Title: CELLS FOR IMMUNOTHERAPY ENGINEERED FOR TARGETING CD38 ANTIGEN AND FOR CD38 GENE IN-ACTIVATION

Abstract: Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said CD38 immune by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
**CELLS FOR IMMUNOTHERAPY ENGINEERED FOR TARGETING CD38 ANTIGEN AND FOR CD38 GENE INACTIVATION**

**Field of the invention**

The present invention relates to methods of developing genetically engineered, preferably non-alloreactive, immune cells for immunotherapy, which are endowed with Chimeric Antigen Receptors targeting the CD38 antigen marker that is common to both the pathological cells and the immune cells).

The method comprises expressing a CAR directed against said antigen marker and inactivating the genes in the immune cells contributing to the presence of said antigen marker on the surface of said immune cells. This inactivation is typically performed by using transgenes encoding RNA-guided endonucleases (ex: Cas9/Crispr), meganucleases, Zinc-finger nucleases or TAL nucleases. The engineered immune cells, preferably T-cells, direct their immune activity towards malignant, infected cells or defective immune cells, while avoiding their mutual destruction, auto-stimulation or aggregation. The invention opens the way to standard and affordable adoptive immunotherapy strategies using immune cells for treating cancer, infections and auto-immune diseases.

**Background of the invention**

Adoptive immunotherapy, which involves the transfer of autologous antigen-specific immune cells generated *ex vivo*, is a promising strategy to treat viral infections and cancer. The T-cells used for adoptive immunotherapy, for instance, can be generated either by expansion of antigen-specific T-cells or redirection of T-cells through genetic engineering (Park, Rosenberg et al. 2011).

Novel specificities in T-cells have been successfully generated through the genetic transfer of transgenic T-cell receptors or chimeric antigen receptors (CARs) (Jena, Dotti et al. 2010). CARs are synthetic receptors consisting of a targeting moiety that is associated with one or more signaling domains in a single fusion molecule. In general, the binding moiety of a CAR consists of an antigen-binding domain of a single-chain antibody (scFv), comprising the light and variable fragments of a monoclonal antibody joined by a flexible linker. Binding moieties based on receptor or ligand domains have also been used successfully. The signaling domains for first generation CARs are derived from the cytoplasmic region of the CD3zeta or the Fc receptor gamma chains. First generation CARs have been shown to successfully redirect T cell cytotoxicity, however, they failed to provide prolonged expansion and anti-tumor activity *in vivo*. Signaling domains from co-stimulatory molecules including CD28, OX-40...
(CD134), and 4-1BB (CD137) have been added alone (second generation) or in combination (third generation) to enhance survival and increase proliferation of CAR modified T cells. CARs have successfully allowed T cells to be redirected against antigens expressed at the surface of tumor cells from various malignancies including lymphomas and solid tumors (Jena, Dotti et al. 2010).

The current protocol for treatment of patients using adoptive immunotherapy is based on autologous cell transfer. In this approach, T lymphocytes are recovered from patients, genetically modified or selected ex vivo, cultivated in vitro in order to amplify the number of cells if necessary and finally infused into the patient. In addition to lymphocyte infusion, the host may be manipulated in other ways that support the engraftment of the T cells or their participation in an immune response, for example pre-conditioning (with radiation or chemotherapy) and administration of lymphocyte growth factors (such as IL-2). Each patient receives an individually fabricated treatment, using the patient's own lymphocytes (i.e. an autologous therapy). Autologous therapies face substantial technical and logistic hurdles to practical application, their generation requires expensive dedicated facilities and expert personnel, they must be generated in a short time following a patient's diagnosis, and in many cases, pretreatment of the patient has resulted in degraded immune function, such that the patient's lymphocytes may be poorly functional and present in very low numbers. Because of these hurdles, each patient's autologous cell preparation is effectively a new product, resulting in substantial variations in efficacy and safety.

Ideally, one would like to use a standardized therapy in which allogeneic therapeutic cells could be pre-manufactured, characterized in detail, and available for immediate administration to patients. By allogeneic it is meant that the cells are obtained from individuals belonging to the same species but are genetically dissimilar. However, the use of allogeneic cells presently has many drawbacks. In immune-competent hosts allogeneic cells are rapidly rejected, a process termed host versus graft rejection (HvG), and this substantially limits the efficacy of the transferred cells. In immune-incompetent hosts, allogeneic cells are able to engraft, but their endogenous T-cell receptors (TCR) specificities may recognize the host tissue as foreign, resulting in graft versus host disease (GvHD), which can lead to serious tissue damage and death.

In order to provide allogeneic T-cells, the inventors previously disclosed a method to genetically engineer T-Cells, in which different effector genes, in particular those encoding T-cell receptors, were inactivated by using specific TAL-nucleases, better known under the trade mark TALEN™ (Cellectis, 8, rue de la Croix Jarry, 75013 PARIS). This method has proven to be highly efficiency in primary cells using RNA transfaction as part of a platform allowing the mass production of allogeneic T-cells (WO 2013/176915).
CD38 (cluster of differentiation 38), also known as cyclic ADP ribose hydrolase is a glycoprotein found on the surface of many immune cells (white blood cells), in particular T-cells, including CD4+, CD8+, B lymphocytes and natural killer cells. CD38 also functions in cell adhesion, signal transduction and calcium signaling. Structural information about this protein can be found in the UniProtKB/Swiss-Prot database under reference P28907. In humans, the CD38 protein is encoded by the CD38 gene which located on chromosome 4. CD38 is a multifunctional ectoenzyme that catalyzes the synthesis and hydrolysis of cyclic ADP-ribose (cADPR) from NAD+ to ADP-ribose. These reaction products are deemed essential for the regulation of intracellular Ca2+. Also, loss of CD38 function was associated with impaired immune responses and metabolic disturbances (Malavasi F., et al. (2008). "Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology". Physiol. Rev. 88(3): 841-86).

On another hand, CD38 protein is a marker of HIV infection, leukemias, myelomas, solid tumors, type II diabetes mellitus and bone metabolism, as well as some other genetically determined conditions. In particular, it has been used as a prognostic marker in leukemia (Ibrahim, S. et al. (2001) CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 98:181-186).

Mihara et al (2009) describes an anti-CD38 chimeric antigen receptor based on the TBH-7 scFv. These engineered T-cells do not contain any other genetic modification. It is stressed in this publication that the recovery of viable cells was very low.

Although, cells expressing CD38 could be regarded as an attractive target for CARs, the fact that such antigen markers are also expressed at the surface of most T-cells, has hampered significantly the selection of these markers to perform immunotherapy.

The inventors here provide strategies for immunotherapy involving pathological cells expressing CD38 specific antigen marker also present at the surface of T-cells.

**Summary of the invention**

The present invention discloses methods to engineer T-cells intended to target pathological cells, whereas said pathological cells express CD38 marker that are also present on the surface of T-cells. By antigen marker is meant the whole protein of an immune-reactive fragment thereof.

More particularly, the engineered immune cells of the invention relate to anti-CD38 specific chimeric antigen receptors (anti-CD38 CARs) having specific architectures of versions VI, V2 and V3 such as illustrated in Figure 8; this anti-CD38 CAR having as cytoplasmic domain the CD3 zeta signaling
domain and a co-stimulatory domain from 4-1BB, and having VH and VL chains deriving from 25A10, 28F5, 13F11, 16B5, 10F7, 27B6 or 29B4 monoclonal antibodies.

According to the invention, the T-cells are preferably engineered in order to inactivate the expression of the gene encoding such CD38 antigen marker. This inactivation is preferably performed by a genome modification, more particularly through the expression in the T-cell of a specific rare-cutting endonuclease able to target a genetic locus directly or indirectly involved in the production or presentation of said CD38 antigen marker at the surface of the T-cell. Different types of rare-cutting endonucleases can be used, such as meganucleases, TAL-nucleases, zing-finger nucleases (ZFN), or RNA/DNA guided endonucleases like Cas9/CRISPR or argonaute (Ago). Here, the use of TALENs has been found particularly suitable to inactivate the CD38 gene. A schematic representation is presented in Figure 1.

According to a preferred embodiment, the immune cells of the invention are engineered in order to inactivate the CD38 gene encoding for the CD38 surface antigen, and also to endow a specific anti-CD38 CAR, this double genetic modification aiming to specifically target cancerous CD38-expressing cells while reducing the risk for these anti-CD38 CAR immune cells to kill each other.

According to a still preferred embodiment, said double-genetically engineered anti-CD38 CAR cells have a CAR structure of VI, V2 or V3 such as presented in Figure 8, this anti-CD38 CAR having as cytoplasmic domain the CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB, and having VH and VL chains deriving from 25A10, 28F5, 13F11, 16B5, 10F7, 27B6 or 29B4 monoclonal antibodies.

According to another embodiment, the T-cells can be further engineered to make them allogeneic, especially by deleting genes involved into self-recognition, such as those, for instance, encoding components of T-cell receptors (TCR) or HLA complex.

According to another embodiment, the T-cells can be further engineered to integrate at least one epitope or mimotope in the extracellular binding domain of the chimeric antigen receptor in order to deplete in vivo such engineered T-cells in case of need.

The present invention encompasses the isolated cells or cell lines comprising the genetic modifications set forth in the detailed description, examples and figures, as well as any of the proteins, polypeptides or vectors useful to engineer said T-cells.

As a result of the invention, the engineered T-cells can be used as therapeutic products, ideally as an "off the shelf" product, in methods for treating or preventing cancer, infections or auto-immune disease. In particular, they are most suitable for the treatment of multiple myeloma (MM) or acute lymphoblastic lymphoma (ALL).
Preferred immune cells according to the present invention are the ones resulting into the phenotype \([\text{CAR CD38}]^{+}[\text{CD38}];\) preferably also [TCR] negative for their use as therapeutic products, preferably allogeneic ones.

Brief description of the figures

Figure 1: Schematic representation of an engineered T-cell according to the present invention disrupted for CD38 and endowed with a chimeric antigen receptor (represented as a single-chain CAR) targeting a malignant cell bearing the antigen marker CD38.

Figure 2: A: Schematic representation of in a mammalian expression vector (pCSL.10794) under the control of the T7 promoter, which is used for the subcloning of each TALE-nuclease construct using restriction enzyme digestion (insert: SfaNI-BbvI and vector: BsmBI). B: Schematic representation of in a mammalian expression vector (pCLS9632) under the control of the T7 promoter, which is used for the subcloning of each CAR constructs using restriction enzyme digestion (Ascl et HindII I).

Figure 3: Expression of CD38 in T cells: Freshly isolated T cells were cultured with anti-CD3-28 coated microbeads (Dynabeads, life technologies) + 20ng/ml human IL2 (Miltenyi). A: CD38 expression by T cells at Day 6 after activation. B: CD38 expression by T cells over 3 weeks after activation.

Figure 4: Time scales for 3 experiments performed in the present invention: A: Talen-inactivation of the endogenous CD38 in T cells; B: transfection of mRNA encoding CAR in WT T cells; C: transfection of mRNA encoding CAR after T cell activation in purified CD38 deficient T cells

Figure 5: Sequences of the Exon 1 of the CD38 antigen and of the 3 targets tested for CD38 KO by TALEN; the 3 targets CD38-1, CD38-2 and CD38exl-T2 correspond to the successive framed parts.

Figure 6: Percentage of CD38 negative T cells 7 days after TALEN mRNA transfection; the 3 pairs of TALEN CD38exl-T2, CD38-1

Figure 7: A: Percentage of CD38 negative T cells over the 17 days of culture with IL-2 after TALEN mRNA transfection. B: T cell growth (i.e. factor of proliferation) over the 11 days of culture in presence of IL-2 after CD38 negative T cells purification -Day 6 after T cells electroporation and Day 10 after T cells activation- [legend : empty circle: No TALEN; full circle: TALEN CD38-1 and triangle: purified negative CD38 (TALEN CD38-1); N represents the number of tests performed for each case]

Figure 8: Representation of the 3 versions (VI, V2 and V3) of designed and tested anti-CD38 CARs depending of the hinge used.
Figure 9: Construct plasmids for subcloning of the anti-CD38 CARs, with the Kd (nM) of their respective scFvs.

Figure 10: Testing of 5 cell lines (MOLP8, Daudi, U266 CD38+, U266 CD38- and K562) for quantitative expression of CD38 antigen using Kikifit method (Dako) A: FAC analysis; B: percentage of CD38 expression and number of CD38 antigens per cell.

Figure 11: Screening of all the 24 different CARs (8 pairs of scFvs X 3 versions VI, V2 and V3) after transfection of the mRNAs encoding the CARs 5 days after freshly isolated T cells. CAR expression analysis by flow cytometry using protein L, anti-Fab or CD38-Fc (N=1)

Figure 12: Screening of all the 24 different CARs (8 pairs of scFvs X 3 versions VI, V2 and V3) after transfection of the mRNAs encoding the CARs 5 days after activation of freshly isolated T cells. CD107a expression at the plasma membrane of T cells after incubation (5 hours) with target cell lines (N=1)

Figure 13: Comparison of wt, CD38-deficient, purified CD38-deficient anti-CD38 CAR T cells. A: T cells viability assessed by LU NA cell counter. B: CAR expression at day 1 and day 2 after mRNA transfection using CD38-Fc fusion protein (N=1).

Figure 14: Comparison of wt, CD38-deficient, purified CD38-deficient anti-CD38 CAR T cells. A: Percentage of CD107a+ CD8 T cells after T cells incubation with target cells. B: Target cells lysis normalized on no CAR T cells and K562 lysis. (N=1)

Figure 15: CAR expression at day 1 and day 2 in purified CD38-deficient anti-CD38 CAR T cells after mRNA transfection using CD38-Fc fusion protein (N=3).

Figure 16: Percentage of CD107a+ CD8 T cells after T cells incubation with target cells (N=3, except for degranulation against autologous T cells (N=1 or 2)

Figure 17: Target cells lysis normalized on no-CAR T cells and K562 lysis (N=3, except for cytotoxicity against LT autologous N=1 or 2).

Figure 18: Schematic representation of FCERI from which derive the multi-chain CAR architecture according to the invention.

Figure 19: General structure of the polycistronic construct encoding the CD38 multi-chain CAR according to the invention.

Figure 20: Different architectures of the CD38 specific multi-chain CAR according to the invention. From left to right: polypeptide gamma (fused to ITAM of CD3zeta), polypeptide alpha (fused to ScFv), polypeptide beta (fused to co-stimulatory domain from either CD28 or 41BB). A and B: polypeptide beta is fused to co-stimulatory domain from 41BB, VL and VH fragments being in opposite
orders. C and D: polypeptide beta is fused to co-stimulatory domain from CD28, VL and VH fragments being in opposite orders.

**Figure 21A and Figure 21B:** Schematic representation of exemplary anti-CD38 specific CARs according to the invention involving different mAb-epitope tagging for T cell depletion, especially CD20 mimotope(s), which are designed to mitigate possible side effects associated with CAR positive cells injection.

(A) anti-CD38 specific CAR prototype according to the present invention not involving an epitope tagging sequence for sorting or depleting cells: V1 and v2 represents either VH or VL chain respectively of an antibody binding CD38, TM: transmembrane domain, L: linker, TM: Transmembrane domain (preferably CD8a transmembrane domain), 4-1BB: intracellular co-stimulatory domain, CD3 ITAM: activation domain.

(B) anti-CD38 specific CAR architectures according to the invention further including at least one epitope inserted in the extracellular ligand binding domain of the CAR, wherein said epitope is inserted between the VH and VL chains; said epitope being bordered by different linkers.

(C): anti-CD38 specific CAR architectures according to the invention, where two epitopes are inserted in the extracellular ligand binding domain of the CAR, one is inserted between the N-terminal end of the CAR and the VH chain, said epitope being bordered by at least one or two linkers; the second epitope is inserted between the VH and VL chains, said 2nd epitope being also bordered by 2at least one or two linkers. The architectures illustrated herein differ by the linkers used bordering the 2nd epitope.

(D): anti-CD38 specific CAR architectures according to the invention, where two epitopes are inserted in the extracellular ligand binding domain of the CAR, one is inserted between the VH and VL chains; the other epitope is inserted between the VL chain and the hinge, each said epitope being also bordered by at least one or two linkers. The architectures illustrated herein differ by the linkers used bordering the 1st epitope.

(E): anti-CD38 specific CAR architecture according to the invention, where two epitopes are inserted in the extracellular domain of the CAR, one is inserted between the N-terminal end of the CAR and the VH chain, said epitope being bordered by at least one or two linkers; the second epitope is inserted between the VL chain and the hinge, said 2nd epitope being also bordered by such linkers.

(F): anti-CD38 specific CAR architectures according to the invention, where three epitopes are inserted in the extracellular domain of the CAR, one is inserted between the N-terminal end of the CAR
and the VH chain, said epitope being bordered by at least one or two linkers; the second epitope is inserted between the VH and VL chains, said epitope being also bordered by such linkers, and the third epitope being inserted between the VL chain and the hinge. These two architectures differ by the linkers used bordering the 2ⁿᵈ epitope.

(G): anti-CD38 specific CAR architectures according to the invention, where at least two epitopes (preferably CD20 epitopes) are inserted in the extracellular ligand binding domain between the hinge and the anti-CD38 VH and VL chains. In the third exemplary architecture, one CD34 epitope is included between two CD20 epitopes. Further architectures may be considered where CD34 replaces any other previous CD20 epitopes.

(H): anti-CD38 specific CAR architectures according to the invention, where at least two epitopes are inserted at the extremity of the extracellular ligand binding domain.

Figure 22: Evaluation of in vivo anti-tumor activity of T cells with CD38 knock out and endowing an anti CD19 CAR (CAR CD38⁻/⁻ CAR-CO19 T cells); A) Timescale of the experiment; B) Bioluminescence imaging was assessed at Day 7, Day 14 and Day 21 in 4 groups of mice: no T cell was administrated, administration of T cells with KO CD38 and expressing RQR8 (CD38⁻/⁻ RQR8), administration of T cells with KO CD38 and co-expressing CD19 CAR and RQR8, and administration of T cells WT CD38 and co-expressing CD19 CAR and RQR8. The missing mice at Day 14 and Day 21 are due to sacrificed ones for characterization purposes; C) Evaluation of the tumor progression by bioluminescence imaging at Day 7, Day 14 and Day 21 in the 4 above groups of mice; D) Evaluation of survival percentage in function of time in the 4 above groups of mice.

Figure 23: Evaluation of CD38-KO efficacy in two independent experiments. The graph represents the % of CD38 negative cells 5 days after electroporation (TpT: buffer T: negative control).

Figure 24: Evaluation of the effect of the amount of CD38 TALEN mRNA on the KO efficiency A) and T cell proliferation rate B). The quantity of mRNA in the graph corresponds to the mRNA total used (10μg, 5μg and 2μg for each TALEN are equivalent to 2μg, 1μg and 0.5μg of mRNA per 10⁶ cells).

Figure 25: Evaluation of the transduction efficiency assessed by CD38-fc or RQR8 staining at Day 3 after transduction. Three MOIs (5, 10 and 15) for 4 different rLVS encoding for anti-CD38 CARs (25A10-V1 and V2, and 28F5 V1 and V2) were tested.

Figure 26: Time scaling for the screening process of T cells having undergone CD38 / TRAC double KO and anti-CD38 CAR transduction.
**Figure 27:** Evaluation of the efficiency of CD38/TRAC KO by TALEN mRNA electroporation in T cells, and of the CAR and RQR8 co-expression at the end of the culture process. A) three series of FACs corresponding to the expression of CD38 antigen and of anti-CD38 CAR by RQR8 and CD38 Fc; these assays were performed on each of the 4 anti-CD38 CARs (25A10-V1 and V2, and 28F5 V1 and V2) which have undergone a CD38/TRAC double KO (DKO). B) Evaluation of the percentage of viable T cells having successfully undergone a CD38/TRAC double KO (DKO). C) Evaluation for the 4 above CARs of the anti-CD38 CAR expression based on RQR8 and CD38 Fc. NTD: non-transduced.

**Figure 28:** Characterization of the phenotype of T cells having successfully undergone a double CD38/TRAC KO and expressing anti-CD38 CAR. A) Determination of the ratio of CD4/CD8 in T cells expressing RQR8 for each one of the 4 above anti-CD38 CARs. B) Determination of the ratio of T cells subsets: effector T cell (Teff), memory effector T cell (Tern), central memory T cells (Tcm), stem cell memory T cells (Tscm), another category of memory T cells (Temra) and naive T cells (Tn), for each one of the 4 above anti-CD38 CARs

**Figure 29:** Evaluation of the activity for the 4 anti-CD38 CARs (25A10-V1 and V2, and 28F5 V1 and V2) A) Evaluation of their degranulation against MM cell lines: MOLP8, U266 (expressing or not CD38 antigen) and K562, against autologous T cells, and as positive control the case when no cell line was used (LT alone) B) Evaluation of their cytotoxicity against MM CD38 expressing cell lines, the values for U266 which is a MM expressing CD38 cell line was normalized to that of U266 not expressing CD38 cell line. For these 2 graphs: the legends next to them from top to the bottom correspond to the bars from left to right.

**Figure 30:** Evaluation of the CD38 expression at the cell surface of three T acute lymphoblastic leukemia (T-ALL) cell lines (MOLT4, Loucy and CCFR-CEM), and of two MM cell lines (U266 CD38- and MOLP8).

**Figure 31:** Evaluation of the establishment of KO CD38 by determination of percentage of CD38 negative T cells in the CCFR-CEM (T-ALL) cell line before and after purification.

**Figure 32:** Evaluation of the a anti-CD38 CAR activity for the 25A10-V1 A) Evaluation of their degranulation against T ALL cell lines: CCFR-CEM original cell and the one KO CD38, Loucy and MOLT4, a MM 1s MM cell line expressing CD38, and as positive control the case when no cell line was used (LT alone) B) Evaluation of their cytotoxicity against the above T ALL CD38 expressing cell lines (value for CCFR-CEM was normalized to the corresponding CD38 not expressing cell line). For these 2 graphs: the legends next to them from top to the bottom correspond to the bars from left to right.
Detailed description of the invention

Unless specifically defined herein, all technical and scientific terms used have the same meaning as commonly understood by a skilled artisan in the fields of gene therapy, biochemistry, genetics, and molecular biology.

All methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, with suitable methods and materials being described herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will prevail. Further, the materials, methods, and examples are illustrative only and are not intended to be limiting, unless otherwise specified.


The invention relates more particularly to anti-CD38 specific chimeric antigen receptors (anti-CD38 CARs) having one of the polypeptide structure selected from V1, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,
wherein said $V_H$ and $V_L$ comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4).

Engineered T-cells expressing chimeric antigen receptors against pathological cells

The chimeric antigen receptors introduced into the T-cells according to the invention can adopt different design such as single-chain or multi-chain CARs. These different designs allow various strategies for improving specificity and binding efficiency towards the targeted pathological cells. Some of these strategies are illustrated in the figures of the present application. Single-chain CARs are the most classical version in the art. Multi-chain CAR architectures were developed by the applicant as allowing modulation of the activity of T-cells in terms of specificity and intensity. The multiple subunits can shelter additional co-stimulation domains or keep such domains at a distance, as well as other types of receptors, whereas classical single chain architecture can sometimes be regarded as too much sensitive and less permissive to multispecific interactions.

Single-Chain CAR

Adoptive immunotherapy, which involves the transfer of autologous antigen-specific T cells generated ex vivo, is a promising strategy to treat viral infections and cancer. The T cells used for adoptive immunotherapy can be generated either by expansion of antigen-specific T cells or redirection of T cells through genetic engineering (Park, Rosenberg et al. 2011). Transfer of viral antigen specific T cells is a well-established procedure used for the treatment of transplant associated viral infections and rare viral-related malignancies. Similarly, isolation and transfer of tumor specific T cells has been shown to be successful in treating melanoma.

Novel specificities in T cells have been successfully generated through the genetic transfer of transgenic T cell receptors or chimeric antigen receptors (CARs) (Jena, Dotti et al. 2010). CARs are synthetic receptors consisting of a targeting moiety that is associated with one or more signaling domains in a single fusion molecule. In general, the binding moiety of a CAR consists of an antigen-binding domain of a single-chain antibody (scFv), comprising the light and variable fragments of a monoclonal antibody joined by a flexible linker. Binding moieties based on receptor or ligand domains have also been used successfully. The signaling domains for first generation CARs are derived from the cytoplasmic region of the CD3ζeta or the Fc receptor gamma chains. First generation CARs have been shown to successfully redirect T cell cytotoxicity. However, they failed to provide prolonged expansion
and anti-tumor activity in vivo. Signaling domains from co-stimulatory molecules including CD28, OX-40 (CD134), and 4-1BB (CD137) have been added alone (second generation) or in combination (third generation) to enhance survival and increase proliferation of CAR modified T cells. CARs have successfully allowed T cells to be redirected against antigens expressed at the surface of tumor cells from various malignancies including lymphomas and solid tumors (Jena, Dotti et al. 2010).

According to one embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO. 46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4).

According to a preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10) and SEQ ID NO 62 and 58 (28F5).

According to a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI and V2 as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10) and, SEQ ID NO. 62 and 58 (28F5).
According to a preferred embodiment, said transmembrane domain of above anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 79 (CD8a TM).

According to a preferred embodiment, said V_H and V_L of above anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10) or SEQ ID NO. 62 and 58 (28F5).

According to a preferred embodiment, the CDRs sequences comprised in said V_H and V_L of said anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) are respectively SEQ ID NO. 15-17 and SEQ ID NO. 11-13; respectively SEQ ID NO. 63-65 and SEQ ID NO. 59-62; respectively SEQ ID NO. 55-57 and SEQ ID NO. 51-53; respectively SEQ ID NO. 31-33 and SEQ ID NO. 27-29; respectively SEQ ID NO. 39-42 and SEQ ID NO. 35-37; respectively SEQ ID NO. 47-49 and SEQ ID NO. 43-45; respectively SEQ ID NO. 23-25 and SEQ ID NO. 19-22.

According to a preferred embodiment, said hinge of above anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 76 (FceRIIα), SEQ ID NO. 77 (CD8a) and SEQ ID NO. 78 (IgGl).

According to a more preferred embodiment, said hinge of above anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 77 (CD8a).

According to a preferred embodiment, said hinge of above anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 76 (FceRIIα).

According to one embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11), SEQ ID NO. 88-90 (16B5), SEQ ID NO. 91-93 (10F7), SEQ ID NO. 94-96 (27B6) and SEQ ID NO. 85-87 (29B4).
All above sequences of anti-CD38 CARs which are encompassed within the scope of the invention are presented in the following Table 1 (excepted the GMB005 CARs used as tool CAR for comparison). Are also disclosed sequences of the components which are used for their architectures (VI, V2 and V3 versions according to Figure 8).
Table 1: Polypeptide sequences of anti-CD38 CARs based on the VI, V2 and V3 versions in Figure 8, and of their corresponding components used to make them.

