[54] 发明名称

包含输送工艺气体和射频功率的气体分配单元的等离子处理设备

[57] 摘要

一种等离子处理设备，包括向喷淋头式电极输送工艺气体和射频 (RF) 功率的气体分配单元。气体分配单元可以包括多个气体通路，以相同或不同的流速，向喷淋头式电极后侧的一个或多个储气室，输送相同的工艺气体或不同的工艺气体。气体分配单元在半导体基片上，提供要达到的需要的工艺气体分配，该半导体基片在喷淋头式电极与支承基片的下电极之间的空隙中被处理。
1. 一种喷淋头式电极组件，包括:

喷淋头式电极，适合安装在真空室内部并由射频（RF）能量提供动力；

附于喷淋头式电极的射频（RF）分配单元，其中，该RF分配单元包含适合沿轴向伸进真空室的温度受控上壁的开孔中的第一部分，该RF分配单元还包含在喷淋头式电极上沿侧向伸延的第二部分，以提供到达喷淋头式电极上多个接触点的RF路径；和

热通道单元，附于RF分配单元上，并适合在真空室的上壁与RF分配单元的第二部分之间，向喷淋头式电极提供至少一部分热通道。

2. 按照权利要求1的喷淋头式电极组件，其中的热通道单元包括导热的电绝缘体。

3. 按照权利要求2的喷淋头式电极组件，其中的热通道单元包括氮化物材料。

4. 按照权利要求2的喷淋头式电极组件，其中的热通道单元包括氮化铝板或氮化硼板。

5. 按照权利要求1的喷淋头式电极组件，还包括加热器，该加热器形成真空室的温度受控上壁与喷淋头式电极之间热通道的一部分。

6. 按照权利要求5的喷淋头式电极组件，其中该组件还包括一个或多个包围RF分配单元与喷淋头式电极的电绝缘单元。

7. 按照权利要求5的喷淋头式电极组件，其中的加热器与喷淋头式电极，都适合连接到温度控制器。

8. 按照权利要求5的喷淋头式电极组件，还包括面对上壁的加热器表面上的热阻塞板。

9. 按照权利要求5的喷淋头式电极组件，其中的加热器包括金属体及隔热元件。
10. 按照权利要求 5 的喷淋头式电极组件，其中的加热器包括置于聚合物材料相对着的层之间的隔热材料。

11. 按照权利要求 5 的喷淋头式电极组件，其中的加热器包括交流或直流供电的加热元件。

12. 按照权利要求 5 的喷淋头式电极组件，还包括多个热阻矩板，这些热阻矩板适合在加热器和温度受控上壁之间，提供至少一部分热通道。

13. 按照权利要求 5 的喷淋头式电极组件，其中的热通道单元，与加热器及 RF 分配单元接触。

14. 一种真空室，包括权利要求 1 的喷淋头式电极组件，还包括：
 温度控制器；
 功率源，适合响应温度控制器，向加热器输送功率；
 泵体控制器，适合响应温度控制器，向温度受控上壁输送流体；
 和
 温度传感器装置，适合测量喷淋头式电极一部分或多部分的温度，并向温度控制器输送信息。

15. 按照权利要求 14 的真空室，其中真空室的上壁是在电上接地的。

16. 按照权利要求 1 的喷淋头式电极组件，其中的 RF 分配单元包括：

 至少一个气体通路，向喷淋头式电极后侧输送工艺气体。

17. 按照权利要求 16 的喷淋头式电极组件，其中的 RF 分配单元，包括圆形金属板，和与该板共轴的沿轴向伸延的轴套，其中沿轴向伸延的轴套有至少一个轴向伸延的气体通路，向金属板中一个或多个轴向伸延的气体通路输送工艺气体，该金属板与面对喷淋头式电极后侧的一个或多个气体出口连通。

18. 按照权利要求 17 的喷淋头式电极组件，其中至少一个轴向伸延轴套的气体通路，向中心管道输送工艺气体，该中心管道与第一组轴向伸延的气体通路连通。
19. 按照权利要求 16 的喷淋头式电极组件，其中的 RF 分配单元，包括第一和第二轴向伸延的的气体通路，用于向喷淋头式电极后侧分开的中央和环形储气室输送工艺气体，其中第一气体通路适合把第一气体的供应连接到中央储气室，而第二气体通路适合把第二气体的供应连接到环形储气室。

20. 按照权利要求 19 的喷淋头式电极组件，其中，在 RF 分配单元与喷淋头式电极之间，至少一个气体密封把中央储气室与环形储气室隔离。

21. 按照权利要求 16 的喷淋头式电极组件，其中的 RF 分配单元包括金属板，其中，该金属板包括至少一个气体管道，向至少一个气体通路输送工艺气体，该气体通路本身又向至少一个气体出口输送工艺气体。

22. 按照权利要求 16 的喷淋头式电极组件，其中的 RF 分配单元，包括 RF 功率输入连接和至少一个工艺气体入口。

23. 按照权利要求 16 的喷淋头式电极组件，其中的 RF 分配单元，包括气体管道、沿轴向伸延的气体通路、和沿轴向伸延的气体出口。

24. 按照权利要求 1 的喷淋头式电极组件，其中的喷淋头式电极，适合由单个 RF 功率源供电。

25. 按照权利要求 1 的喷淋头式电极组件，其中的喷淋头式电极，包括在其一侧有气体出口的硅电极板，和在其相反侧的高弹体，该高弹体粘合到与 RF 分配单元接触的碳化硅或石墨支撑单元。

26. 一种控制等离子蚀刻的方法，包括：

通过喷淋头式电极，向等离子蚀刻室输送工艺气体，工艺气体流进喷淋头式电极与支承半导体基片的下电极之间的空隙；和

在等离子蚀刻室，依靠把 RF 功率加到喷淋头式电极并把工艺气体激励成等离子状态，对半导体基片进行蚀刻，其中的 RF 功率和工艺气体，由气体分配单元输送到喷淋头式电极，该气体分配单元在电上与等离子蚀刻室其他部分隔离。
27. 按照权利要求 26 的方法，还包括对喷淋头式电极以至少 80°C 的温度加热。

