the protoevents 3
generated by previous pipeline activity to one or more
next-stage recipients. A major class of the protoevents 3 thus
transmitted comprises gestural events detected by the ges-
ture engine, but the distributor 22 may be configured to
transmit, in addition, those lower-level events that did not
participate in the detection and synthesis of “well-formed
gestures”. Additional facilities of the distributor 22, avail-
able to event recipients and other downstream systems,
allow transmitted protoevents 3 to be re-interpreted in
(transformed into) specific geometric and semantic form.
[0085] Mechanisms for event distribution are varied, and
the distributor may be statically or dynamically directed to
engage with an arbitrary collection of these. The distribution
mechanisms of an embodiment include, but are not limited
to, the following: anonymous, asynchronous repository;

Jun. 21, 2018

directed, asynchronous recipient; and, directed, synchronous
recipient. A description of the distribution mechanisms
follows.

[0086] FIG. 7 is a block diagram of the anonymous,
asynchronous repository distribution mechanism of a dis-
tributor 22, under an embodiment. Under the anonymous,
asynchronous repository distribution mechanism, the dis-
tributor 22 exercises its connection to one or more reposi-
tories 30 that may have couplings or connections to some
number of auditors 31. The distributor 22 deposits protoev-
ents 3 in these repositories 30; the protoevents 3 are subse-
quently retrieved by interested auditors 31. Such repositories
30 may exist in the same execution space as the distributor
22 and support proximal or disjoint connections from audi-
tors 31; or may exist as separate processes on the same
hardware and support connections from the distributor 22
and from auditors 31 via interprocess communication pro-
tocols; or may exist as processes on remote hardware and
support connections from the distributor 22 and auditors 31
over a network; or may exist with properties permuted from
those of the foregoing. Common to this distribution pattern
is that the distributor 22 need not (and in many cases cannot)
be aware of the number and nature of the auditors 31. An
embodiment implements such repositories through the pro-
visions of proteins and pools, as described in detail below.
[0087] FIG. 8 is a block diagram of the directed recipient
distribution mechanism of a distributor 22, under an
embodiment. When the distributor 22 includes or executes
the directed, asynchronous recipient distribution mecha-
nism, the distributor 22 maintains an auditor list 32 com-
prising a list of asynchronous auditors 33; the population of
the auditor list 32 is controlled statically or dynamically. The
distributor 22 transmits to each asynchronous auditor 33 a
copy of every generated protoevent 3, such transmission
undertaken in an asynchronous modality, so that receipt
acknowledgment from asynchronous auditors 33 is not
necessary. Notionally, this model of asynchronous consump-
tion is analogous to the message-passing “mailbox” com-
munications offered by the Erlang programming language.
An embodiment implements such asynchronous consump-
tion through the provisions of mutex-protected shared
memory methods.

[0088] When the distributor 22 includes or executes the
directed, synchronous recipient distribution mechanism
(with continued reference to FIG. 8), the distributor 22
maintains an auditor list 32 comprising a list of synchronous
auditors 33; the population of the auditor list 32 is controlled
statically or dynamically. The distributor 22 transmits to
each synchronous auditor 33 a copy of every generated
protoevent 3, such transmission occurring synchronously, so
that receipt of events by the distributor’s synchronous audi-
tors 33 is implicitly or explicitly acknowledged in bounded
programmatic time. The simplest implementation of such
synchronous consumption can obtain when consumers are
present in the same execution space as the distributor 22;
then, transmission of protoevents 3 can be accomplished
using a direct function call. For circumstances in which
consumers are disjunct from the distributor process, tech-
niques of interprocess communication may be employed to
implement synchronous transmission.

[0089] Independently from its event transmission or dis-
tribution activities, and with reference to FIGS. 7 and 8, the
distributor 22 includes and makes available facilities for
event transformation 34. Any number of supplicant entities

US 2018/0173313 Al

SE may communicate such event transformation requests to
the distributor 22 by any of the means articulated above,
synchronous and asynchronous, and in the case that a
supplicant entity SE is itself also an auditor 33 such event
transformation requests are not required to employ the same
communication means as that of audition. An event submit-
ted for transformation may have originated from the dis-
tributor 22 (e.g., a protoevent 3), or may represent spa-
tiotemporal data synthesized or acquired externally to the
distributor’s activities. In the former case, the supplicant
entity SE may elect to “retransmit” the event to the distribu-
tor 22, passing the event in full literal detail, or may instead
pass a reference to the event—a unique identifier associated
with the event—by means of which it may be retrieved by
the distributor 22.
[0090] Supplicant entities SE may request simple geomet-
ric event transformation, in which the coordinate system
underlying the event is subjected to an affine transformation.
Such transformation will in general result not only in a
change to the numerical representation of the event’s geom-
etry (i.e. a change of coordinate-based elements) but also of
certain parts of its semantic content.
[0091] So, for example, a protoevent E represented as
[0092] E: [[DESCRIPS: :event, :pointing, :manus, 3,
evt-grp-qid, 12831//INGESTS: :gripe=>“""||-:-x”,
:pos=>v3(-200.01+1000.01+500.0), :aim=>v3(+0.35I+
0.001-0.94) . . . }]
can be subjected to a ninety degree rotation about the y-axis
and a downward translation (equivalent to the representation
of the geometry in a coordinate system that is y-rotated by
negative ninety degrees and translated upward from the
original coordinate system) to yield
[0093] E-->E'" [[DESCRIPS: :event, :pointing, :manus,
3, :evt-grp-qid, 12831/INGESTS: :gripe=>“""||-:.-”,
:pos=>v3(+500.01+0.01 200.0), :aim=>v3(-0.94]+0.
001-0.35) ... }1.
Note in this case that the GRIPE string (described herein)
that is a semantic digest of a hand’s overall finger-postural
configuration and aggregate orientation has also changed:
the final two characters, designating basic orientation, have
been transformed to “.=” (from “-x”).
[0094] More complex event transformations executed by
the distributor 22 involve the reinterpretation of some com-
bination of a protoevent’s geometric and semantic content in
a new context. The same protoevent E above—an example
of an apparent “pointing” gesture in which a hand’s index
and middle fingers are extended, the thumb is vertically
disposed, and the ring and pinkie fingers are curled in—
might be reinterpreted in the local geometric context of a
proximal display screen positioned just in front of the hand:

[0095] B-->{E1', B2'}
[0096] E1': [[DESCRIPS: :event, :proxing, :manus, 3,
:dactyl, :middle, :evt-grp-qid, 12831.2//INGESTS:

:pos=>v3(-203.01+1000.01+386.0), :proximals=>{{(:
phys-surf. 0x3dd310), (:dist. 15.4)}, . . . }]

[0097] E2': [[DESCRIPS: :event, :proxing, :manus, 3,
:dactyl, :index, :evt-grp-qid, 12831.3//INGESTS:
:pos=>v3(-203.01+1000.01+393.0), :proximals=>{{(:
phys-surf. 0x3dd310), (:dist. 22.4)}, . . . }]

[0098] With reference to the embodiments described
above, numerous examples of gesture engine implementa-
tions follow. FIG. 9 is a block diagram of a gesture engine
implementation 900, under an embodiment. The following
gesture engine implementations suppose a number of prin-

Jun. 21, 2018

cipal elements, and a description of each of these principal
elements follows with reference to the gesture engine imple-
mentation 900.

[0099] A first principal element of the following gesture
engine implementation examples is the presence of some
number of tracked entities, the representation of each com-
prising (a) a high-fidelity bulk threespace position; (b) a
high-fidelity bulk threespace orientation; and (c) an expres-
sive description of the entity’s “pose”, i.e. a semisemantic
digest of its additional degrees of freedom. Call such entities
“GripeEnts”. (A GripeEnt corresponds to the general “GER
datum” above.) A particularly important species of GripeEnt
is the human hand, for which “pose” describes the fingers’
various flexions, expressed possibly using the representa-
tional schema articulated in U.S. patent application Ser. No.
11/35,069.

[0100] A second principal element of the following ges-
ture engine implementation examples is a system for corre-
lating low-level spatial input data from one or more sources
and for analyzing that data in order to periodically update the
collection of GripeEnts. This system is referred to herein as
a “GripeRefinery”, where a GripeRefinery may correspond
to the “data funnel” described above. To provide perceptu-
ally satisfactory interaction, the GripeRefinery must produce
complete output sets at rates well better than thirty Hertz.
[0101] A third principal element of the following gesture
engine implementation examples is the inclusion of a col-
lection of gesture-matching modules referred to as “Gesta-
torTots” or “GTots” (a GTot corresponds to the general
“recognizer” above, but the embodiment is not so limited).
Each GTot has, at any instant, a “multiplicity” S: the
coordination of S distinct GripeEnts is required for success-
ful recognition of the gesture that the GTot represents. Each
GTot is at any moment in either a “waiting” or an “active”
state. Associated with these states are a GTot’s two major
execution paths: respectively, “EntranceAttempt” and “Con-
tinuationAttempt”, either or both of which may emit mid-
level interaction event data. A third, optional, execution path
is the GTot’s “Update” routine, which provides a per-loop
opportunity for the GTot to perform additional computation
necessary to maintenance of its internal state. Execution of
EntranceAttempt will produce one of three possible result
codes: COPACETIC, PROMOTE, and EXCLUSIVE.
Execution of ContinuationAttempt will produce one of three
possible result codes: COPACETIC, DEMOTE, and
EXCLUSIVE.

[0102] An EntranceAttempt tests, for a GTot in the waiting
state, available GripeEnts against the GTot’s particular
entrance criteria; when those criteria are met, the GTot is
placed in the active state and the (one or more) GripeEnts
that have participated in meeting the criteria are marked as
captured and associated with the GTot. For a GTot in the
active state, ContinuationAttempt first acts to verify that the
previously captured GripeEnts are (1) still available—that
is, if they have not been “usurped” by a GTot of higher
primacy—and (2) still spatially, semantically, and contex-
tually satisfy the GTot’s criteria. If (1) or (2) is not the case,
the formerly captured GripeEnts are released from associa-
tion with the GTot; otherwise, they remain captured.
[0103] These logical relationships and causalities are
explicated in detail in the state transition descriptions below.
[0104] A fourth principal element of the following gesture
engine implementation examples is the inclusion of an
engine of arbitration that traverses the full set of GTots in a

US 2018/0173313 Al

prescribed order and allows each to execute either its
EntranceAttempt or ContinuationAttempt routine. This arbi-
tration engine is referred to herein as a “Gestator” (a
Gestator corresponds to the general “gesture engine” above,
but the embodiment is not so limited). The Gestator main-
tains a dynamic list of all GTots in the active state and a
separate such list of all GTots in the waiting state. These lists
are necessarily disjoint. The Gestator has a single major
execution path: “ProcessTots”.

[0105] A fifth principal element of the following gesture
engine implementation examples is the existence of an
immediate recipient of the “events” generated through the
action of the Gestator. This recipient may be a simple
repository, like the FIFO buffer of a dispatch mechanism
whose work is to distribute accumulated events periodically
to the appropriate end consumers. Alternatively, or addition-
ally, the recipient may be a more complex pipeline that acts
to refine, combine, or otherwise condition the mid-level
events provided by the Gestator to produce higher-level
event constructs with context-specific information for the
benefit of expectant subsystems.

[0106] A single pass through the system’s input process-
ing loop, then, comprises allowing the GripeRefinery to
update the state of each GripeEnt; and then executing the
Gestator’s ProcessTots; which in turn (among other work)
entails executing either the EntranceAttempt or Continu-
ationAttempt of every registered GTot.

[0107] The Gestator’s ProcessTots routine of an embodi-
ment is as follows:

[0108] PT1. Sort the full collection of GTots into meta-
sets MS[1 . . . n]. Sort criteria may be either static or
dynamic. A typical static criterion is “the number of
coordinated GripeEnts required to form the gesture
described by a GTot”—the multiplicity S, above; in
such a case, therefore, the meta-set MS[n] contains
those GTots that describe gestures requiring n
GripeEnts.

[0109] PT2. Select an ordering for the GTots in each
meta-set MS[i], so that MSJi][j] is the jth GTot; the
meta-set then comprises MS[i][1 . . . m]. Sort criteria
may again be static or dynamic. In certain situations the
order may correspond simply to the order in which the
GTots were originally instantiated and added to the
Gestator.

[0110] PT3a. Traverse the Gestator’s list of active
GTots; execute each GTot’s Update.

[0111] PT3b. Traverse the Gestator’s list of waiting
GTots; execute each GTot’s Update.

[0112] PT4. Construct a list of all GripeEnts. Call it
avail_ents.

[0113] PT5. Traverse the meta-sets from MS[n] to
MS[1].

[0114] PTé6a. For each meta-set MSJi], traverse the
component GTots from MS[i][m] to MS[i][1], consid-
ering in turn each GTot MSJ[i][j].

[0115] PTeb. If MS[i][j] is in the active state, execute its
ContinuationAttempt algorithm, making available to it
the list avail_ents; otherwise, continue with the tra-
versal in (PT6a).

[0116] PTéc. If the result code from (PT6b) is COPA-
CETIC, continue with the traversal in (PT6a). The list
avail_ents has been modified.

Jun. 21, 2018

[0117] PTé6d. Or if the result code is EXCLUSIVE,
abandon the traversal in (PT6a) and proceed to (PT7a).
The list avail_ents has been modified.

[0118] PTé6e. Otherwise (the result code is DEMOTE),
remove MSJi|[j] from the Gestator’s list of active
GTots and add it to the list of waiting GTots; continue
with the traversal in (PT6a).

[0119] PT7a. For each meta-set MS[i], traverse the
component GTots from MSJi][m] to MS[i][1], consid-
ering in turn each GTot MSJ[i][j].

[0120] PT75. If MSJi][j] is in the waiting state, execute
its EntranceAttempt algorithm, making available to it
the list avail_ents; otherwise, continue with the tra-
versal in (PT7a).

[0121] PT7c. If the result code from (PT756) is COPA-
CETIC, continue with the traversal in (PT6a).

[0122] PT7d. The result code is known now to be either
PROMOTE or PROMOTE_EXCLUSIVE; remove
MSJi][j] from the Gestator’s list of waiting GTots and
add it to the list of active GTots. The list avail_ents has
been modified.

[0123] PT7e. If the result code of (PT75) is PROMO-
TE_EXCLUSIVE, abandon the traversal in (PT74) and
proceed to (PT8), concluding the ProcessTots execu-
tion outright.

[0124] PT7f Otherwise (the result code is PROMOTE),
continue with the traversal of (PT7a).

[0125] PT8. Conclude the ProcessTots execution.
[0126] A GTot’s EntranceAttempt routine of an embodi-
ment is as follows:

[0127] EAI1. Traverse the list avail_ents.

[0128] EA2.Compare elements of avail_ents, taken S at
atime (where S is the multiplicity of the GTot), against
the particular entrance criteria.

[0129] EA3. If all appropriate combinatorics of the list
are exhausted with no match, return the response code
COPACETIC.

[0130] EA4. Otherwise, some s-tuple of GripeEnts—
call it GE[1 . . . s]—has satisfied the entrance criteria.

[0131] EAS. Remove each GE[k] of GE[1 ... S] from
the list avail_ents.

[0132] EA6. Record, as part of the persistent state
carried by the GTot, each GE[k] of the matching GE[1
. .. S]; these GripeEnts are now ‘captured’.

[0133] EA7. Generate and inject into the event queue
any such event(s) as may be appropriate to the descrip-
tion of the GTot’s initial “recognition” of the gesture it
describes.

[0134] EAS8. Return the result code PROMOTE or, if
the context and conditioning of the GTot are so dis-
posed, PROMOTE_EXCLUSIVE.

[0135] A GTot’s ContinuationAttempt routine of an
embodiment is as follows:

[0136] CA1l. Confirm that each of the captured
GripeEnts GE[1 . . . S] is present in the list avail_ents.

[0137] CAZ2. If (CA1) is not the case—meaning that a
GTot of greater primacy than the present GTot has
usurped one or more of the component GripeEnts
formerly captured by the present GTot—skip forward
to (CAS).

[0138] CA3. Confirm that each of the captured
GripeEnts GE[1 . . . S] semantically and geometrically
satisfies the present GTot’s maintenance criteria.

US 2018/0173313 Al

[0139] CAd4. If (CA3) is the case, skip forward to
(CAS8); if (CA3) is not the case—meaning that the
gestural inputs comprising GE[1 . . . S] have “fallen
out” of the gesture described by the present GTot—
proceed forward to (CAS).

[0140] CAS. Generate and inject into the event queue
any such event(s) as may be appropriate to describe the
termination of the gesture described by the present
GTot.

[0141] CA6. Remove references to previously captured
GE[1 . . . S] from the persistent state carried by the
present GTot.

[0142] CA7. Return the result code DEMOTE.

[0143] CAS8. Remove each GE[k] of the captured
GripeEnt set GE[1 . . . S] from the list avail_ents.

[0144] CA9. Generate, from the presumed-to-have-
been-freshly-updated GE[k], any such event(s) as may
be appropriate to the description of the evolving ges-
ture’s state; inject same into the event queue.

[0145] CA10. Return the result code COPACETIC or, if
the context and conditioning of the GTot are so dis-
posed, EXCLUSIVE.

[0146] Following are detailed descriptions of three exem-
plary applications employing an embodiment of the spatial-
continuum input system introduced above. Each exemplar
supposes that the hands belonging to one or more operators
are tracked by sensors that resolve the position and orien-
tation of her fingers, and possibly of the overall hand masses,
to high precision and at a high temporal rate; the system
further analyzes the resulting spatial data in order to char-
acterize the ‘pose’ of each hand—i.e. the geometric dispo-
sition of the fingers relative to each other and to the hand
mass.

[0147] The sensors, the approach to tracking and analyz-
ing the operator’s hands, and the scheme for representing the
hands’ poses, positions, and overall orientations may be as
described in detail below; the symbolic pose representations
throughout the description following will, for the purpose of
demonstrative specificity, be rendered according to that
notational scheme. Note however that the embodiments
illustrated by the exemplars may make use of other analo-
gous systems, provided that such are possessed of equivalent
symbolic and representational efficacy.

[0148] Similarly, the exemplars make reference for the
purposes of illustration to elements of the sample imple-
mentation-architecture as outlined above, but alternate,
analogous architectures and implementations apply equally.
[0149] Where informative, some of the typical higher-
level event-structures that would be derived during gestural
interaction are also reproduced below. These events are
rendered in a notation consistent with their preferred repre-
sentational scheme, which is as “proteins” built from primi-
tive “slawx” (as described in detail below). Such event
proteins are typically deposited in “pools”, a platform-
independent, history-retaining interprocess data control and
interchange mechanism (also described in detail below);
and, after retrieval from the appropriate pools and further
context-specific conditioning, are distributed systematically
to programmatic objects that may be interested. A pool is
transparently accessible both to processes local to the
machine hosting it and, via the network, to processes execut-
ing on remote machines. These event proteins are inter-
spersed throughout the prose descriptions following, and
refer in each case to interactions described in the immedi-

10

Jun. 21, 2018

ately preceding paragraph. Note too that the articulated
proteins are not necessarily “complete”: certain fields that
might be necessary to a full running system are elided by
way of promoting clarity, relevance, and brevity.

[0150] A first exemplar is a stereoscopic geometry tutorial.
In this first exemplar, an operator stands next to a horizontal
table-like surface, roughly a meter square and at waist
height. A display system projects stereo imagery onto the
surface, and additionally tracks the operator’s head so that
left- and right-eye views are correctly generated to corre-
spond, as she moves about the table, to her instantaneous
position. She wears stereo glasses.

[0151] The table presents a geometry tutorial; a variety of
polyhedra are dimensionally displayed (that is: stereographi-
cally, not physically). Each polyhedron is positioned and
oriented so that it is stably ‘resting’ on one of its faces. Each
is about fifteen centimeters high.

[0152] The operator raises her right hand and ‘points’ at
the table with her index and middle fingers (the fourth and
fifth fingers are curled in, and the thumb points leftward, i.e.
perpendicular to the index finger); the hand is oriented so
that the palm substantially faces downward. This pose may
be described as [7|-:v*]. Immediately upon the operator’s
hand’s adoption of this pose, the table displays a dynamic
cursor. Precise geometric calculations allow the cursor to
appear on the surface of the nearest intersected polyhedron
(if any) or on the table’s surface (if no polyhedron is
intersected). The operator raises her left hand in an analo-
gous pose and begins pointing with it as well. As a further
cue, the polyhedra respond to such ‘pointing interaction’ by
turning color: when the operator points with her right hand,
the closest intersected polyhedron changes from grey to
blue; when with her left, from grey to green. Polyhedra
return to their original grey when no longer intersected.

[0153] A. [[DESCRIPS: :event, :pointing, :action,
:move, :state, 0, :manus, 3, :evt-grp-qid, 17381//IN-
GESTS: :gripe=>"||:-vx”:pos=>v3 (+215.31+304.71+
434.6), :aim=>v3(~0.221-0.511-0.83) :intersectees=>{(:
vfeld. 0xaf32b8), (:phys-surf. 0x3dd310), (:geom-obj.
Ox4ade9c)}]

[0154] While pointing at a dodecahedron the operator
articulates her thumb so that it is briefly brought parallel to
and in contact with her index finger and then returns to its
original, perpendicular orientation ([*" ||-:-*]-->["" ||I:-¥]-->
["" |IF:-v*1). The dodecahedron reacts by emitting a graphical
tag, a square frame that lies dimensionally on the surface of
the table and that contains the typographic description
“J5,3}” (the Schlaefli symbol for the dodecahedron). The
tag slides smoothly from its initial position near the base of
the dodecahedron toward the nearest edge of the table,
where it comes to rest. The operator generates additional
such tags by continuing to point around the table and
‘clicking’ her thumb; the resulting tags all end arrayed
around the edge of the table.

[0155] B. [[DESCRIPS: :event, :pointing, :action, :inc-
state, :state, 1, :manus, 3, :evt-grp-qid, 17381//IN-
GESTS: :gripe=>"|l:vx”, :pos=>v3(+124.31+313.4|+
413.2), :aim=>v3 (-0.141-0.821-0.55) :intersectees=>{
(:vfeld. Oxaf32b8), (:phys-surf. 0x3dd310), (:geom-ob;.
0x604ddc)}]

[0156] C. [[DESCRIPS: :event, :pointing, :action,
:move, :state, 1, :manus, 3, :evt-grp-qid, 17381//IN-
GESTS: :gripe=>"""||l:vx”, :pos=>v3 (+124.31+313.4|+
413.2), ... 1]

US 2018/0173313 Al

[0157] D. [[DESCRIPS: :event, :pointing, :action, :dec-
state, :state, 0, :manus, 3, :evt-grp-qid, 17381//IN-
GESTS: :gripe=>"|l:vx”, . . .]]

