(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAÎTÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle
Bureau international

(43) Date de la publication internationale
9 janvier 2003 (09.01.2003)

(21) Numéro de la demande internationale:
PCT/EP02/06886

(22) Date de dépôt international:
21 juin 2002 (21.06.2002)

(25) Langue de dépôt:
français

(26) Langue de publication:
français

(30) Données relatives à la priorité:
01/08785 28 juin 2001 (28.06.2001) FR

(71) Déposant (pour tous les États désignés sauf CA, MX, US):
SOCIETE DE TECHNOLOGIE MICHELIN [FR/FR]; 23, rue Breschet, F-63000 Clermont-Ferrand (FR).

(71) Déposant (pour tous les États désignés sauf US):
MICHELIN RECHERCHE ET TECHNIQUES S.A. [CH/CH]; Route Louis Braille 10 et 12, CH-1763 Granges-Paccot (CH).

(72) Inventeurs:
DUREL, Raoul [FR/FR]; 18, rue des Treilles, F-63112 Blanzy (FR).
RAULINE, Roland [FR/FR]; 27, rue Jacques Brel, F-63830 Durtol (FR).

(74) Mandataire:
RIBIERE, Joël M.F.P. Michelin, SGD/LG/PI -F35 - Ladoux, F-63040 Clermont-Ferrand Cedex 09 (FR).

(81) États désignés (national):

(84) États désignés (régional):
brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet APOF (BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:
— avec rapport de recherche internationale
— avant l’expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

(54) Title: TYRE TREAD REINFORCED WITH SILICA HAVING A VERY LOW SPECIFIC SURFACE AREA

(54) Titre : BANDE DE ROULEMENT POUR PNEUMATIQUE REINFORCEE D’UNE SILICE A TRES BASSE SURFACE SPECIFIQUE

(57) Abstract: The invention relates to a tyre tread comprising an elastomer composition reinforced with silica and made from at least (pce = parts by weight per 100 parts of diene elastomer): (i) a diene elastomer; (ii) by way of a reinforcing filler, more than 80 pce of an inorganic filler consisting wholly or partly of a silica (called LS) having the following characteristics: (a) a BET specific surface area of between 50 and 100 m²/g; (b) an average particle size d₅₀ of between 50 and 350 nm; (iii) a coupling agent that is used to link the reinforcing inorganic filler and the diene elastomer; (iv) a sulphur-based vulcanisation system. Preferably, said LS silica has a deagglomeration speed α that is greater than 5.10⁻³ μm⁻¹/min (measured with the deagglomeration test using ultrasound). In comparison to a standard tyre tread for green tyres reinforced with silica having a higher specific surface area, the inventive tyre tread is provided with an improved performance trade-off in terms of wear resistance, rolling resistance, adhesion and drift thrust.

(57) Abrégé : Bande de roulement de pneumatique incorporant une composition élastomérique renforcée de silice, à base d’au moins (pce=parties en poids pour cent d’élastomère diénique): (i) un élastomère diénique; (ii) à titre de charge renforçante, plus de 80 pce d’une charge inorganique constituée en tout ou partie d’une silice (dite LS) présentant les caractéristiques suivantes; (a) une surface spécifique BET comprise entre 50 et 100 m²/g; (b) une taille moyenne de particules d₅₀ comprise entre 50 et 350 nm; (iii) un agent de couplage assurant la liaison entre la charge inorganique renforçante et l’élastomère diénique; (iv) un système de vulcanisation à base de soufre. De manière préférentielle, cette silice LS présente en outre une vitesse de désagglomération supérieure à 5.10⁻³ μm⁻¹/min (mesuré au test de désagglomération aux ultrasons). Comparée à une bande de roulement conventionnelle pour “Preus Verts” renforcée d’une silice à plus haute surface spécifique, la bande de roulement de l’invention présente un compromis de performances amélioré en termes de résistance à l’usure, de résistance au roulement, d’adhérence et de poussée de dérive.
La présente invention se rapporte aux bandes de roulement de pneumatiques, plus particulièrement aux bandes de roulement renforcées d'une charge inorganique, en particulier de silice, et aux pneumatiques comportant de telles bandes de roulement.

Les bandes de roulement des pneumatiques doivent de manière connue obéir à de nombreuses exigences techniques, souvent antinomiques, en premier lieu présenter une haute résistance à l'usure ou abrasion et une adhérence élevée tout en offrant au pneumatique un très bon niveau de comportement routier ("handling") sur véhicule automobile, nécessitant en particulier une poussée de dérive ("drift thrust" ou "cornering") élevée.

Pour obtenir les propriétés de renforcement optimales conférées par une charge dans une bande de roulement de pneumatique et ainsi une haute résistance à l'usure, on sait qu'il convient d'une manière générale que cette charge soit présente dans la matrice élastomérique sous une forme finale qui soit à la fois la plus finement divisée possible et répartie de la façon la plus homogène possible. Or, de telles conditions ne peuvent être réalisées que dans la mesure où cette charge présente une très bonne aptitude, d'une part à s'incorporer dans la matrice lors du mélange avec l'élastomère et à se désagglomérer, d'autre part à se disperser de façon homogène dans cette matrice.

De manière connue, le noir de carbone présente de telles aptitudes, ce qui n'est en général pas le cas des charges inorganiques, en particulier des silices. En effet, pour des raisons d'affinités réciproques, ces particules de charge inorganique ont une fâcheuse tendance, dans la matrice élastomérique, à s'agglomérer entre elles. Ces interactions ont pour conséquence néfaste de limiter la dispersion de la charge et donc les propriétés de renforcement à un niveau sensiblement inférieur à celui qu'il serait théoriquement possible d'atteindre si toutes les liaisons (charge inorganique/élastomère) susceptibles d'être créées pendant l'opération de mélangeage, étaient effectivement obtenues ; ces interactions tendent d'autre part à augmenter la consistance à l'état cru des compositions caoutchouteuses et donc à rendre leur mise en œuvre ("processability") plus difficile qu'en présence de noir de carbone.

Depuis que les économies de carburant et la nécessité de protéger l'environnement sont devenues une priorité, il s'est avéré toutefois nécessaire de produire des pneumatiques ayant une résistance au roulement réduite sans pénalisation de leur résistance à l'usure.

Ceci a été rendu notamment possible grâce à l'emploi, dans les bandes de roulement de ces pneumatiques, de nouvelles compositions de caoutchouc renforcées de charges inorganiques, en particulier de silices, spécifiques du type hautement dispersibles, capables de rivaliser du point de vue renforçant avec un noir de carbone conventionnel de grade pneumatique, tout en offrant à ces compositions une hystérésis plus faible, synonyme d'une plus basse résistance au roulement pour les pneumatiques les comportant, ainsi qu'une adhérence améliorée sur sol mouillé, enneigé ou verglacé.

Toutes ces documents de l'art antérieur enseignent la nécessité, pour obtenir une résistance à l'usure suffisante, d'utiliser des silices qui non seulement sont suffisamment dispersibles mais encore présentent une surface spécifique BET élevée, comprise entre 100 et 250 m²/g, en fait typiquement supérieure à 150 m²/g (voir en particulier demande EP 501 227 précitée). Une silice à haute surface spécifique faisant référence dans le domaine des "Pneus Verts" est en particulier la silice "Zeosal 1165 MP" (surface BET égale à environ 160 m²/g) commercialisée par la société Rhodia (voir documents précités).

L'utilisation de ces silices spécifiques à haute surface spécifique, à titre de charge renforçante, a certes réduit les difficultés de mise en œuvre des compositions de caoutchouc les contenant, mais cette mise en œuvre reste néanmoins délicate, plus difficile que pour des compositions chargées conventionnellement de noir de carbone.

Il est tout d'abord nécessaire d'utiliser un agent de couplage, encore appelé agent de liaison, qui a pour fonction d'assurer la connexion ou liaison entre la surface des particules (groupes silanols Si-OH) de silice et l'élastomère, tout en facilitant la dispersion de cette charge au sein de la matrice élastomérique, la haute surface spécifique préconisée pour ces silices étant justement destinée à augmenter nombre et qualité des liaisons entre la silice et l'agent de couplage, afin d'atteindre le haut niveau de renforcement escompté.

De tels agents de couplage sont bien connus de l'homme du métier, essentiellement des organosilanes ou polysiloxyanes polyfonctionnels. Les plus connus sont des alkoxysilanes polysulfurés, notamment des polysulfures de bis-(alkoxylysilylalkyle) tels que les polysulfures de bis-(alkoxylysilylpropyle), tout particulièrement les tétrasulfure et disulfure de bis 3-triéthoxysilylpropyle (en abrégé TESPT et TESPD, respectivement) généralement considérés comme les produits apportant, pour des bandes de roulement chargées de silice, le meilleur compromis en terme de sécurité au grillage, de facilité de mise en œuvre et de pouvoir renforçant. Ils sont à ce titre les agents de couplage les plus utilisés aujourd'hui dans les "Pneus Verts".

Ces alkoxysilanes polysulfurés présentent toutefois comme inconvénient connu qu'ils sont fort onéreux et doivent qui plus est être utilisés dans une quantité relativement importante, typiquement de l'ordre de 8 à 12% en poids par rapport au poids de silice, ce qui équivaut à des taux généralement compris entre 5 et 10 pce (pce = parties en poids pour cent parties d'élastomère diénique). Pour réduire ces taux d'alkoxysilanes, ont été notamment proposés des activateurs de couplage (voir demandes WO00/05300 et WO00/05301 précitées).
Un autre facteur affectant la mise en œuvre des compositions de caoutchouc à l'état cru, comparativement à l'emploi de noir de carbone, est lié aux fortes interactions physico-chimiques susceptibles de s'établir entre ces silices renforçantes, en raison de leur haute surface réactive, et d'autres ingrédients des compositions de caoutchouc, en particulier avec le système de vulcanisation. Cet inconvénient est à l'origine d'une perte de rendement et d'une diminution de la cinétique de vulcanisation. Pour contrecarrer ces effets parasites, les taux d'agents de vulcanisation, en particulier d'accélérateurs, ont du être augmentés, d'autres types d'accélérateurs (accélérateurs secondaires) ajoutés, par rapport aux formulations conventionnelles à base de noir de carbone.

En résumé, si les bandes de roulement chargées de silices dispersibles à haute surface spécifique ont certes permis d'atteindre un compromis de propriétés, en termes de résistance au roulement, de résistance à l'usure et d'adhérence, non accessible avec un noir de carbone conventionnel pour pneumatique, un tel résultat n'a pu être obtenu qu'au prix d'une mise en œuvre plus difficile et d'un surcoût industriel lié notamment à l'emploi de quantités relativement importantes d'agents de couplage, notamment d'alkoxy silanes polysulfurés, et d'une augmentation des taux d'agents de vulcanisation.

Or, la Demanderesse a découvert lors de leurs recherches qu'une autre catégorie de silices peut non seulement conduire à un excellent compromis de performances pour les bandes de roulement de pneumatique les contenant, même globalement supérieur à celui offert par les silices à haute surface spécifique, mais encore permettre de pallier, au moins en partie, les inconvénients précités posés par les silices à haute surface spécifique utilisées dans les bandes de roulement des "Pneus Verts".

En conséquence, un premier objet de l'invention concerne une bande de roulement incorporant une composition élastomérique renforcée d'une charge inorganique, à base d'au moins (pce = parties en poids pour cent parties d'élastomère diénique):

(i) un élastomère diénique;
(ii) à titre de charge renforçante, plus de 80 pce d'une charge inorganique constituée en tout ou partie d'une silice présentant les caractéristiques suivantes (ci-après silice "LS"):
 (a) une surface spécifique BET comprise entre 50 et 100 m²/g;
 (b) une taille moyenne de particules d_w comprise entre 50 et 350 nm;
(iii) un agent de couplage assurant la liaison entre la charge inorganique renforçante et l'élastomère diénique;
(iv) un système de vulcanisation à base de soufre.

De telles silices notées "LS" (pour "Low Surface") sont connues et ont pu être utilisées, comme charges ou additifs promoteurs d'adhésion, dans certaines parties des pneumatiques, essentiellement dans des mélanges internes à base de caoutchouc naturel destinés notamment au calandrage de nappes d'armature de sommet ou de carcasse de pneumatique. Mais, à la connaissance des Demanderesses, aucun document de l'état de la technique ne décrit ni surtout n'exemplifie l'emploi de telles silices LS, qualifiées parfois de "grossières" en raison de leur très basse surface spécifique et d'un pouvoir renforçant jugé en conséquence insuffisant, dans des bandes de roulement des pneumatiques.
L'invention a également pour objet l'utilisation à titre de charge renforçante, dans une bande de roulement de pneumatique, d'une silice LS ayant les caractéristiques a et b précitées.

L'invention a également pour objet l'utilisation d'une bande de roulement conforme à l'invention pour la fabrication ou le rechapeage de pneumatiques, ainsi que ces pneumatiques eux-mêmes lorsqu'ils comportent une bande de roulement conforme à l'invention. Les pneumatiques de l'invention sont particulièrement destinés à équiper des véhicules aptes à rouler à haute vitesse de manière soutenue tels que des véhicules tourisme, véhicules 4x4 (à 4 roues motrices), SUV ("Sport Utility Vehicles"), deux roues (notamment motos), camionnettes, "Poids-lourds" (notamment métro, bus, engins de transport routier tels que camions, tracteurs, remorques).