28. 按照权利要求 27 的方法，其中喷淋头式电极的加热，包括加热并保持至少一部分喷淋头式电极在至少 100°C 的温度。

29. 按照权利要求 27 的方法，其中喷淋头式电极的加热，包括加热并保持至少一部分喷淋头式电极在至少 150°C 的温度。

30. 按照权利要求 27 的方法，其中喷淋头式电极的加热，出现半导体基片蚀刻之前。

31. 按照权利要求 26 的方法，其中的蚀刻包括，在半导体基片上的氧化层中蚀刻开孔，该开孔由形成图形的光刻胶定义。

32. 按照权利要求 27 的方法，其中的工艺气体包括碳氟化合物和/或氢氟碳化合物气体，而喷淋头式电极的加热，通过控制工艺气体氟的径向密度，降低半导体基片上光刻胶的条纹。

33. 按照权利要求 26 的方法，其中的蚀刻，在氧化硅层中形成高宽深比的接触开孔。

34. 按照权利要求 26 的方法，还包括对喷淋头式电极的冷却，借助热传导，沿从喷淋头式电极到气体分配单元、热通道单元、加热器、一个或多个热阻塞板伸延的热通道，然后进入上壁，进行冷却。

35. 按照权利要求 26 的方法，其中向喷淋头式电极施加的功率，包括从等离子蚀刻室外部的 RF 源，通过气体分配单元，又通过气体分配单元与喷淋头式电极之间的多个接触点，向位于气体分配单元上的 RF 输入端，输送 RF 功率。

36. 按照权利要求 26 的方法，其中气体的输送，包括把气体从气体分配单元，输送到喷淋头式电极后侧的一个或多个储气室。

37. 按照权利要求 26 的方法，其中气体的输送，包括把第一气体混合物输送到基片及喷淋头式电极之间空隙的中央区，和把第二气体混合物输送到包围中央区空隙中的环形区，该第二气体混合物不同于第一气体混合物，或者，该第二气体混合物与第一气体混合物相同，但以不同于第一气体混合物的流速输送。
38. 按照权利要求 26 的方法，包括在等离子蚀刻室中逐个晶片的批量蚀刻，在晶片的批量处理过程中，使喷淋头式电极保持在基本一致的温度。

39. 按照权利要求 27 的方法，其中喷淋头式电极的加热，包括加热喷淋头式电极的中央部分和边缘部分，使喷淋头式电极的中央部分和边缘部分之间的温度差别，小于 50°C。

40. 按照权利要求 27 的方法，其中喷淋头式电极的加热，包括加热喷淋头式电极的中央部分和边缘部分，使喷淋头式电极的中央部分和边缘部分之间的温度差别，小于 25°C。
包含输送工艺气体和射频功率的
气体分配单元的等离子处理设备

背景技术
等离子处理设备用于处理基片，所用技术包括蚀刻、物理气相沉积（PVD）、化学气相沉积（CVD）、离子注入、灰化或抗蚀剂去除。最近，由于降低线条尺寸和新材料的实施，需要改进等离子蚀刻设备中控制等离子处理的条件。

发明内容
提供一种等离子蚀刻设备，它包括喷淋头式电极，和与喷淋头式电极热接触的加热器，其中的加热器，能把喷淋头式电极至少一部分加热到阈温温度以上。此外，还可以在设备中提供顶板，用于控制温度或与加热器结合，把喷淋头式电极维持在预定温度上。

在一个实施例中，一种喷淋头式电极组件包括：适合安装在真空室内部的喷淋头式电极；附着于喷淋头式电极的射频（RF）分配单元；其中，该RF分配单元包括适合沿轴向伸进真空室控制温度的上壁中开孔的第一部分，且该RF分配单元还包括在喷淋头式电极上沿侧向伸延，并提供RF通道及热通道的第二部分；和热通道单元，该热通道单元附着于RF分配单元上，并适合在真空室上壁与RF分配单元第二部分之间，向喷淋头式电极提供热通道。在另一个实施例中，RF分配单元还可以包括至少一个气体通道，用于向喷淋头式电极传输工艺气体（process gas）。

在另一个实施例中，喷淋头式电极组件包括：适合安装在真空室内部的喷淋头式电极；附着于喷淋头式电极的气体分配单元；附着于气体分配单元的热通道单元；和附着于热通道单元的加热器，其中的加热器，通过气体分配单元和热通道单元，向喷淋头式电极传递热。在另一个实施例中，气体分配单元可以是向喷淋头式电极分配RF功
率的导电材料。

同时提供的还有控制等离子蚀刻的方法，包括：对等离子蚀刻室中的加热器加功率，通过把热从加热器导向喷淋头式电极，在等离子蚀刻室中把喷淋头式电极至少一部分加热到预定温度；通过喷淋头式电极，向等离子蚀刻室输送工艺气体；和通过向喷淋头式电极施加 RF 功率并把工艺气体激励成等离子状态，在等离子蚀刻室中蚀刻半导体基片，其中，向加热器施加的功率和向喷淋头式电极施加的功率，在电上被热通道单元相互隔离。

附图说明

图 1、2、4、和 5，画出喷淋头式电极组件的优选实施例。
图 3 画出操作喷淋头式电极组件的优选方法。
图 6 画出操作优选的喷淋头式电极实施例时的温度。
图 7 画出喷淋头式电极温度对示例性光刻胶蚀刻速率的作用。
图 8 画出用 C₄F₆/O₂ 蚀刻气体时，喷淋头式电极温度对示例性光刻胶蚀刻速率的作用。
图 9a-d 是形成图形的光刻胶以 80,000×放大率拍摄的显微照相。
图 10 和 11 画出气体分配单元的优选实施例。
图 12 画出子配件附件的优选实施例。

具体实施方式

控制等离子参数，诸如等离子化学性质、离子能量、密度、和分布、电子温度、等等，对改变等离子处理结果是必要的。除这些参数控制之外，约束等离子的等离子室中表面的温度，可以用来控制等离子的化学性质，从而控制半导体基片上，例如晶片上等离子处理的结果。