[0158] The operator then inclines forward slightly and
brings her left hand, palm still facing roughly downward but
with middle finger and thumb now curled lightly under
("1>:v*]), downward and over the table surface proper.
When her hand crosses a threshold-plane twenty centimeters
above the table, the system’s graphical feedback changes:
where it formerly indicated (through the cursor’s position)
the intersection of the operator’s pointing finger’s aim vector
with the simulation’s various surfaces and geometric ele-
ments, the feedback system now deploys a multiplicity of
“plumb line” cursors that show the closest point on relative
surfaces to the instantaneous position of the finger. So, for
example, a cursor appears directly “under” the finger, track-
ing along with it on the surface of the table. Where the
orthogonal projection of the finger’s position onto the plane
of a polyhedral face lies within the face’s polygon, a cursor
appears too. In addition, a faint lateral “horizon line”
appears on proximal polyhedral faces in order to suggest the
plane that’s parallel to the table and containing the finger’s
position. These graphical marks are updated continuously, at
the system’s natural frame rate (about 90 hertz), and so
cognitively “track” the finger’s movement.

[0159] E. [[DESCRIPS: :event, :proxing, :action,
‘move, :manus, 3, :evt-grp-qid, 17385//INGESTS:

CAAA

:gripe=>""1>vx”, 1pos=>v3(-93.21+155.71+60.8),
:proximals=>{(:vfeld. 0xaf32b8), (:phys-surf.
0x3dd310), (:geom-obj. Ox4ade9c), (:geom-obj.

0x604ddc), . . . H]
[0160] When the operator brings her finger to within three
centimeters of one of the polyhedra, the face closest to the
approaching finger begins to shift in hue to indicate the
near-contact proximity. When at last the finger geometrically
passes through the polyhedron’s surface into its inner vol-
ume, the entire form flashes and a synchronized audio cue
marks the occasion of the contact; and, just as when the more
distant pointing hand “clicked on” a Platonic form, a graphi-
cal tag issues from the form’s base and slides to the nearest
edge of the table. The operator is thus identically able to
access the system’s geometric content either by pointing
from a distance or by making direct contact.

[0161] F. [[DESCRIPS: :event, :palping, :action, :move,

:state, :exterior, :manus, 3, :dactyls, {:index}, :evt-grp-

qid, 17391//INGESTS: :gripe=>"""1>:vX”, :pos=>Vv3(.

. .), :palpees=>{((:geom-obj. Ox4ade9c). (:dist.+13.5))

i

[0162] G. [[DESCRIPS: :event, :palping, :action, :sur-
face-intersect, :state, : interior, :manus, 3, :dactyls,
{:index}, :evt-grp-qid, 17391//INGESTS:
:gripe=>""">vx”, :pos=>v3 (. ..), :palpees=>{((:

geom-obj. Ox4adedc). (:dist. =1.8))}]
[0163] Now the operator extends the middle finger of her
active hand so that it is parallel to the index finger (["7|>:
v*]). In this mode, geometric contact with the system’s
polyhedra engages simulated physics, so that when the
operator pokes at the side of an octahedron it’s subject to a
torque proportional to the cross product (really the wedge
product, for disciples of geometric algebra) of the poke
vector and the radial vector to the point of contact. In this
way, by poking or flicking with her index and middle fingers,
the operator causes the octahedron to rotate around a vertical
(gravity-aligned) axis passing through its bottom face’s

Jun. 21, 2018

center. She then stops the rotation by poking her fingers
vertically through the topmost volume of the octahedron.

[0164] H. [[DESCRIPS: :event, :palping, :action,
:move, :state, :exterior, :manus, 3, :dactyls, {:index,
:middle}, :evt-grp-qid, 17394//INGESTS:
:gripe=>*""|>:vx”, :pos=>v3(...), vel=>v3 (.. .),

:palpees=>{((:geom-obj. 0x21b3b8). (:dist.+21.4))}]]

[0165] 1. [[DESCRIPS: :event, :palping, :action, :sur-
face-intersect, :state, : interior, :manus, 3, :dactyls,
{:index, :middle}, :evt-grp-qid, 17394//INGESTS:
:gripe=>*""|>:vx”, :pos=>v3(. . .), :vel=>v3(. . .),
:palpees=>{((:geom-obj. 0x21b3b8). (:dist. =5.5))}]

[0166] Similarly, the operator can reposition the simula-
tion’s objects. As she brings the tips of her index and middle
fingers close to the base of a tetrahedron, a yellow “under-
halo” forms, its brightness in inverse relation to the fingers’
proximity to the table surface. When the operator’s fingers
come into direct contact (generally the middle finger is
anatomically predisposed to do this first) with the physical
surface, the underhalo turns from yellow to red, and a
translational offset equal to the fingers’ offset from their
initial point of contact is continuously applied to the tetra-
hedron. She is thus able to slide any displayed object about
the table surface; simply breaking contact with the table
ends the sliding interaction.

[0167] . [[DESCRIPS: :event, :palping, :action, :move,
:state, :surface-contact, :manus, 3, :dactyls, {:index,
:middle}, :evt-grp-qid, 17394//INGESTS:
:gripe=>"|>:. v, tpos=>v3(.. L), wvel=>vE (L L),
:palpees=>{((:phys-surf. 0x3dd310). (:dist. -3.0)),
((:geom-obj. 0x9d1104). (:dist.+19.7))}]]

[0168] Finally, the operator may manipulate the tags that
have accumulated at the table’s edges through both distant
pointing and proximal poking interactions. She brings her
left hand down toward the left side of the table, where a
group of tags lies. As any tag is approached by the hand, its
luminance begins to grow: in inverse proportion, again, to
the distance from the tag to the nearest finger. In addition, as
soon as any finger’s proximity crosses an outer threshold of
five centimeters a line (in the plane of the table surface)
snakes its way from the tag to the polyhedron with which it
is associated.

[0169] K. [[DESCRIPS: :event, :palping, :action,
‘move, :state, :exterior, :manus, 4, :dactyl, :middle,
:evt-grp-qid, 17402//INGESTS: :pos=>v3 (. . .),

:vel=>v3(. . .), :palpees=>{((:phys-surf. 0x3dd310).
(:dist.+9.4)), ((:tag. “octahedron”). (:dist.+9.4))}]]
[0170] L. [[DESCRIPS: :event, :palping, :action,
:move, :state, :exterior, :manus, 4, :dactyl, :ring, :evt-
grp-qid, 17402//INGESTS: :pos=>v3 (.. .), :vel=>v3(
...), palpees=>{((:phys-surf. 0x3dd310). (:dist.+15.
8)), ((:tag. “octahedron”). (:dist.+15.8)), ((:tag. “tetra-
hedron”). (:dist.+15.8))}]]
[0171] When a finger makes definitive contact with a
tag—contact, that is, with the table surface at a point within
the projected tag’s geometric bounds—the tag’s border turns
red; the tag and the finger are logically bound; and the tag
will, so long as the operator’s digit remains in contact with
the table, follow it, so that the operator is able to slide the tag
about the surface of the table.
[0172] M. [[DESCRIPS: :event, :palping, :action,
‘move, :state, :surface-contact, :manus, 4, :dactyl,
:middle, :evt-grp-qid, 17402//INGESTS: :pos=>v3(. .

US 2018/0173313 Al

o), cvel=v3(. . L), palpees=>{((:phys-surf.
0x3dd310). (:dist. —=0.7)), ((:tag. “octahedron”). (:dist.
0.7)}1

[0173] N. [[DESCRIPS: :event, :palping, :action,
:move, :state, :exterior, :manus, 4, :dactyl, :ring, :evt-
grp-qid, 17402//INGESTS: :pos=>v3 (...), vel=>v3(
...), palpees=>{((:phys-surf. 0x3dd310). (:dist.+5.2)),
((:tag. “tetrahedron”). (:dist.+5.2))}]]

[0174] The per-finger binding to individual tags means
that, in this mode, the operator is able to use the fingers of
her hand independently: each may separately touch and
control an individual tag, exactly as if she were lightly
touching and sliding a number of coins. As the position of
each sliding tag evolves, the sinuous line between it and its
polyhedron is appropriately updated so that the two struc-
tures remain graphically connected.

[0175] O. [[DESCRIPS: :event, :palping, :action,
‘move, :state, :surface-contact, :manus, 4, :dactyl,
:middle, :evt-grp-qid, 17402//INGESTS: :pos=>v3(. .

), vel=v3(), palpees=>{((:phys-surf.
0x3dd310). (:dist. =0.7)), ((:tag. “octahedron™). (:dist.
0.7)}H]

[0176] P.[[DESCRIPS: :event, :palping, :action, :move,
:state, :surface-contact, :manus, 4, :dactyl, :ring, :evt-
grp-qid, 17402//INGESTS: :pos=>v3(.. .), vel=>v3(
. . .), palpees=>{((:phys-surf. 0x3dd310). (:dist.
-1.1)), ((:tag. “tetrahedron™). (:dist. =1.1))}]]

[0177] When the operator raises her finger from a tag it
remains in its most recent position, so long as that position
is still substantially on the edge of the simulation surface; if
she releases a tag too far “inland” from the edge, the tag
slides radially outward to come to rest once again near the
edge. Alternately, if she slides any tag off the edge of the
table, “littering” it onto the floor, that tag is discarded and
disappears.

[0178] A second exemplar is a film manipulation system.
In this second exemplar, a ‘rapid-prototyping’ film produc-
tion workspace comprises two large projection screens
mounted ninety degrees to each other on intersecting walls
and a large, mildly inclined projection table positioned two
meters from the forward screen. An operator stands just
behind the projection table, facing the forward screen.
Displayed on and filling the forward screen is a still-frame
from a sequence of recently shot film footage.

[0179] Raising his hands to shoulder height, each with
palms forward, fingers parallel, and thumbs horizontal ([|||-:
X" &&]|||-:x"]), the operator gains access to a larger collection
of footage sequences (referred to herein as the “pushback”
control system, described in detail below): as he translates
his hands directly forward, maintaining their overall pose,
the current frame recedes as if it were being pushed back
into perspective. As the frame’s size on the screen dimin-
ishes, it is joined by other laterally disposed frames, and so
the original frame is revealed to have been just one in a
horizontal strip of frames. The operator may see more or
fewer frames by, respectively, pushing his hands farther
forward or pulling them back, the interface modality thus
mimicking the physical interaction of shoving against a
spring-loaded structure. Similarly, as the operator moves his
hands left and right the horizontal collection of frames is
pulled left and right. The pushback system of an embodi-
ment deliberately constrains navigation by ignoring vertical
displacement of the hand, but is not so limited.

12

Jun. 21, 2018

[0180] A reticle centered graphically on the screen—
which appears as soon as the operator engages the pushback
system—indicates which frame will be ‘selected’ when
pushback interaction is terminated. Moving his hands to the
right, the operator positions a new frame directly under the
reticle and closes both hands into fists ([7>x"&& ">
x"]), ending the pushback session. The reticle fades as the
chosen frame springs forward, centering itself and coming
rapidly to fill the projection screen.

[0181] The system affords basic control over footage
playback: the operator may play the footage forward at unit
rate by holding either hand in a flat pose parallel to the floor
([Ill:vx]) and then rotating it clockwise until the fingers point
roughly to the right ([||||:vR]). Analogously, the footage may
be played in reverse by rotating the flat hand counterclock-
wise ([]|[l:vx]-->[|||:vL]). He halts playback—“pauses”—by
raising either hand in a palm-forward “policeman’s halt”
pose: [|[:x"].

[0182] The operator obtains further control over playback
position and rate by bringing either hand into a vertical-
plane pose with the fingers pointed forward ([|||-x]). So
doing engages a “logarithmic timeline”, represented on-
screen as a stack of horizontal bars positioned at the bottom
of the screen. The topmost bar in the timeline stack repre-
sents the full temporal breadth of the footage sequence, the
left end of the bar corresponding to the earliest frame and the
right end to the final frame. Each successively lower bar
represents a subinterval of the footage that is smaller (and
thus more finely ‘resolved’) by a factor R; the bottommost
of the N bars thus represents an interval of footage R™"(N-1)
smaller than the full duration.

[0183] The operator accesses different bars—and thus
different temporal resolutions—by translating his hand
along a substantially vertical axis (toward or away from the
floor). Swinging his hand side to side engages variable speed
playback of the footage: rightward rotation of the hand
(from [|]|:-x] a little toward [||||:x+], if the right hand; or
toward [|[|:.-], if the left) begins to shuttle the footage
forward; further rotation increases the shuttle speed. Return-
ing the hand to an attitude in which it is pointing directly
forward toward the screen brings playback to a halt (a small
angular detent zone may optionally be provided about this
central angular position to aid reliable maintenance of halted
playback), while continued leftward rotation of the hand
begins to shuttle the footage backward. The overall shuttle
speed, it is to be understood, is determined by the currently
active bar; i.e. the footage plays, for a given angular attitude
of the operator’s control hand, slower by a factor of R™"'n
than it would “on the top bar”, with n the ordinal of the bar
in the range 0 . . . n-1 (zero representing the top bar).
[0184] The lateral extrema of each bar are annotated with
the instantaneous footage timestamp so represented; beneath
the stack of bars is displayed the timestamp belonging to the
currently accessed & displayed frame; and a graphical mark
depicts, in each bar, the location of that current frame.
Additionally appearing within each bar are graphical indi-
cations of the temporal loci of “marked frames”—parts of
the footage that have in some way been annotated. Some
such marks may indicate edit points; the remainder of this
exemplar will consider the case in which these marks
indicate the availability of rotoscoped elements.

[0185] When the operator has navigated the footage to a
temporal point containing available elements, he releases the
control hand from the timeline pose, and shuttle mode is

US 2018/0173313 Al

relinquished. The timeline fades to half-transparency, while
on the right of the screen a vertical array of graphical tags
appears; each tag represents an available element within the
footage’s current frame.

[0186] The operator brings his hand to head height with
fingers extended, thumb lateral, and palm parallel to floor
([lll=:vx1), and as he does so the topmost element tag expands
and highlights, indicating its selection. Simultaneously,
within the paused footage frame on the forward screen, the
element so tagged brightens while the rest of the frame dims
to a low, fractional luminance. As the operator raises and
lowers his hand, keeping the pose roughly constant, he
successively accesses the full set of element tags (and each
highlights in turn, with the corresponding in-frame indica-
tion of the element itself).

[0187] With some particular rotoscope element thereby
selected and highlighted, the operator uses a pointing ges-
ture (all fingers curled except for index; thumb aloft; index
finger pointing toward the forward screen: [*I-:-x]) fol-
lowed by a ‘thumb-click’ modification (thumb laid down
parallel to index finger: [*™||:-x]) to grab the selected ele-
ment from the front screen. Immediately, a duplicate of the
highlighted element appears. Where the selected element
was static (as part of the paused footage’s current frame), the
new duplicate is “live”, playing forward and looping at the
end of its rotoscope subsequence. The operator then, while
maintaining the thumb-clicked pose, lowers his hand until it
is pointing at the table’s surface; throughout this maneuver,
the animated roto element precisely follows his “aim”,
gliding first down the forward screen, disappearing into the
geometric void between forward screen and table, and then,
when the pointing hand’s aim intersects with the table’s
quadrilateral surface proper, reappearing there. The operator
continues briefly to adjust the location of the animated roto
element on the table by re-aiming his pointing hand; then
raises his thumb ([*"||:-.v]-->["""I-:-v]), whereupon the ele-
ment is left in position on the table.

[0188] The operator pulls a second, independent element
from the same sequence frame, repeating the gestural
maneuvers above, then shuttle-navigates to another point in
the same sequence to add a third element to the composition
that is accumulating on the table. He then accesses a wholly
different sequence (by engaging in pushback interaction)
from which he adds further elements to the table; and so on.
[0189] Eventually the table surface holds a composition
containing a dozen rotoscoped elements: isolated characters,
props, backgrounds, etc.; they are all continuously animated,
and are drawn in the order in which they were added to the
composition—so that, for opaque eclements, the most
recently added occludes elements lying directly underneath.
Because the (full or partial) opacity of these elements and
their potential geometric overlap mean that ordering is a
significant characteristic of the composition, it is now appro-
priate to refer to the elements as “layers”.

[0190] Each of the composition’s layers is represented by
a symbolic, graphical tag; the collection of tags is arranged
along the right edge of the table’s surface (along the for-
ward-back axis). Tags appear as soon as new elements are
added to the table’s composition, and the linear arrangement
of tags smoothly adjusts to incorporate each newcomer.
[0191] The operator now allows his hand to hover about
ten centimeters above the right side of the table, directly
over the tag collection. As he translates the hand forward and
back, both the tag closest to the hand and the element layer

Jun. 21, 2018

to which that tag refers are “selected”: the tag indicates this
by sliding further rightward and increasing in brightness and
opacity, while all other composition layers fade to nearly full
transparency. The selected layer is thus visually isolated).
[0192] With his right hand held in a roughly stable posi-
tion above a particular tag, and with a single layer thereby
selected, the operator brings his left hand down toward the
table surface, somewhere near the visual center of the
selected layer. As his left hand traverses a first threshold
plane (parallel to the surface but some twenty centimeters
above it) a visual feedback system is engaged: a regular grid
of small graphical crosses (“plus symbols™) appears on the
surface and is positionally fixed to it; the brightness and
opacity of each cross is a function both of the height of the
hand above the surface and the two-dimensional radial
distance of the cross from the hand’s down-projected epi-
center. Appropriate scale factors and additive constants
applied to those two parameters result in the impression of
a moving spotlight tracking the hand’s position (as projected
into contact with the surface) and illuminating, within a
finite-radius circle, a fixed grid. The illuminated grid grows
brighter as the hand descends toward the surface.

[0193] The operator’s left hand, descending, then comes
into physical contact with the table and triggers a change in
the feedback system’s mode: now the feedback grid, for-
merly fixed to the surface, is dragged along with the con-
tacting hand. Simultaneously, layer repositioning is
engaged, so that as the operator slides his hand around the
table the layer follows precisely; the impression is one of
sliding a piece of paper around on a surface (except of
course that the layer itself continues to animate).

[0194] Having repositioned the layer to his satisfaction,
the operator then raises his left hand, breaking contact with
the surface. The layer ‘dragging’ mode is terminated and the
layer is left in place. The grid-based feedback system
simultaneously returns to a previous mode so that the grid
remains fixed with respect to the table surface. When
eventually the hand moves far enough from the table (ver-
tically), it re-crosses the first threshold and the grid feedback
is visually extinguished. Moving the right hand suffi-
ciently—either vertically or laterally (left-right)—similarly
exceeds the layer tags’ proximity thresholds, and so all tags
and layers become unselected, in turn returning all layers to
full opacity so that the entire composition (with one layer
now moved) is once more revealed.

[0195] The operator engages further layer interaction by
bringing his right hand down so that its fingers are fully in
contact with one of the layer tags near the table’s right edge,
whereupon the tag brightens and shifts hue to indicate that
it has entered a ‘direct manipulation’ mode. The operator
now slides his hand forward and back along the table,
parallel to the right edge; the tag underneath his fingers
follows along and, if translated far enough, changes its
ordinal position (relative to the other tags). When the
operator lifts his hand off the surface, the new tag ordering
is retained and results in a new logical ordering of the
corresponding layers. In this way the draw-order of the
layers may be manipulated and individual layers may be
moved ‘up’ or ‘down’ in the stack.

[0196] Finally, a set of ‘instantaneous’ gestures is avail-
able to perform high-level manipulation of the system and
its contents. For example, the operator may sweep his hands,
held flat with all fingers and thumb extended and initially
pointing uniformly forward, outward and to the side so that

US 2018/0173313 Al

the right hand is pointing to the right and the left hand is
pointing left [|flll:vx &||l|l:vx]-->[||||:v+&]|||:v+]) in order to
clear and delete the composition accumulated so far. Or
performing a leftward two-handed ‘pushing’ motion that
ends with the hands coplanar with one held above the other,
palms pointing leftward ([|||l:Lx &|[||l:Lx]) moves the for-
ward screen’s contents to the left screen: the gesture triggers
the forward footage to begin smoothly translating leftward,
rotating simultaneously counterclockwise about a vertical
axis, until its center and normal vector coincide with the left
screen’s center and normal. Entire sections of the application
and its component data may thus be rearranged or moved
between display surfaces.

[0197] Note that the film manipulation system described
here includes many further facilities—e.g. a mode in which
elements can be rotoscoped from their containing sequences
literally by hand, the operator’s finger tracing out the rel-
evant silhouettes frame by frame; a means for the time-
alignment (or precise time-offset) of elements on the com-
position table; and so on—but the freespace, proximity, and
touch-based gestural interactions of concern to this disclo-
sure are not further (or uniquely) illuminated through
detailed examination of these modes.

[0198] A third exemplar is that of a portage slate. In this
third exemplar, an interaction of broad utility involves one
or more privileged physical objects called “portage slates”
(or “p-slates”). Portage slate functionality is automatically
available to every appropriately configured application that
is built atop the system described herein. The portage slate
is a physical tray onto which operators may “scrape” graphi-
cal objects and artifacts displayed at a first location, and
from which, following peripatetic transport, the enslated
objects may be transferred into a new application with a new
display context at a second location.

[0199] This third exemplar unfolds with reference to the
first and second exemplars above. The geometry tutorial
operator has just “tapped” an icosahedron, so that a tag
representing it rests near the edge of the table, and has
subsequently set the icosahedron spinning in the manner
described above. She now picks up, with her left hand, a
nearby p-slate. The p-slate is a rigid sheet of matte-colored
plastic measuring roughly twenty by thirty centimeters, and
is actively tracked by the system, typically (though not
necessarily) through the same mechanisms used to track the
operator’s hands.

[0200] The operator brings the p-slate close to the table
edge and orients it so that the one of the p-slate’s edges is
parallel to and nearly touches the table edge. The projection
system that serves the table surface has been arranged so that
its expanding cone of pixels deliberately “overfills” the strict
physical bounds of the table; in fact, the projected pixel field
is large enough to treat the whole of the p-slate when it abuts
the table, as it now does.

[0201] The proximal presence of the p-slate induces the
part of the system with local access to the projection pixels
to instantiate a transient parasitic display (“TPD”) construct.
It is the role of the TPD to manipulate the subset of pixels
that physically land on the p-slate as a separate display; to
compensate for (i.e. invert) any geometric distortion intro-
duced by the non-normal projective incidence of the pixel
subarray on the p-slate; and to provide a virtual rendering
context to the p-slate and to any processes authorized to
draw on it.

Jun. 21, 2018

[0202] It is this rendering context that allows the p-slate to
produce an animated glyph in one of its corners nearest the
table as an indication that it is live and available. A matching
glyph with synchronized animation is produced on the table
near the p-slate’s. The operator understands the glyphic dyad
to show that the two surfaces—one fixed, one mobile—are
now logically connected.

[0203] The operator’s right index finger alights on the
icosahedron’s tag; she slides her finger—and thus, causally,
the tag—around the table’s perimeter and onto the p-slate.
The tag, though now outside the table’s boundary, is this
time not considered to be discarded (as in the interaction
from the first exemplar, in which tags were “thrown on the
floor”); instead, the system now asserts that the tag is
“resident” on the p-slate.