<table>
<thead>
<tr>
<th>Name of CAR</th>
<th>SEQ ID #</th>
<th>Polypeptide sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8a-Signal peptide (SP)</td>
<td>74</td>
<td>MALPVTALLPLALLLHAARP</td>
</tr>
<tr>
<td>FCERI γ- signal peptide (SP)</td>
<td>106</td>
<td>MIPAVVLLLLLVEQAAA</td>
</tr>
<tr>
<td>FCERI EI-signal peptide (SP)</td>
<td>110</td>
<td>MAPAMESPTLLCVALLFFAPDGVLA</td>
</tr>
<tr>
<td>GS linker</td>
<td>75</td>
<td>GGGGSGGGGGSGGGGS</td>
</tr>
<tr>
<td>FCRII Ig hinge</td>
<td>76</td>
<td>GLAVSTISSFFPPGYQ</td>
</tr>
<tr>
<td>CD8a hinge</td>
<td>77</td>
<td>TTPAPRPPTPAPTIASOPLSLRPEACRPAAAGGAVHTRGLDFACD</td>
</tr>
<tr>
<td>IgGl hinge</td>
<td>78</td>
<td>EPKSPDKTHTCPARPVAGPSVFLPPKPDKTLMARTPEVTCCVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEYNSRTYRRVSVLTLLQDDWNLNGKEYKCKVSNKALPAPIEKTISAKQPREPQYVTPLPSRDELTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPVLDSDGSFLLYSKLTVDKSRWQGNNVFSCSVMH EALHNY TQKSLLSLPGK</td>
</tr>
<tr>
<td>CD8a TM domain</td>
<td>79</td>
<td>IYIWAPLAGTGVLLLSLVITLYC</td>
</tr>
<tr>
<td>4-1 BB co-stimulatory domain</td>
<td>80</td>
<td>KRGRKKLLYIFKQPFMRPVQTTQEDGCSRFCFPEEEEGCEL</td>
</tr>
<tr>
<td>CD28 co-stimulatory domain (CD28-IC)</td>
<td>113</td>
<td>RSKRSRGGHSYMNMPRRPGPTRKHYQPYAPPDFAYRS</td>
</tr>
<tr>
<td>CD3ζ activation domain</td>
<td>81</td>
<td>RVKFSRSADAPAYQOGQNOLYN ELNLGRREEYDVLKRRGRDPEMYGGKPRKKN POQELYNELQDKMAEAYSEIMGKKERRRGGKHGDLGYQGLSTATKDYDALH M QALPPR</td>
</tr>
<tr>
<td>Fc Receptor for IgE, alpha chain, transmembrane and intracellular domain (FCERI γ-TM-IC)</td>
<td>111</td>
<td>FFIPLLVVILFAVDTLFIISTQQVTFLLKIKRTRKGFRLNPHPKPNKNN</td>
</tr>
<tr>
<td>Fc Receptor for IgE, gamma chain, without ITAM (FCERI Y-EHITAM)</td>
<td>107</td>
<td>LGEPQLCYILDAIFLYGIVLTLRYCRRLKIQVRKAITSYEKS</td>
</tr>
<tr>
<td>Receptor for IgE, beta chain, without ITAM (FcεR1-ΔITAM)</td>
<td>112</td>
<td>MDTESN RRAN LALPQEPSSVPAPVELEISPOVESSQGRLKSSASSPPLHTWLTVLKENQEFLGVTLQALTAM ICLCGFTVVCSDLISHIEGDIFSSFKAGYPFWGAFFISIGMLSLISERRNATYLVRSGLGANTASSIAGGTGITILINLKKSLAYIHIHSCQKFFETFKCFMASFSTEVVM MLFTLITLGLGSASVSLTICGAGEELKGNKVPE</td>
</tr>
<tr>
<td>GSG-P2A ribosomal skip peptide (GSG-P2A)</td>
<td>108</td>
<td>GSGATN FSLLKQAAMDVEENPGP</td>
</tr>
<tr>
<td>GSG-T2A ribosomal skip peptide (GSG-T2A)</td>
<td>109</td>
<td>GSGEGRGSLLTCDVEENPGP</td>
</tr>
<tr>
<td><strong>25A10-V1 CAR</strong></td>
<td>82</td>
<td>MALPVTLALLPLALLLHAARPEVQLQGSAELVRPGAVKLSCTASGFNIKDLSIHWVKQREQPQGLEWIGWIPDPDEDDKTYAPFKQDKATLTADTSNTAYLQLSTLTSED TAIYYCVSRVYNYFYAYFAWQQGTTLTVSSGGSGGGSSGGSGGSDIVMTQPSSSLTLVTAGEKTVMSCKSSQSLLHSNGQRNYLTVQWYQPKPGPPKKLINVASTRESVGPD RFTGSNGSTDTFTLISSVQAEDAVYCNQNDYPTFGGTTKLEIKGLAVSTISFFPPGYQIWIAPLAGTCGVLLLSLVLITLYCKRKRKLLYIFKQPFMRPVPQTTQEEDGCSRFREEEHECGELRVKFSRSDAPAYQQQONLYNLENLGRREEDVLKRHERDPMEMGKPPRKNPQEGYNELEQDKMALAEYSEIKMGGERRKGKHGDGLYQGSLTATKTDYDALMQALPPR</td>
</tr>
<tr>
<td><strong>25A10-V2 CAR</strong></td>
<td>83</td>
<td>MALPVTLALLPLALLLHAARPEVQLQGSAELVRPGAVKLSCTASGFNIKDLSIHWVKQREQPQGLEWIGWIPDPDEDDKTYAPFKQDKATLTADTSNTAYLQLSTLTSED TAIYYCVSRVYNYFYAYFAWQQGTTLTVSSGGSGGGSSGGSGGSDIVMTQPSSSLTLVTAGEKTVMSCKSSQSLLHSNGQRNYLTVQWYQPKPGPPKKLINVASTRESVGPD RFTGSNGSTDTFTLISSVQAEDAVYCNQNDYPTFGGTTKLEIKTTTPAPRPTTAPTISAPLSLRPEACRPAAGGAVHTGRLDACDIYWIAPLAGTCGVLLLSLVLITLYCKRKRKLLYIFKQPFMRPVPQTTQEEDGCSRFREEEHECGELRVKFSRSDAPAYQQQONLYNLENLGRREEDVLKRHERDPMEMGKPPRKNPQEGYNELEQDKMALAEYSEIKMGGERRKGKHGDGLYQGSLTATKTDYDALMQALPPR</td>
</tr>
<tr>
<td><strong>25A10-V3 CAR</strong></td>
<td>84</td>
<td>MALPVTLALLPLALLLHAARPEVQLQGSAELVRPGAVKLSCTASGFNIKDLSIHWVKQREQPQGLEWIGWIPDPDEDDKTYAPFKQDKATLTADTSNTAYLQLSTLTSED TAIYYCVSRVYNYFYAYFAWQQGTTLTVSSGGSGGGSSGGSGGSDIVMTQPSSSLTLVTAGEKTVMSCKSSQSLLHSNGQRNYLTVQWYQPKPGPPKKLINVASTRESVGPD RFTGSNGSTDTFTLISSVQAEDAVYCNQNDYPTFGGTTKLEIKEPKSPDKHTTCPCCPAPPAGPSVLFPPKDKTLRPECVCCVVDVSHDEPEKVFNYDDVEVHNAKTKPREEQNYTRVVSVLTHQDWNKYEYCKVSN KALPAPIEKTIKAKGQPREPVLTPSPRDLETKNOVSMTCLVKGFFPSIDAEVESNGPENYNKTTTPVLDSGSFLYSKTLTVDKSRWQQNVFSFSCVMHEALHNHYHKSLSHPGKIYWIAPLAGTCGVLLLSLVLITLYCKRKRKLLYIFKQPFMPRPVQTTQEEDGCSRFREEEHECGELRVKFSRSDAPAYQQQONLYNLENLGRREEDVLKRHERDPMEMGKPPRKNPQEGYNELEQDKMALAEYSEIKMGGERRKGKHGDGLYQGSLTATKTDYDALMQALPPR</td>
</tr>
<tr>
<td><strong>29B4-V1 CAR</strong></td>
<td>85</td>
<td>MALPVTLALLPLALLLHAARPEVQLQGSAELVRPGAVKLSCTASGFNIKDLSIHWVKQREQPQGLEWIGWIPDPDEDDKTYAPFKQDKATLTADTSNTAYLQLSTLTSED TAIYYCVSRVYNYFYAYFAWQQGTTLTVSSGGSGGGSSGGSGGSDIVMTQPSSSLTLVTAGEKTVMSCKSSQSLLHSNGQRNYLTVQWYQPKPGPPKKLINVASTRESVGPD RFTGSNGSTDTFTLISSVQAEDAVYCNQNDYPTFGGTTKLEIFKQPFMRPVPQTTQEEDGCSRFREEEHECGELRVKFSRSDAPAYQQQONLYNLENLGRREEDVLKRHERDPMEMGKPPRKNPQEGYNELEQDKMALAEYSEIKMGGERRKGKHGDGLYQGSLTATKTDYDALMQALPPR</td>
</tr>
</tbody>
</table>
GCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLKRR
GRDPEMGKPRKRKN PQEGLYNELQDKMAYSEIGMKGERRRGKGDGLGYQ
GLSTATKDYDALH MQALPPR

29B4-V2 CAR
86
MALPVTALLPLALLHLAACRPQAYLQQSGAELRGSASVKMSCASKAGYFTFSYN
LH WVKOPQGQGLEWIGYIPNGGTNYNKFGKATLTDSSSTAYMQISSLTED
SAVEYFCRGGIYYGSGAlgWQTTLVSSGGGGSGGGGSGGGGSGS GILLTQSP
ASLAVSLGRTNAESDSVDGYTFMWWQKQPGKOPPKLLYLASNLGEGPA
RFSGSNGSTGDFTLDIPVEDAAATYYCQNN KEDPWTFGGGTKLEI KLVASSTSS
FFPPQGYIWIAPAGTCGVLLSLLSLVITLYKCRGKKKLYIFKQFMPRFPQVTQEEDEGCSR
FEEPEEEEGGCELVRKSRSADAPAYQQQONQLYN ELNLGRREEYDVLKRRGDPRDPEMGKKPRKRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGDGLGYQ
GLSTATKDYDALH MQALPPR

29B4-V3 CAR
87
MALPVTALLPLALLHLAACRPQAYLQQSGAELRGSASVKMSCASKAGYFTFSYN
LH WVKOPQGQGLEWIGYIPNGGTNYNKFGKATLTDSSSTAYMQISSLTED
SAVEYFCRGGIYYGSGAlgWQTTLVSSGGGGSGGGGSGGGGSGS GILLTQSP
ASLAVSLGRTNAESDSVDGYTFMWWQKQPGKOPPKLLYLASNLGEGPA
RFSGSNGSTGDFTLDIPVEDAAATYYCQNN KEDPWTFGGGTKLEI KLVASSTSS
FFPPQGYIWIAPAGTCGVLLSLLSLVITLYKCRGKKKLYIFKQFMPRFPQVTQEEDEGCSR
FEEPEEEEGGCELVRKSRSADAPAYQQQONQLYN ELNLGRREEYDVLKRRGDPRDPEMGKKPRKRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGDGLGYQ
GLSTATKDYDALH MQALPPR

16B5-V1 CAR
88
MALPVTALLPLALLHLAACRPQAYLQQSGAELRGSASVKMSCASKAGYFTFSYN
LH WVKOPQGQGLEWIGYIPNGGTNYNKFGKATLTDSSSTAYMQISSLTED
SAVEYFCRGGIYYGSGAlgWQTTLVSSGGGGSGGGGSGGGGSGS GILLTQSP
ASLAVSLGRTNAESDSVDGYTFMWWQKQPGKOPPKLLYLASNLGEGPA
RFSGSNGSTGDFTLDIPVEDAAATYYCQNN KEDPWTFGGGTKLEI KLVASSTSS
FFPPQGYIWIAPAGTCGVLLSLLSLVITLYKCRGKKKLYIFKQFMPRFPQVTQEEDEGCSR
FEEPEEEEGGCELVRKSRSADAPAYQQQONQLYN ELNLGRREEYDVLKRRGDPRDPEMGKKPRKRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGDGLGYQ
GLSTATKDYDALH MQALPPR

16B5-V2 CAR
89
MALPVTALLPLALLHLAACRPQAYLQQSGAELRGSASVKMSCASKAGYFTFSYN
LH WVKOPQGQGLEWIGYIPNGGTNYNKFGKATLTDSSSTAYMQISSLTED
SAVEYFCRGGIYYGSGAlgWQTTLVSSGGGGSGGGGSGGGGSGS GILLTQSP
ASLAVSLGRTNAESDSVDGYTFMWWQKQPGKOPPKLLYLASNLGEGPA
RFSGSNGSTGDFTLDIPVEDAAATYYCQNN KEDPWTFGGGTKLEI KLVASSTSS
FFPPQGYIWIAPAGTCGVLLSLLSLVITLYKCRGKKKLYIFKQFMPRFPQVTQEEDEGCSR
FEEPEEEEGGCELVRKSRSADAPAYQQQONQLYN ELNLGRREEYDVLKRRGDPRDPEMGKKPRKRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGDGLGYQ
GLSTATKDYDALH MQALPPR

16B5-V3 CAR
90
MALPVTALLPLALLHLAACRPQAYLQQSGAELRGSASVKMSCASKAGYFTFSYN
LH WVKOPQGQGLEWIGYIPNGGTNYNKFGKATLTDSSSTAYMQISSLTED
SAVEYFCRGGIYYGSGAlgWQTTLVSSGGGGSGGGGSGGGGSGS GILLTQSP
ASLAVSLGRTNAESDSVDGYTFMWWQKQPGKOPPKLLYLASNLGEGPA
RFSGSNGSTGDFTLDIPVEDAAATYYCQNN KEDPWTFGGGTKLEI KLVASSTSS
FFPPQGYIWIAPAGTCGVLLSLLSLVITLYKCRGKKKLYIFKQFMPRFPQVTQEEDEGCSR
FEEPEEEEGGCELVRKSRSADAPAYQQQONQLYN ELNLGRREEYDVLKRRGDPRDPEMGKKPRKRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGDGLGYQ
GLSTATKDYDALH MQALPPR
10F7-V1 CAR
91 MALPVTLALLPLALLLHAARPOAYLQSQGAEVRGAVSVMKSCASKGTYFTSYSN M HWVKQTGPQGQLEWGYIYPNGGTNQNYQFOFDKTLATDSSSTAYMIQSSLTSE DSAVFYCARGGQGLRPFWAYWGQTTLTSTAGGGGSSGSSGSSGSSGQLTVQ SPASLASPQGRATISCARESVDYGMGTMYWQYYQKPGQPSSLILYASNLSEGVPVRFSGGSSTRTFLTTIDPVEDAATAYYCCQN EDPTWFGGWTKEIKGLAVSTI SSFFPPGVQYIWIAPLAGTCVLLLSSLVLTYCKGRKKLYIFQPFMP RPVQTTQEE GCSCRFPEEEEGGCRLVQFSDADAPAYQQQNQLYNELN LGRREYEDLVKDR RGRDRPEMGKPARRKN PEOQGNYEMLQDKMAYESEIGM KGERRRKGKH DGLYQLSTAT KDTYDALH MQALPPR

10F7-V2 CAR
92 MALPVTLALLPLALLLHAARPOAYLQSQGAEVRGAVSVMKSCASKGTYFTSYSN M HWVKQTGPQGQLEWGYIYPNGGTNQNYQFOFDKTLATDSSSTAYMIQSSLTSE DSAVFYCARGGQGLRPFWAYWGQTTLTSTAGGGGSSGSSGSSGSSGQLTVQ SPASLASPQGRATISCARESVDYGMGTMYWQYYQKPGQPSSLILYASNLSEGVPVRFSGGSSTRTFLTTIDPVEDAATAYYCCQN EDPTWFGGWTKEIKGLAVSTI SSFFPPGVQYIWIAPLAGTCVLLLSSLVLTYCKGRKKLYIFQPFMP RPVQTTQEE GCSCRFPEEEEGGCRLVQFSDADAPAYQQQNQLYNELN LGRREYEDLVKDR RGRDRPEMGKPARRKN PEOQGNYEMLQDKMAYESEIGM KGERRRKGKH DGLYQLSTAT KDTYDALH MQALPPR

10F7-V3 CAR
93 MALPVTLALLPLALLLHAARPOAYLQSQGAEVRGAVSVMKSCASKGTYFTSYSN M HWVKQTGPQGQLEWGYIYPNGGTNQNYQFOFDKTLATDSSSTAYMIQSSLTSE DSAVFYCARGGQGLRPFWAYWGQTTLTSTAGGGGSSGSSGSSGSSGQLTVQ SPASLASPQGRATISCARESVDYGMGTMYWQYYQKPGQPSSLILYASNLSEGVPVRFSGGSSTRTFLTTIDPVEDAATAYYCCQN EDPTWFGGWTKEIKGLAVSTI SSFFPPGVQYIWIAPLAGTCVLLLSSLVLTYCKGRKKLYIFQPFMP RPVQTTQEE GCSCRFPEEEEGGCRLVQFSDADAPAYQQQNQLYNELN LGRREYEDLVKDR RGRDRPEMGKPARRKN PEOQGNYEMLQDKMAYESEIGM KGERRRKGKH DGLYQLSTAT KDTYDALH MQALPPR

27B6-V1 CAR
94 MALPVTLALLPLALLLHAARPOAYLQSQGAEVRGAVSVMKSCASKGTYFTSYSN M HWVKQTGPQGQLEWGYIYPNGGTNQNYQFOFDKTLATDSSSTAYMIQSSLTSE DSAVFYCARGGQGLRPFWAYWGQTTLTSTAGGGGSSGSSGSSGSSGQLTVQ SPASLASPQGRATISCARESVDYGMGTMYWQYYQKPGQPSSLILYASNLSEGVPVRFSGGSSTRTFLTTIDPVEDAATAYYCCQN EDPTWFGGWTKEIKGLAVSTI SSFFPPGVQYIWIAPLAGTCVLLLSSLVLTYCKGRKKLYIFQPFMP RPVQTTQEE GCSCRFPEEEEGGCRLVQFSDADAPAYQQQNQLYNELN LGRREYEDLVKDR RGRDRPEMGKPARRKN PEOQGNYEMLQDKMAYESEIGM KGERRRKGKH DGLYQLSTAT KDTYDALH MQALPPR

27B6-V2 CAR
95 MALPVTLALLPLALLLHAARPOAYLQSQGAEVRGAVSVMKSCASKGTYFTSYSN M HWVKQTGPQGQLEWGYIYPNGGTNQNYQFOFDKTLATDSSSTAYMIQSSLTSE DSAVFYCARGGQGLRPFWAYWGQTTLTSTAGGGGSSGSSGSSGSSGQLTVQ SPASLASPQGRATISCARESVDYGMGTMYWQYYQKPGQPSSLILYASNLSEGVPVRFSGGSSTRTFLTTIDPVEDAATAYYCCQN EDPTWFGGWTKEIKGLAVSTI SSFFPPGVQYIWIAPLAGTCVLLLSSLVLTYCKGRKKLYIFQPFMP RPVQTTQEE GCSCRFPEEEEGGCRLVQFSDADAPAYQQQNQLYNELN LGRREYEDLVKDR RGRDRPEMGKPARRKN PEOQGNYEMLQDKMAYESEIGM KGERRRKGKH DGLYQLSTAT KDTYDALH MQALPPR
**28F5-V2 CAR**

101 MALPVTLALLPLALLHAARPIQQLQLVQSPHELKPGETVKSASGYFTFKYGMN
WKQTGPQGLKWMGWINTNSGEPTYAEEFKGFRALSLESTASAYLQI NLKNE
DTATYFCARGAYRYRDEGVSYAMYDWQGQSTTVSAGGGGSGGGGGG
QII LTQSPAMSLSGLERVTCTATSSSLSSYHWQKPGSGSPKLWYISTSH LAS
GVPARSGGGSGTSTSSMEAEDATYYCHOYH LSPYTFGGTGKLEIKEKTPAP
RPPTAPTISQPLSRPEACRPAGAVHTRGLDFACDIYIWPALTQG꧀
LITYCIRKRKLLYIKQFMRPVPVVTQEDGSCRFPEEEEGGCELRVKF
APAYQQONQLYN ELNLGRREYDVLKRRGPDMEGKPKRRKN POEGLYNELQ
QCKDMAEAYEIMGKGERRRGKH

**28F5-V3 CAR**

102 MALPVTLALLPLALLHAARPIQQLQLVQSPHELKPGETVKSASGYFTFKYGMN
WKQTGPQGLKWMGWINTNSGEPTYAEEFKGFRALSLESTASAYLQI NLKNE
DTATYFCARGAYRYRDEGVSYAMYDWQGQSTTVSAGGGGSGGGGGG
QII LTQSPAMSLSGLERVTCTATSSSLSSYHWQKPGSGSPKLWYISTSH LAS
GVPARSGGGSGTSTSSMEAEDATYYCHOYH LSPYTFGGTGKLEIKEKTPAP
RPPTAPTISQPLSRPEACRPAGAVHTRGLDFACDIYIWPALTQG꧀
LITYCIRKRKLLYIKQFMRPVPVVTQEDGSCRFPEEEEGGCELRVKF
APAYQQONQLYN ELNLGRREYDVLKRRGPDMEGKPKRRKN POEGLYNELQ
QCKDMAEAYEIMGKGERRRGKH

**GMB005-V1 CAR**

103 MALPVTLALLPLALLHAARPEQVLLESEGGLVQGPPSLRLSCAVSGFTNSFAMS
WRQAPGKGLSWISAISGSGTYYADSVKGRFTISRDNKNTLYQM NSLRAE
DTAVYFCACKDI LWGFEPFVDYQGQLTVSSASGGGSGGGGGSGGESIEVL
TQPSATLSSRGERATLCRASQVSSYLYAWYKQKPGAPRLLIYDASN RATGIPA
RFSGSGGSGTDFILTISSLEPEDFAYYCYCQQRNSWPFTFGTQKVEIKGLASTISSF
FPQGYIYIAPLATCGVLLLSVILTYCIRKRKLLYIKQFMRPVPVVTQEDG
CSCRFPEEEEGGCELVRKFRSADAPAYQQQONQLYN ELNLGRREYDVLKRRG
RDPEMGKPKRRKN POEGLYNELQCKDMAEAYEIMGKGERRRGKH

**GMB005-V2 CAR**

104 MALPVTLALLPLALLHAARPEQVLLESEGGLVQGPPSLRLSCAVSGFTNSFAMS
WRQAPGKGLSWISAISGSGTYYADSVKGRFTISRDNKNTLYQM NSLRAE
DTAVYFCACKDI LWGFEPFVDYQGQLTVSSASGGGSGGGGGSGGESIEVL
TQPSATLSSRGERATLCRASQVSSYLYAWYKQKPGAPRLLIYDASN RATGIPA
RFSGSGGSGTDFILTISSLEPEDFAYYCYCQQRNSWPFTFGTQKVEIKGLASTISSF
FPQGYIYIAPLATCGVLLLSVILTYCIRKRKLLYIKQFMRPVPVVTQEDG
CSCRFPEEEEGGCELVRKFRSADAPAYQQQONQLYN ELNLGRREYDVLKRRG
RDPEMGKPKRRKN POEGLYNELQCKDMAEAYEIMGKGERRRGKH

**GMB005-V3 CAR**

105 MALPVTLALLPLALLHAARPEQVLLESEGGLVQGPPSLRLSCAVSGFTNSFAMS
WRQAPGKGLSWISAISGSGTYYADSVKGRFTISRDNKNTLYQM NSLRAE
DTAVYFCACKDI LWGFEPFVDYQGQLTVSSASGGGSGGGGGSGGESIEVL
TQPSATLSSRGERATLCRASQVSSYLYAWYKQKPGAPRLLIYDASN RATGIPA
RFSGSGGSGTDFILTISSLEPEDFAYYCYCQQRNSWPFTFGTQKVEIKGLASTISSF
FPQGYIYIAPLATCGVLLLSVILTYCIRKRKLLYIKQFMRPVPVVTQEDG
TCPPCAVPSVFLFPPKPKDMLARTPEVCTVVDVSH EDPEVKFNWY
According to a preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11) and SEQ ID NO. 88-90 (16B5).

According to a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10) and SEQ ID NO. 100-102 (28F5).

According to a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 82-84 (25A10).

According to an even more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 82 (25A10-vl).

According to a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to NO. 100-102 (28F5).

According to a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 97-99 (13F11).

The present invention is more particularly drawn to immune cells that are endowed with a CAR presenting some identity with those described in the present application and that would bear rare-cutting endonuclease induced mutations in a gene encoding the cell marker targeted by said CAR (i.e. the CAR displays affinity with the product of said inactivated gene). By identity is meant at least 70%, preferably 80%, more preferably 90% and even more preferably 95% polynucleotide or polypeptide
identity as determined by the software such as FASTA, or BLAST which are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.). BLASTP “Identities” shows the number and fraction of total residues in the high scoring sequence pairs which are identical. Amino acid sequences having these degrees of identity or similarity or any intermediate degree of identity of similarity to the amino acid sequences disclosed herein are contemplated and encompassed by this disclosure. The same applies with respect to polynucleotide sequences using BLASTN.

The present invention relates also to an engineered immune cell (preferably T cell) which expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) such as described previously, said immune cell having its endogenous CD38 gene genetically inactivated or mutated, said CD38 antigen being present both on the surface of said immune cell and the pathological cell.

In a preferred embodiment, said engineered immune cell expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR), said immune cell having its endogenous CD38 and TCR genes genetically inactivated or mutated.

In an embodiment, said engineered immune cell expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR), said immune cell having its endogenous CD38, TCR and dCK genes genetically inactivated or mutated.

In a preferred embodiment, said engineered immune cell expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) which has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4),

said immune cell (preferably T cell) having its endogenous CD38 gene genetically inactivated or mutated, said CD38 antigen being present both on the surface of said immune cell and the pathological cell.

In a more preferred embodiment, said engineered immune cell expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) which has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain
comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB, wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO. 46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4),

said immune cell (preferably T cell) having its endogenous CD38 and TCR genes genetically inactivated or mutated, said CD38 antigen being present both on the surface of said immune cell and the pathological cell.

In the above embodiments, said genetic inactivation or mutation is performed preferably by the use of specific rare-cutting endonuclease such as described in the present invention.

The present invention relates also to a population comprising at least two engineered immune cells (preferably T cells) which expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) such as described previously, said immune cell having its endogenous CD38 gene genetically inactivated or mutated, said CD38 antigen being present both on the surface of said immune cell and the pathological cell.

In a preferred embodiment, said population comprises at two engineered immune cells expressing an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) which has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB, wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO. 46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4),

said immune cells (preferably T cells) having its endogenous CD38 gene genetically inactivated or mutated, said CD38 antigen being present both on the surface of said immune cell and the pathological cell.

**Extracellular domain**
The term "extracellular ligand-binding domain" as used herein is defined as an oligo- or polypeptide that is capable of binding a ligand. Preferably, the domain will be capable of interacting with a cell surface molecule. For example, the extracellular ligand-binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state.

Single-chain variable antibodies (scFvs)

The antigen binding domain of the anti-CD38 CARs of the invention can be any domain that binds to the off-tissue antigen including but not limited to a monoclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof.

By the term "recombinant antibody" as used herein, is meant an antibody or antibody fragment which is generated using recombinant DNA technology, such as, for example, an antibody or antibody fragment expressed by a bacteriophage, a yeast expression system or a mammalian cell expression system, and more especially by a T cell transduced with a viral vector comprising a nucleic acid sequence encoding CDR regions of an antibody. The term should also be construed to mean an antibody or antibody fragment which has been generated by the synthesis of a DNA molecule encoding the antibody or antibody fragment and which DNA molecule expresses an antibody or antibody fragment protein, or an amino acid sequence specifying the antibody or antibody fragment, wherein the DNA or amino acid sequence has been obtained using recombinant or synthetic DNA or amino acid sequence technology which is available and well known in the art.

Res., 55(8): 1717-22 (1995), Sandhu J S, Gene, 150(2):409-10 (1994), and Pedersen et al., J. Mol. Biol., 235(3):959-73 (1994), each of which is incorporated herein in its entirety by reference. Often, framework residues in the framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, for example improve, antigen binding. These framework substitutions are identified by methods well-known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Pat. No. 5,585,089; and Riechmann et al., 1988, Nature, 332:323, which are incorporated herein by reference in their entireties.)

Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues within a CAR of the invention can be replaced with other amino acid residues from the same side chain family and the altered CAR can be tested for the ability to bind GD3 using the functional assays described herein.

According to one embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprise V_H and V_L variable chain which polypeptide sequence display at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4).

Said above sequences of anti-CD38VH and VL chains and their respective corresponding CDRs are presented in the following Table 2.
Table 2: Sequences of VH and VL chains of the 8 couple of scFv anti-CD38 antibodies and their respective CDR.

<table>
<thead>
<tr>
<th>Name</th>
<th>VH or VL chain</th>
<th>SEQ ID</th>
<th>Polypeptide or nucleic acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>25A10</strong></td>
</tr>
<tr>
<td></td>
<td><strong>VL</strong></td>
<td>10</td>
<td>DIVMTQSPSSLTVTAGEKVTMSCKSSQSSLHSGNQRNYLT WYQQKPGQPPLLHGWASTRESGVPDFGTGSGSSTDFTL TISSQVAE DLAVYYCQNDYDYPTFGGGTKLE K</td>
</tr>
<tr>
<td></td>
<td><strong>CDR1</strong></td>
<td>11</td>
<td>QSLHSGNQRNY</td>
</tr>
<tr>
<td></td>
<td><strong>CDR2</strong></td>
<td>12</td>
<td>WAS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR3</strong></td>
<td>13</td>
<td>QNDYDYPT</td>
</tr>
<tr>
<td></td>
<td><strong>VH</strong></td>
<td>14</td>
<td>EVQLQSQGAELRVPAGVKSCTASGFDGPNKDSIHWKQR PEQGLEWIGWDPEDDKTYSFKATLTDSTSSNTA YQLSTLTSB AYCVSRYINYYFAYWGQGTTLTVSS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR1</strong></td>
<td>15</td>
<td>GNF IKDSL</td>
</tr>
<tr>
<td></td>
<td><strong>CDR2</strong></td>
<td>16</td>
<td>IDPEDDKT</td>
</tr>
<tr>
<td></td>
<td><strong>CDR3</strong></td>
<td>17</td>
<td>VSRINYYYFAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>29B4</strong></td>
</tr>
<tr>
<td></td>
<td><strong>VL</strong></td>
<td>18</td>
<td>DMTQSGKLPKPPGGLSLSCAASQFSDYFMYWVRQ TPEKRLKIVAL ISDGIGYTPPSVKGRTISRDNKNN LYL QMSSKSLTAMTAMMYCARDGRDDYDGYWFDVGAGTTVSS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR1</strong></td>
<td>19</td>
<td>QDVNTA</td>
</tr>
<tr>
<td></td>
<td><strong>CDR2</strong></td>
<td>20</td>
<td>WAS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR3</strong></td>
<td>21</td>
<td>QHGSTPRT</td>
</tr>
<tr>
<td></td>
<td><strong>VH</strong></td>
<td>22</td>
<td>EVQLVESSGLKLSCAASQFSDYFMYWVRQ TPEKRLKIVAL ISDGIGYTPPSVKGRTISRDNKNN LYL QMSSKSLTAMTAMMYCARDGRDDYDGYWFDVGAGTTVSS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR1</strong></td>
<td>23</td>
<td>GFTFSDYF</td>
</tr>
<tr>
<td></td>
<td><strong>CDR2</strong></td>
<td>24</td>
<td>ISDGIGYT</td>
</tr>
<tr>
<td></td>
<td><strong>CDR3</strong></td>
<td>25</td>
<td>ARGDRDDYDGYWFDV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>16B5</strong></td>
</tr>
<tr>
<td></td>
<td><strong>VL</strong></td>
<td>26</td>
<td>NIVLTQSPASLAVSLGQRATISCRASESVYNQTGGFFMYWY QKPGQPPLLHGWASTRESGVPDFGTGSGSSTDFTLTID P VEADDATYYQCNKEDPWFTFGGGTKLE K</td>
</tr>
<tr>
<td></td>
<td><strong>CDR1</strong></td>
<td>27</td>
<td>ESVDNYGTTF</td>
</tr>
<tr>
<td></td>
<td><strong>CDR2</strong></td>
<td>28</td>
<td>LAS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR3</strong></td>
<td>29</td>
<td>QCN KEDPWT</td>
</tr>
<tr>
<td></td>
<td><strong>VH</strong></td>
<td>30</td>
<td>QAYLQSQGAELRVPAGVKSCTASGFTSYNHLHWK QTPQGQLEWIGWYPNGTNYQPKFKGATLTDSTSS TAYMOISSLTSEDSAYFCARGGIYYYGGSليفYWGQGTTL TVSS</td>
</tr>
<tr>
<td></td>
<td><strong>CDR1</strong></td>
<td>31</td>
<td>GYFTFSYN</td>
</tr>
<tr>
<td>CDR</td>
<td>32</td>
<td>IYPGNGGT</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td>33</td>
<td>ARGGIYYYGSSLDY</td>
<td></td>
</tr>
</tbody>
</table>

### 10F7

<table>
<thead>
<tr>
<th>CDR</th>
<th>34</th>
<th>NIVLTQSPASLAASPQRATISCRASESVDSYGNTFMYWYQQKPQPPKKLIYLYASNLESVPVRFSGSGSRDFTLTI DPVEADDAATYYCQONNEDPWTFGGGTKKEIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>35</td>
<td>ESVDSYGNTF</td>
</tr>
<tr>
<td>CDR</td>
<td>36</td>
<td>LAS</td>
</tr>
<tr>
<td>CDR</td>
<td>37</td>
<td>QQN NEDPWT</td>
</tr>
<tr>
<td>CDR</td>
<td>38</td>
<td>QAYLQQQGASVMSCKASGYFTSYN MHVKQTPGQLGAVYIYPNGGTNYQKFKDKATLATDTSSTASYMQISLTSavadAyyFCARGGQLGRPFAYWQGQLTVSA</td>
</tr>
<tr>
<td>CDR</td>
<td>39</td>
<td>GYFTSYN</td>
</tr>
<tr>
<td>CDR</td>
<td>40</td>
<td>IYPNGGT</td>
</tr>
<tr>
<td>CDR</td>
<td>41</td>
<td>ARGGQLGRPFAY</td>
</tr>
</tbody>
</table>