等离子蚀刻过程（例如氧化物蚀刻）中使用的喷淋头式电极的温度，可以在大范围上变化。当用单个晶片的等离子蚀刻室，蚀刻一系列晶片时，已经观察到，射频（RF）供电的喷淋头式电极各部分的温度随时间变化，且由于 RF 供电的喷淋头式电极产生的热，使喷淋头式电极中央部分变得比边缘部分更热。例如，喷淋头式电极中央与边
缘之间的温度差，能够达到约 100°C 或更高。这种温度的变差当以更高功
率（如 3,000 到 6,000 瓦）运行沉淀时，更为显著，并可导致等离
子蚀刻不均匀。因此，降低 RF 供电的喷淋头式电极温度中的变差，
能够在生产运行过程中，提供晶片更均匀的等离子蚀刻。此外，在生
产运行过程中，维持 RF 供电电极的最小温度，能够改进光刻胶的选
择性。

有鉴于 RF 供电的喷淋头式电极的温度，由于使用过程产生的热
而起伏，所以提供加热器，使 RF 供电的喷淋头式电极中央与边缘部
分，维持在必要的温度范围内，如小于 50°C，最好是，从中央到边缘
的温度变差，小于 25°C。通过加热 RF 供电的喷淋头式电极，并与温
度控制单元，例如室的上壁（顶板）的冷却结合，能够在等离子处理
设备的操作过程中，在 RF 供电的喷淋头式电极中提供理想的温度分
布。按照一个优选实施例，喷淋头式电极中央部分与边缘部分之间的
温度差，能够维持在有效地改进等离子处理均匀性的范围，诸如氧化
硅电介质材料中等离子蚀刻的高的宽深比开孔。

在一个优选实施例中，等离子处理设备包括：加热器、温度受控
散热器、和喷淋头式电极，这里的喷淋头式电极是 RF 供电的。本实
施例的等离子处理设备，通过喷淋头式电极的主动加热和主动冷却，
能实现喷淋头式电极的温度控制。

图 1 按照第一实施例，画出等离子处理设备 100 的断面视图，该
设备 100 包括加热器和上喷淋头式电极温度控制系统。在图 1 中，提
供的等离子处理设备 100，有加热器 700 和温度控制器 900，该加热器
700 位于真空室 150 中。

如在图 1 所示，真空室 150，例如等离子蚀刻室，其内包括上喷
淋头式电极 200 和基片支撑 300，上喷淋头式电极 200 和基片支撑 300
被空隙 400 分开，基片在在空隙 400 内被处理。上喷淋头式电极 200
包括已穿孔或多孔的平面或非平面表面，用于把反应物气体分散在基
片的暴露表面上。在上喷淋头式电极 200 之上，提供气体分配单元 500，
这里的气体分配单元 500 从真空室 150 之外的气体源 550，向上喷淋

9
头式电极 200 输送工艺气体。气体分配单元 500 还是导电的，并把 RF 功率从真空室 150 之外的 RF 功率源，分配给上喷淋头式电极 200。

还有，如在图 1 中所示，加热器 700 放在气体分配单元 500 水平伸延部分之上，这里，加热器 700 通过气体分配单元 500 和导热的绝缘体 600，向上喷淋头式电极 200 提供热，这里，绝缘体 600 设在加热器 700 和气体分配单元 500 之间。绝缘体 600 是导热的电绝缘体，作用是使加热器 700 与气体分配单元 500 在电上绝缘，同时使热从加热器 700 传导到气体分配单元 500。这样，通过气体分配单元 500 传递的 RF 功率，在电上与送至加热器 700 的功率隔离，同时仍然让热在加热器 700 与上喷淋头式电极 200 之间传导。

为了控制上喷淋头式电极 200 的温度，提供温度控制器 900，该温度控制器 900 使用任何合适温度监控配置，例如至少一个温度传感器 950，测量上喷淋头式电极 200 的温度 (T)。温度传感器 950 可以包括光纤温度感测元件，放在上喷淋头式电极 200 后侧附近，或者，温度传感器 950 可以通过热传导与上喷淋头式电极 200 连接。例如，如在图 1 中所示，温度传感器 950 被置于紧邻上喷淋头式电极 200 边缘部分。温度控制器 900 可以根据温度传感器 950 提供的，表示上喷淋头式电极 200 温度 T 的数据 / 信号，确定上喷淋头式电极 200 的温度是否必须增加到预定的温度 (Tp)。如果 T 小于 Tp，温度控制器 900 可以启动功率源 550，向加热器 700 提供功率，从而增加加热器 700 的温度，加热器 700 接着使上喷淋头式电极 200 的温度增加。

加热器 700 可以由交流电流 (AC) 或直流电流 (DC) 功率源 250 供电，如上所述，这里的 AC 或 DC 功率源 250，受温度控制器 900 控制。

还有，如在图 1 中所示，加热器 700 由温度控制顶板 800 支承，温度控制顶板 800 形成该室的真空密封上壁。顶板 800 在电上接地，并可以设有流体控制设备 850，该流体控制设备 850 也受温度控制器 900 控制，并可以包括温度深冷器，使流过顶板 800 的流体冷却。另外，顶板 800 可以不用流体控制设备 850，按连续或不连续的方式冷
却。例如，可以让水连续地流过顶板 800，不用流体控制设备 850。

如果使用温度控制器 900，顶板的温度能够按需要调节。例如，如果 T 大于 Tp，温度控制器 900 可以使流体控制设备 850 让冷却流体流过顶板 800，以冷却加热器 700，然后，如在下面所述，加热器 700 作为上喷淋头式电极 200 的散热器，从而冷却上喷淋头式电极 200。但是，通过顶板 800 的流体可以连续地循环，而流体的温度可以可供选择地升高或下降，和/或根据温度控制器 900 的指令，增加或降低流体的流速。

此外，如在图 1 中所示，上部的电绝缘体 630 可以用于使顶板 800 与气体分配单元 500 在电上绝缘。同样，包围上喷淋头式电极 200 及气体分配单元 500 侧面的电绝缘体 620、640，被用于使上喷淋头式电极 200 与加热器 700 在电上绝缘。