[0204] Indeed, as the operator moves to quit the immedi-
ate vicinity of the polyhedral geometry workstation and set
off across the room, her trajectory brings the p-slate a bit
higher and then forward through the table’s projection cone.
The system’s low-latency tracking enables the changing
position and orientation of the p-slate to update the TPD’s
internal model of the mobile display’s geometry; this model
allows the TPD construct to continue to commandeer pre-
cisely those projector pixels that intersect the moving sur-
face. The p-slate simply goes on rendering its contents in
place, relative to its own rigid geometry and without explicit
reference to (indeed, perhaps computationally oblivious to)
the complex projective relationship evolving between it and
the projector. The operator thus observes that the tag remains
in place on the p-slate where she'd put it; in every cogni-
tively relevant sense, the tag is now on the p-slate.

[0205] When the operator’s forward progress has trans-
lated the p-slate so that its geometry is fully disjunct from
the projection pyramid the system decommissions the TPD
construct and marks its rendering context inert.

[0206] As the operator makes her way toward the other
end of the long room, she passes through other volumes in
which a projector is active. In each case the network-
connected tracking system makes its event stream available
to processes with access to the local projection pixels.
Whenever tracking events show that the p-slate is newly
intersecting a pyramidal projection cone another TPD con-
struct is instantiated. The p-slate is thus able, during its
fleeting passage through the projection volume, to render its
“contents”; in particular, the icosahedron tag is seen to
remain fixed in its position on the p-slate.

[0207] Shortly the operator reaches the rapid prototyping
film workstation of the second exemplar. Here too the
projection parameters have been arranged so that the down-
ward projector’s pixels well overfill the assembly table. As
the operator brings the p-slate close to the worktable, a local
TPD is again instantiated and the tag is revealed once more.
Additionally, the dyad of glyphs again appears—one on the
p-slate and one on the table—to indicate that the two
surfaces are in data-logical contact.

[0208] The operator has positioned the p-slate at the right
side of the table’s rearmost edge (i.e. nearest her body). She
now, holding the p-slate with her left hand, brings her right
hand’s fingers down onto the tag, which brightens to confirm
the contact. She smoothly slides the tag forward, across the
forward edge of the p-slate, and onto the table. When she
raises her fingers from the table, terminating contact with the

US 2018/0173313 Al

tag, it shifts to join the vertical array of rotoscoped elements,
which in turn make slight adjustments to their position to
accommodate the new tag.

[0209] When now the operator taps lightly on the tag she'd
just added to the table it dispenses its ‘payload’: a two-
dimensional projection of an icosahedron, still spinning as
she'd left it, slides rapidly from the tag’s location, growing
in scale as it moves, and takes up a position at the center of
the composition table. The icosahedron now behaves like
any of the other filmic elements used in the composition: the
operator may reposition the icosahedron, change its layer
ordering, and so on.

[0210] A fourth exemplar involves a general interaction
modality that makes particular use of hover-style input. This
fourth exemplar unfolds in the context of a city services
application; here, a large forward screen shows a three-
dimensional view of an urban area, comprising above-
ground structures as well as subterranean features—multiple
interpenetrating layers of electrical, water, gas, sewage, and
subway elements. Freespace gestural navigation allows an
operator to “fly around” the perspective scene on the for-
ward display in the manner described in detail below.
Meanwhile, a projection table immediately before the opera-
tor shows a top-down, orthographic view of the same urban
region. The hover-based interaction described here allows
exploration and selection of the application’s subsurface
structures.

[0211] The operator inclines forward slightly and brings
his left hand, beginning well above a certain midtown
region, down toward the table’s surface. As the hand
descends past a threshold above the table (e.g., approxi-
mately twenty centimeters above the table), the structure
selection mechanism is enabled, and a glowing translucent
disk is graphically overlaid on the maplike view of the city.
A concise visual representation appears for each subsurface
structure that lies within the disk’s radius. Simultaneously,
more detailed three-dimensional depictions of those same
“highlighted” structures appear at correct threespace loca-
tions on the forward perspective view. As the operator
translates his hand laterally, holding it at constant height
above the surface, the disk translates accordingly, always
appearing directly beneath the hand. The collection of
highlighted structures is updated continuously, so that the
moving disk operates as a kind of selection spotlight.
[0212] The interaction subsystem of an embodiment fur-
ther performs a mapping of the tracked hand’s height above
the table surface and the radius of the selection disk; the
mapping is an inverse relationship, so that when the operator
moves his hand closer to the table the disk’s size is reduced.
The maximum radius is chosen to provide a reasonable
“overview” selection as the mode is initially engaged. The
minimum radius, achieved when the operator’s hand is in
direct contact with the table surface, is chosen so as to make
selection of an individual subsurface element more or less
possible. In this way, the two of a single hand’s translational
degrees of freedom parallel to the display surface are
mapped to domain-specific spatial degrees of freedom,
while the third axis is mapped to what is notionally a
“precision” or “specificity” parameter within the applica-
tion.

[0213] Note that in this interaction there is no logical
distinction made between hover and actual physical table
contact (touch)—the system does not ascribe differential
meaning to touch. However, the operator enjoys a specific

Jun. 21, 2018

physical advantage conferred by the possibility of full
contact: the selection disk is at its smallest when the opera-
tor’s finger is touching the table, which means that lateral
hand motion produces the largest possible changes in selec-
tion (largest, that is, relative to disk size); however, the
operator’s finger gains substantial positional stability once in
contact with the surface.

[0214] The operator may of course also drive the appli-
cation bimanually, so that one hand undertakes hover-based
element selection and the other is used to perform six
degree-of-freedom manipulation of the forward perspective
view. Alternately, two operators may cooperate, each using
one hand.

[0215] Finally, the selection may be “locked” by tapping
the table in the vicinity of the luminous disk with the second,
non-disk-manipulating hand. This brief tapping activity
does, in contrast, distinguish touch. With the selection state
thus frozen, the original hand is free to move away from the
table. In summary, then, the mechanism allows for planar
selection of spatially distributed elements with a variable
selection radius.

[0216] Naturally, other interaction maneuvers—to condi-
tion the application so that only electrical and gas fixtures
are selected, for example—surround the core selection activ-
ity in an actual deployment. However, the embodiment is not
so limited.

Spatial Operating Environment (SOE)

[0217] Embodiments of a spatial-continuum input system
are described herein in the context of a Spatial Operating
Environment (SOE). As an example, FIG. 10 is a block
diagram of a Spatial Operating Environment (SOE), under
an embodiment. A user locates his hands 101 and 102 in the
viewing area 150 of an array of cameras 104A-104D. The
cameras detect location, orientation, and movement of the
fingers and hands 101 and 102, as spatial tracking data, and
generate output signals to pre-processor 105. Pre-processor
105 translates the camera output into a gesture signal that is
provided to the computer processing unit 107 of the system.
The computer 107 uses the input information to generate a
command to control one or more on screen cursors and
provides video output to display 103.

[0218] Although the system is shown with a single user’s
hands as input, the SOE 100 may be implemented using
multiple users. In addition, instead of or in addition to hands,
the system may track any part or parts of a user’s body,
including head, feet, legs, arms, elbows, knees, and the like.
[0219] Inthe embodiment shown, four cameras or sensors
are used to detect the location, orientation, and movement of
the user’s hands 101 and 102 in the viewing area 150. It
should be understood that the SOE 100 may include more
(e.g., six cameras, eight cameras, etc.) or fewer (e.g., two
cameras) cameras or sensors without departing from the
scope or spirit of the SOE. In addition, although the cameras
or sensors are disposed symmetrically in the example
embodiment, there is no requirement of such symmetry in
the SOE 100. Any number or positioning of cameras or
sensors that permits the location, orientation, and movement
of the user’s hands may be used in the SOE 100.

[0220] In one embodiment, the cameras used are motion
capture cameras capable of capturing grey-scale images. In
one embodiment, the cameras used are those manufactured
by Vicon, such as the Vicon MX40 camera. This camera
includes on-camera processing and is capable of image

US 2018/0173313 Al

capture at 1000 frames per second. A motion capture camera
is capable of detecting and locating markers.

[0221] In the embodiment described, the cameras are
sensors used for optical detection. In other embodiments, the
cameras or other detectors may be used for electromagnetic,
magnetostatic, RFID, or any other suitable type of detection.
[0222] Pre-processor 105 generates three dimensional
space point reconstruction and skeletal point labeling. The
gesture translator 106 converts the 3D spatial information
and marker motion information into a command language
that can be interpreted by a computer processor to update the
location, shape, and action of a cursor on a display. In an
alternate embodiment of the SOE 100, the pre-processor 105
and gesture translator 106 are integrated or combined into a
single device.

[0223] Computer 107 may be any general purpose com-
puter such as manufactured by Apple, Dell, or any other
suitable manufacturer. The computer 107 runs applications
and provides display output. Cursor information that would
otherwise come from a mouse or other prior art input device
now comes from the gesture system.

Marker Tags

[0224] The SOE or an embodiment contemplates the use
of marker tags on one or more fingers of the user so that the
system can locate the hands of the user, identify whether it
is viewing a left or right hand, and which fingers are visible.
This permits the system to detect the location, orientation,
and movement of the user’s hands. This information allows
a number of gestures to be recognized by the system and
used as commands by the user.

[0225] The marker tags in one embodiment are physical
tags comprising a substrate (appropriate in the present
embodiment for affixing to various locations on a human
hand) and discrete markers arranged on the substrate’s
surface in unique identifying patterns.

[0226] The markers and the associated external sensing
system may operate in any domain (optical, electromagnetic,
magnetostatic, etc.) that allows the accurate, precise, and
rapid and continuous acquisition of their three-space posi-
tion. The markers themselves may operate either actively
(e.g. by emitting structured electromagnetic pulses) or pas-
sively (e.g. by being optically retroreflective, as in the
present embodiment).

[0227] At each frame of acquisition, the detection system
receives the aggregate ‘cloud’ of recovered three-space
locations comprising all markers from tags presently in the
instrumented workspace volume (within the visible range of
the cameras or other detectors). The markers on each tag are
of sufficient multiplicity and are arranged in unique patterns
such that the detection system can perform the following
tasks: (1) segmentation, in which each recovered marker
position is assigned to one and only one subcollection of
points that form a single tag; (2) labelling, in which each
segmented subcollection of points is identified as a particu-
lar tag; (3) location, in which the three-space position of the
identified tag is recovered; and (4) orientation, in which the
three-space orientation of the identified tag is recovered.
Tasks (1) and (2) are made possible through the specific
nature of the marker-patterns, as described below and as
illustrated in one embodiment in FIG. 11.

[0228] The markers on the tags in one embodiment are
affixed at a subset of regular grid locations. This underlying
grid may, as in the present embodiment, be of the traditional

Jun. 21, 2018

Cartesian sort; or may instead be some other regular plane
tessellation (a triangular/hexagonal tiling arrangement, for
example). The scale and spacing of the grid is established
with respect to the known spatial resolution of the marker-
sensing system, so that adjacent grid locations are not likely
to be confused. Selection of marker patterns for all tags
should satisfy the following constraint: no tag’s pattern shall
coincide with that of any other tag’s pattern through any
combination of rotation, translation, or mirroring. The mul-
tiplicity and arrangement of markers may further be chosen
so that loss (or occlusion) of some specified number of
component markers is tolerated: After any arbitrary trans-
formation, it should still be unlikely to confuse the compro-
mised module with any other.

[0229] Referring now to FIG. 11, a number of tags 201 A-
201E (left hand) and 202A-202E (right hand) are shown.
Each tag is rectangular and consists in this embodiment of
a 5x7 grid array. The rectangular shape is chosen as an aid
in determining orientation of the tag and to reduce the
likelihood of mirror duplicates. In the embodiment shown,
there are tags for each finger on each hand. In some
embodiments, it may be adequate to use one, two, three, or
four tags per hand. Each tag has a border of a different
grey-scale or color shade. Within this border is a 3x5 grid
array. Markers (represented by the black dots of FIG. 11) are
disposed at certain points in the grid array to provide
information.

[0230] Qualifying information may be encoded in the
tags’ marker patterns through segmentation of each pattern
into ‘common’ and ‘unique’ subpatterns. For example, the
present embodiment specifies two possible “border patterns’,
distributions of markers about a rectangular boundary. A
‘family’ of tags is thus established—the tags intended for the
left hand might thus all use the same border pattern as shown
in tags 201A-201E while those attached to the right hand’s
fingers could be assigned a different pattern as shown in tags
202A-202E. This subpattern is chosen so that in all orien-
tations of the tags, the left pattern can be distinguished from
the right pattern. In the example illustrated, the left hand
pattern includes a marker in each corner and on marker in a
second from corner grid location. The right hand pattern has
markers in only two corners and two markers in non corner
grid locations. An inspection of the pattern reveals that as
long as any three of the four markers are visible, the left
hand pattern can be positively distinguished from the left
hand pattern. In one embodiment, the color or shade of the
border can also be used as an indicator of handedness.
[0231] Each tag must of course still employ a unique
interior pattern, the markers distributed within its family’s
common border. In the embodiment shown, it has been
found that two markers in the interior grid array are suffi-
cient to uniquely identify each of the ten fingers with no
duplication due to rotation or orientation of the fingers. Even
if one of the markers is occluded, the combination of the
pattern and the handedness of the tag yields a unique
identifier.

[0232] In the present embodiment, the grid locations are
visually present on the rigid substrate as an aid to the
(manual) task of affixing each retroreflective marker at its
intended location. These grids and the intended marker
locations are literally printed via color inkjet printer onto the
substrate, which here is a sheet of (initially) flexible ‘shrink-
film’. Each module is cut from the sheet and then oven-
baked, during which thermal treatment each module under-

US 2018/0173313 Al

goes a precise and repeatable shrinkage. For a brief interval
following this procedure, the cooling tag may be shaped
slightly—to follow the longitudinal curve of a finger, for
example; thereafter, the substrate is suitably rigid, and
markers may be affixed at the indicated grid points.

[0233] In one embodiment, the markers themselves are
three dimensional, such as small reflective spheres affixed to
the substrate via adhesive or some other appropriate means.
The three-dimensionality of the markers can be an aid in
detection and location over two dimensional markers. How-
ever either can be used without departing from the spirit and
scope of the SOE described herein.

[0234] At present, tags are affixed via Velcro or other
appropriate means to a glove worn by the operator or are
alternately affixed directly to the operator’s fingers using a
mild double-stick tape. In a third embodiment, it is possible
to dispense altogether with the rigid substrate and affix—or
‘paint’—individual markers directly onto the operator’s
fingers and hands.

Gesture Vocabulary

[0235] The SOE of an embodiment contemplates a gesture
vocabulary consisting of hand poses, orientation, hand com-
binations, and orientation blends. A notation language is also
implemented for designing and communicating poses and
gestures in the gesture vocabulary of the SOE. The gesture
vocabulary is a system for representing instantaneous ‘pose
states’ of kinematic linkages in compact textual form. The
linkages in question may be biological (a human hand, for
example; or an entire human body; or a grasshopper leg; or
the articulated spine of a lemur) or may instead be nonbio-
logical (e.g. a robotic arm). In any case, the linkage may be
simple (the spine) or branching (the hand). The gesture
vocabulary system of the SOE establishes for any specific
linkage a constant length string; the aggregate of the specific
ASCII characters occupying the string’s ‘character loca-
tions’ is then a unique description of the instantaneous state,
or ‘pose’, of the linkage.

Hand Poses

[0236] FIG. 12 illustrates hand poses in an embodiment of
a gesture vocabulary of the SOE, under an embodiment. The
SOE supposes that each of the five fingers on a hand is used.
These fingers are codes as p-pinkie, r-ring finger, m-middle
finger, i-index finger, and t-thumb. A number of poses for the
fingers and thumbs are defined and illustrated in FIG. 12. A
gesture vocabulary string establishes a single character
position for each expressible degree of freedom in the
linkage (in this case, a finger). Further, each such degree of
freedom is understood to be discretized (or ‘quantized’), so
that its full range of motion can be expressed through
assignment of one of a finite number of standard ASCII
characters at that string position. These degrees of freedom
are expressed with respect to a body-specific origin and
coordinate system (the back of the hand, the center of the
grasshopper’s body; the base of the robotic arm; etc.). A
small number of additional gesture vocabulary character
positions are therefore used to express the position and
orientation of the linkage as a whole' in the more global
coordinate system.

[0237] Still referring to FIG. 12, a number of poses are
defined and identified using ASCII characters. Some of the
poses are divided between thumb and non-thumb. The SOE

Jun. 21, 2018

in this embodiment uses a coding such that the ASCII
character itself is suggestive of the pose. However, any
character may used to represent a pose, whether suggestive
or not. In addition, there is no requirement in the embodi-
ments to use ASCII characters for the notation strings. Any
suitable symbol, numeral, or other representation may be
used without departing from the scope and spirit of the
embodiments. For example, the notation may use two bits
per finger if desired or some other number of bits as desired.
[0238] A curled finger is represented by the character
while a curled thumb by “>". A straight finger or thumb
pointing up is indicated by “1” and at an angle by “\” or /.
“=” represents a thumb pointing straight sideways and “x”
represents a thumb pointing into the plane.

[0239] Using these individual finger and thumb descrip-
tions, a robust number of hand poses can be defined and
written using the scheme of the embodiments. Each pose is
represented by five characters with the order being p-r-m-i-t
as described above. FIG. 12 illustrates a number of poses
and a few are described here by way of illustration and
example. The hand held flat and parallel to the ground is
represented by “11111”. A first is represented by “"~"">". An
“OK” sign is represented by “111">".

[0240] The character strings provide the opportunity for
straightforward ‘human readability’ when using suggestive
characters. The set of possible characters that describe each
degree of freedom may generally be chosen with an eye to
quick recognition and evident analogy. For example, a
vertical bar (‘I’) would likely mean that a linkage element is
‘straight’, an ell (‘L) might mean a ninety-degree bend, and
a circumflex () could indicate a sharp bend. As noted
above, any characters or coding may be used as desired.
[0241] Any system employing gesture vocabulary strings
such as described herein enjoys the benefit of the high
computational efficiency of string comparison—identifica-
tion of or search for any specified pose literally becomes a
‘string compare’ (e.g. UNIX’s ‘stremp()’ function) between
the desired pose string and the instantaneous actual string.
Furthermore, the use of ‘wildcard characters’ provides the
programmer or system designer with additional familiar
efficiency and efficacy: degrees of freedom whose instanta-
neous state is irrelevant for a match may be specified as an
interrogation point (‘?”); additional wildcard meanings may
be assigned.

[

Orientation

[0242] Inaddition to the pose of the fingers and thumb, the
orientation of the hand can represent information. Charac-
ters describing global-space orientations can also be chosen
transparently: the characters ‘<’, >’ “” and ‘v’ may be
used to indicate, when encountered in an orientation char-
acter position, the ideas of left, right, up, and down. FIG. 13
illustrates hand orientation descriptors and examples of
coding that combines pose and orientation. In an embodi-
ment, two character positions specify first the direction of
the palm and then the direction of the fingers (if they were
straight, irrespective of the fingers’ actual bends). The
possible characters for these two positions express a ‘body-
centric’ notion of orientation: ‘=’, ‘4>, ‘x’, *’, *’_ and ‘v’
describe medial, lateral, anterior (forward, away from body),
posterior (backward, away from body), cranial (upward),
and caudal (downward).

[0243] In the notation scheme of an embodiment, the five
finger pose indicating characters are followed by a colon and

US 2018/0173313 Al

then two orientation characters to define a complete com-
mand pose. In one embodiment, a start position is referred
to as an “xyz” pose where the thumb is pointing straight up,
the index finger is pointing forward and the middle finger is
perpendicular to the index finger, pointing to the left when
the pose is made with the right hand. This is represented by
the string “""x1-:-x"".

[0244] <XYZ-hand’is atechnique for exploiting the geom-
etry of the human hand to allow full six-degree-of-freedom
navigation of visually presented three-dimensional struc-
ture. Although the technique depends only on the bulk
translation and rotation of the operator’s hand—so that its
fingers may in principal be held in any pose desired—the
present embodiment prefers a static configuration in which
the index finger points away from the body; the thumb points
toward the ceiling; and the middle finger points left-right.
The three fingers thus describe (roughly, but with clearly
evident intent) the three mutually orthogonal axes of a
three-space coordinate system: thus ‘XYZ-hand’.

[0245] XYZ-hand navigation then proceeds with the hand,
fingers in a pose as described above, held before the opera-
tor’s body at a predetermined ‘neutral location’. Access to
the three translational and three rotational degrees of free-
dom of a three-space object (or camera) is effected in the
following natural way: left-right movement of the hand
(with respect to the body’s natural coordinate system) results
in movement along the computational context’s x-axis;
up-down movement of the hand results in movement along
the controlled context’s y-axis; and forward-back hand
movement (toward/away from the operator’s body) results
in z-axis motion within the context. Similarly, rotation of the
operator’s hand about the index finger leads to a ‘roll’
change of the computational context’s orientation; ‘pitch’
and ‘yaw’ changes are effected analogously, through rotation
of the operator’s hand about the middle finger and thumb,
respectively.

[0246] Note that while ‘computational context’ is used
here to refer to the entity being controlled by the XYZ-hand
method—and seems to suggest either a synthetic three-space
object or camera—it should be understood that the technique
is equally useful for controlling the various degrees of
freedom of real-world objects: the pan/tilt/roll controls of a
video or motion picture camera equipped with appropriate
rotational actuators, for example. Further, the physical
degrees of freedom afforded by the XYZ-hand posture may
be somewhat less literally mapped even in a virtual domain:
In the present embodiment, the XYZ-hand is also used to
provide navigational access to large panoramic display
images, so that left-right and up-down motions of the
operator’s hand lead to the expected left-right or up-down
‘panning’ about the image, but forward-back motion of the
operator’s hand maps to ‘zooming’ control.

[0247] In every case, coupling between the motion of the
hand and the induced computational translation/rotation
may be either direct (i.e. a positional or rotational offset of
the operator’s hand maps one-to-one, via some linear or
nonlinear function, to a positional or rotational offset of the
object or camera in the computational context) or indirect
(i.e. positional or rotational offset of the operator’s hand
maps one-to-one, via some linear or nonlinear function, to a
first or higher-degree derivative of position/orientation in the
computational context; ongoing integration then effects a
non-static change in the computational context’s actual
zero-order position/orientation). This latter means of control

Jun. 21, 2018

is analogous to use of a an automobile’s ‘gas pedal’, in
which a constant offset of the pedal leads, more or less, to
a constant vehicle speed.

[0248] The ‘neutral location’ that serves as the real-world
XYZ-hand’s local six-degree-of-freedom coordinate origin
may be established (1) as an absolute position and orienta-
tion in space (relative, say, to the enclosing room); (2) as a
fixed position and orientation relative to the operator herself
(e.g. eight inches in front of the body, ten inches below the
chin, and laterally in line with the shoulder plane), irrespec-
tive of the overall position and ‘heading’ of the operator; or
(3) interactively, through deliberate secondary action of the
operator (using, for example, a gestural command enacted
by the operator’s ‘other’ hand, said command indicating that
the XYZ-hand’s present position and orientation should
henceforth be used as the translational and rotational origin).
[0249] It is further convenient to provide a ‘detent’ region
(or ‘dead zone’) about the XYZ-hand’s neutral location,
such that movements within this volume do not map to
movements in the controlled context.