### 27B6

<table>
<thead>
<tr>
<th>CDR</th>
<th>42</th>
<th>QIVLTQSPAIMSAPSPGEKTVMCTSTSSSYNM HWYQQKSGTSPKRWYIYDTSKLASVPGPARFSGGSGTSGTSYLTIN NM EAEDAATYCQQWSSYPTFGGGGTKLEIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>43</td>
<td>SSVSY</td>
</tr>
<tr>
<td>CDR</td>
<td>44</td>
<td>DTS</td>
</tr>
<tr>
<td>CDR</td>
<td>45</td>
<td>QQWSSYPPT</td>
</tr>
<tr>
<td>CDR</td>
<td>46</td>
<td>QVQLNQGSQSLVQPSQQSLICTVSGFSLTYSNIDWVRQSPKGKLEWLGVISWGGSTDYNAAFISLRKIKDKDSSQYVFKMSLQSDDDTAIYYCARHPFLVSTPFDVFQDVGAGTTVTSS</td>
</tr>
<tr>
<td>CDR</td>
<td>47</td>
<td>GFSLTYSN</td>
</tr>
<tr>
<td>CDR</td>
<td>48</td>
<td>IWSGGST</td>
</tr>
<tr>
<td>CDR</td>
<td>49</td>
<td>ARHSPVLSTPDWYFDV</td>
</tr>
</tbody>
</table>

### 13F11

<table>
<thead>
<tr>
<th>CDR</th>
<th>50</th>
<th>ETITVTQSPASLSVATG EKVTIRCITSTD IDDMNWYQQKPGEPKVLISENGNTLRGPSRFSSSYSTGTDFTFTIELTSLSEDVADYYCQNSN NM PYTFGGGTKEIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>51</td>
<td>TDIDDD</td>
</tr>
<tr>
<td>CDR</td>
<td>52</td>
<td>EGNN</td>
</tr>
<tr>
<td>CDR</td>
<td>53</td>
<td>QLSN NMPYT</td>
</tr>
<tr>
<td>CDR</td>
<td>54</td>
<td>QIOQLVQSGPHELKPKPGVTKISCKASGYFTKKGYGMNWVKQAPGKQLKWMGWINTNTGEPTYAAEEFKGRFAFSLETSASTAYLQINNLKNEDTATYFCARWYYGTPSYTMDYDYWGQG</td>
</tr>
<tr>
<td>CDR</td>
<td>55</td>
<td>GYTFKKYG</td>
</tr>
<tr>
<td>CDR</td>
<td>56</td>
<td>INTNTGEP</td>
</tr>
<tr>
<td>CDR</td>
<td>57</td>
<td>ARYWYGSTPSYTM</td>
</tr>
</tbody>
</table>

### 28F5

<table>
<thead>
<tr>
<th>CDR</th>
<th>58</th>
<th>Q1ILTQSPAISASLGERVTMTCATSSLESSYHLHWYQQKPGSSPKLWYSTHLASVGPARFSGGSGTSELTISSEMEADAYCHQYHLSPYFTFGGGTKKEIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>59</td>
<td>SSLSSSY</td>
</tr>
<tr>
<td>CDR</td>
<td>60</td>
<td>STS</td>
</tr>
<tr>
<td>CDR</td>
<td>61</td>
<td>HQH LSPYT</td>
</tr>
<tr>
<td>CDR</td>
<td>62</td>
<td>QIOQLVQSGPHELKPKPGVTKISCKASGYFTTKGMNWVKQTPGKQLKWMGWINTNSEQPTEEFAEFGRAFSLETSASTAYLQINNLKNEDTATYFCARGAYRYDAYGEVSYYAMDYWG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>QGTSVTVSS</td>
<td></td>
</tr>
<tr>
<td>CDR1</td>
<td>63</td>
<td>GYTFTKYG</td>
</tr>
<tr>
<td>CDR2</td>
<td>64</td>
<td>INTNSGEP</td>
</tr>
<tr>
<td>CDR3</td>
<td>65</td>
<td>ARGAYYRYDGEVSYYAMYD</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>EIVLTQSPATLSLSPGERATLSRASQSVSSYLAWYQQKPG QAPRLLIYDASNRATGI PARFSGSGSTDOFTLTISSLEPEDF AVYYCQQRNSNWPPFTGQGKVEIK</td>
</tr>
<tr>
<td>CDR1</td>
<td>67</td>
<td>QSVSSY</td>
</tr>
<tr>
<td>CDR2</td>
<td>68</td>
<td>DAS</td>
</tr>
<tr>
<td>CDR3</td>
<td>69</td>
<td>QQRSNWPPT</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>EVQLESEGGLVQPGGSLRLSCAVSGFTFNSFAMSWSVRQ APGKGLEWVSASGSGGGTYADSVKGFRTISRDNSKNTL YLQMSLRAEDTAVYFCAKDKILWFGEVFVFDYWGQGTL VTVSSAS</td>
</tr>
<tr>
<td>CDR1</td>
<td>71</td>
<td>GFTFNSFA</td>
</tr>
<tr>
<td>CDR2</td>
<td>72</td>
<td>ISGSGGTT</td>
</tr>
<tr>
<td>CDR3</td>
<td>73</td>
<td>AKDKILWFGEVFVFDY</td>
</tr>
</tbody>
</table>
According to a preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprise VH and VL variable chain which polypeptide sequence display at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11) or SEQ ID NO. 30 and 26 (16B5).

According to a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprise VH and VL variable chain which polypeptide sequence display at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10) or SEQ ID NO. 62 and 58 (28F5).

According to one embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises VH and VL variable regions containing the CDRs sequences of respectively SEQ ID NO.15-17 and SEQ ID NO.11-13; respectively SEQ ID NO.63-65 and SEQ ID NO.59-62; respectively SEQ ID NO.55-57 and SEQ ID NO.51-53; respectively SEQ ID NO.31-33 and SEQ ID NO.27-29; respectively SEQ ID NO.39-42 and SEQ ID NO.35-37; respectively SEQ ID NO.47-49 and SEQ ID NO.43-45 or respectively SEQ ID NO.23-25 and SEQ ID NO.19-22.

In a preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises VH and VL variable regions containing the CDRs sequences of respectively SEQ ID NO.15-17 and SEQ ID NO.11-13; respectively SEQ ID NO.63-65 and SEQ ID NO.59-62; respectively SEQ ID NO.55-57 and SEQ ID NO.51-53 or respectively SEQ ID NO.31-33.

In a more preferred embodiment, the anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) of the invention comprises VH and VL variable regions containing the CDRs sequences of respectively SEQ ID NO.15-17 and SEQ ID NO.11-13 or respectively SEQ ID NO.63-65 and SEQ ID NO.59-62.

In addition to the CAR targeting the antigen marker, which is common to the pathological cells and the T-cells, such as CD38, it is envisioned to express further CARs directed towards other antigen markers not necessarily expressed by the T-cells, so as to enhancing T-cells specificity.

In another embodiment, the present invention relates to a population of CARs comprising each one different extracellular ligand binding domains. In a particular, the present invention relates to a method of engineering immune cells comprising providing an immune cell and expressing at the surface of said cell a population of CAR each one comprising different extracellular ligand binding domains.
Examples of chimeric antigen receptor that can be further expressed by the T-cells to create
multi-specific cells, are antigen receptors directed against multiple myeloma or lymphoblastic leukemia
antigen markers, such as TNFRSF17 (UNIPROT Q02223), SLAMF7 (UNIPROT Q9NQ25), GPRC5D
(UNIPROT Q9NZD1), FKBP11 (UNIPROT Q9NYL4), KAM P3, ITGA8 (UNIPROT P53708), and FCRL5
(UNIPROT Q68SN8).

As further examples for conferring another specificity alongside CD38, the antigen of the
target can be from any cluster of differentiation molecules (e.g. CD16, CD64, CD78, CD96,CLL1, CD116,
CD117, CD71, CD45, CD71, CD123 and CD138), a tumor-associated surface antigen, such as ErbB2
(HER2/neu), carciinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), epidermal
growth factor receptor (EGFR), EGFR variant III (EGFRvIII), CD19, CD20, CD30, CD40, disialoganglioside
GD2, ductal-epithelial mucine, gp36, TAG-72, glycosphingolipids, glioma-associated antigen, β-human
chorionic gonadotropin, alphafetoprotein (AFP), lectin-reactive AFP, thyroglobulin, RAGE-1, MN-CA ix,
human telomerase reverse transcriptase, RU1, RU2 (AS), intestinal carboxy esterase, mut hsp70-2, M-
CSF, prostate, prostate specific antigen (PSA), PAP, NY-ESO-1, LAGA-la, p53, prostein, PSMA, surviving
and telomerase, prostate-carcinoma tumor antigen-1 (PCTA-1), MAGE, ELF2M, neutrophil elastase,
ephrin B2, CD22, insulin growth factor (IGF)-I, IGF-II, IGF1 receptor, mesothelin, a major
histocompatibility complex (MHC) molecule presenting a tumor-specific peptide epitope, 5T4, ROR1,
Nkp30, NKG2D, tumor stromal antigens, the extra domain A (EDA) and extra domain B (EDB) of
fibronectin and the A1 domain of tenascin-C (TnC A1) and fibroblast associated protein (fap); a lineage-
specific or tissue specific antigen such as CD3, CD4, CD8, CD24, CD25, CD33, CD34, CD133, CD138, CTLA-
4, B7-1 (CD80), B7-2 (CD86), GM-CSF, cytokine receptors, endoglin, a major histocompatibility
complex (MHC) molecule, BCMA (CD269, TNFRSF 17), or a virus-specific surface antigen such as an HIV-specific
antigen (such as HIV gpl20); an EBV-specific antigen, a CMV-specific antigen, a HPV-specific antigen, a
Lasse Virus-specific antigen, an Influenza Virus-specific antigen as well as any derivate or variant of these
surface markers. Antigens are not necessarily surface marker antigens but can be also endogenous small
antigens presented by HLA class I at the surface of the cells.

Downregulation or mutation of target antigens is commonly observed in cancer cells, creating
antigen-loss escape variants. Thus, to offset tumor escape and render immune cell more specific to
target, the CD38 specific CAR according to the invention can comprise another extracellular ligand-
binding domains, to simultaneously bind different elements in target thereby augmenting immune cell
activation and function.

In one embodiment, the extracellular ligand-binding domains can be placed in tandem on the
same transmembrane polypeptide, and optionally can be separated by a linker. In another
embodiment, said different extracellular ligand-binding domains can be placed on different transmembrane polypeptides composing the CAR.

**CARs with a lower affinity for CD38**

According to another embodiment, anti-CD38 of the invention comprises scFvs with a lower affinity for CD38 antigen.

Such CARs are designed to prevent a possible risk of toxicity linked to the use in vivo of such engineered immune cells.

By “affinity” is meant a measure of the binding strength between antibody and a simple hapten or antigen determinant. Without being bound to theory, affinity depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. Affinity also includes the term “avidity,” which refers to the strength of the antigen-antibody bond after formation of reversible complexes. Methods for calculating the affinity of an antibody for an antigen are known in the art, including use of binding experiments to calculate affinity. In the case of an antibody (Ab) binding to an antigen (Ag), the affinity constant is used (expressed as inverted dissociation constant). $Ab \cdot Ag = Ab \cdot Ag$ $K_a = [AbAg] = [Ab][Ag]$. The chemical equilibrium of antibody binding is also the ratio of the on-rate ($k_{\text{forward}}$) and off-rate ($k_{\text{off}}$) constants. Two antibodies can have the same affinity, but one may have both a high on- and off-rate constant, while the other may have both a low on- and off-rate constants $k_{\text{forward}} = \text{on-rate} \times k_{\text{off}} = \text{off-rate}$. Antibody activity in functional assays (e.g., cell lysis assay) is also reflective of antibody affinity. In various embodiments of the invention, the antigen recognizing receptor has low affinity. Low affinity includes micromolar and nanomolar affinities (e.g., $10^{-5}$, $5 \times 10^{-6}$, $10^{-6}$, $5 \times 10^{-7}$, $10^{-7}$, $5 \times 10^{-8}$, $10^{-8}$, $5 \times 10^{-9}$, $10^{-9}$ M). Antibody and affinities can be phenotypically characterized and compared using functional assay (e.g., cell lysis assay).

The present invention encompasses also anti-CD38 CARs with a low affinity for CD38 antigen, such as those comprising VH and VL chains in their scFvs corresponding to the monoclonal 2C2, 5G9, 9E2, 28B9, 26D8, 15D1, and 23F2 antibodies.

According to one preferred embodiment, said anti-CD38 CARs with a low affinity for CD38 antigen comprise VH and VL chains in their scFvs corresponding to the monoclonal 2C2 or 5G9 antibodies (called also m2C2 and m5G9).
According to an embodiment, \( V_H \) and \( V_L \) of said scFvs displaying a lower affinity for CD38 antigen comprise a polypeptide sequence displaying at least 90\%, at least 95\%, at least 98\% or at least 99\% identity to respectively \( V_H \) and \( V_L \) chains of m2C2 antibody of SEQ ID NO. 132 (EVKLVESGGGLVQPGGSLKLSCATSGFTSFQYYMQFWRQPTPEKRLEWVAYISNGDGYYPDTLKGRFTISRDNNANTLYLQMSRLKSEDATAMMYCARISRYDFVDWAGATTTVSS) and SEQ ID NO. 133 (DIVMTQSPATLSVTPGDRVSLSRASQASIDSLHHLWYQQKSHESPRLLIKYVSQISIGPSRSFGSGSGSDFTLSLINSVEPEDVGYVYCONAHSSFPFTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m5G9 antibody of SEQ ID NO. 134 (EHLQQSGPELVKPGASVKSCKAGYSFTDNYIVWKQSHGLESLEWVGYIDPNGGAYNYQFKAKATLTVDKSSSTAFMLHNLTSSEDASYVYACRGKVYGALAYWGQGTLLVTVSS) and SEQ ID NO. 135 (DIQMTQSPASLSVGETVTITCRASEISYISNWAYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m9E2 antibody of SEQ ID NO. 136 (EVQLQSNGPELEVKPGASVKLSCKGYSFTDNYIMWVKQSHGLESLEWVGYDPSNGGATTTVSS) and SEQ ID NO. 137 (DIVMTQSPASLSVGETVTITCRASEISYISNWYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m28B9 antibody of SEQ ID NO. 144 (EVQLQQSGAELVRPGASVKLSCAGYSFTDNYWMWVKQSHGLESLEWVQGQGVGTVTVSS) and SEQ ID NO. 145 (DIQMTQSPASLSVGETVTITCRASEISYISNWYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m26D8 antibody of SEQ ID NO. 146 (QVQLQPGAEVMRPGASVKLSCAKGSFTDFYMYHWLVKQRPQGQGLEWIGKI) and SEQ ID NO. 147 (DIVMTQSPASLSVGETVTITCRASEISYISNWYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m26D8 antibody of SEQ ID NO. 146 (QVQLQPGAEVMRPGASVKLSCAKGSFTDFYMYHWLVKQRPQGQGLEWIGKI) and SEQ ID NO. 147 (DIVMTQSPASLSVGETVTITCRASEISYISNWYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m26D8 antibody of SEQ ID NO. 146 (QVQLQPGAEVMRPGASVKLSCAKGSFTDFYMYHWLVKQRPQGQGLEWIGKI) and SEQ ID NO. 147 (DIVMTQSPASLSVGETVTITCRASEISYISNWYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK); or to respectively \( V_H \) and \( V_L \) chains of m26D8 antibody of SEQ ID NO. 146 (QVQLQPGAEVMRPGASVKLSCAKGSFTDFYMYHWLVKQRPQGQGLEWIGKI) and SEQ ID NO. 147 (DIVMTQSPASLSVGETVTITCRASEISYISNWYQKQGSQPLQYVHVLASTADGVPSHRFSGSFSGAQLSLKINSLQSEDGFSYVQCHWFTGTPYTFGGKTLEIK).
or to respectively VH and VL chains of m23F2 antibody of SEQ ID NO.150
(QVQVQOPGAELVKPGASVKLSCASKASYGFTSYYWINVKQRPGQGLEWIGNYPSGSSSTNYHEKFKSKATLTVDSSST
AYMQLSSLTSDDAVERYCARRGSSPSYTMDYWGQGTSTVTSS) and SEQ ID NO. 151
(DIVLTQPSLAVALGQSRSASSVYMHWYQQPGKAPKLLIYLASNLESVPARFGSGSSTFDTIKH
PVEEDAAATYCLSHRELPTFVGGTGKLEIK).

According to a preferred embodiment, VH and VL of said scFvs displaying a lower affinity for
CD38 antigen comprise a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at
least 99% identity to respectively VH and VL chains of m2C2 antibody of SEQ ID NO. 132
(EVKLVESSLGLVQPGGLSEKLGSLSCATSGFSTFSYYMFVRQTPKRELVWAYISNGDQNTYYPDTLKGRFTISRDNNANT
LYLQMSRLKSEDTAMYCARSISRYFDVWGAGGTSTVTSS) and SEQ ID NO. 133
(DIVMTQPSATLSVTPGDRVCRAQSSISDHLHWYQQKSHEPRLIKVSISGIPSRFGSGSAGDFTLSNVEPED
GVVYQRONGAHPSTFGGGTGKLEIK); and to respectively VH and VL chains of m5G9 antibody of SEQ ID
NO.134
(EIHLQQSGPELVKPGAVSISKASGYSFQTDYNYWVQHGESLETVVGIDPYNGGAYYNQKFAMATLTVDSSST
AFMHLNLSLTDASVYNYCARKGYGLAYWGQGTSTVTSS) and SEQ ID NO.135
(DIQMTQPSASVGETVTITCRASEISLYNLAWYQQKQSPQLLLYASTHLDGVPYTGSGSAGQYSQSLKINSQ
SEDFTGSYQCHFWGTPYTFGGTGKLEIK).

According to one embodiment, the anti-CD38 CARs with a low affinity for CD38 antigen of the
present invention comprise an extra cellular ligand binding-domain comprising VH and VL from a
monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a
signaling domain -preferably CD3 zeta signaling domain, and a co-stimulatory domain -preferably from
4-1BB-

wherein said VH and VL comprise a polypeptide sequence displaying at least 90 %, at least 95%,
at least 98% or at least 99% identity to respectively VH and VL chains of m2C2 antibody of SEQ ID NO.
132
(EVKLVESGGLVQPGGLSKLCATSGFSTFSYYMFVRQTPKRELVWAYISNGDQNTYYPDTLKGRFTISRDNNANT
LYLQMSRLKSEDTAMYCARSISRYFDVWGAGGTSTVTSS) and SEQ ID NO. 133
(DIVMTQPSATLSVTPGDRVCRAQSSISDHLHWYQQKSHEPRLIKVSISGIPSRFGSGSAGDFTLSNVEPED
GVVYQRONGAHPSTFGGGTGKLEIK); and to respectively VH and VL chains of m5G9 antibody of SEQ ID
NO.134
(EIHLQQSGPELVKPGAVSISKASGYSFQTDYNYWVQHGESLETVVGIDPYNGGAYYNQKFAMATLTVDSSST
AFMHLNLSLTDASVYNYCARKGYGLAYWGQGTSTVTSS) and SEQ ID NO.135
(DIQMTQSPASLSVSVGETVTITCRASESIYSNLAWYQQKQPQQLVYASTHLADGVPSRFSGSGAQYSYLKINS
SEDFGSYYCQHFWGTPYTFGGGTKLEIK).

According to a particular embodiment, an anti-CD38 specific chimeric antigen receptor (anti-
CD38 CAR) having one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure
8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a
monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a
CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V4 and V4, comprise a polypeptide sequence displaying at least 90%, at least 95%,
at least 98% or at least 99% identity to respectively VH and VL chains of m2C2 antibody of SEQ ID NO.

(DIVMTQSPATLSVSPQQLVYASTHLADGVPSRFSGSGAQYSYLKINS
SEDFGSYYCQHFWGTPYTFGGGTKLEIK).

According to a more particular embodiment, the anti-CD38 specific chimeric antigen receptor
(anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at least
95%, at least 98% or at least 99% identity to SEQ ID NO. 136-138 (corresponding respectively to m5G9
versions VI, V2 and V3).

According to another more particular embodiment, the anti-CD38 specific chimeric antigen
receptor (anti-CD38 CAR) of the invention comprises a polypeptide sequence displaying at least 90%, at
least 95%, at least 98% or at least 99% identity to SEQ ID NO. 139-141 (corresponding respectively to
m2C2 versions VI, V2 and V3).

According to another embodiment, the immune cell of the present invention is engineered to
express anti-CD38 CAR having a low affinity for CD38 antigen.

According to another embodiment, the immune cell which is engineered to express anti-CD38
CAR having a low affinity for CD38 antigen, is further engineered to have its endogenous CD38 gene
inactivated by knock-out, preferably by using a rare cutting endonuclease.
Transmembrane domain

A CAR according to the present invention is expressed on the surface membrane of the cell. Thus, such CAR further comprises a transmembrane domain. The distinguishing features of appropriate transmembrane domains comprise the ability to be expressed at the surface of a cell, preferably in the present invention an immune cell, in particular lymphocyte cells or Natural killer (NK) cells, and to interact together for directing cellular response of immune cell against a predefined target cell. The transmembrane domain can be derived either from a natural or from a synthetic source. The transmembrane domain can be derived from any membrane-bound or transmembrane protein. As non-limiting examples, the transmembrane polypeptide can be a subunit of the T-cell receptor such as \( \alpha, \beta, \gamma \) or \( \epsilon \), polypeptide constituting CD3 complex, IL2 receptor p55 (a chain), p75 (\( \beta \) chain) or \( \gamma \) chain, subunit chain of Fc receptors, in particular Fcy receptor III or CD proteins. Alternatively the transmembrane domain can be synthetic and can comprise predominantly hydrophobic residues such as leucine and valine. In a preferred embodiment said transmembrane domain is derived from the human CD8 alpha chain (e.g. NP_001139345.1)

A CAR according to the invention generally further comprises a transmembrane domain (TM) such as CD8a and 4-1BB and more particularly CD8a, showing at least 90 \%, at least 95\%, at least 98\% or at least 99\% identity to SEQ ID NO.79.

The transmembrane domain can further comprise a hinge region between said extracellular ligand-binding domain and said transmembrane domain.

Hinge

The term "hinge region" used herein generally means any oligo- or polypeptide that functions to link the transmembrane domain to the extracellular ligand-binding domain. In particular, hinge region are used to provide more flexibility and accessibility for the extracellular ligand-binding domain. A hinge region may comprise up to 300 amino acids, preferably 10 to 100 amino acids and most preferably 25 to 50 amino acids. Hinge region may be derived from all or part of naturally occurring molecules, such as from all or part of the extracellular region of CD8, CD4 or CD28, or from all or part of an antibody constant region. Alternatively the hinge region may be a synthetic sequence that corresponds to a naturally occurring hinge sequence, or may be an entirely synthetic hinge sequence. In a preferred embodiment said hinge domain comprises a part of human CD8 alpha chain, FcyRlIa receptor or IgG1 respectively referred to in this specification as SEQ ID NO. 77, SEQ ID NO. 76 and SEQ ID NO.78, or hinge
polypeptides which display preferably at least 80%, more preferably at least 90%, 95% 97% or 99% sequence identity with these polypeptides.

**Intracellular domain**

The signal transducing domain or intracellular signaling domain of a CAR according to the present invention is responsible for intracellular signaling following the binding of extracellular ligand binding domain to the target resulting in the activation of the immune cell and immune response. In other words, the signal transducing domain is responsible for the activation of at least one of the normal effector functions of the immune cell in which the CAR is expressed. For example, the effector function of a T cell can be a cytolytic activity or helper activity including the secretion of cytokines. Thus, the term "signal transducing domain" refers to the portion of a protein which transduces the effector signal function signal and directs the cell to perform a specialized function.

Preferred examples of signal transducing domain for use in a CAR can be the cytoplasmic sequences of the T cell receptor and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivate or variant of these sequences and any synthetic sequence that has the same functional capability. Signal transduction domain comprises two distinct classes of cytoplasmic signaling sequence, those that initiate antigen-dependent primary activation, and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal. Primary cytoplasmic signaling sequence can comprise signaling motifs which are known as immunoreceptor tyrosine-based activation motifs of ITAMs. ITAMs are well defined signaling motifs found in the intracytoplasmic tail of a variety of receptors that serve as binding sites for syk/zap70 class tyrosine kinases. Examples of ITAM used in the invention can include as non-limiting examples those derived from TCRzeta, FcRgamma, FcRbeta, FcRepsilon, CD3gamma, CD3delta, CD3epsilon, CD5, CD22, CD79a, CD79b and CD66d. In a preferred embodiment, the signaling transducing domain of the CAR can comprise the CD3zeta signaling domain which has amino acid sequence with at least 70%, preferably at least 80%, more preferably at least 90%, 95% 97% or 99% sequence identity with amino acid sequence of SEQ ID NO: 81.

In particular embodiment the signal transduction domain of the CAR of the present invention comprises a co-stimulatory signal molecule. A co-stimulatory molecule is a cell surface molecule other than an antigen receptor or their ligands that is required for an efficient immune response. "Co-stimulatory ligand" refers to a molecule on an antigen presenting cell that specifically binds a cognate co-stimulatory molecule on a T-cell, thereby providing a signal which, in addition to the primary signal provided by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide,
mediates a T cell response, including, but not limited to, proliferation activation, differentiation and the like. A co-stimulatory ligand can include but is not limited to CD7, B7-1 (CD80), B7-2 (CD86), PD-L1, PD-L2, 4-1BBL, OX40L, inducible costimulatory ligand (ICOS-L), intercellular adhesion molecule (ICAM, CD30L, CD40, CD70, CD83, HLA-G, MICA, M1CB, HVEM, lymphotixin beta receptor, 3/TR6, ILT3, ILT4, an agonist or antibody that binds Toll ligand receptor and a ligand that specifically binds with B7-H3. A co-stimulatory ligand also encompasses, inter alia, an antibody that specifically binds with a co-stimulatory molecule present on a T cell, such as but not limited to, CD27, CD28, 4-1BB, OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LTGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83.

A "co-stimulatory molecule" refers to the cognate binding partner on a T-cell that specifically binds with a co-stimulatory ligand, thereby mediating a co-stimulatory response by the cell, such as, but not limited to proliferation. Co-stimulatory molecules include, but are not limited to, an MHC class I molecule, BTLA and Toll ligand receptor. Examples of costimulatory molecules include CD27, CD28, CD8, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3 and a ligand that specifically binds with CD83 and the like.

In a preferred embodiment, the signal transduction domain of the CAR of the present invention comprises a part of co-stimulatory signal molecule selected from the group consisting of fragment of 4-1BB (GenBank: AAA53133.) and CD28 (NP_006130.1). In particular the signal transduction domain of the CAR of the present invention comprises amino acid sequence which comprises at least 70%, preferably at least 80%, more preferably at least 90%, 95% 97% or 99% sequence identity with amino acid sequence selected from the group consisting of SEQ ID NO: 80.

**Multi-subunit CAR**

Chimeric antigen receptors from the prior art introduced in T-cells have been formed of single chain polypeptides that necessitate serial appending of signaling domains. However, by moving signaling domains from their natural juxtamembrane position may interfere with their function. To overcome this drawback, the applicant recently designed a multi-chain CAR derived from FCERI (Figure 18) to allow normal juxtamembrane position of all relevant signaling domains. In this new architecture, the high affinity IgE binding domain of FCERI alpha chain is replaced by an extracellular ligand-binding domain such as scFv to redirect T-cell specificity against cell targets and the N and/or C-termini tails of FCERI beta chain are used to place costimulatory signals in normal juxtamembrane positions. The multi-chain CAR (mcCAR) construct may have a polycistronic structure such as depicted in Figure 19.
Accordingly, the CAR expressed by the engineered T-cell according to the invention can be a multi-chain chimeric antigen receptor (CAR) particularly adapted to the production and expansion of engineered T-cells of the present invention. Such multi-chain CARs comprise at least two of the following components:

a) one polypeptide comprising the transmembrane domain of FCERI alpha chain and an extracellular ligand-binding domain,

b) one polypeptide comprising a part of N- and C-terminal cytoplasmic tail and the transmembrane domain of FCERI beta chain and/or

c) at least two polypeptides comprising each a part of intracytoplasmic tail and the transmembrane domain of FCERI gamma chain, whereby different polypeptides multimerize together spontaneously to form dimeric, trimeric or tetrameric CAR.

According to such architectures, ligands binding domains and signaling domains are born on separate polypeptides. The different polypeptides are anchored into the membrane in a close proximity allowing interactions with each other. In such architectures, the signaling and co-stimulatory domains can be in juxtaposition positions (i.e. adjacent to the cell membrane on the internal side of it), which is deemed to allow improved function of co-stimulatory domains. The multi-subunit architecture also offers more flexibility and possibilities of designing CARs with more control on T-cell activation. For instance, it is possible to include several extracellular antigen recognition domains having different specificity to obtain a multi-specific CAR architecture. It is also possible to control the relative ratio between the different subunits into the multi-chain CAR. This type of architecture has been recently described by the applicant in PCT/US2013/058005 (WO2014/039523).

The assembly of the different chains as part of a single multi-chain CAR is made possible, for instance, by using the different alpha, beta and gamma chains of the high affinity receptor for IgE (FCERI) (Metzger, Alcaraz et al. 1986) to which are fused the signaling and co-stimulatory domains. The gamma chain comprises a transmembrane region and cytoplasmic tail containing one immunoreceptor tyrosine-based activation motif (ITAM) (Cambier 1995).