Les bandes de roulement selon l'invention sont susceptibles d'être préparées par un procédé constituant un autre objet de la présente invention. Ce procédé pour préparer une bande de roulement de pneumatique vulcanisable au soufre, à compromis de performances (résistance à l'usure/résistance au roulement/adhérence/poussée de dérive) amélioré, à base d'élastomère diényque, d'une charge inorganique renforçante et d'un système de vulcanisation, comporte les étapes suivantes:

- incorporer à un élastomère diényque, au cours d'une première étape dite "non-productive", au moins:
 - à titre de charge renforçante, plus de 80 pce d'une charge inorganique constituée en tout ou partie d'une silice présentant les caractéristiques suivantes (silice dite "LS"):
 - (a) une surface spécifique BET comprise entre 50 et 100 m²/g;
 - (b) une taille moyenne de particules d_w comprise entre 50 et 350 nm;
 - et un agent de couplage assurant la liaison entre la silice et l'élastomère diényque;
 - en malaxant thermomécaniquement le tout, en une ou plusieurs fois, jusqu'à atteindre une température maximale comprise entre 110°C et 190°C;
 - refroidir l'ensemble à une température inférieure à 100°C;
 - incorporer ensuite, au cours d'une seconde étape dite "productive", du soufre et un accélérateur primaire de vulcanisation;
 - malaxer le tout jusqu'à une température maximale inférieure à 110°C;
 - calander ou extruder la composition élastomérique ainsi obtenue sous la forme d'une bande de roulement de pneumatique.

Selon un mode préférentiel de l'invention, la silice LS constitue la majorité, plus préférentiellement encore la totalité de la charge inorganique renforçante. L'invention permet ainsi de diminuer sensiblement les taux d'agents de vulcanisation, soufre et accélérateurs de vulcanisation.

Un autre mode de réalisation particulièrement préférentiel consiste à utiliser, à titre d'activateur de vulcanisation, un taux sensiblement réduit, à savoir entre 0,5 et 1,5 pce seulement de zinc, apporté en particulier sous forme d'oxyde de zinc ou de stéarate de zinc.

On a constaté en effet que l'emploi des silices LS avait pour inconvénient d'augmenter de manière sensible les délais d'induction lors de la vulcanisation (temps nécessaires au début de
la réaction de vulcanisation) et que, de manière inattendue, cet inconvénient pouvait être pallié par une diminution du taux de zinc habituel.

L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que de la figure unique relative à ces exemples qui représente des courbes de variation de module (en MPa) en fonction de l'allongement (en %), enregistrées pour des compositions de caoutchouc destinées à des bandes de roulement de pneumatiques, conformes ou non à l'invention.

I. MESURES ET TESTS UTILISES

I.1. Caractérisation des silices

Les silices décrites ci-après consistent de manière connue en des agglomérats de particules, susceptibles de se désagglomerer en ces particules sous l'effet d'une force externe, par exemple sous l'action d'un travail mécanique ou d'ultrasons. Le terme "particule" utilisé dans la présente demande doit être compris dans son sens générique habituel d'agrégat (encore appelé "particule secondaire"), et non dans celui de particule élémentaire (encore appelé "particule primaire") éventuelle pouvant former, le cas échéant, une partie de cet agrégat ; par "agrégat", il faut entendre de manière connue l'ensemble insécable (i.e., qui ne peut être coupé, divisé, partagé) qui est produit lors de la synthèse de la charge, en général formé de particules élémentaires (primaires) agrégées entre elles.

Ces silices sont caractérisées comme indiqué ci-après.

A) Surface spécifique:

La surface spécifique ("aire massique") BET est déterminée par adsorption de gaz à l'aide de la méthode de Brunauer-Emmett-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938), plus précisément selon la norme française NF ISO 9277 de décembre 1996 [méthode volumétrique multipoints (5 points) - gaz: azote - dégazage: 1 heure à 160°C - domaine de pression relative p/p0 : 0.05 à 0.17]

La surface spécifique CTAB est la surface externe déterminée selon la norme française NF T 45-007 de novembre 1987 (méthode B).

B) Taille moyenne des particules d_w:

La taille moyenne (en masse) des particules, notée d_w, est mesurée de manière classique après dispersion, par désagglomération aux ultrasons, de la charge à analyser dans l'eau.

La mesure est réalisée au moyen d'un sédimentomètre centrifuge à détection rayons X type "XDC" ("X-rays Disk Centrifuge"), commercialisé par la société Brookhaven Instruments, selon le mode opératoire qui suit.
On réalise une suspension de 3,2 g d'échantillon de silice à analyser dans 40 ml d'eau, par action durant 8 minutes, à 60% de puissance (60% de la position maxi du "output control"), d'une sonde ultrason de 1500 W (sonificateur Vibracell 3/4 pouce commercialisé par la société Bioblock); après sonification, on introduit 15 ml de la suspension dans le disque en rotation ; après sédimentation pendant 120 minutes, la distribution en masse des tailles de particules et la taille moyenne en masse des particules

\[d_w = \frac{\sum (n_i d_i^5)}{\sum (n_i d_i^5)} \]

avec \(n_i \) nombre d'objets de la classe de taille ou diamètre \(d_i \).

C) Vitesse de désagglomération \(\alpha \):

La vitesse de désagglomérations notée \(\alpha \) est mesurée au moyen d'un test de désagglomération aux ultrasons, à 100% de puissance d'une sonde de 600 W (watts), fonctionnent ici en mode pulsé (soit : 1 seconde ON, 1 seconde OFF) afin d'éviter un échauffement excessif de la sonde ultrason durant la mesure. Ce test connu, faisant notamment l'objet de la demande de brevet WO99/28376 (voir également WO99/28380, WO00/73372, WO00/73373), permet de mesurer en continu l'évolution de la taille moyenne (en volume) des agglomérats de particules durant une onification, selon les indications ci-après.

Le montage utilisé est constitué d'un granulomètre laser (type "Mastersizer S", commercialisé par Malvern Instruments - source laser He-Ne émettant dans le rouge, longueur d'onde 632,8 nm) et de son préparateur ("Malvern Small Sample Unit MSX1"), entre lesquels a été intercalée une cellule de traitement en flux continu (Bioblock M72410) munie d'une source ultrasons (Sonificateur 1/2 pouce type Vibracell de 600 W commercialisé par la société Bioblock).

Une faible quantité (150 mg) de silice à analyser est introduite dans le préparateur avec 160 ml d'eau, la vitesse de circulation étant fixée à son maximum. Au moins trois mesures consécutives sont réalisées pour déterminer selon la méthode de calcul connue de Fraunhofer (matrice de calcul Malvern 3S$)$ le diamètre initial moyen (en volume) des agglomérats, noté \(d_0 \). La sonification (mode pulsé : 1 s ON, 1 s OFF) est ensuite établie à une puissance de 100% (soit 100% de la position maxi du "tip amplitude") et on suit durant 8 minutes environ l'évolution du diamètre moyen en volume \(d_v(t) \) en fonction du temps "t" à raison d'une mesure toutes les 10 secondes environ. Après une période d'induction (environ 3-4 minutes), il est observé que l'inverse du diamètre moyen en volume \(1/d_v(t) \) varie linéairement, ou de manière sensiblement linéaire, avec le temps "t" (régime stable de désagglomération). La vitesse de désagglomération \(\alpha \) est calculée par régression linéaire de la courbe d'évolution de \(1/d_v(t) \) en fonction du temps "t", dans la zone de régime stable de désagglomération (en général, entre 4 et 8 minutes environ). Elle est exprimée en \(\mu m^{-1}/min \).

La demande WO99/28376 précitée décrit en détail un dispositif de mesure utilisable pour la réalisation de ce test de désagglomération aux ultrasons. Ce dispositif, on le rappelle, consiste en un circuit fermé dans lequel peut circuler un flux d'agglomérats de particules en suspension dans un liquide. Ce dispositif comporte essentiellement un préparateur d'échantillon, un granulomètre laser et une cellule de traitement. Une mise à la pression atmosphérique, au
niveau du préparateur d'échantillon et de la cellule de traitement elle-même, permet l'élimination en continu des bulles d'air qui se forment durant la sonification (action de la sonde ultrasons).

Le préparateur d'échantillon ("Malvern Small Sample Unit MSX1") est destiné à recevoir l'échantillon de silice à tester (en suspension dans le liquide 3) et à le faire circuler à travers le circuit à la vitesse préréglée (potentiomètre - vitesse maximum d'environ 3 l/min), sous la forme d'un flux de suspension liquide. Ce préparateur consiste simplement en une cuve de réception qui contient, et à travers laquelle circule, la suspension à analyser. Il est équipé d'un moteur d'agitation, à vitesse modulable, afin d'éviter une sédimentation des agglomérats de particules de la suspension ; une mini-pompe centrifuge est destinée à assurer la circulation de la suspension dans le circuit ; l'entrée du préparateur est reliée à l'air libre via une ouverture destinée à recevoir l'échantillon de charge à tester et/ou le liquide utilisé pour la suspension.

Au préparateur est connecté un granulomètre laser ("Mastersizer S") dont la fonction est de mesurer en continu, à intervalles de temps réguliers, la taille moyenne en volume \(d_v\) des agglomérats, au passage du flux, grâce à une cellule de mesure à laquelle sont couplés les moyens d'enregistrement et de calcul automatiques du granulomètre. On rappelle ici brièvement que les granulomètres laser exploitent, de manière connue, le principe de la diffraction de la lumière par des objets solides mis en suspension dans un milieu dont l'indice de réfraction est différent de celui du solide. Selon la théorie de Fraunhofer, il existe une relation entre la taille de l'objet et l'angle de diffraction de la lumière (plus l'objet est petit et plus l'angle de diffraction sera élevé). Pratiquement, il suffit de mesurer la quantité de lumière diffractée pour différents angles de diffraction pour pouvoir déterminer la distribution de taille (en volume) de l'échantillon, \(d_v\) correspondant à la taille moyenne en volume de cette distribution \(d_v = \Sigma(n_i \cdot d_i^3) / \Sigma(n_i \cdot d_i^3)\) avec \(n_i\) nombre d'objets de la classe de taille ou diamètre \(d_i\).

Intercalée entre le préparateur et le granulomètre laser se trouve enfin une cellule de traitement équipée d'une sonde ultrasons, pouvant fonctionner en mode continu ou pulsé, destinée à casser en continu les agglomérats de particules au passage du flux. Ce flux est thermostaté par l'intermédiaire d'un circuit de refroidissement disposé, au niveau de la cellule, dans une double enveloppe entourant la sonde, la température étant contrôlée par exemple par une sonde de température plongeant dans le liquide au niveau du préparateur.

I-2. Caractérisation des compositions de caoutchouc

Les compositions de caoutchouc sont caractérisées, avant et après cuisson, comme indiqué ci-après.

A) **Plasticité Mooney:**

On utilise un consistomètre oscillant tel que décrit dans la norme française NF T 43-005 (1991). La mesure de plasticité Mooney se fait selon le principe suivant : la composition à l'état cru (i.e., avant cuisson) est moulée dans une enceinte cylindrique chauffée à 100°C.
Après une minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de rotation. La plasticité Mooney (ML 1+4) est exprimée en "unité Mooney" (UM, avec 1 UM=0,83 Newton. mètre).

B) Temps de grillage:

Les mesures sont effectuées à 130°C, conformément à la norme française NF T 43-005 (1991). L'évolution de l'indice consistométrique en fonction du temps permet de déterminer le temps de grillage des compositions de caoutchouc, apprécié conformément à la norme précitée par le paramètre T5 (cas d'un grand rotor), exprimé en minutes, et défini comme étant le temps nécessaire pour obtenir une augmentation de l'indice consistométrique (exprimée en UM) de 5 unités au dessus de la valeur minimale mesurée pour cet indice.

C) Rhéométrie:

Les mesures sont effectuées à 150°C avec un rhéomètre à chambre oscillante, selon la norme DIN 53529 - partie 3 (juin 1983). L'évolution du couple rhéométrique en fonction du temps décrit l'évolution de la rigidification de la composition par suite de la réaction de vulcanisation. Les mesures sont traitées selon la norme DIN 53529 - partie 2 (mars 1983) : t_i est le délai d'induction, c'est-à-dire le temps nécessaire au début de la réaction de vulcanisation ; t_a (par exemple t_90 ou t_99) est le temps nécessaire pour atteindre une conversion de α%, c'est-à-dire α% (par exemple 90% ou 99%, respectivement) de l'écart entre les couples minimum et maximum. On mesure également la constante de vitesse de conversion notée K (exprimée en min^{-1}), d'ordre 1, calculée entre 30% et 80% de conversion, qui permet d'apprécier la cinétique de vulcanisation.