[0250] Other poses may included:

[0251] [||li:vx] is a flat hand (thumb parallel to fingers)
with palm facing down and fingers forward.

[0252] [|||i:x"] is a flat hand with palm facing forward and
fingers toward ceiling.

[0253] [||li:-x] is a flat hand with palm facing toward the
center of the body (right if left hand, left if right hand) and
fingers forward.

[0254] [""-:-x] is a single-hand thumbs-up (with thumb
pointing toward ceiling).

[0255] ["1-:-x] is a mime gun pointing forward.

Two Hand Combination

[0256] The SOE of an embodiment contemplates single
hand commands and poses, as well as two-handed com-
mands and poses. FIG. 14 illustrates examples of two hand
combinations and associated notation in an embodiment of
the SOE. Reviewing the notation of the first example, “full
stop” reveals that it comprises two closed fists. The “snap-
shot” example has the thumb and index finger of each hand
extended, thumbs pointing toward each other, defining a
goal post shaped frame. The “rudder and throttle start
position” is fingers and thumbs pointing up palms facing the
screen.

Orientation Blends

[0257] FIG. 15 illustrates an example of an orientation
blend in an embodiment of the SOE. In the example shown
the blend is represented by enclosing pairs of orientation
notations in parentheses after the finger pose string. For
example, the first command shows finger positions of all
pointing straight. The first pair of orientation commands
would result in the palms being flat toward the display and
the second pair has the hands rotating to a 45 degree pitch
toward the screen. Although pairs of blends are shown in this
example, any number of blends is contemplated in the SOE.

Example Commands

[0258] FIG. 17 illustrates a number of possible commands
that may be used with the SOE. Although some of the
discussion here has been about controlling a cursor on a
display, the SOE is not limited to that activity. In fact, the
SOE has great application in manipulating any and all data

US 2018/0173313 Al

and portions of data on a screen, as well as the state of the
display. For example, the commands may be used to take the
place of video controls during play back of video media. The
commands may be used to pause, fast forward, rewind, and
the like. In addition, commands may be implemented to
zoom in or zoom out of an image, to change the orientation
of an image, to pan in any direction, and the like. The SOE
may also be used in lieu of menu commands such as open,
close, save, and the like. In other words, any commands or
activity that can be imagined can be implemented with hand
gestures.

Operation

[0259] FIG. 16 is a flow diagram illustrating the operation
of the SOE in one embodiment. At 701 the detection system
detects the markers and tags. At 702 it is determined if the
tags and markers are detected. If not, the system returns to
701. If the tags and markers are detected at 702, the system
proceeds to 703. At 703 the system identifies the hand,
fingers and pose from the detected tags and markers. At 704
the system identifies the orientation of the pose. At 705 the
system identifies the three dimensional spatial location of
the hand or hands that are detected. (Please note that any or
all of 703, 704, and 705 may be combined).

[0260] At 706 the information is translated to the gesture
notation described above. At 707 it is determined if the pose
is valid. This may be accomplished via a simple string
comparison using the generated notation string. If the pose
is not valid, the system returns to 701. If the pose is valid,
the system sends the notation and position information to the
computer at 708. At 709 the computer determines the
appropriate action to take in response to the gesture and
updates the display accordingly at 710.

[0261] In one embodiment of the SOE, 701-705 are
accomplished by the on-camera processor. In other embodi-
ments, the processing can be accomplished by the system
computer if desired.

Parsing and Translation

[0262] The system is able to “parse” and “translate” a
stream of low-level gestures recovered by an underlying
system, and turn those parsed and translated gestures into a
stream of command or event data that can be used to control
a broad range of computer applications and systems. These
techniques and algorithms may be embodied in a system
consisting of computer code that provides both an engine
implementing these techniques and a platform for building
computer applications that make use of the engine’s capa-
bilities.

[0263] One embodiment is focused on enabling rich ges-
tural use of human hands in computer interfaces, but is also
able to recognize gestures made by other body parts (includ-
ing, but not limited to arms, torso, legs and the head), as well
as non-hand physical tools of various kinds, both static and
articulating, including but not limited to calipers, com-
passes, flexible curve approximators, and pointing devices
of various shapes. The markers and tags may be applied to
items and tools that may be carried and used by the operator
as desired.

[0264] The system described here incorporates a number
of innovations that make it possible to build gestural systems

Jun. 21, 2018

that are rich in the range of gestures that can be recognized
and acted upon, while at the same time providing for easy
integration into applications.

[0265] The gestural parsing and translation system in one
embodiment comprises:

[0266] 1) a compact and efficient way to specify (encode
for use in computer programs) gestures at several different
levels of aggregation:

[0267] a. a single hand’s “pose” (the configuration and
orientation of the parts of the hand relative to one
another) a single hand’s orientation and position in
three-dimensional space.

[0268] b. two-handed combinations, for either hand
taking into account pose, position or both.

[0269] c. multi-person combinations; the system can
track more than two hands, and so more than one
person can cooperatively (or competitively, in the case
of game applications) control the target system.

[0270] d. sequential gestures in which poses are com-
bined in a series; we call these “animating” gestures.

[0271] e. “grapheme” gestures, in which the operator
traces shapes in space.

[0272] 2) a programmatic technique for registering spe-
cific gestures from each category above that are relevant to
a given application context.

[0273] 3) algorithms for parsing the gesture stream so that
registered gestures can be identified and events encapsulat-
ing those gestures can be delivered to relevant application
contexts.

[0274] The specification system (1), with constituent ele-
ments (1a) to (1f), provides the basis for making use of the
gestural parsing and translating capabilities of the system
described here.

[0275] A single-hand “pose” is represented as a string of
[0276] 1) relative orientations between the fingers and the
back of the hand,

[0277] 1ii) quantized into a small number of discrete states.
[0278] Using relative joint orientations allows the system
described here to avoid problems associated with differing
hand sizes and geometries. No “operator calibration” is
required with this system. In addition, specifying poses as a
string or collection of relative orientations allows more
complex gesture specifications to be easily created by com-
bining pose representations with further filters and specifi-
cations.

[0279] Using a small number of discrete states for pose
specification makes it possible to specify poses compactly as
well as to ensure accurate pose recognition using a variety
of underlying tracking technologies (for example, passive
optical tracking using cameras, active optical tracking using
lighted dots and cameras, electromagnetic field tracking,
etc).

[0280] Gestures in every category (la) to (1f) may be
partially (or minimally) specified, so that non-critical data is
ignored. For example, a gesture in which the position of two
fingers is definitive, and other finger positions are unimport-
ant, may be represented by a single specification in which
the operative positions of the two relevant fingers is given
and, within the same string, “wild cards™ or generic “ignore
these” indicators are listed for the other fingers.

[0281] All of the innovations described here for gesture
recognition, including but not limited to the multi-layered
specification technique, use of relative orientations, quanti-
zation of data, and allowance for partial or minimal speci-

US 2018/0173313 Al

fication at every level, generalize beyond specification of
hand gestures to specification of gestures using other body
parts and “manufactured” tools and objects.

[0282] The programmatic techniques for “registering ges-
tures” (2), consist of a defined set of Application Program-
ming Interface calls that allow a programmer to define
which gestures the engine should make available to other
parts of the running system.

[0283] These API routines may be used at application
set-up time, creating a static interface definition that is used
throughout the lifetime of the running application. They may
also be used during the course of the run, allowing the
interface characteristics to change on the fly. This real-time
alteration of the interface makes it possible to,

[0284] 1) build complex contextual and conditional control
states,
[0285] 1ii) to dynamically add hysterisis to the control

environment, and

[0286] 1iii) to create applications in which the user is able
to alter or extend the interface vocabulary of the running
system itself.

[0287] Algorithms for parsing the gesture stream (3) com-
pare gestures specified as in (1) and registered as in (2)
against incoming low-level gesture data. When a match for
a registered gesture is recognized, event data representing
the matched gesture is delivered up the stack to running
applications.

[0288] Efficient real-time matching is desired in the design
of this system, and specified gestures are treated as a tree of
possibilities that are processed as quickly as possible.
[0289] In addition, the primitive comparison operators
used internally to recognize specified gestures are also
exposed for the applications programmer to use, so that
further comparison (flexible state inspection in complex or
compound gestures, for example) can happen even from
within application contexts.

[0290] Recognition “locking” semantics are an innovation
of the system described here. These semantics are implied
by the registration API (2) (and, to a lesser extent, embedded
within the specification vocabulary (1)). Registration API
calls include,

[0291] 1) “entry” state notifiers and “continuation” state
notifiers, and

[0292] 1ii) gesture priority specifiers.

[0293] If a gesture has been recognized, its “continuation”

conditions take precedence over all “entry” conditions for
gestures of the same or lower priorities. This distinction
between entry and continuation states adds significantly to
perceived system usability.

[0294] The system described here includes algorithms for
robust operation in the face of real-world data error and
uncertainty. Data from low-level tracking systems may be
incomplete (for a variety of reasons, including occlusion of
markers in optical tracking, network drop-out or processing
lag, etc).

[0295] Missing data is marked by the parsing system, and
interpolated into either “last known” or “most likely” states,
depending on the amount and context of the missing data.
[0296] If data about a particular gesture component (for
example, the orientation of a particular joint) is missing, but
the “last known” state of that particular component can be
analyzed as physically possible, the system uses this last
known state in its real-time matching.

Jun. 21, 2018

[0297] Conversely, if the last known state is analyzed as
physically impossible, the system falls back to a “best guess
range” for the component, and uses this synthetic data in its
real-time matching.

[0298] The specification and parsing systems described
here have been carefully designed to support “handedness
agnosticism,” so that for multi-hand gestures either hand is
permitted to satisfy pose requirements.

Navigating Data Space

[0299] The SOE of an embodiment enables ‘pushback’, a
linear spatial motion of a human operator’s hand, or perfor-
mance of analogously dimensional activity, to control linear
verging or trucking motion through a graphical or other
data-representational space. The SOE, and the computa-
tional and cognitive association established by it, provides a
fundamental, structured way to navigate levels of scale, to
traverse a principally linear ‘depth dimension’, or—most
generally—to access quantized or ‘detented’ parameter
spaces. The SOE also provides an effective means by which
an operator may volitionally acquire additional context: a
rapid technique for understanding vicinities and neighbor-
hoods, whether spatial, conceptual, or computational.
[0300] In certain embodiments, the pushback technique
may employ traditional input devices (e.g. mouse, trackball,
integrated sliders or knobs) or may depend on tagged or
tracked objects external to the operator’s own person (e.g.
instrumented kinematic linkages, magnetostatically tracked
‘input bricks’). In other alternative embodiments, a push-
back implementation may suffice as the whole of a control
system.

[0301] The SOE of an embodiment is a component of and
integrated into a larger spatial interaction system that sup-
plants customary mouse-based graphical user interface
(‘WIMP’ UI) methods for control of a computer, comprising
instead (a) physical sensors that can track one or more types
of object (e.g., human hands, objects on human hands,
inanimate objects, etc.); (b) an analysis component for
analyzing the evolving position, orientation, and pose of the
sensed hands into a sequence of gestural events; (¢) a
descriptive scheme for representing such spatial and gestural
events; (d) a framework for distributing such events to and
within control programs; (e) methods for synchronizing the
human intent (the commands) encoded by the stream of
gestural events with graphical, aural, and other display-
modal depictions of both the event stream itself and of the
application-specific consequences of event interpretation, all
of which are described in detail below. In such an embodi-
ment, the pushback system is integrated with additional
spatial and gestural input-and-interface techniques.

[0302] Generally, the navigation of a data space comprises
detecting a gesture of a body from gesture data received via
a detector. The gesture data is absolute three-space location
data of an instantaneous state of the body at a point in time
and physical space. The detecting comprises identifying the
gesture using the gesture data. The navigating comprises
translating the gesture to a gesture signal, and navigating
through the data space in response to the gesture signal. The
data space is a data-representational space comprising a
dataset represented in the physical space.

[0303] When an embodiment’s overall round-trip latency
(hand motion to sensors to pose analysis to pushback
interpretation system to computer graphics rendering to
display device back to operator’s visual system) is kept low

US 2018/0173313 Al

(e.g., an embodiment exhibits latency of approximately
fifteen milliseconds) and when other parameters of the
system are properly tuned, the perceptual consequence of
pushback interaction is a distinct sense of physical causality:
the SOE literalizes the physically resonant metaphor of
pushing against a spring-loaded structure. The perceived
causality is a highly effective feedback; along with other
more abstract graphical feedback modalities provided by the
pushback system, and with a deliberate suppression of
certain degrees of freedom in the interpretation of operator
movement, such feedback in turn permits stable, reliable,
and repeatable use of both gross and fine human motor
activity as a control mechanism.

[0304] In evaluating the context of the SOE, many data-
sets are inherently spatial: they represent phenomena,
events, measurements, observations, or structure within a
literal physical space. For other datasets that are more
abstract or that encode literal yet non-spatial information, it
is often desirable to prepare a representation (visual, aural,
or involving other display modalities) some fundamental
aspect of which is controlled by a single, scalar-valued
parameter; associating that parameter with a spatial dimen-
sion is then frequently also beneficial. It is manipulation of
this single scalar parameter, as is detailed below, which
benefits from manipulation by means of the pushback
mechanism.

[0305] Representations may further privilege a small plu-
rality of discrete values of their parameter—indeed, some-
times only one—at which the dataset is optimally regarded.
In such cases it is useful to speak of a ‘detented parameter’
or, if the parameter has been explicitly mapped onto one
dimension of a representational space, of ‘detented space’.
Use of the term ‘detented’ herein is intended to evoke not
only the preferential quantization of the parameter but also
the visuo-haptic sensation of ratchets, magnetic alignment
mechanisms, jog-shuttle wheels, and the wealth of other
worldly devices that are possessed of deliberate mechanical
detents.

[0306] Self-evident yet crucially important examples of
such parameters include but are not limited to (1) the
distance of a synthetic camera, in a computer graphics
environment, from a renderable representation of a dataset;
(2) the density at which data is sampled from the original
dataset and converted into renderable form; (3) the temporal
index at which samples are retrieved from a time-varying
dataset and converted to a renderable representation. These
are universal approaches; countless domain-specific param-
eterizations also exist.

[0307] The pushback of the SOE generally aligns the
dataset’s parameter-control axis with a locally relevant
‘depth dimension’ in physical space, and allows structured
real-world motion along the depth dimension to effect a
data-space translation along the control axis. The result is a
highly efficient means for navigating a parameter space.
Following are detailed descriptions of representative
embodiments of the pushback as implemented in the SOE.
[0308] In a pushback example, an operator stands at a
comfortable distance before a large wall display on which
appears a single ‘data frame’ comprising text and imagery,
which graphical data elements may be static or dynamic.
The data frame, for example, can include an image, but is not
so limited. The data frame, itself a two-dimensional con-
struct, is nonetheless resident in a three-dimensional com-
puter graphics rendering environment whose underlying

Jun. 21, 2018

coordinate system has been arranged to coincide with real-
world coordinates convenient for describing the room and its
contents, including the display and the operator.

[0309] The operator’s hands are tracked by sensors that
resolve the position and orientation of her fingers, and
possibly of the overall hand masses, to high precision and at
a high temporal rate; the system analyzes the resulting
spatial data in order to characterize the ‘pose’ of each
hand—i.e. the geometric disposition of the fingers relative to
each other and to the hand mass. While this example
embodiment tracks an object that is a human hand(s),
numerous other objects could be tracked as input devices in
alternative embodiments. One example is a one-sided push-
back scenario in which the body is an operator’s hand in the
open position, palm facing in a forward direction (along the
z-axis) (e.g., toward a display screen in front of the opera-
tor). For the purposes of this description, the wall display is
taken to occupy the x and y dimensions; z describes the
dimension between the operator and the display. The ges-
tural interaction space associated with this pushback
embodiment comprises two spaces abutted at a plane of
constant z; the detented interval space farther from the
display (i.e. closer to the operator) is termed the ‘dead zone’,
while the closer half-space is the ‘active zone’. The dead
zone extends indefinitely in the backward direction (toward
the operator and away from the display) but only a finite
distance forward, ending at the dead zone threshold. The
active zone extends from the dead zone threshold forward to
the display. The data frame(s) rendered on the display are
interactively controlled or “pushed back™ by movements of
the body in the active zone.

[0310] The data frame is constructed at a size and aspect
ratio precisely matching those of the display, and is posi-
tioned and oriented so that its center and normal vector
coincide with those physical attributes of the display,
although the embodiment is not so limited. The virtual
camera used to render the scene is located directly forward
from the display and at roughly the distance of the operator.
In this context, the rendered frame thus precisely fills the
display.

[0311] Arranged logically to the left and right of the
visible frame are a number of additional coplanar data
frames, uniformly spaced and with a modest gap separating
each from its immediate neighbors. Because they lie outside
the physical/virtual rendering bounds of the computer graph-
ics rendering geometry, these laterally displaced adjacent
data frames are not initially visible. As will be seen, the data
space—given its geometric structure—is possessed of a
single natural detent in the z-direction and a plurality of
x-detents.

[0312] The operator raises her left hand, held in a loose
first pose, to her shoulder. She then extends the fingers so
that they point upward and the thumb so that it points to the
right; her palm faces the screen (in the gestural description
language described in detail below, this pose transition
would be expressed as [""">:x" into ||||-:x"]). The system,
detecting the new pose, triggers pushback interaction and
immediately records the absolute three-space hand position
at which the pose was first entered: this position is used as
the ‘origin’ from which subsequent hand motions will be
reported as relative offsets.

[0313] Immediately, two concentric, partially transparent
glyphs are superimposed on the center of the frame (and thus
at the display’s center). For example, the glyphs can indicate

US 2018/0173313 Al

body pushback gestures in the dead zone up to a point of the
dead zone threshold. That the second glyph is smaller than
the first glyph is an indication that the operator’s hand
resides in the dead zone, through which the pushback
operation is not ‘yet’ engaged. As the operator moves her
hand forward (toward the dead zone threshold and the
display), the second glyph incrementally grows. The second
glyph is equivalent in size to the first glyph at the point at
which the operator’s hand is at the dead zone threshold. The
glyphs of this example describe the evolution of the glyph’s
concentric elements as the operator’s hand travels forward
from its starting position toward the dead zone threshold
separating the dead zone from the active zone. The inner
“toothy” part of the glyph, for example, grows as the hand
nears the threshold, and is arranged so that the radius of the
inner glyph and (static) outer glyph precisely match as the
hand reaches the threshold position.

[0314] The second glyph shrinks in size inside the first
glyph as the operator moves her hand away from the dead
zone threshold and away from the display, remaining how-
ever always concentric with the first glyph and centered on
the display. Crucially, only the z-component of the opera-
tor’s hand motion is mapped into the glyph’s scaling;
incidental x- and y-components of the hand motion make no
contribution.

[0315] When the operator’s hand traverses the forward
threshold of the dead zone, crossing into the active zone, the
pushback mechanism is engaged. The relative z-position of
the hand (measured from the threshold) is subjected to a
scaling function and the resulting value is used to effect a
z-axis displacement of the data frame and its lateral neigh-
bors, so that the rendered image of the frame is seen to
recede from the display; the neighboring data frames also
then become visible, ‘filling in’ from the edges of the display
space—the constant angular subtent of the synthetic camera
geometrically ‘captures’ more of the plane in which the
frames lie as that plane moves away from the camera. The
z-displacement is continuously updated, so that the operator,
pushing her hand toward the display and pulling it back
toward herself, perceives the lateral collection of frames
receding and verging in direct response to her movements
[0316] As an example of a first relative z-axis displace-
ment of the data frame resulting from corresponding push-
back, the rendered image of the data frame is seen to recede
from the display and the neighboring data frames become
visible, ‘filling in’ from the edges of the display space. The
neighboring data frames, which include a number of addi-
tional coplanar data frames, are arranged logically to the left
and right of the visible frame, uniformly spaced and with a
modest gap separating each from its immediate neighbors.
As an example of a second relative z-axis displacement of
the data frame resulting from corresponding pushback, and
considering the first relative z-axis displacement, and
assuming further pushing of the operator’s hand (pushing
further along the z-axis toward the display and away from
the operator) from that pushing resulting in the first relative
z-axis displacement, the rendered image of the frame is seen
to further recede from the display so that additional neigh-
boring data frames become visible, further ‘filling in’ from
the edges of the display space.

[0317] The paired concentric glyphs, meanwhile, now
exhibit a modified feedback: with the operator’s hand in the
active zone, the second glyph switches from scaling-based
reaction to a rotational reaction in which the hand’s physical

Jun. 21, 2018

z-axis offset from the threshold is mapped into a positive
(in-plane) angular offset. In an example of the glyphs
indicating body pushback gestures in the dead zone beyond
the point of the dead zone threshold (along the z-axis toward
the display and away from the operator), the glyphs depict
the evolution of the glyph once the operator’s hand has
crossed the dead zone threshold—i.e. when the pushback
mechanism has been actively engaged. The operator’s hand
movements toward and away from the display are thus
visually indicated by clockwise and anticlockwise rotation
of the second glyph (with the first glyph, as before, provid-
ing a static reference state), such that the “toothy” element
of the glyph rotates as a linear function of the hand’s offset
from the threshold, turning linear motion into a rotational
representation.

[0318] Therefore, in this example, an additional first incre-
ment of hand movement along the z-axis toward the display
is visually indicated by an incremental clockwise rotation of
the second glyph (with the first glyph, as before, providing
a static reference state), such that the “toothy” element of the
glyph rotates a first amount corresponding to a linear func-
tion of the hand’s offset from the threshold. An additional
second increment of hand movement along the z-axis toward
the display is visually indicated by an incremental clockwise
rotation of the second glyph (with the first glyph, as before,
providing a static reference state), such that the “toothy”
element of the glyph rotates a second amount corresponding
to a linear function of the hand’s offset from the threshold.
Further, a third increment of hand movement along the
z-axis toward the display is visually indicated by an incre-
mental clockwise rotation of the second glyph (with the first
glyph, as before, providing a static reference state), such that
the “toothy” element of the glyph rotates a third amount
corresponding to a linear function of the hand’s offset from
the threshold.

[0319] In this sample application, a secondary dimen-
sional sensitivity is engaged when the operator’s hand is in
the active zone: lateral (x-axis) motion of the hand is
mapped, again through a possible scaling function, to x-dis-
placement of the horizontal frame sequence. If the scaling
function is positive, the effect is one of positional ‘follow-
ing” of the operator’s hand, and she perceives that she is
sliding the frames left and right. As an example of a lateral
x-axis displacement of the data frame resulting from lateral
motion of the body, the data frames slide from left to right
such that particular data frames disappear or partially dis-
appear from view via the left edge of the display space while
additional data frames fill in from the right edge of the
display space.

[0320] Finally, when the operator causes her hand to exit
the palm-forward pose (by, e.g., closing the hand into a fist),
the pushback interaction is terminated and the collection of
frames is rapidly returned to its original z-detent (i.e. copla-
nar with the display). Simultaneously, the frame collection is
laterally adjusted to achieve x-coincidence of a single frame
with the display; which frame ends thus ‘display-centered’
is whichever was closest to the concentric glyphs’ center at
the instant of pushback termination: the nearest x-detent.
The glyph structure is here seen serving a second function,
as a selection reticle, but the embodiment is not so limited.
The z- and x-positions of the frame collection are typically
allowed to progress to their final display-coincident values
over a short time interval in order to provide a visual sense
of ‘spring-loaded return’.

