发明名称
一种轴类零件键槽对称度的测量方法

摘要
本发明属于键槽对称度测量技术领域，尤其涉及一种轴类零件键槽对称度的测量方法，包括：步骤一：测量轴类零件中心线的高度 h1；步骤二：测量量块中心线的高度 h2；步骤三：计算轴类零件的中心线与量块的中心线之间的距离 x，并将 x 与设计图纸上轴类零件的中心线与量块的中心线之间的距离 x’ 进行对比，以此来确定键槽对称度的偏差；利用了键槽及量块来测量键槽的对称度，在没有专业测量设备及检具的情况下可以精确地测量轴类零件的键槽对称度，以简单的方法较快较准确地对工件参数进行测量，解决了用三坐标测量仪多次测量同一轴类零件的键槽对称度测量结果一致性差以及无法测量小键槽对称度的问题。
1. 一种轴类零件键槽对称度的测量方法，其特征在于，所述轴类零件键槽对称度的测量方法包括如下步骤：

步骤一：测量轴类零件的中心线高度 H

将 V 型铁放在工作平台上，并将轴类零件安放到所述 V 型铁的 V 型槽里；将高度尺放置在所述工作平台上，并将杠杆千分表安装在所述高度尺上，利用安装在所述高度尺上的所述杠杆千分表将所述轴类零件找平，利用所述高度尺找到所述轴类零件的外径最高点，读取所述高度尺的示数 a；利用外径测量工具测量所述轴类零件的外径尺寸 b，则 a-b/2 即是所述轴类零件的中心线高度 H；

步骤二：测量量块的中心线高度 h

将与所述键槽相适配的量块放入键槽中，利用安装在所述高度尺上的所述杠杆千分表将所述量块找平，并用所述高度尺测量所述量块上侧面的高度尺寸 d，则 d 减去所述量块厚度的一半 e 即是量块中心线的高度 h；

步骤三：计算轴类零件的中心线与量块的中心线之间的距离 X

X = h-H，并将 X 与设计图纸上轴类零件的中心线与量块的中心线之间的距离 X' 进行对比，以此来确定键槽对称度的偏差。

2. 根据权利要求 1 所述的轴类零件键槽对称度的测量方法，其特征在于，所述高度尺为数显高度尺。

3. 根据权利要求 1 或 2 所述的轴类零件键槽对称度的测量方法，其特征在于，所述外径测量工具为千分尺。
一种轴类零件键槽对称度的测量方法

技术领域

[0001] 本发明属于键槽对称度测量技术领域，尤其涉及一种轴类零件键槽对称度的测量方法。

背景技术

[0002] 轴类零件是常用的机械零部件，例如柴油机用的凸轮轴，凸轮轴是活塞发动机里的一个重要部件，一端是轴承支撑点，另一端与驱动轮相连接，在凸轮轴的轴体上设有若干个凸轮，通过凸轮轴带动凸轮旋转而控制气门的开启和闭合动作。之前一直是设置在凸轮轴端面的圆柱销为参照基准的，圆柱销的位置度尺寸都是通过三坐标测量仪来进行测量的，测量结果很准确，随着产品的更新换代及技术发展，现在的新产品几乎都是以设置在凸轮轴上的平键作为参照基准的，所以对键槽的对称度要求尺寸非常严格，加工中心完成后需要进行对称度测量，根据测量结果调节机床，对称度的测量是用三坐标测量仪进行测量，多次测量同一工件结果误差较大，一致性较差，测量结果不准确，对于比较小的键槽而言，三坐标测量仪的探头无法深入键槽进行测量。

发明内容

[0003] 本发明的目的在于提供一种轴类零件键槽对称度的测量方法，旨在解决用三坐标测量仪多次测量同一轴类零件的键槽对称度测量结果一致性差以及无法测量小键槽对称度的问题。