D) Essais de traction:

Ces essais permettent de déterminer les contraintes d'élasticité et les propriétés à la rupture. Sauf indication différente, ils sont effectués conformément à la norme française NF T 46-002 de septembre 1988. On mesure en seconde elongation (i.e. après un cycle d'accommodation) les modules sécants nominaux (ou contraintes apparentes, en MPa) à 10% d'allongement (notés MA10), 100% d'allongement (notés MA100) et 300% d'allongement (notés MA300). On mesure également les contraintes à la rupture (en MPa) et les allongements à la rupture (en %). Toutes ces mesures de traction sont effectuées dans les conditions normales de température (23±2°C) et d'hygrométrie (50±5% d'humidité relative), selon la norme française NF T 40-101 (décembre 1979).

Un traitement des enregistrements de traction permet également de tracer la courbe de module en fonction de l'allongement (voir figure annexée), le module utilisé ici étant le module sécant vrai mesuré en première elongation, calculé en se ramenant à la section réelle de l'éprouvette et non à la section initiale comme précédemment pour les modules nominaux.

E) Propriétés dynamiques:
Les propriétés dynamiques ΔG^* et $\tan(\delta)_{\text{max}}$ sont mesurées sur un viscoanalyseur (Metravib VA4000), selon la norme ASTM D 5992-96. On enregistre la réponse d’un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d’épaisseur et de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz, dans les conditions normales de température (23°C) selon la norme ASTM D 1349-99, ou selon les cas à une température différente. On effectue un balayage en amplitude de déformation de 0,1 à 50% (cycle aller), puis de 50% à 1% (cycle retour). Les résultats exploités sont le module complexe de cisaillement dynamique (G^*) et le facteur de perte $\tan(\delta)$. Pour le cycle retour, on indique la valeur maximale de $\tan(\delta)$ observée, noté $\tan(\delta)_{\text{max}}$, ainsi que l’écart de module complexe (ΔG^*) entre les valeurs à 0.15 et 50% de déformation (effet Payne).

F) Dureté Shore A:

La dureté Shore A des compositions après cuisson est appréciée conformément à la norme ASTM D 2240-86.

I-3. Caractérisation des pneumatiques ou bandes de roulement

A) Résistance au roulement:

La résistance au roulement est mesurée sur un volant, selon la méthode ISO 87-67 (1992). Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une résistance au roulement plus basse.

B) Résistance à l'usure:

On soumet les pneumatiques à un roulement réel sur route, sur un véhicule automobile déterminé, jusqu'à ce que l'usure due au roulement atteigne les témoins d'usure disposés dans les rainures de la bande de roulement. Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire un kilométrage parcouru supérieur.

C) Freinage sur sol sec:

Les pneumatiques sont montés sur un véhicule automobile équipé d'un système de freinage ABS et on mesure la distance nécessaire pour passer de 100 km/h à 0 km/h lors d'un freinage brutal sur un sol sec (béton bitumineux). Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une distance de freinage plus courte.

D) Freinage sur sol humide:

Les pneumatiques sont montés sur un véhicule automobile équipé d'un système de freinage ABS et on mesure la distance nécessaire pour passer de 50 km/h à 10 km/h lors d'un freinage brutal sur un sol arrosé (béton bitumineux). Une valeur supérieure à celle du témoin,
arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une distance de freinage plus courte.

E) **Freinage sur glace:**

Les pneumatiques sont montés sur un véhicule automobile équipé d'un système de freinage ABS sur les quatre roues, et on mesure la distance nécessaire pour passer de 20 km/h à 5 km/h lors d'un freinage sur glace. Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une distance de freinage plus courte.

F) **Adhésion sur sol humide:**

Pour apprécier les performances d'adhésion sur sol humide, on analyse le comportement des pneumatiques montés sur un véhicule automobile déterminé parcourant, sous des conditions de vitesse limite, un circuit fortement virageux et arrosé de manière à maintenir le sol humide.

On mesure d'une part le temps minimal nécessaire pour parcourir la totalité du circuit ; une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un comportement amélioré c'est-à-dire un temps de parcours plus court.

Le pilote du véhicule, professionnel, attribue d'autre part une note globale, subjective, de comportement routier du véhicule - et donc des pneumatiques - sur ce circuit virageux arrosé ; une note supérieure à celle du témoin, arbitrairement fixée à 100, indique un comportement global amélioré.

G) **Pousséee de dérive:**

Chaque pneumatique testé est monté sur une roue de dimension adaptée et gonflé à 2,2 bars. On le fait rouler à une vitesse constante de 80 km/h sur une machine automatique appropriée (machine type "sol-plan" commercialisée par la société MTS). On fait varier la charge notée "Z", sous un angle de dérive de 1 degré, et on mesure de manière connue la rigidité ou pousséee de dérive notée "D" (corrigeé de la pousséee à dérive nulle), en enregistrant à l'aide de capteurs l'effort transversal sur la roue en fonction de cette charge Z. La pousséee de dérive indiquée dans les tableaux est la pente à l'origine de la courbe D(Z) ; une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une pousséee de dérive plus forte. Une augmentation de pousséee de dérive est favorable au comportement routier sur sol sec.

II. CONDITIONS DE REALISATION DE L'INVENTION

Les bandes de roulement de pneumatique conformes à l'invention sont donc formées, en tout ou partie, d'une composition de caoutchouc à base d'au moins:

(i) un élastomère diénique;
(ii) à titre de charge renforçante, plus de 80 pce d'une charge inorganique constituée en tout ou partie d'une silice présentant les caractéristiques suivantes :
(a) une surface spécifique BET comprise entre 50 et 100 m²/g;
(b) une taille moyenne de particules dₜ compris entre 50 et 350 nm;
(iii) un agent de couplage (charge inorganique/élastomère diénique) assurant la liaison entre la charge inorganique et l'élastomère diénique;
(iv) un système de vulcanisation à base de soufre.

Bien entendu, par l'expression composition "à base de", il faut entendre une composition comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces constituants de base étant susceptibles de, ou destinés à réagir entre eux, au moins en partie, lors des différentes phases de fabrication des bandes de roulement et pneumatiques, en particulier au cours de leur vulcanisation.

II-1. Élastomère diénique

Par élastomère (ou caoutchouc) "diénique", on entend de manière connue un élastomère issu au moins en partie (i.e., un homopolymère ou un copolymère) de monomères diènes c'est-à-dire de monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non. Par élastomère diénique "essentiellement insaturé", on entend ici un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%.

Ces définitions générales étant données, l'homme du métier du pneumatique comprendra que la présente invention est en premier lieu mise en œuvre avec des élastomères diéniques fortement insaturés, en particulier avec :

(a) - tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
(b) - tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle aromatique ayant de 8 à 20 atomes de carbone.

A titre de diènes conjugués conviennent notamment le butadiène-1,3, le 2-méthyl-1,3-butadiène, les 2,3-di-alkyl(C₅₋C₆)-1,3-butadiènes tels que par exemple le 2,3-diméthyl-1,3-butadiène, le 2,3-diéthyl-1,3-butadiène, le 2-méthyl-3-éthyl-1,3-butadiène, le 2-méthyl-3-isopropyl-1,3-butadiène, un aryl-1,3-butadiène, le 1,3-pentadiène, le 2,4-hexadiène. A titre de composés vinyle-aromatiques conviennent par exemple le styrène, l'ortho-, méta-, para-méthylstyrène, le mélange commercial "vinyle-toluène", le para-tétiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinlynaphthalène.

Les copolymères peuvent contenir entre 99% et 20% en poids d'unités diéniques et entre 1% et 80% en poids d'unités vinyle-aromatiques. Les élastomères peuvent avoir toute microstructure
qui est fonction des conditions de polymérisation utilisées, notamment de la présence ou non
d'un agent modifiant et/ou randomisant et des quantités d'agent modifiant et/ou randomisant
employées. Les élastomères peuvent être par exemple à blocs, statistiques, séquencés,
microséquencés, et être préparés en dispersion ou en solution ; ils peuvent être couplés et/ou
étoilés ou encore fonctionnalisés avec un agent de couplage et/ou d'étoilage ou de
fonctionnalisation.

L'élastomère diénique de la bande de roulement conforme à l'invention est de préférence
constitué, en tout ou partie, à raison d'au moins 40 pce, plus préférentiellement encore d'au
moins 50 pce, par un élastomère fortement insaturé du type butadiénique, c'est-à-dire choisi
dans le groupe des élastomères diéniques fortement insaturés constitué par les polybutadiènes
(BR), les copolymères de butadiène et les mélanges de ces élastomères. Ces copolymères de
butadiène sont notamment les copolymères de butadiène-styrène (SBR), les copolymères
d'isoprène-butadiène (BIR), les copolymères d'isoprène-butadiène-styrène (SBIR).

A titre de d'élastomères butadiéniques préférentiels conviennent notamment les BR ayant une
teneur en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur en cis-1,4 supérieure
to 80%, les SBR ayant une teneur en styrène comprise entre 5% et 50% en poids et plus
particulièrement entre 20% et 40%, une teneur en liaisons -1,2 de la partie butadiénique
comprise entre 4% et 65%, une teneur en liaisons trans-1,4 comprise entre 20% et 80%, les
BIR ayant une teneur en isoprène comprise entre 5% et 90% en poids et une température de
transition vitreuse ("Tg" mesurée selon norme ASTM D3418-82) de -40°C à -80°C. Dans le
cas des copolymères SBIR conviennent notamment ceux ayant une teneur en styrène comprise
entre 5% et 50% en poids et plus particulièrement comprise entre 10% et 40%, une teneur en
isoprène comprise entre 15% et 60% en poids et plus particulièrement entre 20% et 50%, une
teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise
entre 20% et 40%, une teneur en unités -1,2 de la partie butadiénique comprise entre 4% et
85%, une teneur en unités trans-1,4 de la partie butadiénique comprise entre 6% et 80%, une
teneur en unités -1,2 plus -3,4 de la partie isoprénique comprise entre 5% et 70% et une teneur
en unités trans-1,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement
tout SBIR ayant une Tg comprise entre -20°C et -70°C.

L'élastomère butadiénique est particulièrement choisi parmi les BR, les SBR et les mélanges
de ces élastomères.

De préférence, dans le cas d'une bande de roulement de pneumatique pour véhicule tourisme,
l'élastomère butadiénique est majoritairement un élastomère SBR, qu'il s'agisse d'un SBR
préparé en émulsion ("ESBR") ou d'un SBR préparé en solution ("SSBR"), ou un mélange de
SBR et d'un autre élastomère diénique, notamment butadiénique, par exemple d'un coupage de
SBR et BR, de SBR et NR (caoutchouc naturel), de SBR et IR (polyisoprène de synthèse).

On utilise notamment un SBR ayant une teneur en styrène comprise entre 20% et 30% en
poids, une teneur en liaisons vinyliques de la partie butadiénique comprise entre 15% et 65%,
une teneur en liaisons trans-1,4 comprise entre 15% et 75% et une Tg comprise entre -20°C et
-55°C. Un tel copolymère SBR, de préférence un SSBR, est éventuellement utilisé en mélange
avec BR possédant de préférence plus de 90% de liaisons cis-1,4.
Les compositions des bandes de roulement de l’invention peuvent contenir un seul élastomère diénique ou un mélange de plusieurs élastomères diéniques, le ou les élastomères diéniques pouvant être utilisés en association avec tout type d’élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères, par exemple des polymères thermoplastiques.

II-2. Charge inorganique renforçante (silice "LS")

La bande de roulement conforme à l’invention a pour caractéristique essentielle d’être renforcée par plus de 80 ppc d’une charge inorganique renforçante comportant, de préférence à titre majoritaire, une silice spécifique à très basse surface spécifique présentant les caractéristiques suivantes :

- (a) une surface spécifique BET comprise entre 50 et 100 m²/g ;
- (b) une taille moyenne de particules dₜ comprise entre 50 et 350 nm.

Des silices à faible surface BET susceptibles de répondre à cette définition sont connues et ont été notamment décrites dans les demandes EP 157 703, EP 396 450 ou EP 722 977. Comme déjà indiqué, leur application connue en pneumatique était jusqu’ici limitée à des parties du pneumatique autres que sa bande de roulement, notamment dans des mélanges internes utilisés par exemple pour le calandrage de nappes d’armature de sommet ou de carcasse.

On rappelle que par "charge inorganique renforçante", doit être entendu de manière connue une charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche" ou parfois charge "claire" par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu’un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de pneumatiques, en d’autres termes apte à remplacer, dans sa fonction de renforcement, une charge conventionnelle de noir de carbone de grade pneumatique.

Cette silice spécifique "LS" (pour "Low Surface") possède tout d’abord une surface BET inhabituelle pour une application bande de roulement, comprise entre 50 et 100 m²/g. Pour une surface BET inférieure à 50 m²/g, les compositions de caoutchouc présentent certes une mise en œuvre facilitée ainsi qu’une hystérésis réduite, mais on observe une déchéance des propriétés à la rupture et une résistance à l’usure, en pneumatique, qui diminue de manière rédhibitoire. Pour une surface BET supérieure à 100 m²/g, en particulier comprise entre 150 et 250 m²/g, on retrouve l’inconvénient des silices usuelles à haute surface spécifique pour bandes de roulement de "Pneus VERTS", à savoir d’une part une dispersibilité réduite dans la matrice caoutchouteuse et des difficultés de mise en œuvre à l’état cru, en raison d’interactions parasites avec certains autres ingrédients des compositions de caoutchouc (notamment système de vulcanisation), d’autre part la nécessité d’utiliser un taux d’agent de couplage supérieur.