The multi-chain CAR can comprise several extracellular ligand-binding domains, to simultaneously bind different elements in target thereby augmenting immune cell activation and function. In one embodiment, the extracellular ligand-binding domains can be placed in tandem on the same transmembrane polypeptide, and optionally can be separated by a linker. In another embodiment, said different extracellular ligand-binding domains can be placed on different transmembrane polypeptides composing the multi-chain CAR. In another embodiment, the present invention relates to a population of multi-chain CARs comprising each one different extracellular ligand
binding domains. In a particular, the present invention relates to a method of engineering immune cells comprising providing an immune cell and expressing at the surface of said cell a population of multi-chain CAR each one comprising different extracellular ligand binding domains. In another particular embodiment, the present invention relates to a method of engineering an immune cell comprising providing an immune cell and introducing into said cell polynucleotides encoding polypeptides composing a population of multi-chain CAR each one comprising different extracellular ligand binding domains. In a particular embodiment the method of engineering an immune cell comprises expressing at the surface of the cell at least a part of FCERI beta and/or gamma chain fused to a signal-transducing domain and several part of FCERI alpha chains fused to different extracellular ligand binding domains. In a more particular embodiment, said method comprises introducing into said cell at least one polynucleotide which encodes a part of FCERI beta and/or gamma chain fused to a signal-transducing domain and several FCERI alpha chains fused to different extracellular ligand binding domains. By population of multi-chain CARs, it is meant at least two, three, four, five, six or more multi-chain CARs each one comprising different extracellular ligand binding domains. The different extracellular ligand binding domains according to the present invention can preferably simultaneously bind different elements in target thereby augmenting immune cell activation and function.

The present invention also relates to an isolated immune cell which comprises a population of multi-chain CARs each one comprising different extracellular ligand binding domains.

The signal transducing domain or intracellular signaling domain of the multi-chain CAR of the invention is responsible for intracellular signaling following the binding of extracellular ligand binding domain to the target resulting in the activation of the immune cell and immune response. In other words, the signal transducing domain is responsible for the activation of at least one of the normal effector functions of the immune cell in which the multi-chain CAR is expressed. For example, the effector function of a T cell can be a cytolytic activity or helper activity including the secretion of cytokines.

In the present application, the term "signal transducing domain" refers to the portion of a protein which transduces the effector signal function signal and directs the cell to perform a specialized function.

Preferred examples of signal transducing domain for use in single or multi-chain CAR can be the cytoplasmic sequences of the Fc receptor or T cell receptor and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivate or variant of these sequences and any synthetic sequence that as the same functional capability. Signal transduction domain comprises two distinct classes of cytoplasmic signaling sequence, those that initiate antigen-dependent primary activation, and those that act in an antigen-independent manner to provide a
secondary or co-stimulatory signal. Primary cytoplasmic signaling sequence can comprise signaling motifs which are known as immunoreceptor tyrosine-based activation motifs of ITAMs. ITAMs are well defined signaling motifs found in the intracytoplasmic tail of a variety of receptors that serve as binding sites for syk/zap70 class tyrosine kinases. Examples of ITAM used in the invention can include as non-limiting examples those derived from TCRzeta, FcRgamma, FcRbeta, FcRepsilon, CD3gamma, CD3delta, CD3epsilon, CD5, CD22, CD79a, CD79b and CD66d. In a preferred embodiment, the signaling transducing domain of the multi-chain CAR can comprise the CD3zeta signaling domain, or the intracytoplasmic domain of the FCERI beta or gamma chains.

In particular embodiment the signal transduction domain of the multi-chain CAR of the present invention comprises a co-stimulatory signal molecule. A co-stimulatory molecule is a cell surface molecule other than an antigen receptor or their ligands that is required for an efficient immune response.

Ligand binding-domains can be any antigen receptor previously used, and referred to, with respect to single-chain CAR referred to in the literature, in particular scFv from monoclonal antibodies. Bispecific or multi-specific CARs as described in WO 2014/4011988 are incorporated by reference.

Similarly as described before with respect to single-chain CARs, the present invention encompasses immune cells endowed with multi-chain CARs which target specifically the CD38 cell surface marker. According to a preferred embodiment of the invention the CARs described above are expressed in immune cells, whereas inactivation of the endogenous genes encoding said surface marker is induced by expression of a rare-cutting endonuclease.

According to a preferred embodiment, the multi-chain CAR (mcCAR) of the invention comprises at a transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (FCERI) fused to an extracellular CD38 ligand binding domain.

According to a more preferred embodiment, said anti-CD38 multi-chain CAR comprises further a second transmembrane polypeptide from the gamma or beta chain of FCERI fused to a signal transducing domain.

According to an even more preferred embodiment, said anti-CD38 multi-chain CAR comprises a third transmembrane polypeptide from the gamma or beta chain of FCERI comprising a co-stimulatory domain.

According to a preferred embodiment, wherein said CD38 ligand binding domain of above anti-CD38 mcCAR, which is fused to said alpha chain of FCERI, is a single-chain variable fragment (scFv) comprising heavy \( V_h \) and light \( V_l \) chains conferring specificity to CD38.
In a more preferred embodiment, said V_H of above anti-CD38 mcCAR comprises a polypeptide sequence displaying at least 90% identity to one selected from SEQ ID NO. 14, 62, 54 and 30.

In another more preferred embodiment, said V_L of above anti-CD38 mcCAR comprises a polypeptide displaying at least 90% identity to one selected from SEQ ID NO. 10, 58, 50 and 26.

In an embodiment, said alpha chain of FCERI of above anti-CD38 mcCAR is fused to said extracellular ligand-binding domain by a hinge from CD8a, IgGl or FcRllla proteins.

In an embodiment, said signal transducing domain of above anti-CD38 mcCAR is fused to the gamma or beta chain of FCERI is from the TCR zeta chain, the FcERP chain, the FcεRllla chain, or includes an immunoreceptor tyrosine-based activation motif (ITAM).

In a preferred embodiment, said signal transducing domain of above anti-CD38 mcCAR is from CD3zeta, and preferably comprising a polypeptide sequence displaying at least 90% identity to SEQ ID NO. 81.

In an embodiment, said second or third polypeptide of above anti-CD38 mcCAR comprises a co-stimulatory domain from the cytoplasmic domain of a costimulatory molecule selected from CD27, CD28, 4-1BB, OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, CD8, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, and any combination thereof.

In a preferred embodiment, said above co-stimulatory domain is from 4-1BB and comprises a polypeptide sequence displaying at least 90% identity to SEQ ID NO. 80.

Examples of different architectures of the CD38 specific multi-chain CAR according to the invention are presented in Figure 20.

Constructions of exemplary anti-CD38 mcCAR comprising the three polypeptide gamma, alpha and beta are presented in the following Table 3.
Table 3: Exemplary polypeptides forming anti-CD38 multi-chain CARs

<table>
<thead>
<tr>
<th>Multi chain CAR Designation</th>
<th>Precursor BCMA multi-chain CAR polypeptide structure</th>
<th>Gamma polypeptide</th>
<th>Alpha polypeptide</th>
<th>Beta polypeptide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FcERI Y-SP</td>
<td>FcERI α-SP</td>
<td>FCERI α-TM-IC</td>
</tr>
<tr>
<td>25A10 anti-CD38mcCAR</td>
<td>SEQ ID NO.106, SEQ ID NO.107, SEQ ID NO.108</td>
<td>SEQ ID NO.108</td>
<td>SEQ ID NO.77</td>
<td>SEQ ID NO.62</td>
</tr>
<tr>
<td>(4-1BB costimul. domain)</td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.54</td>
<td>SEQ ID NO.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td>28F5 anti-CD38 mcCAR</td>
<td>SEQ ID NO.106, SEQ ID NO.107, SEQ ID NO.108</td>
<td>SEQ ID NO.108</td>
<td>SEQ ID NO.77</td>
<td>SEQ ID NO.62</td>
</tr>
<tr>
<td>(4-1BB costimul. domain)</td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.54</td>
<td>SEQ ID NO.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.1026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.1026</td>
</tr>
<tr>
<td>13F11 anti-CD38 mcCAR</td>
<td>SEQ ID NO.106, SEQ ID NO.107, SEQ ID NO.108</td>
<td>SEQ ID NO.108</td>
<td>SEQ ID NO.77</td>
<td>SEQ ID NO.62</td>
</tr>
<tr>
<td>(4-1BB costimul. domain)</td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.54</td>
<td>SEQ ID NO.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td>16B6 anti-CD38 mcCAR</td>
<td>SEQ ID NO.106, SEQ ID NO.107, SEQ ID NO.108</td>
<td>SEQ ID NO.108</td>
<td>SEQ ID NO.77</td>
<td>SEQ ID NO.62</td>
</tr>
<tr>
<td>(4-1BB costimul. domain)</td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.54</td>
<td>SEQ ID NO.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td>25A10 anti-CD38 mcCAR</td>
<td>SEQ ID NO.106, SEQ ID NO.107, SEQ ID NO.108</td>
<td>SEQ ID NO.108</td>
<td>SEQ ID NO.77</td>
<td>SEQ ID NO.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.54</td>
<td>SEQ ID NO.26</td>
</tr>
<tr>
<td>(4-1BB costimul. domain)</td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.14</td>
<td>SEQ ID NO.10.26</td>
</tr>
<tr>
<td>(CD28 costimul. domain)</td>
<td>28F5 anti-CD38 mcCAR (CD28 costimul. domain)</td>
<td>13F11 anti-CD38 mcCAR (CD28 costimul. domain)</td>
<td>16B6 anti-CD38 mcCAR (CD28 costimul. domain)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.106</td>
<td>SEQ ID NO.106</td>
<td>SEQ ID NO.106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.107</td>
<td>SEQ ID NO.107</td>
<td>SEQ ID NO.107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.108</td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.110</td>
<td>SEQ ID NO.77</td>
<td>SEQ ID NO.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.75</td>
<td>SEQ ID NO.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.58</td>
<td>SEQ ID NO.50</td>
<td>SEQ ID NO.109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.112</td>
<td>SEQ ID NO.109</td>
<td>SEQ ID NO.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO.113</td>
<td>SEQ ID NO.113</td>
<td>SEQ ID NO.113</td>
<td></td>
</tr>
</tbody>
</table>

CD28 costimul. domain
Activation and expansion of T cells

The method according to the invention generally includes a further step of activating and/or expanding the T-cells. This can be done prior to or after genetic modification of the T cells, using the methods as described, for example, in U.S. Patents 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005. According to these methods, the T cells of the invention can be expanded by contact with a surface having attached thereto an agent that stimulates a CD3 TCR complex associated signal and a ligand that stimulates a co-stimulatory molecule on the surface of the T cells.

In particular, T cell populations may be stimulated in vitro such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. To stimulate proliferation of either CD4+ T cells or CD8+ T cells, an anti-CD3 antibody and an anti-CD28 antibody. For example, the agents providing each signal may be in solution or coupled to a surface. As those of ordinary skill in the art can readily appreciate, the ratio of particles to cells may depend on particle size relative to the target cell. In further embodiments of the present invention, the cells, such as T cells, are combined with agent-coated beads, the beads and the cells are subsequently separated, and then the cells are cultured. In an alternative embodiment, prior to culture, the agent-coated beads and cells are not separated but are cultured together. Cell surface proteins may be ligated by allowing paramagnetic beads to which anti-CD3 and anti-CD28 are attached (3x28 beads) to contact the T cells. In one embodiment the cells (for example, 4 to 10 T cells) and beads (for example, DYNABEADS® M-450 CD3/CD28 T paramagnetic beads at a ratio of 1:1) are combined in a buffer, preferably PBS (without divalent cations such as, calcium and magnesium). Again, those of ordinary skill in the art can readily appreciate any cell concentration may be used. The mixture may be cultured for several hours (about 3 hours) to about 14 days or any hourly integer value in between. In another embodiment, the mixture may be cultured for 21 days. Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 5, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-g, IL-4, IL-7, GM-CSF, -10, -2, 1L-15, TGFP, and TNF- or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of
cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol. Media can include RPMI 1640, A1M-V, DMEM, MEM, a-MEM, F-12, X-Vivo 1, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells. Antibiotics, e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The target cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37°C) and atmosphere (e.g., air plus 5% CO2). T-cells that have been exposed to varied stimulation times may exhibit different characteristics.

In another particular embodiment, said cells can be expanded by co-culturing with tissue or cells. Said cells can also be expanded in vivo, for example in the subject's blood after administrating said cell into the subject.

On one embodiment, said T cells of the invention can undergo robust in vivo T cell expansion and can persist for an extended amount of time.

According to one embodiment, said T cells of the invention can undergo robust in vivo T cell expansion upon administration to a patient, and can persist in the body fluids for an extended amount of time, preferably for a week, more preferably for 2 weeks, even more preferably for at least one month. Although the T-cells according to the invention are expected to persist during these periods, their life span into the patient's body are intended not to exceed a year, preferably 6 months, more preferably 2 months, and even more preferably one month.

**Gene inactivation of CD38 antigen**

The antigen marker CD38 has been used as specific markers in diagnostic methods for a while, especially with respect to Leukemia pathological cells, but not in therapy. Indeed, although this marker was identified in the art as quite specific marker, it could not be used as target for immunotherapy because antibodies directed against this marker would have destroyed or interfered with patients' T-cells.

In a first embodiment, the method of the invention concerns a method of preparing appropriate immune cells, preferably T-cells for immunotherapy comprising the step of:

(a) Genetically inactivating or mutating a gene encoding the CD38 gene in an immune cell, which is involved in the expression or presentation of the CD38 antigen marker, said CD38 antigen marker being present both on the surface of said immune cell and the pathological cell;
(b) Expressing into said immune cell a transgene encoding a chimeric antigen receptor directed against said CD38 antigen marker such as presented in the previous sections, said antigen marker being present at the surface of said pathological cell.

In another embodiment, said method for engineered CD38 antigen-inactivated and CD38 CAR expressing appropriate immune cells, preferably T-cells for immunotherapy comprises the step of:

5 (a) Genetically inactivating or mutating a gene encoding the CD38 gene in an immune cell as described in the present invention, combined with the inactivation or mutation of another gene or other genes; said gene(s) being selected in the group consisting of gene(s) involved in engraftment of allogeneic immune cells, as immune checkpoints, in conferring drug resistance or in conferring resistance to immunosuppressive agent;

(b) Expressing into said immune cell a transgene encoding a chimeric antigen receptor directed against said CD38 antigen marker such as described in other sections and in claim 1.

In a particular embodiment, said method to engineer cells comprises at least one of the following steps:

10 (a) providing an immune cell, preferably T-cell, from a blood sample;

(b) introducing into said immune cell a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break respectively:

- said gene encoding CD38 antigen, and

- at least one gene encoding a component involved in engraftment of allogeneic immune cells, as immune checkpoints, in conferring drug resistance or in conferring resistance to immunosuppressive agent).

(c) expanding said cells.

In a preferred embodiment, said additional gene(s) to be inactivated or mutated during step a) is or are selected in the group consisting of TCR, beta2M, PD-1, CTLA-4, dCK, DHFR, MGMT, IMPDH2, MDR1, CD52, GR.

In another embodiment, said rare-cutting endonuclease can be a meganuclease, a Zinc finger nuclease, a TALE-nuclease, a Casp9 nuclease or a Cpf1 nuclease. In a preferred embodiment, said rare-cutting endonuclease is a TALE-nuclease.

In a particular embodiment, inactivation of CD38 antigen and of gene(s) involved in engraftment of allogeneic immune cells, as immune checkpoints, in conferring drug resistance or in conferring
resistance to immunosuppressive agent can be done at a precise genomic location targeted by a specific rare-cutting endonuclease such as TALE-nuclease, wherein said specific endonuclease catalyzes a cleavage and wherein an exogenous nucleic acid successively comprising at least a region of homology and a sequence to inactivate CD38 targeted gene and said above other gene(s) which is integrated by homologous recombination. In another embodiment, several genes can be, successively or at the same time, inactivated by using several specific rare-cutting endonucleases respectively and specifically targeting one defined gene and several specific polynucleotides for specific gene inactivation.

In a preferred embodiment, said method for engineered KO CD38 and anti-CD38 CAR expressing immune cells comprises the step of:

(a) Genetically inactivating the CD38 gene in an immune cell, said target CD38 being selected in the group consisting of SEQ ID 1, 4 and 7, by using respectively the left and right TALE nuclease of SEQ 2-3, 5-6, and SEQ 8-9;

(b) Expressing into said immune cell a transgene encoding a chimeric antigen receptor directed against CD38 antigen, said specific anti-CD38 CAR having one of the polypeptide structure selected from Vl, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_H and V_L comprise a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO. 46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4).

In another preferred embodiment, said method for engineered KO CD38 and CD38+ expressing immune cells comprises the step of:

(a) Genetically inactivating the CD38 gene in an immune cell, said target CD38 being selected in the group consisting of SEQ ID 1, 4 and 7, by using respectively the left and right TALE nuclease of SEQ 2-3, 5-6, and SEQ 8-9;

(b) Expressing into said immune cell a transgene encoding an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR), wherein said V_H and V_L comprise the CDRs sequences of respectively SEQ ID NO. 15-17 and SEQ ID NO. 11-13; respectively SEQ ID NO. 63-65 and SEQ ID NO. 59-62; respectively
SEQ ID NO.55-57 and SEQ ID NO.51-53; respectively SEQ ID NO.31-33 and SEQ ID NO.27-29, respectively
SEQ ID NO.39-41 and SEQ ID NO.35-37, respectively SEQ ID NO.47-49 and SEQ ID NO.45-43, respectively
SEQ ID NO.55-57 and SEQ ID NO.51-53, respectively SEQ ID NO.63-65 and SEQ ID NO.59-61, respectively
SEQ ID NO.71-73 and SEQ ID NO.67-69.

In more preferred embodiment, said method for engineered KO CD38 and anti-CD38 CAR expressing immune cells comprises the step of:

(a) Genetically inactivating the CD38 gene in an immune cell, said target CD38 of SEQ ID 4, by using respectively the left and right TALE nuclease of SEQ 5-6;

(b) Expressing into said immune cell a transgene encoding an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11) and SEQ ID NO. 88-90 (16B5).

In even more preferred embodiment, said method for engineered KO CD38 and anti-CD38 CAR expressing immune cells comprises the step of:

(a) Genetically inactivating the CD38 gene in an immune cell, said target CD38 of SEQ ID 4, by using respectively the left and right TALE nuclease of SEQ 5-6;

(b) Expressing into said immune cell a transgene encoding an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10) and SEQ ID NO. 100-102 (28F5).

In still even more preferred embodiment, said method for engineered KO CD38 and anti-CD38 CAR expressing immune cells comprises the step of:

(a) Genetically inactivating the CD38 gene in an immune cell, said target CD38 of SEQ ID 4, by using respectively the left and right TALE nuclease of SEQ 5-6;

(b) Expressing into said immune cell a transgene encoding an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 82 (25A10-vl CAR).
The immune cells according to the invention are endowed with a anti-CD38 chimeric antigen receptor directed to the CD38 antigen marker that is commonly expressed by the pathological cells and immune cells, or known to be present on the surface of said T Cells. The expression "known to be present" means that the antigen marker is reported to be found on the surface of the immune cells grown in natural conditions in-vivo, especially in the blood, but not necessarily when they are cultured in-vitro. In any event, the method of the invention results into the absence of the CD38 antigen marker on the surface of the immune cell, thereby preventing the chimeric antigen receptor from reacting with the engineered T-cell surface. In this respect, the method may include a further step of purifying the resulting T-cells by excluding the cells presenting said marker antigen on their surface.

By inactivating a gene it is intended that the gene of interest is not expressed in a functional protein form. In particular embodiments, the genetic modification of the method relies on the expression, in provided cells to engineer, of a rare-cutting endonuclease such that same catalyzes cleavage in one targeted gene thereby inactivating said targeted gene. The nucleic acid strand breaks caused by the endonuclease are commonly repaired through the distinct mechanisms of homologous recombination or non-homologous end joining (NHEJ). However, NHEJ is an imperfect repair process that often results in changes to the DNA sequence at the site of the cleavage. Mechanisms involve rejoining of what remains of the two DNA ends through direct re-ligation (Critchlow and Jackson 1998) or via the so-called microhomology-mediated end joining (Betts, Brenchley et al. 2003; Ma, Kim et al. 2003). Repair via non-homologous end joining (NHEJ) often results in small insertions or deletions and can be used for the creation of specific gene knockouts. Said modification may be a substitution, deletion, or addition of at least one nucleotide. Cells in which a cleavage-induced mutagenesis event, i.e. a mutagenesis event consecutive to an NHEJ event, has occurred can be identified and/or selected by well-known method in the art.

According to a preferred embodiment of the invention, the gene mutation or inactivation of step a) of the above method is performed using a rare-cutting endonuclease.

The term "rare-cutting endonuclease" refers to a wild type or variant enzyme capable of catalyzing the hydrolysis (cleavage) of bonds between nucleic acids within a DNA or RNA molecule, preferably a DNA molecule. Particularly, said nuclease can be an endonuclease, more preferably a rare-cutting endonuclease which is highly specific, recognizing nucleic acid target sites ranging from 10 to 45 base pairs (bp) in length, usually ranging from 10 to 35 base pairs in length, more usually from 12 to 20 base pairs. The endonuclease according to the present invention recognizes at specific polynucleotide sequences, further referred to as "target sequence" and cleaves nucleic acid inside these target sequences or into sequences adjacent thereto, depending on the molecular structure of said
endonuclease. The rare-cutting endonuclease can recognize and generate a single- or double-strand break at specific polynucleotides sequences.

In a particular embodiment, said rare-cutting endonuclease according to the present invention is a RNA-guided endonuclease such as the Cas9/CRISPR complex. RNA guided endonucleases constitute a new generation of genome engineering tool where an endonuclease associates with a RNA molecule. In this system, the RNA molecule nucleotide sequence determines the target specificity and activates the endonuclease (Gasiunas, Barrangou et al. 2012; Jinek, Chylinski et al. 2012; Cong, Ran et al. 2013; Mali, Yang et al. 2013).

**TAL-nucleases**

In a preferred embodiment, the inactivation of the CD38 gene in step a) of the previously presented method is performed by the use of TAL-nuclease.

In a more preferred embodiment, said TAL-nuclease targets a CD38 gene sequence of SEQ ID NO.1, 4 or 7.

According a still more preferred embodiment, said inactivation of CD38 antigen is performed by using the TALE-nucleases of SEQ ID NO.2-3, 5-6 or 8-9.

Said above sequences for CD38 targets and their corresponding left and right TALE nuclease are presented in the following Table 4.
Table 4: Sequences of two other CD38 targets and the corresponding TALENs for their inactivation

<table>
<thead>
<tr>
<th>Name</th>
<th>SEQ ID #</th>
<th>Nucleic acid sequence and repeats sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD38exl-T2 target</td>
<td>1</td>
<td>TGAGGTGGGTTGGCGACtaaggcgcaccggTGGGC ACTGCGGGGACA</td>
</tr>
<tr>
<td>CD38exl-T2 Left TALEN</td>
<td>2</td>
<td>MGDPPKKKRKVI DYPYDPVDYA IDIADDLRTLGY SQIQQQEQEKIKPK KRVSTVAQHHHEALV</td>
</tr>
<tr>
<td>CD38exl-T2 Right TALEN</td>
<td>3</td>
<td>MGDPPKKKRKVI DYPYDPVDYA IDIADDLRTLGY SQIQQQEQEKIKPK KRVSTVAQHHHEALV</td>
</tr>
</tbody>
</table>

Repeat sequence TALEN: NN-N-I-NN-NG-NG N-N-NN-NG-NG-N N-N-HD-N-N-N-NG

Repeat sequence TALEN: NN-N-I-NN-NG-NG N-N-NN-NG-NG-N N-N-HD-N-N-N-NG
<table>
<thead>
<tr>
<th>CD38-1 target</th>
<th>4</th>
<th>TGCAGAGTCACCCGCGGTCGGGACAAACCCGCTGCCGGCTCTCTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD38-1 Left TALEN</td>
<td>5</td>
<td>MGDPKKKRKVI DYPYDVPDYAI DYPYDVPDYAI DYPYDVPDYAI DYPYDVPDYAI DYPYDVPDYAI</td>
</tr>
<tr>
<td>CD38-1 Right TALEN</td>
<td>6</td>
<td>MGDPKKKRKVI DYPYDVPDYAI DYPYDVPDYAI DYPYDVPDYAI DYPYDVPDYAI DYPYDVPDYAI</td>
</tr>
</tbody>
</table>


EGIN FAAD

"TALE-nuclease" or "MBBBD-nuclease" refers to engineered proteins resulting from the fusion of a DNA binding domain typically derived from Transcription Activator Like Effector proteins (TALE) or Modular Base-per-Base Binding domain (MBBBD), with a catalytic domain having endonuclease activity.
Such catalytic domain usually comes from enzymes, such as for instance I-TevI, ColE7, NucA and Fok-I. TALE-nuclease can be formed under monomeric or dimeric forms depending of the selected catalytic domain (WO2012138927). Such engineered TALE-nucleases are commercially available under the trade name TALEN™ (Collectis, 8 rue de la Croix Jarry, 75013 Paris, France).

According to a preferred embodiment of the invention, the DNA binding domain is derived from a Transcription Activator like Effector (TALE), wherein sequence specificity is driven by a series of 33-35 amino acids repeats originating from Xanthomonas or Ralstonia bacterial proteins AvrBs3, PthXol, AvrHahl, PthA, TalI can as non-limiting examples.

These repeats differ essentially by two amino acids positions that specify an interaction with a base pair (Boch, Scholze et al. 2009; Moscow and Bogdanove 2009). Each base pair in the DNA target is contacted by a single repeat, with the specificity resulting from the two variant amino acids of the repeat (the so-called repeat variable dipeptide, RVD). TALE binding domains may further comprise an N-terminal translocation domain responsible for the requirement of a first thymine base (TO) of the targeted sequence and a C-terminal domain that containing a nuclear localization signals (NLS). A TALE nucleic acid binding domain generally corresponds to an engineered core TALE scaffold comprising a plurality of TALE repeat sequences, each repeat comprising a RVD specific to each nucleotides base of a TALE recognition site. In the present invention, each TALE repeat sequence of said core scaffold is made of 30 to 42 amino acids, more preferably 33 or 34 wherein two critical amino acids (the so-called repeat variable dipeptide, RVD) located at positions 12 and 13 mediates the recognition of one nucleotide of said TALE binding site sequence; equivalent two critical amino acids can be located at positions other than 12 and 13 specially in TALE repeat sequence taller than 33 or 34 amino acids long. Preferably, RVDs associated with recognition of the different nucleotides are HD for recognizing C, NG for recognizing T, NI for recognizing A, NN for recognizing G or A. In another embodiment, critical amino acids 12 and 13 can be mutated towards other amino acid residues in order to modulate their specificity towards nucleotides A, T, C and G and in particular to enhance this specificity. A TALE nucleic acid binding domain usually comprises between 8 and 30 TALE repeat sequences. More preferably, said core scaffold of the present invention comprises between 8 and 20 TALE repeat sequences; again more preferably 15 TALE repeat sequences. It can also comprise an additional single truncated TALE repeat sequence made of 20 amino acids located at the C-terminus of said set of TALE repeat sequences, i.e. an additional C-terminal half- TALE repeat sequence.

Other engineered DNA binding domains can be used as alternative sequences to form so-called modular base-per-base specific nucleic acid binding domains (MBBBD) as described in WO 2014/018601. Said MBBBD can be engineered, for instance, from newly identified proteins, namely EAV36_BURRH, E5AW43_BURRH, E5AW45_BURRH and E5AW46_BURRH proteins from the recently sequenced genome
of the endosymbiont fungi *Burkholderia Rhizoxinica* (Lackner, Moebius et al. 2011). These nucleic acid binding polypeptides comprise modules of about 31 to 33 amino acids that are base specific. These modules display less than 40% sequence identity with *Xanthomonas* TALE common repeats and present more polypeptides sequence variability. The different domains from the above proteins (modules, N and C-terminals) from *Burkholderia* and *Xanthomonas* are useful to engineer new proteins or scaffolds having binding properties to specific nucleic acid sequences and may be combined to form chimeric TALE-MBBBD proteins.

The present invention encompasses a method for engineered T-cells in order to inactivate the expression of the genes encoding CD38 antigen marker by using specific TALE-nucleases.

Particularly suitable for the realization of the invention, TALE-nucleases such as the ones in SEQ ID NO: 2-3; 5-6; 8-9 for the CD38 gene. These specific TALE-nucleases, their sequence target and the protocol used are presented more thoroughly in the following Example 1.

*Cas9*

In another embodiment, the gene inactivation of CD38 in step a) of the previously presented method is performed using the Cas9 RNA-guided endonuclease.

In another embodiment, said RNA-guided endonuclease is split into at least 2 polypeptides, one comprising RuvC and another comprising HNH.

Cas9, also named Csn1 (COG3513) is a large protein that participates in both crRNA biogenesis and in the destruction of invading DNA. Cas9 has been described in different bacterial species such as *S. thermophiles, Listeria innocua* (Gasiunas, Barrangou et al. 2012; Jinek, Chylinski et al. 2012) and *S. Pyogenes* (Deltcheva, Chylinski et al. 2011). The large Cas9 protein (>1200 amino acids) contains two predicted nuclease domains, namely HNH (McrA-like) nuclease domain that is located in the middle of the protein and a splitted RuvC-like nuclease domain (RNase H fold) (Makarova, Grishin et al. 2006).

By "Cas9" is meant an engineered endonuclease or a homologue of Cas9 which is capable of processing target nucleic acid sequence. In particular embodiment, Cas9 can induce a cleavage in the nucleic acid target sequence which can correspond to either a double-stranded break or a single-stranded break. Cas9 variant can be a Cas9 endonuclease that does not naturally exist in nature and that is obtained by protein engineering or by random mutagenesis. Cas9 variants according to the invention can for example be obtained by mutations i.e. deletions from, or insertions or substitutions of at least one residue in the amino acid sequence of a *S. pyogenes* Cas9 endonuclease (COG3513). In the frame aspects of the present invention, such Cas9 variants remain functional, i.e. they retain the capacity of
processing a target nucleic acid sequence. Cas9 variant can also be homologues of *S. pyogenes* Cas9 which can comprise deletions from, or insertions or substitutions of, at least one residue within the amino acid sequence of *S. pyogenes* Cas9. Any combination of deletion, insertion, and substitution may also be made to arrive at the final construct, provided that the final construct possesses the desired activity, in particular the capacity of binding a guide RNA or nucleic acid target sequence.