US 2018/0173313 Al

[0321] The pushback system as deployed in this example
provides efficient control modalities for (1) acquiring cog-
nitively valuable ‘neighborhood context’ by variably dis-
placing an aggregate dataset along the direct visual sight-
line—the depth dimension—thereby bringing more of the
dataset into view (in exchange for diminishing the angular
subtent of any given part of the dataset); (2) acquiring
neighborhood context by variably displacing the laterally-
arrayed dataset along its natural horizontal dimension, main-
taining the angular subtent of any given section of data but
trading the visibility of old data for that of new data, in the
familiar sense of ‘scrolling’; (3) selecting discretized ele-
ments of the dataset through rapid and dimensionally-
constrained navigation.

[0322] In another example of the pushback of an embodi-
ment, an operator stands immediately next to a waist-level
display device whose active surface lies in a horizontal plane
parallel to the floor. The coordinate system is here estab-
lished in a way consistent with that of the previous example:
the display surface lies in the x-z plane, so that the y-axis,
representing the normal to the surface, is aligned in oppo-
sition to the physical gravity vector.

[0323] In an example physical scenario in which the body
is held horizontally above a table-like display surface, the
body is an operator’s hand, but the embodiment is not so
limited. The pushback interaction is double-sided, so that
there is an upper dead zone threshold and a lower dead zone
threshold. Additionally, the linear space accessed by the
pushback maneuver is provided with discrete spatial detents
(e.g., “1° detent”, “2"¢ detent”, “3"/ detent”, “4” detent”) in
the upper active zone, and discrete spatial detents (e.g., “1**
detent”, “2"¢ detent”, “3"/ detent”, “4” detent”) in the lower
active zone. The interaction space of an embodiment is
configured so that a relatively small dead zone comprising
an upper dead zone and a lower dead zone is centered at the
vertical (y-axis) position at which pushback is engaged, with
an active zone above the dead zone and an active zone below
the dead zone.

[0324] The operator is working with an example dataset
that has been analyzed into a stack of discrete parallel planes
that are the data frames. The dataset may be arranged that
way as a natural consequence of the physical reality it
represents (e.g. discrete slices from a tomographic scan, the
multiple layers of a three-dimensional integrated circuit,
etc.) or because it is logical or informative to separate and
discretize the data (e.g., satellite imagery acquired in a
number of spectral bands, geographically organized census
data with each decade’s data in a separate layer, etc.). The
visual representation of the data may further be static or
include dynamic elements.

[0325] During intervals when pushback functionality is
not engaged, a single layer is considered ‘current’ and is
represented with visual prominence by the display, and is
perceived to be physically coincident with the display.
Layers above and below the current layer are in this example
not visually manifest (although a compact iconography is
used to indicate their presence).

[0326] The operator extends his closed right hand over the
display; when he opens the hand—fingers extended forward,
thumb to the left, and palm pointed downward (transition:
["">wvx into |||-:vx])—the pushback system is engaged.
During a brief interval (e.g., 200 milliseconds), some num-
ber of layers adjacent to the current layer fade up with
differential visibility; each is composited below or above

Jun. 21, 2018

with a blur filter and a transparency whose ‘severities’ are
dependent on the layer’s ordinal distance from the current
layer.

[0327] For example, a layer (e.g., data frame) adjacent to
the current layer (e.g., data frame) fades up with differential
visibility as the pushback system is engaged. In this
example, the stack comprises numerous data frames (any
number as appropriate to datasets of the data frames) that
can be traversed using the pushback system.

[0328] Simultaneously, the concentric feedback glyphs
familiar from the previous example appear; in this case, the
interaction is configured so that a small dead zone is
centered at the vertical (y-axis) position at which pushback
is engaged, with an active zone both above and below the
dead zone. This arrangement provides assistance in ‘regain-
ing’ the original layer. The glyphs are in this case accom-
panied by an additional, simple graphic that indicates
directed proximity to successive layers.

[0329] While the operator’s hand remains in the dead
zone, no displacement of the layer stack occurs. The glyphs
exhibit a ‘preparatory’ behavior identical to that in the
preceding example, with the inner glyph growing as the
hand nears either boundary of the zone (of course, here the
behavior is double-sided and symmetric: the inner glyph is
at a minimum scale at the hand’s starting y-position and
grows toward coincidence with the outer glyph whether the
hand moves up or down).

[0330] As the operator’s hand moves upward past the dead
zone’s upper plane, the inner glyph engages the outer glyph
and, as before, further movement of the hand in that direc-
tion causes anticlockwise rotational motion of the inner
glyph. At the same time, the layer stack begins to ‘translate
upward’: those layers above the originally-current layer take
on greater transparency and blur; the originally-current layer
itself becomes more transparent and more blurred; and the
layers below it move toward more visibility and less blur.
[0331] In another example of upward translation of the
stack, the previously-current layer takes on greater transpar-
ency (becomes invisible in this example), while the layer
adjacent to the previously-current layer becomes visible as
the presently-current layer. Additionally, layer adjacent to
the presently-current layer fades up with differential visibil-
ity as the stack translates upward. As described above, the
stack comprises numerous data frames (any number as
appropriate to datasets of the data frames) that can be
traversed using the pushback system.

[0332] The layer stack is configured with a mapping
between real-world distances (i.e. the displacement of the
operator’s hand from its initial position, as measured in
room coordinates) and the ‘logical’ distance between suc-
cessive layers. The translation of the layer stack is, of course,
the result of this mapping, as is the instantaneous appearance
of the proximity graphic, which meanwhile indicates (at
first) a growing distance between the display plane and the
current layer; it also indicates that the display plane is at
present below the current layer.

[0333] The hand’s motion continues and the layer stack
eventually passes the position at which the current layer and
the next one below exactly straddle (i.e. are equidistant
from) the display plane; just past this point the proximity
graphic changes to indicate that the display plane is now
higher than the current layer: ‘current layer status’ has now
been assigned to the next lower layer. In general, the current
layer is always the one closest to the physical display plane,

US 2018/0173313 Al

and is the one that will be ‘selected” when the operator
disengages the pushback system.

[0334] As the operator continues to raise his hand, each
consecutive layer is brought toward the display plane,
becoming progressively more resolved, gaining momentary
coincidence with the display plane, and then returning
toward transparency and blur in favor of the next lower
layer. When the operator reverses the direction of his hand’s
motion, lowering it, the process is reversed, and the inner
glyph rotates clockwise. As the hand eventually passes
through the dead zone the stack halts with the originally-
current layer in precise y-alignment with the display plane;
and then y-travel of the stack resumes, bringing into suc-
cessive focus those planes above the originally-current layer.
The operator’s overall perception is strongly and simply that
he is using his hand to push down and pull up a stack of
layers.

[0335] When at last the operator releases pushback by
closing his hand (or otherwise changing its pose) the system
‘springs’ the stack into detented y-axis alignment with the
display plane, leaving as the current layer whichever was
closest to the display plane as pushback was exited. During
the brief interval of this positional realignment, all other
layers fade back to complete transparency and the feedback
glyphs smoothly vanish.

[0336] The discretized elements of the dataset (here, lay-
ers) of this example are distributed along the principal
pushback (depth) axis; previously, the elements (data
frames) were coplanar and arrayed laterally, along a dimen-
sion orthogonal to the depth axis. This present arrangement,
along with the deployment of transparency techniques,
means that data is often superimposed—some layers are
viewed through others. The operator in this example never-
theless also enjoys (1) a facility for rapidly gaining neigh-
borhood context (what are the contents of the layers above
and below the current layer?); and (2) a facility for effi-
ciently selecting and switching among parallel, stacked
elements in the dataset. When the operator intends (1) alone,
the provision of a dead zone allows him to return confidently
to the originally selected layer. Throughout the manipula-
tion, the suppression of two translational dimensions enables
speed and accuracy (it is comparatively difficult for most
humans to translate a hand vertically with no lateral drift, but
the modality as described simply ignores any such lateral
displacement).

[0337] It is noted that for certain purposes it may be
convenient to configure the pushback input space so that the
dead zone is of infinitesimal extent; then, as soon as push-
back is engaged, its active mechanisms are also engaged. In
the second example presented herein this would mean that
the originally-current layer is treated no differently—once
the pushback maneuver has begun—from any other. Empiri-
cally, the linear extent of the dead zone is a matter of
operator preference.

[0338] The modalities described in this second example
are pertinent across a wide variety of displays, including
both two-dimensional (whether projected or emissive) and
three-dimensional (whether autostereoscopic or not, aerial-
image-producing or not, etc.) devices. In high-quality imple-
mentations of the latter—i.e. 3D—case, certain characteris-
tics of the medium can vastly aid the perceptual mechanisms
that underlie pushback. For example, a combination of
parallax, optical depth of field, and ocular accommodation
phenomena can allow multiple layers to be apprehended

Jun. 21, 2018

simultaneously, thus eliminating the need to severely fade
and blur (or indeed to exclude altogether) layers distant from
the display plane. The modalities apply, further, irrespective
of the orientation of the display: it may be principally
horizontal, as in the example, or may just as usefully be
mounted at eye-height on a wall.

[0339] An extension to the scenario of this second
example depicts the usefulness of two-handed manipulation.
In certain applications, translating either the entire layer
stack or an individual layer laterally (i.e. in the x and z
directions) is necessary. In an embodiment, the operator’s
other—that is, non-pushback—hand can effect this transfor-
mation, for example through a modality in which bringing
the hand into close proximity to the display surface allows
one of the dataset’s layers to be ‘slid around’, so that its
offset x-z position follows that of the hand.

[0340] Operators may generally find it convenient and
easily tractable to undertake lateral translation and pushback
manipulations simultaneously. It is perhaps not wholly fatu-
ous to propose that the assignment of continuous-domain
manipulations to one hand and discrete-style work to the
other may act to optimize cognitive load.

[0341] Itis informative to consider yet another example of
pushback under the SOE in which there is no natural visual
aspect to the dataset. Representative is the problem of
monitoring a plurality of audio channels and of intermit-
tently selecting one from among the collection. An applica-
tion of the pushback system enables such a task in an
environment outfitted for aural but not visual output; the
modality is remarkably similar to that of the preceding
example.

[0342] An operator, standing or seated, is listening to a
single channel of audio. Conceptually, this audio exists in
the vertical plane—called the ‘aural plane’—that geometri-
cally includes her ears; additional channels of audio are
resident in additional planes parallel to the aural plane but
displaced forward and back, along the z-axis.

[0343] Opening her hand, held nine inches in front of her,
with palm facing forward, she engages the pushback system.
The audio in several proximal planes fades up differentially;
the volume of each depends inversely on its ordinal distance
from the current channel’s plane. In practice, it is percep-
tually unrealistic to allow more than two or four additional
channels to become audible. At the same time, an ‘audio
glyph’ fades up to provide proximity feedback. Initially,
while the operator’s hand is held in the dead zone, the glyph
is a barely audible two-note chord (initially in unison).
[0344] As the operator moves her hand forward or back-
ward through the dead zone, the volumes of the audio
channels remain fixed while that of the glyph increases.
When the hand crosses the front or rear threshold of the dead
zone, the glyph reaches its ‘active’ volume (which is still
subordinate to the current channel’s volume).

[0345] Once the operator’s hand begins moving through
the active zone—in the forward direction, say—the expected
effect on the audio channels obtains: the current channel
plane is pushed farther from the aural plane, and its volume
(and the volumes of those channels still farther forward) is
progressively reduced. The volume of each ‘dorsal’ channel
plane, on the other hand, increases as it nears the aural plane.
[0346] The audio glyph, meanwhile, has switched modes.
The hand’s forward progress is accompanied by the rise in
frequency of one of the tones; at the ‘midway point’, when
the aural plane bisects one audio channel plane and the next,

US 2018/0173313 Al

the tones form an exact fifth (mathematically, it should be a
tritone interval, but there is an abundance of reasons that this
is to be eschewed). The variable tone’s frequency continues
rising as the hand continues farther forward, until eventually
the operator ‘reaches’ the next audio plane, at which point
the tones span precisely an octave.

[0347] Audition of the various channels proceeds, the
operator translating her hand forward and back to access
each in turn. Finally, to select one she merely closes her
hand, concluding the pushback session and causing the
collection of audio planes to ‘spring’ into alignment. The
other (non-selected) channels fade to inaudibility, as does
the glyph.

[0348] This example has illustrated a variant on pushback
application in which the same facilities are again afforded:
access to neighborhood context and rapid selection of dis-
cretized data element (here, an individual audio stream). The
scenario substitutes an aural feedback mechanism, and in
particular one that exploits the reliable human capacity for
discerning certain frequency intervals, to provide the opera-
tor with information about whether she is ‘close enough’ to
a target channel to make a selection. This is particularly
important in the case of voice channels, in which ‘audible’
signals are only intermittently present; the continuous nature
of the audio feedback glyph leaves it present and legible
even when the channel itself has gone silent.

[0349] It is noted that if the SOE in this present example
includes the capacity for spatialized audio, the perception of
successive audio layers receding into the forward distance
and approaching from the back (or vice versa) may be
greatly enhanced. Further, the opportunity to more literally
‘locate’ the selected audio plane at the position of the
operator, with succeeding layers in front of the operator and
preceding layers behind, is usefully exploitable.

[0350] Other instantiations of the audio glyph are possible,
and indeed the nature of the various channels’ contents,
including their spectral distributions, tends to dictate which
kind of glyph will be most clearly discernible. By way of
example, another audio glyph format maintains constant
volume but employs periodic clicking, with the interval
between clicks proportional to the proximity between the
aural plane and the closest audio channel plane. Finally,
under certain circumstances, and depending on the acuity of
the operator, it is possible to use audio pushback with no
feedback glyph at all.

[0351] With reference to the pushback mechanism, as the
number and density of spatial detents in the dataset’s rep-
resentation increases toward the very large, the space and its
parameterization becomes effectively continuous—that is to
say, non-detented. Pushback remains nonetheless effective at
such extremes, in part because the dataset’s ‘initial state’
prior to each invocation of pushback may be treated as a
temporary detent, realized simply as a dead zone.

[0352] An application of such non-detented pushback may
be found in connection with the idea of an infinitely (or at
least substantially) zoomable diagram. Pushback control of
zoom functionality associates offset hand position with
affine scale value, so that as the operator pushes his hand
forward or back the degree of zoom decreases or increases
(respectively). The original, pre-pushback zoom state is
always readily accessible, however, because the direct map-
ping of position to zoom parameter insures that returning the
control hand to the dead zone also effects return of the zoom
value to its initial state.

Jun. 21, 2018

[0353] Each scenario described in the examples above
provides a description of the salient aspects of the pushback
system and its use under the SOE. It should further be
understood that each of the maneuvers described herein can
be accurately and comprehensibly undertaken in a second or
less, because of the efficiency and precision enabled by
allowing a particular kind of perceptual feedback to guide
human movement. At other times, operators also find it
useful to remain in a single continuous pushback ‘session’
for tens of seconds: exploratory and context-acquisition
goals are well served by pushback over longer intervals.

[0354] The examples described above employed a linear
mapping of physical input (gesture) space to representa-
tional space: translating the control hand by A units in real
space always results in a translation by B units [prime] in the
representational space, irrespective of the real-space posi-
tion at which the A-translation is undertaken. However,
other mappings are possible. In particular, the degree of fine
motor control enjoyed by most human operators allows the
use of nonlinear mappings, in which for example differential
gestural translations far from the active threshold can trans-
late into larger displacements along the parameterized
dimension than do gestural translations near the threshold.

Coincident Virtual/Display and Physical Spaces

[0355] The system can provide an environment in which
virtual space depicted on one or more display devices
(“screens”) is treated as coincident with the physical space
inhabited by the operator or operators of the system. An
embodiment of such an environment is described here. This
current embodiment includes three projector-driven screens
at fixed locations, is driven by a single desktop computer,
and is controlled using the gestural vocabulary and interface
system described herein. Note, however, that any number of
screens are supported by the techniques being described;
that those screens may be mobile (rather than fixed); that the
screens may be driven by many independent computers
simultaneously; and that the overall system can be con-
trolled by any input device or technique.

[0356] The interface system described in this disclosure
should have a means of determining the dimensions, orien-
tations and positions of screens in physical space. Given this
information, the system is able to dynamically map the
physical space in which these screens are located (and which
the operators of the system inhabit) as a projection into the
virtual space of computer applications running on the sys-
tem. As part of this automatic mapping, the system also
translates the scale, angles, depth, dimensions and other
spatial characteristics of the two spaces in a variety of ways,
according to the needs of the applications that are hosted by
the system.

[0357] This continuous translation between physical and
virtual space makes possible the consistent and pervasive
use of a number of interface techniques that are difficult to
achieve on existing application platforms or that must be
implemented piece-meal for each application running on
existing platforms. These techniques include (but are not
limited to):

[0358] 1) Use of “literal pointing”—using the hands in a
gestural interface environment, or using physical pointing
tools or devices—as a pervasive and natural interface tech-
nique.

[0359] 2) Automatic compensation for movement or repo-
sitioning of screens.

US 2018/0173313 Al

[0360] 3) Graphics rendering that changes depending on
operator position, for example simulating parallax shifts to
enhance depth perception.

[0361] 4) Inclusion of physical objects in on-screen dis-
play—taking into account real-world position, orientation,
state, etc. For example, an operator standing in front of a
large, opaque screen, could see both applications graphics
and a representation of the true position of a scale model that
is behind the screen (and is, perhaps, moving or changing
orientation).

[0362] It is important to note that literal pointing is dif-
ferent from the abstract pointing used in mouse-based win-
dowing interfaces and most other contemporary systems. In
those systems, the operator must learn to manage a transla-
tion between a virtual pointer and a physical pointing device,
and must map between the two cognitively.

[0363] By contrast, in the systems described in this dis-
closure, there is no difference between virtual and physical
space (except that virtual space is more amenable to math-
ematical manipulation), either from an application or user
perspective, so there is no cognitive translation required of
the operator.

[0364] The closest analogy for the literal pointing pro-
vided by the embodiment described here is the touch-
sensitive screen (as found, for example, on many ATM
machines). A touch-sensitive screen provides a one to one
mapping between the two-dimensional display space on the
screen and the two-dimensional input space of the screen
surface. In an analogous fashion, the systems described here
provide a flexible mapping (possibly, but not necessarily,
one to one) between a virtual space displayed on one or more
screens and the physical space inhabited by the operator.
Despite the usefulness of the analogy, it is worth under-
standing that the extension of this “mapping approach” to
three dimensions, an arbitrarily large architectural environ-
ment, and multiple screens is non-trivial.

[0365] In addition to the components described herein, the
system may also implement algorithms implementing a
continuous, systems-level mapping (perhaps modified by
rotation, translation, scaling or other geometrical transfor-
mations) between the physical space of the environment and
the display space on each screen.

[0366] A rendering stack which takes the computational
objects and the mapping and outputs a graphical represen-
tation of the virtual space.

[0367] An input events processing stack which takes event
data from a control system (in the current embodiment both
gestural and pointing data from the system and mouse input)
and maps spatial data from input events to coordinates in
virtual space. Translated events are then delivered to running
applications.

[0368] A “glue layer” allowing the system to host appli-
cations running across several computers on a local area
network.

[0369] Embodiments of a spatial-continuum input system
are described herein as comprising network-based data
representation, transit, and interchange that includes a sys-
tem called “plasma” that comprises subsystems “slawx”,
“proteins”, and “pools”, as described in detail below. The
pools and proteins are components of methods and systems
described herein for encapsulating data that is to be shared
between or across processes. These mechanisms also
include slawx (plural of “slaw”) in addition to the proteins
and pools. Generally, slawx provide the lowest-level of data

Jun. 21, 2018

definition for inter-process exchange, proteins provide mid-
level structure and hooks for querying and filtering, and
pools provide for high-level organization and access seman-
tics. Slawx include a mechanism for efficient, platform-
independent data representation and access. Proteins provide
a data encapsulation and transport scheme using slawx as the
payload. Pools provide structured and flexible aggregation,
ordering, filtering, and distribution of proteins within a
process, among local processes, across a network between
remote or distributed processes, and via longer term (e.g.
on-disk, etc.) storage.

[0370] The configuration and implementation of the
embodiments described herein include several constructs
that together enable numerous capabilities. For example, the
embodiments described herein provide efficient exchange of
data between large numbers of processes as described above.
The embodiments described herein also provide flexible data
“typing” and structure, so that widely varying kinds and uses
of data are supported. Furthermore, embodiments described
herein include flexible mechanisms for data exchange (e.g.,
local memory, disk, network, etc.), all driven by substan-
tially similar application programming interfaces (APIs).
Moreover, embodiments described enable data exchange
between processes written in different programming lan-
guages. Additionally, embodiments described herein enable
automatic maintenance of data caching and aggregate state.
[0371] FIG. 18 is a block diagram of a processing envi-
ronment including data representations using slawx, pro-
teins, and pools, under an embodiment. The principal con-
structs of the embodiments presented herein include slawx
(plural of “slaw™), proteins, and pools. Slawx as described
herein includes a mechanism for efficient, platform-inde-
pendent data representation and access. Proteins, as
described in detail herein, provide a data encapsulation and
transport scheme, and the payload of a protein of an embodi-
ment includes slawx. Pools, as described herein, provide
structured yet flexible aggregation, ordering, filtering, and
distribution of proteins. The pools provide access to data, by
virtue of proteins, within a process, among local processes,
across a network between remote or distributed processes,
and via ‘longer term’ (e.g. on-disk) storage.

[0372] FIG. 19 is a block diagram of a protein, under an
embodiment. The protein includes a length header, a descrip,
and an ingest. Each of the descrip and ingest includes slaw
or slawx, as described in detail below.

[0373] FIG. 20 is a block diagram of a descrip, under an
embodiment. The descrip includes an offset, a length, and
slawx, as described in detail below.

[0374] FIG. 21 is a block diagram of an ingest, under an
embodiment. The ingest includes an offset, a length, and
slawx, as described in detail below.

[0375] FIG. 22 is a block diagram of a slaw, under an
embodiment. The slaw includes a type header and type-
specific data, as described in detail below.

[0376] FIG. 23Ais a block diagram of a protein in a pool,
under an embodiment. The protein includes a length header
(“protein length™), a descrips offset, an ingests offset, a
descrip, and an ingest. The descrips includes an offset, a
length, and a slaw. The ingest includes an offset, a length,
and a slaw.

[0377] The protein as described herein is a mechanism for
encapsulating data that needs to be shared between pro-
cesses, or moved across a bus or network or other processing
structure. As an example, proteins provide an improved

US 2018/0173313 Al

mechanism for transport and manipulation of data including
data corresponding to or associated with user interface
events; in particular, the user interface events of an embodi-
ment include those of the gestural interface described above.
As a further example, proteins provide an improved mecha-
nism for transport and manipulation of data including, but
not limited to, graphics data or events, and state information,
to name a few. A protein is a structured record format and an
associated set of methods for manipulating records. Manipu-
lation of records as used herein includes putting data into a
structure, taking data out of a structure, and querying the
format and existence of data. Proteins are configured to be
used via code written in a variety of computer languages.
Proteins are also configured to be the basic building block
for pools, as described herein. Furthermore, proteins are
configured to be natively able to move between processors
and across networks while maintaining intact the data they
include.