La silice LS doit d’autre part posséder une taille dₜ comprise entre 50 et 350 nm. Pour des tailles dₜ trop élevées, supérieures à 350 nm, les particules se comportent comme des défauts
qui localisent les contraintes et sont préjudiciables à l’usure ; des tailles \(d_w \) trop petites, inférieures à 50 nm, pénalisent par contre la mise en œuvre à l’état cru et la dispersion de la charge au cours de cette mise en œuvre.

Enfin, pour les applications où le plus haut niveau de renforcement est visé, la silice LS utilisée possèdera en outre, de manière préférentielle, une dispersibilité intrinsèque élevée, illustrée par une vitesse de désagglomération \(\alpha \) (mesurée au test de désagglomération aux ultrasons décrit au chapitre I précédent) supérieure à \(5.10^{-3} \text{ µm}^2/\text{min} \), plus préférentiellement au moins égale à \(1.10^{-2} \text{ µm}^2/\text{min} \). Pour une telle vitesse de désagglomération, on a constaté que la silice LS présentait une très haute dispersibilité, c'est-à-dire que peu d'agglomérats microniques sont observés par réflexion en microscopie optique sur une coupe de composition caoutchouteuse préparée selon les règles de l'art.

Pour les différentes raisons indiquées supra, la silice LS sélectionnée vérifie de préférence au moins l'une, plus préférentiellement l'ensemble, des caractéristiques suivantes :

- une surface BET comprise dans un domaine de 60 à 90 m\(^2\)/g ;
- une taille de particules \(d_w \) comprise entre 100 et 300 nm ;
- une vitesse de désagglomération \(\alpha \) supérieure à \(5.10^{-3} \text{ µm}^2/\text{min} \).

Encore plus préférentiellement, cette silice LS vérifie l'ensemble des caractéristiques qui suivent :

- une surface BET comprise dans un domaine de 60 à 90 m\(^2\)/g ;
- une taille de particules \(d_w \) comprise dans un domaine de 150 à 250 nm ;
- une vitesse de désagglomération \(\alpha \) au moins égale à \(1.10^{-2} \text{ µm}^2/\text{min} \).

L'état physique sous lequel peut se présenter la silice LS est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, de pellets, de billes ou toute autre forme densifiée ; il peut s'agir d'une silice précipitée comme d'une silice de pyrolyse. Son rapport de surface BET/CTAB est de préférence compris dans un domaine de 1,0 à 1,5, plus préférentiellement de 1,0 à 1,2.

La silice LS ci-dessus peut avantageusement constituer la totalité de la charge inorganique renforçante.

Mais, à cette silice LS, peut être éventuellement associée une autre charge inorganique renforçante, par exemple une silice renforçante conventionnelle à plus haute surface spécifique. Dans un tel cas, la silice LS constitue de préférence au moins 50% en poids de la charge inorganique renforçante totale, plus préférentiellement encore plus de 80% en poids de cette charge inorganique renforçante totale.

De manière préférentielle, le taux de charge inorganique renforçante, c'est-à-dire de silice LS lorsque cette dernière constitue la totalité de la charge inorganique renforçante, est supérieur à 90 pce, plus préférentiellement compris dans un domaine de 100 à 150 pce, l'optimum étant bien entendu différent selon le type de pneumatique visé.
A la silice LS peut être également associé un noir de carbone conventionnel de grade pneumatique, choisi notamment parmi les noirs du type HAF, ISAF, SAF conventionnellement utilisés dans les bandes de roulement des pneumatiques (par exemple, noirs N115, N134, N234, N330, N339, N347, N375). Ce noir de carbone est alors préférément utilisé en faible proportion, à un taux compris de préférence entre 2 et 20 pce, plus préférentiellement dans un domaine de 5 à 15 pce. Dans les intervalles indiqués, on bénéficie des propriétés colorantes (agent de pigmentation noire) et anti-UV des noirs de carbone, sans pénaliser par ailleurs les performances typiques apportées par la silice LS.

Enfin, l'homme du métier comprendra que, à titre de charge équivalente d'une charge inorganique renforçante, pourrait être utilisée une charge renforçante du type organique, notamment un noir de carbone pour pneumatique, recouvert au moins en partie d'une couche inorganique, notamment de silice, nécessitant quant à elle l'utilisation d'un agent de couplage pour assurer la liaison avec l'élastomère.

II-3. Agent de couplage

On rappelle ici que par "agent de couplage" (charge inorganique/élastomère) on doit entendre, de manière connue, un agent apte à établir une liaison suffisante, de nature chimique et/ou physique, entre la charge inorganique et l'élastomère diénique ; un tel agent de couplage, au moins bifonctionnel, a par exemple comme formule générale simplifiée "Y-T-X", dans laquelle:

- \(Y \) représente un groupe fonctionnel (fonction "Y") qui est capable de se lier physiquement et/ou chimiquement à la charge inorganique, une telle liaison pouvant être établie, par exemple, entre un atome de silicium de l'agent de couplage et les groupes hydroxyde (OH) de surface de la charge inorganique (par exemple les silanols de surface lorsqu'il s'agit de silice);
- \(X \) représente un groupe fonctionnel (fonction "X") capable de se lier physiquement et/ou chimiquement à l'élastomère diénique, par exemple par l'intermédiaire d'un atome de soufre;
- \(T \) représente un groupe organique divalent permettant de relier \(Y \) et \(X \).

On rappelle que les agents de couplage ne doivent pas être confondus avec de simples agents de recouvrement de la charge inorganique qui, de manière connue, peuvent comporter la fonction "Y" active vis-à-vis de la charge inorganique mais sont dépourvus de la fonction "X" active vis-à-vis de l'élastomère diénique.

Des agents de couplage (silice/élastomère diénique), d'efficacité variable, ont été décrits dans un très grand nombre de documents et sont bien connus de l'homme du métier. On peut utiliser tout agent de couplage connu susceptible d'assurer efficacement, dans les compositions de caoutchouc diénique utilisables pour la fabrication de bandes de roulement de pneumatiques, la liaison entre une charge inorganique renforçante telle que silice et un élastomère diénique, en particulier des organosilanes ou des polyorganosiloxanes polyfonctionnels porteurs des fonctions \(X \) et \(Y \) ci-dessus.

Conviennent en particulier pour la mise en œuvre de l'invention, sans que la définition ci-après soit limitative, des silanes polysulfurés symétriques répondant à la formule générale (I) suivante:

(I) \(Z - A - S_n - A - Z \), dans laquelle:

- \(n \) est un entier de 2 à 8 (de préférence de 2 à 5);
- \(A \) est un radical hydrocarboné divalent (de préférence des groupements alkylène en C\(_1\)-C\(_{18}\) ou des groupements arylène en C\(_6\)-C\(_{12}\), plus particulièrement des alkylènes en C\(_1\)-C\(_{10}\), notamment en C\(_1\)-C\(_4\) en particulier le propylène);
- \(Z \) répond à l'une des formules ci-après:

\[
\begin{align*}
R^1 & \quad -\text{Si} - R^1 \\
R^2 & \quad -\text{Si} - R^2 \\
R^2 & \quad -\text{Si} - R^2
\end{align*}
\]

dans lesquelles:

- les radicaux \(R^1 \), substitués ou non substitués, identiques ou différents entre eux, représentent un groupe alkyle en C\(_1\)-C\(_{18}\), cycloalkyle en C\(_2\)-C\(_{18}\) ou aryle en C\(_6\)-C\(_{18}\) (de préférence des groupes alkyle en C\(_1\)-C\(_6\), cyclohexyle ou phényle, notamment des groupes alkyle en C\(_1\)-C\(_4\), plus particulièrement le méthyle et/ou l'éthyle).

- les radicaux \(R^2 \), substitués ou non substitués, identiques ou différents entre eux, représentent un groupe hydroxyde, alkoxyle en C\(_1\)-C\(_{18}\) ou cycloalkoxyde en C\(_2\)-C\(_{18}\) (de préférence un groupe choisi parmi hydroxyde, alkoxyles en C\(_1\)-C\(_8\) et cycloalkoxyles en C\(_3\)-C\(_8\), plus préférentiellement encore un groupe choisi parmi hydroxyde et alkoxyles en C\(_1\)-C\(_4\), en particulier méthoxyde et éthoxyde).

Dans le cas d'un mélange de silanes polysulfurés répondant à la formule (I) ci-dessus, notamment des mélanges usuels disponibles commercialement, on comprendra que la valeur moyenne des "\(n \)" est un nombre fractionnaire, de préférence compris dans un domaine de 2 à 5.

A titre d'exemples de silanes polysulfurés, on citera plus particulièrement les polysulfures (notamment disulfures, trisulfures ou tétrasulfures) de bis-(alkoxy(C\(_1\)-C\(_4\))-alkyl(C\(_1\)-C\(_4\))silylalkyl(C\(_1\)-C\(_4\))), comme par exemple les polysulfures de bis(3-triméthoxysilylpropyl) ou de
bis(3-triéthoxyisilylpropyl). Parmi ces composés, on utilise en particulier le tétrasulfure de bis(3-triéthoxyisilylpropyl), en abrégé TESPT, de formule \([\text{C}_3\text{H}_5\text{O}_3\text{Si(CH}_2)_3\text{S}_2]\) ou le disulfure de bis-(trétholysilylpropyle), en abrégé TESPD, de formule \([\text{C}_3\text{H}_5\text{O}_3\text{Si(CH}_2)_3\text{S}]_2\).

Le TESPD est commercialisé par exemple par la société Degussa sous la dénomination Si75 (sous forme d'un mélange de disulfure - à 75% en poids - et de polysulfures), ou encore par la société Witco sous la dénomination Silquest A1589. Le TESPT est commercialisé par exemple par la société Degussa sous la dénomination Si69 (ou X50S lorsqu'il est supporté à 50% en poids sur du noir de carbone), ou encore par la société Osi Specialties sous la dénomination Silquest A1289 (dans les deux cas, mélange commercial de polysulfures avec une valeur moyenne pour n qui est proche de 4).

L'homme du métier saura ajuster la teneur en agent de couplage dans les compositions de l'invention, en fonction de l'application visée, de la nature de l'élastomère utilisé et de la quantité de silice LS, complétée le cas échéant de toute autre charge inorganique employée à titre de charge renforçante complémentaire.

Il s'est avéré que l'utilisation d'une silice LS, dans les bandes de roulement conformes à l'invention, permet de réduire de manière sensible le taux d'agent de couplage, notamment de silane polysulfuré, par rapport aux taux usuels pratiqués en présence d'une silice conventionnelle à plus haute surface spécifique. Ainsi, dans ces bandes de roulement de l'invention, le taux d'agent de couplage, en particulier de silane polysulfuré, est de préférence compris entre 2 et 5 pce, plus préférentiellement compris dans un domaine de 3 à 4,5 pce. Ramené au poids de charge inorganique renforçante, en particulier de silice LS lorsque cette dernière constitue la totalité de la charge inorganique renforçante, ce taux d'agent de couplage est avantageusement inférieur à 8%, plus préférentiellement inférieur à 6% en poids par rapport au poids de charge inorganique renforçante.

L'agent de couplage utilisé pourrait être préalablement greffé (via la fonction "X") sur l'élastomère diène de la composition de l'invention, l'élastomère ainsi fonctionnalisé ou "précouplé" comportant alors la fonction "Y" libre pour la charge inorganique renforçante. L'agent de couplage pourrait également être préalablement greffé (via la fonction "Y") sur la charge inorganique renforçante, la charge ainsi "précouplée" pouvant ensuite être liée à l'élastomère diène par l'intermédiaire des fonctions libres "X". On préfère toutefois utiliser l'agent de couplage à l'état libre (i.e., non greffé) ou greffé sur la charge inorganique renforçante, notamment pour des raisons de meilleure mise en œuvre des compositions à l'état cru.

Enfin, à l'agent de couplage peut être éventuellement associé un "activateur de couplage" approprié, c'est-à-dire un corps (composé unique ou association de composés) qui, mélangé avec cet agent de couplage, augmente l'efficacité de ce dernier (voir par exemple demandes WO00/5300 et WO00/5301 précitées).

II.4. Système de vulcanisation
Le système de vulcanisation de base est constitué de soufre et d'un accélérateur primaire de vulcanisation. A ce système de vulcanisation de base viennent s'ajouter, incorporés au cours de la première phase non-productive et/ou au cours de la phase productive, divers accélérateurs secondaires ou activateurs de vulcanisation connus.

L'accélérateur primaire de vulcanisation est de préférence un accélérateur du type sulfénamide. L'utilisation de la silice LS permet de réduire sensiblement le taux global de soufre et d'accélérateur sulfénamide à une valeur préférentielle comprise entre 1,25 et 2,75 pce, plus préférentiellement comprise dans un domaine de 1,5 à 2,5 pce, soufre et accélérateur sulfénamide étant par ailleurs chacun utilisés, encore plus préférentiellement, à un taux compris entre 0,5 et 1,5 pce.