RuvC/RNaseH motif includes proteins that show wide spectra of nucleolytic functions, acting both on RNA and DNA (RNaseH, RuvC, DNA transposases and retroviral integrases and PIWI domain of Argonaut proteins). In the present invention the RuvC catalytic domain of the Cas9 protein can be characterized by the sequence motif: D-[l/L]-G-X-X-S-G-W-A, wherein X represents any one of the natural 20 amino acids and [l/L] represents isoleucine or leucine. In other terms, the present invention relates to Cas9 variant which comprises at least D-[l/L]-G-X-X-S-G-W-A sequence, wherein X represents any one of the natural 20 amino acids and [l/L] represents isoleucine or leucine.

HNH motif is characteristic of many nucleases that act on double-stranded DNA including colicins, restriction enzymes and homing endonucleases. The domain HNH (SMART ID: SM00507, SCOP nomenclature:H NH family) is associated with a range of DNA binding proteins, performing a variety of binding and cutting functions. The ones with known function are involved in a range of cellular processes including bacterial toxicity, homing functions in groups I and II introns and inteins, recombination, developmental^ controlled DNA rearrangement, phage packaging, and restriction endonuclease activity (Dalgaard, Klar et al. 1997). These proteins are found in viruses, archaeabacteria, eubacteria, and eukaryotes. Interestingly, as with the LAGLI-DADG and the GIY-YIG motifs, the HNH motif is often associated with endonuclease domains of self-propagating elements like inteins, Group I, and Group II introns (Dalgaard, Klar et al. 1997). The HNH domain can be characterized by the presence of a conserved Asp/His residue flanked by conserved His (amino-terminal) and His/Asp/Glu (carboxy-terminal) residues at some distance. A substantial number of these proteins can also have a CX2C motif on either side of the central Asp/His residue. Structurally, the HNH motif appears as a central hairpin of twisted β-strands, which are flanked on each side by an α helix (Kleanthous, Kuhlmann et al. 1999). The large HNH domain of Cas9 is represented by SEQ ID NO.5. In the present invention, the HNH motif can be characterized by the sequence motif: Y-X-X-D-H-X-X-P-X-S-X-X-D-X-S, wherein X represents any one of the natural 20 amino acids. The present invention relates to a Cas9 variant which comprises at least Y-X-X-D-H-X-X-P-X-S-X-X-D-X-S sequence wherein X represents any one of the natural 20 amino acids.

This invention can be of particular interest to easily do targeted multiplex gene modifications and to create an inducible nuclease system by introduction of the guide RNA to the Cas9 cells. For the purpose of the present invention, the inventors have established that Cas9 protein can be divided into
two separate split Cas9 RuC and HNH domains which can process target nucleic acid sequence together or separately with the guide RNA.

Also the RuC and HNH domains from different RNA guided endonucleases or Cas homologues may be assembled to improve nuclease efficiency or specificity. The domains from different species can be either split into two proteins or fused to each other to form a variant Cas protein. The Cas9 split system is deemed particularly suitable for an inducible method of genome targeting and to avoid the potential toxic effect of the Cas9 overexpression within the cell. Indeed, a first split Cas9 domain can be introduced into the cell, preferably by stably transforming said cell with a transgene encoding said split domain. Then, the complementary split part of Cas9 can be introduced into the cell, such that the two split parts reassemble into the cell to reconstitute a functional Cas9 protein at the desired time.

The reduction of the size of the split Cas9 compared to wild type Cas9 ease the vectorization and the delivery into the cell, for example, by using cell penetrating peptides. Re-arranging domains from different Cas proteins, allows to modulate the specificity and nuclease activity, for instance, by targeting PAM motifs that are slightly different from *S. pyogenes* Cas9

**Split Cas9 system**

The previous characterization of the RuC and HNH domains has prompted the inventors to engineer Cas9 protein to create split Cas9 protein. Surprisingly, the inventors showed that these two split Cas9 could process together or separately the nucleic acid target. This observation allows developing a new Cas9 system using split Cas9 protein. Each split Cas9 domains can be prepared and used separately. Thus, this split system displays several advantages for vectorization and delivery of the RNA guided endonuclease in T-cells, allowing delivering a shorter and/or inactive protein, and is particularly suitable to induce genome engineering in T-cells at the desired time and thus limiting the potential toxicity of an integrated Cas9 nuclease.

By “Split Cas9” is meant here a reduced or truncated form of a Cas9 protein or Cas9 variant, which comprises either a RuC or HNH domain, but not both of these domains. Such “Split Cas9” can be used independently with guide RNA or in a complementary fashion, like for instance, one Split Cas9 providing a RuC domain and another providing the HNH domain. Different split RNA guided endonucleases may be used together having either RuC and/or HNH domains.

Each Cas9 split domain can be derived from the same or from different Cas9 homologues. Many homologues of Cas9 have been identified in genome databases.

Said Cas9 split domains (RuC and HNH domains) can be simultaneously or sequentially introduced into the cell such that said split Cas9 domain(s) process the target nucleic acid sequence in
the cell. Said Cas9 split domains and guide RNA can be introduced into the cell by using cell penetrating peptides or other transfection methods as described elsewhere.

In another aspect of the invention, only one split Cas9 domain, referred to as compact Cas9 is introduced into said cell. Indeed, surprisingly the inventors showed that the split Cas9 domain comprising the RuvC motif as described above is capable of cleaving a target nucleic acid sequence independently of split domain comprising the HNH motif. Thus, they could establish that the guide RNA does not need the presence of the HNH domain to bind to the target nucleic acid sequence and is sufficiently stable to be bound by the RuvC split domain. In a preferred embodiment, said split Cas9 domain alone is capable of nicking said target nucleic acid sequence.

Each split domain can be fused to at least one active domain in the N-terminal and/or C-terminal end, said active domain can be selected from the group consisting of: nuclease (e.g. endonuclease or exonuclease), polymerase, kinase, phosphatase, methylase, demethylase, acetylase, desacetylase, topoisomerase, integrase, transposase, ligase, helicase, recombinase, transcriptional activator (e.g. VP64, VP16), transcriptional inhibitor (e.g. g; KRAB), DNA end processing enzyme (e.g. Trex2, Tdt), reporter molecule (e.g. fluorescent proteins, lacZ, luciferase).

HNH domain is responsible for nicking of one strand of the target double-stranded DNA and the RuvC-like RNaseH fold domain is involved in nicking of the other strand (comprising the PAM motif) of the double-stranded nucleic acid target (Jinek, Chylinski et al. 2012). However, in wild-type Cas9, these two domains result in blunt cleavage of the invasive DNA within the same target sequence (proto-spacer) in the immediate vicinity of the PAM (Jinek, Chylinski et al. 2012). Cas9 can be a nickase and induces a nick event within different target sequences.

As non-limiting example, Cas9 or split Cas9 can comprise mutation(s) in the catalytic residues of either the HNH or RuvC-like domains, to induce a nick event within different target sequences. As non-limiting example, the catalytic residues of the Cas9 protein are those corresponding to amino acids D10, D31, H840, H868, N882 and N891 or aligned positions using CLUSTALW method on homologues of Cas Family members. Any of these residues can be replaced by any other amino acids, preferably by alanine residue. Mutation in the catalytic residues means either substitution by another amino acids, or deletion or addition of amino acids that induce the inactivation of at least one of the catalytic domain of cas9. (cf., In a particular embodiment, Cas9 or split Cas9 may comprise one or several of the above mutations.

In another particular embodiment, split Cas9 comprises only one of the two RuvC and HNH catalytic domains. In the present invention, Cas9 from different species, Cas9 homologues, Cas9 engineered and functional variant thereof can be used. The invention envisions the use of any RNA guided endonuclease or split RNA guided endonucleases variants to perform nucleic acid cleavage in a genetic sequence of interest.
Meganuclease

Rare-cutting endonuclease can also be a homing endonuclease, also known under the name of meganuclease. Such homing endonucleases are well-known to the art (Stoddard 2005). Homing endonucleases are highly specific, recognizing DNA target sites ranging from 12 to 45 base pairs (bp) in length, usually ranging from 14 to 40 bp in length. The homing endonuclease according to the invention may for example correspond to a LAGLIDADG endonuclease, to a HNH endonuclease, or to a GIY-YIG endonuclease. Preferred homing endonuclease according to the present invention can be an 1-Crel variant. A “variant” endonuclease, i.e. an endonuclease that does not naturally exist in nature and that is obtained by genetic engineering or by random mutagenesis can bind DNA sequences different from that recognized by wild-type endonucleases (see international application WO2006/097854).

Said rare-cutting endonuclease can be a modular DNA binding nuclease. By modular DNA binding nuclease is meant any fusion proteins comprising at least one catalytic domain of an endonuclease and at least one DNA binding domain or protein specifying a nucleic acid target sequence. The DNA binding domain is generally a RNA or DNA-binding domain formed by an independently folded polypeptide or protein domain that contains at least one motif that recognizes double-stranded polynucleotides. Many such polypeptides have been described in the art having the ability to bind specific nucleic acid sequences. Such binding domains often comprise, as non-limiting examples, helix-turn helix domains, leucine zipper domains, winged helix domains, helix-loop-helix domains, HMG-box domains, Immunoglobulin domains, B3 domain or engineered zinc finger domain.

Zinc-Finger Nuclease

Initially developed to cleave DNA in vitro, “Zinc Finger Nuclease” (ZFNs) are a fusion between the cleavage domain of the type IIs restriction enzyme, FokI, and a DNA recognition domain containing 3 or more C2H2 zinc finger motifs. The heterodimerization at a particular position in the DNA of two individual ZFNs in precise orientation and spacing leads to a double-strand break (DSB) in the DNA. The use of such chimeric endonucleases have been extensively reported in the art as reviewed by Urnov et al. (Genome editing with engineered zinc finger nucleases (2010) Nature reviews Genetics 11:636-646).

Standard ZFNs fuse the cleavage domain to the C-terminus of each zinc finger domain. In order to allow the two cleavage domains to dimerize and cleave DNA, the two individual ZFNs bind opposite strands of DNA with their C-termini a certain distance apart. The most commonly used linker sequences between the zinc finger domain and the cleavage domain requires the 5’ edge of each binding site to be separated by 5 to 7 bp.
The most straightforward method to generate new zinc-finger arrays is to combine smaller zinc-finger "modules" of known specificity. The most common modular assembly process involves combining three separate zinc fingers that can each recognize a 3 base pair DNA sequence to generate a 3-finger array that can recognize a 9 base pair target site. Numerous selection methods have been used to generate zinc-finger arrays capable of targeting desired sequences. Initial selection efforts utilized phage display to select proteins that bound a given DNA target from a large pool of partially randomized zinc-finger arrays. More recent efforts have utilized yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells.

**Delivery methods**

The inventors have considered any means known in the art to allow delivery inside cells or subcellular compartments of said cells the polynucleotides expressing the endonucleases, their possible co-effectors (e.g. guide RNA or DNA associated with Cas9 or Argonaute nucleases) as well as the chimeric antigen receptors. These means include viral transduction, electroporation and also liposomal delivery means, polymeric carriers, chemical carriers, lipoplexes, polyplexes, dendrimers, nanoparticles, emulsion, natural endocytosis or phagocytose pathway as non-limiting examples.

As a preferred embodiment of the invention, polynucleotides encoding the endonucleases of the present invention are transfected under mRNA form in order to obtain transient expression and avoid chromosomal integration of foreign DNA, for example by electroporation. The inventors have determined different optimal conditions for mRNA electroporation in T-cell displayed in Table 5. The inventor used the cytoPulse technology which allows, by the use of pulsed electric fields, to transiently permeabilize living cells for delivery of material into the cells (U.S. patent 6,010,613 and WO 2004/083379). Pulse duration, intensity as well as the interval between pulses can be modified in order to reach the best conditions for high transfection efficiency with minimal mortality. Basically, the first high electric field pulses allow pore formation, while subsequent lower electric field pulses allow to moving the polynucleotide into the cell. In one aspect of the present invention, the inventor describe the steps that led to achievement of >95% transfection efficiency of mRNA in T cells, and the use of the electroporation protocol to transiently express different kind of proteins in T cells. In particular the invention relates to a method of transforming T cell comprising contacting said T cell with RNA and applying to T cell an agile pulse sequence consisting of:

(a) one electrical pulse with a voltage range from 2250 to 3000 V per centimeter, a pulse width of 0.1 ms and a pulse interval of 0.2 to 10 ms between the electrical pulses of step (a) and (b);
(b) one electrical pulse with a voltage range from 2250 to 3000 V with a pulse width of 100 ms and a pulse interval of 100 ms between the electrical pulse of step (b) and the first electrical pulse of step (c); and

(c) 4 electrical pulses with a voltage of 325 V with a pulse width of 0.2 ms and a pulse interval of 2 ms between each of 4 electrical pulses.

In particular embodiment, the method of transforming T cell comprising contacting said T cell with RNA and applying to T cell an agile pulse sequence consisting of:

(a) one electrical pulse with a voltage of 2250, 2300, 2350, 2400, 2450, 2500, 2550, 2400, 2450, 2500, 2600, 2700, 2800, 2900 or 3000V per centimeter, a pulse width of 0.1 ms and a pulse interval of 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 ms between the electrical pulses of step (a) and (b);

(b) one electrical pulse with a voltage range from 2250, of 2250, 2300, 2350, 2400, 2450, 2500, 2550, 2400, 2450, 2500, 2600, 2700, 2800, 2900 or 3000V with a pulse width of 100 ms and a pulse interval of 100 ms between the electrical pulse of step (b) and the first electrical pulse of step (c); and

(c) 4 electrical pulses with a voltage of 325 V with a pulse width of 0.2 ms and a pulse interval of 2 ms between each of 4 electrical pulses.

Any values included in the value range described above are disclosed in the present application.

Electroporation medium can be any suitable medium known in the art. Preferably, the electroporation medium has conductivity in a range spanning 0.01 to 1.0 milliSiemens.

### Table 5: Different cytopulse programs used to determine the minimal voltage required for electroporation in PBMC derived T-cells.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytopulse program</td>
<td>Pulses</td>
<td>V</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>900</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1200</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>900</td>
</tr>
</tbody>
</table>

Viral transduction

According to the present invention, the use of retroviral vectors and more preferably of lentiviral vectors is particularly suited for expressing the chimeric antigen receptors into the T-cells.
Methods for viral transduction are well known in the art (Walther et al. (2000) Viral Vectors for Gene Transfer. Drugs. 60(2):249-271). Integrative viral vectors allow the stable integration of the polynucleotides in the T-cells genome and to expressing the chimeric antigen receptors over a longer period of time.

According to another embodiment, said CD38 CARs selected are cloned in a lentiviral vector encoding for the suicide gene RQR8 which is be under the control of promotor such as EF1α.

According to a preferred embodiment, the CD38 CARs are transduced on T cells on CD38 deficient T cells. The expression of the CAR is usually assessed by flow cytometry and the anti-CD38 CAR T cells phenotype and function are tested. This is described in more details thereafter.

Non alloreactive T cells

Although the method of the invention could be carried out in-vivo as part of a gene therapy, for instance, by using viral vectors targeting T-cells in blood circulation, which would include genetic sequences expressing a specific rare-cutting endonuclease along with other genetic sequences expressing a CAR, the method of the invention is more generally intended to be practiced ex-vivo on cultured T-cells obtainable from patients or donors.

According to one embodiment, the immune cell to be engineered such as presented in the present invention is derived from a primary stem cell, iPS or hES cell.

In another embodiment, said immune cell is derived from a patient affected by the development of pathological cells.

The engineered T-cells engineered ex-vivo can be either re-implanted into a patient from where they originate, as part of an autologous treatment, or to be used as part of an allogeneic treatment. In this later case, it is preferable to further engineer the cells to make them non-alloreactive to ensure their proper engraftment. Accordingly, the method of the invention may include additional steps of procuring the T-cells from a donor and to inactivate genes thereof involved in MHC recognition and or being targets of immunosuppressive drugs such as described for instance in WO 2013/176915.

T cell receptors (TCR) are cell surface receptors that participate in the activation of T cells in response to the presentation of antigen. The TCR is generally made from two chains, alpha and beta, which assemble to form a heterodimer and associates with the CD3-transducing subunits to form the T-cell receptor complex present on the cell surface. Each alpha and beta chain of the TCR consists of an immunoglobulin-like N-terminal variable (V) and constant (C) region, a hydrophobic transmembrane domain, and a short cytoplasmic region. As for immunoglobulin molecules, the variable region of the alpha and beta chains are generated by V(D)J recombination, creating a large diversity of antigen
specificities within the population of T cells. However, in contrast to immunoglobulins that recognize intact antigen, T cells are activated by processed peptide fragments in association with an MHC molecule, introducing an extra dimension to antigen recognition by T cells, known as MHC restriction. Recognition of MHC disparities between the donor and recipient through the T cell receptor leads to T cell proliferation and the potential development of GVHD. It has been shown that normal surface expression of the TCR depends on the coordinated synthesis and assembly of all seven components of the complex (Ashwell and Kiusner 1990). The inactivation of TCRalpha or TCRbeta can result in the elimination of the TCR from the surface of T cells preventing recognition of alloantigen and thus GVHD.

Thus, still according to the invention, engraftment of the T-cells may be improved by inactivating at least one gene encoding a TCR component. TCR is rendered not functional in the cells by inactivating TCR alpha gene and/or TCR beta gene(s).

With respect to the use of Cas9/CRISPR system, the inventors have determined appropriate target sequences within the 3 exons encoding TCR, allowing a significant reduction of toxicity in living cells, while retaining cleavage efficiency. The preferred target sequences are presented in Table 2 in the application WO2014/191128.

MHC antigens are also proteins that played a major role in transplantation reactions. Rejection is mediated by T cells reacting to the histocompatibility antigens on the surface of implanted tissues, and the largest group of these antigens is the major histocompatibility antigens (MHC). These proteins are expressed on the surface of all higher vertebrates and are called HLA antigens (for human leukocyte antigens) in human cells. Like TCR, the MHC proteins serve a vital role in T cell stimulation. Antigen presenting cells (often dendritic cells) display peptides that are the degradation products of foreign proteins on the cell surface on the MHC. In the presence of a co-stimulatory signal, the T cell becomes activated, and will act on a target cell that also displays that same peptide/MHC complex. For example, a stimulated T helper cell will target a macrophage displaying an antigen in conjunction with its MHC, or a cytotoxic T cell (CTL) will act on a virally infected cell displaying foreign viral peptides.

Thus, in order to provide less alloreactive T-cells, the method of the invention can further comprise the step of inactivating or mutating one HLA gene.

The class I HLA gene cluster in humans comprises three major loci, B, C and A, as well as several minor loci. The class II HLA cluster also comprises three major loci, DP, DQ and DR, and both the class I and class II gene clusters are polymorphic, in that there are several different alleles of both the class I and II genes within the population. There are also several accessory proteins that play a role in HLA functioning as well. The Tap1 and Tap2 subunits are parts of the TAP transporter complex that is essential in loading peptide antigens on to the class I HLA complexes, and the LMP2 and LMP7
proteosome subunits play roles in the proteolytic degradation of antigens into peptides for display on the HLA. Reduction in LMP7 has been shown to reduce the amount of MHC class I at the cell surface, perhaps through a lack of stabilization (Fehling et al. (1999) Science 265:1234-1237). In addition to TAP and LMP, there is the tapasin gene, whose product forms a bridge between the TAP complex and the HLA class I chains and enhances peptide loading. Reduction in tapasin results in cells with impaired MHC class I assembly, reduced cell surface expression of the MHC class I and impaired immune responses (Grande et al. (2000) Immunity 13:213-222 and Garbi et al. (2000) Nat. Immunol. 1:234-238). Any of the above genes may be inactivated as part of the present invention as disclosed, for instance in WO 2012/012667.

In another embodiment, the method of preparing immune cells incudes a further step of inactivating a gene encoding β2m. Beta-2 microglobulin, also known as B2M, is the light chain of MHC class I molecules, and as such an integral part of the major histocompatibility complex. In human, B2M is encoded by the b2m gene which is located on chromosome 15, opposed to the other MHC genes which are located as gene cluster on chromosome 6. The human protein is composed of 119 amino acids (SEQ ID NO: 1) and has a molecular weight of 11.800 Daltons. Mice models deficient for beta-2 microglobulin have shown that B2M is necessary for cell surface expression of MHC class I and stability of the peptide binding groove. It was further shown that haemopoietic transplants from mice that are deficient for normal cell-surface MHC I expression are rejected by NK1.1+ cells in normal mice because of a targeted mutation in the beta-2 microglobulin gene, suggesting that deficient expression of MHC I molecules renders marrow cells susceptible to rejection by the host immune system (Bix et al. 1991).

**Insertion of at least one epitope in the extracellular domain of the anti-CD38-single chain CAR**

An anti-CD38 CAR of the invention may include at least the insertion of at least one epitope in the extracellular domain of said CAR. This is intended to temptatively deplete the immune cells endowed with the CAR in the event of in vivo adverse effects such as a cytokine storm. Moreover, such insertion of epitope or "epitope-tagging" may be useful to sort or purify the engineered immune cells in-vitro during their manufacturing process. Said at least one epitope may be any antigenic peptide which is enough immunogenic to be bound by a specific antibody recognizing such peptide. For instance, this can be obtained, for instance, by inserting at least one, and preferably two copies of a CD20 mimotope, preferably of sequence CPYSN PSLCS (SEQ ID NO: 114), into the CAR polypeptide sequence. For purpose of simplication hereafter, the order of the scFvs from the N terminal end to the C terminal end is presented as follows: the VH chain and then the VL chain. However, it can be envisioned in the scope of the present invention that this order is inversed: VL chain and then the VH chain.
Different positions of the at least one CD20 mimotope within the anti-CD38 CAR of the invention are schematized in Figure 21A and Figure 21B. Said two copies of a CD20 mimotope can be linked to each other and also to the V_L by a linker. They can also be inserted between the anti-CD38 scFv and the hinge (such as CD8alpha), by using an optional linker. The CD20 mimotopes can be bound by anti-CD20 antibodies, such as Rituximab (McLaughlin P, et al. 1998).

Accordingly, the anti-CD38 CAR of the present invention may comprise VH and a VL chains which are able to bind to CD38 cell surface antigen, optionally humanized, a linker L, a suicide domain, a hinge or part of it, a transmembrane domain, a co-stimulatory domain and a stimulatory domain.

More specifically, the epitopes can be included into the CAR of the present invention such as follows:

In some embodiments, the extracellular binding domain comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 mAb-specific epitopes.

In some embodiments, the extracellular binding domain comprises at least 1, 2 or 3 mAb-specific epitopes.

In some embodiments, when the extracellular binding domain comprises several mAb-specific epitopes, all the mAb-specific epitopes are identical.

In some embodiments, when the extracellular binding domain comprises several mAb-specific epitopes, the mAb-specific epitopes are not identical. For example, the extracellular binding domain can comprises three mAb-specific epitopes, two of them being identical and the third one being different.

In some embodiments, the extracellular binding domain comprises a VH, a VL, one or more mAb-specific epitopes, preferably 1, 2 or 3, more preferably 2 or 3 mAb-specific epitopes.

In some embodiments, the extracellular binding domain comprises the following sequence (Nterm is located on the left hand side):

\[ V_1^\gamma - L_1^\gamma - V_2^\gamma - (L)_x^\gamma - Epitope1-(L)_x^\gamma ; \]

\[ V_1^\gamma - L_2^\gamma - V_2^\gamma - (L)_x^\gamma - Epitope1-(L)_x^\gamma - Epitope2-(L)_x^\gamma ; \]

\[ V_1^\gamma - L_2^\gamma - V_2^\gamma - (L)_x^\gamma - Epitope1-(L)_x^\gamma - Epitope2-(L)_x^\gamma - Epitope3-(L)_x^\gamma ; \]

\[ (LK-Epitope - (L)_x^\gamma - V_1^\gamma - L_2^\gamma - V_2^\gamma ; \]
(L)x-Epitopel-(L)x-Epitope2-(L)x-V1-L1-V2;

Epitopel-(L)x-Epitope2-(L)x-Epitope3-(L)x-V1-L1-V2;

(L)x-Epitopel-(L)xA/L2/-(L)x-Epitope2-(L)x;

5 (L)x-Epitopel -(L)x-Vi -L1-V2-(L)x-EpitopeZ-(L)x-EpitopeS-(L)x;

(L)x-Epitopel -(L)x-Vi -L1-V2-(L)x-EpitopeZ-(L)x-EpitopeS-(L)x-Epitope4-(L)x;

(L)x-Epitopel -(L)x-EpitopeZ-(L)x-Vi -L1-V2-(L)x-EpitopeS-(L)x;

(L)x-Epitopel -(L)x-EpitopeZ-(L)x-Vi -L1-V2-(L)x-EpitopeS-(L)x-Epitope4-(L)x;

10 Vi-(L)x-Epitopel -(L)xV2;

V1-(L)x-Epitopel-(L)x-V2-(L)x-Epitope2-(L)x;

Vi-(L)x-Epitopel -(L)x-V2-(L)x-EpitopeZ-(L)x-EpitopeS-(L)x;

Vi-(L)x-Epitopel -(L)x-V2-(L)x-EpitopeZ-(L)x-EpitopeS-(L)x-Epitope4-(L)x;

(L)x-Epitopel-(L)x-V1-(L)x-Epitope2-(L)x-V2;

15 (L)x-Epitopel -(L)x-Vi -(L)x-EpitopeZ-(L)x-V2-(L)x-EpitopeS-(L)x;

Vi-Li-V2-L-Epitopel;

Vi-Li-V2-L-Epitopel-L;

Vi-Li-V2-L-Epitopel-L-Epitope2;

20 Vi-Li-V2-L-Epitopel-L-Epitope2-L;

Vi-Li-V2-L-Epitopel-L-Epitope2-L-Epitope3;

Vi-Li-V2-L-Epitopel-L-Epitope2-L-Epitope3-L;

Vi-Li-V2-Epitopel;
Vi-Li-V₂-Epitopel-L;
Vi-Li-V₂-Epitopel-L-Epitope2;
Vi-Li-V₂-Epitopel-L-Epitope2-L-Epitope3;

Epitopel-Vi-Li-V₂;
Epitopel-L-Vi-Li-V₂;
L-Epitopel-Vi-Li-V₂;
L-Epitopel-L-Vi-Li-V₂;
L-Epitopel-L-Epitope2-Vi-Li-V₂;
L-Epitopel-L-Epitope2-L-Vi-Li-V₂;
L-Epitopel-L-Epitope2-L-Epitope3-Vi-Li-V₂;
L-Epitopel-L-Epitope2-L-Epitope3-L-Vi-Li-V₂;
L-Epitopel-L-Epitope2-L-Epitope3-L-Vi-Li-V₂;

Vi-L-Epitopel-L-V₂;
L-Epitopel-L-Vi-L-Epitope2-L-V₂;
Vi-L-Epitopel-L-V₂-L-Epitope2-L-Epitope3;
V₁-L-Epitope₁-L-V₂-L-Epitope₂-Epitope₃;
V₁-L-Epitope₁-L-V₂-L-Epitope₂-L-Epitope₃-Epitope₄;
L-Epitope₁-L-V₁-L-Epitope₂-L-V₂-L-Epitope₃-L;
Epitope₁-L-Vi-L-Epitope₂-L-V₂-L-Epitope₃-L;
L-Epitope₁-L-Vi-L-Epitope₂-L-V₂-L-Epitope₃;

L-Epitope₁-L-Vi-Li-V₂'-L-Epitope₂-L;
L-Epitope₁-L-Vi-Li-V₂'-L-Epitope₂-L-Epitope₃;
L-Epitope₁-L-Vi-Li-V₂'-L-Epitope₂-Epitope₃, or,
Epitope₁-L-Vi-Li-V₂'-L-Epitope₂-Epitope₃-Epitope₄.

wherein,
V₁ and V₂ are VH and VL of an ScFv (i.e., V₁ is VL and V₂ is VH or V₁ is VH and V₂ isVL);
Lᵢ is any linker suitable to link the VH chain to the VL chain in an ScFv;
L is a linker, preferably comprising glycine and serine residues, and each occurrence of L
in the extracellular binding domain can be identical or different to other occurrence of L in
the same extracellular binding domain, and,
x is 0 or 1 and each occurrence of x is independently from the others; and,
epitope 1, epitope 2 and epitope 3 are mAb-specific epitopes and can be identical or
different.

In some embodiments, the extracellular binding domain comprises the following
sequence (Nterm is located on the left hand side):
V₁f-Li-V'L-Epitope₁-L-Epitope₂-L;
L-Epitope1-L-V L-Epitope2-L-V L-Epitope3-L;

V' L-Epitope1-L-V L-Epitope2-L; or,

L-Epitope1-L-V L-Epitope2-L-V L-Epitope3-L

wherein L, L1, epitope 1, epitope 2 and epitope 3 are as defined above.

In some embodiments, L1 is a linker comprising Glycine and/or Serine. In some embodiment, L1 is a linker comprising the amino acid sequence (Gly-Gly-Ser)ₙ or (Gly-Gly-Gly-Ser)ₙ, where n is 1, 2, 3, 4 or 5. In some embodiments L1 is (Gly₂Ser)₄ or (Gly₂Ser)₃.

In some embodiment, L is a flexible linker, preferably comprising Glycine and/or Serine. In some embodiments, L has an amino acid sequence selected from SGG, GGS, SGGS, SSSG, SGGGG, GGGGS, SGGGGS, SGGGG, SGGGGGS, SGGGGS, SGGGGS, SGGGGG, SGGGGG, SGGGGGG, or SGGGGSGGGGGSSGSSGGS GGGGGS, SGGGGS, SGGGGGSSGGS GGGGGS, SGGGGGG, SGGGGGGS, SGGGGG, SGGGGGS, SGGGGG or SGSGSSGSSGGS. In some embodiment, when the extracellular binding domain comprises several occurrences of L, all the Ls are identical. In some embodiments, when the extracellular binding domain comprises several occurrences of L, the Ls are not all identical. In some embodiments, L is SGGGGS. In some embodiments, the extracellular binding domain comprises several occurrences of L and all the Ls are SGGGGS.