[0378] In contrast to conventional data transport mecha-
nisms, proteins are untyped. While being untyped, the
proteins provide a powerful and flexible pattern-matching
facility, on top of which “type-like” functionality is imple-
mented. Proteins configured as described herein are also
inherently multi-point (although point-to-point forms are
easily implemented as a subset of multi-point transmission).
Additionally, proteins define a “universal” record format
that does not differ (or differs only in the types of optional
optimizations that are performed) between in-memory, on-
disk, and on-the-wire (network) formats, for example.
[0379] Referring to FIGS. 19 and 23A, a protein of an
embodiment is a linear sequence of bytes. Within these bytes
are encapsulated a descrips list and a set of key-value pairs
called ingests. The descrips list includes an arbitrarily elabo-
rate but efficiently filterable per-protein event description.
The ingests include a set of key-value pairs that comprise the
actual contents of the protein.

[0380] Proteins’ concern with key-value pairs, as well as
some core ideas about network-friendly and multi-point data
interchange, is shared with earlier systems that privilege the
concept of “tuples” (e.g., Linda, Jini). Proteins differ from
tuple-oriented systems in several major ways, including the
use of the descrips list to provide a standard, optimizable
pattern matching substrate. Proteins also differ from tuple-
oriented systems in the rigorous specification of a record
format appropriate for a variety of storage and language
constructs, along with several particular implementations of
“interfaces” to that record format.

[0381] Turning to a description of proteins, the first four or
eight bytes of a protein specify the protein’s length, which
must be a multiple of 16 bytes in an embodiment. This
16-byte granularity ensures that byte-alignment and bus-
alignment efficiencies are achievable on contemporary hard-
ware. A protein that is not naturally “quad-word aligned” is
padded with arbitrary bytes so that its length is a multiple of
16 bytes.

[0382] The length portion of a protein has the following
format: 32 bits specifying length, in big-endian format, with
the four lowest-order bits serving as flags to indicate macro-
level protein structure characteristics; followed by 32 further
bits if the protein’s length is greater than 2732 bytes.
[0383] The 16-byte-alignment proviso of an embodiment
means that the lowest order bits of the first four bytes are
available as flags. And so the first three low-order bit flags
indicate whether the protein’s length can be expressed in the

Jun. 21, 2018

first four bytes or requires eight, whether the protein uses
big-endian or little-endian byte ordering, and whether the
protein employs standard or non-standard structure, respec-
tively, but the protein is not so limited. The fourth flag bit is
reserved for future use.

[0384] If the eight-byte length flag bit is set, the length of
the protein is calculated by reading the next four bytes and
using them as the high-order bytes of a big-endian, eight-
byte integer (with the four bytes already read supplying the
low-order portion). If the little-endian flag is set, all binary
numerical data in the protein is to be interpreted as little-
endian (otherwise, big-endian). If the non-standard flag bit is
set, the remainder of the protein does not conform to the
standard structure to be described below.

[0385] Non-standard protein structures will not be dis-
cussed further herein, except to say that there are various
methods for describing and synchronizing on non-standard
protein formats available to a systems programmer using
proteins and pools, and that these methods can be useful
when space or compute cycles are constrained. For example,
the shortest protein of an embodiment is sixteen bytes. A
standard-format protein cannot fit any actual payload data
into those sixteen bytes (the lion’s share of which is already
relegated to describing the location of the protein’s compo-
nent parts). But a non-standard format protein could con-
ceivably use 12 of its 16 bytes for data. Two applications
exchanging proteins could mutually decide that any 16-byte-
long proteins that they emit always include 12 bytes repre-
senting, for example, 12 8-bit sensor values from a real-time
analog-to-digital converter.

[0386] Immediately following the length header, in the
standard structure of a protein, two more variable-length
integer numbers appear. These numbers specify offsets to,
respectively, the first element in the descrips list and the first
key-value pair (ingest). These offsets are also referred to
herein as the descrips offset and the ingests offset, respec-
tively. The byte order of each quad of these numbers is
specified by the protein endianness flag bit. For each, the
most significant bit of the first four bytes determines whether
the number is four or eight bytes wide. If the most significant
bit (msb) is set, the first four bytes are the most significant
bytes of a double-word (eight byte) number. This is referred
to herein as “offset form™. Use of separate offsets pointing to
descrips and pairs allows descrips and pairs to be handled by
different code paths, making possible particular optimiza-
tions relating to, for example, descrips pattern-matching and
protein assembly. The presence of these two offsets at the
beginning of a protein also allows for several useful opti-
mizations.

[0387] Most proteins will not be so large as to require
eight-byte lengths or pointers, so in general the length (with
flags) and two offset numbers will occupy only the first three
bytes of a protein. On many hardware or system architec-
tures, a fetch or read of a certain number of bytes beyond the
first is “free” (e.g., 16 bytes take exactly the same number
of clock cycles to pull across the Cell processor’s main bus
as a single byte).

[0388] In many instances it is useful to allow implemen-
tation-specific or context-specific caching or metadata inside
a protein. The use of offsets allows for a “hole” of arbitrary
size to be created near the beginning of the protein, into
which such metadata may be slotted. An implementation

US 2018/0173313 Al

that can make use of eight bytes of metadata gets those bytes
for free on many system architectures with every fetch of the
length header for a protein.

[0389] The descrips offset specifies the number of bytes
between the beginning of the protein and the first descrip
entry. Each descrip entry comprises an offset (in offset form,
of course) to the next descrip entry, followed by a variable-
width length field (again in offset format), followed by a
slaw. If there are no further descrips, the offset is, by rule,
four bytes of zeros. Otherwise, the offset specifies the
number of bytes between the beginning of this descrip entry
and a subsequent descrip entry. The length field specifies the
length of the slaw, in bytes.

[0390] In most proteins, each descrip is a string, formatted
in the slaw string fashion: a four-byte length/type header
with the most significant bit set and only the lower 30 bits
used to specify length, followed by the header’s indicated
number of data bytes. As usual, the length header takes its
endianness from the protein. Bytes are assumed to encode
UTF-8 characters (and thus—nota bene—the number of
characters is not necessarily the same as the number of
bytes).

[0391] The ingests offset specifies the number of bytes
between the beginning of the protein and the first ingest
entry. Each ingest entry comprises an offset (in offset form)
to the next ingest entry, followed again by a length field and
a slaw. The ingests offset is functionally identical to the
descrips offset, except that it points to the next ingest entry
rather than to the next descrip entry.

[0392] In most proteins, every ingest is of the slaw cons
type comprising a two-value list, generally used as a key/
value pair. The slaw cons record comprises a four-byte
length/type header with the second most significant bit set
and only the lower 30 bits used to specify length; a four-byte
offset to the start of the value (second) element; the four-byte
length of the key element; the slaw record for the key
element; the four-byte length of the value element; and
finally the slaw record for the value element.

[0393] Generally, the cons key is a slaw string. The
duplication of data across the several protein and slaw cons
length and offsets field provides yet more opportunity for
refinement and optimization.

[0394] The construct used under an embodiment to embed
typed data inside proteins, as described above, is a tagged
byte-sequence specification and abstraction called a “slaw”
(the plural is “slawx™). A slaw is a linear sequence of bytes
representing a piece of (possibly aggregate) typed data, and
is associated with programming-language-specific APIs that
allow slawx to be created, modified and moved around
between memory spaces, storage media, and machines. The
slaw type scheme is intended to be extensible and as
lightweight as possible, and to be a common substrate that
can be used from any programming language.

[0395] The desire to build an efficient, large-scale inter-
process communication mechanism is the driver of the slaw
configuration. Conventional programming languages pro-
vide sophisticated data structures and type facilities that
work well in process-specific memory layouts, but these
data representations invariably break down when data needs
to be moved between processes or stored on disk. The slaw
architecture is, first, a substantially efficient, multi-platform
friendly, low-level data model for inter-process communi-
cation.

Jun. 21, 2018

[0396] Buteven more importantly, slawx are configured to
influence, together with proteins, and enable the develop-
ment of future computing hardware (microprocessors,
memory controllers, disk controllers). A few specific addi-
tions to, say, the instruction sets of commonly available
microprocessors make it possible for slawx to become as
efficient even for single-process, in-memory data layout as
the schema used in most programming languages.

[0397] Each slaw comprises a variable-length type header
followed by a type-specific data layout. In an example
embodiment, which supports full slaw functionality in C,
C++ and Ruby for example, types are indicated by a
universal integer defined in system header files accessible
from each language. More sophisticated and flexible type
resolution functionality is also enabled: for example, indi-
rect typing via universal object IDs and network lookup.
[0398] The slaw configuration of an embodiment allows
slaw records to be used as objects in language-friendly
fashion from both Ruby and C++, for example. A suite of
utilities external to the C++ compiler sanity-check slaw byte
layout, create header files and macros specific to individual
slaw types, and auto-generate bindings for Ruby. As a result,
well-configured slaw types are quite efficient even when
used from within a single process. Any slaw anywhere in a
process’s accessible memory can be addressed without a
copy or “deserialization” step.

[0399] Slaw functionality of an embodiment includes API
facilities to perform one or more of the following: create a
new slaw of a specific type; create or build a language-
specific reference to a slaw from bytes on disk or in memory;
embed data within a slaw in type-specific fashion; query the
size of a slaw; retrieve data from within a slaw; clone a slaw;
and translate the endianness and other format attributes of all
data within a slaw. Every species of slaw implements the
above behaviors.

[0400] FIG. 23B shows a slaw header format, under an
embodiment. A detailed description of the slaw follows.
[0401] The internal structure of each slaw optimizes each
of type resolution, access to encapsulated data, and size
information for that slaw instance. In an embodiment, the
full set of slaw types is by design minimally complete, and
includes: the slaw string; the slaw cons (i.e. dyad); the slaw
list; and the slaw numerical object, which itself represents a
broad set of individual numerical types understood as per-
mutations of a half-dozen or so basic attributes. The other
basic property of any slaw is its size. In an embodiment,
slawx have byte-lengths quantized to multiples of four; these
four-byte words are referred to herein as ‘quads’. In general,
such quad-based sizing aligns slawx well with the configu-
rations of modern computer hardware architectures.

[0402] The first four bytes of every slaw in an embodiment
comprise a header structure that encodes type-description
and other metainformation, and that ascribes specific type
meanings to particular bit patterns. For example, the first
(most significant) bit of a slaw header is used to specify
whether the size (length in quad-words) of that slaw follows
the initial four-byte type header. When this bit is set, it is
understood that the size of the slaw is explicitly recorded in
the next four bytes of the slaw (e.g., bytes five through
eight); if the size of the slaw is such that it cannot be
represented in four bytes (i.e. if the size is or is larger than
two to the thirty-second power) then the next-most-signifi-
cant bit of the slaw’s initial four bytes is also set, which
means that the slaw has an eight-byte (rather than four byte)

US 2018/0173313 Al

length. In that case, an inspecting process will find the slaw’s
length stored in ordinal bytes five through twelve. On the
other hand, the small number of slaw types means that in
many cases a fully specified typal bit-pattern “leaves
unused” many bits in the four byte slaw header; and in such
cases these bits may be employed to encode the slaw’s
length, saving the bytes (five through eight) that would
otherwise be required.

[0403] For example, an embodiment leaves the most sig-
nificant bit of the slaw header (the “length follows” flag)
unset and sets the next bit to indicate that the slaw is a “wee
cons”, and in this case the length of the slaw (in quads) is
encoded in the remaining thirty bits. Similarly, a “wee
string” is marked by the pattern 001 in the header, which
leaves twenty-nine bits for representation of the slaw-
string’s length; and a leading 0001 in the header describes a
“wee list”, which by virtue of the twenty-eight available
length-representing bits can be a slaw list of up to two-to-
the-twenty-eight quads in size. A “full string” (or cons or
list) has a different bit signature in the header, with the most
significant header bit necessarily set because the slaw length
is encoded separately in bytes five through eight (or twelve,
in extreme cases). Note that the Plasma implementation
“decides” at the instant of slaw construction whether to
employ the “wee” or the “full” version of these constructs
(the decision is based on whether the resulting size will “fit”
in the available wee bits or not), but the full-vs.-wee detail
is hidden from the user of the Plasma implementation, who
knows and cares only that she is using a slaw string, or a
slaw cons, or a slaw list.

[0404] Numeric slawx are, in an embodiment, indicated by
the leading header pattern 00001. Subsequent header bits are
used to represent a set of orthogonal properties that may be
combined in arbitrary permutation. An embodiment
employs, but is not limited to, five such character bits to
indicate whether or not the number is: (1) floating point; (2)
complex; (3) unsigned; (4) “wide”; (5) “stumpy” ((4) “wide”
and (5) “stumpy” are permuted to indicate eight, sixteen,
thirty-two, and sixty-four bit number representations). Two
additional bits (e.g., (7) and (8)) indicate that the encapsu-
lated numeric data is a two-, three-, or four-element vector
(with both bits being zero suggesting that the numeric is a
“one-element vector” (i.e. a scalar)). In this embodiment the
eight bits of the fourth header byte are used to encode the
size (in bytes, not quads) of the encapsulated numeric data.
This size encoding is offset by one, so that it can represent
any size between and including one and two hundred
fifty-six bytes. Finally, two character bits (e.g., (9) and (10))
are used to indicate that the numeric data encodes an array
of individual numeric entities, each of which is of the type
described by character bits (1) through (8). In the case of an
array, the individual numeric entities are not each tagged
with additional headers, but are packed as continuous data
following the single header and, possibly, explicit slaw size
information.

[0405] This embodiment affords simple and efficient slaw
duplication (which can be implemented as a byte-for-byte
copy) and extremely straightforward and efficient slaw com-
parison (two slawx are the same in this embodiment if and
only if there is a one-to-one match of each of their compo-
nent bytes considered in sequence). This latter property is
important, for example, to an efficient implementation of the

Jun. 21, 2018

protein architecture, one of whose critical and pervasive
features is the ability to search through or ‘match on’ a
protein’s descrips list.

[0406] Further, the embodiments herein allow aggregate
slaw forms (e.g., the slaw cons and the slaw list) to be
constructed simply and efficiently. For example, an embodi-
ment builds a slaw cons from two component slawx, which
may be of any type, including themselves aggregates, by: (a)
querying each component slaw’s size; (b) allocating
memory of size equal to the sum of the sizes of the two
component slawx and the one, two, or three quads needed
for the header-plus-size structure; (c) recording the slaw
header (plus size information) in the first four, eight, or
twelve bytes; and then (d) copying the component slawx’s
bytes in turn into the immediately succeeding memory.
Significantly, such a construction routine need know nothing
about the types of the two component slawx; only their sizes
(and accessibility as a sequence of bytes) matters. The same
process pertains to the construction of slaw lists, which are
ordered encapsulations of arbitrarily many sub-slawx of
(possibly) heterogeneous type.

[0407] A further consequence of the slaw system’s fun-
damental format as sequential bytes in memory obtains in
connection with “traversal” activities—a recurring use pat-
tern uses, for example, sequential access to the individual
slawx stored in a slaw list. The individual slawx that
represent the descrips and ingests within a protein structure
must similarly be traversed. Such maneuvers are accom-
plished in a stunningly straightforward and efficient manner:
to “get t0” the next slaw in a slaw list, one adds the length
of the current slaw to its location in memory, and the
resulting memory location is identically the header of the
next slaw. Such simplicity is possible because the slaw and
protein design eschews “indirection”; there are no pointers;
rather, the data simply exists, in its totality, in situ.

[0408] To the point of slaw comparison, a complete imple-
mentation of the Plasma system must acknowledge the
existence of differing and incompatible data representation
schemes across and among different operating systems,
CPUs, and hardware architectures. Major such differences
include byte-ordering policies (e.g., little- vs. big-endian-
ness) and floating-point representations; other differences
exist. The Plasma specification requires that the data encap-
sulated by slawx be guaranteed interoperable (i.e., must
appear in the native format of the architecture or platform
from which the slaw is being inspected. This requirement
means in turn that the Plasma system is itself responsible for
data format conversion. However, the specification stipu-
lates only that the conversion take place before a slaw
becomes “at all visible” to an executing process that might
inspect it. It is therefore up to the individual implementation
at which point it chooses to perform such format ¢ conver-
sion; two appropriate approaches are that slaw data payloads
are conformed to the local architecture’s data format (1) as
an individual slaw is “pulled out” of a protein in which it had
been packed, or (2) for all slaw in a protein simultaneously,
as that protein is extracted from the pool in which it was
resident. Note that the conversion stipulation considers the
possibility of hardware-assisted implementations. For
example, networking chipsets built with explicit Plasma
capability may choose to perform format conversion intel-
ligently and at the “instant of transmission”, based on the
known characteristics of the receiving system. Alternately,
the process of transmission may convert data payloads into

US 2018/0173313 Al

a canonical format, with the receiving process symmetri-
cally converting from canonical to “local” format. Another
embodiment performs format conversion “at the metal”,
meaning that data is always stored in canonical format, even
in local memory, and that the memory controller hardware
itself performs the conversion as data is retrieved from
memory and placed in the registers of the proximal CPU.

[0409] A minimal (and read-only) protein implementation
of an embodiment includes operation or behavior in one or
more applications or programming languages making use of
proteins. FIG. 23C is a flow diagram 650 for using proteins,
under an embodiment. Operation begins by querying 652 the
length in bytes of a protein. The number of descrips entries
is queried 654. The number of ingests is queried 656. A
descrip entry is retrieved 658 by index number. An ingest is
retrieved 660 by index number.

[0410] The embodiments described herein also define
basic methods allowing proteins to be constructed and filled
with data, helper-methods that make common tasks easier
for programmers, and hooks for creating optimizations. FIG.
23D is a flow diagram 670 for constructing or generating
proteins, under an embodiment. Operation begins with cre-
ation 672 of a new protein. A series of descrips entries are
appended 674. An ingest is also appended 676. The presence
of' a matching descrip is queried 678, and the presence of a
matching ingest key is queried 680. Given an ingest key, an
ingest value is retrieved 682. Pattern matching is performed
684 across descrips. Non-structured metadata is embedded
686 near the beginning of the protein.

[0411] As described above, slawx provide the lowest-level
of data definition for inter-process exchange, proteins pro-
vide mid-level structure and hooks for querying and filter-
ing, and pools provide for high-level organization and access
semantics. The pool is a repository for proteins, providing
linear sequencing and state caching. The pool also provides
multi-process access by multiple programs or applications of
numerous different types. Moreover, the pool provides a set
of common, optimizable filtering and pattern-matching
behaviors.

[0412] The pools of an embodiment, which can accom-
modate tens of thousands of proteins, function to maintain
state, so that individual processes can offload much of the
tedious bookkeeping common to multi-process program
code. A pool maintains or keeps a large buffer of past
proteins available—the Platonic pool is explicitly infinite—
so that participating processes can scan both backwards and
forwards in a pool at will. The size of the buffer is imple-
mentation dependent, of course, but in common usage it is
often possible to keep proteins in a pool for hours or days.

[0413] The most common style of pool usage as described
herein hews to a biological metaphor, in contrast to the
mechanistic, point-to-point approach taken by existing inter-
process communication frameworks. The name protein
alludes to biological inspiration: data proteins in pools are
available for flexible querying and pattern matching by a
large number of computational processes, as chemical pro-
teins in a living organism are available for pattern matching
and filtering by large numbers of cellular agents.

[0414] Two additional abstractions lean on the biological
metaphor, including use of “handlers”, and the Golgi frame-
work. A process that participates in a pool generally creates
a number of handlers. Handlers are relatively small bundles
of code that associate match conditions with handle behav-

Jun. 21, 2018

iors. By tying one or more handlers to a pool, a process sets
up flexible call-back triggers that encapsulate state and react
to new proteins.

[0415] A process that participates in several pools gener-
ally inherits from an abstract Golgi class. The Golgi frame-
work provides a number of useful routines for managing
multiple pools and handlers. The Golgi class also encapsu-
lates parent-child relationships, providing a mechanism for
local protein exchange that does not use a pool.

[0416] A pools API provided under an embodiment is
configured to allow pools to be implemented in a variety of
ways, in order to account both for system-specific goals and
for the available capabilities of given hardware and network
architectures. The two fundamental system provisions upon
which pools depend are a storage facility and a means of
inter-process communication. The extant systems described
herein use a flexible combination of shared memory, virtual
memory, and disk for the storage facility, and IPC queues
and TCP/IP sockets for inter-process communication.
[0417] Pool functionality of an embodiment includes, but
is not limited to, the following: participating in a pool;
placing a protein in a pool; retrieving the next unseen protein
from a pool; rewinding or fast-forwarding through the
contents (e.g., proteins) within a pool. Additionally, pool
functionality can include, but is not limited to, the following:
setting up a streaming pool call-back for a process; selec-
tively retrieving proteins that match particular patterns of
descrips or ingests keys; scanning backward and forwards
for proteins that match particular patterns of descrips or
ingests keys.

[0418] The proteins described above are provided to pools
as a way of sharing the protein data contents with other
applications. FIG. 24 is a block diagram of a processing
environment including data exchange using slawx, proteins,
and pools, under an embodiment. This example environment
includes three devices (e.g., Device X, Device Y, and Device
Z, collectively referred to herein as the “devices™) sharing
data through the use of slawx, proteins and pools as
described above. Each of the devices is coupled to the three
pools (e.g., Pool 1, Pool 2, Pool 3). Pool 1 includes numer-
ous proteins (e.g., Protein X1, Protein Z2, Protein Y2,
Protein X4, Protein Y4) contributed or transferred to the
pool from the respective devices (e.g., protein 72 is trans-
ferred or contributed to pool 1 by device Z, etc.). Pool 2
includes numerous proteins (e.g., Protein Z4, Protein Y3,
Protein 71, Protein X3) contributed or transferred to the pool
from the respective devices (e.g., protein Y3 is transferred or
contributed to pool 2 by device Y, etc.). Pool 3 includes
numerous proteins (e.g., Protein Y1, Protein Z3, Protein X2)
contributed or transferred to the pool from the respective
devices (e.g., protein X2 is transferred or contributed to pool
3 by device X, etc.). While the example described above
includes three devices coupled or connected among three
pools, any number of devices can be coupled or connected
in any manner or combination among any number of pools,
and any pool can include any number of proteins contributed
from any number or combination of devices. The proteins
and pools of this example are as described above with
reference to FIGS. 18-23.

[0419] FIG. 25 is a block diagram of a processing envi-
ronment including multiple devices and numerous programs
running on one or more of the devices in which the Plasma
constructs (e.g., pools, proteins, and slaw) are used to allow
the numerous running programs to share and collectively

US 2018/0173313 Al

respond to the events generated by the devices, under an
embodiment. This system is but one example of a multi-user,
multi-device, multi-computer interactive control scenario or
configuration. More particularly, in this example, an inter-
active system, comprising multiple devices (e.g., device A,
B, etc.) and a number of programs (e.g., apps AA-AX, apps
BA-BX, etc.) running on the devices uses the Plasma
constructs (e.g., pools, proteins, and slaw) to allow the
running programs to share and collectively respond to the
events generated by these input devices.