Comme accélérateur secondaire de vulcanisation est utilisé préférentiellement un dérivé guanidique, en particulier la diphénylguanidine (DPG), incorporée au cours de la première phase non-productive (mode préférentiel de l'invention) et/ou au cours de la phase productive. Ce dérivé guanidique joue en outre le rôle avantageux d'agent de recouvrement de la silice LS. L'emploi de silice LS permet là encore de réduire avantageusement le taux global de soufre, sulfénamide et dérivé guanidique à une valeur préférentielle comprise dans un domaine de 1,75 à 4,25, plus préférentiellement dans un domaine de 2 à 4 pce.

Lors de la cuisson des bandes de roulement ou des pneumatiques conformes à l'invention, on a observé que l'emploi d'une silice LS, en particulier lorsque cette dernière constitue la totalité de la charge inorganique renforçante, avait toutefois pour inconvénient d'augmenter sensiblement les délais d'induction (temps nécessaires au début de la réaction de vulcanisation), de manière pouvant être jugée rédhibitoire vis-à-vis de conditions de cuisson industrielles.

L'inconvénient ci-dessus a pu être pallié, de manière inattendue, par une réduction sensible du taux de zinc dans la composition de caoutchouc.

Ainsi, selon un mode particulièrement préférentiel de l'invention, est utilisée à titre d'activateur de vulcanisation une très faible quantité de zinc, comprise entre 0,50 et 1,5 pce, plus préférentiellement comprise dans un domaine de 0,7 à 1,3 pce.

Cette quantité de zinc spécifique peut être apportée à la composition de caoutchouc de toute manière connue de l'homme du métier, préférentiellement sous forme d'oxyde de zinc, dans ce cas utilisé par conséquent à un taux préférentiel équivalent compris entre 0,6 et 1,9 pce, plus préférentiellement compris dans un domaine de 0,9 à 1,6 pce.

A cet oxyde de zinc est associé de préférence un acide gras, plus préférentiellement l'acide stéarique, présent à un taux préférentiel de 0,5 à 3 pce, plus préférentiellement de 1 à 3 pce.

Tout ou partie du zinc utilisé peut être également incorporé aux bandes de roulement et à leurs compositions sous forme d'un sel de zinc d'acide gras, notamment sous forme de stéarate de zinc, ou encore d'un autre composé donneur de zinc actif vis-à-vis de la vulcanisation.
Des délais d'induction et donc des temps de cuisson réduits sont notamment avantageux pour les bandes de roulement destinées au rechagage, qu'il s'agisse de rechagage "à froid" (utilisation d'une bande de roulement prévue) ou de rechagage "à chaud" conventionnel (utilisation d'une bande de roulement à l'état cru). Dans ce dernier cas, une durée de cuisson réduite, outre le fait qu'elle diminue les coûts de production, limite la surcuisson (ou post-cuisson) imposée au reste de l'enveloppe ("carcasse") du pneumatique usagé (déjà vulcanisé).

II-5. Additifs divers

Bien entendu, les compositions élastomériques des bandes de roulement conformes à l'invention comportent également tout ou partie des additifs usuels utilisés dans des compositions de caoutchouc destinées à la fabrication de bandes de roulement de pneumatique, comme par exemple des huiles d'extension, des plastifiants, des agents de protection tels que cires anti-ozone, anti-azonants chimiques, anti-oxydants, agents anti-fatigue, des activateurs de couplage, des résines renforçantes, des accepteurs et/ou donneurs de méthylène. A la silice LS peut être également associée, si besoin est, une charge blanche conventionnelle peu ou non renforçante, par exemple des particules d'argile, bentonite, talc, craie, kaolin, utilisables par exemple dans des bandes de roulement de pneumatique colorées.

Les compositions élastomériques peuvent également contenir, en complément des agnets de couplage précédemment décrits, des agents de recouvrement pour charges inorganiques, comportant par exemple la seule fonction Y, ou plus généralement des agents d'aide à la mise en œuvre susceptibles de manière connue, grâce à une amélioration de la dispersion de la charge inorganique renforçante dans la matrice de caoutchouc et à un abaissement de la viscosité des compositions, d'améliorer leur faculté de mise en œuvre à l'état cru ; ces agents, utilisés à un taux préférentiel compris entre 0,5 et 3 pce, sont par exemple des alkylalkoxysilanes, notamment des alkytriéthoxysilanes, comme le 1-octyl-triéthoxysilane commercialisé par la société Degussa-Hüls sous la dénomination Dynasyan Octeo ou le 1-hexa-décyl-triéthoxysilane commercialisé par la société Degussa-Hüls sous la dénomination Si216, des polyols, des polyéthers (par exemple des polyéthylénéglycols), des amines primaires, secondaires ou tertiaires (par exemple des trialcanol-aminés), des polyorganosiloxanes hydroxylés ou hydrolysables, par exemple des α,ω-di-hydroxy-polyorganosiloxanes (notamment des α,ω-dihydroxy-polydiméthylsiloxanes).

II-5. Préparation des compositions et bandes de roulement

Les compositions élastomériques sont fabriquées dans des mélangesurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier : une première phase de travail ou malaxage thermo-mécanique (parfois qualifiée de phase "non-productive") à haute température, jusqu'à une température maximale (notée T_max) comprise entre 110°C et 190°C, de préférence entre 130°C et 180°C, suivie d'une seconde phase de travail mécanique (parfois qualifiée de phase "productive") à plus basse température, typiquement inférieure à 110°C, par exemple entre 40°C et 100°C, phase de finition au cours de laquelle est incorporé le système de vulcanisation de base ; de telles phases ont été décrites par exemple dans les demandes EP 501 227, EP 735 088, WO00/05300 ou WO00/05301 précitées.
Le procédé de fabrication des compositions selon l'invention est caractérisé en ce qu'au moins la silice LS (associée ou non à une autre charge inorganique renforçante ou à un noir de carbone) et l'agent de couplage sont incorporés par malaxage à l'élastomère diénique au cours de la première phase dite non-productive, c'est-à-dire que l'on introduit dans le mélangeur et que l'on malaxe thermomécaniquement, en une ou plusieurs fois, au moins ces différents constituants de base jusqu'à atteindre une température maximale comprise entre 110°C et 190°C, de préférence comprise entre 130°C et 180°C.

Tout ou partie de l'activateur de vulcanisation, constitué par la très faible quantité de zinc comprise entre 0,50 et 1,5 pce, peut être introduit au cours de la phase non-productive ou bien de la phase productive.

A titre d'exemple, la première phase (non-productive) est conduite en une seule étape thermomécanique au cours de laquelle on introduit, dans un mélangeur approprié tel qu'un mélangeur interne usuel, dans un premier temps tous les constituants de base nécessaires (élastomère diénique, charge inorganique renforçante et agent de couplage), puis dans un deuxième temps, par exemple après une à deux minutes de malaxage, les éventuels agents de recouvrement ou de mise en œuvre complémentaires et autres additifs divers, y compris notamment zinc et DPG, à l'exception du système de vulcanisation de base constitué par soufre et accélérateur primaire, en particulier sulfényamide ; la densité apparente de la silice LS étant généralement faible, il peut être avantageux de fractionner son introduction en deux ou plusieurs parties.

Une seconde étape (voire plusieurs) de travail thermomécanique peut être ajoutée dans ce mélangeur interne, après tombe du mélange et refroidissement intermédiaire (température de refroidissement de préférence inférieure à 100°C), dans le but de faire subir aux compositions un traitement thermomécanique complémentaire, notamment pour améliorer encore la dispersion, dans la matrice élastomérique, de la charge inorganique renforçante et de son agent de couplage. La durée totale du malaxage, dans cette phase non-productive, est de préférence comprise entre 2 et 10 minutes.

Après refroidissement du mélange ainsi obtenu, on incorpore alors soufre et accélérateur primaire à basse température, généralement dans un mélangeur externe tel qu'un mélangeur à cylindres ; le tout est alors mélangé (phase productive) pendant quelques minutes, par exemple entre 5 et 15 minutes.

La composition finale ainsi obtenue est ensuite calandrée, par exemple sous la forme de plaques (épaisseur de 2 à 3 mm) ou de fines feuilles de caoutchouc pour la mesure de ses propriétés physiques ou mécaniques, notamment pour une caractérisation au laboratoire, ou encore extrudée pour former des profilés de caoutchouc utilisés directement, après découpage ou assemblage aux dimensions souhaitées, comme bandes de roulement de pneumatiques.

En résumé, le procédé pour préparer une bande de roulement de pneumatique conforme à l’invention comporte les étapes suivantes :

- incorporer à un élastomère diénique, au cours d’une première étape dite "non-productive":
à titre de charge renforçante, plus de 80 pce d'une charge inorganique
constituée en tout ou partie d'une silice présentant les caractéristiques
suitables :
- (a) une surface spécifique BET comprise entre 50 et 100 m²/g;
- (b) une taille moyenne de particules dğer comprise entre 50 et 350 nm;
- et un agent de couplage assurant la liaison entre la silice et l'élastomère
diénique;
- en malaxant thermomécaniquement le tout, en une ou plusieurs fois, jusqu'à atteindre
une température maximale comprise entre 110°C et 190°C;
- refroidir l'ensemble à une température inférieure à 100°C;
- incorporer ensuite, au cours d'une seconde étape dite "productive", du soufre et un
accélérateur primaire de vulcanisation;
- malaxer le tout jusqu'à une température maximale inférieure à 110°C;
- calander ou extruder la composition élastomérique ainsi obtenue sous la forme d'une
bande de roulement de pneumatique.

La vulcanisation ou cuisson de la bande de roulement ou du pneumatique, est conduite de
manière connue à une température préférablement comprise entre 130°C et 200°C, de
préférence sous pression, pendant un temps suffisant qui peut varier par exemple entre 5 et 90
min en fonction notamment de la température de cuisson, du système de vulcanisation adopté,
de la cinétique de vulcanisation de la composition considérée et de la taille du pneumatique.

Les compositions de caoutchouc précédemment décrites à base de silice LS constituent
généralement la totalité de la bande de roulement conforme à l'invention. Mais l'invention
semble également aux cas où ces compositions de caoutchouc forment une partie
seulement d'une bande de roulement du type composite, constituée par exemple de bandes
adjacentes transversalement différentes, ou encore de deux couches radialement superposées
de constitutions différentes, la partie chargée de silice LS pouvant constituer par exemple la
couche radialement externe de la bande de roulement destinée à entrer en contact avec le sol
dès le début du roulage du pneumatique neuf, ou au contraire sa couche radialement interne
destinée à entrer en contact avec le sol ultérieurement.

Il va de soi que la présente invention concerne les bandes de roulement et pneumatiques
précédemment décrits tant à l'état dit "crue" (i.e., avant cuisson) qu'à l'état dit "cuit" ou
vulcanisé (i.e., après vulcanisation).

III. EXEMPLES DE REALISATION DE L'INVENTION

III-1. Charges utilisées

Les caractéristiques des charges utilisées dans les exemples qui suivent sont résumées dans le
tableau 1. La charge notée A est une silice renforçante conventionnelle, à haute surface
spécifique (BET d'environ 160 m²/g), charge inorganique de référence pour le renforcement
des bandes de roulement des "Pneus Verts" (silice "Zeosil 1165MP" de la société Rhodia). La
charge B est une silice à très faible surface spécifique (BET proche de 90 m²/g) destinée
usuellment à des mélanges internes pour calandrage de nappes d'armature sommet de pneumatique (rapport BET/CTAB égal à 1,1).

Les caractéristiques de surface BET et de taille d_w différencient donc nettement les deux charges, la charge B présentant une surface deux fois plus basse par unité de masse et une taille moyenne de particules d_w plus de deux fois supérieure. Les deux silices se caractérisent par ailleurs toutes deux par une haute dispersibilité intrinsèque, illustrée par une vitesse de désagglomération α très élevée (environ $1,25 \times 10^{-2} \, \mu m^3/min$ pour A et $1 \times 10^{-2} \, \mu m^3/min$ pour B).

On note que la silice LS vérifie l'ensemble des caractéristiques préférentielles qui suivent:

- une surface BET comprise dans un domaine de 60 à 90 m2/g ;
- une taille de particules d_w comprise dans un domaine de 150 à 250 nm ;
- une vitesse de désagglomération α au moins égale à $1 \times 10^{-2} \, \mu m^3/min$.

III-2. Préparation des compositions

On procède pour les essais qui suivent de la manière suivante: on introduit dans un mélangeur interne, rempli à 70% et dont la température initiale de cuve est d'environ 60°C, l'élastomère diènique (ou le mélange d'élastomères dièniques, le cas échéant), la charge renforçante, l'agent de couplage, puis, après une à deux minutes de malaxage, les divers autres ingrédients à l'exception du soufre et de l'accélérateur primaire sulfénamide. On conduit alors un travail thermomécanique (phase non-productive) en une ou deux étapes (durée totale du malaxage égale à environ 7 min), jusqu'à atteindre une température maximale de "tombée" d'environ 160-165°C.

On récupère le mélange ainsi obtenu, on le refroidit puis on ajoute soufre et accélérateur sulfénamide sur un mélangeur externe (homo-finisseur) à 30°C, en mélangeant le tout (phase productive) pendant 3 à 4 minutes.

Les compositions sont ensuite soit calandrées sous la forme de plaques (épaisseur de 2 à 3 mm) pour la mesure de leurs propriétés physiques ou mécaniques, soit extrudées directement sous la forme de bandes de roulement de pneumatique.

