Provided is a source gas supply unit capable of supplying a constant amount of source gas to a deposition chamber to deposit a uniform layer, and a deposition apparatus and method using the same. The source gas supply unit includes a canister in which a source is stored, a heater heating the canister, a source gas supply pipe provided on one side of the canister, a measuring unit installed on the source gas supply pipe and measuring an amount of source gas passing through the source gas supply pipe, and a temperature controller connected to the heater and the measuring unit. The temperature controller controls the heater based on the amount of the source gas measured by the measuring unit.
SOURCE GAS SUPPLY UNIT, AND DEPOSITION APPARATUS AND METHOD USING THE SAME

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. patent application Ser. No. 12/711,495, filed Feb. 24, 2010, and claims the benefit of Korean Application No. 10-2009-0089698, filed Sep. 22, 2009, which are all hereby incorporated herein by reference.

BACKGROUND

[0002] 1. Field

[0003] Aspects of the present invention relate to a source gas supply unit, and a deposition apparatus and method using the same, and more particularly, to a source gas supply unit capable of supplying a constant amount of source gas, and a deposition apparatus and method capable of uniformly depositing a layer using the same.

[0004] 2. Description of the Related Art

[0005] With the rapid development of electronic display industries, thin, light-weight flat panel displays (FPDs) have recently been used in place of a cathode ray tube (CRT). Examples of FPDs include a liquid crystal display (LCD), a plasma display panel (PDP), and an organic light emitting diode (OLED) display device. FPDs have mainly been used as a display device for a television (TV), a computer monitor, or the like.

[0006] The OLED display device is a spontaneous light-emitting display device that electrically excites fluorescent organic compounds to emit light. The OLED display device displays an arbitrary image on a panel by forming an organic compound layer between a positive electrode (anode) and a negative electrode (cathode), injecting electrons and holes from the outside, and emitting light by the energy of electron-hole recombination.

[0007] The OLED display device includes an anode, an organic layer, and a cathode, which are stacked on a substrate, and may further include at least thin film transistor (TFT). The organic layer includes an organic emission layer. In this organic emission layer, the holes and the electrons are recombined to form excitons, and generate light. Here, to further increase luminous efficiency, the holes and electrons should be more smoothly transported to the organic emission layer.

[0008] To this end, an electron transport layer may be interposed between the cathode and the organic emission layer, and a hole transport layer may be interposed between the anode and the organic emission layer. Further, a hole injection layer may be interposed between the anode and the hole transport layer, and an electron injection layer may be interposed between the cathode and the electron transport layer.

[0009] As described above, the OLED display device is formed by stacking a plurality of layers, such as a conductive layer, an organic layer, and an insulating layer. As a typical method of forming a thin film on a substrate, physical vapor depositions (PVDs) are used. PVDs include methods such as evaporation, ion plating and sputtering, chemical vapor depositions (CVDs) based on gas reaction, etc.

[0010] The formation of the thin film using a conventional CVD is carried out by introducing a carrier gas into a canister in which a source for forming the thin film is stored, evaporating the source, supplying a mixed gas of the carrier gas and the evaporated source gas into a deposition chamber, and depositing the source on a substrate disposed in the deposition chamber. However, in the case of the CVD, the shape or capacity of the source is changed due to the introduction of the carrier gas. Thus, it is difficult to stably evaporate the source, and the source is therefore non-uniformly deposited on the substrate.

SUMMARY

[0011] Aspects of the present invention provide a source gas supply unit capable of supplying a constant amount of source gas to a deposition chamber.

[0012] Aspects of the present invention also provide a deposition apparatus and method capable of uniformly depositing a layer using the source gas supply unit.

[0013] According to an exemplary embodiment of the present invention, a source gas supply unit includes a canister in which a source is stored, a heater heating the canister, a source gas supply pipe provided on one side of the canister, a measuring unit installed on the source gas supply pipe and measuring an amount of source gas passing through the source gas supply pipe, and a temperature controller connected to the heater and the measuring unit. The temperature controller controls the heater based on the amount of the source gas measured by the measuring unit.