基片支承 300 包括下电极和在其上表面的可供选择的静电吸盘（ESC），该基片支承 300 的上表面，在该设备 100 中与上喷淋头式电极 200 相对。相应地，接受等离子处理的基片，可以用或不用机械方法或静电方法夹紧在基片支承 300 的上表面。

在第二个实施例中，设备 100 可以采纳气体分配单元 500 而不用加热器 700，这里的气体分配单元 500，在设备 100 内可以与等离子蚀刻室的其他部分是 RF 绝缘的。在本实施例中，气体分配单元 500 能够用绝缘体 600 实现 RF 绝缘，和/或当需要让 RF 穿透气体分配单元 500 时，用其他绝缘单元来实现 RF 绝缘。

还是在第二实施例中，气体分配单元 500 包括板 505 和沿轴向伸延的单元 508，这里的轴向伸延单元 508 包括 RF 连接，用于接纳与 RF 功率源 570 电连接的电缆。这样，单元 508 用于把 RF 功率源 570 的 RF 功率，分配到板 505，然后通过板 505 与上喷淋头式电极 200 之间的接触点，送至上喷淋头式电极 200。例如，板 505 可以包括多个环形凸块，与上喷淋头式电极 200 的后侧接触。

轴向伸延单元 508 另外的作用，是把气体源 550 来的工艺气体，分配到板 505 与上喷淋头式电极 200 之间的一个或多个储气室
（plenum）。这样，RF 功率与工艺气体两者，通过气体分配单元 500，输送到上喷淋头式电极 200。通过气体分配单元 500 输送 RF 功率，能够更均匀地把 RF 功率输送到上喷淋头式电极 200 之上，以便降低上喷淋头式电极 200 暴露表面上从中央到边缘的温度变差。还有，通过单元 500 输送工艺气体，能够以需要的流速问室中一个或多个区运送工艺气体。

在图 3 中，画出操作第三优选实施例设备 100 的优选方法。如在图 3 中所示，该方法以把晶片插入支承 300 的步骤 1100 开始。下一步，在步骤 1200 中，上喷淋头式电极 200 中的温度传感器 950，测量上喷淋头式电极 200 的温度。

下一步，在步骤 1300 中，温度控制器 900 把测量的温度（T）与预定温度范围（Tp）比较，这里的预定温度范围，对应于上喷淋头式电极 200 需要的温度。如果 T 小于 Tp，则在步骤 1320 向加热器提供功率，以便使上喷淋头式电极 200 加热预定的量，然后重复步骤 1200，确定向加热器 700 输送的功率量是否合适。如果 T 大于 Tp，则在步骤 1340 中，使冷却流体流过顶板，然后重复步骤 1200，确定流过顶板 800 的冷却流体量是否合适。如果 T 大致与 Tp 相同，则在步骤 1400 中处理晶片，然后在步骤 1600 确定是否有另一晶片等待处理之前，在步骤 1500 移出晶片。如果没有另一晶片等待处理，过程在步骤 1700 结束，但如果有另一晶片等待处理，则重复该过程并在步骤 1100 中把晶片插入。

应当指出，温度控制器可以是任何类型的信息处理器，诸如可独立应用的计算机或内部逻辑开关。

还应当指出，提供的功率量和冷却流体量，可以按需要改变，取决于过程及操作条件。例如，如果 T 比 Tp 小得多，则在步骤 1320 向加热器提供的功率，可以比 T 略小于 Tp 时提供的功率更多。

第三实施例画在图 4。在图 4 中，除去第一实施例的部件外，图示的上喷淋头式电极 200 还设有支撑单元 220（例如粘合于电极 200 上的石墨板高弹体），这里的气体分配单元 500 附着于支撑单元 220
（例如，单元 500 可以用螺栓或其他扣件，与单元 220 扣紧）。举例说，可以用支撑单元 220 增强电极 200 的结构性支承，并能附着于有啮合螺栓的气体分配单元 500 上，下面还要讨论。此外，除上述上部及侧面绝缘体 630、640 之外，还有电绝缘的辅助绝缘体 650，设在轴向伸延单元 508 的外侧区和加热器 700 与顶板 800 的内侧区。

在第三实施例中，支撑单元 220 最好用高弹体接合，附着于上喷淋头式电极 200 的后侧（例如，见共同转让的美国专利 U.S. Patent Nos. 6,194,322 B1 和 6,073,577，这些专利在这里全文引用，供参考）。单元 220 包括与上喷淋头式电极 200 中气体通路 206 对准的气体通路 226，以便使气体流进空隙 400。顶板 800 形成可更换并真空密封的设备 100 的上壁，同时起散热器的作用，该顶板 800 与加热器 700 结合，控制上喷淋头式电极 200 的温度。

支撑单元 220 最好由化学上与工艺气体相容的材料制成，该工艺气体在等离子处理室中用于处理半导体基片；支撑单元 220 的热膨胀系数，最好与电极材料密切匹配；和/或支撑单元 220 是导电和导热的，能用于制作支撑单元 220 的优选材料，包括但不限于，石墨和碳化硅（SiC）。

还有，如在图 5 中所示，该图是图 4 的放大部分，图上画出支撑单元 220 与气体分配单元 500 之间的接触点 520，是从气体分配单元 500 向着上喷淋头式电极 200 和支撑单元 220 的隆起。画出的接触点
520 在图 5 中的断面，是从气体分配单元 500 凸出的同心环。但是，接触点 520 可以是连续的或不连续的环，分开的个别点或任何其他形状的能传输 RF 功率并使热从中传导的单元。如果用连续的接触点环，可以在环内提供孔道，供气体在环与喷淋头式电极后侧之间形成的储气室间流通。相反，如果不需交叉流通，从而在接触点环一侧的气体要与环另一侧的气体隔离，则可以省去孔道。例如，如在图 4 中所示，三个同心环设在气体分配单元 500 与上喷淋头式电极 200 之间。

气体分配单元 500 的每一接触点 520，可以有依赖于需要的 RF 量和热传导性的接触面积，以及从气体分配单元 500 把气体输送到上喷淋头式电极 200 需要的面积。例如，如在图 5 中所示，气体分配单元 500 与支撑单元 220 之间的储气室，能使其间容纳气体通路，同时接触点 520 有利于 RF 和热传导性。