Dans les essais qui suivent, la silice LS constitue avantageusement la totalité de la charge inorganique renforçante, associée à un faible taux de noir de carbone (moins de 10 pce).

III-3. Essais

Cet essai a pour but de démontrer les performances améliorées d'une composition élastomérique à base de silice LS, comparée à une composition témoin utilisant une silice conventionnelle (haute surface spécifique) pour bande de roulement de "Pneu Vert".

On compare pour cela trois compositions de caoutchouc butadiénique (coupage SBR/BR) destinées à la fabrication de bandes de roulement pour pneumatique tourisme:
- composition notée C-1 (témoins): silice A (60 pce) avec agent de couplage TESPT;
- composition C-2 (invention): silice B (85 pce) avec agent de couplage TESPT;
- composition C-3 (invention): silice B (85 pce) avec agent de couplage TESPD.

L'élastomère butadiénique est constitué d'un SSBR comportant 25% de styrène, 58% de motifs polybutadiène 1-2 et 23% de motifs polybutadiène 1-4 trans, auquel est associé un BR possédant plus de 90% de liaisons cis-1,4. Le taux de charge renforçante totale, constituée par la silice LS et une faible quantité de noir de carbone (moins de 10 pce) est supérieur à 90 pce dans les compositions selon l'invention.

Les tableaux 2 et 3 donnent successivement la formulation des différentes compositions (tableau 2 - taux des différents produits exprimés en pce), leurs propriétés avant et après cuisson à 150°C pendant 40 minutes (tableau 3). La figure annexée reproduit les courbes de module (en MPa) en fonction de l'allongement (en %); ces courbes sont notées C1 à C3 et correspondent respectivement aux compositions C-1 à C-3.

Le taux de silice est donc supérieur de plus de 40% (85 pce au lieu de 60 pce) dans les compositions selon l'invention (C-2 et C-3) qui, comparées à la composition témoin (C-1), présentent par ailleurs les caractéristiques avantageuses suivantes, notamment du point de vue des coûts:

- un taux pondéral d'agent de couplage, par rapport au poids de silice, nettement réduit (moins de 5% comparé à 8% pour la composition témoin);
- un taux global de soufre et accélérateur sulfénamide réduit (2,6 pce au lieu de 3,1 pce), tout comme le taux global de soufre, accélérateur sulfénamide et dérivé guanidique (3,6 pce au lieu de 4,6 pce).

Le taux de ZnO a été réduit de 40% (1,5 pce au lieu de 2,5 pce dans la composition témoin) dans les compositions C-2 et C-3 afin de ramener leur délai d'induction (tᵢ) à une valeur comparable à celle du témoin, un taux de 2,5 pce conduisant par exemple pour la composition C-2 à un délai d'induction augmenté de près de 50%, augmentation jugée rédhibitoire vis-à-vis de conditions de cuisson industrielle.

Ces commentaires sur la formulation étant faits, l'étude des résultats du tableau 3 démontre, pour les compositions à base de silice LS, comparées à la composition témoin:

- une viscosité à l'état cru certes augmentée, mais satisfaisante (au plus 95 UM), en tout cas inférieure à celle qui serait observée pour la composition témoin à isotaux (85 pce) de silice conventionnelle à haute surface spécifique (dans ce dernier cas, plus de 100 UM pour la solution témoin);
- des propriétés rhéométriques au moins équivalentes, sinon améliorées pour la composition C-2 à base d'agent de couplage TESPT, comme illustré par les valeurs T₅, tᵢ, t₁₀, t₀₀₉₀, tᵢ et enfin K;
- des propriétés d'hystérèse équivalentes (ΔG⁺ et tan(δ)ₘₐₓ).
enfin et surtout, de manière encore plus inattendue pour l'homme du métier, des propriétés de renforcement après cuisson qui sont au moins égales voire même supérieures à celles de la solution témoin: dureté Shore équivalente mais modules sous forte déformation (MA100, MA300) et rapport MA300/MA100 nettement plus élevés, autant d'indicateurs clairs d'une haute qualité du renforcement fourni par la silice LS.

La figure annexée confirme bien ces résultats avec, pour des allongements de 100% et plus, un module supérieur dans le cas des compositions C-2 et C-3 (courbes C2 et C3 au-dessus de la courbe C1), preuve d'une forte interaction entre l'élastomère diénique et la silice LS.

De tels résultats doivent être maintenant confrontés à des tests réels de roulage des bandes de roulement, comme exposé dans l'essai 2 qui suit.

B) Essai 2

Les compositions C-1 et C-2 précédentes sont utilisées dans cet essai comme bandes de roulement de pneumatiques tourisme à carrosserie radiale, de dimension 175/70 R14 (indice de vitesse T), conventionnellement fabriqués et en tous points identiques hormis la composition de caoutchouc constitutive de la bande de roulement : composition C-1 pour les "Pneus Verts" témoins (notés P-1), composition C-2 pour les pneus de l'invention (notés P-2).

Les pneumatiques ont d'abord été testés sur machine pour la détermination de leur résistance au roulement et de leur poussée de dérive, puis montés sur véhicule pour la suite des tests.

L'ensemble des résultats de roulement est résumé dans le tableau 4.

On constate tout d'abord que la résistance au roulement des deux types de pneus est équivalente, synonyme d'une faible consommation de carburant pour un véhicule équipé de pneus conformes à l'invention.

On soumet ensuite les pneumatiques à un roulage sur route, sur un véhicule tourisme de marque Citroën Xsara, pour détermination de la résistance à l'usure. De manière connue, la résistance à l'usure de la bande de roulement, au cours du roulage du pneumatique, est directement corrélée au niveau de renforcement apporté par la charge renforçante et son agent de couplage associé. En d'autres termes, la mesure de la résistance à l'usure est un excellent indicateur, sinon le meilleur puisque évalué sur le produit manufacturé final, de la performance globale de la charge inorganique utilisée. On constate alors que le pneumatique conforme à l'invention montre une performance identique à celle du pneumatique témoin.

Ainsi, malgré l'emploi d'une silice à très faible surface spécifique, d'un taux réduit d'agent de couplage et d'agents de vulcanisation, il est possible de maintenir un excellent compromis (résistance au roulement/résistance à l'usure), au moins aussi bon que celui disponible sur des "Pneus Verts" conventionnels renforcés de silice à plus haute surface spécifique, ce qui constitue déjà un résultat remarquable et inattendu pour l'homme du métier.
On constate par ailleurs que la poussée de dérive, indicatrice pour l'homme du métier du comportement routier sur sol sec, est sensiblement augmentée, avec un gain enregistré de 4%.

Les pneumatiques sont enfin montés sur un autre véhicule tourisme pour être soumis aux tests de freinage et d'adhérence décrits au paragraphe I-3, selon les conditions particulières qui suivent:

- freinage (sur sol sec ou humide): véhicule VW modèle "Polo GT" (pressions nominales à l'avant et l'arrière), les pneumatiques à tester étant montés à l'avant du véhicule;
- roulement sur circuit humide virageux: véhicule VW modèle "Golf" (pressions nominales à l'avant et l'arrière), les pneumatiques à tester étant montés à l'avant et à l'arrière du véhicule.

Les pneus P-2 montrent tout d'abord un gain notable de 4% en ce qui concerne le freinage sur sol mouillé. Le test de roulement sur circuit humide et virageux, confirme quant à lui que l'emploi de la silice LS se traduit par une amélioration sensible de l'adhérence, illustrée tant par une diminution du temps minimal nécessaire pour parcourir le circuit en conditions de vitesse limite (temps de parcours réduit d'une seconde au tour) que par l'évolution de la note de comportement attribuée par le pilote (augmentation de 8%), ces deux variations étant très significatives pour un tel test.

En résumé, le pneumatique de l'invention montre un compromis (résistance au roulement/résistance à l'usure/comportement/adhérence) qui est globalement amélioré par rapport à la référence que constituent les bandes de roulement des "Pneus Verts" témoins P-1, avec notamment une amélioration tant du comportement routier que de l'adhérence sur sol mouillé, enneigé ou verglacé.

C) Essai 3

Cet essai confirme l'intérêt d'une silice LS dans une bande de roulement dont la matrice diénique est différente de la précédente, constituée d'un coupage d'élastomère butadiénique (BR) et de caoutchouc naturel. La bande de roulement est destinée à des pneumatiques tourisme du type "hiver" à adhérence élevée sur neige et glace.

Les deux compositions testées se différencient essentiellement par les caractéristiques suivantes:

- composition C-4 (témoin): silice A (65 pce);
- composition C-5 (conforme à l'invention): silice B (85 pce).

Les tableaux 5 et 6 donnent successivement la formulation des différentes compositions (tableau 5 - taux des différents produits exprimés en pce), leurs propriétés avant et après cuisson à 150°C pendant 40 minutes (tableau 6).

Le taux de silice est donc nettement supérieur dans la bande de roulement selon l'invention, dont le taux de charge renforçante totale (silice LS plus noir de carbone) est supérieur à
90 pce. L’agent de couplage est le TESPT dans les deux cas, son taux pondéral par rapport au poids de silice étant cependant nettement réduit dans la bande de roulement selon l’invention (moins de 5% comparé à 8,7% pour la solution témoin).

L’étude des résultats du tableau 6 démontre que la composition à base de silice LS, comparée à la composition témoin, se caractérise notamment par :

- une viscosité à l’état cru équivalente;
- un temps de grillage T5 certes augmenté, mais pouvant être corrigé par une réduction du taux de zinc (T5 < 20 min pour 1,5 pce de ZnO);
- après cuisson, des propriétés de renforcement qui apparaissent améliorées par rapport à celles de la solution témoin (MA100, MA300 et rapport MA300/MA100 plus élevés), indicateur clair d’un haut niveau de renforcement et donc de résistance à l’usure pour la bande de roulement de l’invention;
- enfin, des propriétés d’hystérésis qui sont sensiblement améliorées (valeurs nettement plus faibles pour ΔG* et tan(δ)_{max}), laissant présager une résistance au roulement réduite.

Les compositions C-4 et C-5 ont ensuite été testées comme bandes de roulement de pneus hiver, de dimension 175/70 R14, conventionnellement fabriquées et en tous points identiques hormis la composition utilisée : C-4 pour les pneus témoins (notes P-4), C-5 pour les pneus de l’invention (notes P-5). Les pneumatiques ont été testés sur machine et sur véhicule, conformément aux indications de l’essai précédent et du paragraphe I-3, pour détermination d’une part de leur résistance au roulement d’une part, d’autre part de leur adhérence (test de freinage) tant sur sol humide que sur glace.

Les résultats de roulement du tableau 7 montre la supériorité des pneumatiques conformes à l’invention, les performances de résistance au roulement, de freinage sur sol mouillé et de freinage sur glace étant toutes trois améliorées, résultat particulièrement avantageux pour des pneumatiques du type hiver.

En résumé, les silices spécifiques répondant aux caractéristiques décrites ci-avant, à très basse surface spécifique et de préférence à haute dispersibilité, lorsqu’elles sont utilisées dans les bandes de roulement à un taux de charge inorganique renforçante aussi élevé que celui préconisé, se sont révélées, de manière inattendue pour l’homme du métier, capables d’offrir à ces bandes de roulement un compromis global de performances au roulement amélioré, tout en permettant de réduire leur surcoût grâce à une diminution possible des taux d’agent de couplage comme de ceux des agents de vulcanisation.

Comparées aux silices à haute surface spécifique, les silices LS précédemment décrites, grâce à leur surface spécifique nettement réduite, présentent de nombreux avantages :

- moins d’interactions parasites, d’une part entre les particules de silice elles-mêmes (risques réduits de ré-agglomération dans la matrice de caoutchouc), d’autre part entre les particules de silice et les autres additifs de caoutchouterie;
- amélioration globale de la dispersibilité dans la matrice diénique, lors des opérations de malaxage, et donc de la mise en œuvre des composition à l'état cru;

- réduction possible des quantités d'agent de couplage et d'agents de vulcanisation, en particulier de soufre et d'accélérateur sulfénamide, ce qui conduit à une diminution des coûts de la formulation.

Si, en contrepartie, ces silices LS présentent certes l'inconvénient d'allonger les délais d'induction lors de la cuisson des bandes de roulement, il a été trouvé que ce problème pouvait être résolu grâce à l'utilisation d'une très faible quantité de zinc dans les compositions, contribuant du même coup à la réduction des coûts industriels.
Tableau 1

<table>
<thead>
<tr>
<th>charge silice :</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface BET (m²/g)</td>
<td>160</td>
<td>89</td>
</tr>
<tr>
<td>d_w (nm)</td>
<td>85</td>
<td>206</td>
</tr>
</tbody>
</table>

(A) silice à haute surface spécifique BET (CTAB : 157,5 m²/g);
(B) silice à très basse surface spécifique BET (CTAB : 81 m²/g).