In some embodiments, Epitope 1, Epitope 2 and Epitope 3 are identical or different and are selected from mAb-specific epitopes having an amino acid sequence of anyone of SEQ ID NO 114 to SEQ ID NO 121 such as presented in the following Table 6.
Table 6: Mimotopes and epitopes with their corresponding sequences

<table>
<thead>
<tr>
<th>Rituximab</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimotope</td>
<td>SEQ ID NO 114</td>
<td>CPYSNPSLC</td>
</tr>
<tr>
<td>Palivizumab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epitope</td>
<td>SEQ ID NO 115</td>
<td>NSELLSLINDMPITNDDQKL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSNN</td>
</tr>
<tr>
<td>Cetuximab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimotope 1</td>
<td>SEQ ID NO 116</td>
<td>CQFDLSTRRLKC</td>
</tr>
<tr>
<td>Mimotope 2</td>
<td>SEQ ID NO 117</td>
<td>CQYNLSRLKCP</td>
</tr>
<tr>
<td>Mimotope 3</td>
<td>SEQ ID NO 118</td>
<td>CVWQRWQKSYVC</td>
</tr>
<tr>
<td>Mimotope 4</td>
<td>SEQ ID NO 119</td>
<td>CMWDFRWSWYKC</td>
</tr>
<tr>
<td>Nivolumab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epitope A</td>
<td>SEQ ID NO 120</td>
<td>SFVLNWYRMSPSNQTDKL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAFPEDR</td>
</tr>
<tr>
<td>Epitope B</td>
<td>SEQ ID NO 121</td>
<td>SGTYLCGAIAPKAQIKE</td>
</tr>
</tbody>
</table>

In some embodiments, Epitope 1, Epitope 2 and Epitope 3 are identical or different and are selected from mAb-specific epitopes specifically recognized by ibritumomab, tiuxetan, muromonab-CD3, tositumomab, abciximab, basiliximab, brentuximab vedotin, cetuximab, infliximab, rituximab, alemtuzumab, bevacizumab, certolizumab pegol, daclizumab, eculizumab, efalizumab, gemtuzumab, natalizumab, omalizumab, palivizumab, ranibizumab, tocilizumab, trastuzumab, vedolizumab, adalimumab, belimumab, canakinumab, denosumab, golimumab, ipilimumab, ofatumumab, panitumumab, QBEN D-10, alemtuzumab or ustekinumab.

According to another embodiment, the epitope is a mimotope. As a macromolecule, often a peptide, which mimics the structure of an epitope, the mimotope has the advantage to be smaller than conventional epitope, and therefore may be beneficial for a non-conformational sequence and easier to reproduce in a long polypeptide such a CAR. Mimotopes are known for several pharmaceutically-approved mAb such as two 10 amino acid peptides for cetuximab (Riemer et al., 2005), or a 24 AA for palivizumab (Arbiza et al, 1992). As these mimotopes can be identified by phage display, it is possible to try several of them in order to obtain a sequence which does not perturb the scFv for the same mAb. Furthermore, their use can enhance a complement-dependent cytotoxicity (CDC).

In a preferred embodiment, the epitope introduced within the chimeric scFv is the CD20 mimotope (SEQ ID NO.114) and the infused mAb presenting an affinity to this mimotope -for sorting and/or depletion purpose(s)- is rituximab.

In one embodiment, said at least one epitope is inserted between the VH and VL chains of the anti-CD38 CAR, optionally linked to said VH and VL chains by one linker.
In some embodiment, the term "linker" as used in the context of a scFv refers to a peptide linker that consists of amino acids such as glycine and/or serine residues used alone or in combination, to link variable heavy and variable light chain regions together. In one embodiment, the flexible polypeptide linker is a Glycine/Serine linker and comprises the amino acid sequence (Gly-Gly-Gly-Ser)_n or (Gly-Gly-Gly-Gly-Ser)_n, where n is a positive integer equal to or greater than 1. For example, n=1, n=2, n=3, n=4, n=5, n=6, n=7, n=8, n=9 and n=10. In one embodiment, the flexible polypeptide linkers include, but are not limited to, (Gly_Ser)_4 or (Gly_Ser)_5. In another embodiment, the linkers include multiple repeats of (Gly_Ser)_n where x=1, 2, 3, 4 or 5 and n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, such as multiple repeat of (Gly_Ser), (Gly_Ser)_2 or (Gly_Ser)_3. Also included within the scope of the invention are linkers described in WO2012/138475, incorporated herein by reference.

In an embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 or V3, as illustrated in Figure 8, wherein one CD20 mimotope is inserted between the VH and VL chains of the anti-CD38 CAR, optionally linked to said VH and VL chains by one linker.

In a preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_H and V_L comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4)

and wherein one CD20 mimotope is inserted between the VH and VL chains of the anti-CD38 CAR, optionally linked to said VH and VL chains by one linker.

In another embodiment, said at least one epitope is inserted at the N terminal end of the CAR - so upfront of the scFvs-, optionally linked to the VH chain and to the N terminal end of the CAR by one linker.

In another embodiment, said at least one epitope is inserted between the scFvs and the hinge of the CAR, optionally linked to the VL chain and to the hinge by one linker.
In a preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has
one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure
comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38
antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling
domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90 %, at least 95%,
at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58
(28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID
NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and wherein one epitope is inserted between the
scFvs and the hinge of the CAR, optionally linked to the VL chain and to the hinge by one linker.

In a more preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR)
has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure
comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal
anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling
domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90 %, at least 95%,
at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58
(28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID
NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4) and wherein one epitope is inserted between the
scFvs and the hinge of the CAR, optionally linked to the VL chain and to the hinge by one linker.

In a preferred embodiment, at least two epitopes are inserted in the extracellular domain of the
anti-CD38 CAR of the present invention.

In an embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the
polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising
an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a
hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-
stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90 %, at least 95%,
at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58
(28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID
NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4),
said extra-binding domain comprising VH and VL chains directed against CD38 and a FcγRIIa or CD8a or IgGl hinge;

wherein said 2 epitopes being inserted in tandem between the scFvs and said hinge, and optionally

a linker being interspaced between the 2 epitopes and/or between the VH and the 2 epitopes.

In an embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and two CD20 mimotopes,

said extra-binding domain comprising VH and VL chains directed against CD38 and a FcγRIIa or CD8a or IgGl hinge;

wherein said 2 epitopes being inserted in tandem upfront the scFvs i.e. at the N terminal end of the CAR.

and optionally, a linker being interspaced between the 2 epitopes and/or at the N terminal end of the CAR.

According to one embodiment, at least two epitopes are inserted in the extracellular domain in such a way that the VH is located between them, all these components being optionally interspaced by at least one linker.

According to another embodiment, two epitopes are inserted in the extracellular domain in such a way that the VL is located between them, all these components being optionally interspaced by at least one linker.

In a preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38
antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said $V_H$ and $V_L$ comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID N0.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and wherein two epitopes are inserted in the extracellular domain in such a way that the VL is located between them, all these components being optionally interspaced by at least one linker.

In a more preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said $V_H$ and $V_L$ comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID N0.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and wherein two epitopes are inserted in the extracellular domain in such a way that the VL is located between them, all these components being optionally interspaced by at least one linker.

According to another embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises an extracellular binding domain wherein at least two epitopes are inserted in the extracellular domain in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.

In a preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extracellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said $V_H$ and $V_L$ comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID
N0.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and wherein two epitopes are inserted in the extracellular domain in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.

In a more preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extracellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_{H} and V_{L} comprise a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and wherein two epitopes are inserted in the extracellular domain in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.

In another embodiment, three epitopes are inserted in the extracellular domain of the anti-CD38 CAR of the present invention.

According to a particular embodiment, said CD38 specific CAR of the invention contains an extracellular binding domain wherein three epitopes are inserted in the extracellular domain in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.

In a preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_{H} and V_{L} comprise a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and wherein three epitopes are inserted in the extracellular domain in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.
In a more preferred embodiment, said CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_H and V_L comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), all these components being optionally interspaced by at least one linker.

In another embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_H and V_L comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), and three CD20 epitopes,

d said extra-binding domain comprising VH and VL chains directed against CD38 and a FcYRIIa or CD8a or IgGl hinge;

wherein said 3 epitopes being inserted in tandem between the scFvs and said hinge, and optionally

a linker being interspaced between the 3 epitopes and/or between the VH and the 3 epitopes.

In another embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,
wherein said $V_H$ and $V_L$ comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), two CD20 epitopes, and one CD34 epitope;

said extra-binding domain comprising VH and VL chains directed against CD38 and a FcγRIIIa or CD8a or IgGl hinge;

said 2 epitopes being inserted in tandem between the scFvs and said hinge,

and said CD34 epitope being inserted between the said 2 CD20 epitopes, all components being optionally interspaced between them by a linker.

In some embodiment, Epitope 1 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 114 or 116-119.

In some embodiment, Epitope 2 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 114 or 116-119.

In some embodiment, Epitope 3 and Epitope 4 are mAbs-specific epitope having an amino acid sequence of SEQ ID NO 114 or 116-119.

In some embodiment, one of Epitope 1, Epitope 2, Epitope 3 and Epitope 4 is a CD34 epitope, preferably an epitope of SEQ ID NO 122 or 123. In some embodiment, one of Epitope1, Epitope 2, Epitope 3 and Epitope 4 is a CD34 epitope, preferably an epitope of SEQ ID NO 122 or 123 and the other mAb specific epitopes are CD20 mimotopes, preferably mimotope of SEQ ID NO 114.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said $V_H$ and $V_L$ comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO.46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), two CD20 epitopes having an amino acid sequence.
sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from V2 as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a CD8a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_H and V_L comprise a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), said anti-CD38 CAR comprising two CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 124.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a FcRIlla hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V_H and V_L comprise a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 62 and 58 (28F5), said anti-CD38 CAR comprising two CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90 %, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 126.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from V2 as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a CD8a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,
wherein said \( V_H \) and \( V_L \) comprise a polypeptide sequence displaying at least 90% at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), said anti-CD38 CAR comprising two CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 126.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from V2 as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a FcRIIIA hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a costimulatory domain from 4-1BB,

wherein said \( V_H \) and \( V_L \) comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), said anti-CD38 CAR comprising two CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 128.

In one embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a costimulatory domain from 4-1BB,

wherein said \( V_H \) and \( V_L \) comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO. 46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4), three CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different, and one CD34 epitope having an amino acid sequence of SEQ ID NO. 122 or 123.
In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from V2 as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a CD8a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said \( V_H \) and \( V_L \) comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 62 and 58 (28F5), said anti-CD38 CAR comprising three CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different, and one CD34 epitope having an amino acid sequence of SEQ ID NO. 122 or 123.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 125.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a FcRIl/la hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said \( V_H \) and \( V_L \) comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 62 and 58 (28F5), said anti-CD38 CAR comprising three CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119; said CD20 epitopes being identical or different, and one CD34 epitope having an amino acid sequence of SEQ ID NO. 122 or 123.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 127.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from V2 as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a CD8a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,
wherein said V<sub>H</sub> and V<sub>L</sub> comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), said anti-CD38 CAR comprising three CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119; said CD20 epitopes being identical or different, and one CD34 epitope having an amino acid sequence of SEQ ID NO.122 or 123.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO.129.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a CD8a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V<sub>H</sub> and V<sub>L</sub> comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), said anti-CD38 CAR comprising two CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119; said CD20 epitopes being identical or different.

In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO.130.

In a preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) has one of the polypeptide structure selected from VI as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a FcRllα hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a co-stimulatory domain from 4-1BB,

wherein said V<sub>H</sub> and V<sub>L</sub> comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), said anti-CD38 CAR comprising three CD20 epitopes having an amino acid sequence selected in the group consisting of SEQ ID NO 114 or 116-119, said CD20 epitopes being identical or different, and one CD34 epitope having an amino acid sequence of SEQ ID NO.122 or 123.
In more preferred embodiment, CD38 specific chimeric antigen receptor (anti-CD38 CAR) comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 131.

5 Method of engineering drug-resistant T-cells

To improve cancer therapy and selective engraftment of allogeneic T-cells, drug resistance can be conferred to the engineered T-cells to protect them from the toxic side effects of chemotherapy or immunosuppressive agents. Indeed, the inventors have observed that most patients were treated with chemotherapy and immune depleting agents as a standard of care, prior to receiving T-cell immunotherapy. Also they found that they could take advantage of these treatments to help the selection of the engineered T-cells, either by adding chemotherapy drugs in culture media for expansion of the cells ex-vivo prior to treatment, or by obtaining a selective expansion of the engineered T-cells in-vivo in patients under chemotherapy or immunosuppressive treatments.

Also the drug resistance of T-cells also permits their enrichment in or ex vivo, as T-cells which express the drug resistance gene, will survive and multiply relative to drug sensitive cells. In particular, the present invention relates to a method of engineering allogeneic and drug resistance T-cells resistant for immunotherapy comprising:

(a) Providing a T-cell;
(b) Selecting at least one drug;
(c) Modifying T-cell to confer drug resistance to said T-cell;
(d) Expanding said engineered T-cell in the presence of said drug, and optionally the preceding steps may be combined with the steps of the methods as previously described.

Drug resistance can be conferred to a T-cell by inactivating one or more gene(s) responsible for the cell's sensitivity to the drug (drug sensitizing gene(s)), such as the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene (Genbank: M26434.1). In particular, HPRT can be inactivated in engineered T-cells to confer resistance to a cytostatic metabolite, the 6-thioguanine (6TG) which is converted by HPRT to cytotoxic thioguanine nucleotide and which is currently used to treat patients with cancer, in particular leukemias (Hacke, Treger et al. 2013). Another example if the inactivation of the CD3 normally expressed at the surface of the T-cell can confer resistance to anti-CD3 antibodies such as teplizumab.

In an embodiment, the resistance gene to be inactivated is the one which encodes the deoxycytidine kinase (dCK). Deoxycytidine kinase (DCK) is required for the phosphorylation of several deoxyribonucleosides and their nucleoside analogs. Deficiency of DCK is associated with resistance to
antiviral and anticancer chemotherapeutic agents. Conversely, increased deoxycytidine kinase activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. DCK is clinically important because of its relationship to drug resistance and sensitivity (Hazra s, Szewczak A, Ort s, Konrad M, Lavie A (2011) "Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release". Biochemistry 50 (14): 2870-8).

Drug resistance can also be conferred to a T-cell by expressing a drug resistance gene. Said drug resistance gene refers to a nucleic acid sequence that encodes "resistance" to an agent, such as a chemotherapeutic agent (e.g. methotrexate). In other words, the expression of the drug resistance gene in a cell permits proliferation of the cells in the presence of the agent to a greater extent than the proliferation of a corresponding cell without the drug resistance gene. A drug resistance gene of the invention can encode resistance to anti-metabolite, methotrexate, vinblastine, cisplatin, alkylating agents, anthracyclines, cytotoxic antibiotics, anti-immunophilins, their analogs or derivatives, and the like.

Variant alleles of several genes such as dihydrofolate reductase (DHFR), inosine monophosphate dehydrogenase 2 (IMPDH2), calcineurin or methylguanine transferase (MGMT) have been identified to confer drug resistance to a cell. Said drug resistance gene can be expressed in the cell either by introducing a transgene encoding said gene into the cell or by integrating said drug resistance gene into the genome of the cell by homologous recombination. Several other drug resistance genes have been identified that can potentially be used to confer drug resistance to targeted cells (Takebe, Zhao et al. 2001; Sugimoto, Tsukahara et al. 2003; Zielske, Reese et al. 2003; Nivens, Felder et al. 2004; Bardenheuer, Lehmborg et al. 2005; Kushman, Kabler et al. 2007).

DHFR is an enzyme involved in regulating the amount of tetrahydrofolate in the cell and is essential to DNA synthesis. Folate analogs such as methotrexate (MTX) inhibit DHFR and are thus used as anti-neoplastic agents in clinic. Different mutant forms of DHFR which have increased resistance to inhibition by anti-folates used in therapy have been described. In a particular embodiment, the drug resistance gene according to the present invention can be a nucleic acid sequence encoding a mutant form of human wild type DHFR (GenBank: AAH71996.1) which comprises at least one mutation conferring resistance to an anti-folate treatment, such as methotrexate. In particular embodiment, mutant form of DHFR comprises at least one mutated amino acid at position G15, L22, F31 or F34, preferably at positions L22 or F31 ((Schweitzer, Dicker et al. 1990); International application WO 94/24277; US patent US 6,642,043).

As used herein, "antifolate agent" or "folate analogs" refers to a molecule directed to interfere with the folate metabolic pathway at some level. Examples of antifolate agents include, e.g.,
methotrexate (MTX); aminopterin; trimetrexate (Neutrexin™); edatrexate; N10-propargyl-5,8-
dideazafolic acid (CB3717); ZD1694 (Tumodex), 5,8-dideazaisofolic acid (IAHQ); 5,10-
dideazatetrahydrofolic acid (DDATHF); 5-deazafolic acid; PT523 (N alpha-(4-amino-4-
deoxypyteroyl)-N
delta-hemipthalaloyl-L-ornithine); 10-ethyl-10-deazaaminopterin (DDATHF, lomatrexol); piritrexim; 10-
EDAM; ZD1694; GW1843; Pemetrexate and PDX (10-propargyl-10-
deazaaminopterin).

Another example of drug resistance gene can also be a mutant or modified form of ionisine-5-
monophosphate dehydrogenase II (IMPDH2), a rate-limiting enzyme in the de novo synthesis of
guanosine nucleotides. The mutant or modified form of IMPDH2 is a IMPDH inhibitor resistance gene.
IMPDH inhibitors can be mycophenolic acid (MPA) or its prodrug mycophenolate mofetil (MMF). The
mutant IMPDH2 can comprises at least one, preferably two mutations in the MAP binding site of the
wild type human IMPDH2 (NP_000875.2) that lead to a significantly increased resistance to IMPDH
inhibitor. The mutations are preferably at positions T333 and/or S351 (Yam, Jensen et al. 2006; Sangiolo,
Lesnikova et al. 2007; Jonnalagadda, Brown et al. 2013). In a particular embodiment, the threonine
residue at position 333 is replaced with an isoleucine residue and the serine residue at position 351 is
replaced with a tyrosine residue.

Another drug resistance gene is the mutant form of calcineurin. Calcineurin (PP2B) is an
ubiquitously expressed serine/threonine protein phosphatase that is involved in many biological
processes and which is central to T-cell activation. Calcineurin is a heterodimer composed of a catalytic
subunit (CnA; three isoforms) and a regulatory subunit (CnB; two isoforms). After engagement of the T-
cell receptor, calcineurin dephosphorylates the transcription factor NFAT, allowing it to translocate to
the nucleus and active key target gene such as IL2. FK506 in complex with FKBP12, or cyclosporine A
(CsA) in complex with CyPA block NFAT access to calcineurin's active site, preventing its
dephosphorylation and thereby inhibiting T-cell activation (Brewin, Mancao et al. 2009). The drug
resistance gene of the present invention can be a nucleic acid sequence encoding a mutant form of
calcineurin resistant to calcineurin inhibitor such as FK506 and/or CsA. In a particular embodiment, said
mutant form can comprise at least one mutated amino acid of the wild type calcineurin heterodimer a
at positions: V314, Y341, M347, T351, W352, L354, K360, preferably double mutations at positions T351
and L354 or V314 and Y341. Correspondence of amino acid positions described herein is frequently
expressed in terms of the positions of the amino acids of the form of wild-type human calcineurin
heterodimer (GenBank: ACX34092.1).

In another particular embodiment, said mutant form can comprise at least one mutated amino
acid of the wild type calcineurin heterodimer b at positions: V120, N123, L124 or K125, preferably
double mutations at positions L124 and K125. Correspondence of amino acid positions described herein
is frequently expressed in terms of the positions of the amino acids of the form of wild-type human calcium

Another drug resistance gene is 0(6)-methylguanine methyltransferase (MGMT) encoding human alkyl guanine transferase (hAGT). AGT is a DNA repair protein that confers resistance to the cytotoxic effects of alkylating agents, such as nitrosoureas and temozolomide (TMZ). 6-benzyguanine (6-BG) is an inhibitor of AGT that potentiates nitrosourea toxicity and is co-administered with TMZ to potentiate the cytotoxic effects of this agent. Several mutant forms of MGMT that encode variants of AGT are highly resistant to inactivation by 6-BG, but retain their ability to repair DNA damage (Maze, Kurpad et al. 1999). In a particular embodiment, AGT mutant form can comprise a mutated amino acid of the wild type AGT position P140 (UniProtKB: P16455).

Another drug resistance gene can be multidrug resistance protein 1 (MDR1) gene. This gene encodes a membrane glycoprotein, known as P-glycoprotein (P-GP) involved in the transport of metabolic byproducts across the cell membrane. The P-Gp protein displays broad specificity towards several structurally unrelated chemotherapy agents. Thus, drug resistance can be conferred to cells by the expression of nucleic acid sequence that encodes MDR-1 (NP_000918).

Drug resistance gene can also be cytotoxic antibiotics, such as ble gene or mcrA gene. Ectopic expression of ble gene or mcrA in an immune cell gives a selective advantage when exposed to the chemotherapeutic agent, respectively the bleomycin or the mitomycin C.

The T-cells can also be made resistant to immunosuppressive agents. An immunosuppressive agent is an agent that suppresses immune function by one of several mechanisms of action. In other words, an immunosuppressive agent is a role played by a compound which is exhibited by a capability to diminish the extent and/or voracity of an immune response. As non-limiting example, an immunosuppressive agent can be a calcineurin inhibitor, a target of rapamycin, an interleukin-2 α-chain blocker, an inhibitor of inosine monophosphate dehydrogenase, an inhibitor of dihydrofolic acid reductase, a corticosteroid or an immunosuppressive antimetabolite. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-cells or by inhibiting the activation of helper cells. The method according to the invention allows conferring immunosuppressive resistance to T cells for immunotherapy by inactivating the target of the immunosuppressive agent in T cells. As non-limiting examples, targets for immunosuppressive agent can be a receptor for an immunosuppressive agent such as: CD52, glucocorticoid receptor (GR), a FKBP family gene member and a cyclophilin family gene member.

In immunocompetent hosts, allogeneic cells are normally rapidly rejected by the host immune system. It has been demonstrated that, allogeneic leukocytes present in non-irradiated blood products will persist for no more than 5 to 6 days. Thus, to prevent rejection of allogeneic cells, the host's
immune system must be effectively suppressed. Glucocorticoid steroids are widely used therapeutically for immunosuppression. This class of steroid hormones binds to the glucocorticoid receptor (GR) present in the cytosol of T cells resulting in the translocation into the nucleus and the binding of specific DNA motifs that regulate the expression of a number of genes involved in the immunologic process. Treatment of T cells with glucocorticoid steroids results in reduced levels of cytokine production leading to T cell anergy and interfering in T cell activation. Alemtuzumab, also known as CAMPATH1-H, is a humanized monoclonal antibody targeting CD52, a 12 amino acid glycosylphosphatidyl-inositol- (GPI) linked glycoprotein (Waldmann and Hale, 2005). CD52 is expressed at high levels on T and B lymphocytes and lower levels on monocytes while being absent on granulocytes and bone marrow precursors. Treatment with Alemtuzumab, a humanized monoclonal antibody directed against CD52, has been shown to induce a rapid depletion of circulating lymphocytes and monocytes. It is frequently used in the treatment of T cell lymphomas and in certain cases as part of a conditioning regimen for transplantation. However, in the case of adoptive immunotherapy the use of immunosuppressive drugs will also have a detrimental effect on the introduced therapeutic T cells. Therefore, to effectively use an adoptive immunotherapy approach in these conditions, the introduced cells would need to be resistant to the immunosuppressive treatment.

As a preferred embodiment of the above steps, said gene of step (b), specific for an immunosuppressive treatment, is CD52, and the immunosuppressive treatment of step (d) comprises a humanized antibody targeting CD52 antigen. As another embodiment, said gene of step (b), specific for an immunosuppressive treatment of step (d) comprises a corticosteroid, such as dexamethasone. As another embodiment, said target gene of step (b), specific for an immunosuppressive treatment, is a FKBP family gene member, or a variant thereof, and the immunosuppressive treatment of step (d) comprises FK506 also known as Tacrolimus or fujimycin. As another embodiment, said FKBP family gene member is FKBP12 or a variant thereof. As another embodiment, said gene of step (b), specific for an immunosuppressive treatment, is a cyclophilin family gene member, or a variant thereof, and the immunosuppressive treatment of step (d) comprises cyclosporine.

In a particular embodiment of the invention, the genetic modification step of the method relies on the inactivation of two genes selected from the group consisting of CD52 and GR, CD52 and TCR alpha, CDR52 and TCR beta, GR and TCR alpha, GR and TCR beta, TCR alpha and TCR beta. In another embodiment, the genetic modification step of the method relies on the inactivation of more than two genes. The genetic modification is preferably operated ex-vivo using at least two RNA guides targeting the different genes.
By inactivating a gene it is intended that the gene of interest is not expressed in a functional protein form.

**Engineering highly active T cells for immunotherapy**

According to the present invention, the T-cells can be selected from the group consisting of inflammatory T-lymphocytes, cytotoxic T-lymphocytes, regulatory T-lymphocytes or helper T-lymphocytes. In another embodiment, said cell can be derived from the group consisting of CD4+ T-lymphocytes and CD8+ T-lymphocytes. They can be extracted from blood or derived from stem cells. The stem cells can be adult stem cells, embryonic stem cells, more particularly non-human stem cells, cord blood stem cells, progenitor cells, bone marrow stem cells, induced pluripotent stem cells, totipotent stem cells or hematopoietic stem cells. Representative human cells are CD34+ cells. Prior to expansion and genetic modification of the cells of the invention, a source of cells can be obtained from a subject through a variety of non-limiting methods. T-cells can be obtained from a number of non-limiting sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.

In certain embodiments of the present invention, any number of T cell lines available and known to those skilled in the art, may be used. In another embodiment, said cell can be derived from a healthy donor, from a patient diagnosed with cancer or from a patient diagnosed with an infection. In another embodiment, said cell is part of a mixed population of cells which present different phenotypic characteristics. In the scope of the present invention is also encompassed a cell line obtained from a transformed T-cell according to the method previously described.

As a further aspect of the invention, the T-cells according to the invention may be further engineered, preferably genetically engineered, to enhance their activity and/or activation, especially by modulating the expression of proteins involved in overall T-cell regulation, referred to as "immune-checkpoints".

**Immune check points**

It will be understood by those of ordinary skill in the art, that the term "immune checkpoints" means a group of molecules expressed by T cells. These molecules effectively serve as "brakes" to down-modulate or inhibit an immune response. Immune checkpoint molecules include, but are not limited to Programmed Death 1 (PD-1, also known as PDCD1 or CD279, accession number: NM_005018), Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4, also known as CD152, GenBank accession number AF414120.1), LAG3 (also known as CD223, accession number: NM_002286.5), Tim3 (also known as HAVCR2, GenBank
accession number: JX049979.1), BTLA (also known as CD272, accession number: NM_181780.3), BY55 (also known as CD160, GenBank accession number: CR541888.1), TIGIT (also known as IVSTM3, accession number: NM_173799), LAIR1 (also known as CD305, GenBank accession number: CR542051.1, {Meyaard, 1997 #122}), SIGLEC10 (GeneBank accession number: AY358337.1), 2B4 (also known as CD244, accession number: NM_001166664.1), PPP2CA, PPP2CB, PTPN6, PTPN22, CD96, CRTAM, SIGLEC7 {Nicoll, 1999 #123}, SIGLEC9 {Zhang, 2000 #124;Ikehara, 2004 #125}, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGFIF, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, eIF2AK4, CSK, PAGI, SIT1, FOXP3, PRDM1, BATF {Quigley, 2010 #121}, GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3 which directly inhibit immune cells. For example, CTLA-4 is a cell-surface protein expressed on certain CD4 and CD8 T cells; when engaged by its ligands (B7-1 and B7-2) on antigen presenting cells, T-cell activation and effector function are inhibited. Thus the present invention relates to a method of engineering T-cells, especially for immunotherapy, comprising genetically modifying T-cells by inactivating at least one protein involved in the immune check-point, in particular PD1 and/or CTLA-4 or any immune-checkpoint proteins referred to in Table 7.
### Table 7: List of genes encoding immune checkpoint proteins.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Genes that can be inactivated in the pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Co-inhibitory receptors</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTLA4 (CD152)</td>
</tr>
<tr>
<td></td>
<td>PDCD1 (PD-1, CD279)</td>
</tr>
<tr>
<td></td>
<td>CD223 (lag3)</td>
</tr>
<tr>
<td></td>
<td>HAVCR2 (tim3)</td>
</tr>
<tr>
<td></td>
<td>BTLA(cd272)</td>
</tr>
<tr>
<td></td>
<td>CD160(by55)</td>
</tr>
<tr>
<td></td>
<td>IgSF family</td>
</tr>
<tr>
<td></td>
<td>LAG3</td>
</tr>
<tr>
<td></td>
<td>HAVCR2</td>
</tr>
<tr>
<td></td>
<td>BTLA</td>
</tr>
<tr>
<td></td>
<td>CD160</td>
</tr>
<tr>
<td></td>
<td>TIGIT</td>
</tr>
<tr>
<td></td>
<td>CD96</td>
</tr>
<tr>
<td></td>
<td>CRTAM</td>
</tr>
<tr>
<td></td>
<td>LAIR1(cd305)</td>
</tr>
<tr>
<td></td>
<td>SIGLEC7</td>
</tr>
<tr>
<td></td>
<td>SIGLEC9</td>
</tr>
<tr>
<td></td>
<td>CD244(2b4)</td>
</tr>
<tr>
<td><strong>Death receptors</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAIL</td>
</tr>
<tr>
<td></td>
<td>FAS</td>
</tr>
<tr>
<td><strong>Cytokine signalling</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGF-beta signaling</td>
</tr>
<tr>
<td></td>
<td>IL10 signaling</td>
</tr>
<tr>
<td></td>
<td>IL6 signaling</td>
</tr>
<tr>
<td></td>
<td>Arginine/tryptophane starvation</td>
</tr>
<tr>
<td></td>
<td>Prevention of TCR signalling</td>
</tr>
<tr>
<td></td>
<td>Induced Treg</td>
</tr>
<tr>
<td></td>
<td>Transcription factors controlling exhaustion</td>
</tr>
<tr>
<td></td>
<td>Hypoxia mediated tolerance</td>
</tr>
<tr>
<td></td>
<td>CTLA4, PPP2CA, PPP2CB, PTPN6, PTPN22</td>
</tr>
<tr>
<td></td>
<td>PDCD1</td>
</tr>
<tr>
<td></td>
<td>LAG3</td>
</tr>
<tr>
<td></td>
<td>HAVCR2</td>
</tr>
<tr>
<td></td>
<td>BTLA</td>
</tr>
<tr>
<td></td>
<td>CD160</td>
</tr>
<tr>
<td></td>
<td>TIGIT</td>
</tr>
<tr>
<td></td>
<td>CD96</td>
</tr>
<tr>
<td></td>
<td>CRTAM</td>
</tr>
<tr>
<td></td>
<td>LAIR1</td>
</tr>
<tr>
<td></td>
<td>SIGLEC7</td>
</tr>
<tr>
<td></td>
<td>SIGLEC9</td>
</tr>
<tr>
<td></td>
<td>CD244</td>
</tr>
<tr>
<td></td>
<td>TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7</td>
</tr>
<tr>
<td></td>
<td>FADD, FAS</td>
</tr>
<tr>
<td></td>
<td>TGFBRII, TGFBR1, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGF1</td>
</tr>
<tr>
<td></td>
<td>IL10RA, IL10RB, HMOX2</td>
</tr>
<tr>
<td></td>
<td>IL6R, IL6ST</td>
</tr>
<tr>
<td></td>
<td>eIF2AK4</td>
</tr>
<tr>
<td></td>
<td>CSK, PAG1</td>
</tr>
<tr>
<td></td>
<td>SIT1</td>
</tr>
<tr>
<td></td>
<td>FOXP3</td>
</tr>
<tr>
<td></td>
<td>PRDM1 (=blimp1, heterozygotes mice control chronic viral infection better than wt or conditional KO)</td>
</tr>
<tr>
<td></td>
<td>BATF</td>
</tr>
<tr>
<td></td>
<td>GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3</td>
</tr>
</tbody>
</table>
Therapeutic applications

In a general aspect, the present invention relates to methods for new adoptive immunotherapy strategies in treating diseases linked with the development of pathological cells, such as cancer, infections and auto-immune diseases.