[0004] 本发明是这样实现的，一种轴类零件键槽对称度的测量方法，所述轴类零件键槽对称度的测量方法包括如下步骤：

[0005] 步骤一：测量轴类零件的中心线高度 H

[0006] 将 V 型铁放在工作台上，并将轴类零件安装到所述 V 型铁的 V 型槽里，将高度尺放置在所述工作台上，并将杠杆千分表安装在所述高度尺上，利用安装在所述高度尺上的所述杠杆千分表将所述轴类零件找正，利用所述高度尺找到所述轴类零件的外径最高点，读取所述高度尺的示数 a；利用外径测量工具测量所述轴类零件的外径尺寸 b，则 a−b/2 即是所述轴类零件的中心线高度 H；

[0007] 步骤二：测量量块的中心线高度 h

[0008] 将与所述键槽相适配的量块放入键槽中，利用安装在所述高度尺上的所述杠杆千分表将所述量块找正，并用所述高度尺测量所述量块上侧面的高度尺寸 d，则 d 减去所述量块厚度的一半 e 即是量块中心线的高度 h；

[0009] 步骤三：计算轴类零件的中心线与量块的中心线之间的距离 X

[0010] X = H−h+H，并将 X 与设计图纸上轴类零件的中心线与量块的中心线之间的距离 X 进行对比，以此来确定键槽对称度的偏差。

[0011] 作为一种改进，所述高度尺为数显高度尺。

[0012] 作为一种改进，所述外径测量工具为千分尺。
由于采用了上述技术方案，使用本发明的轴类零件键槽对称度的测量方法取得的有益效果如下；

利用了V型铁、高度尺、杠杆千分表、千分尺及量块等常规工具来测量键槽的对称度，在没有专业测量设备及检具的情况下可以精确地测量轴类零件的键槽对称度，以简单的方法较准确地对工件参数进行测量，解决了用三坐标测量仪多次测量同一轴类零件的键槽对称度测量结果一致性差以及无法测量小键槽对称度的问题。

附图说明

1. 图1是本发明实施例的轴类零件键槽对称度的测量方法示意图；

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白，以下结合附图及实施例，对本发明进行进一步详细说明。应当理解，此处所描述的具体实施例仅仅用以解释本发明，并不用于限定本发明。

图1是本发明实施例的轴类零件键槽对称度的测量方法示意图，结合图1对轴类零件键槽对称度的测量方法进行说明：

首先需要准备的工具有：工作台10，V型铁11，高度尺，杠杆千分表，与键槽配合的量块13以及用于测量轴类零件12外径的外径测量工具，通常选用千分尺。

步骤一：测量轴类零件12的中心线高度H

将V型铁11放在工作台10上，并将轴类零件12安放到V型铁11的V型槽里；将高度尺放置在工作台10上，并将杠杆千分表安装在高度尺上，利用安装在高度尺上的杠杆千分表将放置在V型槽里的轴类零件12找平，利用高度尺在轴类零件12靠近键槽的端部处找到外径的最高点，读取高度尺的示数，并记录此时的高度尺寸a；利用千分尺测量轴类零件12的外径尺寸b，则a-b/2即是轴类零件12中心线的高度值H；

步骤二：测量量块13的中心线高度

将与键槽相适配的量块13放入到键槽中，利用安装在高度尺上的杠杆千分表将量块13找平，并用高度尺测量量块13的上侧面的高度尺寸，并记录此时的高度尺寸d，则d减去量块13厚度的一半e即是量块13中心线的高度H；

步骤三：计算轴类零件12的中心线与量块13的中心线之间的距离X

X = H-H，并将X与设计图纸上轴类零件12的中心线与量块13的中心线之间的距离X’进行对比，以此来确定键槽对称度的偏差，然后根据键槽对称度X调试机床，对轴类零件12进行准确定位和加工。

利用了V型铁11，高度尺，杠杆千分表，千分尺及量块13等常规工具来测量键槽的对称度，在没有专业测量设备及检具的情况下可以精确地测量轴类零件12的键槽对称度，以简单的方法较准确地对工件参数进行测量，解决了用三坐标测量仪多次测量同一轴类零件12的键槽对称度测量结果一致性差以及无法测量小键槽对称度的问题。

在具体实施例的过程中，高度尺选用的是数显高度尺。

以上所述仅为本发明的较佳实施例而已，并不用以限制本发明，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
神和原则之内所作的任何修改、等同替换和改进等，均应包含在本发明的保护范围之内。
图 1