Tableau 2

<table>
<thead>
<tr>
<th>Composition N°:</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR (1)</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
</tr>
<tr>
<td>BR (2)</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>silice A</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>silice B</td>
<td>-</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>noir de carbone (3)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>huile aromatique (4)</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>TESPT (5)</td>
<td>4.8</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>TESP (6)</td>
<td>-</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>DPG (7)</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>zinc (ZnO) (8)</td>
<td>2 (2.5)</td>
<td>1.2 (1.5)</td>
<td>1.2 (1.5)</td>
</tr>
<tr>
<td>acide stéarique</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>paraffine (9)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>antioxydant (10)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>soufre</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>accéléranteur (11)</td>
<td>1.8</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

(1) SSBR avec 59,5% de motifs polybutadiène 1-2 ; 26,5% de styrène ; $T_g = -29°C$; 75 pce SBR sec étendu avec 18% en poids d'huile aromatique (soit un total SSBR + huile égal à 88,5 pce);
(2) BR avec 4,3 % de 1-2 ; 2,7% de trans ; 93% de cis 1-4 ($T_g = -106°C$);
(3) noir de carbone N234;
(4) huile aromatique sous forme libre ("Enerflex 65" de la société BP);
(5) TESPT ("Si69" de la société Degussa);
(6) TESP ("Si75" de la société Degussa);
(7) diphénylguanidine ("Vulcadt D" de la société Bayer);
(8) zinc apporté sous forme de ZnO (grade caoutchouc);
(9) mélange de cires anti-ozone macro- et micro-cristallines;
(10) N-1,3-diméthylbutil-N-phenyl-para-phénylénediamine ("Santoflex 6-PPD" de la société Flexsys);
Tableau 3

<table>
<thead>
<tr>
<th>Composition N°:</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propriétés avant cuisson:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mooney</td>
<td>81</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>T5 (min)</td>
<td>27</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>BR (%)</td>
<td>43</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>tₖ (min)</td>
<td>12.7</td>
<td>10.2</td>
<td>12.5</td>
</tr>
<tr>
<td>tₙ₀ (min)</td>
<td>25.6</td>
<td>22.1</td>
<td>22.7</td>
</tr>
<tr>
<td>tₙ₀- tₖ (min)</td>
<td>12.9</td>
<td>11.9</td>
<td>10.2</td>
</tr>
<tr>
<td>K (min⁻¹)</td>
<td>0.18</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>Propriétés après cuisson:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dureté Shore</td>
<td>60.8</td>
<td>61.2</td>
<td>60.3</td>
</tr>
<tr>
<td>MA10 (MPa)</td>
<td>4.29</td>
<td>4.00</td>
<td>3.91</td>
</tr>
<tr>
<td>MA100 (MPa)</td>
<td>1.54</td>
<td>1.85</td>
<td>1.64</td>
</tr>
<tr>
<td>MA300 (MPa)</td>
<td>1.97</td>
<td>2.85</td>
<td>2.30</td>
</tr>
<tr>
<td>MA300/MA100</td>
<td>1.28</td>
<td>1.54</td>
<td>1.41</td>
</tr>
<tr>
<td>ΔG* (40°C)</td>
<td>1.87</td>
<td>1.92</td>
<td>1.74</td>
</tr>
<tr>
<td>tan(δ)max (40°C)</td>
<td>0.204</td>
<td>0.196</td>
<td>0.203</td>
</tr>
<tr>
<td>contrainte rupture (MPa)</td>
<td>22.6</td>
<td>20.7</td>
<td>20.1</td>
</tr>
<tr>
<td>allongement rupture (%)</td>
<td>600</td>
<td>470</td>
<td>540</td>
</tr>
</tbody>
</table>

Tableau 4

<table>
<thead>
<tr>
<th>Propriétés (en unités relatives)</th>
<th>P-1</th>
<th>P-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance au roulement :</td>
<td>100</td>
<td>100.5</td>
</tr>
<tr>
<td>Résistance à l'usure :</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Poussée de dérive :</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>Freinage sur sol sec :</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Freinage sur sol humide :</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>Performance en circuit humide et virageux :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- temps de parcours :</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>- note de comportement :</td>
<td>100</td>
<td>108</td>
</tr>
</tbody>
</table>

(une valeur supérieure à 100 indique une performance améliorée par rapport au témoin – base 100)
Tableau 5

<table>
<thead>
<tr>
<th>Composition N°:</th>
<th>C-4</th>
<th>C-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR (1)</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>BR (2)</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>silice A</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td>silice B</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>noir de carbone (3)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>huile aromatique (4)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>huile paraffinique (6)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>TESPT (5)</td>
<td>5.2</td>
<td>3.8</td>
</tr>
<tr>
<td>DPG (7)</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>ZnO (8)</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>acide stéarique</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>paraffine (9)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>antioxydant (10)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>soufre</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>accélérateur (11)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

(1) caoutchouc naturel ;
(3) noir de carbone N330 ;
(6) "Flexon 815" de la société Shell;
(autres indices: idem tableau 1)
Tableau 6

<table>
<thead>
<tr>
<th>Composition N°:</th>
<th>C-4</th>
<th>C-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propriétés avant cuisson:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mooney (UM)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>T5 (min)</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Propriétés après cuisson:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dureté Shore</td>
<td>56.7</td>
<td>54.6</td>
</tr>
<tr>
<td>MA10 (MPa)</td>
<td>3.79</td>
<td>2.83</td>
</tr>
<tr>
<td>MA100 (MPa)</td>
<td>1.20</td>
<td>1.23</td>
</tr>
<tr>
<td>MA300 (MPa)</td>
<td>1.04</td>
<td>1.24</td>
</tr>
<tr>
<td>MA300/MA100</td>
<td>0.87</td>
<td>1.01</td>
</tr>
<tr>
<td>ΔG* (0°C)</td>
<td>2.38</td>
<td>1.42</td>
</tr>
<tr>
<td>tan(δ)\text{max} (0°C)</td>
<td>0.26</td>
<td>0.17</td>
</tr>
<tr>
<td>contrainte rupture (MPa)</td>
<td>19.7</td>
<td>15.9</td>
</tr>
<tr>
<td>allongement rupture (%)</td>
<td>770</td>
<td>640</td>
</tr>
</tbody>
</table>

Tableau 7

<table>
<thead>
<tr>
<th>Propriétés (en unités relatives)</th>
<th>P-4</th>
<th>P-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance au roulement</td>
<td>100</td>
<td>106</td>
</tr>
<tr>
<td>Freinage sur sol humide</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Freinage sur glace</td>
<td>100</td>
<td>102</td>
</tr>
</tbody>
</table>

(une valeur supérieure à 100 indique une performance améliorée par rapport au témoin – base 100)
REVENDICATIONS

1. Bande de roulement de pneumatique incorporant une composition élastomérique renforcée d'une charge inorganique, à base d'au moins (pce = parties en poids pour cent parties d'élastomère diéniq̱ue):
 (i) un élastomère diéniq̱ue;
 (ii) à titre de charge renforçante, plus de 80 pce d'une charge inorganique constituée en tout ou partie d'une silice dite "LS" présentant les caractéristiques suivantes:
 (a) une surface spécifique BET comprise entre 50 et 100 m²/g;
 (b) une taille moyenne de particules dₜ compris entre 50 et 350 nm;
 (iii) un agent de couplage assurant la liaison entre la charge inorganique renforçante et l'élastomère diéniq̱ue;
 (iv) un système de vulcanisation à base de soufre.

2. Bande de roulement selon la revendication 1, l'élastomère diéniq̱ue comportant au moins 40 pce, de préférence au moins 50 pce d'un élastomère butadiéniq̱ue.

3. Bande de roulement selon la revendication 2, l'élastomère butadiéniq̱ue étant choisi parmi les polybutadiènes (BR), les copolymères de styène-butadiène (SBR) et les mélanges de ces élastomères.

4. Bande de roulement selon l'une quelconque des revendications 1 à 3, le taux de charge inorganique renforçante étant supérieur à 90 pce.

5. Bande de roulement selon la revendication 4, le taux de charge inorganique renforçante étant compris entre 90 pce et 150 pce.

6. Bande de roulement selon l'une quelconque des revendications 1 à 5, la silice LS représentant au moins 50% en poids de la charge inorganique renforçante.

7. Bande de roulement selon la revendication 6, la silice LS représentant plus de 80% en poids de la charge inorganique renforçante.

8. Bande de roulement selon la revendication 7, la silice LS représentant la totalité de la charge inorganique renforçante.

9. Bande de roulement selon l'une quelconque des revendications 1 à 8, l'agent de couplage étant choisi parmi les silanes et polysiloxanes polyfonctionnels.

10. Bande de roulement selon la revendication 9, l'agent de couplage étant un silane polysulfuré.

11. Bande de roulement selon la revendication 10, la quantité de silane polysulfuré étant comprise entre 2 et 5 pce.
12. Bande de roulement selon la revendication 11, la quantité de silane polysulfuré étant comprise dans un domaine de 3 à 4,5 pce.

13. Bande de roulement selon l'une quelconque des revendications 1 à 12, comportant du noir de carbone.

14. Bande de roulement selon la revendication 13, le noir de carbone étant présent à un taux compris entre 2 et 20 pce.

15. Bande de roulement selon la revendication 14, le noir de carbone étant présent à un taux compris dans un domaine de 5 à 15 pce.

16. Bande de roulement selon l'une quelconque des revendications 1 à 15, la silice LS présentant au moins l'une des caractéristiques suivantes :

- une surface BET comprise dans un domaine de 60 à 90 m²/g ;
- une taille de particules dₜ comprise entre 100 et 300 nm ;
- une vitesse de désagrégation α supérieure à 5.10⁻³ μm⁻¹/min.

17. Bande de roulement selon la revendication 16, la silice LS présentant au moins l'une des caractéristiques suivantes :

- une taille de particules dₜ comprise dans un domaine de 150 à 250 nm ;
- une vitesse de désagrégation α au moins égale à 1.10⁻² μm⁻¹/min.

18. Bande de roulement selon la revendication 17, la silice LS présentant l'ensemble des caractéristiques suivantes :

- une surface BET comprise dans un domaine de 60 à 90 m²/g ;
- une taille de particules dₜ comprise dans un domaine de 150 à 250 nm ;
- une vitesse de désagrégation α au moins égale à 1.10⁻² μm⁻¹/min.

19. Bande de roulement selon l'une quelconque des revendications 1 à 18, l'élastomère butadiénique constituant la totalité de l'élastomère diénique.

20. Bande de roulement selon l'une quelconque des revendications 2 à 19, l'élastomère butadiénique comportant, de préférence à titre majoritaire, un élastomère SBR.

21. Bande de roulement selon la revendication 20, le SBR étant un SBR ayant une teneur en styrène comprise entre 20% et 30% en poids, une teneur en liaisons vinyliques de la partie butadiénique comprise entre 15% et 65%, une teneur en liaisons trans-1,4 comprise entre 20% et 75% et une température de transition vitreuse comprise entre -20°C et -55°C.

22. Bande de roulement selon les revendications 20 ou 21, le SBR étant un SBR préparé en solution (SSBR).
23. Bande de roulement selon l'une quelconque des revendications 20 à 22, le SBR étant utilisé en mélange avec un élastomère BR.

24. Bande de roulement selon la revendication 23, l'élastomère BR possédant plus de 90% de liaisons cis-1,4.

25. Bande de roulement selon l'une quelconque des revendications 1 à 24, le système de vulcanisation comportant un accélérateur primaire sulfénamide, le taux global de soufre et d'accélérateur sulfénamide étant compris dans un domaine de 1,25 à 2,75 pce.

26. Bande de roulement selon la revendication 25, le système de vulcanisation comportant en outre un dérivé guanidique, le taux global de soufre, de sulfénamide et de dérivé guanidique étant compris dans un domaine de 1,75 à 4,25 pce.

27. Bande de roulement selon la revendication 26, le dérivé guanidique étant la DPG (diphénylguanidine).

28. Bande de roulement selon l'une quelconque des revendications 1 à 27, le système de vulcanisation comportant, à titre d'activateur de vulcanisation, entre 0,5 et 1,5 pce de zinc.

29. Bande de roulement selon la revendication 28, le zinc étant apporté sous forme d'oxyde de zinc, de préférence en présence d'un acide gras.

30. Bande de roulement selon la revendication 29, l'acide gras étant l'acide stéarique, présent à un taux préférentiel de 0,5 à 3 pce.

31. Bande de roulement selon l'une quelconque des revendications 28 à 30, la quantité de zinc étant comprise dans un domaine de 0,7 à 1,3 pce.

32. Bande de roulement selon l'une quelconque des revendications 1 à 31, caractérisée en ce qu'elle se trouve à l'état vulcanisé.

33. Procédé pour préparer une bande de roulement de pneumatique vulcanisable au soufre, à compromis de performances (résistance à l'usure/résistance au roulement/adhérence/poussée de dérive) amélioré, à base d'élastomère diénique, d'une charge inorganique renforçante et d'un système de vulcanisation, comportant les étapes suivantes (pce = parties en poids pour cent d'élastomère diénique):

- incorporer à un élastomère diénique, au cours d'une première étape dite "non-productive", au moins :
 - à titre de charge renforçante, plus de 80 pce d'une charge inorganique constituée en tout ou partie d'une silice (ci-après silice "LS") présentant les caractéristiques suivantes :
 - (a) une surface spécifique BET comprise entre 50 et 100 m²/g ;
 - (b) une taille moyenne de particules d_w comprise entre 50 et 350 nm ;
 - et un agent de couplage assurant la liaison entre la silice et l'élastomère diénique,
- 35 -

- en malaxant thermomécaniquement le tout, en une ou plusieurs fois, jusqu'à atteindre une température maximale comprise entre 110°C et 190°C;
- refroidir l'ensemble à une température inférieure à 100°C;
- incorporer ensuite, au cours d'une seconde étape dite "productive", du soufre et un accélérateur primaire de vulcanisation;
- malaxer le tout jusqu'à une température maximale inférieure à 110°C;
- calander ou extruder la composition élastomérique ainsi obtenue sous la forme d'une bande de roulement de pneumatique.