最好是，接触点 520 在气体分配单元 500 与上喷淋头式电极 200 之间提供的接触面积，占气体分配单元 500 总表面面积的 0.1% 到 99.9% 的量级，例如 1 到 5%, 5 到 15%, 15 到 30%, 30 到 45%, 45 到 60%, 60 到 75%, 75 到 90%, 或 90 到 99.9%。

在一个示例性实施例中，接触点 520 是作为四个整体形成的连续环提供的，每一个为 0.5 英寸宽。在该实施例中，在外直径为 12.2” 的气体分配单元 500 上，第一环的内直径约 2.5”，外直径为 3”，第二环的内直径约 5”，外直径为 5.5”，第三环的内直径约 8”，外直径为 8.5”，第四环的内直径约 11”，外直径为 11.5”，这里的上喷淋头式电极 200，与气体分配单元 500 有大致相同的直径。在本实施例中，接触面积的范围，从气体分配单元 500 总面积的 15 到 20%。

此外，上喷淋头式电极 200 可以有少量气体出口，或任何需要的尺寸或结构的许多气体出口，取决于反应器和/或在其中实施的过程。这里的空隙 40 可以有任何需要的间隔，例如 1”到 10”, 2”到 5”, 或 3”到 6”。举例说，如果空隙大，例如约 6 cm 或更大，可以只在上喷淋头式电极 200 中央提供少量气体出口，而在气体分配单元 500 与上喷淋头式电极 200 之间提供高的接触面积，例如在 90% 以上，诸如
99%。

此外，还画出啮合螺栓 225，这里的啮合螺栓 225 把上喷淋头式电极 200 与支撑单元 220 固定于气体分配单元 500 上，这里，气体分配单元 500 支承支撑单元 220 与上喷淋头式电极 200。举例说，穿过单元 500 的啮合螺栓 225，可以旋进单元 220 中的螺纹孔。

除使用加热器 700、顶板 800、温度传感器 950、功率源及温度控制器 900 外，还通过控制温度在加热器 700 与顶板 800 之间的传导，可以进一步控制电极 200 的温度。

例如，如在图 5 中所示，加热器 700 可以包括形成热阻塞板 (choke) 750 的凸块，或者，设备 100 可以包括与加热器 700 分离的热阻塞板 750，该阻塞板最好是阻塞环。两种形式中任一形式的热阻塞板 750，在加热器 700 与顶板 800 之间，提供对抗热流的阻力和防止热传导，这里，为了控制热流，可以调整热阻塞板 750 的大小和材料。例如，热阻塞板 750 可以更窄，或如果需要热流时，可以用较低热传导的材料制成。

最好是，热阻塞板 750 按一定尺寸制造，以控制热的传导率，这里，热阻塞板 750 与加热器 700 之间的接触面积，可以占加热器 700 面积的 1% 到 100% 的范围，例如 1 到 5%、5 到 15%、15 到 30%、30 到 45%、45 到 60%、60 到 75%、75 到 90%、或 90 到 100%。

在一个示例性实施例中，接触点 520 是作为三个分立的连续环提供的，每一个为 1 英寸宽。在该实施例中，在内直径为 3”、外直径为 16.7” 的加热器 700 上，第一环的内直径为 3”，外直径为 4”，第二环的内直径为 10.5”，外直径为 11.5”，第三环的内直径约 15.6”，外直径为 16.6”。在本实施例中，热阻塞板 750 与加热器 700 之间的接触面积范围，占加热器 700 总面积的 20 到 25%。

热阻塞板 750 可以由任何材料制成，但最好由热传导性与或比加热器 700 和/或顶板 800 使用的材料相同或更低的材料制成。例如，热阻塞板 750 可以由铝或不锈钢制成，但在加热器 700 和顶板 800 由铝或铝合金制成的情形下，最好由不锈钢制成，不锈钢有更低的热传导
性。

还有，在热阻塞板 750 与加热器 700 成一整体的情形下，加热器 700 可以附着于有扣件的顶板 800 上，该扣件通过顶板 800 中加大尺寸的开孔（未画出）伸延，并进入热阻塞板 750 表面有螺纹的开孔。在热阻塞板 750 是与加热器 700 分开的构件的情形下，热阻塞板 750 可以如上面指出那样附着于顶板 800 上，而穿过热阻塞板 750 中开孔的辅助螺栓，可以旋进加热器 700 中有螺纹的开孔。

当附着的螺栓没有在顶板外侧密封的情形下，附着于热阻塞板、加热器、和喷淋头式组件的点，可以限制已真空密封的面积。举例说，如在图 5 中所示，这种已用 O 型环 95 真空密封的面积，可以设在加热器 700 与顶板 800 之间。O 型环也可以放在各种部件之间。例如，可以用 O 型环在顶板 800 与加热器 700 之间，加热器 700 与绝缘体 600 之间，绝缘体 600 与气体分配板 500 之间，和/或加热器 700 与接接地环 270 之间，建立真空密封面积。

还有，如上所述，上喷淋头式电极 200 最好是 RF 供电的。但是，上喷淋头式电极 200（和下电极）可以电接地或提供功率的，这里的功率最好由射频（RF）或直流（DC）功率源提供。对等离子处理，最好一个电极是由两种或更多种频率（例如 2 MHz 和 27 MHz）的 RF 功率，提供 RF 功率，而另一个电极接地。例如见共同转让的美国专利 U.S. Patent No. 6,391,787，这里引用其全部公开的内容，供参考。

在第四实施例中，控制上喷淋头式电极的温度，使有固定形的光刻胶（PR）的开孔中的条纹最小，这些开孔用于蚀刻诸如氧化硅层中的线条，举例说，诸如高宽深比触点（HARC）的线条。蚀刻窄线条中引起的一个问题是，可能在上面覆盖的 PR 侧壁上出现条纹。条纹是垂直不规则伸延的，导致粗糙的 PR 侧壁。因为 PR 是用作蚀刻掩模的，这种不规则性被转印到下面的层。对下面的层，诸如氧化硅层中的条纹，造成难以把材料，诸如金属填充进已蚀刻的线条中，从而引入与不规则形状的线条有关的可靠性和性能方面的问题。为此，需要提供一种对光刻胶有选择性的、不会产生蚀刻停顿的、和降低条纹
出现的氧化蚀刻过程。