[0014] According to another exemplary embodiment of the present invention, a deposition apparatus includes a source gas supply unit supplying a source gas, a carrier gas supply unit supplying a carrier gas, a deposition chamber receiving the source and carrier gases to perform a deposition process. The source gas supply unit includes a canister in which a source is stored, a heater heating the canister, a source gas supply pipe provided on one side of the canister, a measuring unit installed on the source gas supply pipe and measuring an amount of source gas passing through the source gas supply pipe, and a temperature controller connected to the heater and the measuring unit and controlling the heater based on the amount of the source gas measured by measuring unit.

[0015] According to still another exemplary embodiment of the present invention, a deposition method includes heating a canister using a heater to evaporate a source, measuring an amount of source gas supplied to an outside through a source gas supply pipe, and sending the measured value to a temperature controller, controlling the heater based on the measured amount of source gas using the temperature controller, and mixing the source gas with a carrier gas supplied from a carrier gas supply, and supplying the mixture gas into a deposition chamber.

[0016] Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:

[0018] FIG. 1 illustrates a schematic configuration of a source gas supply unit according to an exemplary embodiment of the present invention; and
FIG. 2 illustrates a schematic configuration of a deposition apparatus according to an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.

FIG. 1 illustrates a schematic configuration of a source gas supply unit 100 according to an exemplary embodiment of the present invention. The source gas supply unit 100 includes a canister 112, a heater 113, a source gas supply pipe 114, a measuring unit 115, and a temperature controller 116. The canister 112 stores a source 111. The heater 113 heats the canister 112. The source gas supply pipe 114 is installed on one side of the canister 112. The measuring unit 115 is installed on the source gas supply pipe 114 and measures an amount of source gas passing through the source gas supply pipe 114. The temperature controller 116 is connected to the heater 113 and the measuring unit 115.

Further, the source gas supply unit 100 includes a source supply 117 connected with the canister 112 and supplying the source 111 into the canister 112, and a valve 118 opening or closing the source gas supply pipe 114. While described as part of the source gas supply unit 100, it is understood that the source supply 117 can be detachably connected to the source gas supply unit 100.

The source 111 is a substance for forming a layer through deposition. The source 111 generally exists in a liquid state, and is evaporated by heat supplied from the heater 113. The canister 112 stores the source 111. The canister 112 may have the shape of a hollow cylinder or a hollow hexahedron, but it does not limit to this shape. Further, the source 111 could also exist in a solid state prior to heating.

The heater 113 applies heat to the canister 112 in order to evaporate the source 111. The heater 113 can be integrally or detachably installed on the canister 112. Further, the heater 113 may be installed in the canister 112, or can be located outside the canister 112. However, it is preferable to install the heater 113 in the canister 112 for efficient heating. In addition, the heater 113 may be installed on the entire surface of the canister 112, and be selectively installed only on part of the canister 112, such as a lower surface or a lateral surface. The heater 113 may include a lamp heater or a coil heater, but the invention is not limited thereto.

The source gas supply pipe 114 is a passage for supplying the source gas evaporated by the heater 113 out of the canister 112. The source gas supply pipe 114 may be formed by extension of a part of the canister 112 or by connection of a separate pipe with the canister 112.

The measuring unit 115 measures an amount of the source gas passing through the source gas supply pipe 114. The measuring unit 115 is installed on source gas supply pipe 114, is connected with the temperature controller 116, and sends the measured amount of the source gas to the temperature controller 116. The measured amount can be the total amount detected in a time period, or can be a mass flow rate of the source gas passing through the source gas supply pipe 114.