As a main objective of the invention is the possibility to target pathological cells that bear specific antigen markers in common with T-cells. By pathological cell is meant any types of cells present in a patient, which are deemed causing health deterioration.

In general, pathological cells are malignant or infected cells that need to be reduced or eliminated to obtain remission of a patient.

These anti-CD38 CARs immune cells, particularly when they have undergone a CD38 gene inactivation, are useful as medicament for treating a CD38-expressing cell-mediated pathological condition or a condition characterized by the direct or indirect activity of a CD38-expressing cell, such as MM, MM, RRM, ALL, NHL lymphoma (as referred above), their related complication, and their related conditions.

In an embodiment, said anti-CD38 CAR in immune cells CD8 gene-inactivated are used as medicament and they comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11), SEQ ID NO. 88-90 (16B5), SEQ ID NO. 91-93 (10F7), SEQ ID NO.94-96 (27B6) and SEQ ID NO. 85-87(29B4), more preferably from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11) and SEQ ID NO. 88-90 (16B5), and more preferably from SEQ ID NO. 82-84 (25A10) and SEQ ID NO. 100-102 (28F5).

In a preferred embodiment, said anti-CD38 CAR in immune cells CD8 gene-inactivated are used as medicament and they comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10) and SEQ ID NO. 100-102 (28F5).

In a more preferred embodiment, said anti-CD38 CAR in immune cells CD8 gene-inactivated are used as medicament and they comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82 (25A10-V1 CAR).

Said treatment can be ameliorating, curative or prophylactic. It may be either part of an autologous immunotherapy or part of an allogenic immunotherapy treatment. By autologous, it is
meant that cells, cell line or population of cells used for treating patients are originating from said patient or from a Human Leucocyte Antigen (HLA) compatible donor. By allogeneic is meant that the cells or population of cells used for treating patients are not originating from said patient but from a donor.

The immune cells, such as T-cells, engineered according to one of the previous methods may be pooled, frozen, and administrated to one or several patients. Accordingly the present invention encompass a method for treating an immune disease by directing engineered T-cells as previously described against patient's own T-cells. When they are made non-alloreactive, they are available as an "off the shelf" therapeutic product, which means that they can be universally infused to patients in need thereof.

In one embodiment, isolated cell obtained by the different methods or cell line derived from said isolated cell as previously described can be used as a medicament.

In a preferred embodiment, said isolated cell according to the invention or cell line derived from said isolated cell can be used in the manufacture of a medicament for treatment of a cancer in a patient in need thereof.

In a preferred embodiment, the cancer that may be treated using the anti-CD38 CAR-expressing cells of the present invention is leukemia or lymphoma, a disease associated to leukemia or lymphoma or a complication thereof.

In a particular embodiment, an anti-CD38 CAR-expressing T cell is provided as a medicament for the treatment of CD38+ hematological malignancies and in particular to those which have progressed on or after standard therapy or for whom there is no effective standard therapy (refractory/relapsed patients).

By "Relapsed": it is referred to a subject in whom the hematological malignancy has been treated and improved but in whom the hematological malignancy recurred.

By "Refracted": it is referred to a subject in whom the hematological malignancy has been treated without any improvement and the hematological malignancy thus progressed.

In the context of the disclosure the CD38+ hematological malignancy is in particular selected from the group consisting of non-Hodgkin's lymphoma (NHL) (including, e.g. Burkitt's lymphoma (BL) and T cell lymphoma (TCL)), multiple myeloma (MM), chronic lymphocytic leukemia (CLL) (such as e.g. B chronic lymphocytic leukemia (B-CLL) or hairy cell leukemia (HCL)), B and T acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), Hodgkin's Lymphoma (HL), and chronic myeloid leukemia (CML), wherein the cancerous cells are or comprise CD38+ cells.
In particular, CD38+ hematological malignancies are B-cell non-Hodgkin's Lymphoma (NHL), multiple myeloma (MM), acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (B-cell ALL) and/or chronic lymphocytic leukaemia (CLL), more particularly multiple myeloma (MM), most particularly relapsed and/or refractory multiple Myeloma.

Methods to identify a hematological malignancy are known to the skilled in the art and include as a first step a complete blood count (CBC) and a test of the peripheral blood smear. Definitive diagnosis usually requires an adequate bone marrow aspiration and/or biopsy for morphology studies eventually complemented by flow cytometry analysis, cytogenetics and further molecular techniques. Techniques to confirm that the cells derived from this hematological malignancy are CD38+ are known to the skilled in the art and include standard molecular biology techniques such as, for example, polymerase chain reaction (PCR) and/or immunochemical methods such as Western Blot analysis.

In a preferred embodiment, the invention provides a treatment for CD38+ hematological malignancies such as presented above in patients over 60 years or in patients of less than 20 years.

In a preferred embodiment, said medicament can be used for the treatment of multiple myeloma (MM) of an MM subtype such as refractory/relapsed multiple myeloma (RRMM).

In another embodiment, said medicament can be used for the treatment of the acute lymphoblastic leukemia (ALL).

**Multiple myeloma**

Multiple myeloma may be detected by the presence of monoclonal proteins (M proteins). "M-Protein" refers to a paraprotein (a monoclonal protein, or M protein). This paraprotein is an immunoglobulin or immunoglobulin light-chain that is produced in excess by the clonal proliferation of plasma cells. Amounts higher than a certain threshold indicate multiple Myeloma. The M-protein is usually quantified in the serum as well as in the urine. The M-protein level in the serum is measured by typically serum electrophoresis or by for example specific immunoglobulin assays; however, specific immunoglobulin quantification always overestimates the M-protein because normal immunoglobulins are included in the result. For this reason, baseline and follow-up measurements of the M-protein should be done by the same method (Riches P G et al., 1991).

**Dosages/group of patients with MM to be treated**

In one embodiment, M-protein in serum of higher than 0.5 g/dL indicates multiple myeloma.

In one embodiment, M-protein in urine of higher than 200 mg in a 24-hr urine indicate multiple Myeloma (MM).
In another embodiment, elevated serum free light chains (FLC) with FLC greater than about 10 mg/dL and with abnormal FLC ratio indicates multiple Myeloma. MM might be further identified by immunoglobulin light chain found in the urine, this paraprotein is called Bence Jones protein and is a urinary paraprotein composed of free light chains, wherein the light chains are lambda (λ) and/or kappa (κ) free light chains. These free light chains (FLC) may be measured by commercial tests. The free light chain measurement refers to the measurement of the FLC kappa and FLC lambda free light chains giving a free light chain ratio (FLC) of FLC kappa to FLC lambda (FLC λ/κ ratio), wherein a normal FLC λ/κ ratio ranges from 0.26 to 1.65.

In patients with multiple myeloma, either of the light chains, kappa or lambda, may be dominantly produced which results in changes of the FLC λ/κ ratio. Abnormal FLC λ/κ ratios indicating multiple myeloma are thus FLC λ/κ ratios lower than 0.26 or higher than 1.65.

Therefore, in one embodiment, the subject having multiple myeloma has a) measurable serum M-protein of greater than about 0.5 g/dL, and/or b) urine M-protein of greater than about 200 mg (24-hr urine), and/or c) elevated serum free light chains (FLC) with FLC greater than about 10 mg/dL with abnormal FLC ratio.

In one embodiment, subjects to be treated by the engineered immune cells of the invention have multiple myeloma and certain genetic features, such as a translocation between chromosomes 9 and 22, known as the Philadelphia chromosome; or a translocation between chromosomes 4 and 11 [t(4;11)(q21;q23)]; a hyperdiploidy such as trisomy 4, 10, 17), or chromosome 9p deletion.

Therefore, in one embodiment, the subject to be treated by the isolated cells of the invention has a 17p deletion, t (4, 14), t (14, 16), t (14, 20) and/or more than 3 copies of Iq21. It is known in the art, that subjects having multiple myeloma and certain genetic features, such as the chromosomal deletion 17p, the translocations t (4, 14), t (14, 16), t (14, 20) or amplifications such as more than 3 copies of Iq21 are associated with a worse outcome (Avet-Loiseau H et al., 2011). Researchers such as Van Laar et al. (2014) have developed a genomic profiling test for subjects with multiple Myeloma. This type of test allows doctors to classify subjects with multiple myeloma based on its genomic expression profile and not just a few chromosomal abnormalities.

In one embodiment, the subject may have a high-risk gene expression profiling (GEP) signature. For instance, this topic is described in more details in Shaughnessy et al (2007).

The subject may have any combination of the above mentioned features.

Acute lymphoblastic leukemia (ALL)
In one embodiment, the leukemia which can be treated by the medicament of the present invention is acute lymphoblastic leukemia (ALL).

In another embodiment of any of the above, the leukemia is pediatric (childhood) ALL.

In another embodiment of any of the above, the leukemia is relapsed ALL.

In another embodiment of any of the above, the leukemia is refractory ALL.

In another embodiment of any of the above, the leukemia is drug-resistant ALL.

In a further embodiment, the leukemia is glucocorticoid-resistant ALL.

In still another embodiment, said medicament can be used for the treatment of a B-cell non-Hodgkin’s lymphoma (NHL) patients such as mantle cell leukemia (MCL).

Other CD38-mediated pathological conditions

According to another embodiment, the engineered immune cells of the invention are used to treat CD38-cell-mediated solid tumors such as prostate, seminal vesicle, appendix or to a pathology such as diabetes (Antonelli et al; 2004).

Associated treatments

In some embodiments, the subject has been previously treated with an anti-cancer therapy. In particular said, said previous anti-cancer therapy may be selected from the group constituted of chemotherapy, targeted cancer therapies, radiotherapy, bone marrow and/or stem cell transplantation and immunotherapy. In a more preferred embodiment, the present invention provides a pediatric treatment, in particular a pediatric treatment against MM, RR, MM or-related diseases or complications.

In one embodiment, the subject has been previously treated with bortezomib and/or lenalidomide.

“Radiation therapy” or “radiation” uses high-energy radiation to remove cancer cells. Radiation therapy might be used before a bone marrow or peripheral blood stem cell transplant.

“Bone marrow and/or stem cell transplantation” refers to a cell transplantation aimed to restore stem cells that were destroyed by high doses of chemotherapy and/or radiation therapy. Sources of stem cells include bone marrow, peripheral blood or umbilical cord blood. Depending on the source of stem cells that are transplanted, the procedure might be distinguished into bone marrow transplant (BMT) or peripheral blood stem cell transplant (PBSCT) or umbilical cord blood transplantation (UCBT).
Furthermore bone marrow and/or stem cell transplantation might refer to an autologous stem cell transplantation and/or an allogeneic transplantation.

**Resistance to drug or immunosuppressive agent**

The engineered immune cells, as previously described, when they are made resistant to chemotherapy drugs and immunosuppressive drugs that are used as standards of care, especially methotrexate and the combination of fludarabine and Cyclophosphamide, are particularly suited for treating various forms of cancer. Indeed, the present invention preferably relies on cells or population of cells, in this aspect, it is expected that the chemotherapy and/or immunosuppressive treatment should help the selection and expansion of the engineered T-cells in-vivo.

In certain embodiments of the present invention, cells are administered to a patient in conjunction with (e.g., before, simultaneously or following) any number of relevant treatment modalities, including but not limited to treatment with agents such as antiviral therapy, cidofovir and interleukin-2, Cytarabine (also known as ARA-C) or natalizimab treatment for MS patients or efalizimab treatment for psoriasis patients or other treatments for PML patients. In further embodiments, the T cells of the invention may be used in combination with chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies or other antibody therapies, cytoxinn, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, cytokines, and irradiation. These drugs inhibit either the calcium dependent phosphatase calcineurin (cyclosporin and FK506) or inhibit the p70S6 kinase that is important for growth factor induced signaling (rapamycin) (Liu et al., Cell 66:807-815, 1 t; Henderson et al., Immun. 73:316-321, 1991; Bierer et al., Citrr. Opin. mm n. 5:763-773, 93). In a further embodiment, the cell compositions of the present invention are administered to a patient in conjunction with (e.g., before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using either chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH. In another embodiment, the cell compositions of the present invention are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan. For example, in one embodiment, subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain embodiments, following the transplant, subjects receive an infusion of the expanded immune cells of the present invention. In an additional embodiment, expanded cells are administered before or following surgery. Said modified cells obtained by any one of the methods described here can be used in a particular aspect of the invention for treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD); therefore in the scope of the present invention is a method of treating patients in
need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD) comprising treating said patient by administering to said patient an effective amount of modified cells comprising inactivated TCR alpha and/or TCR beta genes.

5

**Administration**

In another aspect, the present invention relies on methods for treating patients in need thereof, said method comprising at least one of the following steps:

(a) providing an immune-cell obtainable by any one of the methods previously described;

(b) Administrating said transformed immune cells to said patient.

The administration of the cells or population of cells according to the present invention may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The compositions described herein may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous or intralymphatic injection, or intraperitoneally. In one embodiment, the cell compositions of the present invention are preferably administered by intravenous injection.

The administration of the cells or population of cells can consist of the administration of $10^4$-$10^9$ cells per kg body weight, preferably $10^5$ to $10^6$ cells/kg body weight including all integer values of cell numbers within those ranges. The cells or population of cells can be administrated in one or more doses. In another embodiment, said effective amount of cells are administrated as a single dose. In another embodiment, said effective amount of cells are administrated as more than one dose over a period time. Timing of administration is within the judgment of managing physician and depends on the clinical condition of the patient. The cells or population of cells may be obtained from any source, such as a blood bank or a donor. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or conditions within the skill of the art. An effective amount means an amount which provides a therapeutic or prophylactic benefit. The dosage administrated will be dependent upon the age, health and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired.

In another embodiment, said effective amount of cells or composition comprising those cells are administrated parenterally. Said administration can be an intravenous administration. Said administration can be directly done by injection within a tumor.
An embodiment of the present invention is related to a method for treating a patient comprising:

(a) Diagnosing said patient for the presence of pathological cells presenting CD38-specific antigen markers in common with immune cells;

(b) Preparing a population of engineered immune cells according to the method presented in details previously,

(c) Administering said engineered immune cells to said patient diagnosed for said pathological cells.

The step of diagnostic of well-known for the skill man in the art, for instance reference can be made to Durig J, Naschar M, Schmucker U, Renzing-Kohler K, Holter T, Huttmann A, Duhrsen U, (2002) "CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia" Leukemia. 16(I):30-5.

Example of steps to engineer T-cells according to the invention for immunotherapy

For a better understanding of the invention, it is provided below an example of the steps to follow to produce T-cells directed against leukemia CD38 positive cells:

1. Providing T-cells from a cell culture or from a blood sample from one individual patient or from blood bank and activating said T cells using anti-CD3/C28 activator beads (Dynabeads®). The beads provide both the primary and co-stimulatory signals that are required for activation and expansion of T cells.

2. Transducing said cells with a retroviral vector comprising a transgene encoding a Chimeric antigen receptor consisting of the fusion of CD3ζ activation domain, 4-IBB co-stimulation domain, a transmembrane domain and a hinge from CD28a,FcIIY or IgG1 fused to a sequence encoding the variable chain of an anti-CD38 antibody. For security improvement of the transformed T-cell, a suicide gene sensitive to rituximab may further be introduced as described in WO 2013/153391 into the lentiviral vector separated by T2A splitting sequences.

3. (optionally) Engineering non alloreactive and/or resistant T cells:
a) It is possible to Inactivate TCR alpha in said cells to eliminate the TCR from the surface of the cell and prevent recognition of host tissue as foreign by TCR of allogenic and thus to avoid GvHD by following the protocols set forth in WO 2013/176915.

b) It is also possible to inactive one gene encoding target for an immunosuppressive agent or a chemotherapy drug to render said cells resistant to immunosuppressive or chemotherapy treatment to prevent graft rejection without affecting transplanted T cells. In this example, target of immunosuppressive agents is CD52 and immunosuppressive agent is a humanized monoclonal anti-CD52 antibody (ex: Alemtuzumab) as described in WO 2013/176915.

4. Gene Inactivation is performed by electroporating T-cells with mRNA encoding specific TAL-endonuclease (TALEN™ - Cellectis, 8 rue de la Croix Jarry, France). Inactivated T cells are sorted using magnetic beads. For example, T cells still expressing the CD38 targeted gene (can be removed by fixation on a solid surface, and inactivated cells are not exposed of the stress of being passed through a column. This gentle method increases the concentration of properly engineered T-cells.

5. Expansion in vitro of engineered T-cells prior to administration to a patient or in vivo following administration to a patient through stimulation of CD3 complex. Before administration step, patients can be subjected to an immunosuppressive treatment such as CAMPATH1-H, a humanized monoclonal anti-CD52 antibody.

6. Optionally exposed said cells with bispecific antibodies ex vivo prior to administration to a patient or in vivo following administration to a patient to bring the engineered cells into proximity to a target antigen.

GENERAL METHODS

- Primary T-cell cultures

T cells were purified from Buffy coat samples provided by EFS (Etablissement Français du Sang, Paris, France) using EasySep™ Direct Human T Cell Isolation Kit (Stem cell). Purified T cells were activated in X-Vivo™-15 medium (Lonza) supplemented with 20ng/mL Human IL-2, 5% Human serum, and Dynabeads Human T activator CD3/CD28 at a bead:cell ratio 1:1 (Life Technologies).

- CD38 TALE transfection

A schematic representation is shown in Figure 8.

Heterodimeric TALE-nuclease targeting two 17-bp long sequences (called half targets) separated by an 15-bp spacer within CD38 gene were designed and produced. Each half target is recognized by
repeats of the half TALE-nucleases listed in Table 3. The sequences of the CD38 targets are provided in Figure 5. Each TALE-nuclease construct was subcloned using restriction enzyme digestion (insert : BsaBI and vector : BsmBI) in a mammalian expression vector (pCSL.10794) under the control of the T7 promoter. mRNA encoding TALE-nuclease cleaving CD38 genomic sequence were produced using the mMESSAGE mMACHINE T7 Kit (Life Technologies) and purified using RNeasy Mini Spin Columns (Qiagen). Transfections were done using Cytopulse technology, by applying two 0.1 mS pulses at 3000V/cm followed by four 0.2 mS pulses at 325V/cm in 0.4 cm gap cuvettes in a final volume of 200 µl of "Cytoporation buffer T" (BTX Harvard Apparatus). Cells were immediately diluted in X-Vivo™-15 media (Lonza) and incubated at 30°C with 5% CO\textsubscript{2}. IL-2 (from Miltenyi Biotec) was added 2h after electroporation at 20ng/mL. 18 hours later, cells were transferred at 37°C with 5% CO\textsubscript{2}.

- **CD38 negative T cells purification**

Six days after CD38 TALEN transfection, CD38 negative cells were purified by magnetic separation using CD38 microbeads kit according to the manufacturer's specifications (Miltenyi).

- **CAR mRNA transfection**

Transfections were done at Day 4 or Day 11 after T-cell purification and activation. 5 millions of cells were transfected with 15µg of mRNA encoding the different CAR constructs. CAR mRNAs were produced using the mMESSAGE mMACHINE T7 Kit (Life Technologies) and purified using RNeasy Mini Spin Columns (Qiagen). Transfections were done using Cytopulse technology, by applying two 0.1 mS pulses at 3000V/cm followed by four 0.2 mS pulses at 325V/cm in 0.4 cm gap cuvettes in a final volume of 200 µl of "Cytoporation buffer T" (BTX Harvard Apparatus). Cells were immediately diluted in X-Vivo™-15 media (Lonza) and incubated at 37°C with 5% CO\textsubscript{2}. IL-2 (from Miltenyi Biotec) was added 2h after electroporation at 20ng/mL.

- **Degranulation assay (CD107a mobilization)**

T-cells were incubated in 96-well plates (40,000 cells/well), together with an equal amount of cells expressing various levels of the CD38 protein. Co-cultures were maintained in a final volume of 100µl of X-Vivo™-15 medium (Lonza) for 6 hours at 37°C with 5% CO\textsubscript{2}. CD107a staining was done during cell stimulation, by the addition of a fluorescent anti-CD107a antibody at the beginning of the co-culture, together with 0.1µg/ml anti-CD49d. 0.1µg/ml of anti-CD28, and 1 x Monensin solution. After the 5h incubation period, cells were stained with a fixable viability dye and fluorochrome-conjugated anti-CD8 and anti-CD3 and analyzed by flow cytometry. The degranulation activity was determined as the % of viable/CD3+/CD8+/CD107a+ cells, and by determining the mean fluorescence intensity signal (MFI).
for CD107a staining among CD8+ cells. Degranulation assays were carried out 24h after mRNA transfection.

- **Cytotoxicity assay**

5 T-cells were incubated in 96-well plates (100,000 cells/well), together with 10,000 target cells (expressing CD38) and 10,000 control (CD38neg) cells in the same well. Target and control cells were labelled with fluorescent intracellular dyes (CFSE or Cell Trace Violet) before coculturing them with CAR+ T-cells. The co-cultures were incubated for 4 hours at 37°C with 5% CO₂. After this incubation period, cells were labelled with a fixable viability dye and analyzed by flow cytometry. Viability of each cellular population (target cells or CD38neg control cells) was determined and the % of specific cell lysis was calculated. Cytotoxicity assays were carried out 48h after mRNA transfection.

**Example 1: Inactivation of CD38 antigen in T cells by knock-out (KO) using TALE nuclease**

15 CD38 is also highly expressed by activated T cells. CD38 expression by T cells after activation with CD3/CD28 beads and IL-2 was analyzed by FACS every 3-4 days for 17 days (Figure 3A). It was observed that more than 90% of T cells express CD38 between day 6 and day 17 after activation (Figure 3B).

Thus in order to avoid killing of activated T cells by anti-CD38 CAR+ T cells, CD38 surface expression in T cells needs to be prevented. This may be accomplished by the inactivation of the CD38 gene using TALE-nucleases. The experiment was performed as presented in Figure 4A.

Heterodimeric TALE-nucleases targeting two 17-pb long sequences separated by a 13-pb spacer within the CD38 gene were designed and produced. Each half target is recognized by repeats of the half TALE-nucleases listed in the Table 4 and Figure 5.

Each TALE-nuclease construct was subcloned using restriction enzyme digestion in a mammalian expression vector under the control of the T7 promoter. mRNA encoding TALE-nuclease cleaving CD38 were synthesized from plasmids carrying the coding sequence downstream from the T7 promoter.

Purified T cells activated during 4 days with anti CD3/CD28 coated beads and recombinant IL-2 were transfected by electroporation (Cytopulse) with each of the 2 mRNAs (10ug each) encoding both half TALE-nucleases. To investigate, the CD38 KO, the percentage of CD38 negative T cells was assessed by flow cytometry at day 7 (Figure 6). The three TALENs were able to induce CD38 KO but the CD38-1 was the most efficient (60.95% +/- 7.6 CD38αβ T cells).

The CD38 inactivation induced by the CD38-1 TALEN was stable in culture for 3 weeks (Figure 7A). CD38 deficient T cells could be easily sorted using the anti-CD38 microbeads (Milenyi) (Figure 7A).
The proliferation rate of purified CD38 deficient T cells was comparable with non-transfected or non-purified T cells (Figure 7B).

In two independent experiments, CD38 TALEN transfection were performed by using 2 µg of RNA per 10^6 of T cells and using electroporation, it is shown in Figure 23 that such transfection induce CD38 KO with high frequency. In another experiment, a comparison of 2µg and 1µg or O^g per million cells was tested. The amount of mRNA TALEN didn’t modify the proliferation rate of T cells (Figure 24B) but decrease in the % of CD38 negative cells (Figure 24A).

Example 2: Study of anti-CD38 CARs activity after mRNA transfection in WT T cells

CAR Structure

Eight pairs of scFvs have been tested, their sequences SEQ ID NO: 10 to 73 including their corresponding CDRs are presented in Table 2.

For each pair of scFvs, 3 different CARs constructs have been designed with the 41BB costimulatory domain, the CD3ζ activation domain, the CD8a transmembrane domain and 3 different hinges of sequences SEQ ID NO: 76, 77 and 78) respectively:

VI: FceRII/IIq hinge
V2: CD8a hinge
V3: IgGl hinge.

The Figure 9 and Figure 2A shows respectively the name of plasmids of the different versions of the CAR created for the subcloning and the one used as backbone. Also the value of Kd for their respective scFvs are provided.

The Table 1 shows the sequences SEQ ID NO: 82 to 105 for all the 24 different anti-CD38 CARs (8 pairs of scFv X 3 versions VI, V2&V3) and of their constituents (except scFvs presented in Table 2).

Selection of target cells

The CAR molecules generated were screened for degranulation and cytotoxic activity toward target cell lines expressing CD38 following transient transfection of T cells with CAR mRNA. Target cell lines expressing different expression levels of CD38 (figure 3B) were used for activity testing (Figure 10A and Figure 10B).

The number of CD38 molecules per cell was evaluated by Qifikit assay (DAKO Company) for the following cell lines:
- U266 CD38+ B-cell myeloma (48216 molecules/cell) and U266 CD38- (230 molecules/cell) obtained from U266B1 cell line (#ATCC® TIB-196™) by magnetic separation using anti-CD38 microbeads;
- MOLP8, a multiple myeloma cell line (#DSMZ ACC 569) expressing high levels of CD38 (259889 molecules/cell);
- Daudi (#ATCC® CCL-213™), a cell line derived from Burkitt lymphoma expressing high levels of CD38;
- K562 (#ATCC® CCL-243), a cell line CD38 negative cell line derived from chronic myelogenous leukemia.

**CAR mRNA transfection in WTT cells at Day 5 after T cell activation**

T cells were purified from buffy coat samples and activated using anti-CD3/CD28 coated beads. Cells were transfected 5 days after activation with 15 μg of mRNA encoding anti-CD38 CAR (time scale of the experiment is presented in Figure 4C). The CAR expression and the degranulation capacity of CART cells were assessed 24 hours after the transfection.

Despite CD38 expression on T cells, significant T cell mortality after CAR mRNA transfection at Day 5 was not observed.

**Expression**

Three detection methods were assessed on cells transfected 5 days after activation: an anti-Fab antibody, the L-protein staining and a CD38-Fc protein (produced by LakePharma) staining (Figure 11). The anti-CD38 CARs 13F11-V2, 16B5-V2&V3, 25A10-V1&V2, 28F5-V1&V2, GMB005-V1&V2&V3 were detectable by at least one method. Some CARs were undetectable by any of these methods but were able to degranulate in a CD38 dependent manner (see next section).

**Degranulation capacity**

The CAR T cell degranulation was evaluated by flow cytometry. The read-out is the CD107a expression at the T cell plasma membrane after 5 hours incubation with target cells (Figure 12). Most of the scFv's induce T cell degranulation in a CD38 dependent manner except 10F7, 27B6 and 29B4.

The 3 versions (V1, V2 and V3) of the scFv's 13F11, 16B5, 25A10, 28F5 and the tool CAR GMB005-V1 were selected for screening at day 12.
Example 3: Evaluation of the effect of CD38 KO and purification of CD38 negative T cells on the activity of a serial anti-CD38 CARs obtained by mRNA transfection.

i. Comparison CAR mRNA screening in WT / CD38-deficient / purified CD38 deficient T cells

T cells were purified from buffy coat samples and activated using anti-CD3/CD28 coated beads (time scale of the experiment is presented in Figure 4B). Cells were transfected 12 days after activation with 15 µg of mRNA encoding anti-CD38 CAR and 24h after CAR mRNA transfection, a significant mortality of T cells was observed.

The CD38 KO and CD38 negative purification has been tested and evaluated. CD38-1 TALEN mRNA was transfected (or not) in T cells at day 4 after activation with anti-CD3/CD28 coated beads. 6 days after CD38 negative cells were purified (or not) by using magnetic separation (Miltenyi's protocol). The day after, CAR mRNAs were transfected. The CAR expression and degranulation capacity of CART cells were assessed 24 hours after the transfection. CAR expression and cytotoxic capacity of CART cells were assessed 48 hours after the transfection. The anti-CD3/CD28, 13F11-V2 and -V3 were used for the analysis. After 24hours of CAR mRNAs transfection, T cell viability was increased in CD38 KO T cells with purified CD38 KO T cells displaying the best viability (Figure 13A).

Expression

CAR expression was analyzed by flow cytometry using CD38-Fc protein. CAR expression was detectable at higher levels at day 1 and day 2 in CD38-deficient T cells. No significant difference was observed between the purified or non-purified CD38 KO T cells (Figure 13B).

Degranulation capacity

The percentage of T cells that have degranulated after incubation with target cell lines is CD38-independent in wt CART cells but is CD38-dependent when CART cells are CD38-deficient (Figure 14A). The purification step has no effect on CART cell degranulation in the tested conditions.

Cytotoxic activity

Forty-eight hours after CAR mRNAs transfection, there was no cytotoxic activity of CART cells against target cell lines. This cytotoxic activity was restored in CD38 deficient CART cells. This cytotoxic activity was CD38-dependent but no difference was observed between purified and non-purified CD38-deficient T cells (Figure 14B).
Altogether, these results indicate the improved effect of CD38 inactivation (induced by CD38-1 TALEN) on the cytotoxic activity before anti-CD38 CAR mRNA transfection in T cells. Next experiments were performed by using purified CD38-deficient T cells.