可以把上喷淋头式电极的温度维持在已升高的温度上，使 PR 的蚀刻速率最小，从而使 PR 的损耗和 PR 中的条纹度最小。例如，在图 7 中所示，通过使用与上喷淋头式电极 200 组合的加热器 700，使示例性上喷淋头式电极的温度，从约 75°C 增加到约 225°C，导致 PR 上聚合物的淀积和聚合物构成，亦即 PR 的蚀刻速率，从约 20 Å/分钟降低到约负的 540Å/分钟，这里负的蚀刻速率对应于 PR 上聚合物的淀积和聚合物构成。

这种情况进一步演示在图 8 中，图上画出示例性上喷淋头式电极温度对相应的 PR 蚀刻速率的作用。在图 8 中，通过有图形的 PR 中的开孔，输送在氧化硅层中蚀刻线条的 C₄F₆/O₂ 蚀刻气体，这里的上喷淋头式电极的温度范围，从约 20°C 到 80°C，且喷淋头的温度是其边缘区测量的。在图 8 中表明，PR 的蚀刻速率，从以 20°C 使用喷淋头式电极的约 250 Å/分钟，降低至负的蚀刻速率 (即聚合物构成)，自从以 80°C 使用喷淋头式电极后，蚀刻速率变成负 1000 Å/分钟。

再有，图 9a-d 是显微照相，表明上喷淋头式电极温度对条纹作用的各个例子（图 9a 是 70°C，图 9b 是 90°C，图 9c 是 105°C，和图 9d 是 130°C），这些条纹是在蚀刻过程中引起的。在图 9a 中，是例子中的最低温度 70°C，与例子中的次最低温度 90°C 的图 9b 比较，围绕 PR 中开孔的周边的条纹，在更高喷淋头式电极温度下降低了。这一点在图 9c 和 9d 中再次被证明，这两个图逐渐地继续使温度分别增加到 105°C 和 130°C，同时也表明，由于上喷淋头式电极温度的增加，围绕 PR 中开孔周边的条纹降低了。

这样，有升高的温度的上喷淋头式电极，能够在等离子蚀刻过程中，导致 PR 中形成的条纹缩减。

A. 加热器

加热器 700 可以包括任何类型的主动加热器。最好是，加热器 700 包括有至少一块隔热元件的金属板，这里的隔热元件使板加热，对上喷淋头式电极 200 提供均匀的加热。虽然任何加热器配置都可以使用，
但隔热元件与热传导板组合使用是优选的，这里的板最好由金属材料制成，诸如铝、铝合金等等，板最好通过机械加工，形成与上喷淋头式电极 200 相容的形状。例如，加热器 700 可以在铸铝合金板中包括至少一块隔热元件。

按照一个优选实施例，当温度控制器 900 操纵功率源 250 向加热器 700 传输功率时，加热器 700 提供热，这里的温度控制器，能够通过控制功率源 250，改变加热器的循环时间和加热状态。例如，加热器 700 可以用约高达 7000 瓦，以 10 或 12 秒的脉冲周期提供功率，使跨越上喷淋头式电极 200 的温度维持在阈值温度，例如 80°C 到 200°C，比如 100°C 到 120°C、120°C 到 140°C、140°C 到 160°C、或 160°C 到 180°C。

加热器 700 最好与顶板 800 以预定的热界面性质实现热接触（即，加热器间接地接触顶板，或者，可以把热传导材料置于加热器和顶板之间）。这些热界面性质能使加热器 700 与顶板 800 组合，控制上喷淋头式电极 200 中的温度。应当指出，加热器 700 还可以作为热通道的一部分使用，用于按需要从上喷淋头式电极 200 排出热，这里的加热器 700 接着能够通过顶板 800 冷却。加热器 700 也可以附着于有扣件的顶板 800，该扣件可以通过顶板 800 中的开孔（未画出），从室的外侧伸延，以便使顶板 800 支承加热器 700。

加热器 700 也可以在等离子处理基片过程中启动，就是说，当上喷淋头式电极 200 和下电极之间正在产生等离子时启动。例如，在等离子处理利用相对低电平的功率产生等离子的操作过程中，可以启动加热器 700，以维持上喷淋头式电极 200 温度在需要的温度范围内。在利用相对高功率电平的其他等离子处理操作过程中，诸如电介质材料蚀刻过程中，上喷淋头式电极 200 的温度，在持续运行间可能仍然足够高，使加热器 700 无需为防止上喷淋头式电极 200 落到最小或阈值温度以下而启动。

在等离子处理设备中，由于对上喷淋头式电极 200 提供的 RF 功率而产生的热，可以使上喷淋头式电极 200 不用加热器而改变温度。
在优选的等离子材料设备中，可以使用加热器 700 与顶板 800 的组合，把上喷淋头式电极 200 维持在预定温度以上的阈值温度，如在 80℃或以上、在 100℃或以上，或甚至在 150℃或以上，取决于等离子处理的要求及上喷淋头式电极 200 产生的热量。最好是，在整个初始晶片生产性运行的处理过程中，使用加热器 700 与顶板 800 的组合，以达到并维持上喷淋头式电极 200 的阈值温度，或在生产性运行中对每一被处理晶片，维持阈值喷淋头式电极温度，其中，一批晶片在室中被逐个处理。

为了使加热器 700 与顶板 800 之间相对表面因不同热膨胀而产生的磨损最小，可以在加热器 700 与顶板 800 相对表面之间提供润滑材料 700。另外，可以在热阻塞板 750 与加热器 700 相对表面之间和热阻塞板 750 与顶板 800 相对表面之间提供润滑材料。例如，如在图 5 中所示，一层润滑材料 760 可以放在加热器 700 上表面与顶板 800 下表面之间。最好是，润滑材料的位置，放在由 O 型环密封圈定义的真空密封圈的大气一侧。