[0420] In this example, each device (e.g., device A, B,
etc.) translates discrete raw data generated by or output from
the programs (e.g., apps AA-AX, apps BA-BX, etc.) running
on that respective device into Plasma proteins and deposits
those proteins into a Plasma pool. For example, program AX
generates data or output and provides the output to device A
which, in turn, translates the raw data into proteins (e.g.,
protein 1A, protein 2A, etc.) and deposits those proteins into
the pool. As another example, program BC generates data
and provides the data to device B which, in turn, translates
the data into proteins (e.g., protein 1B, protein 2B, etc.) and
deposits those proteins into the pool.

[0421] Each protein contains a descrip list that specifies
the data or output registered by the application as well as
identifying information for the program itself. Where pos-
sible, the protein descrips may also ascribe a general seman-
tic meaning for the output event or action. The protein’s data
payload (e.g., ingests) carries the full set of useful state
information for the program event.

[0422] The proteins, as described above, are available in
the pool for use by any program or device coupled or
connected to the pool, regardless of type of the program or
device. Consequently, any number of programs running on
any number of computers may extract event proteins from
the input pool. These devices need only be able to participate
in the pool via either the local memory bus or a network
connection in order to extract proteins from the pool. An
immediate consequence of this is the beneficial possibility of
decoupling processes that are responsible for generating
processing events from those that use or interpret the events.
Another consequence is the multiplexing of sources and
consumers of events so that devices may be controlled by
one person or may be used simultaneously by several people
(e.g., a Plasma-based input framework supports many con-
current users), while the resulting event streams are in turn
visible to multiple event consumers.

[0423] As an example, device C can extract one or more
proteins (e.g., protein 1A, protein 2A, etc.) from the pool.
Following protein extraction, device C can use the data of
the protein, retrieved or read from the slaw of the descrips
and ingests of the protein, in processing events to which the
protein data corresponds. As another example, device B can
extract one or more proteins (e.g., protein 1C, protein 2A,
etc.) from the pool. Following protein extraction, device B
can use the data of the protein in processing events to which
the protein data corresponds.

[0424] Devices and/or programs coupled or connected to
apool may skim backwards and forwards in the pool looking
for particular sequences of proteins. It is often useful, for
example, to set up a program to wait for the appearance of
a protein matching a certain pattern, then skim backwards to
determine whether this protein has appeared in conjunction
with certain others. This facility for making use of the stored
event history in the input pool often makes writing state

Jun. 21, 2018

management code unnecessary, or at least significantly
reduces reliance on such undesirable coding patterns.

[0425] FIG. 26 is a block diagram of a processing envi-
ronment including multiple devices and numerous programs
running on one or more of the devices in which the Plasma
constructs (e.g., pools, proteins, and slaw) are used to allow
the numerous running programs to share and collectively
respond to the events generated by the devices, under an
alternative embodiment. This system is but one example of
a multi-user, multi-device, multi-computer interactive con-
trol scenario or configuration. More particularly, in this
example, an interactive system, comprising multiple devices
(e.g., devices X and Y coupled to devices A and B, respec-
tively) and a number of programs (e.g., apps AA-AX, apps
BA-BX, etc.) running on one or more computers (e.g.,
device A, device B, etc.) uses the Plasma constructs (e.g.,
pools, proteins, and slaw) to allow the running programs to
share and collectively respond to the events generated by
these input devices.

[0426] In this example, each device (e.g., devices X and Y
coupled to devices A and B, respectively) is managed and/or
coupled to run under or in association with one or more
programs hosted on the respective device (e.g., device A,
device B, etc.) which translates the discrete raw data gen-
erated by the device (e.g., device X, device A, device Y,
device B, etc.) hardware into Plasma proteins and deposits
those proteins into a Plasma pool. For example, device X
running in association with application AB hosted on device
A generates raw data, translates the discrete raw data into
proteins (e.g., protein 1A, protein 2A, etc.) and deposits
those proteins into the pool. As another example, device X
running in association with application AT hosted on device
A generates raw data, translates the discrete raw data into
proteins (e.g., protein 1A, protein 2A, etc.) and deposits
those proteins into the pool. As yet another example, device
Z running in association with application CD hosted on
device C generates raw data, translates the discrete raw data
into proteins (e.g., protein 1C, protein 2C, etc.) and deposits
those proteins into the pool.

[0427] Each protein contains a descrip list that specifies
the action registered by the input device as well as identi-
fying information for the device itself. Where possible, the
protein descrips may also ascribe a general semantic mean-
ing for the device action. The protein’s data payload (e.g.,
ingests) carries the full set of useful state information for the
device event.

[0428] The proteins, as described above, are available in
the pool for use by any program or device coupled or
connected to the pool, regardless of type of the program or
device. Consequently, any number of programs running on
any number of computers may extract event proteins from
the input pool. These devices need only be able to participate
in the pool via either the local memory bus or a network
connection in order to extract proteins from the pool. An
immediate consequence of this is the beneficial possibility of
decoupling processes that are responsible for generating
processing events from those that use or interpret the events.
Another consequence is the multiplexing of sources and
consumers of events so that input devices may be controlled
by one person or may be used simultaneously by several
people (e.g., a Plasma-based input framework supports
many concurrent users), while the resulting event streams
are in turn visible to multiple event consumers.

US 2018/0173313 Al

[0429] Devices and/or programs coupled or connected to
apool may skim backwards and forwards in the pool looking
for particular sequences of proteins. It is often useful, for
example, to set up a program to wait for the appearance of
a protein matching a certain pattern, then skim backwards to
determine whether this protein has appeared in conjunction
with certain others. This facility for making use of the stored
event history in the input pool often makes writing state
management code unnecessary, or at least significantly
reduces reliance on such undesirable coding patterns.
[0430] FIG. 27 is a block diagram of a processing envi-
ronment including multiple input devices coupled among
numerous programs running on one or more of the devices
in which the Plasma constructs (e.g., pools, proteins, and
slaw) are used to allow the numerous running programs to
share and collectively respond to the events generated by the
input devices, under another alternative embodiment. This
system is but one example of a multi-user, multi-device,
multi-computer interactive control scenario or configura-
tion. More particularly, in this example, an interactive sys-
tem, comprising multiple input devices (e.g., input devices
A, B, BA, and BB, etc.) and a number of programs (not
shown) running on one or more computers (e.g., device A,
device B, etc.) uses the Plasma constructs (e.g., pools,
proteins, and slaw) to allow the running programs to share
and collectively respond to the events generated by these
input devices.

[0431] In this example, each input device (e.g., input
devices A, B, BA, and BB, etc.) is managed by a software
driver program hosted on the respective device (e.g., device
A, device B, etc.) which translates the discrete raw data
generated by the input device hardware into Plasma proteins
and deposits those proteins into a Plasma pool. For example,
input device A generates raw data and provides the raw data
to device A which, in turn, translates the discrete raw data
into proteins (e.g., protein 1A, protein 2A, etc.) and deposits
those proteins into the pool. As another example, input
device BB generates raw data and provides the raw data to
device B which, in turn, translates the discrete raw data into
proteins (e.g., protein 1B, protein 3B, etc.) and deposits
those proteins into the pool.

[0432] Each protein contains a descrip list that specifies
the action registered by the input device as well as identi-
fying information for the device itself. Where possible, the
protein descrips may also ascribe a general semantic mean-
ing for the device action. The protein’s data payload (e.g.,
ingests) carries the full set of useful state information for the
device event.

[0433] To illustrate, here are example proteins for two
typical events in such a system. Proteins are represented here
as text however, in an actual implementation, the constituent
parts of these proteins are typed data bundles (e.g., slaw).
The protein describing a g-speak “one finger click™ pose
(described in the Related Applications) is as follows:

[0434] [Descrips: {point, engage, one, one-finger-engage,
hand,
[0435] pilot-id-02, hand-id-23}
[0436] Ingests: {pilot-id=>02,
[0437] hand-id=>23,
[0438] pos=>[0.0, 0.0, 0.0]
[0439] angle-axis=>[0.0, 0.0, 0.0, 0.707]
[0440] gripe=> ... |:vx
[0441] time=>184437103.29}]

Jun. 21, 2018

As a further example, the protein describing a mouse click

is as follows:

[0442] [Descrips: {point, click, one, mouse-click, button-

one,
[0443]
[0444]

mouse-id-02}
Ingests: {mouse-id=>23,

[0445] pos=>[0.0, 0.0, 0.0]

[0446] time=>184437124.80}]
[0447] Either or both of the sample proteins foregoing
might cause a participating program of a host device to run
a particular portion of its code. These programs may be
interested in the general semantic labels: the most general of
all, “point”, or the more specific pair, “engage, one”. Or they
may be looking for events that would plausibly be generated
only by a precise device: “one-finger-engage”, or even a
single aggregate object, “hand-id-23".
[0448] The proteins, as described above, are available in
the pool for use by any program or device coupled or
connected to the pool, regardless of type of the program or
device. Consequently, any number of programs running on
any number of computers may extract event proteins from
the input pool. These devices need only be able to participate
in the pool via either the local memory bus or a network
connection in order to extract proteins from the pool. An
immediate consequence of this is the beneficial possibility of
decoupling processes that are responsible for generating
‘input events’ from those that use or interpret the events.
Another consequence is the multiplexing of sources and
consumers of events so that input devices may be controlled
by one person or may be used simultaneously by several
people (e.g., a Plasma-based input framework supports
many concurrent users), while the resulting event streams
are in turn visible to multiple event consumers.
[0449] As an example or protein use, device C can extract
one or more proteins (e.g., protein 1B, etc.) from the pool.
Following protein extraction, device C can use the data of
the protein, retrieved or read from the slaw of the descrips
and ingests of the protein, in processing input events of input
devices CA and CC to which the protein data corresponds.
As another example, device A can extract one or more
proteins (e.g., protein 1B, etc.) from the pool. Following
protein extraction, device A can use the data of the protein
in processing input events of input device A to which the
protein data corresponds.
[0450] Devices and/or programs coupled or connected to
apool may skim backwards and forwards in the pool looking
for particular sequences of proteins. It is often useful, for
example, to set up a program to wait for the appearance of
a protein matching a certain pattern, then skim backwards to
determine whether this protein has appeared in conjunction
with certain others. This facility for making use of the stored
event history in the input pool often makes writing state
management code unnecessary, or at least significantly
reduces reliance on such undesirable coding patterns.
[0451] Examples of input devices that are used in the
embodiments of the system described herein include ges-
tural input sensors, keyboards, mice, infrared remote con-
trols such as those used in consumer electronics, and task-
oriented tangible media objects, to name a few.
[0452] FIG. 28 is a block diagram of a processing envi-
ronment including multiple devices coupled among numer-
ous programs running on one or more of the devices in
which the Plasma constructs (e.g., pools, proteins, and slaw)
are used to allow the numerous running programs to share

US 2018/0173313 Al

and collectively respond to the graphics events generated by
the devices, under yet another alternative embodiment. This
system is but one example of a system comprising multiple
running programs (e.g. graphics A-E) and one or more
display devices (not shown), in which the graphical output
of some or all of the programs is made available to other
programs in a coordinated manner using the Plasma con-
structs (e.g., pools, proteins, and slaw) to allow the running
programs to share and collectively respond to the graphics
events generated by the devices.

[0453] It is often useful for a computer program to display
graphics generated by another program. Several common
examples include video conferencing applications, network-
based slideshow and demo programs, and window manag-
ers. Under this configuration, the pool is used as a Plasma
library to implement a generalized framework which encap-
sulates video, network application sharing, and window
management, and allows programmers to add in a number of
features not commonly available in current versions of such
programs.

[0454] Programs (e.g., graphics A-E) running in the
Plasma compositing environment participate in a coordina-
tion pool through couplings and/or connections to the pool.
Each program may deposit proteins in that pool to indicate
the availability of graphical sources of various kinds. Pro-
grams that are available to display graphics also deposit
proteins to indicate their displays’ capabilities, security and
user profiles, and physical and network locations.

[0455] Graphics data also may be transmitted through
pools, or display programs may be pointed to network
resources of other kinds (RTSP streams, for example). The
phrase “graphics data” as used herein refers to a variety of
different representations that lie along a broad continuum;
examples of graphics data include but are not limited to
literal examples (e.g., an ‘image’, or block of pixels),
procedural examples (e.g., a sequence of ‘drawing’ direc-
tives, such as those that flow down a typical openGL
pipeline), and descriptive examples (e.g., instructions that
combine other graphical constructs by way of geometric
transformation, clipping, and compositing operations).
[0456] On alocal machine graphics data may be delivered
through platform-specific display driver optimizations. Even
when graphics are not transmitted via pools, often a periodic
screen-capture will be stored in the coordination pool so that
clients without direct access to the more esoteric sources
may still display fall-back graphics.

[0457] One advantage of the system described here is that
unlike most message passing frameworks and network pro-
tocols, pools maintain a significant buffer of data. So pro-
grams can rewind backwards into a pool looking at access
and usage patterns (in the case of the coordination pool) or
extracting previous graphics frames (in the case of graphics
pools).

[0458] FIG. 29 is a block diagram of a processing envi-
ronment including multiple devices coupled among numer-
ous programs running on one or more of the devices in
which the Plasma constructs (e.g., pools, proteins, and slaw)
are used to allow stateful inspection, visualization, and
debugging of the running programs, under still another
alternative embodiment. This system is but one example of
a system comprising multiple running programs (e.g. pro-
gram P-A, program P-B, etc.) on multiple devices (e.g.,
device A, device B, etc.) in which some programs access the
internal state of other programs using or via pools.

Jun. 21, 2018

[0459] Most interactive computer systems comprise many
programs running alongside one another, either on a single
machine or on multiple machines and interacting across a
network. Multi-program systems can be difficult to config-
ure, analyze and debug because run-time data is hidden
inside each process and difficult to access. The generalized
framework and Plasma constructs of an embodiment
described herein allow running programs to make much of
their data available via pools so that other programs may
inspect their state. This framework enables debugging tools
that are more flexible than conventional debuggers, sophis-
ticated system maintenance tools, and visualization har-
nesses configured to allow human operators to analyze in
detail the sequence of states that a program or programs has
passed through.

[0460] Referring to FIG. 29, a program (e.g., program
P-A, program P-B, etc.) running in this framework generates
or creates a process pool upon program start up. This pool
is registered in the system almanac, and security and access
controls are applied. More particularly, each device (e.g.,
device A, B, etc.) translates discrete raw data generated by
or output from the programs (e.g., program P-A, program
P-B, etc.) running on that respective device into Plasma
proteins and deposits those proteins into a Plasma pool. For
example, program P-A generates data or output and provides
the output to device A which, in turn, translates the raw data
into proteins (e.g., protein 1A, protein 2A, protein 3 A, etc.)
and deposits those proteins into the pool. As another
example, program P-B generates data and provides the data
to device B which, in turn, translates the data into proteins
(e.g., proteins 1B-4B, etc.) and deposits those proteins into
the pool.

[0461] For the duration of the program’s lifetime, other
programs with sufficient access permissions may attach to
the pool and read the proteins that the program deposits; this
represents the basic inspection modality, and is a conceptu-
ally “one-way” or “read-only” proposition: entities inter-
ested in a program P-A inspect the flow of status information
deposited by P-A in its process pool. For example, an
inspection program or application running under device C
can extract one or more proteins (e.g., protein 1A, protein
2A, etc.) from the pool. Following protein extraction, device
C can use the data of the protein, retrieved or read from the
slaw of the descrips and ingests of the protein, to access,
interpret and inspect the internal state of program P-A.
[0462] But, recalling that the Plasma system is not only an
efficient stateful transmission scheme but also an omnidi-
rectional messaging environment, several additional modes
support program-to-program state inspection. An authorized
inspection program may itself deposit proteins into program
P’s process pool to influence or control the characteristics of
state information produced and placed in that process pool
(which, after all, program P not only writes into but reads
from).

[0463] FIG. 30 is a block diagram of a processing envi-
ronment including multiple devices coupled among numer-
ous programs running on one or more of the devices in
which the Plasma constructs (e.g., pools, proteins, and slaw)
are used to allow influence or control the characteristics of
state information produced and placed in that process pool,
under an additional alternative embodiment. In this system
example, the inspection program of device C can for
example request that programs (e.g., program P-A, program
P-B, etc.) dump more state than normal into the pool, either

US 2018/0173313 Al

for a single instant or for a particular duration. Or, prefig-
uring the next ‘level’ of debug communication, an interested
program can request that programs (e.g., program P-A,
program P-B; etc.) emit a protein listing the objects extant in
its runtime environment that are individually capable of and
available for interaction via the debug pool. Thus informed,
the interested program can ‘address’ individuals among the
objects in the programs runtime, placing proteins in the
process pool that a particular object alone will take up and
respond to. The interested program might, for example,
request that an object emit a report protein describing the
instantaneous values of all its component variables. Even
more significantly, the interested program can, via other
proteins, direct an object to change its behavior or its
variables’ values.

[0464] More specifically, in this example, inspection
application of device C places into the pool a request (in the
form of a protein) for an object list (e.g., “Request-Object
List”) that is then extracted by each device (e.g., device A,
device B, etc.) coupled to the pool. In response to the
request, each device (e.g., device A, device B, etc.) places
into the pool a protein (e.g., protein 1A, protein 1B, etc.)
listing the objects extant in its runtime environment that are
individually capable of and available for interaction via the
debug pool.

[0465] Thus informed via the listing from the devices, and
in response to the listing of the objects, the inspection
application of device C addresses individuals among the
objects in the programs runtime, placing proteins in the
process pool that a particular object alone will take up and
respond to. The inspection application of device C can, for
example, place a request protein (e.g., protein “Request
Report P-A-O”, “Request Report P-B-0”) in the pool that an
object (e.g., object P-A-O, object P-B-O, respectively) emit
areport protein (e.g., protein 2A, protein 2B, etc.) describing
the instantaneous values of all its component variables. Each
object (e.g., object P-A-O, object P-B-O) extracts its request
(e.g., protein “Request Report P-A-O”, “Request Report
P-B-O”, respectively) and, in response, places a protein into
the pool that includes the requested report (e.g., protein 2A,
protein 2B, respectively). Device C then extracts the various
report proteins (e.g., protein 2A, protein 2B, etc.) and takes
subsequent processing action as appropriate to the contents
of the reports.

[0466] In this way, use of Plasma as an interchange
medium tends ultimately to erode the distinction between
debugging, process control, and program-to-program com-
munication and coordination.

[0467] To that last, the generalized Plasma framework
allows visualization and analysis programs to be designed in
a loosely-coupled fashion. A visualization tool that displays
memory access patterns, for example, might be used in
conjunction with any program that outputs its basic memory
reads and writes to a pool. The programs undergoing analy-
sis need not know of the existence or design of the visual-
ization tool, and vice versa.

[0468] The use of pools in the manners described above
does not unduly affect system performance. For example,
embodiments have allowed for depositing of several hun-
dred thousand proteins per second in a pool, so that enabling
even relatively verbose data output does not noticeably
inhibit the responsiveness or interactive character of most
programs.

Jun. 21, 2018

[0469] Embodiments described herein include a method
comprising collating input data from a plurality of sources.
The input data is semantically uncorrelated three-space data
of an instantaneous spatial and geometric state of an object
in a frame of reference of the object. The method of an
embodiment comprises conforming the input data into a
stream of spatiotemporal data. The spatiotemporal data of
the stream is uniformly represented. The method of an
embodiment comprises generating gestural events from the
spatiotemporal data using a plurality of gesture descriptions.
The method of an embodiment comprises representing the
gestural events in a protoevent comprising a data format that
is application-neutral and fully articulated. The method of an
embodiment comprises distributing the gestural events and
providing access to the gestural events via corresponding
protoevents by at least one event consumer in a spatial-
semantic frame of reference of the at least one event
consumer.

[0470] Embodiments described herein include a method
comprising: collating input data from a plurality of sources,
wherein the input data is semantically uncorrelated three-
space data of an instantaneous spatial and geometric state of
an object in a frame of reference of the object; conforming
the input data into a stream of spatiotemporal data, wherein
the spatiotemporal data of the stream is uniformly repre-
sented; generating gestural events from the spatiotemporal
data using a plurality of gesture descriptions; representing
the gestural events in a protoevent comprising a data format
that is application-neutral and fully articulated; and distrib-
uting the gestural events and providing access to the gestural
events via corresponding protoevents by at least one event
consumer in a spatial-semantic frame of reference of the at
least one event consumer.

[0471] The input data of an embodiment comprises uncon-
strained freespace gestural data of the object.

[0472] The input data of an embodiment comprises proxi-
mal gestural data of the object when the object is at least one
of within a proximate range relative to a surface and within
a defined volume.

[0473] The input data of an embodiment comprises hover
gestural data of the object when the object is within a plane
adjacent to a surface.

[0474] The input data of an embodiment comprises sur-
face-contact gestural data of the object when the object is in
contact with a surface.

[0475] The input data of an embodiment comprises a
plurality of data streams.

[0476] The method of an embodiment comprises tempo-
rally aligning the plurality of data streams.

[0477] The method of an embodiment comprises spatially
seaming events from the plurality of data streams and
generating a single synthetic event.

[0478] The method of an embodiment comprises perform-
ing semantic aggregation including collecting relevant
events resulting from preceding operations.

[0479] The method of an embodiment comprises perform-
ing metainformation tagging.

[0480] The method of an embodiment comprises receiving
the input data from at least one of an optical motion-tracking
system, a time-of-flight tracking system, an electric field
sensing system, and a touch screen device.

[0481] The method of an embodiment comprises receiving
the input data from an optical motion-tracking system.

US 2018/0173313 Al

[0482] The method of an embodiment comprises receiving
the input data from a time-of-flight tracking system.
[0483] The method of an embodiment comprises receiving
the input data from a touch screen device.

[0484] The method of an embodiment comprises receiving
the input data from an electric field sensing system.
[0485] The method of an embodiment comprises receiving
the input data from a capacitive sensing system.

[0486] The method of an embodiment comprises receiving
the spatiotemporal data comprising three-space position of
the object.

[0487] The method of an embodiment comprises receiving
the spatiotemporal data comprising three-space orientation
of the object.

[0488] The method of an embodiment comprises receiving
the spatiotemporal data comprising motion of the object.
[0489] The method of an embodiment comprises receiving
the spatiotemporal data comprising bulk three-space posi-
tion of at least one of a plurality of elements comprising the
object and a plurality of elements coupled to the object.
[0490] The method of an embodiment comprises receiving
the spatiotemporal data comprising bulk three-space orien-
tation of at least one of a plurality of elements comprising
the object and a plurality of elements coupled to the object.
[0491] The method of an embodiment comprises receiving
the spatiotemporal data comprising bulk motion of at least
one of a plurality of elements comprising the object and a
plurality of elements coupled to the object.