The temperature controller 116 is connected with the heater 113 and the measuring unit 115, and controls the heater 113 on the basis of the amount of the source gas measured by the measuring unit 115. Specifically, when the amount of the source gas measured by the measuring unit 115 is less than a reference amount to be supplied, the temperature controller 116 controls the heater 113 to heat the canister 112 to a temperature higher than that set at present. In contrast, when the amount of the source gas measured by the measuring unit 115 is more than the reference amount to be supplied, the temperature controller 116 controls the heater 113 to heat the canister 112 to a temperature lower than that set at present. While not required, the temperature controller 116 can be implemented using a processor or computer implementing software and/or firmware encoded on a computer readable medium.

An operation of the source gas supply unit 100 according to an exemplary embodiment of the present invention as mentioned above will be described. When a deposition process is initiated, the heater 113 heats the canister 112, thereby evaporating the source 111.

Here, the temperature controller 116 controls the heater 113 to heat the canister 112 to an initial set temperature.

At this time, since the valve 118 is in an open state, the evaporated source gas is supplied to the outside through the source gas supply pipe 114. Further, the source supply 117 supplies the source 111 into the canister 112 such that the source 111 stored in the canister 112 maintains a constant amount. The valve 118 can otherwise be in a closed state while the source gas is being initially heated or when the deposition process is not being performed.

The measuring unit 115 measures an amount of the source gas supplied to the outside through the source gas supply pipe 114, and then sends the measured value to the temperature controller 116. The temperature controller 116 controls the heater 113 according to the amount of the source gas measured by the measuring unit 115.

Specifically, when the amount of the source gas measured by the measuring unit 115 is less than a reference amount to be supplied, the temperature controller 116 controls the heater 113 to heat the canister 112 to a temperature higher than that set at present. In contrast, when the amount of the source gas measured by the measuring unit 115 is more than the reference amount to be supplied, the temperature controller 116 controls the heater 113 to heat the canister 112 to a temperature lower than that set at present. The amount of temperature increase or decrease can be determined experimentally according to the measured flow and stored as a table. Thus, with use of the source gas supply unit 100 according to an exemplary embodiment of the present invention, a carrier gas does not need to be supplied into the canister 112, and thus a shape or capacity of the source 111 is not affected by the carrier gas. As a result, the source 111 can be stably evaporated.

Further, the temperature of the heater 113 is controlled on the basis of the amount of the source gas supplied to the outside through the source gas supply pipe 114, so that the amount of the source gas supplied can be kept constant.

Further, since the measuring unit 115 measures only the amount of the source gas rather than the amount of a mixture gas of the source gas and the carrier gas, it is possible to more precisely measure the amount of the source gas, compared to measuring the amount of the mixture gas.

FIG. 2 illustrates a schematic configuration of a deposition apparatus according to an exemplary embodiment of the present invention. Referring to FIG. 2, the deposition...
apparatus such as a chemical vapor deposition (CVD) apparatus includes a source gas supply unit supplying a source gas, a carrier gas supply supplying a carrier gas, and a deposition chamber receiving the source and carrier gases to perform a deposition process.

[0036] The source gas supply unit is generally like the source gas supply unit shown in FIG. 1, and so a detailed description thereof will be omitted. The source gas supply unit includes a heater that heats a canister, thereby evaporating a source. A temperature controller controls the heater to heat the canister. The evaporated source gas can be supplied to the outside through the source gas supply pipe. Further, a source supply supplies the source into the canister. A measuring unit measures an amount of the source gas supplied to the outside through the source gas supply pipe, and then sends the measured value to the temperature controller. A valve can be opened to allow the produced source gas to flow into the deposition chamber during the deposition process, and can be in a closed state when the source gas is being initially heated or when the deposition process is not being performed.

[0037] The carrier gas supply is connected with the source gas supply unit through a first pipe (i.e. a carrier gas supply pipe), and a source gas supply pipe. A first valve for opening or closing the carrier gas supply pipe is installed on the first pipe. However, it is understood that the first valve need not be used in all aspects. The first valve can be opened to allow the carrier gas to be supplied to the deposition chamber during the deposition process, and can be closed when the deposition process is completed.