润滑材料 760 最好有低度的接触阻力，以便使相对表面之间运动产生的磨损最小。此外，润滑材料 760 最好有足够的热传导性，为从加热器 700 到顶板 800 和/或热阻塞板 750，提供充分的热传递。应当指出，润滑材料 760 也可以在别的部件表面上使用，诸如在加热器 700 与绝缘体 600 相对表面之间、和/或在气体分配板 500 与上喷淋头式电极 200 之间。

能够提供这些性能的优选材料，是石墨材料，诸如“GRAFOIL”，它可从 Cleveland, Ohio 的 UCAR Carbon Co., Inc. 购得。润滑材料 760 最好是有推荐厚度约 0.01 英寸到约 0.06 英寸的密封垫，厚度约 0.03 英寸更好。润滑材料 760 最好是环状密封垫，夹持在部件表面形成的环形凹槽中，举例说，例如在加热器 700 与热阻塞板 750 之间，和/或在热阻塞板 750 与顶板 800 之间。

加热器 700 包括加热元件，加热元件最好是金属加热元件，或有耐热材料置于聚合物材料相对层之间的叠层板。例如，金属加热元件
可以是在铸造金属加热器中的加热元件，或在加热器中形成的孔道中的加热元件。另外，如果使用叠层板加热元件，叠层板应能耐受加热器 700 达到的高达 200°C 的温度。应当指出，如果使用叠层板加热元件，绝缘体 600 可以选作叠层板加热元件中的叠层板材料，起电绝缘体的作用。一种可以用在叠层板中的示例性聚合物材料，是以商标 Kapton® 出售的聚酰亚胺，可从 E. I. Du Pont de Nemours and Company 购得。

加热器 700 可以有一个或多个加热元件，排列成任何合适的图形，该图形是为跨越上喷淋头式电极 200 的均匀加热提供的。例如，加热器 700 可以有规则或不规则的耐加热线路，诸如“之”字形、S 形、或同心圆形。

B. 顶板

顶板 800 最好与加热器 700 组合工作，以控制上喷淋头式电极 200 的温度，这里借助穿过加热器 700 的热通道，可以用顶板 800 来冷却加热器 700 和/或上喷淋头式电极 200。顶板 800 最好由铝或铝合金制成，尽管任何热传导材料也可以使用。在安装时，喷淋头式组件最好在室内盖住顶板 800 的下侧。顶板 800 包括一个或多个流体通路，温度控制流体可以通过这些通路循环。温度控制流体最好是热传递流体（液体或气体），例如，举例说，去离子水。此外，顶板 800 最好起电接地的作用，同时也起散热器的作用，对设备 100、加热器 700、和/或上喷淋头式电极 200 来说，散热器作用可能是需要的。

C. 温度传感器

设备 100 可以包括一个或多个温度传感器 950，例如热电偶或光纤装置，用于监控上喷淋头式电极 200 的温度。在一个优选实施例中，温度传感器 950 被温度控制器 900 监控，后者控制从功率源 250 到加热器 700 的功率，和/或作为监控温度的一种功能，控制来自流体控制 850 的流体通过顶板 800 的流量。因此，温度传感器 950 向温度控制器 900 提供的数据，能使温度控制器 900 启动功率源 250 或流体控制
850, 以连续或间歇方式，分别向加热器 700 和/或上喷淋头式电极 200 输送功率或冷却流体，以便使上喷淋头式电极 200 加热、冷却、或维持在或围绕预定温度或温度范围。作为主动加热和/或冷却的结果，可以防止上喷淋头式电极 200 下降至预设最小温度或阈值温度以下，或增加至预设最大温度以上，从而使上喷淋头式电极 200 保持在或围绕在预定温度上。

D. 气体分配单元

如上所述，设备 100 还可以包括气体分配单元 500，位于上喷淋头式电极 200 之上，并与上喷淋头式电极 200 实现流体流通。最好是，通过与气体分配单元 500 组合地使用上喷淋头式电极 200，工艺气体被传输至待处理基片上的一个或多个气体分配区。此外，气体分配单元 500 可以用于把气体分配至上喷淋头式电极 200 后侧，无需用隔板来控制气流。例如见共同转让的美国专利 U.S. Patent No. 6,508,913，该专利公开一种气体分配系统，用于处理半导体基片，该系统包括多个气体源和气体输送线路。这里引用其全部公开的内容，供参考。

气体分配单元 500 的优选实施例，在图 10 画出，其中的气体分配单元 500 包括：沿轴向或沿侧向伸延的圆形金属板 505，和沿轴向伸延的圆柱形轴套 508，该两者最好用铝制造并在接触面积 170 上共轴对准，以便向轴向伸延的轴套 508 提供电气，能够通过金属板 505 到达喷淋头式电极 200 后侧一个或多个储气室。轴套 508 和板 505 能够由单件材料或多件材料形成，该多件材料被粘合或机械上紧固在一起。如在图 4 中所示，轴向伸延的轴套 508 和金属板 505，可以是一件材料。另外，板 505 可以包括粘合或机械上紧固在一起的两块重叠的板，例如，另一块金属板 106 可以附着于板 505 的下表面，其间有气体孔道，以便通过板 106 中的出口，把工艺气体送进金属板 106 及电极 200 之间的储气室，如在图 4 中所示。另外，轴向伸延的轴套 508 和分开的金属板 505，可以包括气体分配板 500，如图 1 和 2 所示。

还有，如在图 2 和 5 中所示，气体分配单元 500 可以用于把 RF
功率从 RF 功率源 570 传递到上喷淋头式电极 200，例如来自 RF 发生器的 RF 功率，可以经附着于与轴套 508 上 RF 输入连接的电缆输送，这样，RF 功率可以通过轴向伸延的轴套 508，金属板 505，并跨越上喷淋头式电极 200 输送。

在一个优选实施例中，金属板 505 包括通过它的体积的交叉钻孔，以便形成环形分配管道 151，与管道 151 实现流体流通的沿径向伸延的气体通路 160，和与通路 160 实现流体流通的沿轴向伸延的气体出口 115、122、125。例如见图 10 和 11。类似地，轴向伸延的轴套 508，也最好通过它的体积钻孔，形成一个或多个轴向伸延的气体给气孔 110、120，如图 10 中所示。用气体给气孔 110、120，管道 151，气体通路 160 和出口 115、122、125，气体分配单元 500 可以向在上喷淋头式电极 200 后侧的一个或多储气室，提供气体分配，这里的气体通路 160 通过管道 151，与轴向伸延轴套 508 中一个或多个气体给气孔 110、120 连接，如图 10 中所示。这样，不同的气体化学组分和/或流速，能够加于跨越待处理基片的一个或多个区。