[0492] The method of an embodiment comprises receiving
the spatiotemporal data comprising a semantic digest of a
pose of a plurality of elements comprising the object.
[0493] The method of an embodiment comprises compar-
ing the spatiotemporal data to the gesture descriptions.
[0494] The method of an embodiment comprises generat-
ing the protoevent in response to a match between spa-
tiotemporal data and a gesture description, wherein the
protoevent includes a data format comprising a digest of
matched spatiotemporal data, interpreted in a semantic con-
text of matched gestural descriptions.

[0495] The method of an embodiment comprises provid-
ing a plurality of recognizers, wherein each recognizer
comprises a gesture description.

[0496] The method of an embodiment comprises perform-
ing a plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise ranking recog-
nizers.

[0497] The method of an embodiment comprises perform-
ing a plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise adding recog-
nizers.

[0498] The method of an embodiment comprises perform-
ing a plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise removing rec-
ognizers.

[0499] The method of an embodiment comprises perform-
ing a plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise modifying
recognizers.

[0500] The method of an embodiment comprises perform-
ing a plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise reconfiguring
recognizers.

Jun. 21, 2018

[0501] A recognizer of an embodiment remains dormant
prior to a match between spatiotemporal data and activation
criteria of the recognizer.

[0502] A recognizer of an embodiment becomes active
when geometric and spatiotemporal aspects of the spa-
tiotemporal data match the activation criteria.

[0503] The recognizer of an embodiment remains active as
long as the spatiotemporal data satisfy maintenance criteria
of the recognizer.

[0504] The recognizer of an embodiment becomes inac-
tive when the spatiotemporal data fail to satisfy the main-
tenance criteria.

[0505] The method of an embodiment comprises deposit-
ing the protoevents in at least one repository for access by
the at least one event consumer.

[0506] The method of an embodiment comprises provid-
ing a list of the at least one event consumer.

[0507] The method of an embodiment comprises asyn-
chronously transmitting each protoevent generated to each
of the at least one event consumers.

[0508] The method of an embodiment comprises synchro-
nously transmitting each protoevent generated to each of the
at least one event consumers.

[0509] The method of an embodiment comprises trans-
forming the gestural events among a plurality of spatial-
semantic frames of reference corresponding to a plurality of
event consumers.

[0510] The method of an embodiment comprises re-ren-
dering the gestural events in a spatial-semantic frame of
reference of the at least one event consumer.

[0511] The method of an embodiment comprises generat-
ing the protoevent by generating at least one data sequence
comprising gestural event data specifying the gestural event
and state information of the gestural event, and forming a
data capsule to include the at least one data sequence, the
data capsule having a data structure comprising an applica-
tion-independent representation of the at least one data
sequence.

[0512] The generating of the at least one data sequence
comprises generating a first respective data set that includes
first respective gestural event data. The generating of the at
least one data sequence comprises generating a second
respective data set that includes second respective state
information. The generating of the at least one data sequence
comprises forming a first data sequence to include the first
respective data set and the second respective data set.
[0513] The generating of the at least one data sequence
comprises generating a first respective data set that includes
first respective gestural event data. The generating of the at
least one data sequence comprises generating a second
respective data set that includes second respective state
information. The generating of the at least one data sequence
comprises forming a second data sequence to include the
first respective data set and the second respective data set.
[0514] The generating of the first respective data set of an
embodiment includes generating a first respective data set
offset, wherein the first respective data set offset points to the
first respective data set of the second data sequence.
[0515] The generating of the second respective data set of
an embodiment includes generating a second respective data
set offset, wherein the second respective data set offset
points to the second respective data set of the second data
sequence.

US 2018/0173313 Al

[0516] The first respective data set of an embodiment is a
description list, the description list including a description of
the data.

[0517] The method of an embodiment comprises generat-
ing at least one offset. The method of an embodiment
comprises forming the data capsule to include the at least
one offset.

[0518] The method of an embodiment comprises generat-
ing a first offset having a first variable length. The first offset
points to the gestural event data of a first data sequence of
the at least one data sequence.

[0519] The method of an embodiment comprises generat-
ing a second offset having a second variable length. The
second offset points to the state information of a first data
sequence of the at least one data sequence.

[0520] The method of an embodiment comprises forming
a first code path through the data capsule using a first offset
of the at least one offset. The method of an embodiment
comprises forming a second code path through the data
capsule using a second offset of the at least one offset. The
first code path and the second code path are different paths.
[0521] At least one of the first offset and the second offset
of an embodiment include metadata, the metadata compris-
ing context-specific metadata.

[0522] The at least one event consumer of an embodiment
is at least one interactive system of a plurality of interactive
systems, wherein the plurality of interactive systems com-
prise a plurality of frames of reference.

[0523] The at least one event consumer of an embodiment
consumes the protoevents using an application type specific
to the at least one event consumer.

[0524] The at least one event consumer of an embodiment
comprises a first interactive system having a first frame of
reference and a second interactive system having a second
frame of reference.

[0525] The first interactive system of an embodiment
consumes the protoevents using a first application type and
the second interactive system consumes the protoevents
using a second application type.

[0526] The object of an embodiment is a human hand.

[0527] The object of an embodiment is at least one finger
of a human hand.

[0528] The object of an embodiment includes at least one
human hand and at least one finger of a human hand.
[0529] Embodiments described herein include a method
comprising collating input data from a plurality of sources.
The input data is semantically uncorrelated three-space data
corresponding to an object. The plurality of sources com-
prises disparate sources. The method of an embodiment
comprises rendering a plurality of spatial events of the
object from the input data. The plurality of spatial events
comprises a conformed-coordinate representation relative to
a global room space. The method of an embodiment com-
prises generating aggregates of the spatial events from the
spatial events. The aggregates are logical aggregates includ-
ing literal geometric and semantic characteristics of the
object. The method of an embodiment comprises detecting
and disambiguating gestures from the aggregates of the
spatial events. The method of an embodiment comprises
generating data bundles representing the gestures. The data
bundles are neutrally descriptive. The method of an embodi-
ment comprises distributing the data bundles for consump-
tion by a plurality of disparate applications.

Jun. 21, 2018

[0530] Embodiments described herein include a method
comprising: collating input data from a plurality of sources,
wherein the input data is semantically uncorrelated three-
space data corresponding to an object, wherein the plurality
of sources comprise disparate sources; rendering a plurality
of spatial events of the object from the input data, wherein
the plurality of spatial events comprise a conformed-coor-
dinate representation relative to a global room space; gen-
erating aggregates of the spatial events from the spatial
events, wherein the aggregates are logical aggregates includ-
ing literal geometric and semantic characteristics of the
object; detecting and disambiguating gestures from the
aggregates of the spatial events; generating data bundles
representing the gestures, wherein the data bundles are
neutrally descriptive; and distributing the data bundles for
consumption by a plurality of disparate applications.

[0531] Embodiments described herein include a system
comprising a data funnel coupled to a processor. The data
funnel collates input data from a plurality of sources. The
input data is semantically uncorrelated three-space data of
an instantaneous spatial and geometric state of an object in
a frame of reference of the object. The plurality of sources
comprises disparate sources. The data funnel conforms the
input data into a stream of spatiotemporal data. The spa-
tiotemporal data of the stream is uniformly represented. The
system of an embodiment comprises a gesture engine
coupled to the data funnel. The gesture engine generates
gestural events from the spatiotemporal data using a plural-
ity of gesture descriptions. The gesture engine represents the
gestural events in a protoevent comprising a data format that
is application-neutral and fully articulated. The system of an
embodiment comprises a distributor coupled to the gesture
engine. The distributor provides access to the gestural events
by at least one event consumer via corresponding protoev-
ents in a spatial-semantic frame of reference of the at least
one event consumer.

[0532] Embodiments described herein include a system
comprising: a data funnel coupled to a processor, wherein
the data funnel collates input data from a plurality of
sources, wherein the input data is semantically uncorrelated
three-space data of an instantaneous spatial and geometric
state of an object in a frame of reference of the object,
wherein the plurality of sources comprise disparate sources,
wherein the data funnel conforms the input data into a
stream of spatiotemporal data, wherein the spatiotemporal
data of the stream is uniformly represented; a gesture engine
coupled to the data funnel, wherein the gesture engine
generates gestural events from the spatiotemporal data using
a plurality of gesture descriptions, wherein the gesture
engine represents the gestural events in a protoevent com-
prising a data format that is application-neutral and fully
articulated; and a distributor coupled to the gesture engine,
wherein the distributor provides access to the gestural events
by at least one event consumer via corresponding protoev-
ents in a spatial-semantic frame of reference of the at least
one event consumer.

[0533] The input data of an embodiment comprises uncon-
strained freespace gestural data of the object.

[0534] The input data of an embodiment comprises proxi-
mal gestural data of the object when the object is at least one
of within a proximate range relative to a surface and within
a defined volume.

US 2018/0173313 Al

[0535] The input data of an embodiment comprises hover
gestural data of the object when the object is within a space
immediately adjacent to a surface.

[0536] The input data of an embodiment comprises sur-
face-contact gestural data of the object when the object is in
contact with a surface.

[0537] The input data of an embodiment comprises a
plurality of data streams.

[0538] The data funnel of an embodiment temporally
aligns the plurality of data streams.

[0539] The data funnel of an embodiment spatially seams
events from the plurality of data streams and generates a
single synthetic event.

[0540] The data funnel of an embodiment performs
semantic aggregation including collecting relevant events
resulting from preceding operations of the data funnel.
[0541] The data funnel of an embodiment performs
metainformation tagging.

[0542] The input data of an embodiment is received from
at least one of an optical motion-tracking system, a time-
of-flight tracking system, an electric field sensing system,
and a touch screen device.

[0543] The input data of an embodiment is received from
an optical motion-tracking system.

[0544] The input data of an embodiment is received from
a time-of-flight tracking system.

[0545] The input data of an embodiment is received from
a touch screen device.

[0546] The input data of an embodiment is received from
an electric field sensing system.

[0547] The input data of an embodiment is received from
a capacitive sensing system.

[0548] The gesture engine of an embodiment receives the
spatiotemporal data comprising three-space position of the
object.

[0549] The gesture engine of an embodiment receives the
spatiotemporal data comprising three-space orientation of
the object.

[0550] The gesture engine of an embodiment receives the
spatiotemporal data comprising motion of the object.
[0551] The gesture engine of an embodiment receives the
spatiotemporal data comprising bulk three-space position of
at least one of a plurality of elements comprising the object
and a plurality of elements coupled to the object.

[0552] The gesture engine of an embodiment receives the
spatiotemporal data comprising bulk three-space orientation
of at least one of a plurality of elements comprising the
object and a plurality of elements coupled to the object.
[0553] The gesture engine of an embodiment receives the
spatiotemporal data comprising bulk motion of at least one
of a plurality of elements comprising the object and a
plurality of elements coupled to the object.

[0554] The gesture engine of an embodiment receives the
spatiotemporal data comprising a semantic digest of a pose
of a plurality of elements comprising the object.

[0555] The gesture engine of an embodiment compares the
spatiotemporal data to the gesture descriptions.

[0556] The gesture engine of an embodiment generates the
protoevent in response to a match between spatiotemporal
data and a gesture description, wherein the protoevent
includes a data format comprising a digest of matched
spatiotemporal data, interpreted in a semantic context of
matched gestural descriptions.

Jun. 21, 2018

[0557] The gesture engine of an embodiment comprises a
plurality of recognizers, wherein each recognizer comprises
a gesture description.

[0558] The gesture engine of an embodiment performs a
plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise ranking recog-
nizers.

[0559] The gesture engine of an embodiment performs a
plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise adding recog-
nizers.

[0560] The gesture engine of an embodiment performs a
plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise removing rec-
ognizers.

[0561] The gesture engine of an embodiment performs a
plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise modifying
recognizers.

[0562] The gesture engine of an embodiment performs a
plurality of operations on the plurality of recognizers,
wherein the plurality of operations comprise reconfiguring
recognizers.

[0563] The recognizer of an embodiment remains dormant
prior to a match between spatiotemporal data and activation
criteria of the recognizer.

[0564] The recognizer of an embodiment becomes active
when geometric and spatiotemporal aspects of the spa-
tiotemporal data match the activation criteria.

[0565] The recognizer of an embodiment remains active as
long as the spatiotemporal data satisfy maintenance criteria
of the recognizer.

[0566] The recognizer of an embodiment becomes inac-
tive when the spatiotemporal data fail to satisfy the main-
tenance criteria.

[0567] The distributor of an embodiment deposits the
protoevents in at least one repository for access by the at
least one event consumer.

[0568] The distributor of an embodiment comprises a list
of the at least one event consumer.

[0569] The distributor of an embodiment asynchronously
transmits each protoevent generated by the gesture engine to
each of the at least one event consumers.

[0570] The distributor of an embodiment synchronously
transmits each protoevent generated by the gesture engine to
each of the at least one event consumers.

[0571] The system of an embodiment comprises a trans-
former coupled to a remote client device of the at least one
consumer, wherein the transformer re-renders the gestural
events in a spatial-semantic frame of reference of the at least
one event consumer.

[0572] The distributor of an embodiment includes the
transformer.
[0573] The gesture engine of an embodiment generates the

protoevent by generating at least one data sequence com-
prising gestural event data specifying the gestural event and
state information of the gestural event, and forming a data
capsule to include the at least one data sequence, the data
capsule having a data structure comprising an application-
independent representation of the at least one data sequence.
[0574] The generating of the at least one data sequence of
an embodiment comprises generating a first respective data
set that includes first respective gestural event data. The
generating of the at least one data sequence of an embodi-

US 2018/0173313 Al

ment comprises generating a second respective data set that
includes second respective state information. The generating
of the at least one data sequence of an embodiment com-
prises forming a first data sequence to include the first
respective data set and the second respective data set.
[0575] The generating of the at least one data sequence of
an embodiment comprises generating a first respective data
set that includes first respective gestural event data. The
generating of the at least one data sequence of an embodi-
ment comprises generating a second respective data set that
includes second respective state information. The generating
of the at least one data sequence of an embodiment com-
prises forming a second data sequence to include the first
respective data set and the second respective data set.
[0576] The generating of the first respective data set of an
embodiment includes generating a first respective data set
offset, wherein the first respective data set offset points to the
first respective data set of the second data sequence.
[0577] The generating of the second respective data set of
an embodiment includes generating a second respective data
set offset, wherein the second respective data set offset
points to the second respective data set of the second data
sequence.

[0578] The first respective data set of an embodiment is a
description list, the description list including a description of
the data.

[0579] The system of an embodiment comprises generat-
ing at least one offset. The system of an embodiment
comprises forming the data capsule to include the at least
one offset.

[0580] The system of an embodiment comprises generat-
ing a first offset having a first variable length. The first offset
points to the gestural event data of a first data sequence of
the at least one data sequence.

[0581] The system of an embodiment comprises generat-
ing a second offset having a second variable length. The
second offset points to the state information of a first data
sequence of the at least one data sequence.

[0582] The system of an embodiment comprises forming
a first code path through the data capsule using a first offset
of the at least one offset. The system of an embodiment
comprises forming a second code path through the data
capsule using a second offset of the at least one offset. The
first code path and the second code path are different paths.
[0583] At least one of the first offset and the second offset
of an embodiment include metadata, the metadata compris-
ing context-specific metadata.

[0584] At least one event consumer of an embodiment is
at least one interactive system of a plurality of interactive
systems, wherein the plurality of interactive systems com-
prises a plurality of frames of reference.

[0585] At least one event consumer of an embodiment
consumes the protoevents using an application type specific
to the at least one event consumer.

[0586] At least one event consumer of an embodiment
comprises a first interactive system having a first frame of
reference and a second interactive system having a second
frame of reference.

[0587] The first interactive system of an embodiment
consumes the protoevents using a first application type and
the second interactive system consumes the protoevents
using a second application type.

[0588] The object of an embodiment is a human hand.

Jun. 21, 2018

[0589] The object of an embodiment is at least one finger
of a human hand.

[0590] The object of an embodiment includes at least one
human hand and at least one finger of a human hand.
[0591] Embodiments described herein include a system
comprising a data funnel coupled to a processor. The data
funnel collates input data from a plurality of sources and
conforms the input data into a spatiotemporal data stream.
The input data is absolute three-space location data of an
instantaneous state of a body at a point in time and space.
The system of an embodiment comprises a gesture engine
coupled to the data funnel. The gesture engine generates
gestural events from the spatiotemporal data stream using a
plurality of gesture descriptions. The gesture engine repre-
sents each gestural event in a protoevent comprising a data
format that is application-neutral. The system of an embodi-
ment comprises a distributor coupled to the gesture engine.
The distributor provides access to the gestural events
through access by a plurality of event consumers to a
plurality of protoevents. The access to the gestural events is
in a spatial-semantic frame of reference of the plurality of
event consumers.

[0592] Embodiments described herein include a system
comprising: a data funnel coupled to a processor, wherein
the data funnel collates input data from a plurality of sources
and conforms the input data into a spatiotemporal data
stream, wherein the input data is absolute three-space loca-
tion data of an instantaneous state of a body at a point in time
and space; a gesture engine coupled to the data funnel,
wherein the gesture engine generates gestural events from
the spatiotemporal data stream using a plurality of gesture
descriptions, wherein the gesture engine represents each
gestural event in a protoevent comprising a data format that
is application-neutral; and a distributor coupled to the ges-
ture engine, wherein the distributor provides access to the
gestural events through access by a plurality of event
consumers to a plurality of protoevents, wherein the access
to the gestural events is in a spatial-semantic frame of
reference of the plurality of event consumers.

[0593] The systems and methods described herein include
and/or run under and/or in association with a processing
system. The processing system includes any collection of
processor-based devices or computing devices operating
together, or components of processing systems or devices, as
is known in the art. For example, the processing system can
include one or more of a portable computer, portable com-
munication device operating in a communication network,
and/or a network server. The portable computer can be any
of a number and/or combination of devices selected from
among personal computers, cellular telephones, personal
digital assistants, portable computing devices, and portable
communication devices, but is not so limited. The process-
ing system can include components within a larger computer
system.

[0594] The processing system of an embodiment includes
at least one processor and at least one memory device or
subsystem. The processing system can also include or be
coupled to at least one database. The term “processor” as
generally used herein refers to any logic processing unit,
such as one or more central processing units (CPUs), digital
signal processors (DSPs), application-specific integrated cir-
cuits (ASIC), etc. The processor and memory can be mono-
lithically integrated onto a single chip, distributed among a
number of chips or components of a host system, and/or

US 2018/0173313 Al

provided by some combination of algorithms. The methods
described herein can be implemented in one or more of
software algorithm(s), programs, firmware, hardware, com-
ponents, circuitry, in any combination.

[0595] System components embodying the systems and
methods described herein can be located together or in
separate locations. Consequently, system components
embodying the systems and methods described herein can be
components of a single system, multiple systems, and/or
geographically separate systems. These components can
also be subcomponents or subsystems of a single system,
multiple systems, and/or geographically separate systems.
These components can be coupled to one or more other
components of a host system or a system coupled to the host
system.

[0596] Communication paths couple the system compo-
nents and include any medium for communicating or trans-
ferring files among the components. The communication
paths include wireless connections, wired connections, and
hybrid wireless/wired connections. The communication
paths also include couplings or connections to networks
including local area networks ([LANs), metropolitan area
networks (MANSs), wide area networks (WANS), proprietary
networks, interoffice or backend networks, and the Internet.
Furthermore, the communication paths include removable
fixed mediums like floppy disks, hard disk drives, and
CD-ROM disks, as well as flash RAM, Universal Serial Bus
(USB) connections, RS-232 connections, telephone lines,
buses, and electronic mail messages.

[0597] Unless the context clearly requires otherwise,
throughout the description, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive
sense as opposed to an exclusive or exhaustive sense; that is
to say, in a sense of “including, but not limited to.” Words
using the singular or plural number also include the plural or
singular number respectively. Additionally, the words
“herein,” “hereunder,” “above,” “below,” and words of
similar import refer to this application as a whole and not to
any particular portions of this application. When the word
“or” is used in reference to a list of two or more items, that
word covers all of the following interpretations of the word:
any of the items in the list, all of the items in the list and any
combination of the items in the list.

[0598] The above description of embodiments of the pro-
cessing environment is not intended to be exhaustive or to
limit the systems and methods described to the precise form
disclosed. While specific embodiments of, and examples for,
the processing environment are described herein for illus-
trative purposes, various equivalent modifications are pos-
sible within the scope of other systems and methods, as
those skilled in the relevant art will recognize. The teachings
of the processing environment provided herein can be
applied to other processing systems and methods, not only
for the systems and methods described above.

[0599] The elements and acts of the various embodiments
described above can be combined to provide further embodi-
ments. These and other changes can be made to the pro-
cessing environment in light of the above detailed descrip-
tion.

Jun. 21, 2018

[0600] In general, in the following claims, the terms used
should not be construed to limit the embodiments to the
specific embodiments disclosed in the specification and the
claims, but should be construed to include all systems that
operate under the claims. Accordingly, the embodiments are
not limited by the disclosure herein, but instead the scope of
the embodiments is to be determined entirely by the claims.
[0601] While certain aspects of the embodiments are pre-
sented below in certain claim forms, the inventors contem-
plate the various aspects of the embodiments in any number
of claim forms. Accordingly, the inventors reserve the right
to add additional claims after filing the application to pursue
such additional claim forms for other aspects of the embodi-
ments.

1. A system comprising:

a data funnel coupled to a processor, wherein the data
funnel collates input data from a plurality of sources,
wherein the input data is semantically uncorrelated
three-space data of an instantaneous spatial and geo-
metric state of an object in a frame of reference of the
object, wherein the plurality of sources comprise dis-
parate sources, wherein the data funnel conforms the
input data into a stream of spatiotemporal data, wherein
the spatiotemporal data of the stream is uniformly
represented;

a gesture engine coupled to the data funnel, wherein the
gesture engine generates gestural events from the spa-
tiotemporal data using a plurality of gesture descrip-
tions, wherein the gesture engine represents the ges-
tural events in a protoevent comprising a data format
that is application-neutral and fully articulated; and

a distributor coupled to the gesture engine, wherein the
distributor provides access to the gestural events by at
least one event consumer via corresponding protoev-
ents in a spatial-semantic frame of reference of the at
least one event consumer.

2-59. (canceled)

60. A system comprising:

a data funnel coupled to a processor, wherein the data
funnel collates input data from a plurality of sources
and conforms the input data into a spatiotemporal data
stream, wherein the input data is absolute three-space
location data of an instantaneous state of a body at a
point in time and space;

a gesture engine coupled to the data funnel, wherein the
gesture engine generates gestural events from the spa-
tiotemporal data stream using a plurality of gesture
descriptions, wherein the gesture engine represents
each gestural event in a protoevent comprising a data
format that is application-neutral; and

a distributor coupled to the gesture engine, wherein the
distributor provides access to the gestural events
through access by a plurality of event consumers to a
plurality of protoevents, wherein the access to the
gestural events is in a spatial-semantic frame of refer-
ence of the plurality of event consumers.

#* #* #* #* #*