**ii. CAR mRNA transfection at day 12 after T cell activation in purified CD38 deficient T cells**

T cells were purified from buffy coat samples and activated using anti-CD3/CD28 coated beads and IL-2. CD38-1 TALEN mRNA was transfected in T cells at day 4 after activation, 6 days later CD38 negative cells were purified by using magnetic separation (Miltenyi). The day after, CAR mRNAs were transfected. The CAR expression and degranulation capacity of CART cells were assessed 24 hours after the transfection. CAR expression and cytotoxic capacity of CART cells were assessed 48 hours after the transfection.

**Expression**

All CARs were detected 24h after transfection except the 25A10-V3. However, the latter expressed anti-CD38 CAR above the background. The 13F11-V2, 25A10-V1, 25A10-V2 and 28F5-V2 were highly expressed (more than 80%). The CAR-V2 and -V3 expression were more stable at 48h than -V1 (Figure 15).

**Degranulation capacity**

Most of the CART cells were able to degranulate against CD38 expressing cell lines. Only the 16B5-V3, 28F5-V3, 25A10-V3 show low degranulation capacity. The CART cells that present the best ratios (>2) of degranulation against U266 CD38+ and U266 CD38- were 13F11-V1, -V3, 16B5-V1, -2 25A10-V1, 28F5-V1,-V2 and GMB005-V1 (Figure 16). The CAR-V1 and -V3 were able to degranulate at lower level against autologous T cells CD38+ than CAR-V2.

**Cytotoxic activity**

Most of the CAR T cells were able to kill efficiently (more than 20% in 4 hours) CD38+ target cells lines (Figure 17). The 16B5-V2, 25A10-V2 and 28F5-V2 that are highly cytotoxic against CD38+ target cells lines are also highly cytotoxic against autologous activated T cells. Interestingly, the -V1 version of the 25A10 and 28F5 were cytotoxic against CD38+ cells lines but presented a lower cytotoxic activity for the autologous T cells.

From all these results et from all the CARs tested, it appears that the CARs 25A10-V1, 25A10-V2, 28F5-V1 and 28F5-V2 -particularly when they have their CD38 gene inactivated- show a higher potential
in terms of cytotoxicity towards cancerous CD38-expressing cells, while showing a reduced effect in the
interaction with the T cells (i.e. other activated CD38 T cells from the same donor).

Example 4: Evaluation of the impact of CD38-KO for anti-CD19 CAR activity in vivo

To evaluate the impact of CD38-KO for CAR activity, NOG mice were sublethally irradiated 8 days before injection of T-cells. At Day (-7) 5x10^5. Daudi Luciferase cells/mice were iv injected. Mice were then infused with wt or CD38-/ CAR-CD19 RQR8 T-cells. The tool CD19 CAR comprising FMC63 scfv correspond to the polynucleotide having the sequence SEQ ID NO.16 disclosed in WO2014/184143. CAR-CD19 RQR8 T-cells were obtained by co-expression of both anti-CD19 and RQR8 accordingly to methods disclosed in prior art such as Donnelly ML et al, (2001) J Gen Virol.;82(Pt 5):1027-1041. Bioluminescent signal was assessed at D(-1), D7, D14, D21 and D28 post injection of T-cells (Figure 22A and Figure 22B). When the tumor progression and the survival rate are assessed, it is shown that the CD38-/ CAR-CD19 RQR8 cells presented the same anti-tumor activity in vivo than CAR-CD19 RQR8 T cells (Figure 22C) and T cells endowing CD19 CAR and KO CD38 deficient survived longer (Figure 22D). Thus, CD38-KO doesn't affect the anti-tumor activity of CAR T-cells in vivo.

Example 5: Evaluation of activity of anti-CD38 CAR obtained by lentiviral transduction in double

KO TRAC/CD38 T cells

CAR Cloning in expression plasmid

The 4 anti-CD38 CARs 25A10-vl, 25A10-v2, 28F5-vl and 28F5-v2 were cloned using the restriction enzyme Xmal into the final rLV backbone containing RQR8 (pCCL-RQR8-T2A-CAR) under the control of the EFia promoter. The sequences of these plasmids have been analyzed and the plasmids have been sent to Vectalys (France) for rLV production.

rLV CD38 CAR transduction in function of rLV MOI

The CAR CD38 rLV dose needed to transduce primary T cells was assessed at day 7 after T cell activation.

T cells were transfected with CD38 TALEN mRNA at day 3 after activation and transduced 4 days later with the 4 CAR candidate rLVs (25A10-vl, -v2 , 28F5-vl and -v2) at MOI 5, 10 and 15.
The transduction efficiency was assessed 3 days after transduction by detection of the percentages of positive CAR or positive RQR8 cells. No significant difference of transduction efficiency between the 3 MOIs was observed (Figure 25A and Figure 25B respectively). The following rLV screening will be performed with a transduction at MOI 5.

Screening with CD38-KO and TCR-KO attributes

The outline of the process is shown in Figure 26. The parameters are the following: T cells were activated by using Dynabeads CD3-CD28, the culture were made by using medium Xvivo+5% human serum heat inactivated + IL-2 20ng/ml, a double KO (DKO) CD38-TRAC was performed by using a ratio of 2μg TALEN mRNA per million of cells (5 million cells/cuvette); the transduction was performed by using rLV from Vectalys(France) at a MOI of 5.

To assess the cytotoxic capacities of the CARs, the MOLP8, Daudi, U266 CD38+ and U266 CD38- were used as target cells previously used during the mRNA screen. These cell lines are mostly multiple myeloma cell lines (except Daudi) expressing different levels of CD38.

The rLV CAR screen has been done in 3 different experiments, using 3 different PBMC donors. The CAR expression, enrichment of CD38 negative cells after CAR transduction and the cytotoxic capacity of the 4 CARs 25A10-vl, -v2, 28F5-vl and -v2 were analysed.

Evaluation of anti-CD38 CAR expression and CART phenotyping

The screening of the 4 CARs 25A10-vl, -v2, 28F5-vl and -v2 after rLV transduction in DKO T cells has shown that all the CARs were expressed at the T cell surface with a high efficiency (>40%) and 3 of them above 80% (Figure 27C). RQR8 expression was correlated with CAR expression (Figure 27A). Most of the T cells were CD38 negative when T cells have been transduced by CD38 CARs (Figure 27A). It is shown also that 60-85% of T cells endowed with the above 4 CARs were DKO TRAC/CD38 (Figure 27B).

The DKO CD38 CART cells were mainly CD8+ (Figure 28A) and presented an effector/effector memory phenotype. There was no difference between CAR constructs (Figure 28B).

Evaluation of CAR activity in vitro

The CART degranulation was evaluated by flow cytometry. The read-out is the CD107a expression at the T cell plasma membrane after 5 hours of incubation with target cells. These CARs were
able to degranulate with a high efficiency against CD38+ multiple myeloma cell lines as well as against CD38+ T cells (Figure 29A). The 4 CD38 CAR candidates were able to induce lysis of CD38+ multiple myeloma cell lines in a CD38 dose dependent manner (Figure 29B).

Example 6: Evaluation of anti-CD38 CAR T cells against T cells acute lymphoblastic leukemia (T-ALL)

As shown in Figure 30, T-ALL cells expressed a high expression level of CD38. This pathology could be another application for the treatment based on the administration of anti-CD38 T cells in patient.

Development of a new T-ALL cell line with CD38-KO

All T-ALL cells lines tested were CD38+. To evaluate the CAR activity against T-ALL a negative cell line was needed as control. The CD38-KO CCRF-CEM cell lines has been generated by transfection of the CCRF-CEM cells with CD38 TALEN mRNA. CD38 negative cells were purified by magnetic separation (anti-CD38 microbeads, Miltenyi- Figure 31). The new cell line has been used as negative control for the cytotoxicity assay.

Evaluation of anti-CD38 CAR T cell activity against T-ALL cell lines

Anti-CD38 CAR T cell activity against T-ALL cell lines was assessed by analysis of their degranulation after coculture with several T-ALL cell lines expressing CD38. The high majority (>70%) of UCART38 were able to degranulate in presence of T-ALL CD38+ cells (Figure 32A). The cytotoxicity of UCART38 against T-ALL cells in vitro has been evaluated by coculture of UCART38 with T-ALL cells during 4h. UCART38 cells were able to induce lysis of CD38+ T-ALL cells (Figure 32B).
REFERENCES


Metzger, H. et al. (1986) "The Receptor with High Affinity for Immunoglobulin E" Annual Review of Immunology 4: 419-470


CLAIMS

1) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) having one of the polypeptide structure selected from VI, V2 and V3, as illustrated in Figure 8, said structure comprising an extra cellular ligand binding-domain comprising VH and VL from a monoclonal anti-CD38 antibody, a hinge, a transmembrane domain, a cytoplasmic domain including a CD3 zeta signaling domain and a costimulatory domain from 4-1BB.

wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11), SEQ ID NO. 30 and 26 (16B5), SEQ ID NO. 38 and 34 (10F7), SEQ ID NO. 46 and 42 (27B6) or SEQ ID NO. 22 and 18 (29B4).

2) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 1, wherein the transmembrane domain comprises a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 79 (CD8a TM).

3) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 1 or claim 2, wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10), SEQ ID NO. 62 and 58 (28F5), SEQ ID NO. 54 and 50 (13F11) or SEQ ID NO. 30 and 26 (16B5).

4) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to anyone of claim 1 to 3, wherein said VH and VL comprise a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to respectively SEQ ID NO. 14 and 10 (25A10) or SEQ ID NO. 62 and 58 (28F5).

5) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to anyone of claim 1 to 4, wherein said VH and VL comprise the CDRs sequences of respectively SEQ ID NO.15-17 and SEQ ID NO.11-13; respectively SEQ ID NO.63-65 and SEQ ID NO.59-62; respectively SEQ ID NO.55-57 and SEQ ID NO.51-53; respectively SEQ ID NO.31-33 and SEQ ID NO.27-29; respectively SEQ ID NO.39-42 and SEQ ID NO.35-37; respectively SEQ ID NO.47-49 and SEQ ID NO.43-45; respectively SEQ ID NO.23-25 and SEQ ID NO.19-22.

6) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to anyone of claim 1 to 5, comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11), SEQ ID NO. 88-90 (16B5), SEQ ID NO. 91-93 (10F7), SEQ ID NO.94-96 (27B6) and SEQ ID NO. 85-87(29B4).
7) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 6, comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10), SEQ ID NO. 100-102 (28F5), SEQ ID NO. 97-99 (13F11) and SEQ ID NO. 88-90 (16B5).

8) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 6 or claim 7, comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 82-84 (25A10) and SEQ ID NO. 100-102 (28F5).

9) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to any one of claim 6 to 8, comprising a polypeptide sequence displaying at least 90%, at least 95%, at least 98% or at least 99% identity to SEQ ID NO. 82 (25A10-vl).

10) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to any one of claim 1 to 9, said extracellular binding domain further comprising at least one mAb specific-epitope.

11) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 10, wherein said at least one mAb specific-epitope has an amino acid sequence selected in the group consisting of SEQ ID 114 to 121.

12) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 10 or claim 11, wherein two CD20 mimotopes of SEQ ID NO.114 are inserted in said extra cellular ligand binding-domain.

13) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 10, wherein two CD20 mimotopes of SEQ ID NO.114 are inserted in the hinge of said extra cellular ligand binding-domain.

14) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to claim 10, wherein three CD20 mimotopes of SEQ ID NO.114 and one CD34 epitope of SEQ ID NO. 122 or 123 are inserted in said extra cellular ligand binding-domain.

15) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to any one of claim 1 to 14, comprising a hinge which polypeptide displays at least 90%, at least 95%, at least 98% or at least 99% identity to one selected from SEQ ID NO. 76 (FceRIIα), SEQ ID NO. 77 (CD8a) and SEQ ID NO. 78 (IgGl).
16) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to any one of claim 1 to 15, comprising a hinge which polypeptide displays at least 90 %, at least 95 %, at least 98 % or at least 99 % identity to SEQ ID NO. 77 (CD8a).

17) An anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to any one of claim 1 to 15, comprising a transmembrane domain which polypeptide displays at least 90 %, at least 95 %, at least 98 % or at least 99 % identity to one selected from SEQ ID NO. 76 (FceRIIα).

18) A method of preparing immune cells, preferably T-cells, for immunotherapy against pathological cells comprising the step of:

(a) Genetically inactivating or mutating a gene encoding the CD38 gene in an immune cell, which is involved in the expression or presentation of the CD38 antigen marker, said CD38 antigen marker being present both on the surface of said immune cell and the pathological cell;

(b) Expressing into said immune cell a transgene encoding a chimeric antigen receptor directed against said CD38 antigen marker according to anyone of claim 1 to 17, said antigen marker being present at the surface of said pathological cell.

19) A method according to any one of claims 18, wherein step a) is performed using a rare-cutting endonuclease.

20) A method according to claim 19, wherein step a) is performed using a TAL-nuclease.

21) A method according to claim 20, wherein said TAL-nuclease targets a sequence of SEQ ID NO.1, 4 or 7.

22) A method according to claim 21, wherein said TAL-nuclease targets a sequence of SEQ ID NO. 4 (CD38-1 target).

23) A method according to any one of claim 19 to 21, wherein said inactivation of CD38 antigen is performed by using the TALE-nucleases of SEQ ID NO.2-3, 5-6 or 8-9.

24) A method according to claim 23, wherein said inactivation of CD38 antigen is performed by using the TALE-nucleases of SEQ ID NO. 5-6.

25) A method according to any one of claims 18 to 24, wherein said method includes a further step of activating and expanding the immune cells.
26) A method according to any one of claims 18 to 25, wherein said method includes a further step of purifying the resulting immune cells by excluding the cells presenting said marker antigen at their surface.

27) A method according to any one of claims 18 to 26, wherein said method includes a previous step of procuring the immune cells from a donor.

28) A method according to any one of claims 18 to 26, wherein said method includes a previous step of procuring the immune cells from a patient who is affected by the development of said pathological cells.

29) A method according to any one of claims 18 to 28, wherein said immune cell is derived from a primary stem cell, iPS or hES cell.

30) A method according to claim 29, wherein said immune cell is derived from iPS cell derived from said patient affected by the development of said pathological cells.

31) A method according to anyone of claim 18 to 30, wherein step a) is performed using a RNA-guided endonuclease.

32) A method according to claim 31, wherein the RNA-guided endonuclease is Cas9.

33) A method according to claim 32, wherein RNA-guided endonuclease is split into at least 2 polypeptides, one comprising RuvC and another comprising HNH.

34) A method according to anyone of claim 18 to 33, wherein said endonuclease is expressed from transfected mRNA.

35) A method according to any one of claims 18 to 34, wherein said method includes a further step of inactivating a gene encoding a component of the T-cell receptor (TCR).

36) A method according to claim 35, wherein said component of the T-cell receptor is TCRa.

37) A method according to any one of claims 18 to 36, wherein said method includes a further step of inactivating a gene encoding a component of HLA.

38) A method according to any one of claims 18 to 36, wherein said method includes a further step of inactivating a gene encoding β2m.
39) A method according to any one of claims 18 to 38, wherein said method includes a further step of inactivating a gene encoding an immune checkpoint protein selected from CTLA4, PPP2CA, PPP2CB, PTPN6, PTEN, PDCD1, LAG3, HAVCR2, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, SMAD6, SMAD7, SKI, SKIL, TGFIF1, I L1OR, IL1RB, HMOX2, IL6, IL6ST, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, GUCY1A2, GUCY1A3, GUCY1B2 and GUCY1B3.

40) A method according to claim 39, wherein said gene locus is involved into the expression of PD1 or CTLA-4 genes.

41) A method according to any one of claims 18 to 40, wherein said method includes a further step of inactivating a gene conferring sensitivity of the immune cells to chemotherapy or immunosuppressive drugs.

42) The method according to claim 41, wherein said further gene encodes CD52.

43) The method according to claim 41, wherein said further gene is hypoxanthine-guanine phosphoribosyltransferase (HPRT).

44) The method according to claim 41, wherein said further gene encodes a glucocorticoid receptor (GR).

45) The method according to claim 41, wherein said further gene is involved in the DCK regulatory pathway, in particular DCK expression.

46) A method according to any one of claims 18 to 45, wherein said immune cells in step a) are derived from inflammatory T-lymphocytes, cytotoxic T-lymphocytes, regulatory T-lymphocytes or helper T-lymphocytes.

47) The method according to claim 46, wherein said T-cells are derived from CD4+ T-lymphocytes and/or CD8+ T-lymphocytes.

48) A method according to any one of claims 18 to 47, wherein said transformed immune cells are expanded in-vitro.

49) A method according to any one of claims 18 to 47, wherein said transformed immune cells are expanded in-vivo.
50) A method according to any one of claims 18 to 49, wherein said pathological cells are selected from malignant cells or infected cells.

51) A method according to any one of claims 18 to 50, for preparing immune cells to be used as a medicament.

52) A method according to claim 51 for preparing immune cells for treating a cancer, an immune disease or an infection in a patient in need thereof.

53) A method according to claim 52, wherein said medicament is used for the treatment of CD38+ hematological malignancy.

54) A method according to claim 53, wherein said medicament is used for the treatment of B-cell non-Hodgkins Lymphoma (NHL), multiple myeloma (MM), acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (B-cell ALL) and/or chronic lymphocytic leukaemia (CLL), more particularly multiple myeloma (MM).

55) A method according to claim 54, wherein said medicament is used for the treatment of multiple myeloma (MM).

56) A method according to claim 55, wherein said medicament is used for the treatment of a MM subtype which is refractory/relapsed multiple myeloma (RRMM).

57) A method according to claim 54, wherein said medicament is used for the treatment of acute lymphoblastic leukemia (ALL).

58) A method according to claim 54, wherein said medicament is used for the treatment of a B-cell non-Hodgkin's lymphoma (NHL) patients such as mantle cell leukemia (MCL).

59) A method according to any one of claims 18 to 53, wherein said pathological cells are solid tumor cells.

60) An engineered immune cell (preferably T cell), which expresses an anti-CD38 specific chimeric antigen receptor (anti-CD38 CAR) according to any one of claim 1 to 17, said immune cell having its endogenous CD38 gene genetically inactivated or mutated.

61) An engineered immune cell according to claim 60, wherein said immune cell has its endogenous CD38 and TCR genes genetically inactivated or mutated.

62) An engineered immune cell according to claim 60 or claim 61, wherein said immune cell has its endogenous CD38, TCR and dCK genes genetically inactivated or mutated.
63) An engineered immune cell according to any one of claim 60 to 62, wherein said CD38 gene and additional gene(s) are inactivated by knock-out (KO) using specific rare-cutting endonuclease(s).

64) An engineered immune cell obtainable according to the method of any one of claims 18 to 59.

65) An engineered immune cell according to claim 60 resulting into the phenotype [CAR CD38]+[CD38]−

66) A population of immune cells comprising at least two engineered immune cells according at any one of claim 60 to 65.

67) A method for treating a patient comprising:

(a) Diagnosing said patient for the presence of pathological cells presenting specific CD38-antigen markers in common with immune cells;

(b) Preparing a population of engineered immune cells according to anyone of claim 60 to 65 or according to the method of any one of claims 18 to 59; and

(c) Administrating said engineered immune cells to said patient diagnosed for said pathological cells.
Figure 1
Figure 2
Figure 3
Figure 4

A

TALEN screening

D0
T cell purification + activation
CD3-CD28 beads + IL2

D4
Transfection
10μg TALEN mRNA

D10
CD38 expression proliferation
Sort CD38+ cells (microbeads)

D3 to D17
CD38 expression proliferation

B

CAR mRNA transfection in WT T cells at Day 5 after T cell activation

D0
T cell purification + activation
CD3-CD28 beads + IL2

D5
Transfection
15μg CAR mRNA

D6
CAR expression
T cells survival
CD38 expression by T cells
Degranulation assay

C

CAR mRNA transfection at day 12 after T cell activation in purified CD38 deficient T cells

D0
T cell purification + activation
CD3-CD28 beads + IL2

D4
Transfection TALEN mRNA

D10
Sort CD38+ cells (microbeads)

D11
Transfection CAR mRNA

D12
CAR expression
Degranulation Cytotoxicity

D13
CAR expression Cytotoxicity
CD38 exon 1: from AA n°1 to n°233

<table>
<thead>
<tr>
<th>n°</th>
<th>n°</th>
<th>n°</th>
<th>n°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>67</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>73</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>85</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>97</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>103</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>109</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>115</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>121</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>127</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>133</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>139</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>145</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>149</td>
<td>151</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>157</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>161</td>
<td>163</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>169</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>175</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>179</td>
<td>181</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>187</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>191</td>
<td>193</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>197</td>
<td>199</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>203</td>
<td>205</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>209</td>
<td>211</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>217</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>223</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>227</td>
<td>229</td>
<td>231</td>
</tr>
</tbody>
</table>
Figure 7
<table>
<thead>
<tr>
<th>Plasmid Name</th>
<th>Backbone</th>
<th>Sequence Name</th>
<th>Kd (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCLS27540</td>
<td>pCLS9632</td>
<td>10F7-V1</td>
<td>30</td>
</tr>
<tr>
<td>pCLS27541</td>
<td>pCLS9632</td>
<td>10F7-V2</td>
<td></td>
</tr>
<tr>
<td>pCLS27542</td>
<td>pCLS9632</td>
<td>10F7-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27543</td>
<td>pCLS9632</td>
<td>13F11-V1</td>
<td>0.8</td>
</tr>
<tr>
<td>pCLS27544</td>
<td>pCLS9632</td>
<td>13F11-V2</td>
<td></td>
</tr>
<tr>
<td>pCLS27545</td>
<td>pCLS9632</td>
<td>13F11-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27546</td>
<td>pCLS9632</td>
<td>16B5-V1</td>
<td>3.2</td>
</tr>
<tr>
<td>pCLS27547</td>
<td>pCLS9632</td>
<td>16B5-V2</td>
<td></td>
</tr>
<tr>
<td>pCLS27548</td>
<td>pCLS9632</td>
<td>16B5-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27549</td>
<td>pCLS9632</td>
<td>25A10-V1</td>
<td></td>
</tr>
<tr>
<td>pCLS27550</td>
<td>pCLS9632</td>
<td>25A10-V2</td>
<td>0.25</td>
</tr>
<tr>
<td>pCLS27551</td>
<td>pCLS9632</td>
<td>25A10-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27552</td>
<td>pCLS9632</td>
<td>27B6-V1</td>
<td>2.2</td>
</tr>
<tr>
<td>pCLS27553</td>
<td>pCLS9632</td>
<td>27B6-V2</td>
<td></td>
</tr>
<tr>
<td>pCLS27554</td>
<td>pCLS9632</td>
<td>27B6-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27555</td>
<td>pCLS9632</td>
<td>28F5-V1</td>
<td>unknown</td>
</tr>
<tr>
<td>pCLS27556</td>
<td>pCLS9632</td>
<td>28F5-V2</td>
<td></td>
</tr>
<tr>
<td>pCLS27557</td>
<td>pCLS9632</td>
<td>28F5-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27558</td>
<td>pCLS9632</td>
<td>29B4-V1</td>
<td>0.52</td>
</tr>
<tr>
<td>pCLS27559</td>
<td>pCLS9632</td>
<td>29B4-V2</td>
<td></td>
</tr>
<tr>
<td>pCLS27560</td>
<td>pCLS9632</td>
<td>29B4-V3</td>
<td></td>
</tr>
<tr>
<td>pCLS27561</td>
<td>pCLS9632</td>
<td>GMB005-V1</td>
<td></td>
</tr>
<tr>
<td>pCLS27562</td>
<td>pCLS9632</td>
<td>GMB005-V2</td>
<td>119</td>
</tr>
<tr>
<td>pCLS27563</td>
<td>pCLS9632</td>
<td>GMB005-V3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9
Cell lines from the left to the right (peaks):
- K562
- U266 CD38-;
- U266 CD38+;
- Daudi
- MOLP8

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Disease</th>
<th>% CD38+</th>
<th>molecules CD38/ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLP8</td>
<td>MM</td>
<td>97.34</td>
<td>482346</td>
</tr>
<tr>
<td>Daudi</td>
<td>Burkitt’s lymphoma</td>
<td>97.73</td>
<td>259889</td>
</tr>
<tr>
<td>U266 CD38+</td>
<td>MM</td>
<td>84.335</td>
<td>48216</td>
</tr>
<tr>
<td>U266 CD38-</td>
<td>MM</td>
<td>2.39</td>
<td>230</td>
</tr>
<tr>
<td>K562</td>
<td>CML</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 10
Figure 11

% CAR+ in viable cells

CD38-Fc non tested

expression CAR CD38

CART cells

29B4-V3
29B4-V2
29B4-V1
GMB005-V3
GMB005-V2
GMB005-V1
28F5-V3
28F5-V2
28F5-V1
27B6-V3
27B6-V2
27B6-V1
25A10-V3
25A10-V2
25A10-V1
16B5-V3
16B5-V2
16B5-V1
13F11-V3
13F11-V2
13F11-V1
10F7-V3
10F7-V2
10F7-V1
no CAR
Figure 13
Figure 14

Panel A: 
- Y-axis: %CD107a+ in CD8 T cells
- Legend: MOLP8 CD38++, Daudi CD38++, U266 CD38+, U266 CD38++, K562 CD38-, LT alone

Panel B: 
- Y-axis: %lysis
- Legend: MOLP8 CD38++, Daudi CD38++, U266 CD38+, U266 CD38-, U266 CD38-
Figure 18

Structure of the polycistronic mccAR construct

Figure 19
Figure 20
Figure 21A
Figure 21B
Figure 32A

Figure 32B
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K35/17 A61P35/00 C12N5/0783 A61K39/00 A61K39/395

C07K14/705

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal , BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y J BHATTACHARYYA ET AL: “T-cell immunotherapy with a chimeric receptor against CD38 is effective in eradicating chemotherapy-resistant B-cell lymphoma cells overexpressing survivin induced by BMI-1”, BLOOD CANCER JOURNAL, vol. 2, no. 6, 1 June 2012 (2012-06-01), page e75, XP55138165, DOI: 10.1038/bcj.2012.21

----- 1-67

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

14 November 2016

Date of mailing of the international search report

25/11/2016

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Armandola, Elena

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>K MIHARA ET AL: &quot;T-cell immunotherapy with a chimeric receptor against CD38 is effective in eliminating myeloma cells&quot;, LEUKEMIA, vol. 26, no. 2, 12 August 2011 (2011-08-12), pages 365-367, XP055138116, ISSN: 0887-6924, DOI: 10.1038/leu.2011.205 the whole document</td>
<td>1-67</td>
</tr>
<tr>
<td>Y</td>
<td>Wo 2014/191128 Al (CELLECTIS [FR]) 4 December 2014 (2014-12-04) cited in the application</td>
<td>1-67</td>
</tr>
<tr>
<td>Y, P</td>
<td>Wo 2015/136001 Al (CELLECTIS [FR]) 17 September 2015 (2015-09-17) the whole document</td>
<td>1-67</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------------------------------------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:
   a. forming part of the international application as filed:
      - [ ] in the form of an Annex C/ST.25 text file.
      - [ ] on paper or in the form of an image file.
   b. [ ] furnished together with the international application under PCT Rule 13fer1 (a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
   c. [ ] furnished subsequent to the international filing date for the purposes of international search only:
      - [ ] in the form of an Annex C/ST.25 text file (Rule 13fer1 (a)).
      - [ ] on paper or in the form of an image file (Rule 13fer1 (b) and Administrative Instructions, Section 7.13).

2. [ ] In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2014191128 Al</td>
<td>04-12-2014</td>
<td>AU 2014273490 Al</td>
<td>17-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2913830 Al</td>
<td>04-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016525888 A</td>
<td>01-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016272999 Al</td>
<td>22-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014191128 Al</td>
<td>04-12-2014</td>
</tr>
<tr>
<td>WO 2015136001 Al</td>
<td>17-09-2015</td>
<td>AU 2015228844 Al</td>
<td>18-08-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2942113 Al</td>
<td>17-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 106103475 A</td>
<td>09-11-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015136001 Al</td>
<td>17-09-2015</td>
</tr>
<tr>
<td>WO 2013176915 Al</td>
<td>28-11-2013</td>
<td>AR 096274 Al</td>
<td>16-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2013266733 Al</td>
<td>15-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2013266734 Al</td>
<td>15-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2874609 Al</td>
<td>28-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2874611 Al</td>
<td>28-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104718284 A</td>
<td>17-06-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201492222 Al</td>
<td>29-05-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2855666 Al</td>
<td>08-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2855667 Al</td>
<td>08-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1208879 Al</td>
<td>18-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015523064 A</td>
<td>13-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015525065 A</td>
<td>03-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150029651 A</td>
<td>18-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201407802W A</td>
<td>29-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013315884 Al</td>
<td>28-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014134142 Al</td>
<td>15-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015203817 Al</td>
<td>23-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016120905 Al</td>
<td>05-05-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016145337 Al</td>
<td>26-05-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013176915 Al</td>
<td>28-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013176916 Al</td>
<td>28-11-2013</td>
</tr>
<tr>
<td>WO 2014039523 Al</td>
<td>13-03-2014</td>
<td>AU 2013312838 Al</td>
<td>12-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2833502 Al</td>
<td>13-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104769103 A</td>
<td>08-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2893004 Al</td>
<td>15-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1212728 Al</td>
<td>17-06-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015528298 A</td>
<td>28-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150083991 A</td>
<td>21-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2015112125 A</td>
<td>27-10-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201501471V A</td>
<td>30-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014039523 Al</td>
<td>13-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2911292 Al</td>
<td>20-11-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105431532 A</td>
<td>23-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201501109 Al</td>
<td>30-06-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2997141 Al</td>
<td>23-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016520074 A</td>
<td>11-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20160030480 A</td>
<td>18-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 12015502479 Al</td>
<td>22-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201508805U A</td>
<td>27-11-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201502139 A</td>
<td>16-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014184143 Al</td>
<td>20-11-2014</td>
</tr>
<tr>
<td>WO 2015140268 Al</td>
<td>24-09-2015</td>
<td>AU 2015233461 Al</td>
<td>25-08-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2943008 Al</td>
<td>24-09-2015</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>WO 2015140268 A1</td>
<td>24-09-2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)