在一个实施例中，能够不用隔板而实现气体流量分配，例如，设备 100 可以包含控制点 128，控制从气体源 550 到出口 115、122、125 的气体流量。这些控制点 128，最好是尾部收缩板，该尾部收缩板能控制流过控制点 128 的气体量，从而控制流过出口 115、122、125 的气体量，如在图 10 中所示。

最好是，气体分配单元 500 包括与上喷淋头式电极 200 接触的一个或多个气体密封圈或阻挡物，以便通过气体通路，引导气体进入上喷淋头式电极 200 后侧一个或多个储气室。例如，见图 10 中所示，金属板 505 下侧与上喷淋头式电极 200 后侧之间的 O 型环阻挡物 180，可以用于建立金属板 505 与上喷淋头式电极 200 之间的储气室，如中央储气室 190 和外部储气室 195。

气体源 550 可以向上喷淋头式电极 200 后侧各个储气室，提供一种或多种独立的气体或气体混合物。例如，可以按不同流速，向内部的和外部的储气室输送相同工艺气体，和/或输送不同的气体或气体混
合物，以便在半导体基片处理过程获得空隙 400 中需要的工艺气体分配。

E. 绝缘体

本设备还可以包括绝缘体 600，它最好是热传导但电绝缘的，更为可取的是陶瓷的，诸如氧化铝或氮化硼。该绝缘体 600 对帮助把加于上喷淋头式电极 200 的 RF 功率，与其他功率源及与其他功率源关联的如加热器 700 等其他导电部件隔离，是有用的。因此，绝缘体 600 能使加热器 700 在电上被隔离，但置于与上喷淋头式电极 200 热接触的位置，使上喷淋头式电极 200 能够被加热，但降低加热器的 AC 或 DC 功率与上喷淋头式电极 200 的 RF 功率之间的电干扰。

绝缘体 600 的大小最好基本上充满气体分配单元 500 与加热器 700 之间区域，但也可以形成包括第二部分 620 的形状，该第二部分 620 用于使气体分配单元 500 的外边缘区绝缘。然而，绝缘体 600 的形状，最好能使加热器 700 及诸如顶板 800 等其他导电部件，与加于上喷淋头式电极 200 的 RF 功率及关联的导电 RF 输送通路绝缘，导电通路例如是气体分配单元 500。

此外，绝缘体 600 的大小最好能对预定的功率电平，提供预定的电绝缘度。例如，设在 2300 Exelan™等离子室中的绝缘体层 600，可以按厚度在 0.2 到 1.0 英寸之间的尺寸制造，较取可是在 0.3 到 0.8 英寸之间，如 0.5 到约 0.75 英寸。

F. 子配件

为了在结构上支承设备 100 的部件，采用机械扣件把部件夹持在彼此相对的准确位置。最好用金属螺栓作为机械扣件，这里的螺栓用于固定设备 100 内每一部件。最好是，用两个分开的子配件来简化设备 100 的部件，也有利于设备 100 内部件的维护及更换。

为了形成第一子配件，用穿过气体分配单元 500 进入喷淋头式电极 200 后侧有螺纹的开孔，或有螺纹的镶嵌件的螺栓，把上喷淋头式电极 200 附着于气体分配单元 500 上，该喷淋头式电极 200 又被穿过绝缘体 600，进入气体分配单元 500 后侧有螺纹的开孔，或有螺纹的
嵌件的螺栓，附着于绝缘体 600 上。为了形成第二子配件，热阻塞板 750 用穿过顶板 800 进入热阻塞板 750 后侧有螺纹的开孔，或有螺纹的嵌件的螺栓，栓接在顶板 800 上，然后顶板 800 用进入加热器 700 后侧有螺纹的开孔，或有螺纹的嵌件的螺栓，栓接在加热器 700 上。之后，用穿过顶板 800 和加热器 700，进入绝缘体 600 后侧有螺纹的开孔，或有螺纹的嵌件的螺栓，把第一子配件附着于第二子配件。一般说，第二子配件准备比第一子配件使用更长的周期，就是说，第一子配件能够更换，而第二子配件仍然留在设备中。

此外，如上所述，最好在设备 100 中各个部件相对表面之间的真空可密封区，提供润滑材料，使磨损最小。

最好是，如在图 12 中所示，第一子配件 1000 包括螺栓 225 和螺栓 930, 螺栓 225 用于把上喷淋头式电极 200 紧固在气体分配单元 500 中，螺栓 930 用于把气体分配单元 500 紧固在绝缘体 600 中。还有，第二子配件 1100 最好包括螺栓 940 和螺栓 910，螺栓 940 把顶板 800 紧固在热阻塞板 750 中，螺栓 910 把顶板 800 紧固在加热器 700 中。另外，在把热阻塞板 750 栓接于顶板 800 之前，可以用螺栓 950 把热阻塞板 750 栓接在加热器 700 上。

在一个优选实施例中，如在图 12 中所示，子配件 1000、1100 各部分，包括位于该各部分下表面梯形开孔中的扣件 900，可使螺栓从上面覆盖部分，穿过对准孔并旋进扣件。这种扣件的细节，在共同转让的美国专利申请 U.S. Patent Application Serial No. 10/623,540 中提供，这里引用其全部主题内容，供参考。

虽然本发明已经参考具体的实施例详细说明，但显而易见，本领域熟练人员可以作出各种改变和修改，并采用其等效的内容，却不偏离附于后面的权利要求书的范围。
图3

1100 插入晶片

1200 测量喷淋头式电极的温度

1300 比较T和Tp

1320 T<Tp 向加热器提供功率

1340 T>Tp 使冷却流体通过顶板

1100 T=Tp

1400 处理晶片

1500 撤出晶片

1600 确定是否有另一晶片需要处理

1700 结束处理
图11