[0038] The deposition chamber is connected with the source gas supply unit through a second pipe (i.e. a mixture gas supply pipe) and the source gas supply pipe. A second valve for opening or closing the mixture gas supply pipe is installed on the second pipe. However, it is understood that the second valve need not be used in all aspects. The second valve can be opened to allow the mixture of the source and carrier gases to be supplied to the deposition chamber during the deposition process, and can be closed when the deposition process is completed.

[0039] The source gas supply pipe is directly connected to the deposition chamber. The source gas supply pipe and the second pipe are interconnected at respective ends thereof. A joint where the source gas supply pipe and the second pipe are connected may have the shape of a venturi tube between the first pipe and the second pipe. Thus, fluid passing through the joint speeds up as it enters the narrow throat of the joint, and the pressure drops. Thereby, the carrier gas supplied from the carrier gas supply pipe can be prevented from flowing into the source gas supply pipe. However, the invention is not limited thereto.

[0040] The deposition chamber includes a chamber body, a susceptor, and a shower head. The chamber body provides a space where a deposition process is carried out. The chamber body may have the shape of a cylinder or a box, but it is not limited to this shape. The chamber body is provided with a discharge port in a lower portion thereof, which discharges a residual gas caused by the deposition process. The chamber body further includes a gate (not shown), which loads and unloads a substrate on or off the susceptor.

[0041] The susceptor is located at an inner lower portion of the chamber body. The susceptor allows the substrate loaded into the chamber body to be placed thereon, and supports the substrate during the deposition process. The shower head is installed at an inner upper portion of the chamber body to be opposite to the susceptor. The shower head is connected with the second pipe, and sprays a substance onto the substrate through the shower head. Further, since a measuring unit measures only the amount of the source gas rather than an amount of mixture gas of the source gas and the carrier gas, it is possible to more...
precisely measure the amount of the source gas, compared to measuring the amount of the mixture gas.

[0051] Further, since a uniform amount of source gas is supplied into a chamber body, it is possible to deposit a uniform layer.

[0052] Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

What is claimed is:

1. A deposition method comprising:
 heating a canister using a heater to evaporate a source to produce a source gas;
 measuring an amount of the produced source gas being supplied to outside of the canister through a source gas supply pipe, and sending the measured value to a temperature controller;
 controlling the heater based on the measured amount of source gas using the temperature controller; and
 mixing the source gas with a carrier gas supplied from a carrier gas supply, and supplying the mixture gas into a deposition chamber.

2. The method according to claim 1, wherein heating the canister includes controlling the heater such that the temperature controller heats the canister to an initial set temperature.

3. The method according to claim 1, wherein controlling the heater comprises controlling the heater to heat the canister to a temperature higher than a current temperature when the measured amount of source gas is less than a reference amount to be supplied, and controlling the heater to heat the canister to a temperature lower than the current temperature when the measured amount of source gas is more than the reference amount to be supplied.

4. The method according to claim 1, further comprising supplying the source from the source supply into the canister.

5. A method of supplying source gas for use in deposition, the method comprising:
 detecting an amount of produced source gas being supplied to perform the deposition through a source gas supply pipe to a deposition chamber in which the deposition is performed; and
 controlling a heater heating a source to produce the source gas based on the detected amount of source gas using a temperature controller to change an amount of heat produced by the heater.

6. The method of claim 5, wherein the detecting the amount comprises measuring the amount using a measuring unit prior to mixing the produced source gas with a carrier gas.

7. The method of claim 6, further comprising mixing the produced source gas with the carrier gas, and performing deposition of the source on a substrate using the mixed carrier and source gases.

8. A computer readable medium encoded with processing instructions for implementing the method of claim 5 using at least one processor.