34. Procédé selon la revendication 33, l'élastomère diénique comportant au moins 40 pce, de préférence au moins 50 pce d'un élastomère butadiénique.

35. Procédé selon la revendication 34, l'élastomère diénique étant choisi parmi les polybutadiènes (BR), les copolymères de styrène-butadiène (SBR) et les mélanges de ces élastomères.

36. Procédé selon l'une quelconque des revendications 33 à 35, le taux de charge inorganique renforçante étant supérieur à 90 pce.

37. Procédé selon la revendication 36, le taux de charge inorganique renforçante étant compris entre 90 pce et 150 pce.

38. Procédé selon l'une quelconque des revendications 33 à 37, la silice LS représentant au moins 50% en poids de la charge inorganique renforçante.

39. Procédé selon la revendication 38, la silice LS représentant plus de 80% en poids de la charge inorganique renforçante.

40. Procédé selon la revendication 39, la silice LS représentant la totalité de la charge inorganique renforçante.

41. Procédé selon l'une quelconque des revendications 33 à 40, l'accélérateur primaire étant un accélérateur sulfénamide et le taux global de soufre et d'accélérateur sulfénamide étant compris dans un domaine de 1,25 à 2,75 pce.

42. Procédé selon la revendication 41, un dérivé guanidique étant en outre incorporé, le taux global de soufre, de sulfénamide et de dérivé guanidique étant compris dans un domaine de 1,75 à 4,25 pce.

43. Procédé selon la revendication 42, le dérivé guanidique étant incorporé au cours de la phase non-productive.

44. Procédé selon les revendications 42 ou 43, le dérivé guanidique étant la DPG (diphenylguanidine).

45. Procédé selon l'une quelconque des revendications 33 à 44, le système de vulcanisation comportant, à titre d'activateur de vulcanisation, entre 0,5 et 1,5 pce de zinc.
46. Procédé selon la revendication 45, le zinc étant apporté sous forme d'oxyde de zinc, de préférence en présence d'un acide gras.

47. Procédé selon la revendication 46, l'acide gras étant l'acide stéarique, présent à un taux préférentiel de 0,5 à 3 pce.

48. Procédé selon l'une quelconque des revendications 33 à 47, l'agent de couplage étant choisi parmi les silanes et polysiloxanes polyfonctionnels.

49. Procédé selon la revendication 48, l'agent de couplage étant un silane polysulfuré.

50. Procédé selon la revendication 49, la quantité de silane polysulfuré étant comprise entre 2 et 5 pce.

51. Procédé selon l'une quelconque des revendications 33 à 50, du noir de carbone étant en outre incorporé au cours de la phase non-productive, à un taux préférentiel compris dans un domaine de 5 à 15 pce.

52. Procédé selon l'une quelconque des revendications 33 à 51, la silice LS présentant au moins l'une des caractéristiques suivantes :

- une surface BET comprise dans un domaine de 60 à 90 m2/g ;
- une taille de particules d_w comprise entre 100 et 300 nm ;
- une vitesse de désagrégation α supérieure à 5.10^{-3} μm$^{-1}$/min.

53. Procédé selon la revendication 52, la silice LS présentant au moins l'une des caractéristiques suivantes :

- une taille de particules d_w comprise dans un domaine de 150 à 250 nm ;
- une vitesse de désagrégation α au moins égale à 1.10^{-2} μm$^{-1}$/min.

54. Procédé selon la revendication 53, la silice LS présentant l'ensemble des caractéristiques suivantes :

- une surface BET comprise dans un domaine de 60 à 90 m2/g ;
- une taille de particules d_w comprise dans un domaine de 150 à 250 nm ;
- une vitesse de désagrégation α au moins égale à 1.10^{-2} μm$^{-1}$/min.

55. Utilisation à titre de charge inorganique renforçante, dans une bande de roulement de pneumatique à base d'élastomère diénique, d'une silice ayant les caractéristiques suivantes :

(a) une surface spécifique BET comprise entre 50 et 100 m2/g ;
(b) une taille moyenne (en masse) de particules comprise entre 50 et 350 nm ;
56. Utilisation selon la revendication 55, la silice présentant au moins l'une des caractéristiques suivantes :
 - une surface BET comprise dans un domaine de 60 à 90 m²/g ;
 - une taille de particules dₜ comprising entre 100 et 300 nm ;
 - une vitesse de désagglomération α supérieure à 5.10⁻³ μm⁻¹/min.

57. Utilisation selon la revendication 56, la silice présentant au moins l'une des caractéristiques suivantes :
 - une taille de particules dₜ comprising dans un domaine de 150 à 250 nm ;
 - une vitesse de désagglomération α au moins égale à 1.10⁻² μm⁻¹/min.

58. Utilisation selon la revendication 57, la silice présentant l'ensemble des caractéristiques suivantes :
 - une surface BET comprise dans un domaine de 60 à 90 m²/g ;
 - une taille de particules dₜ comprising dans un domaine de 150 à 250 nm ;
 - une vitesse de désagglomération α au moins égale à 1.10⁻² μm⁻¹/min.

59. Utilisation d'une bande de roulement conforme à l'une quelconque des revendications 1 à 32 pour la fabrication ou le rechapage de pneumatiques.

60. Pneumatique comportant une bande de roulement selon l'une quelconque des revendications 1 à 32.
Figure
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- IPC 7 C08K9/12
- IPC 3/36
- B60C1/00
- C08L9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- IPC 7 C08K
- B60C
- C08L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

- EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 1 439 247 A (DEGUSSA) 16 June 1976 (1976-06-16) page 4, line 5 - line 55 page 5, line 11 - line 48 examples 3, 4, 6, 8, 9 claims 1-14</td>
<td>1-13, 16, 17, 19-32, 55-57, 59, 60</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>14, 15, 18, 33-54, 58</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patient family members are listed in annex.

- * Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search: 1 November 2002

Date of mailing of the international search report: 12/11/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentliaan 2 NL-2280 HJ Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Denis, C
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| Y | US 6 169 137 B1 (VASSEUR DIDIER)
2 January 2001 (2001-01-02)
column 2, line 66 - column 3, line 40
column 4, line 36 - line 59
column 5, line 49 - line 51
column 7, line 50 - line 63
tables 1-4
claims 1-4 | 14, 15, 18, 33-54, 58 |
| Y | US 5 882 617 A (PRAT EVELYNE ET AL)
16 March 1999 (1999-03-16)
column 8, line 29 - line 35
column 15, line 36 - line 57
example 9
claims 1-3 | 18, 33-54, 58 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AR 200663 A1</td>
<td>29-11-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 327536 B</td>
<td>10-02-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 949373 A</td>
<td>15-04-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6244873 A</td>
<td>15-05-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 807222 A1</td>
<td>13-05-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 25805 A3</td>
<td>12-12-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 991836 A1</td>
<td>29-06-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 592131 A5</td>
<td>14-10-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS 198130 B2</td>
<td>30-05-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 107935 A5</td>
<td>20-08-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 420455 A1</td>
<td>16-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2206330 A1</td>
<td>07-06-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 168915 B</td>
<td>28-08-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 43615 A</td>
<td>31-10-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 140550 A1</td>
<td>27-11-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 997728 B</td>
<td>30-12-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 847026 C</td>
<td>28-02-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 50000031 A</td>
<td>06-01-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 51020208 B</td>
<td>23-06-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 68780 A1</td>
<td>06-03-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7315530 A ,B</td>
<td>15-05-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 12064 A</td>
<td>18-10-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 87778 B1</td>
<td>31-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 67260 A1</td>
<td>24-09-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 396760 B</td>
<td>03-10-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU 522804 A3</td>
<td>25-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3873489 A</td>
<td>25-03-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3997356 A</td>
<td>14-12-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4076550 A</td>
<td>28-02-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7308688 A</td>
<td>25-09-1974</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT 179441 T</td>
<td>15-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 711399 B2</td>
<td>14-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4206096 A</td>
<td>01-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2166660 A1</td>
<td>21-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1134347 A ,B</td>
<td>30-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69602212 D1</td>
<td>02-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69602212 T2</td>
<td>19-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0722977 A1</td>
<td>24-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2130700 T3</td>
<td>01-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8230411 A</td>
<td>10-09-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5871597 A</td>
<td>16-02-1999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 6001322 A</td>
<td>14-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6214912 B1</td>
<td>10-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 210075 T</td>
<td>15-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 686241 B2</td>
<td>05-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7816494 A</td>
<td>18-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9405617 A</td>
<td>08-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2150368 A1</td>
<td>06-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1114833 A ,B</td>
<td>10-01-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69429331 D1</td>
<td>17-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69429331 T2</td>
<td>31-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 670814 T3</td>
<td>17-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0670814 A1</td>
<td>13-09-1995</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>US 5882617 A</td>
<td></td>
<td>FI 952606 A</td>
<td>29–05–1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9509128 A1</td>
<td>06–04–1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8501527 T</td>
<td>20–02–1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 670814 T</td>
<td>31–05–2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2087417 C1</td>
<td>20–08–1997</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 CO8K9/12 CO8K3/36 B60C1/00 CO8L9/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINE SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 CO8K B60C CO8L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie *</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td>14,15, 18, 33-54,58</td>
</tr>
</tbody>
</table>

* Catégories spéciales de documents cités:

A document définissant l'état général de la technique, non considéré comme particulièrement pertinent

E document antérieur, mais publié à la date de dépôt international ou après cette date

L document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)

O document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

p document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

X Voir la suite du cadre C pour la fin de la liste des documents

X Les documents de familles de brevets sont indiqués en annexe

* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

X document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

Y document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

* & document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée 1 novembre 2002

Data d'expédition du présent rapport de recherche internationale 12/11/2002

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5816 Patentlon 2 NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3016

Fonctionnaire autorisé
Denis, C
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5 882 617 A (PRAT EVELYNE ET AL) 16 mars 1999 (1999-03-16) colonne 8, ligne 29 – ligne 35 colonne 15, ligne 36 – ligne 57 exemple 9 revendications 1-3</td>
<td>18, 33-54,58</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 1439247</td>
<td>16-06-1976</td>
<td>DE 2255577 A</td>
<td>06-06-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 200663 A</td>
<td>29-11-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 327536 B</td>
<td>10-02-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 949373 A</td>
<td>15-04-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6244873 A</td>
<td>15-05-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 807222 A</td>
<td>13-05-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 25805 A3</td>
<td>12-12-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 991836 A</td>
<td>29-06-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 592131 A5</td>
<td>14-10-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS 198130 B2</td>
<td>30-05-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 107935 A5</td>
<td>20-08-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 420455 A1</td>
<td>16-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2206330 A1</td>
<td>07-06-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 168915 B</td>
<td>28-08-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 43615 A</td>
<td>31-10-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 140550 A1</td>
<td>27-11-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 997728 B</td>
<td>30-12-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 847026 C</td>
<td>28-02-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 50000031 A</td>
<td>06-01-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 51020208 B</td>
<td>23-06-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 68780 A1</td>
<td>06-03-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7315530 A ,B</td>
<td>15-05-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 12064 A</td>
<td>18-10-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 87778 B1</td>
<td>31-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 67260 A1</td>
<td>24-09-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 396760 B</td>
<td>03-10-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU 522804 A3</td>
<td>25-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3873489 A</td>
<td>25-03-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3997356 A</td>
<td>14-12-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4076550 A</td>
<td>28-02-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7308688 A</td>
<td>25-09-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 179441 T</td>
<td>15-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 711399 B2</td>
<td>14-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4206096 A</td>
<td>01-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2166660 A1</td>
<td>21-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1134347 A ,B</td>
<td>30-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69602212 D1</td>
<td>02-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69602212 T2</td>
<td>19-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0722977 A1</td>
<td>24-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2130700 T3</td>
<td>01-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8230411 A</td>
<td>10-09-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5871597 A</td>
<td>16-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6001322 A</td>
<td>14-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6214912 B1</td>
<td>10-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 210075 T</td>
<td>15-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 686241 B2</td>
<td>05-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7816494 A</td>
<td>18-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9405617 A</td>
<td>08-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2150368 A1</td>
<td>06-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1114833 A ,B</td>
<td>10-01-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69429331 D1</td>
<td>17-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69429331 T2</td>
<td>31-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 670814 T3</td>
<td>17-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0670814 A1</td>
<td>13-09-1995</td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
<td>Date de publication</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>US 5882617 A</td>
<td></td>
<td>FI 952606 A</td>
<td>29-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9509128 A1</td>
<td>06-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8501527 T</td>
<td>20-02-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 670814 T</td>
<td>31-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2087417 C1</td>
<td>20-08-1997</td>
</tr>
</tbody>
</table>